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ABSTRACT
Understanding the reasons behind the predictions of deep neural
networks is a pressing concern as it can be critical in several ap-
plication scenarios. In this work, we present a novel interpretable
model for polyphonic sound event detection. It tackles one of the
limitations of our previous work, i.e. the difficulty to deal with a
multi-label setting properly. The proposed architecture incorporates
a prototype layer and an attention mechanism. The network learns a
set of local prototypes in the latent space representing a patch in the
input representation. Besides, it learns attention maps for position-
ing the local prototypes and reconstructing the latent space. Then,
the predictions are solely based on the attention maps. Thus, the
explanations provided are the attention maps and the correspond-
ing local prototypes. Moreover, one can reconstruct the prototypes
to the audio domain for inspection. The obtained results in urban
sound event detection are comparable to that of two opaque base-
lines but with fewer parameters while offering interpretability.

Index Terms— interpretability, sound event detection, proto-
types

1. INTRODUCTION

After significant advances in computer vision, speech recognition,
and natural language processing, deep learning models have also
become the standard approach in environmental sound processing
tasks, such as sound event detection, audio tagging, and acoustic
scene classification [1, 2]. The increasing complexity of such mod-
els makes it difficult to explain the process that leads to its output
in a way that humans can understand. This can be problematic in
some real–world deployment scenarios. Therefore, research on in-
terpretability and accountability of predictive models are steadily
growing. In addition, interpretable models make it easier to debug,
detect biases, and design defenses for adversarial attacks [3].

Instead of creating intrinsically interpretable deep neural net-
works, most existing works follow a post hoc approach, i.e., they
try to explain the input-output behavior of a black-box model. For
example, training a linear proxy model that imitates the behavior
of the original model but is easier to interpret is a common ap-
proach [4]. However, since the proxy model is typically a local
linear approximation of a non-linear model, it can fall short of pro-
viding a reliable explanation [5]. Other post hoc explanation meth-
ods focus on studying the representations of the input data learned
by the network or highlighting the input characteristics that strongly
influence the output. For instance, saliency maps are a typical ex-
ample of this approach [6], where the gradient of the output with
respect to the input is used to identify the most relevant portions of
the input. However, this is incomplete as an explanation, as it pro-
vides no clue about how the relevant information is being used [5].

Rather than producing explanations of black-box models, some
research seeks to develop inherently interpretable neural networks
that provide faithful explanations to what the model actually com-
putes [5]. By adding specific components, one can strive for ren-
dering some form of interpretability while being as accurate as a
black-box model. An example of this is the incorporation of atten-
tion mechanisms, which are network components that learn to select
the part of the input that the rest of the model should focus on. Thus,
besides improving predictive performance, the relative importance
of the input units offers insights into the model’s decision-making
process. Yet, whether attention mechanisms can provide faithful ex-
planations is a matter of current debate, as it depends on how they
are implemented and the degree of interpretability pursued [7].

Learning through prototypes is another approach that can pro-
vide inherent interpretability to deep neural networks. Decision are
based on a few relevant examples known as prototypes that serve as
a distillation of the data and have a high interpretable value [8, 9].
A prototype is a vector that is close or identical to an instance of
the training set. Deep neural networks can learn those prototypes
in a flexible latent space. For example, the interpretable network
proposed by Li et al. [10] for image classification is based on proto-
types. The architecture appends a special prototype layer and uses
an autoencoder. The prototypes are learned in the low-dimensional
latent space produced by the encoder, and they can be reconstructed
by applying the decoder. The predictions are based on the distance
from the data instance to each prototype in the latent space. Thus,
the explanations are the prototypes and the distances to them, which
are the actual computations of the model to generate the output.

Our previous work extended this approach to audio classifica-
tion [11]. There, we proposed the Audio Prototype Network (AP-
Net) and showed compelling results when applied to speech, music,
and environmental audio, for problems with a single class label per
audio clip. However, in a polyphonic setting (i.e multi-label), an in-
put instance corresponding to several classes should be simultane-
ously close to prototypes of those classes in the latent space. Unfor-
tunately, learning such latent space proved challenging in practice,
thus motivating the alternative approach proposed herein.

In this work, we propose a novel interpretable deep neural
network for polyphonic sound event detection. To provide inter-
pretability, we leverage the prototypes network approach and atten-
tion mechanisms. The network learns local prototypes, i.e. data
points in the latent space representing a patch in the input repre-
sentation. The approach is similar to that of [12] for single class
image classification, which compares image parts to learned proto-
types. However, we extend the scope to a multi-label setting with
promising results in sound event detection. Besides, the proposed
model learns attention maps used for positioning the local proto-
types and reconstructing the latent space properly. Then, the detec-
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tion is solely based on the attention maps. Thus, the explanations of
the network are in the form of local prototypes and attention maps.

2. RELATED WORK

Some post hoc visualization methods have been applied in the au-
dio domain. For instance, in [13] a convolutional–recurrent network
trained for polyphonic sound event detection was evaluated using
saliency maps. In [14], a gradient–based approach was proposed
for visualizing heat maps in the first layer of an end–to–end con-
volutional neural network. Regarding proxy models, SLIME [15]
is a variation of the LIME [4] algorithm for audio content analysis,
which produces visual explanations in the form of temporal, fre-
quency, and time-frequency segmentation. The model we propose
herein also generates visual explanations of its predictions, but these
are faithful to its computations instead of post hoc explanations.

Prototypical learning has been applied to audio problems but
not necessarily looking for interpretability. For example, Pons
et al. [16]—following [17]—used prototypical networks for audio
classification with few data. However, their system is not intended
to be interpretable, so one can not reconstruct the prototypes to the
input space. In contrast, APNet and the model we propose herein
allow for reconstructing the prototypes to the input space through
the decoder and then mapping them to the audio domain.

The first models that used attention mechanisms in the audio
domain applied them in conjunction with recurrent networks for
speech recognition [18, 19]. Nowadays, attention mechanisms are
widely used for speech, music, and other audio-related problems
because of their ability to capture long-term temporal information.
Self-attention mechanisms are used instead of recurrent layers to
integrate temporal information; for instance, they were applied for
music generation [20] and tagging [21]. Attention mechanisms can
also be used for weighting the frequency dimension to create in-
terpretable adaptive filter banks [22]. In contrast, our model does
not use attention maps to weight input’s features. Instead, we use
them as the only information to classify sound sources. Further-
more, since we devise the attention maps for proper reconstruction
from the local prototypes, they are interpretable by design.

Some other models combine attention mechanisms and proto-
types. For instance, ProtoAttend [23] selects input-dependent pro-
totypes based on a relational attention mechanism that connects the
encoded representation and the prototype candidates. In this case,
the prototypes are instances from the training data. However, other
methods use mean vectors as prototypes for few-shot learning [24].

3. PROPOSED MODEL

Let Xi ∈ RT ×F be the i-th mel-spectrogram where T and F are
the number of time frames and frequency bins, respectively. There-
fore we define the training set as {(Xi,Y i)}Ni=1, where Y i ∈ RK

are the one-hot encoded labels, N is the number of instances and
K is the number of classes. APNet is formed by two main com-
ponents: an autoencoder and a classifier [11]. Our proposed model
uses the same autoencoder from APNet, which is represented in
the upper branch of Figure 1, and utilizes a novel classifier. The
encoder is aimed at extracting meaningful features from the input:
Zi = f(Xi), where Zi is a tensor of shape (T, F,C) and repre-
sents the transformed input in the latent space. C is the number of
channels of the encoder’s last convolutional layer. The decoder part
of the autoencoder is used for reconstructing the mel-spectrogram:
X̃i = g(Zi) ∈ RT ×F . Both the encoder and the decoder are

Figure 1: Diagram of the proposed model.

formed by three convolutional layers with leaky ReLu activations.
The encoder includes two max-pooling layers interspersed between
the convolutions and the decoder applies the corresponding unpool-
ing layers. Please refer to [11] for more details. The classifier of
APNet is based on the distance from Zi to a set of M prototypes
with the same shape (T, F,C). Therefore, a prototype is a point
in the latent space corresponding to the full mel-spectrogram repre-
sentation in the input space. This makes it troublesome for APNet
to represent a multi-label input instance as it should be close to pro-
totypes from different classes.

The model proposed in this work is devised to overcome this
limitation, i.e. it is capable of detecting various simultaneous sound
events. The middle and bottom branches in the diagram of Fig-
ure 1 show this novel classifier. We use another encoder, s(·), to
extract M attention maps in the latent space: Si = s(Xi), where
Si is a tensor of shape (T, F,M). The encoder s(·) is similar to
the autoencoder’s one, f(·), but with ReLu activations to force a
non-negative output. Each attention map is related to one proto-
type. Therefore the network learns a set of M prototypes of shape
(1, 1, C). We represent the M prototypes as a tensor P of shape
(1, 1,M,C). Note that each prototype represents one point in the
time-frequency plane in the latent space. Therefore, in the input
space these prototypes represent a patch of shape equal to the re-
ceptive field of the encoder network (32× 32 in this work).

Using the attention maps and the learnable prototypes the
model tries to reconstruct the latent representation Zi. This is
done by multiplying each attention map by its corresponding pro-
totype and then summing all maps. Note that this is equivalent to
a 1 × 1 2D convolutional layer: Ẑi = Si ∗ P , or a dense layer
Ẑi = Si · P s, where P s is the squeezed version of the tensor P
with shape (M,C).

Therefore Ẑi has the same shape of Zi and aims to be a re-
construction of the latent space. In summary the attention maps
represent the specific weight of each local prototype in each time-
frequency point in order to have a good reconstruction of the latent
space. Using the decoder g(·) from the top branch, we can project
this reconstructed tensor into the input space, X̂i = g(Ẑi) ∈
RT ×F . In this way, we can visualize the reconstruction of the latent
space in the input space to inspect it.

Finally, the bottom branch deals with the detection task, which
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is solely based on the attention maps. First, we average the time
dimension of Si:

S̄i[f,m] =
1

T

T∑
t=1

Si[t, f,m] (1)

where S̄i has shape (F,M) and integrates the attention map for
each prototype and frequency bin in the latent space. Then, a dense
layer connects a flattened version of S̄i with the classification out-
put:

Ỹ i = sigmoid(S̄i ·W ), (2)

where W ∈ RMF×K is the kernel of the layer and
Ỹ i = {Ỹik} ∈ R1×K . We do not use bias in order to keep this
layer more interpretable. We seek to audit how the model connects
each prototype and each frequency bin to the corresponding output.

3.1. Objective function

We want the model to be able to detect sound events while main-
taining the interpretability of the parameters and the explainabil-
ity of the predictions. For this purpose, we define three losses to
train the model. First we have a loss for learning the detection
task. Since this is a multi-label problem, we use binary cross-
entropy, Lc. Then we define a mean squared error loss to have
good reconstruction quality in the autoencoder of the top branch:

Lr = 1
N

∑N
i=1

∥∥∥Xi − X̃i

∥∥∥2
2
. This loss ensures that we can trans-

form the data from the latent space back to the input space, in par-
ticular the learned prototypes.

Finally, we define a loss for enforcing a correct process of re-
construction using the attention maps and the prototypes. In other
words, we let the network learn how to position the prototypes us-
ing the attention maps. In this sense, we define a mean squared error
loss in both latent and input spaces:

Lp =
1

N

N∑
i=1

∥∥∥Zi − Ẑi

∥∥∥2
2

+
1

N

N∑
i=1

∥∥∥Xi − X̂i

∥∥∥2
2
. (3)

This loss ensures two assets of the model related to its interpretabil-
ity. First, this loss establishes that the attention maps are learned to
be an explicit explanation of how the model makes its predictions.
Note that the attention maps are the only information used for the
final prediction. And these maps are interpretable since they show
how to position each prototype in the latent space in order to have a
good reconstruction. Moreover this loss ensures that the prototypes
are similar to the data and therefore we can transform them to the
input space and audit them.

Besides, we use l1 regularization to force some sparsity in the
attention map: Rs = 1

N

∑N
i=1 ‖Zi‖1. This is to prevent the net-

work from reconstructing the latent space by mixing many proto-
types. We also apply the same type of regularization to the kernel
of the dense layer that connects the attention maps and the output:
Rw = ‖W ‖1. The idea is that the output for a given class is ac-
tivated with only a few points on the attention map, both in the
frequency and prototype dimension. Therefore we keep the expla-
nations as simple as possible.

While training the proposed system, we optimize the weighted
sum of all losses and regularization terms defined previously:

L = αLc + βLr + γLp + δRs + εRw (4)

where the weights (α, β, γ, δ, ε) are real-valued hyperparameters.

Figure 2: Reconstructed learned local prototypes. The y axis repre-
sents the mel bands where the prototypes were reconstructed.

4. EXPERIMENTS AND RESULTS

We train the proposed model by optimizing the objective function
defined in Eq. (4). We use Adam optimizer with a learning rate of
0.001 for 50 epochs and we select the model with the top perfor-
mance in the validation set. We use the following set of hyperpa-
rameters (10, 5, 5, 10−5, 10−6) and a batch size of 256. The exper-
iments are conducted using the DCASE-models library [25] and the
code is available under an open-source license1.

We compare the performance of the proposed model to that
of two different opaque baselines: (1) a convolutional neural net-
work (CNN) formed by three convolution layers and two dense
layers [26]; and (2) a multi-layer perceptron (MLP) whose in-
put is the embedding vector extracted from the pre-trained Openl3
model [27]. We optimize a binary cross-entropy loss with the same
optimizer and strategy for these baselines as for the proposed model.

We train and evaluate the proposed model and the baselines on
the URBAN-SED dataset v2.0 [26]. This is formed by 10-second
length audio files corresponding to synthetic mixtures of sound
sources obtained from the UrbanSound8k dataset. Each sound event
is tagged with one of the following classes: air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot, jack-
hammer, siren, and street music. The three models use log-scaled
mel-spectrogram as input representation, but with different parame-
ters. Both the CNN and the proposed model uses 128 mel bands and
a sampling rate of 22050 Hz. The proposed model uses a window
size of 4096 and hop size of 1024 for calculating the spectrograms.
On the other hand, CNN uses a window size of 512 and hop size of
the same length. Openl3 has predefined parameters [27].

To evaluate the models, we use F-measure (F1) and error rate
(ER) in a 1-second grid as commonly used for sound event de-
tection [28]. We run the training 10 times and calculate the mean
and standard deviation of both metrics. Table 1 shows the perfor-
mance comparison of the three models along with their number of

1https://github.com/pzinemanas/attprotos
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Figure 3: Example of an input instance from the test set masked
by the attention maps. At the top left plot we show the mel-
spectrogram, which includes sound events of six different classes.
The other plots are the same mel-spectrogram but masked by each
of the reconstructed attention maps for the corresponding classes.

parameters. Note that the performance of the proposed model is
comparable to that of the baselines, but with fewer parameters.

Table 1: Performance comparison of the proposed model and the
two baselines. The performance metrics are the F-measure (F1)
and the error rate (ER). The number (#) of parameters in millions
(M) are also included in the comparison.

Network F1 (%) ER # Params. (M)

CNN 57.3± 0.6 0.568± 0.006 0.5
Openl3+MLP 58.2± 0.3 0.558± 0.004 9.5

Ours 58.8± 0.9 0.572± 0.007 0.15

4.1. Prototypes

The reconstruction of the latent space helps the network to learn
prototypes similar to patches from the training data. We use the de-
coder part of the autoencoder, g(·), to reconstruct the learned pro-
totypes in the input space. We follow a process similar to that per-
formed in APNet for this purpose [11]. But in this case, we have
to extend the prototypes tensor P to have the same shape of the la-
tent space, i.e. (M,T, F,C). To this end, we create a zero tensor
of this shape and select a point in the time-frequency plane where
to position each prototype. The time is selected arbitrarily at the
center, and the frequency is selected by minimizing the distance of
each prototype to the data instances. By doing this, we reconstruct
the patches in the frequency bands where the closest data instances
have these prototypes present. Figure 2 shows a set of selected pro-
totypes. Note that the network learns different types of shapes and
textures related to environmental sounds present in the data set.

4.2. Attention maps

For each data instance it is possible to extract the corresponding
attention maps to provide and explanation on how the model makes

its predictions. For a given class k, we follow the following process:

1. Mask the prediction Ỹ i ∈ R1×K by a unit vector of the
same shape whose k-th component is the only one equal to

1: Ỹ
(k)

i = Ỹ i � 1k

2. Get the points of the previous layer that are more
connected to the output k by calculating the gradient:

∇S̄(k)
i = Ỹ

(k)

i ·W T ∈ R1×FM

3. Reshape the gradient to (F,M), apply a half-wave rectifier
to keep only positive connections and multiply it by the time-
averaged attention maps: S̄

(k)
i = ReLu

(
∇S̄(k)

i

)
� S̄i.

This represents the attention maps masked by the most im-
portant connections to the output k.

4. Find the most connected prototype by maximiz-
ing the energy of the masked attention map:

m̂ = arg maxm∈[1,...,M ]

∑F
f=1

(
S̄

(k)
i [f,m]

)2
5. Extract the frequency-dependent attention function:
S(k)
i [f ] = S̄

(k)
i [f, m̂]

6. Convert the attention function to the input space. To do this,
we first upsample the sequence by a rate of 4 to emulate
the two max-pooling operations. Then we apply a moving-
average filter to emulate the receptive field. Thus, the length
of the filter is equal to the receptive field (32).

Figure 3 shows an example of the attention maps for three dif-
ferent classes. We multiply the attention maps in the input space by
the mel-spectrograms, similarly to how the model does in the latent
space. Note that the model can detect simultaneous sound events
whose energy is concentrated in different frequency bands. Since
the attention maps are designed to reconstruct the latent space and
are the only information used for classification, these represent the
inherent explanation of how the network makes its predictions.

5. CONCLUSION

In this work, we present a novel interpretable model for polyphonic
sound event detection. Its predictions are based on attention maps
learned for reconstructing the latent space by positioning a set of
local prototypes. The network also learns the local prototypes as
data points in the latent space representing a patch in the input rep-
resentation. The attention maps provide a form of explanation that
is faithful to the model computations and can give valuable insights
into its decision process. Moreover, the prototypes can be recon-
structed and thus can be listened to and audited.

The proposed model achieves encouraging results in urban
sound event detection for a data set of synthetic mixtures, which
are comparable to that from two opaque baselines but with fewer
parameters, while at the same time offering interpretability. This
is consistent with some previous work that claims that it is often
possible to incorporate interpretability into deep learning models to
tackle complex tasks without sacrificing performance [10, 12, 5].

Future work includes ablation studies to understand better the
impact of the proposed losses and regularization terms in the final
model. In addition, more experiments are needed to evaluate the
effect of some hyperparameter values, such as the loss weights and
the number of prototypes. Besides, we should evaluate the model
with datasets recorded in natural conditions. Finally, we seek fur-
ther development of interpretable models to analyze environmental
sounds, including those that learn disentangled representations.

53



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

6. REFERENCES

[1] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic Scene
Classification in DCASE 2020 Challenge: Generalization
Across Devices and Low Complexity Solutions,” in Detection
and Classification of Acoustic Scenes and Events 2020 Work-
shop (DCASE2020), Tokyo, Japan, Nov. 2020, pp. 56–60.

[2] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Vir-
tanen, “Overview and evaluation of sound event localization
and detection in DCASE 2019,” Trans. on Audio, Speech, and
Language Processing, vol. 29, pp. 684–698, 2021.

[3] C. Molnar, Interpretable Machine Learning, 2019, https://
christophm.github.io/interpretable-ml-book/.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I
Trust You?”: Explaining the predictions of any classifier,” in
22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16, New York, NY,
USA, 2016, p. 1135–1144.

[5] C. Rudin, “Stop explaining black box machine learning mod-
els for high stakes decisions and use interpretable models in-
stead,” Nature Machine Intelligence, vol. 1, p. 206–215, May
2019.

[6] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep in-
side convolutional networks: Visualising image classification
models and saliency maps,” in International Conference on
Learning Representations (ICLR), Banff, Canada, 2014.

[7] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,”
in 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), Hong
Kong, China, Nov. 2019, pp. 11–20.

[8] J. Bien and R. Tibshirani, “Prototype selection for inter-
pretable classification,” The Annals of Applied Statistics,
vol. 5, no. 4, Dec 2011.

[9] B. Kim, C. Rudin, and J. A. Shah, “The bayesian case model:
A generative approach for case-based reasoning and prototype
classification,” in Advances in Neural Information Processing
Systems, vol. 27, 2014.

[10] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-
based reasoning through prototypes: A neural network that ex-
plains its predictions,” in The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18), vol. 32, 2018.

[11] P. Zinemanas, M. Rocamora, M. Miron, F. Font, and X. Serra,
“An interpretable deep learning model for automatic sound
classification,” Electronics, vol. 10, no. 7, 2021.

[12] C. Chen, O. Li, D. Tao, A. J. Barnett, J. Su, and C. Rudin,
“This looks like that: Deep learning for interpretable image
recognition,” in Advances in Neural Information Processing
Systems, vol. 32, 2019.

[13] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen, “Convolutional recurrent neural networks for
polyphonic sound event detection,” Trans. on Audio, Speech
and Language Processing, vol. 25, no. 6, pp. 1291–1303, Jun.
2017.

[14] H. Muckenhirn, V. Abrol, M. Magimai-Doss, and S. Mar-
cel, “Understanding and Visualizing Raw Waveform-Based
CNNs,” in Interspeech 2019, 2019, pp. 2345–2349.

[15] S. Mishra, B. L. Sturm, and S. Dixon, “Local interpretable
model-agnostic explanations for music content analysis.” in
18th International Society for Music Information Retrieval
Conference, Suzhou, China, 2020, pp. 537–543.
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