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ABSTRACT
Automatic audio-visual urban traffic understanding is a growing area
of research with many potential applications of value to industry,
academia, and the public sector. Yet, the lack of well-curated re-
sources for training and evaluating models to research in this area
hinders their development. To address this we present a curated
audio-visual dataset, Urban Sound & Sight (Urbansas), developed
for investigating the detection and localization of sounding vehicles
in the wild. Urbansas consists of 12 hours of unlabeled data along
with 3 hours of manually annotated data, including bounding boxes
with classes and unique id of vehicles, and strong audio labels featur-
ing vehicle types and indicating off-screen sounds. We discuss the
challenges presented by the dataset and how to use its annotations
for the localization of vehicles in the wild through audio models.

Index Terms— audio-visual, urban research, traffic, dataset.

1. INTRODUCTION

The automatic understanding of urban scenes is a growing area
of research, with many potential applications of value to indus-
try, academia, and the public sector. In particular, the automatic
understanding of audio-visual urban traffic information is gaining
increasing attention due to the availability of large quantities of
online multimedia content, and has potential applications such as as-
sistive devices for the hearing-impaired, the quantification of traffic
for policy making, autonomous driving, among others. Audio-visual
information is fundamental for the full understanding of real-world
scenes, as visual and acoustic modals provide complementary infor-
mation: images help identify sources and understand their motion,
audio help understand the proximity of sources, the presence of
relevant off-screen sounding objects, and help solve occlusions and
improve estimations with poor lighting. Understanding an audio-
visual urban scene includes estimating the class, spatial location,
direction and speed of movement of beings and objects in real envi-
ronments by the sounds they make and the way they look. Ideally,
automatic solutions would be robust across a wide range of sound
scenes and sensing conditions: noisy, sparse, with varying composi-
tions of sources, with moving sources, with moving sensors.

While there is a large body of research in related computer vision
(e.g. object detection and pedestrian counting [1, 2, 3]), and machine
listening areas (e.g. urban sound event detection and classification,
[4, 5]), there is little work on audio-visual classification and local-
ization of sounding sources in realistic urban settings. Recently the

machine listening community has turned its attention to localization,
seeking to apply the same deep learning techniques that have proven
successful in classification before [6, 7, 8, 9, 10], mostly using syn-
thetic datasets.Research on the co-occurrence of audio and video has
recently received increasing attention due to the development of self-
supervised models that exploit audiovisual cues for their pretext-task
[11, 12, 13, 14]. Most of this research is carried out using unlabeled
videos from Youtube or Audioset [15], and models learn a represen-
tation of the data (either audio, visual or both) to later be applied to a
downstream task [16]. Except for a few exceptions [17], these works
have focused on audio-visual localisation mostly of sources such as
musical instruments or in low-complexity settings, where the objects
are relatively close to the camera and central to the scene.

One of the main challenges to audio-visual urban research is
the lack of labeled data. While most of the existing resources in-
volve either audio [18] or video [19] alone, the available audio-visual
datasets of urban scenes have limited annotations, restricted to audio
events only [20] or clip labels intended for scene classification [21].
Moreover, since manually annotating real-world data is very arduous
and time consuming, the amount of labeled data tends to be small for
machine learning standards. A way to alleviate the work of manual
annotation is to create synthetic audio mixtures using isolated sound
events [22] or synthetic visual scenes from video games [23], but
they fail to capture the diversity and complexity of naturally occur-
ring sound scenes. Another challenge is how to annotate moving
sources in such complex settings: dealing with off-screen sounds,
occlusions, or objects that can be seen but not heard.

The goal of this work is to take the first steps to address the chal-
lenges mentioned above. To that purpose, in Section 2, we introduce
Urban Sound & Sight (Urbansas), a curated dataset of labeled and
unlabeled audio-visual urban traffic data, with stereo audio, and an-
notations in audio and video. In Section 3 we discuss the challenges
faced and the decisions made to annotate the data, and describe the
annotations. In Section 4 we discuss ways of using the annotations
of this dataset to approximate the position of vehicles in the wild us-
ing sound. Finally, in Section 5 we discuss the challenges of the data
via baseline experiments for sound event detection and localization.

2. THE URBAN SOUND & SIGHT DATASET

We set four main goals for creating this dataset: 1) to compile a set of
real-field audio-visual recordings; 2) the recordings should be stereo
to allow exploring sound localization in the wild; 3) the compilation
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should be varied in terms of scenes and recording conditions to be
meaningful for training and evaluation of machine learning models;
4) the labeled collection should be accompanied by a bigger unla-
beled collection with similar characteristics to allow exploring self-
supervised learning in urban contexts in the future. In the following
we explain how we have compiled Urbansas to fulfill these goals.
Data Sources. We have compiled and manually annotated Ur-
bansas from two publicly available datasets, plus the addition of
unreleased material. The public datasets are the TAU Urban Audio-
Visual Scenes 2021 Development dataset [21] and the Montevideo
Audio-Visual Dataset (MAVD) [20]. The TAU dataset consists of
10-second segments of audio and video from different scenes across
European cities, traffic being one of the scenes. Only the subset of
scenes labeled as traffic were included in Urbansas. MAVD is an
audio-visual traffic dataset curated in different locations of Montev-
ideo, Uruguay, with annotations of vehicles and vehicle components
sounds (e.g. engine, brakes) for sound event detection. Besides the
published datasets, we include a total of 9.5 hours of unpublished
material recorded in Montevideo, with the same recording devices
of MAVD but including new locations and scenes.
Data Capture. Recordings for TAU were acquired using a GoPro
Hero 5 (30fps, 1280x720) and a Soundman OKM II Klassik/studio
A3 electret binaural in-ear microphone with a Zoom F8 audio
recorder (48kHz, 24 bits, stereo). Recordings for MAVD were
collected using a GoPro Hero 3 (24fps, 1920x1080) and a SONY
PCM-D50 recorder (48kHz, 24 bits, stereo).
Data Organization. In total, we gathered 15 hours of high quality
material, which we organized as follows: 3 hours of data (1.5 hours
TAU, 1.5 hours MAVD) manually annotated by our team both in
audio and image, and 12 hours of unlabeled data (2.5 hours TAU,
9.5 hours of unpublished material). To reduce redundancy in the
labeled data, we curated 1.5 hours from each dataset maximizing the
variance of the data in terms of locations. An overview of Urbansas
is presented in Table 1. Following the format of TAU, all audio and
video are split into 10 second clips and are stored as separate MPEG4
and WAV files. Clips are uniformly formatted as 1280x720, 24fps
video and 48kHz, 24 bit, stereo audio.We anonymized the data from
MAVD and the newly curated data following [21].1

city places clips mins frames labeled
mins

Montevideo 8 4085 681 980400 92
Stockholm 3 91 15 21840 2
Barcelona 4 144 24 34560 24
Helsinki 4 144 24 34560 16
Lisbon 4 144 24 34560 19
Lyon 4 144 24 34560 6
Paris 4 144 24 34560 2
Prague 4 144 24 34560 2
Vienna 4 144 24 34560 6
London 5 144 24 34560 4
Milan 6 144 24 34560 6

Total 50 5472 912 1.3M 180

Table 1. Breakdown of Urbansas per city and location. Last column
indicates the portion data in the labeled set.

1We used the anonymizer https://github.com/understand-ai/anonymizer.

3. ANNOTATING AUDIO-VISUAL URBAN SCENES

In order to understand an audio-visual urban scene, we want to esti-
mate the class and location of each source as it moves over time. To
that goal, we have annotated: 1) bounding boxes of objects with a
class assignment and object id; 2) “strong” audio labels, with begin-
ning and end timestamps and the correspondent class of the acoustic
event; 3) relevant metadata about lighting and weather conditions
(e.g. night vs. day). This dataset focuses on traffic since vehicles are
a compelling case-study of sounding moving objects in urban set-
tings. Consequently, our ontology focuses on the four most predom-
inant vehicle types: car, truck, bus, and motorbike. In the following,
we discuss the decisions we have made to annotate Urbansas.
Annotation Tools. We used CVAT 2 for the bounding box annota-
tions, and VIA [24] for annotating the audio with the video as refer-
ence. For scenes where it was beneficial, we pre-computed bounding
boxes using YOLO [2] and a customized location-based algorithm
which used manual priors about the street orientation to track bound-
ing boxes. Due to the large effort and time investment required for
annotating, the video annotations were performed at 2fps to reduce
redundant annotations, improve annotation quality, and allow for a
larger volume of annotated clips (10 seconds at full fps is 240 frames
to annotate which was found to be impractical).
Annotation types. There are two types of annotations in Urbansas:
object annotations and scene annotations. Object annotations refer
to vehicles in the scene that we are interested in and describe the
class and position over time in both audio and video (e.g. bounding
boxes and audio events). Scene annotations apply to entire clips at a
scene and are informative of the context of those vehicles (e.g. takes
place at night, too many vehicles to hear distinctly, etc.).
Notation. For a specific file in the dataset, let us define an audio an-
notation as a tuple (ts,i, te,i, li), i ∈ [1, NA], where ts,i and te,i are
the start and end time of an audio event with label li, and NA is the
total number of audio annotations for the file. We also define a video
annotation as a tuple (tj , lj , trj , vj , xj , wj , yj , hj), i ∈ [1, NV ],
where tj is the timestamp of an object with label lj and visibility
flag vj ; track id trj is used to identify a single object across frames
in a file; the bounding box for the object is defined in terms of hori-
zontal (xj) and vertical (yj) shift between the top-left corner of the
frame and bounding box, with corresponding height (hj) and width
(wj); NV is the total number of video annotations for the file.
Video annotations of sounding vehicles. Vehicles in the video are
annotated if they are believed to contribute to the acoustic scene.
Primarily, this includes vehicles that either drive past or idle near
the observer, while excluding vehicles with their engines off (i.e.
parked). In complex scenes, there are often multiple roads at dif-
ferent distances. In these scenarios, acoustic masking is taken into
account - e.g., if vehicles from closer road mask sounds from the fur-
ther road, then only the closer vehicles are annotated. If the closer
road is less busy, then the further road may be annotated as well. If a
vehicle is temporarily occluded (hidden behind something, partially
or fully) it is still annotated with an estimate of its true location, with
an additional flag (vj = 0) identifying it as occluded.
Integrating audio and video annotations. The audio annotations
can be used in combination with the video annotations to identify
vehicles that are both audible and visible. In some cases, an object
could have no audio events (and vice versa) if the sound occurs
before or after the vehicle enters/leaves the scene (this can happen
for certain camera angles). In other cases, an audio event may have
no corresponding object in the video, which may happen when a

2https://github.com/openvinotoolkit/cvat
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Fig. 1. Breakdown of events in Urbansas labeled set (at 2fps). Left: concurrency of vehicles base on image annotations; Center: Number
of frames that each vehicle type appears in the scene (considering unique vehicles per scene); Right: Percentage of clips with clip-level
annotations non identifiable vehicle sound and night.

vehicle passes outside of the camera’s view; these are labeled as off-
screen sounds. Since we have the audio annotations to disambiguate
when the object is both present in the image and producing sound at
the same time, we annotate vehicles when they are “close enough”
so is informative of error types in visual-only or audio-visual models.

Scene annotations. Whenever possible, we annotate beginning and
end of vehicle events in the audio using the video to determine the
vehicle class. However, some scenes have many vehicles passing
at the same time and it is perceptually very hard to attribute sounds
to a particular vehicle, they rather produce a “constant background
sound” altogether. To address this, we include a binary flag at the
clip level indicating the presence of non identifiable vehicle sound.
In cases where particular vehicles are identifiable on top of this con-
stant sound, we annotate them with strong labels as well as indicate
the presence of non identifiable vehicle sounds. Usually these scenes
will present many bounding boxes at the same time. Additionally,
we include flags indicative of the lighting: night vs. day.

4. LOCALIZING SOURCES IN THE WILD

Since Urbansas consists of data captured in real world conditions,
it differs significantly from the synthetic datasets normally used in
SELD tasks (e.g. in DCASE challenges). Besides the contrast in the
realism of the data, the main two differences are: 1) the exact po-
sition of the sounding sources is not known in the ground truth, but
instead we have an approximated idea of where the sources are and
how are they moving given the video; and 2) there are overlapping
sounds of the same source (e.g. multiple audible cars in the same
scene at different positions). For this reason, the methods and met-
rics typically used for SELD would not be suitable to work with this
data. Instead, we make approximations to work with partial infor-
mation in the wild, as indicated in the following.
Indexing of video annotations for audio localization. We approxi-
mate the vehicles position using linearly spaced regions correspond-
ing to the angles within the camera’s field of view (FoV). For each
video annotation, we approximate the position (θj) of the object
based on the coordinates of the bounding box, and then we quan-
tize θj to the closest region. We explore two ways of computing θj :
1) We consider the vehicles as point sources. For this we used the
center point of the bounding box as the position indicator. Formally:

θj(xj) =

(
xj +

wj

2

W
− 1

2

)
fov, (1)

whereW is the width of the frame and fov is the FoV of the camera.

Working with θj approximated this way allow us to combine data
with different FoVs and resolutions (W) in the future. 2) We relax the
point-wise estimation and instead approximate the vehicle location
to be the entire bounding box. For this, we use two positional values
θj,L and θj,R which define the left and right limits of the source
location respectively:

θj,L = θj
(
xj −

wj
2

)
, and θj,R = θj

(
xj +

wj
2

)
. (2)

Finally, we map θj to a specific region rj as rj = argmini|θj − ri|
for i ∈ {1, .., RN}, where ri denotes the region i and RN is the
total number of regions the FoV is divided, which we set to 5. For
simplicity, we assume all videos are recorded with a pin-hole camera
with a FoV of 120◦, estimated from the cameras specification sheet.

Fig. 2. Left: Regions activated using the full bounding box, Right:
regions activated using the bounding box center. Each region con-
veys 24◦. Note: black vehicle is parked so it is not annotated.

Audio annotations as filter to video objects. At training time,
we only consider video events that are confirmed by audio anno-
tations. This condition is met if the timestamps for a given video
object overlap with the start and end time of an audio annotation
with the same label. Note that this is not always the case since there
are scenes where vehicles are visible but not audible and the other
way around. Formally, given a video object Vk characterized by
label lk and a set of timestamps

{
tkp p ∈ [1, NVk ]

}
, we consider

the video object as valid for training if it exists at least one au-
dio annotation (ts,i, te,i, li), i ∈ [1, NA] such that li = lk and∑NVk

p=1

[
(tkp ≥ ts,i) ∧ (tkp ≤ te,i)

]
>= 0, i.e. audio and video over-

lap and their labels coincide.
Metrics. Usual SELD metrics [25, 26] are designed to work with
a single source per class, and they compute either the angular or
euclidean distance of the reference and estimated positions. This hy-
pothesis does not apply in Urbansas, since multiple vehicles of the
same type are often encountered in the scene. Instead, we propose
to tackle the problem considering the overlapping regions between
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the estimation and the ground truth, which would generalize for “an-
gular” regions or image regions and would allow the comparison
of audio-visual models and audio-only models in the future. In the
computer vision community, this is evaluated using a metric called
intersection over union (IoU), which intuitively computes the inter-
section between the ground truth bounding boxes and the estimated
ones [14], a technique that can also be extended to 1-dimensional
regions. In our case, the regions correspond to the horizontal loca-
tion of the vehicle in the image, and its quantized θj derived from it.
Following the ideas in [14] we propose to compute the IoU as:

IoU(τ, c) =

∑
i∈Ac(τ)

gi,c∑
i gi,c +

∑
i∈Ac(τ)−Gc

1
(3)

where i indicates the region in the image, c is the class index, τ
is the threshold to determine if a prediction is positive or not so
Ac(τ) = {i|pi > τ}c and Gc = {i|gi > 0}c. IoU scores range
in [0,1]. Because of the multi-label nature of the data we made the
IoU score dependent on the class, so each class score is computed
independently. The IoU is a promising metric for dealing with multi-
source multi-direction scenes, and to bridge audio-only and audio-
visual models making their estimations comparable, but it has no in-
formation about distance, and thus penalizes the models the same if
the error is small or large. Extending the metric to deal with distance
is out of the scope of this paper and will be studied in the future.

5. DATA CHALLENGES AND BASELINE

To learn about the challenges of the data and usefulness of the met-
ric, we ran a set of experiments with simple baselines. We are not
searching for an optimal model that maximizes accuracy but rather
we are interested in understanding the characteristics of the dataset
and metric themselves, and identifying venues for future research.
Baselines. Our baselines are based on the convolutional-recurrent
network in [7]. This method predicts the probability of a class be-
ing present, and the horizontal and vertical direction for each class
using multi-channel audio. It makes the assumption that there is at
most one instance of each class in the scene at a time. As shown
in Figure 1, a large portion of the frames contain multiple sources,
and cars make up a significant majority of the observed vehicles,
meaning that limiting the scenes to only those that contain a single
instance of the class would significantly reduce the size of the ap-
plicable data, and would limit the utility of the model predictions on
common, real-world scenarios involving multiple sources. Instead,
we adapt the architecture of [7] to use stereo audio, and to be multi-
class and multi-direction model, i.e. to predict overlapping sources
of the same class and with different positions. To do so, our model
predicts a tensor T (i, c, j) = (ti, c, rk) for each time ti, i ∈ [1, Nf ]
with Nf the number of frames, vehicle class c ∈ {C1, .., C4}, and
region rj ∈ [R1, R5]. We use a sigmoid layer to allow for multiple
activations at once. We train and evaluate the box-wise model us-
ing the regions covering the entire bounding box, and the point-wise
using the regions activated at the center of the bounding box (see Fig-
ure 2). We also include two random baselines: a point-wise baseline
that can predict up to two active regions at a time, and a box-wise
baseline that estimates up to five regions. Each one is compared to
the matching ground-truth (point- and box-wise).
Training and evaluation protocol. We split the labeled set into 5
folds stratified by location and we perform cross-fold (4-1) training
and validation. We train using 4 second chunks as in [7]. We train
two models following the ideas in Section 4: a point-wise model that
predicts the position of vehicles as the region corresponding to the

center of the bounding boxes, and a box-wise model that predicts
the regions where the bounding box is present. We used a weighted
binary cross-entropy loss for training (see implementation).3

Results. Results are depicted in Table 2. We compute the IoU score
for non-empty frames (i.e. frames containing at least one bounding
box that overlaps with the audio). The first observation is that both
models perform better than random, the box-wise model being the
best. This is to expect since the bounding box conveys more regions
than the point-wise case and thus is an easier problem. We see a
considerable drop in performance for the least frequent class (truck)
whose sound resembles to cars and buses, unlike motorbikes.

model IoU (τ = 0.05)

bus car motorbike truck all

point-wise (pw) 0.151 0.180 0.160 0.063 0.165
box-wise (bw) 0.230 0.214 0.166 0.093 0.202
pw-random 0.048 0.050 0.037 0.026 0.046
bw-random 0.092 0.103 0.057 0.102 0.096

Table 2. IoU per-class of baseline models on non-empty frames.

We also compute the IoU for all frames, including inactive
frames, to assess whether the baseline can determine the presence
(and absence) of vehicles in a clip. For those empty frames, we
compare the prediction mask of the model with an empty ground
truth, obtaining a score of 1 if the model did not predict the class
at any direction. We obtained better scores in this setting: cars
(IoU = 0.324), buses (IoU = 0.472), motorbikes (IoU = 0.455)
and trucks (IoU = 0.638) for the box-wise model. A counter-
intuitive result is that the highest scores correspond to the least
represented classes in the dataset. Taking a closer look at the results,
we believe that this is due to the low frequency of such vehicles in
the scene and the fact that the baseline models have low confidence
values in general, favoring empty predictions and scoring high in
empty frames. This indicates that the joint detection and localization
of vehicles is a highly imbalanced and hard learning problem. Re-
garding the usefulness of the IoU metric for localization of sources
in the wild, we believe that the formulation of the problem as de-
tection and localization makes it hard to judge with this metric how
good the models are at localizing and detecting respectively, and we
plan to explore them separately in the future.

6. CONCLUSIONS AND FUTURE WORK

We present Urbansas, an audio-visual dataset of traffic scenes, con-
taining 12 hours of unlabeled data, suitable for unsupervised and
self-supervised research in visual sound source detection and local-
ization, and 3 hours of human-annotated data, containing bounding
boxes, classes, and tracking information to be used for supervised
research and validation of self-supervised models as a downstream
task. To the best of our knowledge, Urbansas is the first audio-visual
urban traffic dataset with human-annotated labels both in audio and
video. We believe the dataset will open the path to new research on
audio and audio-visual sound source localization, vehicle tracking,
self-supervised audio-visual representation for real world applica-
tions, among others. We present first experiments on vehicle local-
ization and detection, including a baseline and evaluation metric for
the task. The data and code are open to the research community.

3https://github.com/magdalenafuentes/urbansas.
Work partially supported by NSF award 1955357 and Bosch RTC.
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