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Online Change Point Detection for Weighted and
Directed Random Dot Product Graphs

Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, and Gonzalo Mateos

Abstract—Given a sequence of random (directed and weighted)
graphs, we address the problem of online monitoring and
detection of changes in the underlying data distribution. Our idea
is to endow sequential change-point detection (CPD) techniques
with a graph representation learning substrate based on the
versatile Random Dot Product Graph (RDPG) model. We con-
sider efficient, online updates of a judicious monitoring function,
which quantifies the discrepancy between the streaming graph
observations and the nominal RDPG. This reference distribution
is inferred via spectral embeddings of the first few graphs in
the sequence. We characterize the distribution of this running
statistic to select thresholds that guarantee error-rate control,
and under simplifying approximations we offer insights on the
algorithm’s detection resolution and delay. The end result is
a lightweight online CPD algorithm, that is also explainable
by virtue of the well-appreciated interpretability of RDPG
embeddings. This is in stark contrast with most existing graph
CPD approaches, which either rely on extensive computation,
or they store and process the entire observed time series. An
apparent limitation of the RDPG model is its suitability for
undirected and unweighted graphs only, a gap we aim to close
here to broaden the scope of the CPD framework. Unlike previous
proposals, our non-parametric RDPG model for weighted graphs
does not require a priori specification of the weights’ distribution
to perform inference and estimation. This network modeling
contribution is of independent interest beyond CPD. We offer an
open-source implementation of the novel online CPD algorithm
for weighted and direct graphs, whose effectiveness and efficiency
are demonstrated via (reproducible) synthetic and real network
data experiments.

Index Terms—Online change-point detection, graph represen-
tation learning, node embeddings, random dot product graphs.

I. INTRODUCTION

ONLINE (or sequential) change-point detection (CPD) is
the problem of deciding whether (and if so when) the

generating process underlying an observed data stream has
changed; see e.g., [3] for seminal work in the context of
quality control. The goal is to flag a problem (in order to take
corrective actions) as soon as it happens, while controlling the
probability of false alarm. Unlike offline or batch processing
(see e.g., [4]), in the online CPD setting we do not have access
to the full data sequence which could well be infinitely long.

Given the ubiquity of datasets that are generated in a
streaming fashion, online CPD is a timely research area with
applications to sensor networks [5], financial markets [6],
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or, social networks [7], [8]. As these examples suggest, data
are increasingly high-dimensional and possibly non-Euclidean.
Indeed, here we will consider network data streams in the form
of graph sequences. In a nutshell, given an incoming sequence
of random (possibly weighted and directed) graphs, we want
to signal if and when the data generating mechanism changes.

A. Relation to prior work on online CPD for network data

Sequential CPD approaches are often parametric, and follow
the general premise of minimizing detection delay subject to a
constraint on the test’s type-I error. For network data existing
methods look for changes in the graphs’ distribution [5]–[7],
their topology [8] and community structure [9], or else the
distribution of signals supported on the nodes [10]. Some of
these [6]–[8] are only applicable to undirected graphs. A se-
quential non-parametric, k-nearest neighbors-based approach
was developed in [11], solely requiring a pairwise distance
between samples (e.g., the Frobenius distance between graph
adjacency matrices). Unlike methods based on generative
models, said distance is prone to overlooking simple changes
in network structure; see the comparisons in Section V-A. A
computationally-intensive model-based CPD effort advocates
the Generalized Hierarchical Random Graph (GHRG) model
in [7], which monitors posterior Bayes factors for all partitions
of the data over a sliding window. The approach in [12] is
more general, as it considers the workhorse Stochastic Block
Model (SBM). The distribution of two so-termed scan statistics
is derived to signal changes in the input graph sequence.

Going beyond SBMs, the recent work [13] considers an
inhomogeneous Bernoulli graph; whereby the existence of an
edge between a pair of nodes (i, j) is a Bernoulli random
variable with probability Pij , independent of all other pairs.
Each timestep, two statistics are computed for a logarithmic
grid of previous instants to check whether they exceed a certain
threshold. Evaluating these statistics necessitates computing
the eigendecomposition of an N × N matrix (N is the
number of graph nodes). In addition to being computationally
intensive, the algorithm in [13] has to store all historical data
in memory, which may pose a major hurdle even for moderate-
sized networks. The procedure offers solid theoretical guaran-
tees on the detection delay and average run length.

Here instead we resort to the Random Dot Product Graph
(RDPG) model, a particular but very versatile case of the
inhomogeneous Bernoulli graph [14], [15]. In RDPGs each
node has an associated latent position in Rd with d ≤ N , and
Pij is given by the inner product between the corresponding
vectors. As we discuss in Section II, RDPGs capture phe-
nomena commonly encountered with real-world graphs (e.g.,
statistical dependencies among edges) and subsume the SBM



2

as a special case, while still being amenable to analysis [15].
Moreover, RDPGs offer interpretability, an attractive feature
that simplifies the explanation of the detected change-points.

B. Paper outline and contributions

Building on [16], we assume a clean historical dataset with
no change-points is available, from which we estimate the la-
tent nodal vectors via the adjacency spectral embedding (ASE)
in an offline training phase. As new data arrive in a streaming
fashion during the operational phase, the novel online CPD al-
gorithm (Section III) recursively updates a monitoring function
statistic whose null distribution we characterize analytically
via asymptotic arguments. In addition to providing theoretical
guarantees on the false alarm rate of the resulting online CPD
scheme, an attractive feature is its limited memory footprint
– we store a single N ×N matrix in memory (in addition to
the estimated latent vectors, naturally). Moreover, the resulting
lightweight statistic updates are an order-of-magnitude more
efficient than those based on repeated eigendecompositions.
Using simplifying approximations we derive conditions under
which changes may go undetected.

An additional contribution is to extend the vanilla RDPG
model [14], [17] to accommodate weighted and directed
graphs (digraphs), which we seamlessly adopt to perform
online CPD for these general network models (Section IV).
Extensions to digraphs are straightforward [18], but we care-
fully study those ambiguities inherent to the model (not
discussed in previous work) which may challenge downstream
CPD methods. Unlike previous RDPG proposals for weigthed
graphs [19], [20], our new non-parametric model in Section
IV-B does not require a priori specification of the weights’
distribution to perform provably consistent inference and esti-
mation. We believe this contribution is significant in its own
right, and beyond CPD it can e.g., impact node classification
and visualization of network data. Numerical tests in Section
V corroborate the effectiveness of the proposed online CPD
method, using both simulated and real network datasets that
we share in our Github repository. Concluding remarks and
future directions are outlined in Section VI.

Relative to its conference precursors [1], [2], here we
consider online CPD for weighted and directed graphs through
a unified presentation along with full-blown technical details
(including extended discussions, examples and unpublished
proofs for all the theoretical results). Noteworthy novel pieces
include: (i) examination of delay and change-detectability
conditions; (ii) adoption of finite-memory (windowed) statis-
tics; (iii) integrating the directed and weighted RDPG models
for online CPD; (iv) a consistency result for the weighted
RDPG embeddings; and (v) a comprehensive and reproducible
performance evaluation protocol. The latter offers comparisons
with batch and online CPD baselines; an study of detection
delay; the choice of monitoring function and thresholds; as
well as applications to wireless and social networks.

II. PRELIMINARIES AND PROBLEM STATEMENT

Here we introduce the necessary background on RDPG
modeling and inference. The interested reader is referred to the

comprehensive survey [15] for additional details about batch
statistical network analysis. We then state the online CPD
problem where the streaming graphs are modeled as RDPGs.

A. Random dot product graphs

Consider an unweighted and undirected graph G = (V, E),
with nodes V = {1, . . . , N} and edges E ⊆ V ×V . If nodes i
and j are connected in G, then the unordered pair (i, j) ∈ E .
More general models involving directed and weighted graphs
will be dealt with in Section IV. To start, we restrict ourselves
to the simplest possible case for ease of exposition.

In the RDPG model of G each node i ∈ V has an associated
latent position vector xi ∈ X ⊂ Rd, and edge (i, j) exists with
probability Pij = x>i xj , independent of all other edges. We
do not allow for self loops, hence Pii = 0 for all i ∈ V . The
geometric interpretation is that nodes with large ‖xi‖2 tend to
exhibit higher connectivity, whereas a small angle between xi
and xj indicates higher “affinity” among i and j. Note that the
set X of possible xi is such that x>y ∈ [0, 1], for all x,y ∈
X . Just like with blockmodels and SBMs [21], in general
vectors xi may be random, drawn from a (so-termed inner
product) distribution in X . The dimensionality d of the latent
space is a model parameter, often much smaller than N .

Thus, letting A ∈ {0, 1}N×N be the random symmetric
adjacency matrix of G and X = [x1, . . . ,xN ]> ∈ RN×d the
matrix of latent vertex positions, the RDPG model specifies

P
(
A
∣∣X) =

∏
i<j

(x>i xj)
Aij (1− x>i xj)

1−Aij . (1)

That is, given X, edges are conditionally independent with
Aij ∼ Bernoulli(x>i xj).

Example 1 The RDPG model is a tractable yet expressive
family of random graphs that subsume Erdös-Rényi (ER)
and SBM ensembles as particular cases. Indeed, if xi =√
p for all i, we obtain an ER graph with edge probability

p. An SBM with M communities may be generated by
restricting X to having only (at most) M different columns
(i.e. |X | = M ); see also [15] for additional examples. On the
other hand, the RDPG is a particular case of the latent space
model [22], in which edge probabilities Pij = κ(xi,xj) are
specified by means of a symmetric link function κ.

B. Inference on RDPG via the adjacency spectral embedding

Given the matrix X of latent vertex positions, the joint
distribution in (1) specifies the generative process to sample
graphs from the RDPG model. We now discuss the associated
inference (a.k.a. node embedding) problem. That is, how to
estimate X having observed a graph stemming from an RDPG
with adjacency matrix A.

In lieu of a maximum-likelihood estimator that is intractable
beyond toy graphs [23], the key intuition is that A is a noisy
observation of

P = XX>, (2)
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the rank-d matrix of edge probabilities Pij , since E
[
A
∣∣X] =

P. It is thus natural to adopt the estimator

X̂ = argmin
X

‖A−XX>‖2F , s. to rank(X) = d. (3)

The solution to (3) is readily given by

X̂ = V̂Λ̂1/2, (4)

where A = VΛV> is the eigendecomposition of A, Λ̂ ∈
Rd×d is a diagonal matrix with the d largest eigenvalues of
A, and V̂ ∈ RN×d are the corresponding d dominant eigen-
vectors. We are assuming that Λ̂ has only non-negative values,
an apparent limitation that may be easily circumvented [24].
The bias introduced by the implicit constraint diag(XX>) ≈ 0
can be alleviated as well [23]. In practice, d is likely unknown
but can be estimated by looking for “elbows” on the so-termed
eigenvalue scree plot [25]. We find it is safer to overestimate
d (which will add some noise) than underestimate it, that will
oversimplify the model and may e.g., hide change-points [1].
Estimator (4) is known as the Adjacency Spectral Embedding
(ASE), which is asymptotically normal and approaches X as
N →∞ provided the true d is chosen [15]. It is also possible
to define an analogous normalized Laplacian spectral embed-
ding for undirected G, which can be shown to enjoy similar
desirable asymptotic properties to those of the ASE [15].

Before moving on and stating the formal online CPD
problem addressed in this paper, a couple of remarks on model
identifiability and ASE variance reduction are in order.

Remark 1 (Identifiability of latent positions) The RDPG
model is identifable up to rotations of X. To see this, consider
an orthogonal matrix W ∈ Rd×d, and note that the rotated
vectors XW will produce the same probability matrix as in
(2). Hence, the estimator (4) is unbiased up to an unknown
rotation matrix W, and the ambiguity should be accounted
for when detecting changes on G’s distribution.

Remark 2 (ASE variance reduction) Dispersion of ASE
estimates can be reduced if one has access to multiple obser-
vations from the underlying RDPG. Indeed, let A[1] . . . ,A[m]
be an independent sequence of adjacency matrices, all adher-
ing to an RDPG with latent position matrix X ∈ RN×d. Define
the mean adjacency matrix

Ā =
1

m

m∑
t=1

A[t], (5)

and henceforth let X̂ be the ASE decomposition of Ā; i.e.,
the solution of (3) using Ā instead of A. Since Ā is also
an unbiased estimator of P and var

[
Āij
]

= 1
mPij(1 − Pij),

then as N →∞ the estimated latent positions X̂ will follow
a normal distribution with variance scaled by 1

m relative to
the variance of the ASE obtained from a single graph as
in (3) [26]. The alternative of averaging individual ASEs
is problematic due to the rotational ambiguity discussed in
Remark 1. Indeed, alignment of the (rotated) ASEs of a graph
collection would entail solving several Procrustes distance
minimization problems, or else computing the so-termed om-
nibus embedding [27].

C. Problem statement

Suppose we acquire a batch of m graphs as in Remark 2, in
which all matrices stem from the same RDPG model. We will
refer to that sequence as the training data set, which is used
in an offline initialization phase to estimate model parameters
from the null model. During the operational phase we observe
a (possibly infinite) sequence of streaming adjacency matrices
A[m+1],A[m+2], . . . , and would like to detect at what time
t > m (if any) the null model described in (1) is no longer
valid (i.e., drifts from the aforementioned RDPG model repre-
sent the alternative hypothesis). We tackle this CPD problem in
an online fashion, meaning graph observations {A[m+k]}k≥1

are sequentially and efficiently monitored as they are acquired,
without having to store the whole multivariate time series. This
way, the algorithm’s computational complexity and memory
footprint does not grow with k. Another attractive feature is
the possibility of detecting the change in (pseudo) real-time,
ideally soon after it occurs and with control on the probability
of false alarm (i.e., type-I error).

We will also consider generalizations of the aforementioned
baseline CPD problem in order to account for weighted and
directed graph sequences. This calls for fundamentally re-
examining the RDPG model to accommodate said observations
– especially in the weighted case –, as well as the associated
embedding algorithms and the overall online CPD framework.

III. ONLINE CHANGE-POINT DETECTION

Our idea to develop an online CPD framework for network
data is to endow sequential CPD techniques with a graph
representation learning substrate based on RDPGs.

A. General algorithmic framework

We build on the so-called estimating function approach for
sequential CPD [16], [28], which we markedly broaden to
accommodate network data. The central notion behind this
online CPD method is to consider a monitoring function H
of each streaming graph A[t], that should satisfy E [H] = 0
under the null hypothesis. If one monitors a cumulative sum
of H, that quantity should intuitively remain small provided
there are no changes in the underlying model. If there is a
change however, then E [H] 6= 0 and we should observe a
drift in the trend of the sum.

As proposed in [16] for a network-agnostic setting, we
first estimate the parameters of the underlying null RDPG
model using the training data set, i.e., we estimate the latent
positions matrix X. The estimation should be carried out with
an estimating function G, where the estimated parameter X̂
is the solution to a system of equations of the form

m∑
t=1

G(A[t], X̂) = 0. (6)

To define such a function for our problem, given the training
data set we estimate X as the ASE corresponding to Ā [cf. (5)
and the discussion in Remark 2]. Taking the derivative w.r.t.
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X of the objective function in (3) (with A← Ā) and setting
it to zero, we arrive at

m∑
t=1

(
X̂X̂> −A[t]

)
X̂ = 0,

suggesting the use of G(A[t], X̂) =
(
X̂X̂> −A[t]

)
X̂ as the

estimating function. Accordingly, G amounts to projecting the
residual X̂X̂> −A[t] onto X̂.

In order to detect a change on the underlying model during
the operational phase, we will track the cumulative sum
(CUSUM) of a monitoring function H as new adjacency
matrices arrive for t ≥ m+ 1, namely

S[m, k] =

m+k∑
t=m+1

H(A[t], X̂).

While it is possible (and often natural) to use the same function
for both estimation and monitoring (i.e. H = G), we show
in Section V-A that adopting the residual itself instead of a
projection yields in a more powerful detector. Thus, we choose

H(A[t], X̂) = X̂X̂> −A[t].

We reiterate here that the matrix X̂ is computed during
training, via the ASE of the average Ā of the adjacency
matrices in the training set. Once monitoring starts, X̂ is fixed
and we do not recompute the ASE for new observations.

Since all involved matrices are hollow and symmetric, we
only need to consider entries, say, above the main diagonal. It
will also prove useful in the analysis that follows to vectorize
the resulting values. We thus define a vector function h as

h(A[t], X̂) = vec
[
triu
(
X̂X̂> −A[t]

)]
, (7)

where vec(triu(B)) means arranging the entries above the
main diagonal of matrix B in a vector. If B ∈ RN×N , then
vec(triu(B)) ∈ Rr, with r := N(N−1)

2 .
If the norm of the partial sum

s[m, k] =
m+k∑
t=m+1

h(A[t], X̂) (8)

exceeds a certain threshold, we will conclude that the model
is no longer valid. Let us then denote our CUSUM statistic as

Γ[m, k] = ‖s[m, k]‖22.
In order to control the variance of Γ[m, k] as k grows,
a weighting function ω[k] is also introduced. We use
ω[k] = (rk3/2)−1 and instead monitor ω[k]Γ[m, k]; the reason
for this choice is explained in the next section when we derive
said variance for the null distribution.

All in all, the null hypothesis of no change will be rejected
at the first time instant k when

ω[k]Γ[m, k] > cα[k],

where cα[k] is a certain threshold that depends on the dis-
tribution of ω[k]Γ[m, k] under the null hypothesis and the
prescribed type-I-error level α. In the next section we will
discuss how this threshold is chosen after characterizing the

Algorithm 1 Online change-point detection for RDPGs
Require: Training graphs A[t], t = 1 . . .m.
1: Compute the ASE X̂ of Ā in (5) (see Remark 2)
2: Compute threshold function cα (see Section III-D)
3: Initialize partial sum s[m, 0] = 0
4: for k = 1, 2, . . . do
5: Acquire graph A[m+ k]
6: Compute monitoring function h(A[m+ k], X̂)
7: Update CUSUM statistic Γ[m, k] (see Remark 3)
8: if w[k]Γ[m, k] > cα[k] then
9: Change point detected at time k∗ = k

10: break
11: end if
12: end for
13: return k∗.

running statistic’s null distribution. A pseudocode of the online
CPD method including the offline (training) and operational
(monitoring) phases is tabulated under Algorithm 1.

Remark 3 (Computational complexity) Efficient recursive
calculation of the cumulative monitoring function s[m, k] =
s[m, k − 1] + h(A[m + k], X̂) incurs O(N2) memory stor-
age and computational complexity. The cost of forming the
weighted CUSUM statistic ω[k]Γ[m, k] is of the same order.
A single ASE is required in the offline training phase to yield
fixed edge probabilities estimates X̂X̂>. No embeddings have
to be recomputed each time a new graph is observed. To gain
discriminative power in the statistical tests we perform, an
alternative would be to examine the CUSUM statistic at every
time point t ∈ [m + 1, . . . ,m + k]. This comes at the price
of increased computational complexity, since it would entail
computing k additional ASEs during the monitoring phase.
This computational challenge is compounded with the need
to derive the limiting distribution of the resulting stochastic
process.

B. Statistical analysis of the null distribution

In order to select the weighting and threshold functions,
we will study the distribution of our statistic under the null
hypothesis. We will first develop theory for the case when the
ASE estimate is error-free, i.e., X̂X̂> = XX> = P. This way
the estimated latent positions allow for a perfect reconstruction
of the connection probability matrix. In practice, this will be
valid when m and/or N are large enough. Since for some
applications this may not be necessarily true, we will then
extend the analysis for the imperfect estimation case.
Perfect ASE estimation. In this favorable case one has1

h = vec [triu (P−A[t])], with E [h] = 0. The covariance
matrix ΣH = E(hh>) ∈ Rr×r has null non-diagonal entries
since the random variables Aij are mutually independent. The
diagonal entries are var [Aij ] = Pij(1− Pij). In short, ΣH is
a diagonal matrix whose nonzero entries are pl(1 − pl), l =
1, . . . , r, with pl denoting the entries of vec [triu (P)] (i.e., a
reindexing of Pij).

1We have omitted the dependence of h on t and X̂ for clarity.
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Given this characterization of the first two moments of h,
the following proposition gives the asymptotic distribution of
the CUSUM statistic Γ[m, k] as k →∞. In practice, we rely
on this limiting distribution as an approximation (for finite k)
based on which we set the treshold cα[k].

Proposition 1 Suppose the perfect ASE estimation assump-
tion X̂X̂> = XX> = P holds. Then, as k → ∞ the test
statistic sequence converges in distribution, namely

k−1Γ[m, k]
D→

r∑
l=1

pl(1− pl)y2
l , (9)

where {yl}rl=1 are i.i.d. standard Gaussian random variables.

Proof: Invoking the Central Limit Theoreom (CLT),
as k → ∞ the distribution of k−1/2s[m, k] in (8) con-
verges to a multivariate Gaussian distribution N (0,ΣH), i.e.,
k−1/2s[m, k]

D→ (ΣH)1/2y, where y is a standard Gaussian
random vector. Hence, k−1Γ[m, k] = ‖k−1/2s[m, k]‖22 also
converges in distribution because

k−1Γ[m, k] = (k−1/2s[m, k])>k−1/2s[m, k]
D→ (Σ

1/2
H y)>Σ

1/2
H y

= y>ΣHy

=

r∑
l=1

pl(1− pl)y2
l ,

which is the desired result in (9).

Remark 4 (Convergence rate and network size) By bring-
ing to bear Berry-Essen type results for the CLT, one can
establish that the distribution of k−1Γ[m, k] converges to the
limit stated in Proposition 1 at a rate O(k−1/2), independent
of r and hence the graph size N ; see e.g., [29, Theorem 1.1].

Since yl ∼ N (0, 1) then y2
l ∼ χ2(1) (chi-squared distribu-

tion with one degree of freedom). By virtue of Proposition 1
and for sufficiently large k, we can approximate the mean and
variance of Γ[m, k] as

E [Γ[m, k]] ≈ k
r∑
l=1

pl(1− pl),

var [Γ[m, k]] ≈ 2k2
r∑
l=1

p2
l (1− pl)2, (10)

where we have used that the {yl}rl=1 are mutually independent.
To control the growing variance of Γ[m, k], the weighting

function for the perfect ASE case can be chosen as ω[k] =
(rk)−1. The threshold cα[k] is thus selected as the (1 − α)-
quantile of the limiting distribution in (9), which provides a
type-I error of approximately α. Next, we show that in the
presence of estimation errors the weighting function will have
to be readjusted accordingly.
Imperfect ASE estimation. In this case, we will write

X̂X̂> −A[t] = XX> −A[t] + X̂X̂> −XX>,

where X is the true latent positions matrix (cf. P = XX>).
Defining the estimation error E = X̂X̂> −XX>, then

h(A[t], X̂) = vec
[
triu
(
XX> −A[t]

)]
+ e, (11)

where e = vec [triu (E)] = [e1, . . . , er]
>. So the first term

in (11) corresponds to a perfect ASE, while the second one
captures the estimation error stemming from an imperfect
reconstruction of P. Note that after training, e is fixed and
it does not depend on t.

Using (11) and by virtue of the CLT, it follows that for
sufficiently large k the distribution of s[m, k] can be well
approximated by the multivariate Gaussian N (ke, kΣH).
Standard calculations for the norm of a non-centered Gaussian
vector suffice to assert that the distribution of Γ[m, k] can be in
turn approximated by the distribution of the random variable

Γ̄ = k

r∑
l=1

pl(1− pl) (yl + bl)
2
, (12)

where {yl}rl=1 is an independent sequence of standard Gaus-
sian random variables and {bl}rl=1 are the entries of vector
b =

√
kΣ
−1/2
H e. Note that if the ASE estimation is perfect,

then e = 0 and we recover the distribution in Proposition 1.
For large k, using (12) we can approximate the expected

value and variance of Γ[m, k] as in the error-free case. The
difference here is that each summand (yl + bl)

2 ∼ χ2(1, b2l ),
i.e., a non-central chi-squared distribution with one degree of

freedom and parameter b2l =
k

pl(1− pl)
e2
l . Hence, one finds

E [Γ[m, k]] ≈ k2‖e‖22 + k

r∑
l=1

pl(1− pl)

= k2‖e‖22 + k‖σ‖1, (13)

var [Γ[m, k]] ≈ 4k3
r∑
l=1

pl(1− pl)e2
l + 2k2

r∑
l=1

p2
l (1− pl)2

= 4k3σ>e2 + 2k2‖σ‖22, (14)

where for notational convenience we defined the auxiliary
vector σ with entries {pl(1 − pl)}rl=1, and e2 denotes the
entry-wise square of e. The preceding arguments suffice to
establish the following result on the convergence of Γ[m, k].

Proposition 2 In the general case, as k →∞ the test statistic
sequence converges in distribution, namely

Γ[m, k]− k2‖e‖22 − k‖σ‖1√
4k3σ>e2 + 2k2‖σ‖22

D→ y,

where y is a standard Gaussian random variable.

Apparently, we need to choose ω[k] = (rk3/2)−1 to control
the variance of the weighted statistic. This is because for large
k, the term that dominates the variance expression (14) grows
like k3 [cf. k2 in (10)]. The detection threshold cα[k] is thus
set as the (1 − α)-quantile of the generalized chi-squared
distribution defined in (12), after weighting. We note that
the resulting cumulative distribution function has a complex
form which requires numerical integration to compute the
desired quantiles; see also [30], [31] for classic formulae to
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approximate said distribution function. As the next example
shows, for particular cases the resulting distribution simplifies.

Example 2 For an ER model with connection probability p
we have pl = p for all l = 1, . . . , r and (12) simplifies to

Γ̄ER = kp(1− p)u, with u ∼ χ2

(
r,

k

p(1− p)‖e‖
2
2

)
. (15)

Alternatively, for threshold selection we will often resort to
the mean plus three standard deviations

th[k] := ω[k]Ebc[k] + 3
√
ω2[k]varbc[k], (16)

where Ebc is the expectation of the statistic before the change
and varbc is its variance; given by (13) and (14), respectively,
using a suitable estimate of e described in Section III-D
Numerical tests in Section V-A corroborate that this rule
of thumb works well for all practical CPD purposes and it
comes close to the true 0.99-quantile. Moreover, having an
analytic threshold expression facilitates studying the detection
resolution of the online CPD procedure, the subject of the next
section.

C. Change detectability analysis

Let us examine what changes are detectable by the proposed
online CPD algorithm, when using the simple thresholding
rule th[k] based on the derived mean and variance of the
statistics’s null distribution. To this end, we will assume that
from a certain change-point k = kc onward, the sequence of
graphs is generated by an RDPG with latent vectors Y so that
∆ := XX> −YY> (i.e., the change is manifested through
a perturbation on the resulting probability matrix). Given the
expressive power of RDPGs [15], the modeling assumption
for k ≥ kc comes with limited loss of generality. Henceforth,
let δ := vec [triu (∆)].

If we are at a certain time k > kc, the partial sum of the
monitoring function is then (recall E = X̂X̂> −XX>)

s[m, k] =

m+k∑
t=m+1

h
(
A[t], X̂

)
=

m+kc−1∑
t=m+1

h (A[t],X) +

m+k∑
t=m+kc

h (A[t],Y)

+ ke + (k − kc)δ.
Similar to the previous section, for large kc and k we obtain a
Gaussian vector with independent entries; mean ke+(k−kc)δ
and covariance matrix kcdiag[σX ] + (k− kc)diag[σY ], where
σX and σY are the auxiliary vectors defined in (14) corre-
sponding to X and Y, respectively. This results in a CUSUM
statistic with mean approximately equal to

E [Γ[m, k]] ≈ ‖ke + (k − kc)δ‖22
+ kc‖σX‖1 + (k − kc)‖σY ‖1. (17)

In the long run as k →∞, the dominant term will be the first
one, which when weighted by ω[k] = (rk3/2)−1 amounts to
ω[k]E [Γ[m, k]] ≈ k1/2 ‖e + δ‖22 /r. Given that ω[k]Γ[m, k]
has finite variance and that on this asymptotic regime th[k] ≈

k1/2‖e‖22/r plus a constant, we have established that changes
are detectable as long as

‖e + δ‖22 > ‖e‖22 ⇒ 2‖e‖2 cos θ + ‖δ‖2 > 0, (18)

where θ is the angle between e and δ. It thus follows that a
large value of ‖δ‖2 aids detectability, as expected. The same
happens for small values of the estimation error magnitude
‖e‖2, and in the idealized perfect estimation scenario we
find all changes will be detected in the long run. Naturally,
condition (18) is sufficient for changes to be detected, but
not necessary. On the imperfect scenario, the resulting model
estimation error will result in small changes likely going
undetected provided θ ∈ (π2 ,

3π
2 ). On top of this angular

requirement, a change may be missed when the “perturbation-
to-imperfection” ratio is small, i.e., ‖δ‖2‖e‖2 < 2| cos θ|.

The following simple example offers additional insights on
the feasibility of the condition (18).

Example 3 Consider a sequence of ER graphs with connec-
tion probability p, which at a certain time-step kc changes to
q = p−∆. In Appendix A we show that the following bound

P
(
‖e + δ‖22 > ‖e‖22

)
≥

1− 8(1− p)
∆2N2(N − 1)m

[
1− p
Nm

+ 2(N − 1)p

]
on the probability of satisifying the detectability condition (18)
holds asymptotically in N . This means that if ∆2N2m goes
to infinity as N grows, then the change will be detected with
high probability. In other words, the method detects changes ∆
up to an order of N−1m−1/2. This example further illustrates
that Algorithm 1’s performance improves with growing m (the
size of the training set) as well as N (the number of nodes).

D. Further implementation details
We close this section with some necessary implementation

details for Algorithm 1. These pertain to the calculation of the
threshold and the possibility of utilizing windowed statistics
as alternatives to the the cumulative sum (8).
Threshold calculation. The procedure outlined in Section
III-B requires prior knowledge on the values of P and e in
order to set the threshold cα[k]. This will be the case if one
uses the exact (1−α)-quantile of the null distribution, approx-
imate formulae, or, simply th[k] in (16). In most applications
the values of P and e are unknown, so it is necessary to
estimate them from the observations in the training set.

For P we simply use the plugin estimator P̂ = X̂X̂>, i.e.,
we estimate P using the ASE of Ā in (5), computed over the
training set. Characterization of the statistical properties of E
(and subsequently e) is challenging in general. Even for the
simple ER model, the study of E is non-trivial as shown in
Appendix A. Therefore, we opted for a data-driven approach
to form point estimates of E by performing “leave-one-out”
passes over the training set: we randomly select an index j in
1, . . . ,m and compute the ASE of A[j] and of

Ā(−j) =
1

m− 1

m∑
t=1
t 6=j

A[t],
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the mean adjacency matrix over the left-out samples. We
denote these ASEs as X̂j and X(−j), respectively. Because
var
[
X(−j)X

>
(−j) −P

]
= var

[
X̂jX̂

>
j −P

]
/(m − 1) as dis-

cussed in Remark 2 and [26], we compute

Ej =
X̂jX̂

>
j −X(−j)X

>
(−j)√

m− 1
,

a fixed number of times, obtain a set of values Ej , and estimate
a “worst-case” Ê via the 0.99-quantile of this set.

Note that the change detectability of the algorithm depends
on the value of ê and how close it is to e. In particular, the
relevant condition (18) in practice becomes ‖ê‖2 < ‖e + δ‖22.
Finite memory statistics. The CUSUM statistic Γ[m, k] =
‖s[m, k]‖22 we have dealt with so far is based on the partial
sum s[m, k] =

∑m+k
t=m+1 h(A[t], X̂). As discussed in Remark

3, it can be computed in a recursive and memory-efficient
fashion that is ideal for online operation. Moreover, such an
infinite-memory statistic accrues information from the entire
data stream {A[m+k]}k≥1, which is beneficial when it comes
to invoking asymptotic approximations to the null distribution
as in Section III-B. However, if the change point kc occurs
rather late during the monitoring horizon, then the inertia effect
induced by a lengthy history of nominal graph observations
will translate to longer detection delays.

To attain faster reaction times one can resort to alternative
finite memory statistics, which tend to rely on a judicious
subset of the most recent observations. One natural variant is to
adopt a fixed-length sliding window statistic, where the partial
sum is s[k−L, k] for given window length L. At time k, this
moving sum (MOSUM) statistic discards past data in the inter-
val (m, k−L), and its computation requires storing the last L
graphs in the sequence; see also (26) and [28] for a modified
version where the window length grows proportionally with
k. Another useful procedure stems from the exponentially-
weighted sum (EWSUM) statistic, namely

sβ [m, k] =

m+k∑
t=m+1

βm+k−th
(
A[t], X̂

)
, (19)

where β ∈ (0, 1] is a so-termed forgetting factor. EWSUM
coincides with CUSUM for β = 1, whereas for β < 1 past
samples are exponentially down-weighted and thus it offers a
faster response to changes. Similar to CUSUM, (19) can be
recursively updated as sβ [m, k] = βsβ [m, k−1]+h(A[k], X̂)
and does not require storing any of the past measurements.
Notice that as long as the window length is long enough
we may still use the results derived in Section III-B, and
the only algorithmic difference is that the weight ω[k] and
the threshold cα[k] should be changed accordingly (e.g.,
ω[k] = (rmin{k, L}3/2)−1 in the MOSUM case). The effect
of choosing different windowed statistics is studied in the
numerical tests of Section V.

IV. DIRECTED AND WEIGHTED GRAPHS

A. Directed RDPG

As introduced in Section II, the RDPG model is only
suitable for undirected graphs. Indeed, XX> = P is always

symmetric. For digraphs, edges (or arcs) are defined as ordered
pairs (i, j), with i, j ∈ V . Since edges (i, j) and (j, i) are
different objects, so could be the probabilities Pij and Pji.
By convention, we say (i, j) starts from i and points to j.
Model specification. Digraphs require an adaptation to the
RDPG model, where each node i ∈ V has an associated
column vector xi – now in R2d [18]. Let us denote by xli and
xri the first and last d entries of xi, respectively. Likewise, let
Xl,Xr ∈ RN×d be the matrices stacking the transposed nodal
vectors as their rows. In direct analogy to the undirected case,
we define the directed RDPG (D-RDPG) model as

P
(
A
∣∣X) =

∏
i 6=j

[(xli)
>xrj ]

Aij [1− (xli)
>xrj ]

1−Aij (20)

[cf. the product over all i 6= j here versus i < j in (1)], and the
asymmetric matrix of connection probabilities now becomes

P = Xl(Xr)>. (21)

Intuitively, we say xli models node i’s outgoing connectivity
and xri its incoming one. The probability of existence of the
arc (i, j) is given by (xli)

>xrj .
Note that the rotational ambiguity is still present. Actually,

the ambiguity is exacerbated in this case because any invertible
matrix W ∈ Rd×d will result in the same P. Indeed, consider
XlW and XrW−> and note that XlW(XrW−>)> =
XlWW−1(Xr)> = Xl(Xr)> = P. Thus, as introduced
the D-RDPG model (21) will be challenging to interpret,
particularly when it comes to comparing two digraphs via
their corresponding embeddings. This last task is critical when
it comes to CPD. In order to have roughly the same level of
ambiguity as in the undirected RDPG case, we will henceforth
require that the d columns of both Xl and Xr are orthogonal
vectors (i.e., (Xl)>Xl and (Xr)>Xr are d × d diagonal
matrices). This extra constraint does not fundamentally limit
the expressiveness of the model because P is still of rank d.

All in all, we are left with the same rotational ambiguity
as in the vanilla RDPG model, in addition to a scaling
one. Indeed, consider a diagonal matrix diag(α) with non-
zero entries and let W be an orthogonal matrix. Then it
follows that XlWdiag(α) and XrWdiag(α)−1 (which still
have orthogonal columns) will produce the same P as (21).
Consequently, comparing the magnitude of xli with that of xri
is meaningless. This scaling ambiguity, which to the best of
our knowledge was overlooked before, will challenge CPD if
one is interested in the behavior in a single direction (either
incoming or outgoing). This is an interesting extension we will
leave for future work.
D-RDPG inference. Let us now discuss how to estimate the
matrices Xl and Xr from a graph observation. Since P =
E [A] still holds, we seek a pair {X̂l, X̂r} with orthogonal
columns such that X̂l(X̂r)> is the best rank-d approximant of
A. Letting A = UDV> be the singular-value decomposition
(SVD) of A, we set

X̂l = ÛD̂1/2 and X̂r = V̂D̂1/2. (22)

Note that (22) satisfies the required orthogonality constraint.
The choice in terms of scaling and counterscaling of columns
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is arbitrary. Choosing D̂1/2 assumes an even contribution of
the incoming and outgoing connectivity of incident nodes
to edge generation, which seems reasonable in lieu of any
additional prior information. The scaling ambiguity is incon-
sequential to digraph CPD if we adopt the monitoring function
H(A[t], {X̂l, X̂r}) = X̂l(X̂r)> −A[t].

B. Weighted RDPG

We now shift our focus to weighted, undirected graphs. Let
us then define a positive weight for each edge through a map
w : E 7→ R+ such that Aij = Aji = wij for (i, j) ∈ E . The
absence of an edge is encoded as Aij = Aji = 0. Naturally,
an unweighted graph is a particular case of a weighted graph
where the edge weights are 0 or 1 (i.e., w ≡ 1).

A couple of works have proposed similar adaptations of the
vanilla RDPG model to the weighted case; see [19], [20]. The
basic ideas therein are outlined next. Suppose that the (pos-
sibly weighted) adjacency entries are generated from a given
parametric distribution Fθ(Aij) with θ ∈ RL, for instance
θ = λ for a Poisson(λ) distribution. Each node i ∈ V now
has L latent vectors xi[l] ∈ Rdl (l = 1, . . . , L), such that the
weight Aij between nodes i and j is random with parametric
distribution F(x>

i [1]xj [1],...,x>
i [L]xj [L])(Aij), independently of

all other edges. The distribution may have mass at Aij = 0 to
capture sparse graphs where some pairs of nodes will be not
be joined by edges. One recovers the vanilla RDPG by letting
Fθ(Aij) be a Bernoulli(θ) distribution.

This approach has several drawbacks. For starters, all edges
are required to have the same weight distribution, albeit
with different parameters. This limitation may be partially
overcome by considering a mixture distribution. However, and
limiting even more its applicability, Fθ(Aij) has to be chosen
a priori. So if edges have different weight distributions, we
would have to know which of them adhere to each distribution
(and what these distributions are) prior to inference.
Model specification. We propose instead that the sequence
of vectors associated with each node is related to the mo-
ment generating function (MGF) of the weight distribution.
In particular, each node has a sequence of latent positions
xi[l] ∈ Rdl that determine the l-th moments of the weighted
adjacency matrix as E

[
Alij
]

= x>i [l]xj [l], for l ∈ N+.Given
the sequence X := {X[l]}l, with X[l] = [x1[l], . . . ,xN [l]]> ∈
RN×dl , our weighted RDPG (W-RDPG) model specifies the
MGF of the adjacency matrix as

E
[
etAij |X

]
=

∞∑
l=0

tlE
[
Alij
]

l!
= 1 +

∞∑
l=1

tlx>i [l]xj [l]

l!
(23)

and the entries Aij are independent, i.e., edge independent.
One can recover the vanilla RDPG by setting xi[l] =
xi for all l, where xi is the vector associated to node i in (1).
W-RDPG inference. Vectors xi[l] are estimable via an ASE
of matrix A(l), where A(l) denotes the entry-wise l-th power
of adjacency matrix A. The following theorem establishes
the consistency (up to an unknown rotation) of this estimator,
under some minor eigengap assumptions for the inner product
matrices X[l]X>[l].

1.4 1.5 1.6 1.7

1

0

1

3.00 3.25 3.50 3.75 4.00 4.252
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4

6 7 8 92.5
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Fig. 1. ASE embedding of A(l) for Gaussian (µ = 5 and σ = 0.1; in blue)
and Poisson (λ = 5; in red) distributed weights for dl = 2 and l = 1 (left),
l = 2 (center), and l = 3 (right). Nodes with different weight distributions
are clearly revealed for l = 3, but they overlap for l = 1.

Theorem 1 Let B ∈ RN×N be a random, symmetric, and
hollow matrix. Suppose that 0 ≤ Bij < M for some M > 0
and that {Bij}i<j are independent with E [Bij ] = Pij ,
where P = XX> for some fixed X ∈ RN×d. Suppose that
rank(P) = d and that P has d distinct positive eigenvalues
λ1 > λ2 > . . . > λd > 0 that satisfy

min
i 6=j
|λi − λj | > δN and λd > δN

for some δ > 0.
Let X̂ ∈ RN×d denote the ASE of B, where it is assumed

that the latent space dimension d is known. Then almost surely
there exists an orthogonal matrix W ∈ Rd×d such that, for
each i ∈ {1, . . . , N} and all γ < 1,

P
[
||(X̂W)i· − (X)i·||22 > N−γ

]
= o

(
Nγ−1 logN

)
where (C)i· denotes the i-th row of matrix C.

The relevance to W-DRPG inference is that Theorem 1 can
be applied, for each fixed l, to B = A(l) to ensure that
the latent position matrix X[l] can be consistently recovered
(modulo an orthogonal transformation) via the ASE of A(l).

Theorem 1 is an extension of [32, Theorem 4.1], so in
Appendix B we sketch how the proof therein can be adapted
to our setting. The main differences with the result in [32] are
that in our setting, a) latent positions are not random, and b)
entries Bij of matrix B are not necessarily Bernoulli random
variables; we only assume that they are bounded and their
expectation is given by the dot product of the corresponding
latent positions. We remark that b) is a more general setup than
that of [32]. Extending the W-RDPG model to accommodate
random latent positions remains an open direction we will
pursue as part of our future work.

Example 4 To illustrate the discriminative power of this novel
embedding, we consider a two-block weighted SBM graph
with N = 2000 nodes. Edges are formed with fixed probability
p = 0.5, but weights are Gaussian with mean µ = 5 and
standard deviation σ = 0.1 for all edges except between a
group of 1000 nodes indexed as i = 1001, . . . , 2000, where
the weights’ distribution is Poisson with parameter λ = 5.
As discussed in Example 1, in this case matrix X[l] will
have at most 2 different columns for all l. The vectors x̂i[l]
corresponding to the ASE for l = 1, 2, 3 and dl = 2 are shown
in Figure 1, where each community is colored differently.

Note how the nodes are indistinguishable for l = 1. Indeed,
the x̂i[1] vectors are, as expected, centered around (

√
µp, 0) =

(
√
λp, 0) ≈ (1.58, 0) corresponding to the mean weight. For

l = 2, Figure 1 (center) shows the vectors start to separate
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into the corresponding communities. Expressions for higher-
order embeddings are easily obtained for this toy example. For
instance, arbitrarily assuming that the xi[l] lie on the abscissa
for i = 1, . . . , 1000 (recall that any rotation of X[l] will result
in the same expected weights), it thus follows

xi[2] =

{
(
√
p(µ2 + σ2), 0) i ≤ 1000,

(
√
p(µ2 + σ2),

√
p(λ2 + λ− (µ2 + σ2)) i > 1000.

Indeed, the estimates are around (3.55, 0) and (3.55, 1.58) re-
spectively, although the noise corrupting the estimates hinders
the ability to distinguish both distributions. For l = 3, where
the skewness of the distribution comes into play, vectors are
clearly separated into the two groups; see Figure 1 (right).

C. Online change-point detection

Let us briefly discuss how to perform online CPD for
the general weighted and/or directed case. Extending the
results presented in Section III to digraphs is straightforward.
The only noteworthy difference is that, since the adjacency
matrices are no longer symmetric, we need to consider entries
from the entire residual matrix H (except the diagonal) during
online monitoring, instead of the upper triangular half in (7).

The path forward in the weighted case is also clear. The
important difference is that the variance of each Aij is no
longer of the form pij(1 − pij), because we are naturally al-
lowing for non-Bernoulli edge weight distributions. Following
the W-RDPG model we introduced in the previous section,
we have var [Aij ] = x>i [2]xj [2] − (x>i [1]xj [1])2. We rely on
plugin variance estimates using the corresponding ASEs to
compute the thresholds for the numerical test cases that follow
[cf. vector σ in (13) and (14)]. One can seamlessly blend the
ideas in Sections IV-A and IV-B to perform online CPD for
weighted digraphs. The provided code offers this functionality.

In closing, note that the aforementioned discussion is per-
tinent only when the goal is to detect changes in the mean
adjacency matrix (i.e., l = 1). This is the scope of the ensuing
numerical experiments. Considering larger values of l could
be prundent when interested in more fine-grained changes on
the weights’ distribution, as illustrated in Example 4.

V. NUMERICAL EXPERIMENTS

Here we carry out numerical experiments to evaluate
the performance of the proposed online CPD algorithm for
weighted and (un)directed graph sequences. We start with a
controlled synthetic data setting, where the goal is to identify
emergent network community structure (Section V-A). We
carefully examine: (i) the choice of the detection threshold
and monitoring function; (ii) the choice of the running statistic
and its effect on the detection delay; (iii) robustness to the pre-
scribed false alarm rate α; and (iv) comparisons with relevant
batch and online CPD methods. Test cases with real wireless
and social network data are presented in Section V-B. For the
implementations we used the Python libraries NumPy [33],
NetworkX [34], pandas [35], graspologic [36], as
well as our own code which we share in https://github.com/
git-artes/cpd rdpg. For the comparison with the online CPD
method in [11], we used the official R implementation in

0 25 50 75 100 125 150 175 200

k

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
st

at
is

ti
c

ω[k]Γ[m, k]

Mean

Estimated mean

0.99 quantile

Est. mean + 3std

Fig. 2. Evolution of ω[k]Γ[m, k], its mean and the estimated mean, for
simulated data. Two thresholds are shown: the 0.99-quantile of the distribution
in (15) and three standard deviations away from the mean; those thresholds
are very close and the latter is preferred due to its reduced complexity. The
solid vertical line indicates the actual change-point, while the dashed one is
the detection. A change in background color indicates a change-point detected
by the offline algorithm [17]. Our approach is able to detect the change with
a relatively small delay, while operating in an online fashion.

the gStream package with the default parameters settings.
Furthermore, as a baseline we have implemented the offline
CPD algorithm described in [17]. This implementation is also
available in our GitHub repository.

A. Simulated data

A timely problem is to detect when communities arise in
networks. So, we first test the proposed online CPD method by
generating a sequence of 150 ER graphs with N = 100 nodes
and connection probability p = 0.5. After tc = 150, the model
shifts to a two-block SBM with N/2 = 50 nodes in each
community and connection probability q1 = 0.6 for nodes
in the same community and q2 = 0.4 for nodes in different
blocks. We use the first m = 50 graphs as the training set,
and the value of d is automatically chosen (via scree plot) by
the graspologic library used to obtain the ASE. Because
the index k in Γ[m, k] measures how much time has elapsed
since monitoring started, the change-point is at kc = 100.

Figure 2 depicts the results for this test case. We show
two thresholds: the 0.99 quantile of the estimated distribution
[i.e., the distribution given by (15) but with ê instead of e]
and th[k], the estimated mean plus three standard deviations.
Apparently, the difference between those two thresholds is
small, so th[k] is preferred due to its reduced complexity.
Using that threshold a change-point is declared at k∗ = 121,
so our algorithm is successfully identifying the change in the
model. The detection delay can be explained if we look at
the estimated mean of the weighted CUSUM statistic. Since
we are estimating the error E as the 0.99-quantile over the
training set, we always overestimate the true value. Also, since
we are monitoring the cumulative sum (8), if a change occurs
after a long period of time then the drift in Γ[m, k] will not
be noticed immediately; see also the discussion in Section
III-D. As a way to compare the performance of Algorithm
1 with other approaches, Figure 2 also shows the detection
result for the offline baseline proposed in [17]. That algorithm
detects the change with no delay, but it has a markedly greater
computational complexity than ours and examines the entire
data sequence as a batch.
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Fig. 3. Evolution of ω[k]Γ[m, k] for residual (top) and projection (bottom)
monitoring functions, using the MOSUM sliding window statistic. After the
change-point there is a discernible change in trend for the residual; the
projection does not exhibit such desirable behavior.

On the choice of the monitoring function. In this run-
ning example, had we used the monitoring function H′ =(
X̂X̂> −A[t]

)
X̂ (i.e., use the projection instead of the

residual) we would have missed the change altogether. Indeed,
for perfect ASE estimation, if our training data adheres to
an ER model with parameter p then X̂ =

√
pJN×d and

X̂X̂> = pJN , with JN×d denoting the N × d all-ones matrix.
Now suppose there is a change in the nominal model and we
shift to a two-block SBM, where each community has N/2
nodes and the connection probabilities are q1 for nodes in the
same block and q2 for nodes in different communities. The
connection probability matrix for said SBM is

PSBM =

(
Q1 Q2

Q2 Q1

)
, (24)

where Q1 = q1(JN/2 − IN/2) and Q2 = q2JN/2, with Im
denoting the identity matrix of size m. After the change we
thus have E [H′] = (pJN − PSBM)

√
pJN×d. Since each row

of PSBM has N/2 − 1 entries with value q1 and N/2 entries
with value q2, each entry of E [H′] is given by

(E [H′])ij =

(
N

2
− 1

)√
p(p− q1) +

N

2

√
p(p− q2)

≈ N√p
(
p− q1 + q2

2

)
,

for large N . Accordingly, choosing p, q1 and q2 such that
q1 + q2 = 2p (as was the case for our simulation), we find
that E [H′] = 0, i.e. we do not expect to see a drift in the
monitoring function after the change.

Figure 3 shows the evolution of the weighted statistic
ω[k]Γ[m, k] for both choices of the monitoring function. The
setup is the same as in the previous test case, with a change-
point located at kc = 100. The MOSUM statistic is adopted
here, using a sliding window of length L = 10. When the
residual H is chosen as the monitoring function, a sudden
shift in trend is observed after the change-point. However,
when the projection H′ is used the statistic does not exhibit
such desirable behaviour and misses the model change.
On the sensitivity to α. Here we examine the robustness
of Algorithm 1 to the choice of the false alarm rate α. We
simulate the same scenario as before, except that N = 20 in
order to increase the variance of ω[k]Γ[m, k] and the error
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Fig. 4. Evolution of ω[k]Γ[m, k] and five possible thresholds: cα[k] (for
1 − α ∈ {0.9, 0.95, 0.99}) and th[k] equal to the mean plus two and three
standard deviations. The setting is the same as in Fig. 2 except that N = 20
to increase the variance of ω[k]Γ[m, k]. Using 1 − α = 0.99 is preferred
as it provides more robustness to false positives. Both choices of th[k] are
reasonable, although using three standard deviations is consistently above
c0.01[k] (see the first time-steps).

E. As thresholds we test cα[k] for 1− α ∈ {0.99, 0.95, 0.9},
along with two versions of th[k]: the mean plus two and three
times the standard deviations as in (16).

The results are depicted in Figure 4. The example illustrates
how using 1− α = 0.95 or 1− α = 0.9 may prove too con-
servative. In this particular instance, 1−α = 0.9 would result
in a (false) change-point detected at k ≈ 10. Furthermore,
both versions of th[k] provide reasonable results, although the
one that uses three standard deviations is consistently above
c0.01[k] and is thus preferred. We will re-examine this choice
in Section V-B, when we present real-world examples.
Comparison with [11]. An online CPD algorithm based on a
k-nearest neighbor approach was proposed in [11]. Observa-
tions are viewed as points in a normed space and the distance
induced by such norm is used to define a neighborhood for
each observation. Changes are detected by performing two-
sample testing on the neighborhood graph. The proposed
approach is computationally intensive because it requires that,
if the current observation index is n, a two-sample hypothesis
test is performed for each time t ∈ {1, . . . , n − 1} (or for a
subset of these time instants). Also, it is memory-inefficient
since one has to store the pairwise distances between all past
observations. Even if these aspects are not a concern, this
approach is ill-suited to detect changes in some sequences of
networks, as we will argue shortly.

An example in [11] illustrates the performance of the CPD
algorithm on network sequences. Observations are the adja-
cency matrices of the graphs and neighborhoods are defined
using the distance induced by the Frobenius norm over such
matrices. We will see that this distance does not allow for
capturing some changes in the network connectivity, such as
the formation of two communities discussed so far. Indeed, if
A,B ∈ RN×N are adjacency matrices of two ER graphs with
connection probability p, then

E
[
‖A−B‖2F

]
= N(N − 1)2p(1− p),

since all entries Aij , Bij ∼ Bernoulli(p). Thus ‖A−B‖2F ≈
2p(1 − p)N2 for sufficiently large N . Suppose now that C
and D are two adjacency matrices from a two-block SBM,
where each community has N/2 nodes and the connection
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Fig. 5. Detection result for a network transitioning from an ER model with
p = 0.3 to a two-block SBM with q1 = 0.275 and q2 = 0.325. Algorithm 1
is able to detect the change in this setup, while the approach proposed in [11]
fails to do so.

probabilities are q1 for nodes in the same cluster and q2

for nodes in different communities. Then the connection
probability matrix for C and D is given by (24), so those
matrices have N2/2 entries whose expected value is q2 and
(N/2− 1)N ≈ N2 entries whose expected value is q1. All in
all, similarly to the ER case we have

‖C−D‖2F ≈ N2
(
q1 − q2

1 + q2 − q2
2

)
,

‖A−C‖2F ≈ N2

(
p− p(q1 + q2) +

q1 + q2

2

)
.

Again, if we choose q1 and q2 such that q1 + q2 = 2p, then
we obtain ‖A − B‖2F ≈ ‖A − C‖2F . In other words, the
distance between an observation before the change (A) and
an observation after the change (C) will be very similar to
the distance between two observed matrices before the change
(A and B). For matrices after the change, we have that when
q1 + q2 = 2p then

‖C−D‖2F ≈ 2N2
(
p− p2 − (p− q1)2

)
,

so choosing p and q1 to be very similar (but not equal, so there
is effectively a change), for large N these two models will be
indistinguishable under the Frobenius distance criterion.

We simulated such a setup, with a network of N = 100
nodes switching from an ER model with p = 0.3 to a two-
block SBM with q1 = 0.275 and q2 = 0.325. The change-
point was located at kc = 200. We ran the algorithm proposed
in [11] using the implementation in the R package gStream.
Selecting between 3 and 10 nearest neighbors and an average
run length of 1000, it found no change-points in the data.
Results for our CUSUM detector are depicted in Figure 5.
Apparently, there is a noticable change in trend in the weighted
statistic after k = 300, with a change-point being detected
at k∗ = 365. This arguably large detection delay can be
shortened using a finite memory statistic such as MOSUM.

Detection delay. Characterizing the distribution of the detec-
tion delay τ (i.e., the time interval between the occurrence of
a change and it actually being detected) is in general chal-
lenging. Instead, we will settle with a point estimate obtained
via identification of the first instant the weighted statistic
ω[k]Γ[m, k] crosses the threshold function cα[k]. Recall that
this is the condition that defines the rejection region of our test.
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Fig. 6. Estimated detection delay and empirical delays for different change-
point locations kc. Empirical delay is well predicted by the estimated curve.
For the adopted CUSUM statistic, as expected the delay grows with kc.

Since that statistic has finite variance, it is possible to predict at
which time point k∗ the change will be detected by studying
when the expectation of the weighted test statistic after the
change [cf. (17)] first exceeds the threshold. Once more,
for simplicity and analytical tractability we will henceforth
assume the threshold is set as th[k] in (16). This choice
(approximately) corresponds to α = 0.01; see Figures 2 and 4
for further discussion on this point. To estimate the delay, we
find the first instant k∗ ≥ kc for which ω[k∗]Eac[k∗] ≥ th[k∗],
where Eac denotes the expectation of Γ[m, k] after the change
that is approximately given by (17). This amounts to solving
the equation

(k∗ − kc)2
(
‖σY ‖1 − ‖σX‖1 + 2k∗(e>δ) + (k∗ − kc)||δ||22

)2
= 9

(
2(k∗)2‖σX‖22 + 4(k∗)3(σ>Xe2)

)
, (25)

which entails finding the roots of a fourth-order polynomial.
The solution k∗ can be obtained numerically, and the estimated
delay becomes τ = k∗ − kc.

To test said method, we simulated a sequence of ER
networks with N = 100 nodes and connection probability
p = 0.5. We use the first m = 100 graphs for training. The
first kc graphs after training follow that same model, but then
observations shift to an ER with p = 0.6. The solution to (25)
allows us to estimate the detection delay for different values of
kc. This can be done after training, since once that phase ends
the error e is fixed, and vectors σX , σY and δ are defined
by the change in the underlying model. Figure 6 shows the
estimated delay for kc ∈ {0, 200, 400, 600, 800, 1000}. For
each kc a box plot of Algorithm 1’s empirical delays is also
shown, computed for 100 simulated runs using the CUSUM
statistic. Our estimation is consistent with the experimental
delays in Algorithm 1, which tend to show a linear growth
with kc.

Figure 7 depicts the empirical delays in this setup for three
different statistics: CUSUM, MOSUM and mMOSUM. This
last running statistic is defined in [28] as

s[m, k] =

m+k∑
t=m+bkhc+1

h
(
A[t], X̂

)
, (26)

where h ∈ (0, 1) and bxc is the floor function, i.e., the
largest integer that is smaller or equal to x. The mMOSUM
is defined in a way such that early observations are discarded
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Fig. 8. Estimated detection delay and empirical delays for different training
set sizes m, for the CUSUM statistic. The delay is lower as m increases, but
there is no significant improvement after m = 25.

and the window length grows proportionally with k. Hence,
the algorithm’s response time should be faster than when using
the CUSUM statistic. That is consistent with Figure 7, which
shows that the detection delay for the mMOSUM statistic
grows with kc, but at a slower rate than that of CUSUM. For
this simulation we set h = 0.4. The MOSUM statistic, with
a window length of L = 10 observations, attains the shortest
delay among the three and it is roughly constant with kc. This
is expected given that the window size remains constant for
MOSUM, so there is no inertia associated with the change-
point occurring long after monitoring started.

Finally, Figure 8 shows the empirical and estimated delays
for the CUSUM statistic for various training set sizes m. The
setup is similar to that of the previous test case, with an ER
model switching from p = 0.5 to p = 0.6 at kc = 100.
As expected, the delay decreases with m, since more training
samples lead to more accurate ASE estimates. Also, it is
important to note that Algorithm 1 performs well with a
relatively small training set size. In this setting, we observe
there is no significant improvement beyond m = 25 (with the
expected delay going from τ = 13 to τ = 11 for m = 300).

B. Real data experiments

Wireless network data. Received Signal Strength Indicator
(RSSI) measurements between Wi-Fi access points (APs) in
a Uruguayan school are obtained from the dataset described
in [37]. In this particular example we considered a network
consisting of N = 6 APs, with measurements collected
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Fig. 9. Online CPD for the RSSI dataset. Top: MOSUM statistic. A
change in background color indicates a change-point detected by the offline
algorithm [17]. The dashed vertical line shows the detected change-point
for the online algorithm. Algorithm 1 successfully detects that an AP was
moved. Bottom, left: X̂l

1 (blue) and X̂l
2 (orange) latent vectors for d = 2

corresponding to Ā1 and Ā2 respectively. Vectors corresponding to the same
node are joined by an arrow. Bottom, right: Id. but with X̂r

1 (blue) and X̂r
2

(orange). Node 4 corresponds to the AP that was moved, which together with
node 3 are the ones whose embeddings change more prominently.

hourly during almost four weeks, spanning from 10/17/2018
to 11/13/2018 (corresponding to T = 655 graphs). The AP
corresponding to node 4 was moved on 10/30/2018. As RSSI
is measured in dBm (and are negative), we have first added
an offset of 91 to all weights so that they become positive
(as −90 dBm is the smallest RSSI measurement in this case)
and that larger values still mean “stronger” edges. We thus
have a directed (as power measurements between APs are not
necessarily symmetric) and weighted graph sequence.

We used two days worth of measurements for training
(m = 48) beginning on 10/12/2018. The resulting MOSUM
statistic, the estimated mean and the resulting threshold th[k]
are shown in Figure 9 (top). Note how Algorithm 1 rapidly
detects the AP movement. The offline CPD baseline in [17]
is also able to detect the change, at around the same date.
Furthermore, we complement the threshold studies carried
out in Section V-A and compare the same two versions of
th[k], namely the estimated mean plus two or three standard
deviations. Note how the change-point is detected around the
same instant regardless of the specific choice.

In addition to CPD, a valuable feature of RDPGs and its
variants is their interpretability. To illustrate this attribute,
let us consider two averaged adjacency matrices: those cor-
responding to the historic dataset and the last two days of
the observation period. Let us denote the resulting matrices
as Ā1 and Ā2, respectively, and analyze the resulting latent
positions. In order to avoid the rotation ambiguities, we have
used the so-called omnibus embedding [27], which in this case
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Fig. 10. Online CPD for the South American football matches. Top: evolution
of MOSUM statistic. The dashed vertical line shows the detected change-
point, that can be traced to a change in the Copa América organization format.
A change in background color indicates a change-point detected by the offline
algorithm [17]. Bottom: embeddings corresponding to the averaged historic
set (blue) and the last 10 graphs of the observation period (orange). There are
two distinct communities (northern and southern countries), and an increase
of the number of matches played by the northern countries (with relatively
less football tradition at the time) is clear by the changes in its embeddings.

amounts to performing ASE to M =
( Ā1 (Ā1+Ā2)/2

(Ā1+Ā2)/2 Ā2

)
.

This approach is only practical when jointly embedding a few
adjacency matrices (two here), as the size of M increases
rapidly with the number of matrices considered.

Nodal vectors (d = 2) are depicted in Figure 9 (bottom),
where an arrow shows the changes between the embeddings
of Ā1 and Ā2. Notice how the largest changes correspond to
nodes 3 and 4. The scaling ambiguity we discussed in Section
IV-B obscures which of the two APs was actually moved.
Still, this monitoring tool would be valuable to network
administrations as it identifies changes in a timely fashion and
it provides a curated list of potentially problematic APs.
South American football matches. Consider a dynamic
football network, whose N = 10 nodes are the national teams
affiliated to CONMEBOL (which associates all South Ameri-
can countries except Guyana and Suriname). This is the oldest
continental confederation under FIFA, and its teams have a
long history going back to 1901. We consider yearly matches
since 1940, when all national associations were founded and
most have joined CONMEBOL (Venezuela joined in 1952).

The resulting undirected graphs have edge weights in-
dicating the number of matches played between the two
incident national teams during a particular year (data obtained
from https://www.eloratings.net/). We used the first m = 20
years for training and the evolution of the resulting weighted
CUSUM statistic is shown in Figure 10 (top).

A change-point is detected around 1990 both by the online
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Fig. 11. Online CPD for the MIT proximity dataset (using the MOSUM
window). A change in background color indicates a change-point detected by
the offline algorithm of [17]. The dashed vertical line shows the detected
change-point for the online algorithm. Dotted vertical lines indicate the
beginning of the semester and the “sponsor week”. The offline algorithm
misses the first change-point.

and offline CPD algorithms. Indeed, CONMEBOL’s flagship
tournament (Copa América) went through a period of inter-
mittency that would last until 1987, when it started being
organized regularly every two years with a nation hosting
the event. This is apparent from the resulting embeddings in
Figure 10 (bottom), where northern countries increase their
corresponding magnitudes (indicating more frequent matches)
and form a relatively tight community. On the other hand,
southern countries form another (more loose) community,
which approached the northern’s one in recent years. Fur-
thermore, this community’s structure changed, where e.g., the
historic Argentina-Uruguay match is now not as significant.
We also examine the robustness of the results with respect
to the choice of the threshold. Notice that both versions of
th[h] we implemented again detect a change-point roughly
around the same time (one year difference in Figure 10). But as
mentioned in Section V-A, using the mean plus three standard
deviations clearly provides more robustness to false positives,
particularly in high noise settings as in this test case.
MIT proximity network. Lastly, let us consider the stream of
social graphs introduced in [38]. The dataset includes the cell
tower to which the mobile phone of a group of MIT faculty
and graduate students connected between July 2004 and June
2005. We have processed the dataset and constructed a daily
graph where nodes are people and the weight of each edge
is how many minutes two people share the same tower on
that given day2. A collection of labeled events are described
in [7, Fig. 8], such as the beginning of the semester in early
September and the “sponsor week” during mid-October.

We have considered a full month worth of undirected graphs
starting on mid-July as training set and all the N = 84
people that were registered during the study. The evolution
of the MOSUM statistic until early November is shown in
Figure 11. Dotted vertical red lines indicate the two events we
mentioned before, which fall within the observation period.
First of all, it is important to note that the online CPD
algorithm detects a change during early September, very near
to the beginning of the semester. This change-point is missed

2We used Jeremy Kun’s scripts in https://github.com/j2kun/reality-mining.
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by the offline algorithm in [17] (see the changes on the
background color), which indicates a change-point almost two
weeks later. Furthermore, the example illustrates an interesting
advantage of a finite-memory statistic such as MOSUM: the
second change-point (this time correctly flagged by the offline
algorithm) is also clearly discernible. Notice how the statistic
is starting to stabilize around mid-October and then presents
a large change of slope. Indeed, changes on the statistic after
plateauing are indicative of further change-points.

VI. CONCLUSIONS AND FUTURE WORK

We developed a computationally-efficient online CPD algo-
rithm for monitoring applications involving streaming network
data. The goal is to declare in (pseudo) real time when a
sequence of observed graphs changes its underlying distribu-
tion. Leveraging the RDPG modeling framework and assuming
historical “clean” data are available, the novel algorithm
computes (offline) the ASE of the historical graphs (i.e., a
training set) and then efficiently updates the cumulative sum of
a monitoring function as data arrive sequentially-in-time. Sta-
tistical analysis of the monitored random sequence facilitates
deriving meaningful detection thresholds to control type-I error
rates, as well as to study the algorithm’s detectability limits
and to numerically predict delay behavior. Generalizations of
the RDPG model to directed and weighted graphs markedly
broaden the applicability of the novel online CPD framework,
as illustrated through various real-data case studies.

This work opens up several exciting and challenging av-
enues for future work. For instance, while still relying on
RDPG modeling it would be of interest to explore sequential
CPD formulations that minimize (or provide an explicit handle
on) detection delay. Even in the present setting, carrying
out a rigorous delay analysis would constitute a valuable
contribution. In all fairness, accomplishing this goal would
be central towards fully solving the online change-point de-
tection problem. With regards to ASE-induced model estima-
tion error, although in this work we presented a simple yet
effective “leave-one-out” approach to approximate its value,
a worthwhile future direction in our agenda is the study of
theoretical bounds and guarantees for this plug-in statistic. Our
methodology detects changes in the model with respect to a
training set of nominal graphs, and assumes that the number
of nodes in the network does not change. Depending on the
particular application, it may be interesting to consider the case
where certain nodes are not always present on the network,
and we are interested in only a subset of them. Along these
lines, we believe it would be worthwhile to develop embedding
and CPD algorithms for partially observed graph streams, say
due to sampling. Lastly, one could also envision online CPD
schemes using just graph signal observations, because ASE-
type embeddings are likely still computable from empirical
signal covariance matrices under diffusion model assumptions.

APPENDIX

A. Proof of the bound in Example 3

A sequence of ER graphs with connection probability p
changes to q = p − ∆ at a certain time-step. Equation ‖e +

δ‖22 > ‖e‖22 in this case may be written as

2

N∑
i=1

N∑
j=i+1

Eij > −∆
N(N − 1)

2
, (27)

where we have assumed that ∆ > 0 (the analysis that follows
is readily extended to ∆ < 0). Recalling that in this case
E = x̂x̂> − p1N×N (with x̂ ∈ RN×1), we rewrite (27) as

x̂>(1N×N − I)x̂ >

(
p− ∆

2

)
N(N − 1). (28)

Since asymptotically (in N ) x̂ is a normal vector with mean
µ =

√
p1N×1 and covariance matrix Σ = (1−p)

Nm I [26], [39],
[40], we consider this asymptotic regime and use results about
the statistics of quadratic forms of Gaussian vectors [41, Ch.
5]. For instance, the resulting mean is

E[x̂>(1N×N − I)x̂] = tr [(1N×N − I)Σ] + µ>(1N×N − I)µ

= pN(N − 1).

Comparing the equation above to (28), it follows we have to
bound the probability that x̂>(1N×N − I)x exceeds its mean
minus ∆N(N − 1)/2. To this end we compute the variance
of the quadratic form, which is (let σ2 := (1− p)/(Nm))

var[x̂>(1N×N − I)x̂] = 2tr
[
((1N×N − I)Σ)2

]
+ 4µ>(1N×N − I)Σ(1N×N − I)µ

= 2σ2N(N − 1)(σ2 + 2(N − 1)p).

Applying Chebyshev’s inequality, the result follows. �

B. Proof sketch for Theorem 1

We now give an overview of the necessary steps to prove
Theorem 1. We adapt the arguments used in [32] to accom-
modate our setting; therefore, we will outline how their proof
can be adapted to our case.

The following notation will be used throughout this section.
We will denote the eigendecomposition of matrix B ∈ RN×N
as VBΛBV>B , with the elements in the diagonal of ΛB in
decreasing order. Λ̂B ∈ Rd×d will denote the diagonal matrix
with the d largest eigenvalues of B, and V̂B ∈ RN×d will be
the corresponding d dominant eigenvectors. Recall we assume
that 0 ≤ Bij < M , for some M > 0, and that {Bij}i<j are
independent with E [Bij ] = Pij , where P = XX> for some
fixed X ∈ RN×d. The eigendecomposition of P is VPΛPV>P .
Matrices Λ̂P and V̂P are similarly defined for P.

The first step of the proof is to show that, for large N , it
almost surely holds that:

‖B2 −P2‖F <
√

3M4N3 logN,

where B2 = B × B denotes the usual matrix product. The
argument (in a more general setting) can be found in [42,
Lemma 2]. In our setting, the basic idea is to write

B2
ij −P2

ij =
∑
k 6=ij

(BikBkj −PikPkj)−PiiPij −PijPjj .

Since BikBkj are independent for k 6= i, j and Pij’s are
bounded by M , we use Hoeffding’s inequality to show that

P
((

B2
ij −P2

ij

)2 ≥ 2M4(N − 2) logN +M4(4N − 4)
)
≤ 2

N4
.
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Then, using the subadditivity property of probability and
the Borel-Cantelli Lemma, we can show that almost always∑

i,j:i 6=j

(
B2
ij −P2

ij

)2 ≤ 5

2
M4N3 logN.

Since
(
B2
ii −P2

ii

)2 ≤M4, we finally conclude that

‖B2 −P2‖2F ≤
5

2
M4N3 logN +NM4 < 3M4N3 logN

for sufficiently large N .
Once this is established, we apply a variant of the Davis-

Kahan theorem to B2 and P2. Since the eigenvectors of B and
B2 coincide (the same is true for P and P2) and we assume
the eigengap for P is greater than δN (and thus the eigengap
for P2 is greater than δ2N2), [43, Corollary 3] ensures that it
is possible to choose the columns of VB such that

‖(VB)·i − (VP )·i‖2 ≤
23/2

δ2

√
3M4

logN

N
,

for every i ≤ d, where (VB)·i denotes the i-th column of
matrix VB . Since the first d columns of VB are the columns
of V̂B (the same is true for VP and V̂P ) this in turn implies
that, for such a choice,

‖V̂B − V̂P ‖F ≤ C
√
d

√
logN

N
,

where C is a constant.
The rest of the proof follows, mutatis mutandis, that of [32].

First, by writing

‖V̂BΛ̂
1/2
B − V̂P Λ̂

1/2
P ‖F ≤ ‖V̂B(Λ̂

1/2
B − Λ̂

1/2
P )‖F

+ ‖(V̂B − V̂P )Λ̂
1/2
P ‖F

using the previous bounds we can show that

‖V̂BΛ̂
1/2
B − V̂P Λ̂

1/2
P ‖F ≤ Cd

√
logN. (29)

Because rank(P) = d, by defining Y := V̂P Λ̂
1/2
P

we have that YY> = P = XX>, so X = YW for
some orthogonal W. Thus, the bound in (29) also holds for
‖V̂BΛ̂

1/2
B W −X‖F . Since the ASE estimation of the latent

positions is X̂ = V̂BΛ̂B , this implies that almost surely

‖X̂W −X‖F ≤ Cd
√

logN.

The proof then concludes as in [32].
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