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Abstract. The user experience of passengers using public transporta-
tion is highly sensitive to travel time. In this regard, travel time is a key
input to assess the quality of service offered by a public transportation
system and to compute performance and service-level metrics. Moreover,
travel time is needed to evaluate the accessibility to different opportu-
nities in the city (e.g., employment, commercial activities, education)
that can be reached using public transportation. This article presents a
data analysis approach to estimate in-vehicle travel time in public trans-
portation systems. Vehicle location data, bus stops locations, bus lines
routes, and timetables from the public transportation system in Mon-
tevideo, Uruguay, are considered in the case study used to evaluate the
proposed approach. Results are compared against scheduled timetables
and are used to compute several performance indicators of the public
transportation system of the city.
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1 Introduction

In urban scenarios, citizens are required to travel in order to engage in the
social and economic activities of their city [3]. In this context, public trans-
portation plays a major role, since it is the most efficient and socially-fair mean
of transportation [7]. Understanding the accessibility of citizens to the public
transportation service of a city is paramount in order to identify inequalities
among the population and implement policies that aim at improving the quality
of service offered to passengers. Several indicators may be considered to mea-
sure the accessibility offered by a transportation system, among them, travel
time strikes as the most intuitive one, since it is tightly related to the perception
of passengers of the quality of service of a transportation system [17].

Public transportation systems operate on predefined routes and depend on
schedules that vary throughout the day. Additionally, travel speeds vary greatly
due to traffic congestion, passenger demand, and road infrastructure. Thus, as-
suming constant speed of vehicles along routes usually results in significant travel
time differences between the estimations of the model and the actual reality. A
comprehensive model for travel time estimation in public transportation net-
works needs to account for all these factors.
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This article presents a model to estimate in-vehicle travel times in pub-
lic transportation systems. The proposed model applies a data analysis ap-
proach [12] incorporating real vehicle location data from on-board GPS units
as well as open data regarding the public transportation lines and bus stops.
The public transportation system in Montevideo, Uruguay, is used as a case
study. For the studied scenario, the difference between the estimated travel
times and those available in the public timetables are reported. Furthermore,
relevant metrics to assess the quality of service of public transportation systems
are computed. Results indicate that the proposed approach is suitable to accu-
rately estimate in-vehicle travel times in the city. The applied methodology is
also useful to detect situations that prevent users from having a good quality
of experience when using the public transportation system, which should be the
focus of further studies by the city administration.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the topic and the context for this study. Section 3 reviews works in the re-
lated literature. Section 4 outlines the proposed methodology for travel time
estimation. The application to the case study is presented in Section 5 and the
conclusions and future work are presented in Section 6.

2 Characterizing travel times of the public transportation
system

In the context of the research project that studies the territorial, universal, and
sustainable accessibility in Montevideo, Uruguay, one of the most relevant tasks
is the characterization and analysis of the public transportation system. In this
regard, accessibility and quality of service provided by the public transportation
system is a very important issue that can significantly affect vulnerable groups
in society. A proper analysis of public transportation allows conceiving and ap-
plying sustainable mobility strategies (e.g., including electric mobility options
and other alternatives for non-polluting means of transportation).

For studying accessibility, it is crucial to compute relevant indicators that al-
low determining the impact and availability of different means of transportation.
Travel time using the public transportation system is a relevant indicator that
assess how long it takes [a citizen] to make a trip using the public transportation
system, and it is also considered as an indicator of mobility, defined as “the ease
of traveling between locations within a community” [2]. The travel time metric
is not only valuable as a subjective indicator, i.e., related to the user-experience
of passengers of the public transportation system, but is also meaningful to de-
termine the quality of service of any given bus route or the system as a whole.
Furthermore, travel time also allows computing comparative indicators, such as
the additional travel time required over an automobile making the same trip, as
defined by the Transportation Research Board [1], and other metrics of route
directness. Travel time is also useful to determine the reliability of the public
transportation system, defined as “the ability of the transit system to adhere to
schedule or maintain regular headways and consistent travel times” [18].
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In order to quantify the provision of the public transportation system, the
problem studied in this article consists in estimating in-vehicle travel times at
each stop along the routes of the bus lines in the system. Travel times can
be estimated from the (fixed) schedules established by the city administration
for the different bus lines in the city, providing a static view of mobility and
accessibility. Complementing this approach, this article proposes using real GPS
data of the buses from the Metropolitan Transport System of Montevideo and
open data providing information about the existing infrastructure for public
transportation in the city (e.g., bus stops, bus lines). These sources of data
allow characterizing the mobility offered by the transportation system and its
accessibility, to complement the use of fixed information that may not accurately
reflect reality.

3 Related works

Lei and Church presented a short review on measuring the accessibility in public
transportation systems [11]. The survey showed that several authors focus on the
physical aspects of a system (e.g., distance to a bus stop) instead of focusing on
the travel time between pairs of locations. Furthermore, previous works which do
focus on travel times usually make assumptions which significantly impact the
accuracy of their estimations, e.g., constant transfer and waiting times, average
speed of vehicles, or not considering bus schedules at all. The authors propose
an extended GIS data structure to account for the temporal dimension of public
transportation systems which is applied to the public transportation system in
Santa Barbara, California.

Salonen and Toivonen presented a comparison of different travel time mea-
sures [17]. The work covers both travel times using private vehicles and public
transportation. Regarding the latter, three models are outlined and applied to
a case study in the capital region of Finland: a simple model which does not
include vehicle schedule information at all, an intermediate model which uses
schedules only to estimate the average waiting time, and an advanced model
which queries a government API with up-to-date schedules and uses its routing
engine as a black-box to compute travel times. The proposed models identified
travel time disparities accross modes (i.e., private vs. public transportation),
with a lower effect in areas near the city center.

Previous works have addressed the public transportation system in Monte-
video, Uruguay, which is used as a case study in this article. Massobrio and
Nesmachnow proposed an urban data analysis approach to understand mobility
in the city using different sources of urban data [12]. Origin-destination matrices,
which describe mobility, were built using ticket sales data. Other studies have
measured the quality of service offered by the public transportation service in
Montevideo, by analyzing punctuality based on GPS bus location data [13, 14].

Hernández et al. studied accessibility to employment opportunities in Mon-
tevideo, Uruguay [8]. For this purpose, the authors built a travel time matrix
using the scheduled timetables for bus lines in the city. The methodology pro-
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posed by the authors models the public transport network as a graph, to compute
travel times between different zones in the city. This model allows configuring
the maximum walkable distance and the maximum number of transfers within
the route. The computed travel time matrix was validated against a government
web application and the results from a household mobility survey.

According to the review, few previous works have applied a systematic proce-
dure to estimate travel times of public transportation in Montevideo, Uruguay.
The model proposed in this article combines several sources of information in-
cluding bus location data from on-board GPS units. Thus, the proposed ap-
proach extends the static approaches that only consider fixed timetables data
when computing in-vehicle travel time by incorporating real data that reflect
the reality of the buses operating throughout the network.

4 Methodology

This section outlines the methodology applied for data processing and analysis.

4.1 Data sources

One week of bus GPS location data were obtained, corresponding to buses op-
erating from Monday 5th to Sunday 11th of August 2019. Records in the bus
location dataset correspond to measures registered with the on-board GPS unit
in each bus, which are sampled every 20-30 seconds. Each record in the dataset
includes a bus line identifier, a unique trip identifier (to discriminate different
trips of the same bus line), the scheduled departure time for the trip, GPS co-
ordinates, and a timestamp. For this study, we aimed to compute travel times
during the morning peak, so we considered only trips with scheduled departures
on working days between 7.00 am and 9.00 am (inclusive) as reported in [12].
Some trips had corrupted records, with timestamps spreading for very long pe-
riods. For this purpose, we discarded all trips that lasted more than four hours,
as they are not representative of bus line lengths in the city and they are very
likely outliers. After this filtering, the bus location dataset held more than 2.8
million records, corresponding to 8224 trips of 258 different bus lines.

Bus stop location data were also used for the analysis. Open data from the
local government were processed to obtain, for each bus line, the ordered set of
bus stops it visits, with their locations. Another source of open data used for
the analysis were the timetables for each bus line. Records hold the scheduled
departure of each trip and the expected arrival time at each bus stop. The same
filter was applied to consider only trips within the morning peak. Open data were
obtained in July 2021, thus, some discrepancies appear when combining it with
bus location data from 2019. For instance, some bus lines and bus stops were
modified, schedules were updated, etc. We deal with these issues throughout the
data analysis process described next.
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4.2 Data processing

Each trip in the dataset is processed independently to compute in-vehicle travel
times. The result of this processing is an ordered list of the time it takes from
the first bus stop in the journey to each of the bus stops corresponding to the
bus line of the trip. Vehicle location using GPS is prone to errors from a vari-
ety of sources, so several methodologies have been proposed to cope with this
phenomena [10]. To address this issue we created a buffer on bus stops of 25
meters an all directions and discarded all measures falling outside these buffers.
When processing the records of a given trip, the timestamp assigned to each bus
stop is set as the timestamp of the earliest record that falls within the bus stop
buffer. This applies to all bus stops except the first one in the journey, where the
latest timestamp is selected, as buses usually turn on their GPS device before
departing, thus multiple records fall within the first stop. In some cases, drivers
forget to update the on-board machine at the end of the trip. As a consequence,
the trip identification is kept for more than one trip (e.g., inbound and outbound
consecutive trips of the same line). This issue was mitigated by adding a validity
check ensuring that the time between consecutive measures assigned to stops
needs to be smaller than 30 minutes. Additionally, integrity checks are made
to ensure that timestamps and bus stop identifiers are increasing monotonically
and the bus line and trip identifier is unchanged. If any assertion does not hold,
the process of that trip is interrupted.

As a result of the previous processing, the proposed method computes travel
times (measured from the first stop of the bus line) for each of the bus stops
with a valid nearby GPS record. However, some of the bus stops of the bus line
being processed may still have no travel time information. For bus stops located
between other bus stops that already have assigned travel times, we interpolate
the values based on the distance between the stops along the bus route. For
bus stops at the start or end of the bus line with no travel time assigned, we
extrapolate using the travel times offered in the timetable for that bus line.

4.3 Metrics

After computing the travel times between bus stops for every line in the public
transportation system, a set of relevant metrics are considered in the analysis.
These metrics focus on evaluating different features of the public transportation
system. The studied metrics include:

– Difference between scheduled and real travel time: This metric evaluates the
gap between the scheduled time and the actual travel time computed from
GPS records. It is a very relevant metric to assess the punctuality of buses
when arriving at each stop. The ideal value for this metric is zero, for a
perfectly synchronized bus system.

– Operational speed (OS): This metric evaluates the average speed of buses
when operating a route. Operational speed is defined as the length of a bus
route divided by the average travel time required to perform a trip from the
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beginning to the end of the route. Larger values of the operational speed
indicate a more efficient transportation system. Related to this metric, in
a recent article, Deng and Yang [4] introduced an holistic metric to eval-
uate the dispersion of the operational times for all bus lines in a public
transportation system, i.e., dispersion OS (dOS). This metric is defined by
dOS = max(OSl) −OSl.

– On-time arrival rate (OTAR): This metric evaluates the number of trips per-
formed without a significant delay, considering a predefined delay threshold
(the buffer time). OTAR is defined as the ratio of buses arriving on time at
the final stop over the total number of bus trips performed. The buffer time
coefficient accounts for any unexpected delay during the trip. It is computed
as the ratio of the difference between the 95th percentile travel time and the
average travel time, and the average travel time [6].

– Additional travel time over automobile (ATToA): This metric evaluates the
directness of a bus route, by comparing the travel time required for perform-
ing a trip on the public transportation system over the time required using
private transportation (automobile) that makes the same trip. Smaller values
of this metric means a more direct route; thus, a most efficient transportation
system [1].

5 Results and discussion

This section reports and discusses the main results and finding of the proposed
analysis of the public transportation system in Montevideo, Uruguay.

5.1 Analysis of GPS records

Fig. 1 shows an example of the data processing methodology to assign GPS
records to bus stops to compute in-vehicle travel times. The example corresponds
to the final stops of bus line 306 from Parque Roosevelt (located in the east side of
the city, in the border with Canelones department) to Casabó (a neighborhood in
the west of Montevideo). Blue dots correspond to GPS measures and gray circles
correspond to the buffered stops for the bus line. Bus stops with at least one
GPS measure in their vicinity (i.e., at least one blue dot within the gray area)
are assigned the timestamp of the earliest of those GPS measures. Bus stops with
no GPS measures in their vicinity are assigned a timestamp by interpolating the
timestamps of the previous and next bus stops with matching GPS records and
taking into account the distance between those stops along the route of the bus.
This case is shown in yellow in the figure. Finally, the last four stops (shown
in orange in the figure) have no matching GPS records. This happens on some
trips when the driver turns off the on-board GPS unit prematurely, thus the end
of the trip is not recorded. In this case, the travel time to reach each bus stop
is extrapolated using the information available in the timetable for the bus line
and the latest GPS timestamp assigned to a bus stop of the line.



Travel time estimation in public transportation using bus location data 7

Fig. 1: Example of travel time assignment to bus stops at the end of line 306
from Parque Roosevelt to Casabó

As a result of the data processing, travel time estimations for 8 195 trips
corresponding to 257 different bus lines were obtained. Overall, travel times of
trips at each bus stop were estimated directly in 67.9% of the cases, when there
was a matching GPS measure of the trip at the bus stop. In turn, 21.6% of
travel times were interpolated based on nearby GPS measures and 10.5% were
extrapolated using data from the available timetables.

5.2 Differences between scheduled and real travel times

The in-vehicle travel times estimated using bus location data can be compared
against the scheduled timetables of the corresponding bus lines, to assess devia-
tions from the scheduled times that may exist due to passenger demand, traffic
congestion, and other external factors.

Fig. 2 presents histograms of the difference between the (estimated) real
travel time and the scheduled travel time that appears on the timetable. His-
togram in Fig. 2a corresponds to each independent trip in the studied dataset,
whereas results in Fig. 2b correspond to the median difference in travel time of
each bus line. Values greater than zero correspond to trips/lines where the total
travel time was larger than the scheduled time whereas negative values indicate
that the travel time was shorter than that indicated by the schedule.
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(a) per trip (b) median value per line

Fig. 2: Histogram of difference between (estimated) real travel times and sched-
uled travel times

Results show that most trips adhere to their scheduled total travel time,
with an average difference of half a minute with regards to the timetable. When
looking at the 25th and 75th percentiles, the differences are of 3 an 4.4 minutes,
respectively. These differences, while small, might affect passengers that may
miss the bus and need to wait for a full headway for the next bus of the line
and is specially significant for travelers transferring between different bus lines.
Extreme values of trips arriving 30 minutes before the scheduled time and 37
minutes after the scheduled time were found, which might be useful to detect
special events taking place along the route of those bus lines. When looking at
the median differences of trips grouped by bus lines (Fig. 2b) it can be observed
that, while most lines are consistent to their scheduled total travel time, some
bus lines have significant differences with their schedules. On one extreme, line
137 from Paso de la Arena arrives to its destination in Plaza de los Treinta y
Tres 12 minutes (in median) before its scheduled time. In contrast, line L1, a
short local line that connects Paso de la Arena with Pajas Blancas arrives (in
median) 13 minutes after its scheduled time.

Besides looking at overall differences in travel times among the trips and bus
lines in the system, travel times of specific trips can be analyzed. Fig. 3 shows
the difference between the estimated travel time and the scheduled travel time
at each bus stop of a trip of bus line 185, a bus line that travels through several
neighborhoods of Montevideo going from Casabó to Pocitos. The same informa-
tion is displayed in Fig. 4 using the bus stop location and the street map of the
city. Each bus stop in the figure is colored according to the absolute difference
between the estimated travel time to reach the bus stop and the scheduled time.



Travel time estimation in public transportation using bus location data 9

Fig. 3: Real (estimated) vs. scheduled travel time of a trip of bus line 185 from
Casabó to Pocitos

Fig. 4: Absolute difference of estimated and scheduled travel times of a trip of
bus line 185 from Casabó to Pocitos
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In the studied example, the trip of line 185 is, on average over all stops, 12
minutes ahead of its schedule. The difference increases along the route, reaching
its maximum at the last stop, where the bus arrives nearly 30 minutes ahead of its
schedule. The average headway of this bus line for the morning peak considered
is 5 minutes. Thus, in this case, a severe case of bus bunching occurs, which is
detrimental to the quality of service and reliability offered to citizens.

5.3 Operational speed

Several indicators can be computed using the estimated travel times as input.
Among these, the operational speed is very useful to transport operators and
authorities. Fig. 5 outlines the results of computing the operational speed for all
trips in the studied dataset. Descriptive statistics are outlined in Fig. 5(a) and a
boxplot of the operational speed is presented in Fig. 5(b). Results are expressed
in km/h.

indicator operational speed

count 8195.00
mean 17.77
std. deviation 3.41
minimum 7.70
25% percentile 15.54
50% percentile 17.22
75% percentile 19.54
maximum 40.06

(a) Indicators (b) Histogram

Fig. 5: Descriptive statistics of operational speed

Results in Fig. 5 show that the average operational speed for all trips in
the studied dataset is 17.77 km/h. This result is consistent with performance
indicators published by local authorities corresponding to the year 2018 (www.
montevideo.gub.uy/observatorio-de-movilidad, October 2021). The largest op-
erational speed (40 km/h) is achieved by a trip of line L13, which operates on
the outskirts of the city. The slowest operational speed (7.7 km/h) corresponds
to a trip of line L31, a short local line. This particular trip took almost 17
minutes to complete the nearly 2 km of the bus line. Short local lines have the
higher dispersion regarding operational speed. The median of operational speed
(17.22 km/h) corresponds to a trip of line 105 from Parque Roosevelt (in the
east of the city) to Plaza Independencia in the city center. This is a very long
bus line, with a total route length of over 21 kms. In this specific trip, the total
length of the route was covered in nearly one hour and fifteen minutes.
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In turn, the dispersion of the operational speed (dOS) is outlined in Fig. 6.
Descriptive statistics are reported in Fig. 6(a) and the distribution of results is
shown in the histogram of Fig. 6(b).

indicator dOS

count 8195.00
mean 22.29
std. deviation 3.41
minimum 0.00
25% percentile 20.52
50% percentile 22.84
75% percentile 24.52
maximum 32.36

(a) Indicators (b) Histogram

Fig. 6: Descriptive statistics of OS dispersion

The dOS metric results indicate that most lines have a large dispersion of
OS values, with a mean of 22.29 km/h. This result is mainly conditioned by the
extreme values of the OS metric for short local lines, which account for both the
maximum and minimum values of OS, as reported in the previous analysis.

5.4 On-time arrival rate

The calculation of the OTAR metric requires computing the buffer time, i.e.
the coefficient that defines the acceptable delay threshold for completing a trip,
with respect to the scheduled time. Table 1 outlines descriptive statistics for
the buffer coefficients of the bus lines of the studied scenario. According to the
computed results, the average value for acceptable delay is 11%.

indicator buffer coefficient

count 257.00
mean 0.11
std. deviation 0.06
minimum 0.00
25% percentile 0.08
50% percentile 0.11
75% percentile 0.15
maximum 0.38

Table 1: Descriptive statistics of buffer coefficients for on-time arrival rate
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After determining the buffer coefficients, the OTAR metric was computed
for each of the bus lines in the considered scenario. Results are shown in the
histogram in Fig. 7.

Fig. 7: Histogram of on-time arrival rate for bus lines

Results in Fig. 7 indicate that the average OTAR among all bus lines in the
studied scenario is 0.64, with a standard deviation of 0.27. The histogram allows
identifying a large number of bus lines with an OTAR value of 0.0. In these
cases, none of the trips of a given bus line completed their journey within their
scheduled time (even considering the time tolerance). In these extreme cases,
authorities should review the predefined schedules and modify them to reflect
the real operation times. These results confirm the usefulness of the proposed
approach to detect anomalous situations in the public transportation system.

5.5 Additional travel time over automobile (ATToA)

The heatmap in Fig. 8 reports the values of the ATToA metric for bus line 185.
Bus line 185 has a higher-than-average operational speed, considering all bus
lines in the city. The analysis is representative of those performed for other ‘fast’
bus lines in the city. Results correspond to the ATToA values computed from/to
17 (regularly spaced) stops along the route. Travel times in automobile were
computed using the API provided by Google Maps.
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Fig. 8: Additional travel time over automobile (ATToA) of a trip of bus line 185
from Casabó to Pocitos

Results in Fig. 8 allow observing an almost regular pattern: the bus is very
(time-wise) efficient for traveling between nearby stops, as demonstrated by AT-
ToA values lower than 1.0, meaning that bus is faster than automobile in those
cases. Values slightly increase for longer trips, up to reasonable 1.5× to 1.6×
additional time factors. The only exceptions are for bus stop #46, for which the
ATToA values are closer to 2.0 (and a worst value of 2.2 was computed for a trip
with origin on stop #21). Two main reasons explain this result: between stops
#21 and #46 the bus route has a big detour, which impacts on route direct-
ness, whereas the fastest way is traveling using automobile via a direct avenue
(Bv. Artigas). Furthermore, bus stop #46 is located after a long red light that
allows buses to turn left towards Bv. Artigas. Despite the reported delay, the
bus line manages to recover a normal operational speed, as ATToA values after
bus stop #46 reduce to a reasonable 1.6× additional time factor.

Overall, reported ATToA values are similar to the ones reported for other
bus networks in similar cities (e.g., Stockholm, Sweden and Amsterdam, the
Netherlands), and lower than values reported for larger cities such as São Paulo,
Brazil and Sydney, Australia, for which average values up to 2.6× longer than
driving a car have been reported [17].
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6 Conclusions and future work

This article presented a data analysis approach to estimate in-vehicle travel time
in public transportation systems, using GPS bus location data and several other
sources of open data regarding the system infrastructure. The public transporta-
tion system in Montevideo, Uruguay, was used as a case study. A specific data
analysis methodology is presented and then applied to one week of GPS bus lo-
cation data comprised of over 2.8 million records corresponding to the morning
peak hours. Estimated travel times were obtained for over 8 000 trips, corre-
sponding to 257 different bus lines. These travel times were used as input to
compute several relevant metrics, focused on evaluating different features of the
public transportation system, including: i) differences against scheduled timeta-
bles, ii) operational speed, iii) on-time arrival rate, and iv) additional travel time
over automobile. Computed metrics are a useful input for operators to evaluate
the reliability of the transportation system and are relevant to policy-makers
aiming to improve the quality of service offered to citizens.

The main lines of future work focus on improving the analysis and applying
the computed results to solve relevant problems regarding public transportation
in the case study considered. Regarding the first line, the data analysis process
could be further improved by considering data from different peak and non-peak
hours, as well as weekends, and by processing larger amounts of historical data.
For the latter, parallel computing strategies should be devised to deal with the in-
creased computational burden. Regarding the application of the computed travel
times and indicators, several relevant lines are planned for future work, includ-
ing bus timetable synchronization [15, 16], bus network redesign [5], sustainable
mobility plans [9], and assessing accessibility using public transportation to dif-
ferent opportunities in the city. For this last application, a specific line of work is
to extend the model presented in our previous work [8], which only used sched-
uled timetables, and incorporate the estimated (real) in-vehicle travel times to
further refine the accessibility metric.
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