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Abstract—The fifth generation of mobile communications (5G)
is the new 3GPP technology designed to solve a wide range of
requirements. On the one hand, it must be able to support high
bit rates and ultra-low latency services, and on the other hand, it
should be able to connect a massive amount of devices with loose
bandwidth and delay requirements. In this context, as scheduling
is always a delicate vendor topic and there are not so many
free and complete simulation tools to support all 5G features, in
this paper we present Py5cheSim. Py5cheSim is a flexible and
open-source simulator based on Python and specially oriented
to simulate cell capacity in 3GPP 5G networks and beyond. To
the best of our knowledge, Py5cheSim is the first simulator that
supports Network Slicing at the Radio Access Network (RAN),
one of the main innovations of 5G. The present work describes its
design and implementation choices and the principal validation
results. Finally, as another contribution, we present an exhaustive
analysis of the existing available simulation tools highlighting
the novelty of Py5cheSim comparing with the others existing
simulation software for 5G.

Index Terms—5G, Network Slicing, simulator.

I. INTRODUCTION

The services supported by the 5th Generation (5G) fall
under three categories formulated by ITU-R, i.e., enhanced
Mobile BroadBand (eMBB), massive Machine-Type Commu-
nications (mMTC) and Ultra-Reliable Low-Latency Commu-
nications (URLLC). The different types of services to be
supported have vastly heterogeneous traffic characteristics,
quality of service requirements and even energy consumption
associated [1]. First, eMBB traffic is a direct extension of
the 4G broadband service that focuses on a higher data rate
(20 and 10 Gbits/s downlink and uplink peak data rates,
respectively), with a large payload and prolonged internet
connectivity based applications. Second, mMTC focuses on
uplink communications of massive low rate devices (con-
nection density about 1, 000, 000 devices per km2). Finally,
URLLC services target mission-critical communications such
as autonomous vehicles, tactile internet or remote surgery.
Their main requirements are ultra-high reliability with a PER
around 10−5 and low latency (1 ms).

3GPP has standardized 5G in two phases. The first phase
mainly oriented to eMBB and URLLC services, covered in
Release 15, and the second to enhance URLLC services
and develop mMTC’s ones, covered in the subsequent 3GPP
Releases. 5G is designed based on an Orthogonal Frequency

Division Multiplexing (OFDM) physical layer, as LTE (3GPP
4G networks). The main difference with LTE is supporting
different subcarrier spacing (variable numerology) as a way
to have enough flexibility to handle the 5G different services
[2], [3]. In order to increase spectral efficiency, 5G adds
the use of new parts of the spectrum: the millimeter Waves.
The standard provides several bands of frequencies above 6
GHz for NR (New Radio) TDD use. In addition, the stan-
dard proposes analog beamforming to improve coverage and
introduce high subcarrier space with low TTI (Transmission
Time Interval) for lower delays. 5G also adds different features
like Carrier Aggregation and massive Multiple Input Multiple
Output (MIMO) to increase User Equipment (UE) and cell
throughput. One of the new 5G features enabled by Stand
Alone operation mode is Network Slicing. The basic idea
behind this feature is to allocate network resources to different
Network Slices, which act as virtual or logical networks
with relative independence between each other. Each Slice
is configured according to the service it provides. The Slice
is defined end to end, so to support Network Slicing, RAN,
Core and Transport Network must be prepared. At transport
networks, Software Defined Network (SDN) will be an enabler
for Network Slicing, and Network Function Virtualization
(NFV) will be used at the Core Network. At the RAN level, the
resources allocated to the different slices will be the spectrum,
i. e. PRBs (Physical Resource Blocks) in the used band. In this
context, different Slices will have different configurations in
terms of numerology and features supported as mobility and
access random procedures, which will directly impact the slice
capacity and performance for the required traffic profile.

A vast bibliography exists on 5G and is composed of
research articles [4], vendor white papers and web sites
presentations. However, as scheduling is always a delicate
vendor topic, few free tools simulate cell capacity in 3GPP
networks. Existing tools represent only a selected set of
features presented in the 5G standard. Most importantly, none
of the existing known simulators have the specific features
and flexibility needed to implement and evaluate a complete
cell capacity analysis. Even more, no one implements Network
Slicing at the RAN level.

Network simulators often implement layer by layer most
of the procedures described in the 3GPP standard, so the
simulation turns hard to configure and implies high processor978-1-6654-9503-5/21/$31.00 ©2021 IEEE



loads. However, most network simulators have a wide range of
configurable options giving an excellent reference to compare
at the time of validation. On the other hand, System-Level
Simulators could be a good option. However, this type of
simulators often has a high degree of simplification to cover
a wide range of cells with affordable resource use. To tackle
these problems, we have developed a new simulator in Python
platform, named Py5cheSim (we presented primary ideas of
Py5chesim in [5]). The general design goal of the developed
simulator is to keep it as simple as possible, trying to be as
flexible as possible for scheduler implementation. In addition,
the goal of Py5cheSim is to build a specific tool for simulating
cell capacity in a 5G network for Frequency Division Duplex
(FDD) and Time Division Duplex (TDD) operation, including
different types of schedulers for the different slices that 5G
Networks can handle. Py5cheSim allows analyzing inter and
intra-slice scheduling. Also, as there is no need to implement
layer by layer all the procedures defined in the standard, this
new simulator is more straightforward, lighter, and quicker
than many of the existing free tools. Furthermore, but not
less important, as Python offers a vast choice of libraries for
Artificial Intelligence (AI) development, Py5cheSim allows to
implement easily and test AI-based algorithms.

The rest of the paper is structured as follows. We start in
Section II giving a complete overview of the related works
in 5G simulation tools. In Section III we briefly describe
Py5cheSim characteristics and its architecture. Then, in Sec-
tion IV we present the validation results and some examples
of usage in realistic 5G scenarios considering Network Slicing
scheduling. Part of the validation test consists of comparing
the performance of Py5cheSim with a reference simulation
tool. Finally, Section V discusses our roadmap and plans and
concludes the work.

II. RELATED WORK

Different research groups have developed simulators target-
ing 5G network characteristics in the last years, being 5G-
LENA and Vienna the most popular ones. Other examples,
considering only software that is openly available for aca-
demic purposes, are 5G-K-Sim, Simu5G, SyntheticNET, and
OpenAirInterface.

5G-LENA [6] is a GPLv2 simulator designed as a plug-
gable module to ns-3. It is strongly based on lte-LENA and
mmWaves modules [7], [8]. Ns-3 is a network simulator, very
rich in terms of technologies supported, and particularly the
5G-LENA module provides several parameter configuration
options making it an excellent choice for different scenario
simulations. These modules present some disadvantages: the
high degree of complexity and processing capacity needed to
configure and run a simulation. The first is not a problem if
one is a C++ developer and has experience with ns-3, but the
second is unavoidable because of the simulator’s nature. These
modules implement layer by layer most of the procedures
described by the 3GPP standard, so a simple 10 minutes
simulation with high bandwidth and several users can take
hours in a standard PC. Additionally, although 5G-LENA

supports many NR features, the current version of this module
(NRv1.1 available since March 2021) does not implement
mini-slots and network slicing scheduling. It is important
to mention that in part of our simulator validation process,
we use 5G-LENA as the basis (in particular in everything
related to intra-slice scheduler module: MCS (Modulation and
Coding Scheme), BER (Bit Error Rate), SINR (Signal-to-
Interference-plus-Noise Ratio), TBS (Transport Block Size),
and throughput calculation or generation).

Concerning system-level simulators, one piece of software
that stands out is the Vienna Simulator [9], [10]. This MAT-
LAB tool, which is available for download under an academic
use license, permits link-level and system-level simulations. It
is based on its predecessor Vienna LTE simulator. The latest
version of Viena available is of 2020. This version does not
support key NR features like mini-slot scheduling, network
slicing, mmWave propagation models, and 256-QAM modu-
lation. Also, the simulator does not include the possibility to
perform an uplink simulation and use non-full buffer traffic
model.

Simu5G [11], [12], based on OMNeT++ framework writ-
ten in C++, is also categorized as a system-level simulator.
Simu5G simulates the data plane of the 5G RAN (rel. 16) and
core network. It supports many interesting features that are
not present in others (e.g. FDD and TDD modes, dual connec-
tivity, carrier aggregation, different numerologies). However,
according to its last version 1.1.0, it does not simulate all
possible features in relation to resource allocation like network
slicing or mini-slot, being essential for URLLC traffic. Unlike
Vienna, which is well tailored for the evaluation of lower-layer
procedures, including signal-processing techniques, Simu5G
as Py5cheSim is a discrete-event, application-level simulator.

5G-K-Sim [13], [14] is a complete C++ tool that includes
link-level, system-level, and network-level simulations. Its
network version has a SDN/NFV module, which is an es-
sential function for the network slicing technology. However,
it does not support end-to-end network slicing capabilities
(in particular, RAN-slicing). 5G-K-Sim was developed at the
earliest stages of the 5G standardization process and is non-
fully standard compliant.

SyntheticNET [15] is a Python simulator that is focused on
modeling a realistic handover process, including a realistic
urban mobility module. The authors of SyntheticNET said
that a free version of SyntheticNET would be available soon
for academic purposes. It supports different numerologies and
mmWaves, but the authors do not specify what other 5G
features it supports.

Finally, it is important to mention OpenAirInterface [16],
[17]. It consists of open source software running on general-
purpose processors. This development supports many of the
NR specifications. Its main limitation the ability to scale sim-
ulations up to large networks, but it represents an interesting
tool to validate new proposals in real testbeds.



III. SYSTEM DESIGN

In this section, we present a brief description of our
simulator. First, we present the simulator characteristics and
features, and at the end of the section, we explain the simulator
architecture.

A. Main simulator characteristics

The general design goal for Py5cheSim was to keep it as
simple as possible, trying to maintain the biggest freedom
degree possible when it comes to scheduler implementation.
Python was used to develop the simulator. Python is a pow-
erful and versatile language, provided with tons of packages
developed for specific purposes, from discrete event simulation
to machine learning tools. The tool used to implement discrete
event simulation was SimPy [18].

Py5cheSim implements RAN Slicing as a core feature using
a two-level scheduler composed of an Intra Slice Scheduler
and an Inter Slice Scheduler. The first one is oriented to solve
resource allocation between different UEs of the same Slice,
and the second to allocate resources between the different
Slices. Each Slice has a set of requirements and a configu-
ration. Configuration is set automatically depending on Slice
requirements in terms of delay, band, the number of UEs to
serve, traffic profile, UE capabilities, and availability. For each
Slice, numerology/SCS (Sub-carrier Spacing)/TTI, duplexing
mode, scheduler algorithm to use, signaling load, and allocated
PRBs are set at the initializing of the simulator. Slice allocated
PRBs can change according to Inter Slice scheduler decision
with a TTI granularity.

Py5cheSim supports multiple numerologies, FDD and TDD
frame (depending on the cell band set for the simulation),
uplink and downlink bearers, and a basic implementation
of Carrier Aggregation and Single-User/Multi-User MIMO
functionalities. Transport Block Size (TBS) calculation, which
depends on both the number of allocated PRBs and the MCS,
is based on 3GPP Technical Specifications [19], [20]. At the
moment, MCS allocation is based purely on UE’s SINR.
An SINR-MCS table was generated from 5G-LENA for a
wide range of SINRs being an input of Py5cheSim. However,
different MCS allocation algorithm could be implemented
overwriting the setMod method (see IntraSliceSche in Figure
2).

Py5cheSim also supports different traffic profiles configu-
ration by groups of UEs that can emulate the different 5G
services (eMBB, URLLC and mMTC). The traffic profile is
set in terms of average packet size (in bytes) and inter-arrival
times (in ms).

B. Architecture

The Simulator is built on the modules of Figures 1 and
2. UE, Cell, IntraSliceSch and Slice are the simulation core.
IntraSliceSch and Cell have implemented the basic schedulers
for one and several slices, respectively. The default scheduling
algorithm in these classes is Round Robin. Other schedulers
must be defined as classes inherited from the Base Scheduler’s
ones defined in the former modules overwriting the resAlloc

method. Three possible scheduling algorithms for interslice
scheduling are actually supported by Py5cheSim (Round
Robin by default, and Proportional Fair and a modified version
of Round Robin as examples). In terms of intraslice scheduler,
for FDD simulations resource allocation for different UEs here
is done in terms of PRB, then the next scheduling algorithms
are actually supported: Round Robin and Proportional Fair.
For TDD simulations resource allocation is done in a TTI
granularity along the entire band. Only Round Robin TDD
scheduler is supported at the moment. Other algorithms can
be added as new classes inherited from TDD Scheduler class.

Two classes have been developed to support inter Slice
Scheduling: InterSliceSch and Slice (the yellow ones in Figure
2). The first one implements the interslice scheduler, as it
dynamically allocates band PRBs between the different con-
figured Slices. The second one manages Slices requirements
and translates to Slice configuration (each Slice is associ-
ated with an instance of intraslice Scheduler). The simulator
allows to configure the time granularity for the InterSlice
scheduling decision by setting the granularity attribute in the
interSliceScheduler class.

Fig. 1: UE module class diagram. Define UE parameters
and traffic. In particular PacketFlow class is responsible for
creating different traffic flows.

The simulator basic operation can be seen in the Figure 3.
The application generates a packet flow through the queueApp-
Pckt method. Each packet is stored in an application queue,
the first which appears in Figure 3. Then, when the UE reaches
the connected state in the cell, the DRB (Data Radio Bearer)
is established and its packets go to the bearer queue through
the receivePckt method. Then, the scheduler assigns resources
for all the active bearers and takes packets from there to make
TB (Transport Blocks) with an appropriate MCS according the



Fig. 2: Cell, Slice, and Schedulers modules class diagrams. Cell module defines cell configuration, statistics management,
and base interslice scheduler configuration. On the other hand, IntraSliceSch is the base of intraslice scheduler configuration.
Sched inter and Sched intra have other inter or intraslice schedulers configuration, respectively.

UE SINR at the moment and put them in the Scheduler queue
through the queueUpdate method. Finally the scheduler takes
the TB from the queue at each TTI and send them through
the air interface. The TB are successfully received with a
probability of (1-BLER (Block Error Rate)). Please note that
BLER can be set overwriting the setBLER method.

Naturally, 5G network has been deploying progressively
and will coexist for a relatively long time with the existing
4G (LTE/LTE-Advanced) infrastructure. To favor the above
transition, we have implemented the LTE scheduler class,
which inherits from IntraSliceSch (see Figure 2). In this
simulation environment LTE traffic can be served by a LTE
slice in a 5G cell.

Py5cheSim includes a Python script (simulation.py) to con-
figure and run a simulation. It also prints average simulation
results in the terminal (see an example in the next Section in
Figure 12), and makes charts with the different Key Perfor-

mance Indicator (KPI) selected to study.

IV. VALIDATION AND RESULTS

A partial validation was made through the 5G-LENA mod-
ule and the throughout calculator web tool from https://5g-
tools.com/5g-nr-throughput-calculator/ (the last one represents
a quick comparison with known analytical results). We said
“partial” because there is no tool to compare ourselves in
multi-slice scenarios.

The general idea behind this validation was to test the de-
veloped simulator operation and compare performance results
with the references in terms of the main KPI considered,
using the same configuration scenarios. Py5cheSim AMC
(Adaptive Modulation and Coding) and TBS calculation was
adjusted to LENA-5G’s as much as possible for this purpose.
However as Py5cheSim makes a high degree of simplification
of NR procedures compared to LENA-5G, an error margin
should be expected. The goal is to not exceed a 10% when



Fig. 3: Intra Slice Scheduler Queues operative.

comparing simulations considering the same configuration
parameters. The validation and calibration process has been a
comprehensive check verifying in a wide variety of scenarios.
Following, we present some representative results.

Firstly, intra-Slice level validation tests are described, and
comparison results are shown. We compare MCS allocation for
a wide range of SINRs, using the same band and bandwidth,
no CA nor MIMO, and only one UE with full buffer DL and
UL traffic profile. Figures 4, 5, 6 and 7 show some validation
results comparing Py5cheSim and the results of script cttcnr-
demo.cc of 5G-LENA.

Fig. 4: Py5cheSim vs 5G-LENA MCS (downlink) 10MHz.

Secondly, continuing with intra-Slice level validation, we
validate throughput in two ways: comparing the former script
results with Py5cheSim’s and comparing the latter with the
web throughput calculation tool. In Figures 8 and 9 we
show some throughput results for a downlink and ulplink
scenario (a complementary analysis of the case of Figures
4 and 5). Differences observed respond mainly to different
MCS allocated, due to the implementation’s high degree of
simplification in NR procedures. AMC implementation can be
improved rewriting the setMCS method. Differences can also
be present for the same MCS, due to the differences in the TBS

Fig. 5: Py5cheSim vs 5G-LENA MCS (uplink) 10MHz.

Fig. 6: Py5cheSim vs 5G-LENA MCS (downlink) 100MHz
(TDD).

calculation method. However as can be seen in throughput
figures, it remains under the error margin considered.

Thirdly, we made scheduling (intra-slice) validation com-
paring 5G-LENA scripts again results with our simulator. We
consider one cell (one slice) and more than one UE with a



Fig. 7: Py5cheSim vs 5G-LENA MCS (uplink) 100MHz
(TDD).

Fig. 8: Throughput of Py5cheSim vs 5G-LENA (downlink)
10MHz

full buffer traffic profile. We tested Round Robin (RR) and
Proportional Fair (PF) considering different exponent values
schedulers. Figure 10 and 11 present representative results;
in the first one the three UEs have very different SINR.
Above, resource usage for the Proportional Fair of 5G-LENA
and below the same but by Py5cheSim using numerator and
denominator exponent equal to 1. On the other hand, Figure
11 presents an example using Round Robin scheduler.

Finally, we present a brief description of multi-slice valida-
tion. It is important to note that, except of resource allocation,
Slice configuration is made at the creation moment, and
remains unchanged during the simulation. It is assumed that
some service requirements will not change during the simula-
tion. However, as the number of UEs and traffic intensity could
change, resource allocation between slices can be updated,
with a configurable time granularity.

Table I shows the configured mapping between RAN Delay
requirements and SCS configuration for a Slice. Note that the
considered thresholds were defined taking into account the

Fig. 9: Throughput of Py5cheSim vs 5G-LENA (uplink)
10MHz

Fig. 10: Py5cheSim vs 5G-LENA FDD PF11 resource use
distribution.

delay analysis and results presented in [20] assuming average
values for the scheduling timings, and the direct dependence
with the slot duration and SCS as a consequence. Different
thresholds can be configured modifying the dly2scs method in
Slice class.

TABLE I: Delay requirement to SCS mapping.

Delay Requirement (ms) ≤ 2.5 ≤ 5 ≤ 10 > 10
SCS (kHz) 120 60 30 15



Fig. 11: Py5cheSim vs 5G-LENA RR uplink resource use
distribution.

In Figure 12 we show the results printed in a simulation
considering two slices in a 5 MHz cell, no MIMO nor CA:
one for traffic eMBB and the other for traffic URLLC. Table
II shows slice level delay requirements and simulation results.
Round Robin scheduler is used for resource allocation between
Slices, so for 15 kHz SCS Slice 12 PRB resource allocation
is expected from the total of 25. In the URLLC Slice case,
as 60 kHz numerology is set according to delay requirements,
half band PRB should be 3. In URLLC case, UE throughput
respond to traffic profile (set in the simulation script). In
eMBB Slice case, as traffic profile is more demanding, so UE
throughput matches with the maximum expected for 12 PRB.
According to the web throughput calculator tool [21] for a 5
MHz cell on the same conditions (high SINR, no MIMO nor
CA, etc.) maximum expected throughput should be 26 Mbps
(using 25 PRB). If we estimate the expected througput for 12
PRB under the same condition, the obtenied value here has a
difference with the simulation’s one lower than 3%.

V. CONCLUSIONS AND FUTURE WORK

This article presented Py5cheSim, a new discrete event
Python simulator focused on cell capacity analysis. Py5cheSim
constitutes a simple environment to develop and test new
5G scheduler algorithms (inter and intra Slice). We have
presented validation results that show near compliance with
3GPP requirements and the reference simulator.

Fig. 12: Example of two slices scenario result.

TABLE II: Two slices main simulation.

Slice Name eMBB URLLC
Max Delay (ms) 20 5

Slice PRBs 12 3
Slice Numerology 15kHz 60kHz
Slice Connections 1 5

Avg. UE Throughput (Mbps) 12.15 0.03

In this article, we presented the architecture and the capabil-
ities of Py5cheSim v1.0, with the aim of helping researchers
to understand the level of detail and to get a clear idea of its
functionalities. This first version of the simulator is available
at our web page [22] 1 and we are working on a second version
of the simulator improving some features and including others
such as: mini-slots support and user mobility possibilities.
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