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Universidad de la República por

Gabriela Pereyra

en cumplimiento parcial de los requerimientos
para la obtención del t́ıtulo de

Magister en Ingenieŕıa Eléctrica.
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Resumen

La quinta generación de comunicaciones móviles (5G) se está convirtiendo en una
realidad gracias a la nueva tecnoloǵıa 3GPP (3rd Generation Partnership Project)
diseñada para cumplir con una amplia gama de requerimientos. Por un lado, debe
poder soportar altas velocidades y servicios de latencia ultra-baja, y por otro lado,
debe poder conectar una gran cantidad de dispositivos con requerimientos laxos
de ancho de banda y retardo. Esta diversidad de requerimientos de servicio exige
un alto grado de flexibilidad en el diseño de la interfaz de radio. Dado que la tec-
noloǵıa LTE (Long Term Evolution) se diseñó originalmente teniendo en cuenta la
evolución de los servicios de banda ancha móvil, no proporciona suficiente flexibil-
idad para multiplexar de manera óptima los diferentes tipos de servicios previstos
por 5G. Esto se debe a que no existe una única configuración de interfaz de radio ca-
paz de adaptarse a todos los diferentes requisitos de servicio. Como consecuencia,
las redes 5G se están diseñando para admitir diferentes configuraciones de interfaz
de radio y mecanismos para multiplexar estos diferentes servicios con diferentes
configuraciones en el mismo espectro disponible. Este concepto se conoce como
Network Slicing y es una caracteŕıstica clave de 5G que debe ser soportada extremo
a extremo en la red (acceso, transporte y núcleo). De esta manera, las Redes de
Acceso (RAN) 5G agregarán el problema de asignación de recursos para diferentes
servicios al problema tradicional de asignación de recursos a distintos usuarios.

En este contexto, como el estandar no describe cómo debe ser la asignación
de resursos para usuarios y servicios (quedando libre a la implementación de los
proveedores) se abre un amplio campo de investigación. Se han desarrollado difer-
entes herramientas de simulación con fines de investigación durante los últimos
años. Sin embargo, como no muchas de estas son libres, fáciles de usar y partic-
ularmente ninguna de las disponibles soporta Network Slicing a nivel de Red de
Acceso, este trabajo presenta un nuevo simulador como principal contribución.

Py5cheSim es un simulador simple, flexible y de código abierto basado en
Python y especialmente orientado a probar diferentes algoritmos de scheduling
para diferentes tipos de servicios 5G mediante una implementación simple de la
funcionalidad RAN Slicing. Su arquitectura permite desarrollar e integrar nuevos
algoritmos para asignaciòn de recursos de forma sencilla y directa. Además, el uso
de Python proporciona suficiente versatilidad para incluso utilizar herramientas
de Inteligencia Artificial para el desarrollo de nuevos algoritmos. Este trabajo pre-
senta los principales conceptos de diseño de las redes de acceso 5G que se tomaron
como base para desarrollar la herramienta de simulación. También describe deci-
siones de diseño e implementación, seguidas de las pruebas de validación ejecutadas



y sus principales resultados. Se presentan además algunos ejemplos de casos de
uso para mostrar el potencial de la herramienta desarrollada, proporcionando un
análisis primario de los algoritmos tradicionales de asignación de recursos para
los nuevos tipos de servicios previstos por la tecnoloǵıa. Finalmente se concluye
sobre la contribución de la herramienta desarrollada, los resultados de los ejemplos
incluyendo posibles ĺıneas de investigación junto con posibles mejoras para futuras
versiones.
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Abstract

The fifth generation of mobile communications (5G) is already becoming a reality
by the new 3GPP (3rd Generation Partnership Project) technology designed to
solve a wide range of requirements. On the one hand, it must be able to support
high bit rates and ultra-low latency services, and on the other hand, it should be
able to connect a massive amount of devices with loose bandwidth and delay re-
quirements. Such diversity in terms of service requirements demands a high degree
of flexibility in radio interface design. As LTE (Long Term Evolution) technology
was originally designed with Mobile Broadband (MBB) services evolution in mind
it does not provide enough flexibility to multiplex optimally the different types of
services envisioned by 5G. This is because there is not a unique radio interface
configuration able to fit all the different service requirements. As a consequence,
5G networks are being designed to support different radio interface configurations
and mechanisms to multiplex these different services with different configurations
in the same available spectrum. This concept is known as Network Slicing, and is
a 5G key feature which needs to be supported end to end in the network (Radio
Access, Transport and Core Network). In this way 5G Radio Access Networks
(RAN) will add the resource allocation for different services problem to the user
resource allocation traditional one.

In this context, as both users and services scheduling is being left to vendor
implementation by the standard, an extensive field of research is open. Different
simulation tools have been developed for research purposes during the last years.
However, as not so many of them are free, easy to use, and particularly none of
the available ones supports Network Slicing at RAN level, this work presents a
new simulator as its main contribution.

Py5cheSim is a simple, flexible and open-source simulator based on Python
and specially oriented to test different scheduling algorithms for 5G different types
of services through a simple implementation of RAN Slicing feature. Its archi-
tecture allows to develop and integrate new scheduling algorithms in a easy and
straightforward way. Furthermore, the use of Python provides enough versatility
to even use Machine Learning tools for the development of new scheduling algo-
rithms. The present work introduces the main 5G RAN design concepts which
were taken as a baseline to develop the simulation tool. It also describes its design
and implementation choices followed by the executed validation tests and its main
results. Additionally this work presents a few use cases examples to show the
developed tool’s potential providing a primary analysis of traditional scheduling



algorithms for the new types of services envisioned by the technology. Finally it
concludes about the developed tool contribution, the example results along with
possible research lines and future versions improvements.
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Chapter 1

Introduction

This chapter introduces the document in terms of the main goals presented for
this thesis, along with its contribution. Related publications are also introduced
as a means to note the presented work’s context and value. Finally, this chapter
ends with a brief description of the following chapters in this thesis document.

1.1 Motivation
Mobile networks have had an important evolution during the last three decades.
From the possibility of making a voice call without using a wired terminal, to
enabling a network of wireless sensors located in different places to report envi-
ronment data to a central system, which is a reality nowadays. Technology has
grown and evolved along with the use cases and human needs. Twenty years ago,
people was stunned by the possibility to send an email. Today, the idea of a day
without internet is unthinkable, and wireless internet is an important piece of the
cake. Even when we are at home, with an ADSL connection and maybe no mobile
broadband service, we would still feel the absence of WiFi to connect our smart-
phones. Today, even in different magnitudes, wireless networks are simply part of
our lives.

In response to the increase of use of mobile broadband services, and the new
use cases expected to take place in the market for the next years, a new mobile
generation is being standardized by 3GPP (3rd Generation Partnership Project)
from Release 15 (2018): the 5th Generation of Mobile Communications, or 5G for
short. As wireless networks work using radio-frequency spectrum as a resource to
transport data bits and the later is a scarce supply, radio access resources allocation
for different users and services is a central topic, specially when using licensed
spectrum. Moreover, as the standard does not define how scheduling of resources
should be made, being the topic left to vendor implementation, an extensive field of
research is open. As users scheduling constitutes a very rich research topic specially
when it comes to cellular networks, there has been a lot work about it during the
last years. However, as mentioned in [22], given the different services 5G networks
are envisioned for, there is not an unique radio configuration able to meet with
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so different requirements in an optimal way. In consequence, 5G networks should
allow the coexistence of different “virtual networks”, configured according to the
services which it is used for, sharing physical resources as optimally as possible.
This concept is known as Network Slicing, and is a 5G key feature which must be
supported end to end in the network, including the RAN (Radio Access Network),
as a way to enable different services multiplexing on the same network resources.

In this context, this thesis focuses on 5G networks radio resources allocation,
particularly thinking in a multi-service capable network. The main objective of this
work was to make a primary analysis of resource allocation possibilities and consid-
erations for the different types of services envisioned by the technology evolution.
As at this work’s beginning there was not a simple multi-Slice 5G simulation tool
for cell capacity analysis oriented to scheduling and no real network’s test data
available, a high level cell capacity simulator was developed as this thesis main
contribution. This work is intended to provide a simulation tool to introduce 5G
multi-Slice scheduling research.

1.2 Related Work
Although there is well known history about users scheduling research, given the
novelty of the Network Slicing concept, research about this particular topic is quite
new, as can we see in [35], [34] and [21]. In [35] different options and existing chal-
lenges for RAN Slicing implementation are identified. The authors in [34] purpose
a framework for the support of RAN Slices based on the analysis of the impact
in the radio interface protocols. In [21] a framework fully compliant with 3GPP
vision is proposed to enforce network slicing featuring radio resources abstraction.
Furthermore, given the recent progress in AI (Artificial Intelligence), integration of
this kind of concepts to network research topics seems natural at this point, given
the dynamic nature of mobile traffic. Authors in [43] propose a slicing method
based on DRL (Deep Reinforcement Learning).

None of the referenced works proposes the use of traditional scheduling algo-
rithms for multiplexing different services in a cell. Furthermore, to the best of this
work’s author knowledge, there hasn’t been extended public research about the
use of traditional algorithms for other traffic profiles different than MBB (Mobile
Broadband).

Although at the moment of start this work there was several free 5G ready
simulation tools available, none of them was chosen for this thesis purpose given
their limitations in terms of easiness of use, 5G features support and possibility of
new schedulers implementation.

At this moment there are different types of simulators available for 5G. In
the one hand, Network Simulators have great level of detail and a wide range of
configurable options giving a good reference to compare at the time of validation.
A good example of this is the 5G-LENA simulator [32], (which by the way was
the chosen tool for validating the developed one). Its last version was released in
March/2021 and was built as a module (nr) for the ns3 simulator. It is strongly
based in its predecessors, the Lena module [9], and the mmWaves module [23],

2
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both also in ns3. However these modules present some disadvantages: the high
degree of complexity and processing capacity needed to configure and run a simula-
tion. The first is not a problem if one is a C++ developer and has experience with
ns-3, but the second is unavoidable because of the simulator’s nature. These mod-
ules often implement layer by layer most of the procedures described by the 3GPP
standard, so a simple 10 minutes simulation with high bandwidth and several users
can take hours in a standard PC. Additionally, although 5G-LENA supports many
NR (New Radio) features, the current version of this module (NRv1.1) does not
implement mini-slots and network slicing scheduling.

On the other hand, System Level Simulators could be a good option, however
it often incurs in a high degree of simplification to cover a wide range of cells with
an affordable resource use. Some examples are the Vienna Simulator [24, 33] and
Simu5G [25, 26]. The first is a Matlab tool, again, based on its LTE (Long Term
Evolution) predecessor (the Vienna LTE simulator). The latest version of Viena
(2020) does not support key NR features like mini-slot scheduling, network slicing,
mmWave propagation models, and 256-QAM (256 Quadrature Amplitude Modu-
lation). Besides, the possibility to perform uplink simulations and non-full buffer
traffic models is not included. Simu5G is based on OMNeT++ framework and
written in C++. It simulates the data plane of the 5G RAN and core network.
It supports FDD (Frequency Division Duplex) and TDD (Time Division Duplex)
modes, Dual Connectivity, Carrier Aggregation, and different numerologies. How-
ever, according to its last version (1.1.0), it does not support network slicing or
mini-slot.

Another available simulation tools are 5G-K-Sim [5,20] and SyntheticNET [44].
The first one is a complete C++ tool that includes link-level, system-level, and
network-level simulations. However it does not support end-to-end network slicing.
5G-K-Sim was developed at the earliest stages of the 5G standardization process
and is non-fully standard compliant. On the other hand, SyntheticNET [44] is a
Python simulator focused on modeling a realistic handover process. It supports
different numerologies and mmWaves, but is not clear if it supports other 5G
features.

Finally, it is important to mention OpenAirInterface [17, 18]. It is an open
source software running on general-purpose processors which supports many of
NR specifications. Although it has limitations when emulating large networks, it
could be a good tool to validate new proposals in real testbeds.

Given the thesis objective, available tools were not enough to provide a mean-
ingful analysis. On the one hand, most system level simulators were not supporting
essential features like RAN Slicing, or 256QAM modulation. Furthermore, it hasn’t
too much different possibilities in terms of scheduling algorithms. On the other
hand, network simulators was too much in terms of complexity for the pretended
results, even not supporting features like RAN Slicing. With this ideas in mind
a new simulation tool was developed. The general design goal was to keep it as
simple and flexible as possible mostly when it comes to scheduler implementation.

3
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1.3 Thesis Contribution
As mentioned before, this thesis main contribution is a free simulation tool for 5G
high level cell capacity analysis focused on resource allocation between different
users and services with very different requirements. The simulation tool was called
Python 5G Scheduler Simulator or Py5cheSim for short, in honor to Python as the
language used, and the fact that it was designed to support the development of new
5G scheduling algorithms to study. It provides a framework for new 5G scheduling
algorithms development and evaluation and by the moment is the only available
simulation tool supporting RAN Slicing. Other 5G simulation tools available are
mentioned and referenced, highlighting the reasons why they were not considered
for this work.

This thesis also presents a brief study about 5G radio access technology main
design aspects and possibilities, along with a few examples of traditional schedulers
primary performance analysis for users and services resource allocation. Finally,
this work concludes about the developed tool and possible design considerations
on 5G schedulers implementation considering resource allocation between different
users and services which the technology is designed for. This work is intended to
be useful as a starting point for future and more detailed research about scheduling
in 5G networks and beyond.

Finally, this work has produced the next publications:

• Py5cheSim: a 5G Multi-Slice Cell Capacity Simulator. XLVII Confererencia
Latinoamericana en Informatica CLEI 2021 [2].

• A 5G multi-Slice cell capacity framework. SIGCOMM N2Women Workshop
2021 [1].

Current Py5cheSim version along with its code documentation can be found in [10]
1.

1.4 Document Organization
The presented document is organized as following:

First, main 5G service requirements and resulting radio access technology de-
sign aspects are introduced, focusing on the key concepts related to radio resource
allocation. Then, a concise description of the developed tool for cell capacity anal-
ysis is presented. Py5cheSim features and its main design considerations along
with the standard procedures abstraction are shown to understand the application
field of the developed tool.

Chapter 4 shows the Py5cheSim validation results using different available sim-
ulation and performance estimation tools. Different traditional schedulers results
are shown here only for scheduler validation purposes. Chapter 5 presents different

1https://iie.fing.edu.uy/investigacion/grupos/artes/proyectos/inteligencia-artificial-
aplicada-a-redes-5g/

4
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use cases for the developed simulation tool highlighting the information provided
and analysis results.

Finally, chapter 6 concludes the work in terms of the developed tool contri-
bution, application scenarios and possible evolution. It also presents the main
results obtained by testing traditional scheduling algorithms on 5G networks, and
concludes about future schedulers design considerations.

5
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Chapter 2

From 4G to 5G Networks

This chapter presents a brief introduction of the 5G’s most transcendent concepts
for this thesis. Although there is a lot to learn and to say about 5G networks,
this introduction will be more oriented to describe some of the basic ideas behind
the technology design which have most to do with the thesis objective. The best
way to understand 5G networks is to start from 4G networks, because most of the
5G network design starts from an evolution of 4G networks to meet the 5G new
requirements.

The chapter is organized as follows: First, 4G networks main design aspects
are introduced as a baseline to understand 5G’s. Then, it describes service require-
ments evolution which justify 5G networks. After that, it shows an introduction
to 5G main design aspects and technological enablers.

2.1 4G Networks, a brief Introduction
The 4th generation of mobile communications, or 4G for short, was standardized by
3GPP from Release 10 during the last decade, and most countries in the world have
deployed it during the last years. LTE (Long Term Evolution) technology was de-
signed to meet the RAN (Radio Access Network) constraints, which along with the
EPC (Evolved Packet Core) supports the ITU requirements for IMT-Advanced.
Those requirements were mostly oriented to MBB (Mobile Broadband) communi-
cations attending to the expected traffic needs at that time, as high bitrate, low
delays, and QoS (Quality of Service) support, for example.

A simple, almost flat architecture was envisioned for the network, simplifying
in a good way the Core features and protocols from the previous generation’s
design. At RAN level, the simplification was even higher by using the multiple
access technologies OFDMA (Orthogonal frequency-division multiple access) for
DL (Downlink) and SC-FDMA (Single Carrier Frequency for UL (Uplink). As 5G
RAN also uses OFDMA, at least for the first phase of the standard, the LTE’s
layer 1 and 2 design will be introduced from here on.
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Figure 2.1: OFDMA orthogonal sub carriers in frequency domain example from [6].

2.1.1 LTE RAN Basic Design Aspects
As it’s been said before, LTE uses OFDMA multiple access technology in DL.
In OFDMA the available spectrum is divided in orthogonal subcarriers equally
spaced. Orthogonality here means that even if the subcarrier spacing is minimal
there is no interference between them, as can be seen in figure 2.1.

The bits flows to transmit are modulated with an appropriate MCS (Modu-
lation and Coding Scheme) using one sub carrier for each symbol. Then IFFT
(Inverse fast Fourier transform) is applied to the symbols in parallel, cyclic pre-
fix is added to reduce ISI (Inter-symbol interference), D/A (Digital to Analogue)
conversion is applied, the signal is moved to the allocated band and transmitted.
In reception, the procedure is basically the opposite. The received signal is moved
to base band, sampled and transformed to the frequency domain by applying the
FFT (Fast Fourier Transform), and by detecting phase and amplitude of each
symbol the original bits sequence can be obtained. The later can be summarized
in figure 2.2.

Orthogonality is assured by making the SCS (Subcarrier spacing) equal to the
symbol duration inverse, which is shown in figure 2.1. There, the SCS can be
seen as the difference between two consecutive subcarrier peacks, and it must be
equal to the symbol duration inverse to make the peack value for a sub carrier
to be located in the null values for all the others in the FFT. To select the SCS,
the Doppler effect caused by UE moving must be considered. SCS must be high
enough for the signal shift to not be meaningful compared to it. In LTE 15 kHz
of SCS was chosen as is high enough to make the frequency shift caused by an UE
moving at 350 km/h not meaningful. On the other hand, the ISI possible effects
must be considered when choosing the SCS. ISI is produced by multipath fading,
which is unavoidable in wireless networks. Several copies of the same signal will
arrive at RX at different times producing a shift on the symbols in time domain.

8
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Figure 2.2: OFDMA TX and RX scheme [7].

The symbol duration must be high enough for this shift to be not meaningful.
This adds a new constraint to define SCS, so there is a compromise between the
two things, to be robust enough to Doppler effect and ISI. As for the later, LTE
also adds the use of Cyclic Prefix (CP), which basically consists in adding the last
symbol samples at the beginning of it, so it can be recovered even if it was slightly
shifted in time.

2.1.2 Radio Interface Architecture
Figure 2.3 shows LTE radio interface protocol stack and related 3GPP TS (Techni-
cal Specifications). Information flows between layers happen by the use of channels
and signals. There are different types of channels depending on the type of infor-
mation to transmit, and how is going to be processed. Putting in a nutshell, LTE
handles:

• Bearers: UE service and signalling flows, which are mapped in Logical Chan-
nels.

• Logical Channels which are mapped to Transport Channels at the MAC
layer according to the way they will be transmitted. Users data are mapped
to DL-SCH and UL-SCH for DL and UL respectively.

• Transport Channels which are mapped to Physical Channels at the first sub
layer of the Physical layer.

• Physical Channels which are mapped to the physical resources in the frequency-
time resource grid.

2.1.3 Resource Allocation
The physical resources are basically the subcarriers mentioned before in the used
band during time. In time domain, for each subcarrier 7 (or 6 in case of using
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Figure 2.3: LTE radio interface protocol stack and associated 3GPP TS (Technical Specifica-
tions) [7].

extended cyclic prefix) symbols are transmitted in a slot, and 2 slots in a sub frame
of 1 ms, which is part of a 10 ms frame, as can be seen in figure 2.4.

In frequency domain the subcarriers are grouped in PRB (Physical Resource
Block), which consists in 12 consecutive subcarriers. In this way, physical resources
are organized in a frequency-time grid, and allocation for each UE is done in a
sub frame granularity, which in this case is 1 ms. This time interval is also called
TTI (Transmission Time Interval). That is, for each TTI, the smallest amount of
resources that can be allocated for a UE is 1 PRB. So for each TTI the cell can
roughly allocate the next amount of symbols to a UE for DL:

AllocatedPRBs× 12 × (14 − PDCCHsymbols− PHY signalsSymbols). (2.1)

PDCCH is the Physical Downlink Control Channel, and is basically used to trans-
mit Downlink Control Information (DCI), as resource allocation information, UL
ACK (Acknowledgement), etc. Typically 3 symbols are used for this channel, but
it can be configured differently. Also some symbols are defined in DL to transmit
PHY (Physical Layer) signals to the UEs for synchronization, cell detection and
channel estimation procedures.

The resource allocation to each UE at each TTI along with the MCS election
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Figure 2.4: LTE frame and slot structure using normal (left) and extended (right) cyclic
prefix [7].

is done by the cell’s scheduler. It takes into account different information of each
UE as Channel state, transmission buffer size, QoS requirements, possibility to use
different MIMO schemes, acknowledgments, etc. The standard does not define how
the scheduler algorithm works, so the later is vendor’s implementation dependent.
Several algorithms were studied to this propose, considering different approaches.
In one side the more resources the cell gives to a UE with a good channel, the
more optimally the cell resources are used, but users with a poor channel are not
going to have high bitrates. On the other side, if the same amount of resources is
used for all UEs, there could be UEs with few bytes to transmit taking the same
resources than others with more, so the resource are not being allocated optimally.
There is a compromise between optimal resource use and fairness. One of the most
commonly used algorithm considering the latter is the Proportional Fair Scheduler.
In this case, allocation is done as a function of the relation between the possible
throughput a UE can obtain, and the past throughput it had, so if there have not
been allocated resources for this UE in the past, there is more chance to allocate
in the present.

More detailed information about LTE can be found in [7].

2.2 4.5G Networks and the Requirements Evolution
Although the LTE standard begins from the 3GPP Release 8, in terms of compli-
ance with the IMT-Advanced requirements the 4th Generation Mobile Communi-
cations starts with Release 10. However, as the technology changed from Release 8,
in a commercial sense 4G started from 3GPP Release 8. That is why the following
capacity and features enhancements were commercially classified as 4.5G or LTE-
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Advanced. This enhancements covers all the necessary technology improvements
to enhance capacity mainly in terms of user and cell throughput, but also in terms
of resource use when M2M (Machine to Machine) devices are connected. For the
former, features like 256QAM (Quadrature Amplitude Modulation) use, MIMO
(Multiple Input Multiple Output), and Carrier Aggregation were introduced. For
the later, two LTE optimizations were introduced in Release 13: LTE-M (LTE for
Cat M devices) and NB-IoT (Narrow Band Internet of Things). In the following,
this enhancements will be briefly introduced, as it will be also part of the 5G
standard.

2.2.1 Carrier Aggregation
By using this feature, a UE can use several component carriers (CC) to communi-
cate with the network instead of one. This increases throughput capacity because
the UE can use resources from more than one carrier as can be seen in figure 2.5.
While blue and red UE uses only RBs from blue and red carrier, the white UE can
use RB from the three carriers.

Figure 2.5: Carrier aggregation resource use example [16].

The carriers can be in the same band, in a contiguous location or not, or in a
different band. The amount of CC a UE is allowed to use depends on the UE and
network capabilities and has evolved with the 3GPP Releases. In this way the UE
connects to different cells, one of them will be called primary component carrier
(PCC), which will handle the RRC (Radio Resource Control) connection, and the
rest will be called secondary component carriers (SCC), and will handle just UP
data, as can be seen in figure 2.6. As black UE supports Carrier Aggregation in
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blue, red and green carrier, as is located in the respective cell’s coverage area, it
uses resources from the three carriers. However, as the RRC connection is handled
only by the blue cell, this will be the it’s PCC, and the other cells only handle
user data for this UE.

Figure 2.6: Carrier aggregation PCC and SCC example [16].

2.2.2 256QAM
By using this feature a new MCS table is introduced, considering the use of
256QAM modulation. As with the later releases the maximum modulation scheme
supported was 64QAM, the introduction of 256QAM implies an important through-
put capacity increase (in good radio conditions), because there are more modulated
bits/symbol as can be seen in figure 2.7. While 64QAM allows to carry six bits by
symbol, 256QAM allows eight.

Figure 2.7: Different modulation schemes constellation diagram examples from [12]. From
left to right the figure shows BPSK, QAM, 16QAM, 64QAM, and 256 QAM constellation
examples.
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2.2.3 MIMO
Although MIMO use was introduced in Release 8, from Release 10 several en-
hancements were added to this feature, paving the way for massive MIMO, a key
enabler for 5G. There are several possible uses for multiple antennas systems:

• Diversity: Transmitting/Receiving the same symbols by different anten-
nas with a phase difference so that signals interfere positively between each
others to improve communication robustness.

• Spatial multiplexing or MIMO: Transmitting/Receiving different sym-
bols by different antennas at the same frequency-time to improve bitrate.
Here, there are two possibilities: SU-MIMO (Single User MIMO), when the
different symbols are transmitted for the same UE, and MU-MIMO (Multi-
ple User MIMO), when the later are transmitted for different UEs. A system
with N transmission and reception antennas using this techniques is called
NxN MIMO, and N is also the amount of layers, i.e. flows the system can
handle using the same time-frequency resources. Note that it is possible only
if the channel characteristics allow it. In mathematical terms, this occurs if
the rank of the matrix which represents the channel between N transmitting
and N receiving antennas is N. If the rank is less than N, only a number of
flows equal to this rank could be handled using the same resources.

• Beamforming: Transmitting/Receiving the same symbols by different an-
tennas with a combination of phase and amplitude that modifies the result-
ing radiation pattern in a “beam form” between transmitter en receptor.
This increase the communication range in terms of distance, and ends up
enhancing cell coverage.

In Release 8 up to 4x4 SU-MIMO is supported for DL, and MU-MIMO only in
UL. In Release 10 up to 8x8 SU-MIMO is supported for DL and up to 4x4 in UL.
The next 3GPP releases introduced also several enhancements in terms of channel
estimation, a key concept for this feature to properly work.

2.2.4 LTE-M and NB-IoT
During the last years the use of IoT devices is been increasing, so 3GPP in response
to this, presented two LTE optimizations to support new IoT use cases: LTE-M,
and NB-IoT. In this case the design goals were totally different than in LTE. IoT
devices are generally simple, low cost devices which transmit small packets with
low rate, but can be a lot of these connected to a cell. As LTE was primarily
designed for MBB, several optimization were made to handle IoT traffic in a more
optimal way.

• LTE-M was introduced in 3GPP Release 13 as an LTE optimization for
Cat-M devices. These devices are supposed to be simpler and cheaper than
a regular one, and are intended to use smaller bit rates, and support a limited
set of LTE features. At a practical level, LTE-M works as a feature in the
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RAN, which allows to connect Cat-M devices 1 using 6 PRB (a narrow-band)
in the cell’s band. The LTE-M physical channels are mapped differently
using this limited resources, so the LTE cell capacity is minimally affected.

• NB-IoT was introduced in 3GPP Release 13, also as another LTE optimiza-
tion for Cat-NB devices 2. This devices are supposed to be even simpler and
chipper than Cat-M ones, and intended to support more limited bitrates
and legacy features. For example, RRC-Connected mobility is supported in
LTE-M but not in NB-IoT. At a practical level, depending on the operation
mode chosen NB-IoT can be enabled in a new “virtual” cell which uses only
1 PRB of the LTE legacy cell which is anchored to.

Both technologies also support specific features to improve cell coverage (Cov-
erage Enhancement), and reduce power consumption in the device (eDRX, PSM).
More detailed information about LTE-Advanced features can be found in [7], and
about LTE-M and NB-IoT in [36].

2.3 5G Networks, a brief Introduction
This section briefly introduces the 5G most important concepts to this thesis.
This work started during the beginning of the technology standardization process,
so different documents were considered, from 3GPP Technical Recommendations
to the available specifications and derived documents. In this sense this work
accompanied the standardization process of the technology.

2.3.1 Mobile Requirements Evolution
As is been said before, mobile services requirements have been changed over the
years together with the cellular technologies. First was voice, then sms appeared,
latter mobile broadband (MBB). During the past 2 decades the required bitrates
for MBB have presented a sustained growth, mainly due to high definition video
services, together with the coding and electronic component capacity needed. LTE-
Advanced was designed to support high bitrate MBB services, but not to support
another kind of services like massive IoT devices connections or self driving cars
for example. However, during the last years those kind of services are becoming
more a reality than a fiction. Nowadays there are IoT devices using legacy cellular
technologies (GPRS, WCDMA, LTE), other technologies (like LoRA, IEEE 802.15,
etc.), and LTE optimizations mentioned before to support it. However, neither
LTE-M’s nor NB-IoT’s physical layer is prepared for a real massive amount of
connected devices. Also, new services that require ultra low delay, as self driving
cars, or AR (Agumented Reality) are still far from been a reality using LTE-
Advanced because of the minimum transmission time it handles (TTI = 1 ms).
Some applications will require it lower.

1IoT devices supporting 3GPP LTE-M technology.
2IoT devices supporting 3GPP NB-IoT technology.

15



Chapter 2. From 4G to 5G Networks

Attending to the requirement evolution mentioned before, a new generation of
mobile communication is been standardized from Release 15. The 5th Generation
Mobile Communication, or 5G, is been designed to tackle the new requirements
gathered in IMT-2020 ITU recommendations [4]. In the figure 2.8 IMT-2020 ser-
vices classification is shown. There are basically three types of services considered:

Figure 2.8: IMT-2020 different services classification from [4].

• eMBB (Enhanced Mobile Bradband) which is an enhancement to the tra-
ditional MBB services with higher bitrates and UE density.

• mMTC (Massive Machine Type Communications) which considers now the
high density of IoT devices connected to the network produced by Smart city
applications for example.

• URLLC (Ultra Reliable and Low Latency Communications) which covers
all those services with ultra low latency and high reliability needs like self
driving cars and mission critical applications.

As can be also seen in 2.8, there will be services between these big uses cases like
Augmented Reality, Industry Automation and voice for example. These services
has intermediate requirement values. In figure 2.9 IMT-2020 requirement values
are shown and compared with IMT-Advanced ones, and in figure 2.10 different
type of service requirements are shown.

2.3.2 Design Key Concepts
With the later service requirements in mind, different design aspects of the last
RAN and Core technologies were analyzed. Several studies have shown that there
is not a unique network solution to fit all services requirements [22]. The new design
should contemplate the later, presenting enough flexibility to adapt to the different
requirement constraints. This flexibility is needed across the entire network, in the
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Figure 2.9: IMT-2020 vs IMT-Advanced requirements [14].

Figure 2.10: IMT-2020 different types of services requirements [14].

RAN, as much as in the Core, and also in the transport network. The services
requirements are so different that one configuration optimal for one service could
be a resource waste for others. As a consequence the new RAN as much as the new
Core should support different configurations in different set of resources allocated
for the different services. An enabler for that is the Network Slicing feature, which
will be better described later.

In terms of RAN Physical layer design SCS in 5G were proposed to be variable
as can be seen in [22], to adapt to different requirements. High SCS, or high
numerology, as it is been called, will be configured for services with low delay
requirements or high velocity for example. MmWaves use should be supported to
provide the high bitrates expected. In this context mmWaves make reference to
the spectrum frequencies above 6 GHz, although technically the millimeter waves
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frequencies are higher. Different waveforms were also analyzed taking into account
the possibility of multiplexing different SCS. The new waveform should have good
confinement properties in frequency. Also, should provide enough robustness to
operate with mmWaves, be compatible with MIMO, and provide low PAPR (Peak
to Average Power Ratio) for UL. Another design key concept is the compatibility
with legacy systems, i.e. 4G. 5G RAN should be highly compatible with LTE
because there has been significant investment in LTE deployment during the last
years, and the technology switch is not always fast. In this sense, the base SCS
should be the same as in LTE, that is 15kHz, and LTE-Advanced features like
Carrier Aggregation an MIMO should be supported. Multiple access technologies
and Random Access procedures was also analyzed, mainly to enable the high
amount of connections associated to mMTC services, and to allow more agile data
transmission, trying to reduce the LTE overheads.

2.3.3 The Standardization Process
5G networks are being standardized by 3GPP from Release 15. The standard-
ization process was divided in two phases. The first one, in Release 15, and the
second, from Release 16. as can be seen in figure 2.11.

Figure 2.11: 3GPP 5G standardization process [41].

The first phase [37] introduced the new RAN and Core for 5G: NR (New Ra-
dio) and 5GC/NGC (5G Core/New Generation Core) respectively, which covered
the basic design and features for eMBB services to work, and a light introduction
for URLLC services. Massive MTC services were not covered in Release 15. It
was released in two stages, the first one in Q2 2018 ready to support the simplest
deployment option for 5G: NSA (non Stand Alone). The second stage was released
in Q4 2018 supporting also SA (Stand Alone) deployments. SA deployments re-
quire the presence of the 5GC. The second phase [38] completes the specification
set to support the 5G requirements specified by IMT-2020, and was submitted last
year. 3GPP Release 16 was released in July 2020, extending R15 features, and
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adding new ones oriented to support new use cases. Improvements was made in
features like MIMO, DSS (Dynamic Spectrum Sharing) DC (Dual Connectivity),
CA (Carrier Aggregation) and UE power saving. New features and deployment
scenarios were also presented to support new verticals. A few examples are IAB
(Integrated Access and Backhauling), NR in unlicensed spectrum, IIoT (Industrial
IoT) and URLLC communication, ITS (Intelligent Transport Systems) and V2X
(Vehicle to Anything) as can be seen in [15].

2.3.4 Network Architecture and Development Options
In [30] a high level description of 5G architecture, functional separation and basic
features can be found. The basic network architecture is shown in figure 2.12.
The AMF (Authentication and Mobility Function) is the Core entity responsible

Figure 2.12: 5G basic network architecture [30].

for Authentication and Mobility support in 5G. UPF (User Plane Function) is the
Core entity responsible for UP packet forwarding.

As it is been said before, 5G networks are being designed to be highly compati-
ble with legacy 4G. As a consequence, different deployment options were considered
in [39] as can be seen in figure 2.13, in terms of integration level with LTE legacy
network.

2.3.5 NR: The New RAN Technology
In this subsection a brief introduction to the 5G’s main aspects to this thesis is
made. The main focus here will be the physical layer and how it interacts with
MAC layer as for scheduling purposes.
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Figure 2.13: 5G different deployment options depending on 5GC availability and integration
level with LTE [39].

Protocol Architecture

Figure 2.14 shows 5G RAN protocol architecture for User and Control Plane.
There is almost no difference with LTE protocol stack except 5G has a specific
layer for QoS support (SDAP), as mentioned in [30]. Scheduling is handled at
MAC level, as in LTE, but taking into account the differences between technologies,
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Figure 2.14: 5G RAN protocol architecture for User Plane (left) and Control Plane (right) [30].

mainly at PHY level. As in LTE, scheduling implementation is vendor dependent.

Resource Grid

At Release 15, OFDMA multiple access technology is supported to maintain high
compatibility with 4G. So the resource grid is based on LTE’s, but with multiple
numerology support. Different SCS are supported with LTE’s 15 kHz as a baseline.
Other SCS can be obtained multiplying by 2µ (µ = 0, 1, 2, ..). In this way, different
numerologies can be multiplexed on the same band as can be seen in figure 2.15.

Figure 2.15: 5G Multiple numerology multiplexing [41].

As in LTE, 10 ms frame is supported at time level, and 12 subcarrier PRB at
frequency level. Also, 1 ms subframe is handled. The difference with LTE is that
in NR 1 slot contains always 14 symbols (with normal CP, 12 with extended CP),
whatever SCS is used. Depending on the numerology, different amount of slots by
subframe are handled, as can be seen in figure 2.16. Note that as SCS is bigger,
symbol duration is smaller, so more slots can be contained in a subframe. The
slot duration is also the TTI, so in this way NR handles flexible TTI to support
different delay requirements. Slot level and mini-slot level scheduling is supported,
being the last one specially considered for URLLC services. A mini slot is a set of
2, 4 or 7 symbols.

21



Chapter 2. From 4G to 5G Networks

Figure 2.16: Slots by sub-frame for different numerologies [41].

As in LTE, TDD is also supported, but in NR TDD frame has more flexibility
in terms of DL/UL resources granularity. That is, in NR one slot can be DL, UL
or mixed (some symbols DL, some symbols UL) with a time gap in between, as
can be seen in figure 2.17. Slot format can be static, semi-static or dynamic.
Note that in mmWaves only TDD is supported.

Figure 2.17: TDD Slot configuration possibilities [41].

Another new concept in NR is the BWP (Bandwidth Part). A BWP is a
subset of contiguous PRB within the operation band with an specific numerology.
Although more than one BWP configuration can be signalled to the UE only one
in DL and one in UL is active for a user in a given instant. This concept is
important for example for UEs with reduced bandwidth capability, and to support
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multiplexing different numerologies in the same frequency band.

PHY Layer
Although there have not been big changes in channel definition and mapping com-
paring with LTE, in NR several changes in physical layer control channel and
signals are introduced. With the use of beamforming for mmWaves, new physi-
cal layer signals and procedures are defined. In this way, Physical layer overhead
changes compared to LTE, so 3 symbol estimation used for LTE DL is not longer
valid. Explicit changes in Physical layer procedures and PDCCH are resumed
in [41] and [19].

In DL, as in LTE, NR PHY Layer handles PDSCH (Physical Downlink Shared
Channel) for data and PDCCH (Physical Downlink Control Channel) for DCI
(Downlink Control Information) transmission. Also PBCH (Physical Broadcast
Channel) is used for cell acquisition procedures. Also as in LTE PSS (Primary
Synchronization Signal) and SSS (Secondary Synchronization Signal) are used for
cell acquisition procedures. However, the transmission way of this signals differs
from LTE, and new reference signals are added to improve channel state measure-
ments: CSI-RS (Channel State Information Reference Signal) and TRS (Tracking
Reference Signal).

Synchronization Signals are transmitted in blocks (SS Block) composed of 1
symbol PSS, 1 symbol SSS and 2 symbols PBCH. The blocks are transmitted in
sequences of SS Bursts (SSB) during a 5 ms time window, with a periodicity of
20 ms. The number of possible locations in the time-frequency resource grid (L)
depends on the band used. The amount of frequency and time resources dedicated
to a SS block is as can be seen in figure 2.18 and 2.19.

Figure 2.18: SS Block frequency resources [41].

In this way the synchronization overhead can be estimated as the rationale
between number of symbols dedicated to SSB transmission during 20 ms over the
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Figure 2.19: SS Block Set time resources [41].

total amount of symbols contained in the two frames. The result depends on the
band and numerology used, but in the worst case it doesn’t get bigger than 5% of
symbols.

CSI-RS can be transmitted in different ways depending on configuration. In
the worst case scenario, it takes 4 symbols/PRB with a periodicity of 4 slots, so
it can imply an overhead of 0.6%. The same occurs with TRS.

As in LTE, PDCCH is used for DCI transmission, including scheduling infor-
mation for DL and UL. In NR PDCCH is transmitted using a structure called
CORESET (Control Resource Set). A CORESET consist of a group of REG (Re-
source Element Group) under a given numerology. A REG is one PRB during one
symbol. In time domain it can take from 1 to 3 symbols. This along with the
frequency domain resources, and starting symbol is configured by UE’s specific
higher layer signalling. The number of REG on which is mapped the DCI in a
CORESET depends on the DCI’s aggregation level handled.

In UL, as in LTE, NR PHY Layer handles PUSCH (Physical Uplink Shared
Channel) for data and PUCCH (Physical Uplink Control Channel) mainly for UCI
(Uplink Control Information) transmission. It also supports PRACH (Physical
Random Access Channel) for Random Access procedures, as in LTE, and SRS
(Sounding Reference Signal) for channel estimation purposes. For PRACH and
PUCCH different formats are supported, which have direct impact on the resources
needed for transmit them. For SRS also different configurations are supported in
terms of symbols used/PRB.

For UL and DL DMRS (Demodulation Reference Signals) are also supported.
Typically the first PUSCH or PDSCH symbols are used for demodulation reference
purposes.

As can be seen, given the variety of format and configuration supported for
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all this Physical layer control channels and signals, is not easy to estimate a final
rough overhead. For this thesis purpose, given the objectives of the developed
simulator, it is assumed an overhead load based on the throughput estimation
made in the section 4.1.2 of [31]:

• For FR1 (Frequency Range 1) that is, frequency bands bellow 7.125 GHz:
14% in DL and 8% in UL.

• For FR2 (Frequency Range 2) that is, frequency bands above 24.25 GHz:
18% in DL and 10% in UL.

2.3.6 Network Slicing

One may be wondering how network resources can be handled to support the
different configurations needed for the different service’s requirements. The answer
is: using a feature called Network Slicing.

The basic idea behind this feature is to allocate network resources to different
Network Slices, which act as virtual or logical networks with relative independence
between each other, allowing to configure each one according to the service it will
be used for. The Slice is defined end to end, so to support Network Slicing,
RAN, Core and Transport Network must be prepared. At transport network
SDN (Software Defined Network) will be an enabler for this. At Core level, NFV
(Network Function Virtualization) is going to be used. In this way, each Core node
will become a function mapped over certain physical resources defined in terms of
compute capacity and storage over a data center, as can be seen in figure 2.20.
Each Slice could have its specific network functions which data center resources
will be allocated for. Resource allocation should be dynamically according to the
service needs.

At RAN level, the resources to allocate to the different slices will be the spec-
trum, i. e. PRBs in the used band. Different Slices will have different configuration
not just in terms of numerology, but also in terms of features supported as mobility
and access random procedures for example, which will have a direct impact in the
slice capacity and performance for the required traffic profile.

Note that the way in which resources are allocated to different slices is not
specified by the standard, so is left to vendor implementation. The standard
covers the involved new signalling, and some basic design criteria as slice isolation
principles, but not the resource allocation algorithms between slices neither the
way the services requirement are mapped to network configuration.

Also note that Network Slicing is not the only way of multiplexing different
services in 5G Networks. The standard also considers the possibility of puncturing
eMBB allocated resources for URLLC traffic (mini-slot allocation). However in this
thesis only Network Slicing, and particularly, RAN Slicing is studied for different
services coexistence.
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Figure 2.20: Network Slicing basic model from [3].

2.4 Chapter Summary
This chapter introduced the most important concepts for this thesis. NR key en-
ablers and design concepts are explained, as a way to support service requirements
evolution from LTE. The next chapters will cover the developed 5G simulator de-
sign, validation, and test cases results.
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Chapter 3

Py5cheSim

This chapter makes a brief description of the developed simulator. First, the most
important developing tools are presented followed by the simulator features. Then
the simulator’s architecture and basic operation are shown, followed by the most
important design considerations made through the technology abstraction. Finally
different scheduler implementations are introduced.

3.1 Development Tools
As it is been mentioned before, Python was used to develop the simulator. Python
is a very powerful and versatile language, provided with tons of packages developed
for specific purposes, from Discrete Event Simulation to Machine Learning tools.
Although Python allows the use of different types of coding, this work uses OOP
(Object Oriented Programming). Given the associated concepts and the relation
between them, OOP was considered appropriated for this project, also thinking in
future upgrades and extensions.

The tool used to implement Discrete Event Simulation was SimPy [40]. SimPy
is a Python package that introduces an appropriate environment for discrete event
simulations, solving the typical issues of implementing this type of simulators, as
for example the event scheduler implementation. To execute actions in a “timed”
way SimPy offers the Process class, and the PEM (Process Execution Method)
methods. Basically any method that needs to be executed in a “timed” way must
be a PEM method. This environment provides PEM activation mechanisms and
an entire simulation framework to support the last.

Finally, code documentation was made using pydoctor [13].

3.2 Architecture and Basic Operation
Figure 3.1 shows some of the main concepts involved in a simple simulation. One
cell may serve one ore more UE groups. Each UE group has a a number of
UEs with a defined traffic profile. Traffic profile is described by the Packet Flow
parameters. Packet Flow is transported through the air by Bearers. As Py5cheSim
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Figure 3.1: Py5cheSim main concepts general diagram.

focuses on the radio part of the network, only radio Bearers are considered. Each
UE connected to the cell has a radio link with a quality given by the UE SINR.
Packets are processed through a simplification of the radio interface protocol stack
and transmitted over the air through Transport Blocks using resources from the
time-frequency grid, as can be seen on the diagram.

Given the later considerations Py5cheSim is build on the next modules:

• UE.py: UE parameters and traffic generation.

• Cell.py: Cell configuration and statistics management.

• Slice.py: Slice configuration.

• IntraSliceSch.py: Base intra slice scheduler implementation.

• InterSliceSch.py: Base inter slice scheduler implementation.

• Scheds Intra.py: Other intra slice schedulers implementation.

• Scheds Inter.py: Other inter slice schedulers implementation.

• simulation.py: Is the simulation script. It configures and runs a simulation.

• Results.py: Provides auxiliary methods to present simulation results, and
configure traffic profiles.
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Figure 3.2: UE module class diagram.

The first five modules constitutes the simulator core, and contains several
classes, as can be noted in figures 3.2 and 3.3. Particularly the modules In-
traSliceSch.py and InterSliceSch.py have the basic schedulers for one and several
slices respectively. The default algorithm in this classes is Round Robin. Other
schedulers can be defined in the Scheds Intra.py and Scheds Inter.py as classes in-
herited from the Base Scheduler’s ones defined in the former modules overwriting
the resAlloc method. This was a design choice made to simplify new schedulers
implementation. The main network model abstractions are contained in the sim-
ulator Core, so there is no need to have deep knowledge on that field to run a
simulation or to integrate a new scheduler. In this way Py5cheSim provides a
framework for 5G new scheduler algorithms implementation in a straightforward
and intuitive way.

UE.py module contains all it has to do with UE properties and behaviour,
bearers and traffic. Particularly, the PacketFlow class is responsible for creating
different traffic flows, in terms of packet inter-arrival time and size, and collecting
the following basic performance counters:

• sent packets

• received packets
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Figure 3.3: Cell, Slice and Schedulers modules class diagrams. The orange classes were
developed for multi-Slice support.

• received bytes

Using this counters, the setMeassures method calculates the basic UE performance
indicators considered by the moment:

• Packet Loss Rate (%)

• Throughput by user (Mbps)

Traffic profiles different from the described in subsection 3.2.8 could be defined
by changing the way in which packets are generated, re-writing the getPsize and
getParrRate methods from PacketFlow class.

Two classes were developed as a starting point to support inter Slice Scheduling
support: InterSliceScheduler and Slice clases. The first one implements directly
the basic inter slice scheduler, as it dynamically allocates band PRBs between
the different configured Slices. The second one manages Slices requirements and
translates to Slices configuration. For each Slice, two new instances of the In-
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Figure 3.4: Queues operative1.

traSliceScheduler class will be created (one for DL and another for UL scheduling)
and will operate according to the slice configuration.

LTE scheduler class inherits from IntraSliceScheduler class overwriting the set-
Mod method to implement LTE scheduler considering the main differences with
NR in terms of MCS selection, TBS calculation, and signalling overload. In this
way LTE simulations can be executed creating one slice with the LTE scheduler.

The intra slice scheduler’s basic operation can be seen in the figure 3.4. The ap-
plication generates a packet flow through the queueAppPckt method. Each packet
is stored in an application queue, the first who appears in the figure 3.4. Then,
when the UE reach the RRC-connected state in the cell, the DRB is established
and its packets go to the bearer queue, through the receivePckt method. Then, the
scheduler assigns resources for all the active bearers, and takes packets from there
to make TB with an appropriate MCS according the UE SINR at the moment,
and put them in the Scheduler queue through the queueUpdate method. Finally
the scheduler takes the TB from the queue at each TTI, and send them through
the air interface. The TB are successfully received with a probability of (1-BLER).

The simulation.py file has no classes, because it was designed as a python
script, to configure and run a simulation. It prints average simulation results in
the terminal at the end of the simulation. The simulation file also triggers traffic
statistics processing to make different kind of charts to show simulation results
using the Results.py module. The last module contains several auxiliary methods
for kpi processing and charts creation and a class to manage the UE’s groups which
the simulation runs for. It also contains a SINR generator, to define the initial
SINR of each UE in the simulation.

3.3 Features Support
The following sections briefly describes Py5cheSim main supported features along
with the considered models and design choices taken.
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3.3.1 UL/DL Support
At the moment, the simulator supports only one UL or DL bearer by UE, and ACK
in the opposite direction is not being considered. Furthermore, HARQ procedures
are also not being considered to reduce the implementation complexity. The same
MCS tables are applied for UL and DL, and overhead is introduced in TB size
calculation according to throughput estimation in [31].

3.3.2 Different Traffic Profiles
The simulator supports different traffic profiles configuration by groups of UEs.
Traffic profile is set in terms of average packet size (in bytes) and arrival rate (in
ms). Packets of a size S will arrive at a rate R. S and R are random variables
with Pareto distribution with a mean value equal to the packet size set for the
simulation, and truncated to twice its value. This traffic model was based on
the streaming traffic model considered in [11]. Different intensity traffic can be
considered by setting S and R in a UE group, on the simulation script.

3.3.3 SINR Generation
As the main objective of Py5cheSim was to provide a tool for testing different
scheduling techniques through cell capacity analysis, radio channel modeling was
not a priority. In this first version, the core of the simulator basically takes UE
SINR as an input. Cell load has no impact on UE SINR, because it is assumed that
UEs activity will not have meaningful variation during the simulation. It is also
assumed that UEs won’t move during the simulation, so UE SINR will not have
meaningful variation through the simulation. Besides, SINR values are assumed to
be the same along the operating band, so there is no difference between different
PRB for each user.

In the simulation file one can configure the initial SINR. The simulator supports
two options for initial SNIR setting: all UEs using the same configured value, or
each UE in the UE group having a different initial SINR value between 5 dB
and a configured maximum. SINR then varies with time following a Gaussian
distribution centered in the initial values with a small variance.

A possible future improvement for the developed simulation tool could be the
integration of a channel model.

3.3.4 FDD/TDD Frame
Duplexing mode is set depending on the cell’s band set for the simulation. MmWave
bands use TDD, middle and low bands can use FDD or TDD. In this case duplexing
mode can be chosen in the simulation file. Note that for FR1 bands the simulator
does not check consistency between the chosen band and duplexing mode, neither
between band and configured bandwidth. The reason is to allow simulation for
more scenarios than the already standardized.
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Figure 3.5: Inter and Intra Slice schedulers basic implementation scheme.

In FDD mode, users resource allocation is made in terms of Slice configured
PRBs. This first Py5cheSim version supports only Resource allocation type 0
from [29]. In TDD mode, users resource allocation is made by slot. Although this
version does not support mini-slot scheduling yet, the implemented TDD scheduler
is prepared to support it by introducing a few changes in the resAlloc method.

3.3.5 Network Slicing
Py5cheSim provides a basic implementation of RAN Slicing as a core feature by
the use of a two level scheduler composed of an intra Slice Scheduler and an
inter Slice Scheduler. The first one is oriented to solve resource allocation between
different UEs from the same slice, and the second one to allocate resources between
the different slices instantiated on the cell. At inter slice level, resources are the
available the cell’s band PRBs. Figure 3.5 shows the basic idea behind this primary
RAN Slicing implementation.

Each Slice has a a set of requirements and a configuration. Configuration is set
automatically depending on Slice requirements in terms of delay, band, traffic load,
UE capabilities and availability. For each Slice, numerology/SCS/TTI, duplexing
mode, scheduler algorithm to use and signalling load are set at the instantiating
moment, in the setInitialConfig method from Slice class. More detail can be added
in the implemented mapping by modifying this method. In this first Py5cheSim
version intra and inter slice scheduler algorithms are indicated as an input in
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the simulation script. Allocated Slice PRB can change dynamically according to
inter Slice scheduler decision with a configurable time granularity. In this first
version only most commonly used traditional schedulers are implemented, but
new scheduler algorithms can be easily added by inheriting from the basic Round
Robin schedulers and overwriting the methods involved in the resource allocation
process (resAlloc).

3.3.6 Multiple Numerology Support
Each Slice supports any of the numerologies shown in Figure 2.16. Along with
the SCS, TTI and slot duration are set in terms of handled slots/ms. At the
moment, Slice numerology is set according to the required Delay. Table 3.1 shows
the configured mapping between RAN Delay requirements and SCS configuration
for a Slice. Note that the considered thresholds were defined taking into account
the delay analysis and results presented in [27] assuming average values for the
scheduling timings, and the direct dependence with the slot duration and SCS as
a consequence.

Delay Requirement (ms) ≤ 2.5 ≤ 5 ≤ 10 > 10
SCS (kHz) 120 60 30 15

Table 3.1: Delay requirement to SCS implemented mapping.

3.3.7 256QAM
3GPP TS 38.214 table 2 (table 5.1.3.1-2), supporting 256QAM, is used to set
modulation order (Qm) and Code Rate (R), for UL and DL. In real systems,
different MCS tables are used for UL and DL, but in this first Py5cheSim version
only DL MCS table 2 is used in both directions to provide results that can be
compared with the obtained with 5G-LENA. That is because 5G-LENA only adds
DL MCS tables 1 and 2 from 3GPP TS 38.214 [29], as can be seen in the files
nr-eesm-t1 and nr-eesm-t2 from the module source. However, new MCS tables
for UL can be easily added in Py5cheSim by means of simple modifications in the
basic intra slice scheduler.

3.3.8 Carrier Aggregation
A the moment, the simulator supports aggregation of carriers as defined in the
configuration file, with no load balancing between them. Aggregated carriers re-
sources are available to TB allocation under the same cell object. It simply works
as an increase of the cell bandwidth even though in real networks different cells
carriers can be aggregated and a UE can take their resources according to a load
balancing policy configured and its capabilities.
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3.3.9 SU/MU-MIMO
The use of SU/MU-MIMO can be configured in the simulation file, along with the
number of layers considered. In the case of SU-MIMO, the allocated resources by
UE will be multiplied by the number of layers and consequently the UE throughput.
In the case of MU-MIMO, even though there will be also more resources, the
allocated RB by UE is maintained, so more UEs can be solved in the same TTI.
In both cases it is assumed that all UEs in the group and the cell support the
configured scheme. In real networks MIMO use will depend on radio conditions
measured in terms of Rank Indication, and UE and network capabilities.

3.3.10 Different Scheduler Implementations
By default both IntraSlice as InterSlice schedulers implements Round Robin algo-
rithm. However, Proportional Fair Scheduler is also implemented at the moment,
and other scheduling algorithms can be added developing an intraSliceSched child
class. The IntraSlice and InterSlice scheduler algorithms can be set in the config-
uration file.

3.4 Design Considerations
This section presents the main abstractions made from the standard through the
implemented model in the simulator for both 5G and LTE schedulers.

3.4.1 5G Scheduling Modeling
In the case of the 5G basic intra slice scheduler, the following design considerations
apply:

• The MCS allocation is based purely on UE’s SINR. SINR-MCS tables was
generated running the cttc-nr-demo.cc example from 5G-LENA for a wide
range of SINRs.

In cttc-nr-demo.cc example BLER model is set as ns3::NrEesmCcT2, and
AMC Model as Nr::ErrorModel. This means that MCS allocation is made
dynamically to keep BLER under 10%, and MCS table 2 from 3GPP TS
38.214 [29] will be used to include 256QAM modulation. More details about
cttc-nr-demo.cc example can be found in the section 4.4.1 (next chapter).

• Channel coding rate (R) and number of bits by symbol (Qm) allocation is
made using table 5.1.3.1-2 from 3GPP TS 38.214 [29], assuming the use of
256QAM is possible for UL and DL. Note that UL MCS tables actually
does not include 256QAM. Adding a different MCS table for UL may be
considered for future improvements, and can be done easily as it is been
said in the previous section.
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• On the TBS calculation, the procedure referenced in 3GPP TS 38.214 [29]
was implemented, with some assumptions. First, TBS is estimated as N info

in 3GPP TS 38.214 [29], to reduce complexity and have results that could
be compared to 5G-LENA’s, as can be seen in 3.1.

TBS = N info = NRE ×R×Qm× l (3.1)

Here l is the number of layers used in case of SU-MIMO. R and Qm are
obtained from the MCS table as mentioned before. N RE is given by equation
3.2 where nPRB is the number of PRB allocated to the UE. N ′RE is estimated
as can be seen in equation 3.3 to avoid adding more tables.

NRE = N̄ ′RE × nPRB (3.2)

N̄ ′RE = min(156, 12 × SlotSymbols× (1 −OH)) (3.3)

Here N ′RE is representing the number of resource elements used for PDSCH
or PUSCH. It is assumed that the number of overhead symbols in a PRB
(12 x SlotSymbols x OH ) responds to the established in the throughput
calculation (point 4.1.2) of 3GPP TS 38.306 [31]. That is, in FR1 OH is
configured as 0.14 for DL and 0.08 for UL. In FR2 OH is configured as 0.18
for DL and 0.10 for UL. It is important to note that overheads considered
later are including all possible resource use for other things different from
the PDSCH and PUSCH (SSB, PHY channels and signals). In real net-
works this channels and signals will imply a variable overhead, but in this
Py5cheSim version the later assumption was made to simplify the imple-
mentation. Future versions could have a more realistic approach.

• BLER percentage is based on the results obtained from the 5G-LENA exam-
ple. As in test simulations made for validation purposes the resulting BLER
was zero in all cases for the obtained SINR-MCS tables, at the moment in
Py5cheSim BLER is set to zero. However, the possibility to re transmit a
TB is considered in the implementation just changing the BLER attribute
value through the setBLER method in intraSliceScheduler class.

• The resource allocation scheme follows the standard’s approach: in frequency
resource allocation type 0 is used. The RBG size depends on the band size
in use as stated in tables 5.1.2.2.1-1 and 6.1.2.2.1-1 in 3GPP TS 38.214 [29].
It is also possible to allocate the entire band to each UE in a TTI basis.
Resource allocation to a UE is made when there are available resources for
that, not considering the scheduling timing parameters given by the standard
(K0, K1, K2), again, for simplification purposes. Future Py5cheSim versions
with delay measurements support should consider it.

• In time domain, different slot types are supported when using TDD by
changing the number of DL symbols indication in one slot. Resource alloca-
tion is made here with a slot granularity by default, and it is assumed that
different UEs will be using different beams and the use of beamforming has
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no impact on resource allocation other than the estimated with overheads
later considered. As a consequence, resource allocation in a TDD cell will
be only in time domain. Initial DL/UL symbol allocation is defined accord-
ing to the relation in traffic profiles and number or UEs configured in each
direction. DL/UL symbol allocation is static in this version of Py5cheSim.
Dynamic DL/UL symbol allocation can be implemented in a new inter slice
scheduler simply building a new class which inherits from interSliceScheduler
and overwriting the resAlloc method.

• Packets in Bearer buffer can be fragmented and concatenated to fit in the
TBS.

3.4.2 LTE Scheduling Modeling
In the case of the LTE basic scheduler, the following design considerations apply:

• Only DL was considered for the LTE scheduler because LTE scheduler was
developed at the begining of the project, only for basic structure validation
purposes (5G-LENA simulator wasn’t available yet).

• Spectral efficiency was calculated using the Shannon Law equation, config-
ured BER and UE SINR as can be seen in equation 3.4.

SpecEff = log2

(
1 − SINR

ln 5×BER
1.5

)
(3.4)

SINR is generated for each UE using the SINR generator in the results.py
module, and BER is set in the LTE scheduler class.

• CQI is set according to the spectral efficiency calculated before using the
cqiTable (table 7.2.3-1 from TS 36.213 [28]).

• Using the quantized Spectral Efficiency from the cqiTable, MCS and TBS
(Transport Block Size) index is determined from the table modTable through
the procedure and table presented in R1-081483 (as in the lena module from
ns3 ) and table 7.1.7.1-1 from TS 36.213 [28]. From the MCS table presented
in R1-081483 MCS index is obtained for the spectral efficiency, and table
7.1.7.1-1 from TS 36.213 shows the mapping between MCS index and TBS
index. The modTable in Py5cheSim contains the resulting mapping between
spectral efficiency and TBS index.

• Using the TBS index TBS is obtained from the tbsTable (table 7.1.7.2.1-1
from TS 36.213 [28]).

• The amount of PRB allocated to each UE is set in the resAlloc method.
PRB are allocated by RBG, which depends on the bandwidth available, as
specified in Table 7.1.6.1-1 from TS 36.213. Resource Allocation Type 0 was
always assumed for PDSCH.
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• Packets in Bearer buffer can be fragmented and concatenated to fit in the
TBS.

• BLER is determined by user using the blerTable depending on SINR, MCS
allocated, and BER configured. blerTable is based on results obtained runing
the lena module for the same input.

3.5 Schedulers
Two possible scheduling algorithms for intra and inter slice scheduling are actually
supported by Py5cheSim:

• Round Robin

• Proportional Fair, with configurable exponents

In the following, intra and inter slice implementation for each one are briefly de-
scribed.

3.5.1 Intra Slice Schedulers
For FDD simulations resource allocation for different UEs here is done in terms of
PRB. The next scheduling algorithms are supported.

• Round Robin: the same amount of resources are allocated to the different
users with active bearers and non empty buffers, with no preference between
each other. This is the default scheduler implemented in the LTE scheduler
and intraSliceScheduler classes. Note that even if there is no preference,
users with lower SINR tend to use more resources than users with higher
SINR, because the former ones fill the bearer buffer with packets more often
than the last ones.

• Proportional Fair, with configurable exponents: cell resources in each
TTI are allocated to the user who has the biggest relation between actual
achievable throughput, and past throughput:

actualThroughputnumExp

pastThroughputdenExp
(3.5)

There are different ways to calculate the past throughput in the current
bibliography. In this implementation, the past throughput is the average
between the throughput reached during a configurable number of subframes
through the promLen attribute of PF Scheduler class.

Note that as different exponents can be configured for numerator and de-
nominator in the metric expression (ec. 2.1), different schedulers can be
obtained. For example, configuring numExp = 1, and denExp = 0, the re-
sults of a Maximum Rate Scheduler can be obtained.
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For TDD simulations resource allocation is done in a TTI granularity along
the entire band. Only Round Robin TDD scheduler is supported at the moment.
Other algorithms can be added as new classes inherited from TDD Scheduler class.

3.5.2 Inter Slice Schedulers
The inter Slice Scheduler allocates resources for each slice with a configured time
granularity always longer than the maximum possible TTI. The resources are the
sub-band assigned for each slice, in terms of PRB (Physical Resource Blocks). The
maximum TTI is the one obtained from the minimum subcarrier spacing configu-
ration, which is 1 ms, corresponding to 15 kHz. For the inter Slice Scheduler, at
the moment the following algorithms are supported:

• Round Robin: allocates statically the same amount of PRB to each defined
slice, independently of the bearer buffer size in each slice. It is implemented
in interSliceScheduler class as the default inter Slice Scheduler. New al-
gorithms can be implemented by extending this class in the Scheds Inter
module.

• Round Robin Plus: allocates the same amount of resources to each slice
with packets in UE bearer buffers. If a slice has no packets in any of their
UE’s bearers, it will not be considered for resource allocation and resources
will be divided between the other slices.

• Proportional Fair, with configurable exponents: allocates cell resources
based on the relation between current possible Slice throughput in terms of
average UE possible TBS, and past Slice throughput, in terms of received
bytes, as can be seen in the next equation:

averageUeTBSnumExp

receivedBytesdenExp
(3.6)

The simulator allows to configure the time granularity for the InterSlice schedul-
ing decision by setting the granularity attribute in the interSliceScheduler class.
It also allows to configure the duration (in seconds) of the received bytes history
to consider in the metric calculation, by setting the rcvdBytesLen in PF scheduler
class.

3.6 Chapter Summary
In this chapter Py5cheSim features, architecture and main design considerations
were presented and explained. The next chapter will show the tool validation tests
results, and possible use cases, followed by this thesis conclusion.
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Chapter 4

Simulator Validation

This chapter presents Py5cheSim validation methodology and its main results.
The validation was made through the nr module from ns3 simulator, also known as
5G-LENA [8], and theoretic throughput calculator tool from [42]. The general idea
behind this validation was to test the developed simulator operation and compare
performance results with the references in terms of the main KPI considered. The
goal is to not exceed 10% of error margin. Note that the developed simulator
implies a really big simplification of the standard procedures, so an error margin
should be expected.

Simulator validation was made in two levels: An intra-Slice validation level,
and an inter-Slice validation level. In the first case, validation was made in terms
of:

• AMC operation and resulting TBS

• Throughput measures

• Different implemented intra-Slice schedulers operation

• Features support: CA and MIMO

In the second case, validation was made in terms of:

• Slice Management

• Different inter-Slice schedulers operation

4.1 Intra-Slice level Validation
This section describes Intra-Slice level validation tests and shows comparison re-
sults with those obtained through the reference tools.
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4.1.1 Reference Validation Tools
Most of Intra-Slice validation was made by comparing Py5cheSim simulation re-
sults with those obtained with the cttc-nr-demo.cc example from 5G-LENA sim-
ulator. The nr module from ns3 (also known as 5G-LENA) was chosen as a
reference tool for validation given the extensive testing and usage of its predeces-
sor, the lena module from ns3, which was taken as a baseline for the nr module
development. The lena module is available since 2011 and has evolved along with
the standard adding most of the LTE features released by 3GPP. It has been used
and tested in a significant amount of research works about LTE, including the
LTEst project [11].

The cttc-nr-demo.cc contains a simulation basic example with one gNB and a
configurable number of UEs downloading packets with a configurable traffic profile.
Cell’s band, bandwidth and numerology are configurable. Although the simulation
has configured two bandwidth parts, the original script was adapted to use only
one. Also a few lines were added to support UL traffic, configure Error based
AMC model, MCS table 2 from 3GPP TS 38.214 and the scheduling algorithms
to test. Different SINR were generated by changing UE distance to gNB, or the
UE/gNB transmission power. Also, for schedulers validation in FDD a few changes
in grid-scenario helper was introduced to have more than one UE with different
SINR.

A Python script was created to run simulations in 5G-LENA and then in
Py5cheSim, with the same scenario, traffic profile and configuration. This script
parses the resulting traces in the RxPacketTrace.txt file from 5G-LENA and the
results obtained from Py5cheSim and build charts with the main kpi considered
for validation, for each SINR. Note that, although in Py5cheSim traffic profile has
a random component, as for validation purposes only full buffer traffic profile was
considered, it wasn’t found necessary to make an statistical approach for that.
Py5cheSim and 5G-LENA results are taken as deterministic in this validation
procedure.

As for the theoretic throughput calculation tool from [42], it basically consist
in the application of the equation for maximum UE throughput from [31]. Fea-
tures validation was made using this tool configuring cell bandwidth, numerology,
number of carriers or layers depending on the case, R and Qm. In TDD case was
also configured DL/UL proportion of symbols in one slot. Again, as full buffer
traffic model was used, Py5cheSim results were taken as deterministic.

4.1.2 NR AMC and TBS Validation
AMC validation was made comparing MCS allocation with cttc-nr-demo.cc script
results for a wide range of SINRs, using the same band and bandwidth, no CA
nor MIMO, and only one UE with full buffer DL traffic profile. Figure 4.1 shows
validation results. Similar results can be obtained for full buffer UL traffic.

TBS validation was made using the same script to compare MCS. TBS com-
parative results can be seen en Figure 4.2.

As can be seen, MCS are allocated mainly according to 5G-LENA results,
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Figure 4.1: Py5scheSim vs 5G-LENA MCS comparison example for a 5 MHz FDD cell with
DL full buffer traffic.

Figure 4.2: Py5scheSim vs 5G-LENA TBS example.
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Figure 4.3: Py5cheSim vs 5G-LENA BLER example.

as expected considering how AMC was implemented in the developed simulator.
Remember that Py5cheSim’s MCS tables were defined according to 5G-LENA’s
simulation results configuring AMC based on Error model as a reference. AMC
algorithm is implementation dependent and often configurable in real systems, so
its evaluation is beyond the scope of this thesis. More realistic AMC algorithm
implementation can be done overwriting the setMod method in the scheduler im-
plementation. The same occurs with BLER. Py5cheSim’s BLER was adjusted to
5G-LENA’s simulation results, but more realistic BLER model can be implemented
overwriting the setBLER method.

Py5cheSim MCS allocation was adjusted to the results obtained with 5G-
LENA to be able to use 5G-LENA’s results as a reference to compare for valida-
tion purposes. As UE and cell throughput will strongly depend on MCS allocation,
throughput comparison could not be possible if the different simulation tools allo-
cate different MCS. With that said, the few differences noted between Py5cheSim
MCS allocation and 5G-LENA’s respond to the simplifications made in the devel-
oped simulator along with the finite tabular results management.

TBS comparative results are also according to expected, considering the im-
plementation, and the dependency with the AMC latter described. Note that
overhead parameters in TBS formulas were adjusted to 5G-LENA simulation re-
sults only for validation purposes.

BLER comparative results shown in Figure 4.3 are also according to expected,
considering the implementation. Note that results obtained in Figure 4.3 for 5G-
LENA could be explained considering the BLER allocation mechanism in 5G-
LENA and the resulting MCS shown in Figure 4.1. Given the error model and
AMC option configured, 5G-LENA allocates the highest MCS with BLER lower
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Figure 4.4: Py5cheSim vs 5G-LENA Throughput example.

than 0.1. As BLER values are tabulated it is possible that for the considered code
word size and SINR, BLER values higher than 0 were not lower than 0.1. Further
more, Figure 4.1 shows that MCS 27 is only allocated for SINR higher than 35 dB
and for SINR between 20 and 30 dB (which are generally considered as good radio
condition) allocated MCS are between 15 and 24. This restrictive MCS allocation
is reasonable in a network with no margin for error in the air interface. So although
the observed values may seem strange for the configured AMC and error model,
resulting MCS are consistent with a BLER equal to zero.

4.1.3 Throughput
Throughput validation was made in two ways: comparing the former script results
with Py5cheSim’s, and comparing the latter with the web throughput calculation
tool’s, on the same scenario. Figure 4.4 shows 5G-LENA vs Py5cheSim results.

Throughput results are strongly influenced by MCS allocation and TBS calcu-
lation methods, so differences in MCS produce changes in the resulting through-
put. Note also that TBS differences with 5G-LENA can be expected, because
Py5cheSim considers a fixed overhead while in 5G-LENA it can change according
to DMRS allocated symbols. However, even with the noted differences in TBS
calculation methods, throughput results does not present meaningful differences.

In Tables 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 maximum throughput comparison with
the the tool available on [42] is shown. Throughput is calculated considering the
highest MCS in use, and no CA nor MIMO, for different bandwidths and SCS,
covering FDD and TDD cases. Error is calculated as the difference between results
relative to Throughput calculator’s value.

When comparing Py5cheSim’s results with those obtained from the theoretic
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Bandwidth Py5cheSim Throughput Calculator Relative error

5 MHz 25.3 Mbps 26 Mbps 3%
10 MHz 52.8 Mbps 56 Mbps 6%
20 MHz 106.7 Mbps 114 Mbps 6%

Table 4.1: DL FDD Throughput comparison for 15 kHz SCS

Bandwidth Py5cheSim Throughput Calculator Relative error

5 MHz 27.2 Mbps 28 Mbps 3%
10 MHz 56.5 Mbps 60 Mbps 6%
20 MHz 112.6 Mbps 122 Mbps 8%

Table 4.2: UL FDD Throughput comparison for 15 kHz SCS

throughput calculation tool, most differences are explained by the TBS calculation
method. Throughput calculator on [42] does not trunk N’RE value.

Bandwidth Py5cheSim Throughput Calculator Relative error

5 MHz 22.4 Mbps 24 Mbps 7%
10 MHz 48.8 Mbps 52 Mbps 6%
20 MHz 102.6 Mbps 110 Mbps 7%

Table 4.3: DL FDD Throughput comparison for 30 kHz SCS

Bandwidth Py5cheSim Throughput Calculator Relative error

5 MHz 23.9 Mbps 26 Mbps 8%
10 MHz 51 Mbps 54 Mbps 6%
20 MHz 107.9 Mbps 116 Mbps 5%

Table 4.4: UL FDD Throughput comparison for 30 kHz SCS

Bandwidth Py5cheSim Throughput Calculator Relative error

50 MHz 255 Mbps 270 Mbps 6%
100 MHz 509 Mbps 538 Mbps 5%
200 MHz 999 Mbps 1078 Mbps 7%

Table 4.5: DL TDD Throughput comparison for 60 kHz SCS
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Bandwidth Py5cheSim Throughput Calculator Relative error

50 MHz 282 Mbps 296 Mbps 4%
100 MHz 559 Mbps 592 Mbps 6%
200 MHz 1093 Mbps 1182 Mbps 8%

Table 4.6: UL TDD Throughput comparison for 60 kHz SCS

Figure 4.5: SINR per UE for the three UEs considered in scheduler validation tests.

4.1.4 Schedulers
The following sections present scheduling validation results. Scheduling validation
was made comparing 5G-LENA script results with Py5cheSim’s on a scenario with
3 UEs with full buffer traffic profile and different SINRs, using Round Robin and
Proportional Fair schedulers. Figure 4.5 shows SINR per UE. The comparison
script in this case use the SINR values obtained from 5G-LENA for the three
users as an input for Py5cheSim, assuring the same SINR values are used in the
two simulation tools.

Note that even tough resource allocation type 0 was implemented in the de-
veloped simulator for the FDD case, there is a difference respect to the standard
procedure and the 5G-LENA implementation. In Py5cheSim if more than one
RGB is allocated to a user, allocated RGBs to the same UE in the same TTI will
not be consecutive. Although the later implies a difference in TBS results, the
number of PRB allocated by TTI per UE remains unchanged, as can be seen in
the following subsections. UE throughput also has no impact because of this.

Round Robin

Figure 4.6 shows Round Robin resource allocation per user. As can be seen,
Py5cheSim distributes PRB between the three users equally, as expected from
the Round Robin algorithm implementation. Differences with 5G-LENA can be
explained considering the implementation differences latter noted.
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Figure 4.6: PRB allocation distribution per UE using Round Robin scheduler.

Figure 4.7: PF01 PRB allocation distribution per UE.

Proportional Fair

In this case three variants of the algorithm were tested, in the conditions explained
before.

• Proportional Fair with numExp = 0 , and denExp = 1, PF01 from here on.

• Proportional Fair with numExp = 1 , and denExp = 1, PF11 from here on.

• Proportional Fair with numExp = 1 , and denExp = 0, PF10 from here on.
In this case, as 5G-LENA does not allow to configure the past throughput
exponent and the possible throughput exponent (alpha) value must be be-
tween zero and one there is not comparison, showing the results obtained
with Py5cheSim.

Figures 4.7, 4.8, and 4.9 shows PF01, PF11 and PF10 resource allocation per user.

48



4.1. Intra-Slice level Validation

Figure 4.8: PF11 PRB allocation distribution per UE.

Figure 4.9: PF10 PRB allocation distribution per UE for three UE Py5cheSim simulation.

When using PF01 most resources are allocated to UE2, and less to UE3, as
expected considering UE2 has the lowest SINR and UE3 the higher, and PF01
scheduler gives resources to the user with lowest past throughput. When using
PF11 resources are allocated almost evenly between users as expected, considering
that FP11 scheduler takes into account both, possible throughput for the radio
conditions and past throughput so a good balance in resource allocation should
be expected. When using PF10 most resources are allocated to UE3, and less to
UE2, as expected considering UE2 has the lowest SINR and UE3 the higher, and
PF10 scheduler gives resources to the user with biggest possible throughput, i.e.
the biggest SINR.

TDD

TDD implemented scheduler assumes that all UEs are served through different
beams, so resource allocation is made only in time domain. Although by default
cell resources are assigned with a slot granularity, the TDD scheduler class allows
mini-slot allocation by modifying the resAlloc method. At the moment, only
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Figure 4.10: SINR per UE in TDD scheduler validation test.

Figure 4.11: Symbol allocation distribution per UE

Round Robin algorithm is available.

TDD scheduler was validated with the same procedure described for the FDD
case, only changing SINR by user, as can be seen in figure 4.10.

For this test, resAlloc method on TDD Scheduler was modified to schedule
UEs with a symbol granularity, to be comparable with resource allocation made
in 5G-LENA. Note that, as in the FDD case, if more than a symbol are allocated
to a UE, it will not be consecutive. Again, although it implies a difference in TBS
results, the number of symbols allocated by TTI per UE remains unchanged, as
can be seen in the figure 4.11.

As can be seen, Py5cheSim distributes symbols between the three users equally,
as expected from the Round Robin algorithm implementation. Differences with
5G-LENA can be explained considering the implementation difference latter noted.

In TDD case, UL/DL scheduling was also validated considering two UE groups,
one with UL traffic and other with DL, simultaneously. The number of symbols for
DL and UL is configured as an attribute in the Slice class. In this case, for DL eigth
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symbols was used, while four was used for UL. UE throughput was compared with
the obtained with 5G-LENA using the same amount of symbols in each direction.
Table 4.7 shows UE throughput comparison for each case.

Direction 5G-LENA Py5cheSim Relative error

DL 152 Mbps 144 Mbps 5%
UL 68 Mbps 64 Mbps 6%

Table 4.7: TDD Throughput comparison using eigth symbols for DL and four for UL

The presented results show that the different implemented schedulers on Py5cheSim
operates according to the expected for each algorithm in terms of resource alloca-
tion distribution between users.

4.1.5 Features
In the following, MIMO and CA features validation results are presented. Both
features validation were made comparing Py5cheSim resulting throughput with
the obtained from the theoretic throughput calculation tool from [42]. Simulation
was made with one or more UEs with full buffer traffic and features support as
shown in the next tables.

SU-MIMO

For SU-MIMO validation, one UE full buffer traffic simulation with different num-
ber of supported layers was executed, and obtained results were compared with
those of the throughput calculation tool from [42], under the same conditions (Qm,
Rmax, SCS, bandwidth, and useful symbols by slot). Tables 4.8 and 4.9 shows
obtained results for a 10 MHz FDD cell, and 4.10 and 4.11 for a 100 MHz TDD
cell.

Layers Py5cheSim Throughput Calculator Relative error

4 layers 210 Mbps 222 Mbps 5%
8 layers 422 Mbps 446 Mbps 5%

Table 4.8: FDD DL Throughput comparison using SU-MIMO for 4 and 8 layers, and 10 MHz
bandwidth.

When running the simulation with more UEs with the same SINR, in each case
cell throughput remains as shown in comparison tables. Note that, at the moment
the simulator assumes that all UEs supports the number of layers required, and the
radio conditions are good enough. In real scenarios the use of SU-MIMO depends
on UE capability, network configuration, and radio conditions.
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Layers Py5cheSim Throughput Calculator Relative error

4 layers 224 Mbps 238 Mbps 6%
8 layers 450 Mbps 476 Mbps 6%

Table 4.9: FDD UL Throughput comparison using SU-MIMO for 4 and 8 layers, and 10 MHz
bandwidth.

Layers Py5cheSim Throughput Calculator Relative error

4 layers 2033 Mbps 2154 Mbps 6%
8 layers 4026 Mbps 4310 Mbps 7%

Table 4.10: TDD DL Throughput comparison using SU-MIMO for 4 and 8 layers, and 100
MHz bandwidth.

Layers Py5cheSim Throughput Calculator Relative error

4 layers 2226 Mbps 2366 Mbps 6%
8 layers 4429 Mbps 4730 Mbps 6%

Table 4.11: TDD UL Throughput comparison using SU-MIMO for 4 and 8 layers, and 100
MHz bandwidth.

MU-MIMO

The next tables shows comparison results for MU-MIMO tests. Comparison is
made in terms of cell throughput for different configurations. First with 4 UEs
with 4 MU-MIMO beams, next 2 UEs with 4 MU-MIMO beams, and finally, 4
UEs with 2 MU-MIMO beams.

Configuration Py5cheSim Throughput Calculator Relative error

4 UEs/4 beams 212 Mbps 222 Mbps 5%
2 UEs/4 beams 211 Mbps 222 Mbps 5%
4 UEs/2 beams 106 Mbps 112 Mbps 5%

Table 4.12: FDD DL Throughput comparison using MU-MIMO for 2 and 4 UEs and beams,
and 10 MHz bandwidth.

As can be seen, relative errors don’t exceed the values shown in previous sec-
tion. Note that when there are more MU-MIMO beams than users, the extra
capacity is used to improve UE throughput, as expected. UEs SU-MIMO support
is assumed. Also note that although MU-MIMO for TDD case is not considered,
under the assumption of analogue beamforming use, the current implementation
does not forbid it.
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Layers Py5cheSim Throughput Calculator Relative error

4 UEs/4 beams 233 Mbps 238 Mbps 2%
2 UEs/4 beams 226 Mbps 238 Mbps 5%
4 UEs/2 beams 113 Mbps 120 Mbps 6%

Table 4.13: FDD UL Throughput comparison using MU-MIMO for 2 and 4 UEs and beams,
and 10 MHz bandwidth

Carrier Aggregation

To test CA feature implementation, again, Py5cheSim UE obtained throughput is
compared with the obtained by Throughput Calculation Tool on [42]. Simulation
is made for a one UE scenario with full buffer traffic, no MIMO use, and different
CA configurations. Tables 4.14 , 4.15 , 4.16 and 4.17 presents the obtained results.

Note that, this implementation of CA has a big degree of simplification in the
3GPP procedures. First, as this is a cell level capacity simulator, the bandwidth
increase is associated here to one cell. Furthermore, when configuring CA in
the script simulation it is assumed that all UEs support the feature and the CC
combination to simulate. The simulator makes no check of the configured carrier
combination. In real scenarios different UEs could have different capabilities in
terms of CA support, and band allocation could be made according to different
policies configured in the node (cell load for example). Also, a finite list of possible
combinations is available in each UE according to the 3GPP Release it supports.
However, if all UEs support CA combination configured, have good coverage and
there are no reasons to prioritize between the different supported carriers, as can be
seen in the comparative tables, throughput results are similar to the theoretically
expected. Having different cells for CA implementation improvement is considered
for future work.

Configuration Py5cheSim Throughput Calculator Relative error

10 + 10 MHz 106 Mbps 112 Mbps 5%
10 + 10 + 10 MHz 159 Mbps 166 Mbps 4%

20 + 20 MHz 216 Mbps 226 Mbps 4%

Table 4.14: FDD DL Throughput comparison using different CA combination examples.

Finally, simulations were repeated considering more than one UE, and cell
throughput obtained is approximately equal to the obtained with one UE with full
buffer traffic.
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Configuration Py5cheSim Throughput Calculator Relative error

10 + 10 MHz 115 Mbps 120 Mbps 4%
10 + 10 + 10 MHz 172 Mbps 178 Mbps 3%

20 + 20 MHz 232 Mbps 242 Mbps 4%

Table 4.15: FDD UL Throughput comparison using different CA combination examples.

Configuration Py5cheSim Throughput Calculator Relative error

50 + 50 MHz 510 Mbps 538 Mbps 5%
50 + 50 + 50 MHz 763 Mbps 808 Mbps 6%

100 + 100 MHz 1019 Mbps 1078 Mbps 6%

Table 4.16: TDD DL Throughput comparison using different CA combination examples.

Configuration Py5cheSim Throughput Calculator Relative error

50 + 50 MHz 568 Mbps 592 Mbps 4%
50 + 50 + 50 MHz 846 Mbps 886 Mbps 5%

100 + 100 MHz 1127 Mbps 1182 Mbps 5%

Table 4.17: TDD UL Throughput comparison using different CA combination examples.

4.2 Multi-Slice Validations
From here on, multi-slice validation is described. Note that, as at the moment there
is no multi-slice simulator to compare with, validation will be made considering
the expected results according to theory.

Multi-Slice validation is organized in two parts, according to the implementa-
tion structure. First, the slice creation and configuration according to the service
requirements is validated. Then, Inter-slice schedulers operation is validated.

4.2.1 Slice Management Validation
Given the conceptual, simple and intuitive implementation of Network Slicing in
this work, Slice management validation is made basically by checking the Slice con-
figuration is according to the service requirements and the established mapping
on setInitialConfiguration method from Slice Class. Note that different mapping
between service requirements and Slice configuration can be implemented over-
writing the later method. In this implementation Slice configuration is actually
made in terms of:

• SCS: According to required delay

• AMC: Normal MCS allocation according to SINR or Robust
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• Signalling Load: low or high

• Scheduling Algorithm: Set manually for each UE group in the simulation
script

• DL/UL symbol allocation in TDD case

• Allocated PRBs: Resources are equally allocated to different Slices by de-
fault, but can change with other InterSlice scheduler implementations.

Except of resource allocation, Slice configuration is made at the creation moment,
and remains unchanged during the simulation. It is assumed that some service
requirements will not change during the simulation. However, as the number of
UEs and traffic intensity could change, resource allocation between slices can be
updated, with a configurable time granularity. Note that in real implementations
there could be more parameters to configure within a Slice. However, it wasn’t
considered here, given the high degree of simplification in 3GPP procedures made
in this implementation.

Table 4.18 shows the configured mapping between RAN Delay requirements
and SCS configuration for a Slice.

Delay Requirement (ms) ≤ 2.5 ≤ 5 ≤ 10 > 10
SCS (kHz) 120 60 30 15

Table 4.18: Delay requirement to SCS mapping implemented in dly2scs method from Slice
class.

As for signalling load, two levels were considered:

• Normal Signalling Load: used for eMBB and URLLC Slice types

• Low Signalling Load: used for mMTC Slice types

If the service requires high availability AMC algorithm is modified to allocate
an MCS index lower than the expected for that SINR.

For Slice Management validation simulations were run using different service
requirements, and Slice configuration is checked to be consistent with the criteria
explained before:

As can be seen, Slices are configured according to service requirements and
the established mapping in the Slice class. Resource Allocation between slices is
equal in terms of bandwidth, but the number of PRB in each case respond to the
numerology used. Note that even though 2ms delay is required for the URLLC-1
group, 60 kHz SCS is configured. This is because in this simulation the configured
band is in FR1, and at least in R15, there is no support for 120 kHz SCS in FR1
bands. When running the same simulation in a TDD cell SCS for URLLC-1 UEs
is 120 kHz, and 60 kHz for the other UE groups, as expected.
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Slice Name eMBB-1 mMTC-1 URLLC-1
Delay Requirement (ms) 10 20 2
Reliability Requirement High

Allocated PRBs 17 35 8
SCS (kHz) 30 15 60

Signalling Load Normal Low Normal
Robust MCS allocation False False True

Table 4.19: Simulation with 3 UE groups in a 20 MHz cell. Service requirements vs Slice
configuration.

4.2.2 Inter-Slice Scheduler Validation
Inter-Slice Scheduler validation is made by running simulations with more than
one UEgroup, and checking that resource allocation between Slices is according to
the scheduler algorithm used. Note that at the moment of writing this document,
there are no multi-Slice simulators to compare with.

At the moment Py5cheSim presents three inter-slice schedulers:

• Round Robin: allocates the same amount of resources to the different
slices, even if there is no traffic on UE bearer queues.

• Round Robin Plus: allocates the same amount of resources to the different
slices, only with traffic in UE bearer queues. For example, if there are three
Slices, but at the moment of scheduling resources between them, only two
has UEs with traffic, band resources will be equally distributed between the
other two.

• Proportional Fair with configurable exponents: allocates cell’s resources
to the Slice with the highest metric.

Note that if Slices have different numerology, even if the resources are distributed
equally between them, PRBs available will be according to the configured numerol-
ogy. However we can say that resources are equally distributed because Slices with
higher SCS, will have proportionally shorter slots (in time duration).

Also note that no BWP support in UE group is checked in this implementation
for inter slice resource allocation purposes. PRBs are assigned to a slice indepen-
dently of the BWP support on the UEs. For example, if there is an UE group with
low bandwidth support, scheduler can allocate more PRBs than the supported to
this slice. Furthermore, this implementation does not check the frequency location
of the allocated PRBs, and it is assumed that UEs supports the configured band
in the simulation script, and can use all the PRBs assigned to the slice. This may
be unrealistic for example with mMTC devices which will probably support lower
bandwidths. It could be an improvement for next Py5cheSim versions. BWP
support is only taken into account at intra slice scheduler level, to determine RBG
size.
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Figure 4.12: Resource allocation between slices using default Round Robin algorithm, in a 10
MHz FDD cell.

The following sections present different inter slice scheduling algorithm valida-
tion tests and its most meaningful results.

Round Robin scheduler

Round Robin inter slice scheduler was tested by running a simulation with 3 dif-
ferent UE groups with good SINR. UE groups have the same requirement shown
in table 4.19, and Slice configuration is according to this.

Figure 4.12 shows resource allocation between the three slices. As can be seen,
from the cell’s 52 PRB (in the 15 kHz reference numerology) 17 are allocated to
mMTC-1 slice (15 kHz SCS), 8 to eMBB-1 slice (30 kHz SCS), and 4 to URLLC-1
(60 kHz SCS). As the different slices has different numerologies, allocated PRB are
different between them, but the resources are almost the same. The difference is
explained by the trunking made by the inter slice scheduler implementation. The
next thing to note is that PRB allocation doesn’t change during the simulation,
even when mMTC-1 slice has a very relaxed traffic profile.

Figure 4.13 shows total throughput for each slice. Note that only eMBB-1 slice
is using the entire available slice bandwidth. In this case, obtained throughput is
according to the expected for a 8 PRB allocation using 30 kHz SCS (17.3 Mbps
from [42]). URLLC-1 and mMTC-1 traffic profiles have not enough intensity to
consume their respective slices resources.

In case one of the UE groups has UEs with UL traffic, resource allocation
remains unchanged. This is because in an FDD cell, RR scheduler allocates re-
sources statically for DL and UL schedulers independently of there is traffic in one
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Figure 4.13: Slices throughput using default Round Robin algorithm, in a 10 MHz FDD cell.

direction or not.

When running the same simulation (same UEgroups) in a 50 MHz TDD cell,
results are similar, as can be seen in figure 4.14 and 4.15. In this case, the band’s
66 PRBs are assigned as follows: 22 for eMBB-1 slice with 60 kHz, 22 for mMTC-1
slice also with 60 kHz, and 11 for URLLC-1 slice with 120 kHz SCS, as expected.
Again, resource allocation is static and independent of UEs traffic profile. Note
that 60 kHz is used here as a base numerology because cell’s band is in FR2, so 60
kHz SCS is valid for slices eMBB-1 and mMTC-1 delay requirements. However,
as in FR2 120 kHz SCS is supported, URLLC-1 slice can use it to provide delays
according to the configured requirement.

As for slice throughput, again, mMTC-1 and URLLC-1 slices are not expected
to use the entire slices resources, so observed throughput is due to UEs traffic
profile in this cases. In eMBB-1 slice case, as traffic profile is so much more
intense, obtained throughput is the one 22 PRB with 60 kHz can give, in this case
85 Mbps (vs 90 Mbps according to [42]).

Again, in case one of the UE groups has UEs with UL traffic, resource allocation
between slices remains unchanged. This is because in an TDD cell, RR scheduler
also allocates resources statically for each slice, and the amount of symbols used
for UL and DL in a slot is configured at slice level according to the traffic profile.
Differences respect to the Figure 4.15 can be observed in UL/DL throughput if
there are UL and DL users in the slice.
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Figure 4.14: Resource allocation between slices using default Round Robin algorithm, in a 50
MHz TDD cell.

Figure 4.15: Slices throughput using default Round Robin algorithm, in a 50 MHz TDD cell.
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Figure 4.16: Resource allocation between slices using Round Robin Plus algorithm, in a 10
MHz FDD cell

Round Robin Plus Scheduler

For this scheduler validation, the later 3 Slices simulation is repeated with traffic
profile and requirements from Table 4.19 and good radio conditions. Slices config-
uration remains the same, as expected because it does not depend of the InterSlice
scheduler algorithm.

Figures 4.16 and 4.17 shows resource allocation between slices and slice’s bearer
buffer size in a 10 MHz FDD cell.

As can be seen in figures 4.16 and 4.17, although initially resource allocation
is as with Round Robin algorithm, when there is no traffic from a slice, cell’s
PRBs are used for the remaining. As eMBB-1 slice has always traffic, it always
gets resources from the cell. When mMTC-1 and URLLC-1 slices have not traffic
(t=36000 ms), eMBB-1 slice takes all the cell’s PRBs (26, using 30 kHz SCS).
When there is not mMTC-1 slice traffic (at t=9000 ms for example), cell resources
are shared between eMBB-1 and URLLC-1 slices equally, 13 PRB to eMBB-1 slice,
and 6 to URLLC-1 (60 kHz SCS). When there is not URLLC-1 slice traffic (at
t=12000 ms for example), cell resources are shared between eMBB-1 and mMTC-1
slices equally, again, 13 PRB to eMBB-1 slice, and 26 to mMTC-1 (15 kHz SCS).
This is the expected behaviour of the implemented algorithm.

As can be seen in figure 4.18, when cell resources are assigned entirely to
eMBB-1 slice (t=36000 ms), its obtained throughput is according to the expected
for a 10 MHz cell (56 Mbps from [42]). When eMBB-1 slice has half of the cell
resources, slice throughput decreases to approximately half of the former value (for
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Figure 4.17: Bearer buffer in each slice using Round Robin Plus algorithm, in a 10 MHz FDD
cell

Figure 4.18: Slices Throughput (Mbps) using Round Robin Plus algorithm, in a 10 MHz FDD
cell
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Figure 4.19: Resource allocation between slices using Round Robin Plus algorithm, in a 50
MHz TDD cell.

example at t=9000 ms). When it has a third part of the cell’s resources, obtained
throughput decreases, again proportionally. Note that throughput in the other
slices respond to traffic profile and changes in resource allocation for the slice.

When running the same simulation (same UEgroups) in a 50 MHz TDD cell,
results are similar, as can be seen in figures 4.19, 4.20, and 4.21. Almost the same
comments than before apply here, with the following exception. As URLLC-1 and
mMTC-1 slices traffic is very low in comparison with the allocated slices resources,
the respective bearers buffers get empty quicker so there are more occasions in
which eMBB-1 slice takes the entire band.

Proportional Fair

For this scheduler validation, the last 3 Slices simulation is repeated, with traffic
profile and requirements from Table 4.19 and good radio conditions. Slices config-
uration remains the same, as expected because it does not depend of the InterSlice
scheduler algorithm. As in IntraSlice case, three different exponent configuration
were tested:

• Proportional Fair with numExp = 0 , and denExp = 1, PF01 from here on.

• Proportional Fair with numExp = 1 , and denExp = 1, PF11 from here on.

• Proportional Fair with numExp = 1 , and denExp = 0, PF10 from here on.
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Figure 4.20: Bearer buffer in each slice using Round Robin Plus algorithm, in a 50 MHz TDD
cell.

Figure 4.21: Slices Throughput (Mbps) using Round Robin Plus algorithm, in a 50 MHz TDD
cell.

63



Chapter 4. Simulator Validation

Figure 4.22: Resource allocation between slices using PF01 algorithm, in a 10 MHz FDD cell.

Figures 4.22 and 4.23 shows Resource allocation and metric for PF01 simula-
tion. As can be seen, using this configuration mMTC-1 slice has the resources
most of the time. This responds to the algorithm configuration and traffic profile.
As mMTC-1 slice has the lightest traffic profile, received bytes easily gets lower
than with the other slices. On the other hand, eMBB-1 and URLLC-1 slices oc-
casionally gets resources, typically after mMTC-1 uses the resources for a while.
This behaviour is expected considering that when configuring numExp = 0 , and
denExp = 1 metric only depends on the slice past received bytes. Slices with high
traffic will have lower metrics than slices with a light traffic profile, so will get
resources less often.

Figures 4.24 and 4.25 shows resource allocation and metric for PF11 simulation.
As can be seen, although mMTC-1 slice gets the resources more times than

with PF01, it doesn’t retain it longer. Again, this responds to the algorithm
configuration and traffic profile. As mMTC-1 slice has the lightest traffic profile,
received bytes easily gets lower than with the other slices, however when using
numExp > 0, other slices gets more chance of receive resources. In this case
metric not only depends on slice received bytes. Here eMBB-1 and URLLC-1
slices have more chance to get resources. This behaviour is expected considering
that when configuring numExp = 1 , and denExp = 1 metric depends on slice past
received bytes and average UE TBS possible.

Figures 4.26 and 4.27 shows resource allocation and metric for PF10 simulation.
Here, cell resources are taken most of the time by eMBB-1 and mMTC-1 slices.

This responds to the algorithm configuration and slice conditions. As URLLC-1
has high availability requirements, allocated MCS is lower than in other slices, so
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Figure 4.23: Metric results for each slice using PF01 algorithm, in a 10 MHz FDD cell.

Figure 4.24: Resource allocation between slices using PF11 algorithm, in a 10 MHz FDD cell.
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Figure 4.25: Metric results for each slice using PF11 algorithm, in a 10 MHz FDD cell.

Figure 4.26: Resource allocation between slices using PF10 algorithm, in a 10 MHz FDD cell.
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Figure 4.27: Metric results for each slice using PF10 algorithm, in a 10 MHz FDD cell.

average UE TBS will be lower. As metric in this case only depends on posisble
average UE TBS, URLLC-1 slice will always have lower metric, so it won’t get
resources. The expeption to this rule if when the simulation begins, because all
slices metric is initialized in 0, so a random slice is selected to gets the cell resources.
As for the other slices, cell resources are allocated between them randomly, because
there are no differences in availability requirements nor radio conditions among
them, so they will have the same metric.

Almost the same results are obtained when running the same simulation in
TDD, with the exception of the difference in the available bandwidth.

4.3 Validation Conclusion

The obtained validation results shows that even with the high level of simplifica-
tion made on this implementation, differences with those obtained from 5G-LENA
and theoretic values are under the considered error margin. Furthermore, differ-
ent scheduler algorithms were tested at intra and inter slice levels showing results
according to the expected. In this way, the developed tool is validated and consid-
ered adequate for different scheduling algorithms analysis, as long as the defined
error margin could be tolerated. More accurate results could be reached enriching
the defined models, adding, however, more complexity to the implementation.
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4.4 Chapter Summary
In this chapter Py5cheSim implementation was validated at different levels. At
Slice level, validation tests were made using different available tools in terms of
MCS allocation, TBS calculation and resulting UE throughput for different SINR
levels. Also different scheduling algorithms were tested at intra and inter Slice
levels, showing results according to the expected, and validating Py5cheSim as a
“skeleton” tool for different 5G scheduling algorithms analysis, from a cell capacity
point of view. New schedulers can be easily integrated by adding a subclass of the
basic schedulers (at intra or inter slice level) and overwriting the resAlloc method,
following the PF scheduler implementation example. The next chapter shows some
examples of use cases followed by the thesis conclusion.
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Py5cheSim Use Cases Examples

In this chapter a few simple use case examples are presented to show the utility of
the developed tool. First, PF scheduler at intra slice level is tested on traffic profiles
different than MBB/eMBB. Then, the different inter slice schedulers implemented
are tested in an scenario with different slices with different traffic profiles and
requirements.

5.1 PF Scheduler Evaluation for Traffic Profiles other
than eMBB

In this example, PF scheduler is evaluated for traffic profiles different from the
traditional MBB/eMBB. There has been several works showing the benefits of
using PF schedulers for MBB traffic profiles. Given the new services envisioned by
5G, is interesting to have a first evaluation of the well known schedulers, already
studied for the traditional traffic profiles.

5.1.1 IoT Traffic Profile Case
In this example simulation with one UE group is configured with the next charac-
teristics:

• 100 UEs with UL traffic

• Packet size: 350 bytes

• Packet inter-arrival time: 60 sec

• SINR between 2 and 8 dB

• One slice with only one PRB available, with the objective to easily stress
the cell.

This traffic profile is similar to the typically found in IoT applications (small
packets sporadically sent to a server). A more detailed traffic profile can be built
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Figure 5.1: Cell throughput for 100 IoT devices simulation using RR scheduler.

modifying getPsize and getParrRate on PacketFlow class. Note that low SINR
are configured to use low MCS, again trying to get closer to an IoT scenario.

At high level, scheduling for IoT services should be agile enough to avoid
overload the buffers in both IoT devices and network. In IoT devices because
typically this kind of terminals are cheap and simple, and probably doesn’t have
too much storage capacity. At network level it is important due to the massive
amount of this devices is intended to support. A good measure of agility in the
scheduling can be done by measuring the bearer buffer size.

Figures 5.1, 5.2 and 5.3 show simulation results using RR scheduler. The
simulation results show that cell capacity has not been exceeded, at least from a
UP perspective. However there are packets in buffer during most of the simulation.
Note that Random Access procedures and PHY Control Channel capacity evalu-
ation is not possible with Py5cheSim at the moment, so cell capacity evaluation
here is made in terms of UP data transport capacity.

Figures 5.4, 5.5 and 5.6 show simulation results using PF11 scheduler. In
this case again, cell capacity has not been exceeded as can be seen in the figures.
However the amount of packets in buffer is lower than with RR scheduler. Re-
sources are not exactly equally distributed between UEs as can be seen in Figure
5.5, according to the expected from PF11 scheduler. Although cell throughput has
almost no impact in this case, PF11 scheduler has improved the scheduling agility
resulting better than RR in this case for massive connection low intensity traffic
profiles. Note that for IoT traffic scheduling other considerations could be made
from another design aspects, as for example, device power consumption. Given
the high degree of simplification made in this implementation, this kind of consid-
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Figure 5.2: Resource Allocation for 100 IoT devices simulation using RR scheduler.

Figure 5.3: Buffer size for 100 IoT devices simulation using RR scheduler.
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Figure 5.4: Cell throughput for 100 IoT devices simulation using PF11 scheduler.

Figure 5.5: Resource Allocation for 100 IoT devices simulation using PF11 scheduler.

72



5.1. PF Scheduler Evaluation for Traffic Profiles other than eMBB

Figure 5.6: Buffer size for 100 IoT devices simulation using PF11 scheduler.

erations are out of the scope of this work. Again, a more detailed analysis could
be made adding more complexity to the developed tool. However, note that the
obtained results are valid for a primary analysis, prior to define a research line to
follow, for example.

5.1.2 URLLC Traffic Profile Case
In this example simulation with one UE group is configured with the next charac-
teristics:

• 6 UEs with UL traffic

• Packet size: 1500 bytes

• Packet inter-arrival time: 6 ms

• SINR between 10 and 30 dB

• One slice in a 10 MHz cell.

This traffic profile is similar to the typically found in video vigilance applications
(average quality video streaming traffic profile).

Scheduling for this kind of applications should be agile enough to provide a low
delay. As Py5cheSim actually does not take delay measures, agility in scheduling
will be measured again trough bearer buffer size.

Figures 5.7, 5.8 and 5.9 show simulation results using RR scheduler. As can
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Figure 5.7: Cell throughput for 6 video cameras simulation using RR scheduler.

Figure 5.8: UE throughput for 6 video cameras simulation using RR scheduler.
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Figure 5.9: Buffer size for 6 video cameras using RR scheduler.

be seen in Figure 5.9, as bearer buffer size is contained during the simulation,
cell capacity was not exceeded from an UP perspective. When running the same
simulation using PF11 scheduler, there is no improvement, as can be seen in Figures
5.10, 5.11 and 5.12. However, if the same simulation is repeated using 60 kHz
SCS, bearer buffer size is reduced, as can be seen in figure 5.13. This behabiour is
expected considering that using a bigger numerology reduces TTI, so scheduling
can be done more frequently, which improves delay and makes packets stay less
longer on buffers. Cell and UE throughput has no meaningful changes. If we
repeat the same simulation again using 60 kHz SCS and PF11 scheduler bearer
buffer size is improved again, as can be seen in Figure 5.14. Again, cell and UE
throughput has no meaningful changes.

This example shows that even though cell and UE throughput have almost no
impact, the use of a higher numerology and PF11 scheduler improves the scheduling
agility for the configured traffic profile. Again although a more detailed analysis
could be done, the obtained results are an interesting input for a future research.

5.1.3 Example Conclusion
In this section implemented PF scheduler has been tested on two scenarios different
than the typical MBB. The obtained results show that PF scheduling could be
beneficial for the considered examples based on a primary analysis made through
one of the measurements reported by Py5cheSim. More complexity can be added
to the development to enrich the analysis. Furthermore, other schedulers can be
easily implemented and integrated to the developed tool to consider more scheduler
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Figure 5.10: Cell throughput for 6 video cameras simulation using PF11 scheduler.

Figure 5.11: UE throughput for 6 video cameras simulation using PF11 scheduler.
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Figure 5.12: Buffer size for 6 video cameras using PF11 scheduler.

Figure 5.13: Buffer size for 6 video cameras using RR scheduler and 60kHz SCS.
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Figure 5.14: Buffer size for 6 video cameras using PF11 scheduler and 60kHz SCS.

options.

5.2 Multiplexing Different Services in one Cell
In this example different implemented inter slice schedulers are evaluated for mul-
tiplexing different services on the same cell. A Py5cheSim simulation is configured
with four UE groups as can be seen in Table 5.1. All UE groups are configured to

Slice Name eMBB-1 eMBB-2 mMTC-1 URLLC-1
Delay Requirement (ms) 20 20 20 5

UE number 4 15 150 8
Average SINR (dB) 25 20 5 25
Packet Size (bytes) 2000000 5000 350 1500

Packet Arrival Rate (ms) 5000 10 6000 6
SCS (kHz) 15 15 15 60

Table 5.1: 4 UE groups/slices configuration for test simulation within a 20 MHz FDD cell.

send UL traffic. Slice eMBB-1 will be handling bursty traffic trying to simulate
video or high quality image uploads. Slice eMBB-2 will have similar smartphone
background traffic with relative small packets sent every few ms. m-MTC-1 slice
will be handling a big number of devices sending small and infrequent packets to
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Figure 5.15: Four slices resource allocation in a 20 MHz cell using RR inter slice scheduler.

a server (similar to the first example of this chapter). Finally, URLLC-1 slice will
be handling eight UEs with video vigilance camera similar traffic profile (the same
tested in the later example).

As for the scheduling requirements, slices mMTC-1 and URLLC-1 will need ag-
ile packet scheduling given the devices and service requirements. Although eMBB
slices will be benefited by agile scheduling this is not a requirement.

5.2.1 Round Robin Scheduler Simulation
Figures 5.15, 5.16 and 5.17 show resource allocation, throughput and bearer buffer
size for each slice using RR scheduler for inter slice scheduling, and PF11 as intra
slice scheduler. Resource allocation between Slices is static and even as can be seen
in Figure 5.15, according to the configured inter slice scheduler. Slice throughput
responds to the different traffic profiles configured, and cell’s UP capacity was not
exceeded, as can be seen in 5.17. However all slices shows packets in bearer buffer
at some point during the simulation. Also, there is no so much room to support
more devices in the mMTC-1 slice if one doesn’t want to increase the amount of
buffered packets.

5.2.2 Round Robin Plus Scheduler Simulation
Figures 5.18, 5.19 and 5.20 show resource allocation, throughput and bearer buffer
size for each slice using RRplus scheduler for inter slice scheduling. Resource
allocation between Slices in this case takes into account slice bearers buffer status
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Figure 5.16: Four slices throughput in a 20 MHz cell using RR inter slice scheduler.

Figure 5.17: Four slices buffer size in a 20 MHz cell using RR inter slice scheduler.
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Figure 5.18: Four slices resource allocation in a 20 MHz cell using RR Plus inter slice scheduler.

Figure 5.19: Four slices throughput in a 20 MHz cell using RR Plus inter slice scheduler.
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Figure 5.20: Four slices buffer size in a 20 MHz cell using RR Plus inter slice scheduler.

as can be seen in Figures 5.18 and 5.20. Slice throughput responds to the different
traffic profiles configured, and cell’s UP capacity was not exceeded, as can be seen
in 5.20. Furthermore, eMBB-1 slice reach higher throughput than with RR sched-
uler when there are no packets in buffer for other slices, improving user experience.
However when there are not packets in buffer for the mMTC or URLLC-1 slices, as
RR Plus inter slice scheduler does not allocate PRBs for this slices, bearer buffer
increases quickly as can be seen in Figures 5.20 and 5.21, given the configured
traffic profile. Although eMBB-1 slice shows an improvement in throughput, as
mMTC-1 and URLLC-1 slices requires agile scheduling, RR Plus scheduler could
not be the best choice when having this kind of services. Another thing interesting
to note is that eMBB-2 slice, as is handling packets more frequently always has
resources even though is the slice with more relaxed scheduling constraints. RR
plus scheduler, as gives resources based on buffer status in some way is prioritizing
this kind of traffic profile, which is no desirable.

5.2.3 PF11 Scheduler Simulation
Figures 5.22, 5.23 and 5.24 show resource allocation, throughput and bearer buffer
size for each slice using PF11 scheduler for inter slice scheduling.

In this case, as cell resources are entirely allocated to the slice with the highest
metric, there are some intervals in which eMBB-2 and URLLC-1 slices has no
resources, so packets will be buffered, as can be seen in the figures 5.22 and 5.20.
However Figure 5.23 shows an important increase in eMBB-1 slice throughput.
Again, given the scheduling requirements for URLLC-1 slice, this implementation
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Figure 5.21: eMBB-1, eMBB-2 and mMTC-1 slices buffer size in a 20 MHz cell using RR Plus
inter slice scheduler.

Figure 5.22: Four slices resource allocation in a 20 MHz cell using PF11 inter slice scheduler.
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Figure 5.23: Four slices throughput in a 20 MHz cell using PF11 inter slice scheduler.

Figure 5.24: Four slices buffer size in a 20 MHz cell using PF11 inter slice scheduler.
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of PF11 scheduler doesn’t provide better results than the Round Robin scheduler.
As a general observation for this use case is interesting to note that the simplest

solution when there is always resources for services that require agile scheduling
results better than others which applies more intelligence. RR scheduler simply
divides the band equally between the configured slices without considering the
traffic profile or service requirements. The other implemented schedulers fail for
applications with agile scheduling requirements because they could not give re-
sources to a slice for a while if suddenly does not detect packets to transmit in
buffers. A possible solution could be to reduce the inter slice scheduler time gran-
ularity. Another possibility is to consider a dynamic resource allocation scheme
when PRBs are divided between slices according to the buffer size. Also Propor-
tional Fair metric could be adapted to consider the buffer size. However, given the
delay constraints of expected URLLC services, possibly the best solution for this
kind of services comes with punctured mini-slot scheduling to reduce as much as
possible the time to wait in buffer for each packet.

5.2.4 Example Conclusion
In this example three different inter slice scheduling options were tested in a sce-
nario with 4 slices with different traffic profiles and scheduling requirements. Al-
though Proportional Fair resulted better for intra slice test examples, for inter slice
scheduling of services with delay or buffer capacity constraints it does not result
better than Round Robin. The same occurs with the implemented Round Robin
Plus scheduler, which considers buffers size for scheduling decision. It is important
to note that although the developed inter slice schedulers did not work as good as
expected, Py5cheSim allows the development of new inter slice schedulers easily
to continue with the analysis.
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Chapter 6

Thesis Conclusion

In this work a light, free and simple Python tool for 5G scheduling analysis was
built. The main concepts behind the technology were introduced, and the devel-
oped tool features, architecture and design considerations were presented. Also
the main results of validation tests were shown, followed by a few simple use cases.

The obtained validation test results, along with the use case examples shows
the potential of Py5cheSim for different schedulers performance primary analysis.
New different scheduling algorithms can be easily implemented and evaluated along
with the already built ones. Furthermore, given the availability of machine learning
tools for Python, new AI based scheduling algorithms can be easily integrated. The
information given by the tool even though quite basic, is useful to understand the
scheduling operative and reach a primary conclusion. Although there is a lot to
improve in terms of the considered models, this first Py5cheSim version reaches
the objective to be a scheduler analysis base tool which serves as a starting point
for future 5G scheduling research.

As for the traditional scheduling algorithms analysis for the new 5G scenar-
ios, although more evaluation tests should be done, the obtained primary results
show that for intra slice scheduling Proportional Fair could improve Round Robin
scheduler when considering the new traffic profiles. However for inter slice schedul-
ing the primary analysis does not show the same. Other considerations should be
taken for this kind of scheduling given the different requirements of the services
to multiplex. First, buffer size should be considered when defining a metric for
resource allocation to favor agile scheduling. Besides, inter slice scheduling granu-
larity should be studied in terms of implementation possibilities, and performance
improvement vs processing load. Also AI based algorithms could offer a better
solution, considering the characteristic of the mobile traffic as shown in [43].

Given the high delay and availability constraints of URLLC services it is im-
portant to note that mini-slot punctured scheduling could provide better results
than traditional inter slice scheduling. Although the first version of Py5cheSim
does not support punctured mini-slot scheduling, given the actual TDD scheduler
implementation, mini-slot scheduling could be easily integrated. Future versions
could offer this kind of scheduling after a few changes in the TDD scheduler class.
Another interesting thing to note is that even though in the example use case IoT
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traffic was seen as one more slice, actually there are no native NR IoT devices.
3GPP actual devices are still Cat-M or NB-IoT ones. 3GPP R16 provides a way of
coexistence between this types of devices with NR traffic based on the standardized
for LTE. However simulation tools should be open and prepared to support more
things than the actually available by the standard. Future Py5cheSim versions
could integrate LTE-M and NB-IoT support easily by adding new MCS tables,
adapting TBS, and isolating the required PRBs in each case.

Also, as mentioned before, more improvements could be made in terms of the
implemented models. Better channel and error models could be added to pro-
vide more realistic results. MCS allocation could also be improved to consider the
later. Interaction between all this concepts could be better modeled taking into
account the dynamic nature of mobile traffic. More than one bearer by UE could
be supported to include ACK packets for example. Also scheduling modeling could
be improved to consider the standard timing parameters to add delay measures
for a better evaluation of scheduling algorithms in URLLC traffic cases. Carrier
Aggregation and MIMO implementation could also be improved to consider more
realistic test cases. As for Slice management, mapping between service require-
ments and configuration can be improved considering traffic load changes during
the simulation. Finally, lower layers signalling could be considered for capacity
evaluation behind the overheads included in TBS calculation. All this improve-
ments could make the simulation results more accurate, but could also add more
complexity to the developed tool, and possibly require more processing capacity
and/or time to run a simulation. Furthermore, the lightweight of this version
along with its easiness to use and to extend are some of the main advantages
that Py5cheSim presents in comparison with 5G-LENA. Py5cheSim can be eas-
ily installed and used in a regular PC with Ubuntu. A simulation can be easily
configured adding a few lines in the simulation script, in Python. The simula-
tion can take from seconds to minutes depending on the number of UEs and their
configured traffic profile. KPI charts are automatically generated after running
the simulation and stored along with simulation statistics. Although the results
obtained with 5G-LENA can be more accurate, running a simulation requires to
build a C++ simulation script following the ns3 and nr objects structure, so it
is recommended to have knowledge and experience with the tool before using it.
A simulation could take from seconds to hours in a regular PC depending on the
number of UEs and their configured traffic profile. Besides, adding new schedulers
is out of the possibilities of someone with no ns3 developing experience or at least
C++ knowledge and a lot of time to learn about ns3 and its involved modules.

As for this thesis evaluation in terms of the experience itself a few things can be
added. At the beginning of this work there was not an appropriate simulation tool
to study 5G scheduling even at a basic level. The standard was in developing phase.
In that context, the idea of creating a new simulator even maybe too ambitious, was
considered reasonable. Note that the complete version of 5G-LENA was released
six months ago, while the first was available in middle 2020. The level of detail
found in Py5cheSim models responds to the dedicated resources to the project.
From that resources, there was a part mostly at the project beginning which was
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almost entirely dedicated to learn about the technology itself. Then a first LTE
prototype was built and tested against the lte module of the ns3 simulator, which
was the only available tool for validation at that moment. Learning to use the lte
module took much more time than the expected, given the complexity of the tool.
As validation results were good enough to continue, the prototype was adapted
to consider 5G introduced features and differences in radio interface processing,
having been already released the first version of 3GPP Release 15 specifications.
Finally, the last Py5cheSim version was validated during the first part of this
year using mainly the nr module released six months ago. The amount of time
resources dedicated to validation, and particularly to learn how to use ns3 modules
for this project was really meaningful. The simulation tool is strongly oriented to
C++ developers. That had impact on available resources for model improvement,
project documentation and research itself.
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Appendix A

Py5cheSim User Manual

In this annex a brief guide to Py5cheSim use is presented.

A.1 Previous Steps
Before use the developed tool a few things need to be done:

• Check the installed python version. Py5cheSim runs in Ubuntu using Python
3.

• Install SimPy version 3 or 4. The easiest way is using python pip. In ubuntu
this could be done with the followin commands:

sudo apt-get install python3-pip
pip3 install simpy

• Install matplotlib and python-tk packages. Again in ubuntu this could be
done by running:

python3 -mpip install matplotlib
apt-get install python-tk

• Unzip and copy the simulator folder in any place on /home/your-user-name.

A.2 Configuring a Simulation
Although Py5cheSim actually has nine modules, only the simulation.py module
should be edited to run a simulation. The simulator allows to configure different
things, from cell parameters to traffic profiles for the simulation, as can be seen
next.

A.2.1 Cell Parameters
This are parameters relative to cell configuration as for example:
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• Frequency Range (FR1 or FR2)

• Cell bandwidth. It is configured as a list with as much element as CC will
be used in the simulation.

• TDD operation. True if the cell is TDD false if it is FDD.

• Buffer size (bytes). This parameter is used to define when a packet is lost.

• Inter Slice Scheduler algorithm. Round Robin will be used by default.

A.2.2 Simulation parameters
This parameters are relative to the simulation configuration as for example:

• Simulation duration (ms).

• Debugging mode option. When set to true, debugging files are generated in
html format with detailed scheduling operative for each Slice and UE.

• Measurement interval (ms). The time granularity for the statistics reports.

• Inter slice time granularity (ms).

A.2.3 UE Traffic Profiles
The simulation runs for a defined set of UE groups, each one with a defined traffic
profile. Also each UE group will be mapped to a Slice, which will be configured
according to the requirements set on the UE group. The UE group list should
contain all UE groups the simulation is configurad for.

Each UE group must be configured with:

• Number of users (DL or UL)

• Traffic profile in terms of packet size (bytes) and inter-arrival rate (ms),
according to the model specified in chapter 3. For DL simulation only DL
traffic profile parameters must be set. The same occurs with UL traffic.

• Slice label, for slice identification purposes.

• Delay requirement in ms. This would be the required delay limit at RAN
level, and will be used to set slice SCS configuration.

• Availability requirement, can be high or normal. By default is normal.

• Intra slice scheduler algorithm: RR for Round Robin, and PFXY for Pro-
portional Fair with numExp=X and denExp=Y.

• MIMO mode. Can be SU or MU depending on the type of MIMO scheme
to use.
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Figure A.1: Simulation output example.

• Number of layers in case of MIMO use.

• UEs SINR to consider during the simulation codified as a string. The first
character must be S in case all UEs has the same SINR, or D if different
UE should use different initial SINR values. Next goes the value of the UEs
initial SINR in the first case, or the maximum value of initial SINR, in the
second. For example, in a simulation with all UEs with the same initial
SINR equal to 28 dB will be coded as S28.

A.3 Running a Simulation
To run a simulation, after configuration on the simulation.py module, from a linux
terminal in the directory in which Py5cheSim was saved, simply run:

python3 simulation.py

Additionally, Py5cheSim will generate:

• A Figures folder in the current directory with different kpi measured charts.

• Intra and inter slice statistics files with the collected raw data.

• Intra and inter slice html files with the event logging for debugging purposes.
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