
Pr
ep

ri
nt

–
31

A
ug

20
21

A drawing robot pipeline with artist-inspired
execution

Jimena Arruti
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
jimena.arruti@fing.edu.uy

Martı́n Ottavianelli
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
martin.ottavianelli@fing.edu.uy

Alfredo Solari
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
alfredo.solari@fing.edu.uy

Pablo Monzón
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
monzon@fing.edu.uy

Pablo Musé
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
pmuse@fing.edu.uy

Juan Pablo Oliver
Instituto de Ingenierı́a Eléctrica

Facultad de Ingenierı́a
Universidad de la República

Montevideo, Uruguay
jpo@fing.edu.uy

Abstract—This paper presents a novel pipeline for vision-
based robot drawing, which mimics the artists’ execution
process. The pipeline takes an image as an input and outputs
the result of the drawing process, or optionally, the position
and velocity needed for each motor of a planar robotic arm
to execute the aforementioned drawing.

Index Terms—robot, image processing, art, drawing, sketch-
ing, robotic art, planar arm

I. INTRODUCTION

Since the rise of cybernetics, and the dawn of artificial in-
telligence, many artists began to incorporate computational
elements into their work [1]. In 1961, Gordon Pask, inventor
and author of a vast literature on cybernetics [2], presented
a series of Learning Machines [3]. Among them, Eucrates,
which is considered to be the first computational artwork,
gave birth to a new era of cybernetic art. Regarding visual
arts and technology specifically, the work of Jean Tinguely
is of paramount importance. In the mid-1950s, he began
producing a series of generative works called Métamatics
[4], consisting of machines that produced abstract visual
artworks in collaboration with the artist, spectators and
restorers.

Since then, technological advances have continued to
interact with the world of the arts, and to this day there
are several works whose motif consists of a robotic system
creating a visual artwork. Examples of this are AARON [5]
or eDavid [6].

The main precedent in terms of drawing robots is the
work of Patrick Tresset [7]. His art pieces are mainly
still life scenes or portraits, being drawn by one or more
robots in different settings. Each such robot consists of a
camera and a robotic arm holding a pen. A particularity of
his work is that the robotic arms has an anthropomorphic
disposition, without seeking to fully emulate a human arm

Fig. 1. Sketches produced by PARRA, the drawing robot pipeline
presented in this work.

in its appearance, presenting three joints (shoulder, elbow
and wrist). In addition, throughout the performance, all the
movements they perform are perceived as natural.

In this context, this paper presents the signal processing
pipeline of an artistic installation that uses an image as input
and outputs a drawing executed by means of a planar robotic
arm and a pen. The robotic arm will not be discussed here,
but will be assumed as a speed and position controlled, 3-



Pr
ep

ri
nt

–
31

A
ug

20
21

axis planar arm [8], with an extra motor at the tooltip for
pen-up and pen-down binary positions.

This hardware setup is inspired in the design from Paul
the robot [9] [10]. However, the developed software arises
from a different perspective. In particular, to our knowledge
the approach taken for the shading process was not previ-
ously reported, and therefore it is presumed to be a novel
contribution to the field. Two examples of achieved results
by our drawing robot pipeline (PARRA) are presented in
Figure 1.

II. IMAGE PROCESSING

The main restriction of the robot is that the drawing has to
be monochromatic, as only one drawing tool (e.g. a pen) is
used. Moreover, the pen is either pressing the paper or lifted,
without considering pressure variations to change saturation
of ink in the paper. This limits the drawing strategies
that can be considered in the pipeline for boundaries and
shading.

The first step of the processing pipeline consists of
abstracting an image into a set of ideal curves that compose
the sketch, each represented as a list of coordinates. When
sketching, the robot takes into account two strategies to
represent the picture: drawing edges, to distinguish between
different objects -and different features in the same object-,
and shading, for lighting information. The shading tech-
niques are inspired by classical engravings procedures, and
are believed to be new in the field.

A. Edge Detection

A Canny-Devernay algorithm implementation [11], [12]
is used to detect the curves that compose the edges of the
image. Its parameters (a lower and an upper threshold for the
image gradient, and the standard deviation σ of the Gaussian
filtering) are also parameters of the drawing robot pipeline.
Different outcomes of this procedure are shown in Figure
2.

B. Shading Strategies

An image shading process is designed, resembling well
known drawing techniques used in the visual arts, and
taking into consideration the aforementioned restriction of
the system to handle different pressure values in its strokes.

After exploring several techniques employed by visual
artists, it was decided to design a shading process that em-
ulates the technique of hatching (or hachure in French) [13],
which is often used in ink drawings and engravings to
generate different levels of darkness. This technique consists
of creating different intensities of gray by drawing parallel
lines. The perceived variation in intensity is the result of
varying the amount, thickness and spacing of those lines,
and even by the superposition of two or more layers of
lines that are not parallel to each other. In addition, contrast
between areas can be achieved by changing the angle of the
shading layers. Therefore, a possible first approach consists
of shading the image with parallel and equidistant line
segments, achieving the effect of darkness or lightness by
altering the local density of the segments.

Fig. 2. From left to right, downwards: original image; edges computed
with the Canny/Devernay implementation described in [12], changing the
value of σ and mantaining the values for the lower and upper threshold (4
and 5 respectively). From left to right, downwards: original image; edges
detected with σ = 2, with σ = 3 y con σ = 4. As σ increases less edges
are detected. σ = 3 is chosen as the default value for the system.

In order to represent the intensity value by the level of
concentration of the lines, first the image must be quantized
to delimit regions that are distinguishable in the shading.
Secondly, it is also necessary to associate the varying
spacing of the lines with each level of quantization, and
to choose the direction in which the lines will be drawn in
each area.

A second and final approach incorporates the shading
method proposed in the initial approach to an iterative
process of hatching, where the image is previously filtered
with a median filter and quantized into N gray levels, to
delimit different shading regions. Then, those regions are
shaded by overlapping layers in an iterative process, in
which any new iteration excludes the lightest region shaded
in the last one. The lightest region in the image is never
shaded. Thus, each iteration overlaps layers of parallel lines,
each one with a different orientation, progressively reaching
a higher density of lines for the darker areas. This process
is summarized in Algorithm 1.

Algorithm 1 can be easily modified to only apply the
shading process to the M darkest quantization levels of the
images, adding variety to the possible outcomes. This is
shown in Figure 3.

Algorithm 1 Hatching procedure
Require: quantized image

1: shading curves = []
2: angles = [i2π/(N − 1)] con i ∈ [0, N − 2]
3: shuffle angles
4: for i in [0, N − 2] do
5: region to hatch = quantized image <= i
6: shading curves.append(Hatch(region to hatch,

angles[i]))
7: end for



Pr
ep

ri
nt

–
31

A
ug

20
21 Fig. 3. From left to right, downwards: original image; 3 bit quantization;

complete shading process; shading process for the 5 darkest quantization
levels.

III. DRAWING CURVES

The previously mentioned stages output the ideal curves
that would compound the final work. Each one of these
curves is stored as a list of connected coordinates.

As stated in the introduction, the system is made for a
planar arm with three joints. The fact that the arm is planar
implies that it is more restricted than an actual human arm,
which allows three-dimensional movement. Nevertheless,
although the system is physically constrained, it still needs
further restrictions, on account of the copious amount of
possibilities for moving from one point to another, even
when having the angles of the joints and the speed of the
motors quantified.

A. Restrictions

It is intended that the arm moves as similarly as possible
to a human arm, thus defining the range of movement for
each joint, and suggesting the goal of a soft movement.
In addition, since the three degrees of freedom system
allows several possible arm configurations for drawing the
same stroke, the use of additional restrictions simplifies
the computation. Ultimately, the following restrictions are
imposed:
• Each motor’s range of motion is limited to certain

values to mimic the functioning of the corresponding
joint of a human arm.

• Each motor moves at constant velocity while drawing
a curve.

• The three motors start and end their motion simulta-
neously.

B. Obtaining angle and speed values

Once the image processing abstraction is completed, a
method for translating each ideal curve into commands
for the arm’s motors is needed. Considering the previously
mentioned restrictions, and the speed and position of each
motor as the variables, the following two-step procedure for
obtaining the motors’ commands is designed.

Fig. 4. Up: Three-joints arm with its relevant parameters. Down: Ideal
curve (blue), feasible curves (black) and selected curve (red).

1) Finding feasible curves: This step involves finding all
the feasible curves that are similar to each ideal curve. This
is performed by finding a set of curves that start and end
in the same points as the ideal curves, while following the
aforementioned restrictions.

The possible configurations of the arm for the start and
end points of the curves are derived using inverse kinemat-
ics [14] [8]. For every point in the Cartesian coordinate
system, assuming a value for Φ (as defined in Figure 4),
the corresponding angles for each joint can be computed.

A grid of I possible initial angles Φinit
j and F possible fi-

nal angles Φfinal
k is defined, limiting the amount of feasible

curves. For those points, the joints’ angles are computed.
Then, feasible curves are defined by all combinations of
possible arm configurations found for the initial and final
points, while considering constant speed for each motor and
simultaneous start and end of motion of the three motors.
This last step involves computing each curve’s points using
direct kinematics.

2) Finding the most similar feasible curve: A measure
of similarity is needed to choose which feasible curve is
more adequate to represent an ideal curve. To this end, a
similarity metric, considering discrete curves, is proposed
in 1.

d(CT , CF ) =

N∑
i=1

min
j∈[1..M ]

∣∣∣∣∣∣CT [i]− CF [j]
∣∣∣∣∣∣
2
, (1)

where CT = {(xT [i], yT [i]), 0 ≤ i ≤ N} is the ideal curve
and CF = {(xF [j], yF [j]), 0 ≤ i ≤ M} is the feasible
curve.



Pr
ep

ri
nt

–
31

A
ug

20
21

Fig. 5. Sketch by Parra, with equidistant shading

A result of choosing the most similar feasible curve
according to 1 is illustrated in Figure 4. For an ideal curve in
blue, several candidate feasible curves in black are shown.
Following the described method, the red curve drawn was
found to be the most similar one.

C. Further enhancements

With the aim of providing the drawing process with more
human characteristics, while expanding the aesthetic possi-
bilities of the results two specific algorithms are designed:
one of them implements a curve partitioning method, while
the other one adds hand-tremor noise to the shading process.

As shown in Figure 5, shadings produced by fixed equally
spaced strokes make the image look stiff and artificial.
On the other hand, considering non-equispaced strokes by
adding jitter to the distances causes the illusion of human
made drawing more likely, as seen in Figure 8.

1) Curve Partitioning: The motivation behind incorpo-
rating to the process an algorithm to split curves into
segments of shorter length results from two fundamental
ideas. First, the need to characterize the stroke of the
robotic arm in such a way that it reproduces the naturalness
of a human artist’s stroke and composition; second, the
opportunity to improve the representation of the ideal curves
projected as feasible curves.

Naturalness can be compromised working with the above-
stated method, when trying to draw curves that are too long,
and by the possibility of encountering high local curvatures

Fig. 6. From left to right, downwards: original image; detected edges;
feasible curves without enhancements; feasible curves after splitting the
original curves with curvature threshold of 120 degrees; feasible curves
after splitting the original curves with curvature threshold of 150 degrees;
feasible curves after splitting the original curves with curvature threshold
of 120 degrees and a maximum length of 50 pixels per curve.

at some points of the curve. Both factors hinder the chances
to achieve sufficient similarity between the ideal curve and
the optimal feasible curve, considering that so far, each ideal
curve is represented by a single trace.

The curve partitioning algorithm consists of two stages.
In the first stage the local curvatures at each point of
the curve are estimated, based on the analysis of the
curvature at discrete points with the inner product. Once
the curvatures are computed, the partitioned curve indices
are chosen in such a way that they coincide with the
points whose local curvatures exceed a certain threshold.
Therefore, partitioning occurs at points where the local
angle is too acute for it to be natural to draw the curve
as a single stroke. Whenever the curve segments resulting
from the first partitioning are still larger than a configurable
length (set as a function parameter), a second stage iterates
in an equidistant segmentation, until obtaining segments
with lengths less than, or equal to, the desired length.

Some results of applying this algorithm can be seen in
Figure 6.

2) Noise aided shading: In order to remove the robotic
precision of the shading process based on hatching, seeking
to achieve a certain degree of human appearance, a shading
algorithm including noise is designed.

In a first instance, a random perturbation on the horizontal
and vertical axes is added to the ideal curve, limited
by a maximum deviation margin parameter defined as a
percentage of the canvas size in the horizontal and vertical
directions. This way, the ideal curves are perturbed prior to
its projection onto the space of feasible curves.



Pr
ep

ri
nt

–
31

A
ug

20
21

Fig. 7. A single shading layer varying the amount of random noise in the
shading algorithm. From left to right, downwards, noise amount increases.
In particular no noise is added in the first image.

In a second instance, random noise is added to all the
candidate curves in the space of feasible curves, so that
when comparing the ideal curve with the new noisy curves,
the best one of the candidates (the curve whose distance
to the ideal curve is the least) may differ from the one
that would have been chosen without adding noise. This
randomness increases the naturalness of the drawing, which
is clearly depicted in Figure 7.

IV. DRAWING ORDER

For an actual drawing performance to take place, the or-
der in which the curves are drawn is of extreme importance.
To derive a computational order to the curves that are drawn
during the execution, and to allow several variations, the
cost function presented in (2) is considered.

fx,y(l, xo, yo) = d(x, y, xo, yo)− αl. (2)

fx,y(l, xo, yo) represents the cost of drawing each pos-
sible next curve, considering the length l of the curve, a
configurable point of reference (xo, yo) -e.g. center of the
canvas, final point of the previous curve, initial point of the
previous curve- and the initial point of the next curve (x, y).
The parameter α is a regularization constant that can be set
by the user. Typical default values for α range between 0.1
and 1.

Ultimately, the curve yielding the minimum cost is drawn
next; this calculation takes place each time a new curve is
drawn.

V. RESULTS

Two examples of drawings produced by the pipeline are
shown in Figure 1. More examples can be found in the
project’s portfolio: Sketches by PARRA1.

A drawing process simulator was developed using
Python. This simulator outputs a video that shows the arm
drawing on a predefined canvas. Simulations of the drawing

1https://tinyurl.com/PARRAportfolio

Fig. 8. Sketch by PARRA, including split curves and shading with noise

process can be found in the project’s YouTube channel
(Proyecto PARRA2).

This system was developed in the context of an under-
graduate degree thesis. Further details can be found in the
PARRA project documentation [15].

VI. CONCLUSIONS

In this work we presented the design and implementation
of a drawing robot pipeline that takes a picture as input and
produces a video that simulates the motion of a robotic arm
that draws from life. In addition, it is possible to obtain
instructions for each motor’s joint to draw each curve.

Besides the aesthetics of the resulting drawings, the major
goal of this project was to endow the drawing execution with
human-like features. By imposing the physical restrictions
inherent to the motion of a human arm, and considering
the processes that usually take place when drawing from
life (from techniques such as hatching, to an algorithm for
determining which curve should be drawn next), a result
perceptibly similar to the drawing process of a human artist
was accomplished.

To this end, imperfections or randomness were also
included, were also included, removing the resulting aes-
thetics from any hint of rigidity or robotic precision.

2https://tinyurl.com/PARRAproject



Pr
ep

ri
nt

–
31

A
ug

20
21

REFERENCES

[1] R. I. Garcı́a, Arte y robótica: La tecnologı́a como experimentación
estética. España: Casimiro Libros, 2016.

[2] G. Pask, An Approach to Cybernetics. Hutchinson, 1961.
[3] T. Dreher, “History of computer art,” [online] 2013. [accessed on

2020-06-15]. http://iasl.uni-muenchen.de/links/GCA-II.3e.html.
[4] Wikipedia, “Métamatics,” [online] 2010. [accessed on 2020-06-15].

https://en.Wikipedia.org/wiki/M’/etamatic.
[5] H. Cohen, “AARON,” [online] 2011. [accessed on 2019-03-17]. http:

//aaronshome.com/aaron/index.html.
[6] O. Deussen, T. Lindemeier, S. Pirk, and M. Tautzenberger,

“Feedback-guided stroke placement for a painting machine,” in
Proceedings of the Eighth Annual Symposium on Computational
Aesthethics in Graphics, Visualization and Imaging, 2012, pp. 25–33.

[7] P. Tresset, “Patrick Tresset,” [online] 2017. [accessed on 2020-06-
15]. https://patricktresset.com/new/.

[8] V. Kumar, “Introduction to robot geometry and kinematics,” Penn
Engineering, 2002.

[9] P. Tresset and F. Fol Leymarie, “Portrait drawing by Paul the robot,”
Computers & Graphics, vol. 37, no. 5, pp. 348–363, 2013.

[10] F. F. L. Patrick Tresset, “Proyecto AIKON,” [online] 2009. [accessed
on 2020-06-15]. https://sites.google.com/site/aikonproject/.

[11] F. Devernay, “A Non-Maxima Suppression Method for Edge
Detection with Sub-Pixel Accuracy,” INRIA, Tech. Rep. RR-2724,
Nov. 1995. [Online]. Available: https://hal.inria.fr/inria-00073970

[12] R. G. von Gioi and G. Randall, “A sub-pixel edge detector: an
implementation of the Canny/Devernay algorithm.” IPOL Journal,
vol. 7, pp. 347–372, 2017.

[13] B. Grabowski and B. Fick, Printmaking: A Complete Guide to
Materials and Processes. Prentice Hall, 2009.

[14] J. J. Craig, “Introduction to robotics, 3rd edition,” Prentice Hall,
Pearson, 2002.

[15] J. Arruti, M. Ottavianelli, and A. Solari, “Parra : Artı́fice de realiza-
ciones robóticas artı́sticas,” undergradute thesis, Universidad de la
República (Uruguay). Facultad de Ingenierı́a, 2020.

http://iasl.uni-muenchen.de/links/GCA-II.3e.html
https://en.Wikipedia.org/wiki/M'/etamatic
http://aaronshome.com/aaron/index.html
http://aaronshome.com/aaron/index.html
https://patricktresset.com/new/
https://sites.google.com/site/aikonproject/
https://hal.inria.fr/inria-00073970

	Introduction
	Image Processing
	Edge Detection
	Shading Strategies

	Drawing Curves
	Restrictions
	Obtaining angle and speed values
	Finding feasible curves
	Finding the most similar feasible curve

	Further enhancements
	Curve Partitioning
	Noise aided shading


	Drawing order
	Results
	Conclusions
	References

