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A B S T R A C T

Bovine leukemia virus (BLV) is one of the five agents considered most significant for cattle. It is important to
determine the prevalence and molecular epidemiology of BLV throughout the country in order to gain a more
thorough understanding of the current situation of BLV and to reveal the possibility of masked genotypes that the
primers used by OIE are unable to identify. Blood samples were collected at random from 289 cows distributed in
75 farms across the country. PCR amplification of env, gag and tax gene segments was performed. The obtained
amplicons were sequenced and then subjected to phylogenetic analyses. A total of 62% of the cows present at
92% of the farms were BLV-positive for gag fragment. Genotype 1 was exclusively detected by env gene segment
when analyzed using previously reported primers. However, tax gene analysis revealed circulation of genotype 6
variants, which were also detected based on env gene analysis with newly designed primers. These results in-
dicate that current genotyping approaches based on partial env sequencing may bias BLV genetic variability
approaches and underestimate the diversity of the detected BLV genotypes. This report is one of the first mo-
lecular and epidemiological studies of BLV conducted in Colombia, which contributes to the global epidemiology
of the virus; it also highlights the substantial impact of BLV on the country's livestock and thus is a useful
resource for farmers and government entities.

1. Introduction

Viruses are one of the main causes of health problems, of which
bovine leukemia virus (BLV) is one of the five agents considered most
significant for cattle. Colombia had previously reported a ser-
oprevalence of animals of 42.7%, a figure that is consistent with
worldwide reports, which range between 5 and 90% (Lee et al., 2016;
Murakamia et al., 2011; Ortiz et al., 2016; Polat et al., 2016).

BLV belongs to Retroviridae family and Deltaretrovirus genus with
two copies of a single-strand positive-RNA with a length of 8714 nu-
cleotides. Its genome contains 8 open reading frames with 3 gene seg-
ments (gag, pol, env) encoding the structural proteins and enzymes ne-
cessary for viral replication, a pX region encoding the Tax and Rex
auxiliary proteins, which perform regulatory functions, and two long
terminal regions (LTRs) at the terminal ends of the genome (Lee et al.,
2016; Ochirkhuu et al., 2016; Polat et al., 2017b, 2016; Rosewick et al.,
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2013). The gag gene consists of 1183 nucleotides and encodes the
capsid protein p24-CA, the env gene has a length of 1547 nucleotides
and encodes the envelope glycoproteins, which are comprised by the
extracellular portion (gp51) and the gp30 transmembrane region

(gp30) (Corredor et al., 2018; Polat et al., 2016). gp51 is essential for
recognition and entry of the virus into the host cell and is one of the
most immunogenic viral proteins. The pX region has 3304 nucleotides
and encodes the Tax protein, which fulfills regulatory functions

Table 1
Primers used for amplification*, sequencing* and construction of plasmid DNA┼ for the BLV gag, tax and env gene segments. NA (not applicable).

Region and position on the
genome

Primer sequence 5`- 3` (Forward and reverse) PCR product
(bp)

Annealing Temperature
(°C)

Minimum detectable
concentration (ng/ul)

Reference

gag*┼

1068–1453
AACACTACGACTTGCAATCC 385 59.3 2.3 (Buehring et al.,

2014)GGTTCCTTAGGACTCCGTCG
tax*┼

7197–7570
CTTCGGGATCCATTACCTGA 373 56.5 0.042
GCTCGAAGGGGGAAAGTGAA

env*
5107–5636

CCCACAAGGGCGGCGCCGGTTT 509 62.8 159 × 10−9 (Fechner et al.,
1997)AACAACAACCTCTGGGAAGGGT

env*
4938–5688

TGTCCCTAGGAAAYCAAC 750 56 159 × 10−4 Current study
AGATTAACCAGGGAGATAGG

env┼

4925–5726
ATGAGATGCTCCCTGTCCCTAG 801 57.6 NA (Corredor et al.,

2018)ACGTCTGACCCGGGTAGG

Fig. 1. Prevalence of BLV by detection of the gag and tax gene segments in the Colombian cattle population. Map of Colombia showing prevalence per animal and per
farm, distributed in six regions of Colombia: Cundinamarca 69 and 90% (dark blue), Boyacá 71 and 94% (green), Antioquia 73 and 100% (purple), Meta 85 and
100% (turquoise), Nariño 14 and 75% (yellow) and Cesar 17 and 75% (pink), respectively. The overall prevalence of BLV in Colombia was 62% per animal and 92%
per farm. The Colombian map was prepared by the authors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(Rosewick et al., 2013).
At present, 11 BLV genotypes have been reported in different re-

gions of the world (Ababneh et al., 2012; Bazzucchi et al., 2019;
Gautam et al., 2018; Lee et al., 2016; Ochirkhuu et al., 2016; Polat
et al., 2017b, 2016; Yu et al., 2019). Frequently, BLV genotype detec-
tion is based on a 444 bp segment amplification, as indicated in the
World Organization for Animal Health (OIE) manual for viral diagnosis
(Fechner et al., 1997; OIE, 2018). Both in this document and in several
others, Fechner primers are used, and they indicate that genotype 1 is
the most prevalent worldwide (Lee et al., 2005; Polat et al., 2017b).
However, the topology of some trees displays different clusters in the
same genotype, leading to the question of whether the amplification of
the 444 bp segment of the env region efficiently identifies all the current
genotypes, or instead mimics the presence of other circulating geno-
types (Buehring et al., 2014; Felmer et al., 2005; Ochirkhuu et al.,
2016).

In Colombia there are very few studies on the seroprevalences of

this virus and even less on prevalence and genotype. Consequently, the
aim of this study was to identify the circulating genotype of BLV
throughout the country in order to gain a more thorough understanding
of the current situation of BLV and to reveal the possibility of masked
genotypes that the primers used by OIE are unable to identify.

2. Materials and methods

2.1. Sample collection and DNA extraction

The samples were randomly collected, taking into consideration the
areas with greatest bovine cattle production in the country, based on
the bovine census carried out by the Colombian Agricultural Institute
(ICA) in 2014, which counted 22,574,780 heads of cattle distributed
among 495,072 properties. The number of samples to be studied was
determined based on the sampling formula to estimate a proportion
using the WinEpiscope tool available online (http://www.winepi.net/).
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The sample size (n) was estimated using the 42% prevalence reported
by (Ortiz et al., 2016), which yielded an n value of 289. Blood samples
were taken from the coccygeal vein of healthy cows distributed
throughout the country in 6 different regions, between 2015 and 2016.
Mononuclear cells were separated from blood samples using density
gradient centrifugation with LymphoSep (MP®); after recovering the
buffy coat, total DNA was extracted in order to look for proviral DNA
with the High Pure PCR Template Preparation Kit (Roche®).

2.2. PCR sensitivity tests

Previously amplified amplicons belonging to the segments of gag
(381 bp) and tax (396 bp) genes of BLV were purified with a PCR
Wizard kit (Promega®), followed by the insertion of each of them into
the pELMO vector (Ramos et al., 2017) and transforming them into E.
coli TOP10 cells (Invitrogen®). The plasmid DNA was used as an am-
plification template in the sensitivity tests. Serial dilutions of each
plasmid were performed with initial concentrations of 230 ng/μl and
411 ng/μl for gag and tax, respectively. Subsequently, the respective
PCR assays were performed at each dilution level to determine the
detection limit of the technique corresponding to the maximum am-
plified dilution. For the env region, a segment of 801 bp was amplified
as described above, but the sequence was cloned into the pEXP5-CT/
TOPO (Invitrogen) vector with an initial concentration of 159 ng/μl.

2.3. Detection of BLV gene segments

Initially, the constitutive gene bovine glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used as an internal control. It was am-
plified in order to ensure that the DNA was long enough to be able to
contain the virus segments. The primers (5´CCT TCA TTG ACC TTC ACT
ACA TGG TCT A 3′ and 5´ GCT GTA GCC AAA TTC ATT GTC GTA CCA
3′) were those reported by (Buehring et al., 2014) and the amplified
segment was 857pb long. Multiple PCR was performed to amplify both
the GAPDH and gag gene segments simultaneously. Afterwards, in-
dividual PCRs were performed to amplify the gag, tax and env genes.
The PCR conditions and the primers used are found on the Table 1. For
all the PCR assays described below, the PCR master mix (Roche®) was

prepared according to the manufacturer's instructions. Plasmid DNA
containing each gene segment (gag, tax, and env) was used as a positive
control.

Once positive samples for BLV were identified by gag gene ampli-
fication, PCR was carried out to detect a 373 bp segment of the tax
region and another PCR was done in order to detect the circulating
genotype with a segment of 530 bp of the env gene. The newly designed
pair of primers for env overlap with the region that was first amplified
using Fechner's set of primers, because the Fechner primer amplified
the region between nt 5107 and nt 5636, whereas the new set of pri-
mers amplified the segment between nt 4938 and nt 5688.

The amplicons obtained from the PCRs were purified with a High
Pure PCR Product Purification kit (Roche®) according to the manu-
facturer's instructions. Subsequently, sequencing was performed by the
Sanger sequencing service of Macrogen Korea, the coverage for each
sequence obtained was 4× for env gene and 2× for gag and tax gene.
The sequences obtained in this study were deposited in the GenBank
database with accession numbers MH041897 to MH042017,
MH057402 to MH057465 and MH057466 to MH057532 for env, gag
and tax, respectively.

2.4. Phylogenetic analysis

In order to identify the circulating genotype of BLV, the sequences
obtained in this study were compared to complete BLV genome se-
quences available in GenBank. 64 gag and 67 tax sequences from this
study were compared to the 16 complete sequences of BLV reported in
the GenBank. These 16 sequences are from different genotypes. For the
env gene, in the first PCR with Fechner primers, 53 Colombian se-
quences were compared to 49 partial sequences reported in the
Genbank, and for the second PCR with the new primers, 121 Colombian
sequences were compared to 49 partial sequences, which included the
first 11 BLV genotypes described. These GenBank sequences were
randomly selected, but from different regions around the world.

The combined multiple alignment of all Colombian sequences was
performed with the ClustalW program implemented in Mega 7.

Once aligned, the best evolutionary model that described our se-
quence data was assessed using the “Find Model” interface in the Mega7
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package based on the Akaike information criterion (AIC). Using this
model, maximum likelihood trees were constructed using the MEGA 7.0
software. As a measure of the robustness of each node, the boot-
strapping method (1000 pseudo-replicates) was employed. The phylo-
genetic trees were edited using the FigTree program v1.4.1, which is
available online (http://tree.bio.ed.ac.uk/software/figtree/).

For the env sequences, phylogenetic inference was also performed
by maximum likelihood analysis using the RAxML program.
Phylogenetic tree inference using maximum likelihood/rapid boot-
strapping was run on XSEDE (RAxML - HPC2 on XSEDE (8.2.10)
(Stamatakis, 2014) with 1000 bootstrap replicates using the MrBayes
program (Huelsenbeck et al., 2015). The phylogenetic inference was
performed in a Bayesian framework with GTR + G, two runs and three
chains.

3. Results

3.1. Prevalence of BLV

In order to determine the prevalence of BLV in Colombia, gag and
tax segments were amplified. All samples were positive for the GADPH
gene and 179 out of 289 samples were positive for gag and tax seg-
ments. Consequently, the observed prevalence of BLV based on both
gene segments was 62% per animal and 92% per farm. Across the
country, this prevalence was distributed by department as follows:
Cundinamarca 69 and 90%, Boyacá 71 and 94%, Antioquia 73 and
100%, Meta 85 and 100%, Nariño 14 and 75% and Cesar 17 and 75%
(Fig. 1).

3.2. Viral genotype

To determine the circulating genotypes in Colombia, phylogenetic
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analyses were performed. The env region of the BLV genome was am-
plified, but only 53 samples could be sequenced and phylogenetically
analyzed, as shown in the phylogenetic tree in Fig. 2, where all these
samples were grouped within the genotype 1 clade, with a support
bootstrap value of 87% and the phylogenetic inference was performed
in a Bayesian framework to confirm the ML analyses (data not shown).

For the gag and tax segment, amplification was achieved in the same
179 samples and the corresponding sequence was obtained only in 131
of them for both segments.

Even though gag and tax sequences are not used for genotyping,
these sequences were studied, and for gag segment all the Colombian
samples were grouped in the same clade, which corresponded to gen-
otype 1 (Fig. 3A). However, for the tax region, four of the sequences
(marked as Sotaquira Golondrina, Aguachica130–9, Aguachica 5251–7
and Aguachica3934) were clustered separately from the genotype 1
clade, together with genotype 6 representatives (Fig. 3B). These four
sequences seemed to have phylogenetic discordances between tax and
env regions. Therefore, a new set of primers was designed, considering
the current genetic variability of BLV strains, as deduced by available
sequences of all BLV genotypes reported in GenBank. With this new set
of primers, a 750 bp region of the env gene was amplified, which was
244 nt longer than the sequence amplified by the set of primers cur-
rently used for genotyping purposes.

3.3. Evidence of circulation of genotype 6

To analyze a phylogenetic discordance between env and tax regions,
the 131 samples that were positive for gag and tax segments were
amplified with the new set of primers designed for the env gene. The
results showed that the four samples that were grouped within geno-
type 6 by tax gene were also clustered together with genotype 6 strains
when analyzed by this new env gene segment. Altogether, the analyses
performed indicate the circulation of both BLV genotypes 1 and 6 in
Colombia, with 117 out of 121 samples belonging to genotype 1, while
the 4 remaining correspond to genotype 6 (Fig. 4).

4. Discussion

Molecular epidemiological studies of BLV worldwide, as well as in
Colombia, enable the identification of circulating strains in specific
regions, in order to propose and build public policies aimed at con-
trolling and, in the future, eradicating this virus, which in addition to
producing problems for cattle, has also been reported as a possible risk
factor involved in human's pathologies (Buehring et al., 2017; 2015;
Ceriani et al., 2018; Olaya et al., 2016; Schwingel et al., 2019). On the
other hand, the variability of genotypes as well as results of structural
and functional properties of its envelope proteins provide useful in-
formation for research focused on the production of vaccines using
specific strains. In the case of Colombia, based on this study's results
and previous reports (Benavides et al., 2017; Úsuga-Monroy et al.,
2018), it will be appropriate to include conserved epitopes shared be-
tween genotypes 1,2,3 and 6. In addition, phylogenetic studies are
important for understanding the geographical distribution of the virus,
and thus identify conserved and hypervariable regions, including spe-
cific mutations that could be related to different levels of virulence or
pathogenicity.

Currently, the OIE and others use primers reported by Fechner et al.,
1997 (Lee et al., 2005; Polat et al., 2017a) to detect BLV circulating
genotypes, and such primers were used initially in this study. However,
when carrying out the phylogenetic analysis, all the Colombian isolates
were grouped under genotype 1, a result that differs from the sequences
obtained from other gene regions (gag and tax). With the tax region, 4
of the positive samples of BLV were grouped under genotype 6; the tax
region is not usually used for genotyping, since it is considered a
polymorphic region in retrovirus. This suggests that the primers re-
ported by Fechner present disadvantages for identifying genotypes of

the virus reported after 1996, and thus, a new set of primers was de-
signed in the current study. The new primers were designed by bioin-
formatic analyses including 69 sequences of the complete genome of
the virus available in the GenBank representing the genotypes reported
to date, selecting a conserved region from among all the genotypes in
the env gene. As a result, a fragment of 750 bp was amplified and se-
quenced, finding that, in fact, the Fechner primers did not enable the
identification of other genotypes, and indicating that genotypes 1 and 6
are simultaneously circulating in Colombia (Fig. 4).

Even though the tax segment is not typically used for genotyping, its
amplification provided good information, which led to extending the
env segment, with the aim of having the four samples display a change
of position in the tree. The finding that the tax sequences produce
warnings regarding the genotypes should be addressed in future stu-
dies, in order to verify the hypothesis that the tax gene is useful for
genotyping purposes. Even though the Fechner primers were not able to
detect G6, when the amplification region is extended over the env
segment, the resolution of the result was increased, enabling better
determination of the genotypes, while ruling out recombination and
coinfection effects.

In this study, finding of genotype 1 was expected because this is the
most prevalent genotype worldwide. However, evidence of G6 in
Colombia is a novel finding. Overall, G6 has been reported in four Asian
countries (Philippines, Thailand, Jordan, and India) and five South
American countries and in Italy (Argentina, Brazil, Bolivia, Peru and
Paraguay) (Bazzucchi et al., 2019; Gautam et al., 2018; Polat et al.,
2017a). Different genotypes distributed in the world and the emergence
of new genotypes in specific areas, as reported here, suggests that im-
porting and exporting processes in the cattle industry contribute to
increased viral prevalence and virus diversity, which in the case of si-
lent diseases such as enzootic bovine leukosis are transferred unnoticed
between cattle from different regions. This suggests the necessity of
establishing global policies of control and diagnosis.

One of the most relevant findings of this study was the detection of
genotype 6 by tax region. So far, no other studies have used this ORF for
genotyping, and there are few available sequences for this region in
databases that are representative of all viral genotypes that would en-
able more in-depth studies in terms of comparing the relationship be-
tween env and tax genes for the effects of genotyping. Further studies
are needed to confirm its application for genotyping, but at least this
study's results suggest that this gene, in addition to the env region, could
be useful for genotyping.

On the other hand, in addition to identifying the circulating geno-
types, it is also important to discuss the prevalence reported in this
study, which found a positive prevalence of 62% in animals and 92% of
farms, which is one of the highest prevalence rates reported in Latin
America. In Colombia, the latest report published by Ortiz et al. found a
lower seroprevalence (42% per animal and 67% by farm) (Ortiz et al.,
2016) compared to this study, using the same cattle population.

One of the main differences between the two studies lies in the di-
agnostic method. Here, prevalence was determined by PCR tests, which
directly detect fragments of the viral genome, whereas the study by
Ortiz et al. used the ELISA commercial kit, which detects antibodies in
the host (Ortiz et al., 2016). Even if the presence of antibodies could be
interpreted as presence of the virus, according to some authors the
sensitivity of ELISA kits might be lower than the detection level of a
PCR test (Lee et al., 2005; Trono et al., 2001). Now, in terms of anti-
bodies production, it is possible that the amount of antibodies in sera
samples could be below the detection limits of ELISA, which implies
that false negative samples could be reported, especially in the case of
viruses with slow replication rates such as BLV, giving as a result low
levels of antibodies in blood due to immune response evasion (Frie and
Coussens, 2015; Lee et al., 2005).

Even though there no records available on the importance of the
cattle industry in our country and in Latin America, Ritcher et al. found
that BLV has substantial effects on mortality, morbidity, premature
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birth, culling, stillbirths, abortion and reinfection, which have a sig-
nificant influence on the monetary level of direct losses (Richter et al.,
2017). It would therefore be relevant for governmental entities and
policymakers to consider adopting enzootic bovine leukosis as an offi-
cial control for the disease, to facilitate the diagnosis of infected ani-
mals by members of the cattle industry, and furthermore to control the
dissemination of the virus through the future promotion of eradication
programs in order to minimize the impact that BLV has on cattle and
eventually on humans who consume bovine-derived food products
(Olaya-Galán et al., 2017).

Studies like this one are very important for science and for One
Health approaches, in which interfaces between animals-humans and
ecosystems should be considered (Kelly et al., 2016). In the case of BLV,
it has been shown that the virus not only is present in cattle but also in
other species such as sheep, buffalo, goats, alpacas and humans
(Buehring et al., 2014; Mesa et al., 2013; Nekoei et al., 2015; Robinson
et al., 2016). Although the effect BLV might have on humans is not yet
clear, evidence of its presence has been reported, and it has been pro-
posed as a potential risk factor for breast cancer development, although
this hypothesis has been rejected by others (Barez et al., 2015; Gillet
and Willems, 2016; Zhang et al., 2016). In addition, due to the fact that
BLV is considered one of the main viral agents associated with eco-
nomic impact in livestock production, which is distributed worldwide
(Richter et al., 2017) and seems to have a zoonotic behavior, there are
enough arguments to continue searching for vaccine candidates and
strategies aimed at controlling viral infection by preventing risk factors
within farms as well as the implementation of good livestock produc-
tion practices for each specific region (Olaya-Galán et al., 2017; Olaya
et al., 2016; Ortiz et al., 2016).

5. Conclusions

The epidemiological data provided here demonstrated a higher
prevalence of BLV in Colombia compared to the seroprevalence pre-
viously reported. In addition, the findings contribute to the epide-
miology of the virus by identifying genotype 1 and 6 in Colombia.
Furthermore, the new primers that were designed in this study will be
available for future studies willing to amplify all the current circulating
genotypes, as an update of the proposal of Fechner et al. Finally, al-
though tax is not commonly used for genotyping, phylogenetic analyses
showed that this gene does contribute to the genotype identification
and may be useful for BLV genotyping as well.
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