
Predicting Wireless RSSI Using Machine Learning
on Graphs

Claudina Rattaro, Federico Larroca and Germán Capdehourat
Facultad de Ingenierı́a, Universidad de la República, Montevideo, Uruguay

{crattaro, flarroca, gcapde}@fing.edu.uy

Abstract—In wireless communications, optimizing the re-
source allocation requires the knowledge of the state of the
channel. This is even more important in device-to-device com-
munications, one typical use case in 5G/6G networks, where
such knowledge is hard to obtain at reasonable signaling costs.
In this paper, we study the use of graph-based machine learning
methods to address this problem. That is to say, we learn to
predict the channel state on a given link through measurements
on other links, thus decreasing signaling overhead. In particular,
we model the problem as a link-prediction one and we consider
two representative approaches: Random Dot Product Graphs
and Graph Neural Networks. The key point is that these
methods consider the geometric structure underlying the data.
They thus enable better generalization and require less training
data than classic methods, as we show on our evaluation using
a dataset of RSSI measurements of real-world Wi-Fi operating
networks.

Index Terms—Embeddings, Graph Representation Learning,
Link-prediction

I. INTRODUCTION

Communications play a crucial role in human interactions,
in the economy, in education, in accessing and democra-
tizing different services and information. With the arrival
of COVID-19, such influence increased. Due to the role of
wireless communications in our everyday lives, a plethora of
research papers have focused their attention on the quality
aspects of wireless links (see for example the recent articles
[1]–[4] and the references therein).

For future wireless communications, to enhance coverage
and capacity, an accurate channel state information is essen-
tial. In this work we focus on the Received Signal Strength
Indicator (RSSI), although our methods are readily extended
to other channel state information. Moreover, since RSSI is
available in mainstream wireless signal measurements, the
present results are applicable to practically any wireless net-
work. In any case, in some important scenarios, like device-
to-device (D2D) or Internet of Things (IoT) communications,
the acquisition of the channel state information can bring
significant overheads.

In this sense, an increasing body of work is devoted to
methods that minimize the need of measuring during the
network’s operation. For example, authors of [5] proposed
a blind radio tomographic approach that, given a set of
attenuation measurements between several sensors, learns
the spatial loss fields (SLFs), which quantify absorption
of radio frequency waves at each location, together with a
weight function (needed to use SLFs which depend on the
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transmitter-receiver locations). They based their algorithms
on a non-parametric kernel regression. However, this type of
model requires a lot of processing time and its performance
depends highly on the number of sensors.

On the other hand, a recent trend has been the application
of machine learning (ML) to overcome this problem [1]–
[3]. Basically, given measurements between a subset of the
network’s nodes, the algorithm is trained to learn a mapping
to the RSSI of other links (for which measurements are
unavailable). However, these proposals consider the measure-
ments as a vector, meaning that the underlying geometric
structure of the problem is discarded (see Fig. 1), and is
expected to be learned from the data instead. Including this
structural information a priori will result in an algorithm that
needs less training samples and with better generalization
properties.

The main contribution of the present paper is thus to
approach the problem through graph-based machine learning
techniques. In particular, we cast it as a link-prediction
problem and study two complementary graph representation
learning based methods [18]: Random Dot Product Graphs
(RDPGs) and Graph Neural Networks (GNNs). RDPG [6] is
an spectral-based embedding method where each node has
an associated latent vector and the inner product between
these vectors dictate the edge existence probabilities. In
addition to its simplicity, the model offers interpretability and
intuition. On the other hand, GNNs [8] may be regarded as
the extension to graphs of Convolutional Neural Networks
(CNNs). We study the performance of these two methods
for predicting the RSSI in wireless links. To this end, we
used a dataset corresponding to a month of RSSI periodic
measurements between access points in an indoor Wi-Fi
network. We also compare the resulting performance with
the blind radio tomographic approach of [5].

The remainder of this article is organized as follows. In
the next section we briefly present the notation and state the
problem. In Section III the dataset collection and characteris-
tics are described. In Section IV we discuss both graph-based
machine learning approaches with more detail and present the
main results. Finally, we conclude and discuss future work in
Section V.

II. DEFINITIONS AND NOTATION

A. Basic notions of graphs

A graph is a triplet G = (V, E ,W ) of vertices, edges,
and weights. Vertices or nodes are a set of N labels (V =
{1, . . . N}), edges are ordered pairs of labels (i, j) ∈ E and
weights wij ∈ R are numbers associated to edges (i, j). In
undirected graphs wij = wji, however, in directed graphs
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Fig. 1: A toy example with N = 4 nodes. RSSI measurements
for black edges are available and the objective is to predict
the value at the red edge.

edge (i, j) is different from edge (j, i) and then wij may
be different from wji. The adjacency matrix of a graph is
the matrix A ∈ RN×N with [A]ij = wij (and thus A
is symmetric for undirected graphs). A graph signal is a
column vector x ∈ RN in which component xi is associated
with node i. The Graph Shift Operator S ∈ RN×N (GSO),
important in the GNN formulation, is a stand-in for any of the
matrix representations of the graph, e.g. A or its normalized
version.

B. Problem statement

Consider a wireless network with N nodes, where power
measurements are available for a certain subset of node pairs.
For instance, it is typically the case that the channel is known
between the base-stations and the devices, but not between
devices. As we mentioned before, this is very important in,
for instance, D2D communications, although the signaling
overhead to obtain this is too significant.

In our particular case then, the problem is to use the
available RSSI measurements to predict the value at the
rest of the links. Consider Fig. 1 as a simple example to
illustrate the problem. Assume nodes 3 and 4 correspond to
two base-stations and nodes 1 and 2 correspond to two mobile
devices. Measurements between base-stations and devices are
available (black arrows in the figure), and we would like to
estimate the channel between the devices (red arrow).

The typical ML approach to this problem (e.g. [1]) is to
learn to map the vector (w1,3, w1,4, w2,3, w2,4, w3,4) = w ∈
R5 to the missing value w1,2 (where we have assumed a
symmetric channel to ease the exposition). However, this vec-
tor effectively hides the geometry of the problem to the ML
algorithm. For instance, attenuations are typically spatially
correlated, and these correlations are expected to be learned
from the dataset. Providing this structural information of the
data to the algorithm will help in increasing its generalization
power.

As we mentioned before, we will approach the RSSI
prediction problem with techniques of ML on graphs, in
particular a link-prediction one [9], [10]. Link prediction
has attracted considerable attention from interdisciplinary
research communities, due to its ubiquitous applications in
many areas. There exists a wide range of link prediction
techniques like scoring methods, probabilistic methods, di-
mensionality reduction approaches, etc. In a nutshell, it
consists in estimating the weight of unobserved links (in
static networks) or predicting the likelihood of future links
(in dynamic networks). After discussing the dataset we used

in the evaluation in the following section, Sec. IV presents
in certain detail the ML methods we analyzed.

III. DATASET

The dataset was obtained from Plan Ceibal [11], a major
education service provider, which runs Uruguay’s nation-wide
one-to-one computing program. Most of the connectivity
solution is administered by two Wireless LAN Controllers
(WLCs), which are configured to use 20 MHz channels in
2.4 GHz and 40 MHz in the 5 GHz band. As part of the
Radio Resource Management (RRM) algorithm executed by
the WLCs [12], each AP (Access Point) in the network
periodically sends a so-called NDP (Neighbor Discovery
Protocol) packet on every channel and band possible. These
broadcast messages are sent at the maximum allowed power
for the channel/band, at the lowest supported data rate and
using a single radio chain (meaning no beamforming is
applied in their transmission). By default, an NDP packet is
sent over all channels every 180 seconds. All received NDP
packets, along with the corresponding RSSI (expressed in
dBm and with a resolution of 1 dBm), are forwarded to the
WLC, where an average of the last five values is stored. The
dataset consists of one of these averages per hour. Further
details may be obtained from [13], [14].
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Fig. 2: Line graph of the toy example of Fig. 1. In the same
way as the former, the objective is to predict the signal of
node 1− 2 knowing the others.

Thus, although the resulting dataset corresponds to RSSI
measurements, they may be regarded as a fixed offset of the
channel gain, since the power is constant. In particular, we
will consider a month worth of the 2.4 GHz band measure-
ments of a particular school network (counting 10 APs) for
which we had floor plans (a single-story building spanning
450 m2 and including several classrooms). Depending on
the machine learning method, as explained in the following
section, we will work with the directed graph G which
vertices are the APs (V = {1, . . . 10}) and the RSSI are the
associated weights or we will work with the line graph L(G).
In L the nodes are the physical links (edges of G, then in
graph L we have V = {1 − 2, 1 − 3, 2 − 3 . . . 9 − 10}) and
an edge in L exists when two physical links have an AP in
common (i.e. between nodes 1−2 and 2−3 is a link because



AP 2). In L representation RSSI values are considered as a
graph signal (see Fig. 2).

IV. MACHINE LEARNING TECHNIQUES AND RESULTS

A. Traditional methods

Before proceeding let us present a baseline and the results
we obtained with it. To this end, we will consider the blind
radio tomographic (BRT) approach of [5]. This is a method
specifically for estimating radio maps, and given a set of
sensors, their positions and measurements between them, it
provides a function that estimates the attenuation between
any pair of points. We have thus tested its performance
by removing a single AP from the dataset, estimating the
function with the resulting measurements, and evaluating it
between the missing AP and the remaining ones. In this
method we use the building floor plans to know the location
of the APs.

When compared with the actual measurements, working
with the month worth of measurements, this results in a root
mean squared error (RMSE) of 6.1 dBm averaged over all
APs. In wireless networks, the choice of data rate directly
impacts coverage and performance. As this choice is related
to the RSSI, then another interesting link indicator is when
the signal level is above a certain threshold. If we focus on
classifying each link as above or below -75 dBm (since below
that value the link would work at very low data rates, which
is not desirable), we obtain an accuracy of 80%. Note that
the choice of the threshold (in this case -75 dBm) is totally
arbitrary.

B. Random dot product graphs (RDPGs)

In RDPG, which may be considered a special case of latent
position models, each node i has an associated vector xi ∈
Rd, and the probability of an edge existing between nodes i
and j is the dot product of the corresponding latent position
vectors [6]. In other words, if we stack these vectors in the
matrix X ∈ RN×d, the connection probability matrix P is
given by P = XXT . Since P is typically not observable and
instead we observe A, which is a noisy version of P since
E{A} = P, the latent position matrix X can be estimated by
solving X̂ = argminX ||A−XXT ||2F . This is readily solved
by the spectral decomposition of A (see [6] for the details
and consistency proofs).

In our case, as the graph is directed (the adjacency matrix
and P are not symmetric) then the embeddings can be
estimated using the singular value decomposition (SVD) of
A obtaining X̂in ∈ RN×d and X̂out ∈ RN×d instead of a
unique matrix X [16]. Moreover, as our graphs are weighted
(i.e. the RSSI value of the physical link) the i, j entry of the
product X̂outX̂

T
in will estimate E{wij} (the expected weight

between nodes i and j), which we will still denote as P.
In this sense, we build Aavg as a month’s worth average

of adjacency matrices. In order to work with positive weights
(and that values further away from zero represent stronger
links), we apply the embedded method to matrix Aavg −
minij [Aavg]ij1N where 1N represents all ones matrix. In
Fig. 3 we show Aavg and the estimated matrix P obtained
by X̂out and X̂T

in. In this case, comparing the estimation
directly with the average RSSI of each pair of APs, using as
the metric the RMSE we obtain a relatively good performance
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Fig. 3: Aavg, the estimated matrix P using X̂outX̂
T
in and

their difference |P −Aavg|. Note that outside the diagonal
the diference |P−Aavg| is in most cases less than 5 dB.

of 7 dBm, similar to BRT. In the classification case, where we
predict whether RSSI is above the -75 dBm threshold, results
are excellent, obtaining 90% of accuracy. It is important to
remark that the values on the diagonal of Aavg and P are
ignored in the RSME and accuracy calculation.

Let us now consider the link-prediction problem. We
proceed to “remove” one edge (r, s) (the one to be estimated)
setting [Aavg − minij [Aavg]ij1N]rs ← 0. Applying the
embedding method to the resulting matrix we obtain X̂in

and X̂out where [X̂outX̂
T
in+minij [Aavg]ij1N]rs represents

the predicted RSSI of the edge (r, s). We repeat these steps
with all the pairs (r, s) ∈ V × V . Comparing the estimation
directly with the average RSSI of each pair of APs, we obtain
a significantly worse performance (RMSE=17 dB); whereas
considering the classification problem, the performance we
obtain was 64% of accuracy.



Due to the arbitrary weight choice on the “missing”
link, we also tried removing the link setting [Aavg −
minij [Aavg]ij1N]rs as the mean value of the matrix
Aavg −minij [Aavg]ij1N. In this case, the results improve
significantly, reaching a RMSE of 10 dB and 73% of accu-
racy.

C. Graph Neural Networks (GNNs)

GNNs are a class of machine learning models that have
emerged in recent years for learning on graph-structured data
[8], [17]. GNNs may be regarded as an extension of CNNs
to graphs. We thus need to define convolution on graphs first,
for which the GSO S ∈ RN×N and the graph signal x ∈ RN

we defined earlier are needed. In our work we have used
the normalized adjacency matrix (i.e. divided by its largest
eigenvalue) as GSO.

Note that the matrix product Sx = y results in another
graph signal that aggregates at each node the information of
its neighbors. By writing SKx = S(SK−1x) we may see that
this way we aggregate the information K hops away. Graph
convolution is defined simply as a weighted sum of these K
signals (i.e.

∑
k S

kxhk, where scalars hk are the taps of the
filter).

We may even consider multi-dimensional signals by using
X ∈ RN×F , and even change the resulting signal’s dimension
(i.e. number of features) by considering an Fin × Fout

matrix Hk instead of the scalar taps. A single-layer GNN (or
graph perceptron) results of applying a pointwise non-linear
function σ(·) to this convolution:

Y = σ

(
K−1∑
k=0

SkXHk

)
, (1)

and a deep GNN is constructed by concatenating several
perceptrons.

Notice that in our case the RSSI are defined on the edges,
so to have signals on the nodes we work with the line graph
L. This is a graph where its nodes represent the physical
links between APs (N = 81), and they are connected when
they share an AP (i.e. all physical links of an AP are inter-
connected on the line graph). Thus, the signal xi correspond
to the RSSI value associated to each node i on graph L (each
link between APs).

In order to train the algorithm, we proceed similarly to
the RDPG case. Assuming we want to estimate the signal at
node i, we first set this entry at zero (i.e. xi ← 0). Then, the
prediction will be the i-th entry of evaluating the deep GNN
on the resulting signal. Of the month worth of measurements
(amounting to more than 500 graphs), we took 90% for
training and optimized the filter taps so as to minimize the
mean squared error of the predicted RSSI on node i. Results
for the remaining 10% are reported.

A relatively simple GNN with a single hidden layer
using 64 features and K = 5 was implemented using a
PyTorch-based library for GNNs (https://github.com/alelab-
upenn/graph-neural-networks). Considering all the 81 phys-
ical links separately, using this method we obtain a RSME
of 0.66 dB, whereas considering the threshold −75 dBm in
the classification problem we obtain an encouraging result of
99% of accuracy.

TABLE I: Performance comparison. Accuracy (%) and
RSME (dB) obtained considering the classification problem
with a threshold of -75 dBm and measurements of the dataset
(working with the same month worth of measurements in all
the methods).

RDPG-1 RDPG-2 GNN BRT
Accuracy 64 73 99 80

RSME 17 10 0.66 6.1

V. CONCLUSIONS AND FUTURE WORK

We study the problem of predicting wireless RSSI using
machine learning on graphs. In Table I we summarize the
results obtained by the considered approaches and the BRT
algorithm.

The obtained performance results give an idea of how
powerful GNNs are, specially taking into account that BRT
is much more intensive computationally. Notice that during
a month it is not rare to face changes on the propagation
environment (see [13] for a study on this sense using the
same dataset), so the method effectively learns to predict the
actual RSSI on a given link during different situations. A
natural question is whether it is possible to train a single GNN
to predict all links. However, by using a GNN trained on a
link and applying the model to predict the rest, we obtain
a RSME of 26 dB and an accuracy of 51%. This lack of
transferability and how to avoid it is our ongoing research.

Regarding RDPGs, we believe the underwhelming perfor-
mance we obtained was due to the arbitrary weight choice on
the “missing” link. By using the matrix’s average instead of
0, we obtain a much better performance (RMSE=10 dB and
an accuracy of 73%, see RDPG-2 of Table I). Our ongoing
research on this sense are the design of more sophisticated
methods to consider missing values on RDPGs.
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