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Abstract

In lossless data compression, the goal is describing a given sequence xn = x1x2 . . . xn of n symbols in

a shorter manner by using a code. This can be shown to be equivalent to the problem of capturing

statistical regularities of the given sequence by means of a statistical model that assigns probabilities

to sequences.1 If a model assigns a probability P (xn) to a given sequence, then the sequence can

be described [Pas76, Ris76] with a length L(xn) = − logP (xn) + O(1) bits when n → ∞. Thus,

the higher the probability assigned by the model, the shorter the sequence can be described. For

example, in order to better capture these regularities and get shorter sequence descriptions, models

may condition the probability of each symbol on the values of symbols belonging to a neighboring

context. Although the probability assignments need not be sequential, in this thesis, we focus on

the sequential ones and, in particular, on �nite memory models, i.e., models where the probability

of a symbol is conditioned on a �nite number of past symbols.

When considering a class of models, the goal of universal coding is to �nd an algorithm that

describes any given sequence xn with a length per input symbol that is asymptotically as short as

the one given by the best model in the class for xn. In this case, the model is not assumed known

in advance and, therefore, it needs to be described along with the data or learned from the data

itself. Indeed, while a richer class may have an optimum model that assigns a higher probability

(i.e. a model that better ��ts� the data), Rissanen's lower bound [Ris84, Theorem 1] shows, in a

stochastic setting, that there is a �model description cost� to be paid, which is proportional to the

number of free parameters that describes the models of the class.

Going further, twice-universal coding aims at �nding an optimum for this trade-o� between

model �tness and model cost, by considering a sequence of model classes of growing dimensionality

and optimizing the size of the class at the same time it optimizes the particular model.

Contiguous context modeling (i.e., Markov modeling in which the probability of a symbol is

conditioned on the K contiguous symbols that precede it), though quite popular, has the drawback

that the number of free parameters, which is proportional to the number of possible conditioning

states, increases exponentially with the distance, K, to the furthest conditioning location. Thus, a

high model cost is incurred if locations are needed in order to capture distant dependencies. Such

distant dependencies do occur in some types of data, e.g., images of text, where the value of a pixel

may depend on traces that occur far from the pixel.

Tree models, for which twice-universal coding algorithms exist, allow much economy (in terms

of model cost) by allowing a variable length context. Still, in this case, the context is contiguous

and, sometimes, this forces the inclusion of dependencies that unnecessarily increase model cost.

Sparse models are a type of statistical model in which each sample can be conditioned on

neighboring samples that are not necessarily contiguous. Therefore, they allow to capture some

distant dependencies without being forced to include all the contiguous locations in between,

potentially saving model cost. Additionally, these sparse contexts can be of variable length, which

can provide additional model cost savings.

The main problem studied in this thesis is how to e�ciently estimate, for some given data,

the best set of �xed conditioning locations within a window of size K. This problem has been

addressed with di�erent approaches. For example, exact algorithms with high complexity that are

1Probabilities must be consistent, i.e., the sum of the probabilities of all the sequences of length n must be 1.



practical only for small values of K have been proposed in [FWA04] and exact algorithms for a

highly restricted class of sparse models that are practical for larger K values (around 100) have

been proposed in [FLSV, FSV08, Fra08].

In this work, we adopt an heuristic approach similar to that of [RSP08, SIH01]. We present and

empirically analyze two heuristic algorithms (a greedy and a genetic one) for the search of good

location sets (templates) for two speci�c classes of sparse models. The compression performance of

the greedy algorithm is quite satisfactory in many cases but it is prone, in other cases, to getting

stuck in some bad local minima because of its deterministic nature. Although computationally more

expensive in general when compared to the greedy one, our genetic algorithm, which improves in

many aspects the genetic algorithm implementation of [Ser04], overcomes these di�culties, and

has very good compression performance and reasonable computational cost even in the case of

sparse models with variable length conditioning and rather large window sizes (around 1000).

Additionally, even in cases where the encoding is slower, due to the search for the best context

template, the decoding is fast, since the optimized template is appended to the encoded data and,

therefore, available to the decoder. This is appropriate in applications of data compression where

the data is encoded once and stored, but it is accessed (and decompressed) many times.

Based on the results given by these algorithms, we observe that sparse context modeling has an

important potential for compressing binary images because of their great ability to economically

capture di�erent types of regular structures that can be found in this kind of data. Our algorithms,

in many cases, largely outperform standard binary image compression algorithms.

keywords: statistical modeling, context modeling, lossless compression, twice-universal coding,

binary images, genetic algorithms, greedy algorithms, sparse contexts, tree models, sparse tree

models
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Resumen

En compresión de datos sin pérdida, el objetivo es describir una secuencia dada xn = x1x2 . . . xn

de n símbolos en una forma más corta mediante el uso de un código. Esto puede demostrarse

que es equivalente al problema de capturar regularidades estadísticas de la secuencia dada, por

medio de un modelo estadístico que asigna probabilidades a las secuencias.2 Si un modelo asigna

una probabilidad P (xn) a una secuencia dada, la secuencia se puede describir [Pas76, Ris76] con

una longitud L(xn) = − logP (xn) + O(1) bits cuando n → ∞. Por lo tanto, cuanto mayor es

la probabilidad asignada por el modelo, más corta puede ser la descripción de la secuencia. Por

ejemplo, con el �n de capturar mejor estas regularidades y obtener una descripción más corta de la

secuencia, los modelos pueden condicionar la probabilidad de cada símbolo basándose en los valores

de los símbolos que pertenecen a un contexto cercano. Si bien las asignaciones de probabilidad

no necesitan ser secuenciales, en esta tesis, nos enfocamos en las secuenciales y, en particular, en

los modelos de memoria �nita, es decir, modelos en los que la probabilidad de un símbolo está

condicionada a un número �nito de símbolos del pasado.

Cuando se considera una clase de modelos, el objetivo de la codi�cación universal es encontrar

un algoritmo que describe cualquier secuencia dada xn con una longitud por símbolo de entrada

asintóticamente tan corta como aquella dada por el mejor modelo de la clase para xn. En este caso,

el modelo no se asume conocido de antemano y, por tanto, debe ser descrito junto con los datos

o extraído de los propios datos. De hecho, mientras que una clase rica puede tener un modelo

óptimo que asigna una probabilidad más alta (es decir, un modelo que se �ajusta� mejor a los

datos), la cota inferior de Rissanen [Ris84, Teorema 1] pone de mani�esto, en una con�guración

estocástica, que existe un costo de descripción del modelo a pagar, que es proporcional al número

de parámetros libres que describe los modelos de la clase.

Yendo más lejos, la codi�cación doblemente universal aspira a encontrar un grado óptimo para

esta disyuntiva entre el ajuste del modelo a los datos y el costo del mismo, al considerar una

secuencia de clases de modelos de creciente dimensionalidad y al optimizar el tamaño de la clase

al mismo tiempo que se optimiza el modelo en particular.

El modelado de contexto contiguo (es decir, modelos de Markov en el cual la probabilidad de

un símbolo está condicionada a los K símbolos contiguos que lo preceden), aunque muy popular,

tiene el inconveniente de que el número de parámetros libres, que es proporcional a la cantidad

de posibles estados, aumenta exponencialmente con la distancia, K, a la ubicación del símbolo

condicionante más lejano. Así, se incurre en un alto costo de modelo si se necesitan ubicaciones

para capturar dependencias lejanas. Estas dependencias lejanas se producen en algunos tipos de

datos, por ejemplo, en las imágenes de texto, donde el valor de un píxel puede depender de huellas

que se producen lejos del mismo.

Los modelos árbol, para los cuales existen algoritmos de codi�cación doblemente universales,

facultan importantes ahorros (en términos de costo del modelo) al permitir un contexto de longitud

variable. Sin embargo, en este caso, el contexto es contiguo y, a veces, esto obliga a la inclusión de

dependencias que aumentan innecesariamente el costo del modelo.

Los modelos dispersos son un tipo de modelo estadístico en los cuales cada muestra puede ser

condicionada a muestras vecinas que no son necesariamente contiguas. Por lo tanto, permiten la
2Las probabilidades deben ser coherentes, es decir, la suma de las probabilidades de todas las secuencias de largo

n debe ser 1.
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captura de algunas dependencias distantes sin estar obligados a incluir a todos los lugares contiguos

en el medio, con potencial ahorro en el costo del modelo. Además, estos contextos dispersos pueden

ser de longitud variable, lo cual puede proporcionar ahorros adicionales en el costo del modelo.

El principal problema estudiado en esta tesis es cómo estimar e�cientemente, para ciertos datos

dados, el mejor conjunto �jo de ubicaciones condicionantes dentro de una ventana de tamaño K.

Este problema ha sido abordado con diferentes enfoques. Por ejemplo, algoritmos exactos de alta

complejidad que son prácticos sólo para valores pequeños de K han sido propuestos en [FWA04]

y algoritmos exactos para una clase muy restringida de modelos dispersos que son prácticos para

valores más grandes de K (alrededor de 100) han sido propuestos en [FLSV, FSV08, Fra08].

En este trabajo, adoptamos un enfoque heurístico similar al de [RSP08, SIH01]. Se presentan

y analizan empíricamente dos algoritmos heurísticos (uno voraz y otro genético) para la búsqueda

de buenos conjuntos de ubicaciones (plantillas) para dos clases especí�cas de modelos dispersos.

El rendimiento de compresión del algoritmo voraz es bastante satisfactorio en muchos casos, pero

es propenso, en otros casos, a quedarse atascado en algunos mínimos locales malos debido a su

naturaleza determinista. Aunque computacionalmente más costoso, en general, en comparación

con el algoritmo voraz, nuestro algoritmo genético, el cual mejora en muchos aspectos el algoritmo

genético de [Ser04], supera estas di�cultades, y tiene un rendimiento de compresión muy bueno y

un costo computacional razonable, incluso en el caso de modelos dispersos con condicionamiento

de longitud variable y tamaños de ventana más grandes (alrededor de 1000). Además, incluso en

los casos en que la codi�cación es más lenta, debido a la búsqueda de la mejor plantilla de contexto,

la decodi�cación es rápida, ya que la plantilla optimizada se añade a los datos codi�cados y, por

tanto, queda disponible para el decodi�cador. Esto es adecuado en aplicaciones de compresión de

datos donde los datos se codi�can una vez y se almacenan, pero son accedidos (y descomprimidos)

muchas veces.

Basado en los resultados obtenidos por estos algoritmos, se observa que el modelado de contexto

disperso tiene un importante potencial para la compresión de imágenes binarias, debido a su gran

capacidad para capturar económicamente los diferentes tipos de estructuras regulares que se pueden

encontrar en este tipo de datos. Nuestros algoritmos, en muchos casos, superan en gran medida a

algoritmos estándares de compresión de imágenes binarias.

palabras claves: modelado estadístico, modelado de contexto, compresión sin pérdida, codi�-

cación doblemente universal, imágenes binarias, algoritmos genéticos, algoritmos voraces, contextos

dispersos, modelos árbol, modelos árbol dispersos
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Chapter 1

Introduction

1.1 Statistical data modeling and universal lossless compres-

sion

In a general framework, the problem we want to address is the one of �nding good statistical

models in order to describe, in a probabilistic fashion, the regularities of a given sequence of data

xn = x1x2 . . . xn, where xi takes values in some alphabet A of size α. A statistical model assigns

probabilities to sequences in a consistent way, i.e., the sum of the probabilities of all the sequences

of length n must be 1. There are many applications for which it is necessary or useful to have

such models, such as lossless compression, forecasting, denoising, genomic data analysis, �nancial

modeling, etc.

Lossless compression (or lossless source coding) aims at describing some given input data in

a shorter manner so that the original data can be recovered from this shorter sequence without

any loss. This description is always based, explicitly or implicitly, on a statistical model whose

suitability is measured by the length of the output data. In opposition, in lossy compression, we

are allowed to recover a slightly di�erent sequence, which may be appropriate enough for the appli-

cation (e.g., music or photography for non-professional usage). Both kinds of compression can be

very valuable since they allow the e�cient use of important resources like data storage (hard disks,

optical media, etc.), bandwidth or energy. Lossless compression is of particular interest when mod-

i�cation of the original data is not allowed or not desired, for example, when compressing images

that are intended for further analysis and processing or that were obtained at great cost, or when

loss might have legal implications. Besides its resource-saving importance, lossless compression is

also useful in a pure statistical setting, as the Minimum Description Length principle developed by

J. Rissanen [Ris78, Ris96, Ris87] states that, if we can achieve a short description of the data, then

we are capturing appropriately the redundancies of the data and thus its statistical regularities.

In his seminal paper [Sha48], Shannon showed a fundamental limit for the average description

length when compressing the output of a random process, in the case when the parameters that

de�ne the process are known. Universal data compression deals with the case when the parameters

are not known but the process is known to belong to a certain class of models.1 In this case,

Rissanen's lower bound [Ris84] states that Shannon's limit is still asymptotically attainable but at

1Universal compression also applies when the input sequence is arbitrary, and is not assumed to have been
emitted by a random process, as we will see in Chapter 2.
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a convergence rate that includes a model cost term proportional to the number of parameters that

describe the models in the class.2

1.2 E�cient parametrizations of Markov models

In a Kth order �nite memory (random) process, the probability of a sample xi in a sequence

xn = x1, x2, ..., xn de�ned over a �nite alphabet A is given by a discrete conditional distribution

P
(
xi|xi−1

i−K
)
, conditioned on the value of the consecutive K−tuple immediately preceding xi, i.e.,

the conditioning state or context of xi. The probability of the whole sequence xn is:

P (xn) =
∑

x0
−K+1∈AK

P ′
(
x0
−K+1

) n∏
i=1

P
(
xi|xi−1

i−K
)
.

where P ′ is some probability distribution that governs the initial condition (for example, we could

assume that x0
−K+1 is some �xed string, which captures all the mass of P ′).

Finite memory random processes are always Markov chains and, thus, they can be naturally de-

scribed (or parametrized) as Markov models of order K. However, these models require αK (α− 1)
parameters corresponding to α−1 free conditional symbol probabilities for each possible condition-

ing K−tuple, where α is the alphabet size.3 Therefore, the number of free parameters increases

exponentially with K.

In a tree model [Ris83, WRF95] of the same process, the memory length is allowed to vary from

location to location in the sequence.4 These models are e�cient parametrizations of �nite memory

processes, as the exponential number of statistical parameters in the Markov model can often be

dramatically reduced in a well tuned model. Thus, tree models can improve the rate at which

the average length of a universal code converges to Shannon's limit. In practice, tree models are

appealing because they seem to economically capture redundancies typical of real life data (e.g.,

text or images) and because of the existence of computationally e�cient universal coding schemes

[Ris83, WRF95, WST95, Wil98, Noh93, MSW04] for this class of models (see Chapter 2).

The savings in the number of statistical parameters realized by tree models can be seen as

the result of lumping together equivalent states, i.e., K-tuples that induce the same conditional

distribution in the �full� Markov model. Thus, a conditioning state of t = K − l symbols in a

tree model for a Kth order Markov model corresponds to the merging of αl equivalent states in

the full Markov model. This observation, in fact, characterizes the special structure of the sets of

full-length states that can be lumped together in a tree model: each such set must consist of all

the extensions of a given string of length K − l, 0 ≤ l ≤ K. Hence, tree models are represented by

full α-ary trees, i.e., trees in which every node other than the leaves has exactly α children. Figure

1.1 shows a graphical example in which some states of a Markov model get lumped together in a

tree model.

With real data, other sets of equivalent states might arise, and it is natural to ask whether it

is possible to optimize models where more general sets of states are allowed to merge. In practice,

the distributions that are merged are empirical and not necessarily identical, and an exhaustive

search for the best state space partition is unfeasible. The problem is also known as the context

2From a statistical point of view, this model cost term avoids models that over�t the input data and thus
unreliable statistics.

3The α-th conditional probability for each K-tuple is not free, as probabilities must add to one.
4Tree models are sometimes termed variable length Markov chains in the statistical literature (see, e.g., [BW99]).

2



i

iii 1−x

2−x

3−x

3  ,2 == Kα

( )φφ0|ixP ( )φ10|ixP ( )110|ixP

( )111|ixP

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1

0 1 0 1

0 1

i

Figure 1.1: The tree model (right) shows the lumping of some states of a fully parametrized
Markov model (left). The symbol φ indicates that a context location is ignored and, thus, the
corresponding states are lumped together. The value of the conditioning state appearing in condi-
tional probabilities is written in reverse order, e.g., P (xi|100) indicates that the conditioning state
is xi−3xi−2xi−1 = 001.

quantization problem, and it has been studied in various settings, with the proposed solutions

being generally ad-hoc, and of varying degrees of complexity as a function of K, which is usually

kept relatively small (see, e.g., [FWA04], for a recent setting).

This work focuses on models that use sparse dependencies in the past symbols in order to

condition the probability of each symbol of the sequence, with the goal of signi�cantly extending

K in practice while keeping the number of conditioning states feasible as shown in Figure 1.2.

These sparse models allow the merging of more general sets of states with similar conditional

distributions. As for tree models, φ refers to an ignored location but, in the case of sparse models,

in order to emphasize that these locations may break the context contiguity, we also call them

�holes�.

' ' ignor ed' '  samples
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Figure 1.2: Sparse dependencies allowing to extend K, the size of the memory window.

The technique of conditioning on non-contiguous past symbols is known in the literature. The

JBIG bi-level image compression standard [Joi93], for example, conditions the current sample on

a template of contiguous past samples close to xi, plus a �oating past sample that is allowed to be

located away from the template. Its successor, JBIG2 [Joi01], allows 4 �oating past samples to be

used to condition each sample. In [SIH01], the authors suggest using 16 adaptive positions and no

�xed locations, in order to extend the JBIG2 standard. They address the problem of choosing these

locations, in a window of size K = 216, by using a genetic algorithm as we do in our work (in our

case, the number of adaptive locations is not �xed, and will often be larger than 16, see Chapters
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3 and 7). Sparse dependencies have also been studied in biology (e.g., [ZHS05, BR04]) but the

algorithms presented are practical for rather small values of K. Also in the biology �eld, [RSP08]

takes advantage of sparsity for estimating probability density functions in very high dimensions

when sample size is not accordingly high. The algorithm used in that work is similar to the one

studied in Section 6.1.

In [Suz95, VW96], generalized tree models were studied and a coding scheme with computing

complexity exponential in K was presented. Similar to generalized tree models, sparse tree models

(STMs) are a generalization of tree models where more general sets of states with similar conditional

distributions are allowed to merge. In an STM, samples are conditioned on �nite strings of not

necessarily contiguous past symbols, and the context determine not only how far into the past the

conditioning samples are, but also what their (possibly non-contiguous) locations are. In STMs,

holes are allowed to be in any place of the tree representation as shown in Figure 1.3. More precisely,

every internal node must have either exactly α children or 1 child, the latter case corresponding

to a hole.
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Figure 1.3: Lumping of equivalent states not obeying the complete subtree restriction imposed by
tree models.

K-window r-hole STMs have memory bounded by a positive integer K, and each conditioning

context used is allowed to have at most r runs of φ symbols (i.e., concatenations of holes). In

[FSV08, FLSV, Fra08], a semi-predictive algorithm with time complexity O
(
K2r+1

)
that estimates

a K-window r-hole STM for a given input sequence is presented and used as the basis for a lossless

compression scheme that is universal in the class of K-window, r-hole STMs. The algorithm is

implementable in practice up to moderately large values of K around 100 for r = 1.

In this work, we focus on two classes of sparse models. The �rst one is referred to as K-window

sparse context models (K-SCMs). K-SCMs condition the probability of each sample on a �xed set

of locations and, thus, no variable length conditioning is allowed. Figure 1.4 shows an example of

how states are lumped together in this type of model.

The other class studied in this work is the one of K-window whole level sparse tree models (K-

WLSTM), a subclass of STMs with memory window length limited to K, that has the additional

restriction of every level in the tree having either no hole at all or a hole in every edge of the level.

In other words, for each tree level, one of these two conditions must be satis�ed:

1. all the nodes in the level are either internal ones that have one child (i.e., a hole edge) or are

leaves

2. all the nodes in the level have α children.
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Figure 1.4: Lumping of equivalent states obeying the K-SCM restrictions.

Notice that the example on the right side of Figure 1.3 is not a K-WLSTM, since nodes in the

second level do not satisfy either of these conditions. Figure 1.5 shows an example of a K-WLSTM.
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Figure 1.5: Lumping of equivalent states obeying the K-WLSTM restrictions.

Notice that K-SCMs are to K-WLSTMs as �xed-length contiguous context models are to tree

models. K-SCMs condition the probability of each sample on a �xed set of locations while K-

WLSTMs allow variable length conditioning, the conditioning samples being taken also among a

�xed set of locations. Figure 1.6 shows the inclusion relations between the di�erent parametrization

of Markov models, where a class A includes a class B if any model of B can be represented by a

model of A with the same or a smaller number of states.

One important problem addressed in this work is how to e�ciently estimate which is the best

set of past dependency locations (or template) for these models in order to achieve the minimum

description length for some given data. A brute force approach to this problem is of exponential

complexity because of its combinatorial nature and, thus, it is not of practical interest if we want

to use large values for K.

1.3 Main contributions and organization of the thesis

The starting point of this thesis was a genetic algorithm for searching good templates for K-SCMs,

proposed and implemented by G. Seroussi with some promising results on binary images [Ser04].

Then, the primary goals of this thesis were de�ned as follows:

1. Improve and optimize Seroussi's algorithm and software implementation in order to get better

computational performance, thus allowing more experimentation, larger values of K and,
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Figure 1.6: Inclusion relations between di�erent Markov model parametrizations. �JB2 EXT�
refers to the JBIG2 extension proposed in [SIH01].

ultimately, better compression results.

2. Explore other heuristics.

3. Extend the genetic algorithm implementation, originally only forK-SCMs, to the broader and

more �exible class of K-WLSTMs, while keeping a reasonable and practical computational

complexity.

4. Experiment with a larger set of binary images in order to get a better understanding of the

suitability of sparse models for this kind of data.

In line with these goals, the main contributions in this thesis are the following:

1. An heuristic greedy algorithm for the search of good templates for both K-SCMs and K-

WLSTMs (Chapter 6). In general, this algorithm �nds good solutions but, because of its

determinism, in some cases, it gets stuck in some poor local minima. Nevertheless, the

algorithm is relatively fast and practical, even in the case of the K-WLSTMs.

2. An improved genetic algorithm whose components and parameters were chosen by criteria

learned from the greedy algorithm (Chapter 7). Although this genetic algorithm is slower

than the greedy one, it is more robust and is able to search in the space of K-WLSTMs

for rather large values of K (of order 1000). Notice that, for both algorithms, even in cases

where the encoding is slower, due to the search for the best context template, the decoding
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is fast since the template is described at the beginning of the encoded sequence and does not

need to be searched again.

3. Using the results given by our algorithms on a large set of binary images (Chapter 8), we found

that, K-WLSTMs are, in some cases, signi�cantly better than K-SCMs thanks to variable-

length conditioning that allows to better ��t� the data by considering more dependencies at

a reduced model cost. In worst cases, their performance is similar since K-WLSTMs are

a superset of K-SCMs and, in exchange, only a constant cost (negligible when the image

is large) for tree description has to be paid. We also found that, in many cases, sparse

models are signi�cantly better than contiguous models. In worst cases, they are just as good

since sparse models are a superset of contiguous models and, in exchange, only a very small

constant cost has to be paid for sparse template description. Finally, we found that our

improved genetic algorithm for K-WLSTMs outperform, in most general cases, the standard

compression methods, and, in some cases, by signi�cant margins.

The rest of this thesis is organized as follows. Chapter 2 sets up the mathematical background and

de�nitions needed for this work. These include some of the theory of lossless data compression and

de�nitions and properties of �xed-length contiguous context, tree and sparse models. Chapter 3

introduces the paradigm of genetic algorithms and describes the scheme proposed by G. Seroussi

in [Ser04]. Chapter 4 introduces some types of binary images found in practice and describes

some standard methods for compressing them. Chapter 5 discusses some computational issues in

sparse model code length evaluation and describes some important optimizations in relation to the

computation time. Chapter 6 presents a greedy deterministic algorithm for searching good sparse

models. Chapter 7 describes and analyzes a modi�ed and improved version of the original genetic

algorithm of [Ser04]. Chapter 8 presents the results and establishes the suitability of sparse models

and our algorithms on a large set of binary images. Chapter 9 concludes this work and gives future

directions.
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Chapter 2

Mathematical background

In this chapter, we present some of the basic mathematical tools and de�nitions from the area

of information theory and the fundamental limits of compression with the associated concept of

model cost. Then, we formally de�ne the classes of �xed-length contiguous context, tree, and

sparse models and some related coding schemes.

2.1 Lossless compression and model cost

In lossless compression, a compressor (or encoder) describes a given sequence of symbols in a

shorter manner so that a decompressor (or decoder) can recover the exact original sequence given

the compressed one. Thus, the performance is measured by the relation between the length of the

compressed sequence (the code length, usually measured in bits) and the length of the original one,

which is called the compression ratio (usually measured in bits per original symbol). Now, we may

ask: how much can a given sequence be compressed? The exact answer to this question depends

on the nature of the sequence to be compressed and how much we know about it. More precisely,

we are going to consider the following two scenarios:

� the probabilistic setting, in which the sequence is a realization of a random process whose

parameters we may or may not know.

� the deterministic setting, in which the sequence is deterministic and arbitrary. However, in

this case, it is useful to describe the sequence regularities using probability tools, as we will

see later.

In the probabilistic setting, the symbols of the input sequence are realizations of random variables.

The concept of entropy presented by C. Shannon in [Sha48], measures the amount of uncertainty

(usually expressed in bits) that an observer has about a random variable or, equivalently, the

amount of information received by him when the random variable gets realized. Given a random

variable X de�ned over A such that X ∼ p (x), the entropy of X is de�ned as:

H (X) = −
∑
x∈A

p (x) log p (x) ,
[
0 log 0 , 0

]

The entropy is maximized when the probability is uniformly distributed. When considering

the realization of multiple variables, the concept of joint entropy arises. The joint entropy of the
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random variables X1, X2, . . . , Xn is de�ned as

H (X1, X2, . . . , Xn) = −
∑

(x1,x2,...,xn)∈An

p (x1, x2, . . . , xn) log p (x1, x2, . . . , xn) .

When normalized, we express it in bits per symbol and write it as

H (X1, X2, . . . , Xn) =
1
n
H (X1, X2, . . . , Xn)

or Hn (P ) if we want to emphasize that the generating model assigns a probability P (·) to the

sequence.

The extension of this concept to the case of a semi-in�nite random process leads to the de�nition

of entropy rate:

H (X∞1 ) = lim
n→∞

1
n
H (Xn

1 )

which is expressed in bits per symbol, if the limit exists.

A source code C for a random variable X is a mapping C : A → D∗ where D is a �nite coding

alphabet of size d, and D∗ is the set of �nite strings over D. C (X) is the codeword corresponding

to X and L (X) = |C (X)| its code length. A code C : A → D∗ extends naturally to a code

C∗ : A∗ → D∗ de�ned by

C∗ (λ) = λ, C∗ (x1, x2 . . . xn) = C (x1) C (x2) . . . C (xn)

where λ is the empty string. C is called uniquely decodable if its extension is injective (in other

words, every codeword is identi�able when immersed in a sequence of codewords). Kraft-McMillan's

inequality [Kra49, McM56] states that the codeword lengths l1, l2, . . . , lm of any uniquely decodable

code satisfy
m∑
i=1

d−li ≤ 1

where d is the coding alphabet size. Using this inequality, it can be shown (see, for example,

[Mac03, p. 97]) that H (X) is a lower bound on the expected number of bits required to describe

an outcome of X by a uniquely decodable code.

Using these concepts, Shannon derived a fundamental limit of compression [Sha48] that says

that L∗n, the minimum expected code length per symbol of the sequence to be encoded, satis�es

H (X1, X2, . . . , Xn) ≤ L∗n < H (X1, X2, . . . , Xn) +
1
n

Furthermore, if X∞1 is a random process with an entropy rate, then

lim
n→∞

L∗n = H (X∞1 )

Thus, the entropy rate can be interpreted as the expected number of bits per symbol required

to describe the process.

Given a model that assigns a probability P (xn) to some given data sequence xn, the method

of arithmetic coding presented in [Pas76, Ris76] provides a way to achieve a code length of
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− logP (xn) + O (1) as n → ∞.1 Thus, when considering symbols as realizations of random

variables, the expected code length given by an arithmetic encoder is minimal up to an additive

constant. Even when the sequence is not a realization of random variables, l∗ (xn1 ) = − logP (xn1 ) is
called the ideal code length for the string xn1 relative to any probability assignment P to sequences

of length n.

What happens when we encode a random variable X ∼ p (x) assuming a wrong distribution

q (x)? The increase in expected description length due to the incorrect distribution is the relative

entropy (see [CT06, Theorem 5.4.3] for a proof) which is de�ned as:

D (p ‖q ) =
∑
x

p (x) log
p (x)
q (x)

In most practical applications, the model that generates the data is not given to us or, even

more, the sequence can be completely arbitrary (i.e., in the deterministic setting). Universal data

compression deals with the optimal description of data in the absence of an a priori statistical

model. Arithmetic coding provides an e�ective mean to sequentially assign a code word of almost

ideal length given a probability assignment, which means that the model probabilities can vary

and adapt to the input data as it is observed. This allows us to treat the compression problem

as a problem of �nding the model that gives the minimum ideal code length for the input data.

The model can be based on the whole sequence and, in this case, it is necessary to �rst describe

the model to the decompressor or it can be learned on the �y (in the case of a strongly sequential

model) and, in this case, the decompressor can do the same. In both cases, there is a model

description cost to be paid (in the second case, it manifests itself implicitly as a �learning cost�).

In the deterministic setting, the optimality idea of universal data compression makes sense

considering a class of models. We say that a code that assigns a length L (·) to some given data

sequence xn is pointwise universal with respect to a class of models C if the pointwise redundancy

de�ned as RC (L, xn) = 1
n

[
L (xn)−min

c∈C
Lc (xn)

]
satis�es lim

n→∞
RC (L, xn) = 0.

Essentially, the choice of a class is an art and some criteria can be the complexity, some prior

knowledge on the data and the practical success of some models already presented. One useful way

to de�ne a class is to consider a set of models that can be characterized only by a d-dimensional

parameter θ. This kind of class is called a parametric class. The maximum likelihood estimate

θ̂ (xn) characterizes the model of a given parametric class that assigns the highest probability to

an input sequence xn. Therefore, in these cases, min
c∈C

Lc (xn) = − logPθ̂(xn) (xn).

The Normalized Maximum Likelihood (NML) code [Sht87, Ris96] assigns the following proba-

bility to the input sequence:

Q (xn) =
2
−min

c∈C
Lc(xn)∑

xn∈An 2
−min

c∈C
Lc(xn)

Therefore, in the case of parametric classes, the NML model assigns to each sequence a prob-

ability that is proportional to the probability given by the maximum likelihood estimate. The

pointwise redundancy of the NML code is

RC (LNML, x
n) =

1
n

log

[ ∑
xn∈An

2
−min

c∈C
Lc(xn)

]
.

1See [WNC87] for a practical description.
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Since this quantity depends only on the class and is the same for all the sequences xn ∈ An,
it can be easily shown that this code is optimal in the sense that it attains the best worst case

pointwise redundancy which is RC = min
L

max
xn∈An

RC (L, xn). Under certain reasonable assumptions

on a parametric model class, the redundancy can be written as

RC =
d

2n
log

n

2π
+

1
n

log
ˆ

Θd

√
|I (θ)|dθ + o

(
1
n

)
where I(·) is the Fisher information matrix 2 and Θd is the parameter space. Therefore, RC grows

with the number of parameters and vanishes as n tends to in�nity (i.e., the code is pointwise

universal). It can be shown (see [BRY98]) that this model can be thought as a two-part code which

means that we �rst encode the parameter (i.e., we describe the model) and then the data based

on this parameter. Using this point of view, we can see that the model description has a cost that

is asymptotically equivalent to d
2 log n. Although this code attains the best worst case pointwise

redundancy, it has two important drawbacks: it is hard to compute and the sequential probability

assignment depends on the horizon n.

Since the NML model has some important drawbacks, an approximation to this model is de-

sirable. The Krichevsky-Tro�mo� (KT) estimator [KT81] de�nes a model that is asymptotically

(when the data length goes to in�nity) as good as the NML model when we consider the class

of models that conditions each sample of the sequence on a �nite set of states S. Each state

is determined by some of the previous samples of the sequence. The KT estimator sequentially

assigns a probability to a symbol a occurring in a state s according to the following formula:

qxt (a | s) = nxt (a|s)+1/2
nxt (s)+α/2 where α is the alphabet size, nxt (s) counts the number of times that the

state s occurred from the beginning of the sequence up to time t and nxt (a | s) counts the number
of times the symbol a occurred on a state s in the same subsequence. As desired, the estimator

does not depend on the horizon n and the formula is easy to compute. This estimator assigns the

following probability to the whole sequence up to time n:

Q (xn) =
∏
s∈S

Γ
(
α
2

)∏
a∈A Γ (nxn (a | s) + 1/2)

Γ
(
nxn (s) + α

2

)
Γ
(

1
2

)α
where Γ is the Gamma function.

The code length assigned by the KT probability assignment to the symbols of xn that occur in

a state s is

LKT (xn | s) ≤ nxt (s) Ĥ (x | s) +
(α− 1)

2
log nxt (s) +O (1)

where Ĥ (x | s) = − 1
n logPθ̂(xn|s) (xn | s) (xn | s being the subsequence of symbols occurring at

state s), i.e., the code length given by the maximum likelihood memoryless model for xn | s (also
called empirical entropy rate). Adding all the KT code length contributions for every state in S

we get

LKT (xn) ≤ nĤ (x) + |S| (α− 1)
2

log nxt (s) +O (|S|)

2Let X (x) = X (x1, x2, . . . , xn) be a random vector in Rn and let fX (x) be a probability distribution on X with
continuous �rst and second order partial derivatives. The Fisher information matrix of X is the n × n matrix IX
whose (i, j)th entry is given by

(IX)i,j =

ˆ

Rn

∂ ln fX (x)

∂xi

∂ ln fX (x)

∂xj
fX (x) dnx
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where Ĥ (x) =
∑
s∈S

nxt (s)
n Ĥ (x | s) is the empirical entropy rate of xn considering a model con-

ditioned on the set of states S. Since nĤ (x) is the minimum code length assigned by a model in

the class, pointwise universality of the KT estimator follows from the previous inequality.

Considering a worst-case pointwise redundancy means guaranteed performance, but maybe

there are only a few such �unlucky� input sequences? In order to consider averages, it is reasonable

to assume that the data was drawn from a model in C, which takes us to the probabilistic setting.

Given a probabilistic source model described by a probability function P , the pointwise redundancy

of a code that assigns a length L (·) to the data is de�ned as

RP,L (xn) = L (xn) + logP (xn) .

Also in the stochastic setting, we say that a code that assign a length L to the data is point-

wise universal if the normalized maximum pointwise redundancy, de�ned as 1
n maxxn∈An RP,L (xn)

converges to zero, when n → ∞, for each model in C assigning a probability P . When consid-

ering a class of models conditioned on a �nite set of states S, a pointwise universal code in the

deterministic setting assigns a normalized code length of Ĥ (x) +o (1) bits. Since Pθ̂(xn) minimizes

− logP (xn) among all the distributions P of the models in the considered class, it follows that

for a pointwise universal code in the deterministic setting, the normalized maximum pointwise

redundancy (assuming the data has been generated by some model in the class) in the same class

vanishes with n and, therefore, the code is pointwise universal also in the probabilistic setting.

This is the case for the code given by the KT estimator.

The expectation of RP,L (xn) with respect to P is the expected redundancy of the code for the

given source, and it is given by

RP,L = EP [L (xn)]−Hn (P).

This quantity is equal to 1
nD (P ‖Q ), namely the normalized relative entropy between the dis-

tributions Pθ (that gives the probability of a sequence according to the model) and the distribution

Q (xn) = 2−L(xn).3

A theorem derived by J. Rissanen [Ris84, Theorem 1] for parametric classes, says that if the

parameters in Θd are �distinguishable� (in some precise sense de�ned there), then the expected

redundancy satis�es, for all Q and all ε > 0, the following inequality:

1
n
RC (L, θ) ≥ d log n

2n
(1− ε) , L = − logQ (xn)

for all points θ in Θd except in a set whose volume tends to 0 as n→∞.

The meaning of this bound, which applies in the probabilistic setting, is that (d/2) log n is the

inevitable cost of universality. This lower bound parallels Shannon's coding theorem: when the

model is unknown, a model cost that depends on the size of the parameter space gets added to

the entropy. The number of parameters a�ects the achievable convergence rate of a universal

code length to the entropy or to the best of the class in the deterministic scenario. Thus, it is

important to �nd classes that �t appropriately the probabilistic source or the individual sequence

characteristics, using the fewest possible parameters. In this sense, prior knowledge of the source

3By Kraft-McMillan's inequality, it can be shown (see, for example, [Mac03, p. 97]) that, under certain conditions,
an encoder that produces a code length L (·) implicitly de�nes a probability distribution Q (xn) = 2−L(xn ) for which
the code length function is optimal.
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data is of paramount importance in order to avoid learning characteristics already known.

One further step in the model optimization problem is to optimize the model size d at the

same time that we optimize the particular model. More precisely, consider a model class to be

the union of nested parametric classes of growing dimensionality: Θ1 ∪ Θ2 ∪ . . . ∪ Θd ∪ . . . where
Θ1 ⊂ Θ2 ⊂ . . . ⊂ Θd ⊂ . . . . We say that a code is twice-universal in this union of classes, if for

any source in the class de�ned by Θd, for any d, the normalized expected redundancy of the code

vanishes as d
2n log n up to lower terms. In the deterministic setting, the de�nition is analogous but

using pointwise redundancy instead of expected redundancy.

A trade-o� occurs since increasing the model size allows the model to better �t the data and,

thus, the data description length decreases while the model description length increases.

For more details on lossless compression (also called lossless source coding) see, e.g., [CT06].

Next, we discuss some important models used in practice under the light of universal data com-

pression theory and the model cost concept.

2.2 Context models

One important class of models is the one of causal context models. A causal context model for a

sequence xn is a conditional probability distribution P
(
xi
∣∣C (xi−1

))
, where C

(
xi−1

)
is a function

taking values in some arbitrary �nite set. The value C
(
xi−1

)
is called the conditioning state of

xi and the number of samples on which it depends is called the memory of the model. When

discussing the conditioning state C
(
xi−1

)
or the conditional probability P

(
xi
∣∣C (xi−1

))
, we refer

to xi as the current sample.

When using higher-dimensional data (e.g., images), there is an order in which samples are

considered (e.g. raster scan)4 that makes the data appear as one-dimensional, nevertheless, the

samples on which the conditioning states depend can be ordered di�erently, for example, using a

bi-dimensional distance criterion (see Chapter 4 for the details on the criterion used in this thesis).

In order to keep the notation clean, we continue using a one-dimensional notation but it can be

easily extended through a remapping of the conditioning locations.

2.2.1 Fixed-length contiguous context models

For a non-negative integerK, a K-th order �xed-length contiguous context model is a causal context

model in which C
(
xi−1

)
= xi−Kxi−K+1 . . . xi−1.5 In many applications, it makes sense to look

for statistical dependencies in a close contiguous neighborhood and that is a reason why �xed-

length contiguous context models are so popular. Nevertheless, the model description cost grows

exponentially with the memory of the model, which makes �xed-length contiguous context models

unable in practice to capture far dependencies.

4Raster scan is the method used in this work and it consists in traversing an image from top to bottom, from
left to right.

5In lossless compression, since every sample must be encoded and thus modeled, when the conditioning state
depends on samples with negative indexes (the border samples) some arbitrary conditioning state has to be chosen,
with a rule that must be repeatable by the decompressor. These border samples determine the initial condition of
the model, as discussed in Section 1.2. In our implementation, these locations get an initial arbitrary value of 0.
Then, the �rst relevant (depending on K) samples of the sequence get re�ected as soon as they are known. More
precisely, when evaluating the sample xi, x−h = xh if h < i, otherwise, if h ≥ i, x−h = 0 .
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2.2.2 Tree models

A tree model (see, e.g., [Ris83, WRF95]) consists of a full α-ary tree (de�ned in Section 1.2) and a

set of conditional probability distributions on the alphabet A, one associated with each leaf of the

tree. Each leaf of the tree represents a state. Each edge of the tree is labeled with a symbol from A.

Given an input sequence xn, the state selected for the sample xi is determined by descending from

the root of the tree, matching the labels of the edges with the symbols in the sequence in reverse

order, i.e., xi−1, xi−2, . . . until a leaf is reached. Therefore tree models are causal context models

where C
(
xi−1

)
= xi−txi−t+1 . . . xi−1 and t is determined by the conditioning state xi−t . . . xi−1

itself.

In the example tree model of Figure 2.1, all subsequences ending with the symbol 0 select the

same state, while for subsequences ending with the symbol 1, it may be necessary to examine one,

or even two more past symbols of the subsequence in order to determine the state.

i

iii 1−x

2−x

3−x

( )φφ0|ixP ( )φ10|ixP ( )110|ixP

( )111|ixP

0 1

0 1 0 1

0 1i

Figure 2.1: Example of a tree model de�ned over A = {0, 1}.

Notice that a full parametrization of a binary Markov source of order K corresponds to an

underlying full balanced6 tree of depth K.

This ability to reduce memory length has the potential to reduce the number of parameters

and thus model cost. A major advantage of tree models is that statistical information needed

to optimize the model can be stored in a context tree data structure, which is grown as the

sequence is observed, recording essentially all the occurrences of each symbol in every context

(including those represented by internal nodes). The precise manner in which this information is

used in the model optimization varies from approach to approach, but the recursive combinatorial

structure is key for algorithmic e�ciency in all cases. Twice-universal coding schemes for this

class of models attain a redundancy term α−1
2 |S| log n, where |S| is the number of leaves of the

tree, since there are α − 1 parameters per leaf.7 Twice-universality can be achieved with the

�plug-in� type of approach of the Context Algorithm [Ris83, WRF95], with the mixture approach

of the Context Tree Weighting (CTW) algorithm [WST95, Wil98], or with the two-pass version

of the Context Algorithm outlined in [Noh93]. Using the KT probability assignment, the latter

two algorithms attain pointwise twice-universality and the normalized pointwise redundancy is at

most (d logn)/(2n) + O (d/n) where d = (α− 1) |S| (see [MF98]), while the �rst one is shown to be

twice-universal only when considering expected redundancy. In the two-pass approach (also called

6A tree T is full balanced if it is full and all its leaves are at the same depth.
7Notice that the set of tree models represented by unbalanced trees has measure zero in the space of Markov

models of any order, otherwise, twice-universality would contradict Rissanen's lower bound.
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semi-predictive), the best tree structure is estimated and described in a �rst pass, and then the

data is sequentially encoded (based on this tree) in a second pass. This approach lacks sequentiality

(since the full sequence must be seen in order to estimate the best tree structure) and is redundant

in the sense that once the best tree is found, not all the input sequences xn are possible and

the algorithm ignores this fact. For these reasons, CTW is preferred in theory but, since the

convergence rate di�erences with the two-pass approach are only of order O (d/n) and CTW has

some practical issues,8 the two-pass approach is sometimes preferred. In [MSW04], an e�cient

implementation of this approach is presented.

At the encoder side, the two-pass algorithm has the following steps:

1. First pass: gather all the context statistics for xn in a context tree data structure.

2. Prune the context tree (lumping together equivalent states). In [Noh93], it is shown that,

due to the (full) tree structure of the model class, pruning reduces essentially to a dynamic

programming problem,9 with the cost function given by the code length that each potential

node in the context tree would contribute in case it were selected as a state. This problem

can be solved in time that is linear in the number of nodes of the context tree. The context

tree associates to each node the cost L(s) + α
α−1 , s being the state represented by the node

and L the code length achieved using the KT estimator and, then, the dynamic programming

algorithm prunes the tree in order to �nd a subtree T with total minimum cost for the leaves.

The total cost for T is: LT (xn) + lTα
α−1 , where lT is the number of leaves in T .10

3. Second pass: describe T to the decoder using nT bits (see Footnote 10) and encode xn

conditioned on T with KT.

The decoder, once it knows the structure of T , decodes xn sequentially conditioned on the states

of T using the KT estimator as well.

2.2.3 Sparse models

We now de�ne the main objects of this investigation. A relative location l refers to the sample xi−l
when xi is the current sample.

De�nition 2.1. A template T is a set of relative locations {l1, l2, . . . , lk} with 1 ≤ l1 < l2 < . . . <

lk ≤ K.

The elements of T de�ne the conditioning states of sparse models as we see in the following

de�nitions.

De�nition 2.2. A K-sparse context model (K-SCM) with respect to a given template T is a

causal context model where C
(
xi−1

)
= xi−lkxi−lt+1 . . . xi−l1 .

Therefore, the memory size of a K-SCM is �xed and equal to k.

8Because of �nite precision, complexity and alphabet size restriction.
9Based on the observation that, by recursively assigning costs to sub-trees, an optimal tree consists of optimal

sub-trees.
10Notice that nT = lTα−1

α−1
, the total number of nodes in the tree, is also the cost of describing the full tree using

a natural code (see, e.g., [WST95] and [Noh93]), with one bit per node that determine if each node is internal or

not, assuming a preorder traversal. Therefore, minimizing lTα
α−1

implies minimizing also the description cost of the
tree.
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De�nition 2.3. A K-window whole level sparse tree model (K-WLSTM) with respect to a given

template T is a causal context model where C
(
xi−1

)
= xi−ltxi−lt−1 . . . xi−l1 where t ≤ k is

determined by the samples of the conditioning state itself according to an underlying tree as in

tree models11 except that, when descending from the tree root, edge labels are matched with the

symbols in the sequence selected by the template T in reverse order, i.e., xi−l1xi−l2 . . . . until a

leaf is reached.

Thus, K-WLSTMs can be considered as tree models whose dependencies can lie only among

the �nite set of relative locations given by T . In particular, a K-WLSTM whose template is

T = {1, 2, . . . , k} is a tree model with memory bounded by k. The maximum memory size of a

K-WLSTM is bounded by the weight of the template k = |T | and is equal to the maximum j such

that xi−lj appears in some context (i.e., the length of the longest branch in the underlying tree).

Notice that every K-SCM can be represented, with the same number of states, by a K-WLSTM

with a �xed t = k.

Additionally, we de�ne the actual memory window as K̃ = max
j

(lj). We write CT
(
xi−1

)
=

xi−lkxi−lt+1 . . . xi−l1 to emphasize that the conditioning state is given by the template T .

For a given template T , the code given by the KT estimator is pointwise universal in the class

of K-SCMs de�ned over T since the models in this class are conditioned on a �nite set of states

as the one considered in Section 2.1. Analogously, it can be shown12 that, given a template T ,
the code given by the two-pass approach13 is twice-universal14 in the class of K-WLSTMs de�ned

over T .
This thesis focuses in the following problem. We are given an input sequence xn and a window

size bound K. The ultimate goal is to �nd the best sparse model (K-WLSTM or K-SCM), for xn.

Since the number of di�erent templates is 2K an exhaustive search is not of practical interest for

large values of K. In addition, no practical universal algorithms are known for these model classes

for large K. Therefore, we look for approximate solutions, i.e., reasonably good models for the

given input sequence. More precisely, we aim at �nding model sequences in which each model gives

a shorter code length than previous models. This sequence of models ends when no better models

are found or some maximum computational time is reached. For this reason, we study heuristic

methods like genetic and greedy algorithms.

Notice that, when variable length conditioning is allowed, a richer class of sparse models could

be obtained if we allowed di�erent orderings of template locations, but this signi�cantly increases

the problem complexity. In addition, intuitively, we assume that once a sparse set of locations is

selected, locations closer to the modeled sample are considered �more relevant�. Therefore, in this

thesis, we do not consider other orders.

In Chapters 3, 6 and 7, we present and analyze some heuristic algorithms that are intended

to address this problem. In Chapter 8, we empirically show that compression rates yielded by

K-WLSTMs found by these algorithms are generally better in comparison to algorithms widely

used in practice when the input data are binary images.

11Notice that, here, the underlying tree does not have φ labeled edges as in Section 1.2 (where we used a de�nition
analogous to the one of STMs in order to show di�erences between the two classes) since holes are speci�ed by the
template.

12For example, the proof for [Mar09, eq. 3.5] extends for this case since there is no restriction on which context
locations determine each state of the trees. Therefore, the states can be determined using sparse locations.

13The �rst step (statistics gathering) is performed considering the relative locations and the order given by T .
14Notice that, in this case, the union of growing dimensional classes is �nite since memory is bounded by k.
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Chapter 3

Genetic algorithms for sparse

template approximation

As mentioned before, the di�culty in optimizing sparse models comes from the combinatorial

complexity of �nding the best template to use to condition each sample. A starting point for this

thesis was an implementation, proposed in [Ser04], of a genetic algorithm for �nding approximate

solutions to the template optimization problem for the K-SCMs de�ned in De�nition 2.2. Next, we

will present the paradigm of genetic algorithms in general and then its application to the template

optimization problem.

3.1 Genetic algorithms in general

Genetic algorithms (GAs) are a metaheuristic1 for �nding approximate solutions to optimization

problems. The method was introduced in [Bar54, Hol75] and is inspired on the natural selection

mechanism described in Darwin's theory of evolution [Dar59]. In fact, GAs are a particular class

of evolutionary algorithms (also known as evolutionary computation) that uses techniques inspired

by evolutionary biology.2

In a GA, an individual is the representation of a candidate solution to an optimization prob-

lem and a �tness function allows to evaluate each individual: it corresponds to the optimization

problem's objective function. The goal of a GA is to �nd the individual with optimum �tness.

For instance, an individual, for the template optimization problem for K-SCMs, would be some

template representation and its �tness would be the code length for the input sequence given by

the KT estimator, described in Section 2.1, conditioned on this template. Finding the individual

with optimal �tness is equivalent to �nding the template minimizing code length for the input

sequence, when using K-SCMs.

There are many optimization problems that can be proven to be hard (e.g., NP-hard [GJ79])

and for which no e�cient (e.g., polynomial time) algorithms for �nding such optimal solutions are

known. In theses cases, the best one can aspire to is to �nd �good� solutions for which, in many

cases, we cannot prove how close to optimal they are. However, we can often still evaluate the

solution and �nd it more appropriate than other solutions to the problem. This kind of algorithm

1According to [Bla09], a metaheuristic is �a high-level algorithmic framework or approach that can be specialized
to solve optimization problems�.

2For a comprehensive tutorial on GAs see, for example, [Whi94].
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aims at �nding a sequence of increasingly better candidate solutions until solutions can no longer

be improved or a prespeci�ed time limit has been reached.

At each stage, GAs handle a set of M candidate solutions (a population) that contains the

best solutions found up to this point. For a given population, individuals are combined and

changed (through crossovers and mutations) with the goal of �nding a new population in which

better solutions show up (i.e., individuals with better �tness than the individuals of the previous

population).

As mentioned before, GAs are a generic framework whose components can be adjusted to

address many speci�c problems. Usually there are only two main components of GAs that are

necessarily problem dependent, and they are:

� a genetic representation of the solution domain: GAs represent candidate solutions as in-

dividuals using linear binary representations called chromosomes or genotypes. The most

standard one is a binary vector. Each vector location is called a gene. Since genetic opera-

tors work with the chromosomes' genes, the genetic representation together with the genetic

operators play an important role in GAs.

� a �tness function to evaluate the solution domain. In opposition to the genetic representation,

the �tness function is normally given as part of the problem description as the objective

function.

The other components are, a priori, independent of the problem to be solved but can be tailored

for better performance. Those usually are:

� a set (or population) of individuals. The cardinality of this set is called the population size.

The population must be appropriately initialized, which is usually done in a random manner.

� a recombination mechanism needed to produce new populations of individuals (or genera-

tions). This generally comprises the following steps:

� selection: individuals are chosen from the population as parents, to produce new in-

dividuals (o�spring) through the crossover and mutation processes. There are several

generic selection algorithms but the common idea is to choose the parents through a

�tness-based process, where �tter individuals (as measured by the �tness function) are

typically more likely to be selected.

� crossover : parents are combined in some way to produce new individuals seeking that

the o�spring inherits good characteristics from its parents, and can become �tter than

them. For example, in the uniform crossover scheme, in each recombination, from each

pair of parents P1 and P2, two children H1 and H2 are generated. Then, for each vector

location i, the following relationship holds:

(H1 (i) , H2 (i)) =

(P1 (i) , P2 (i)) with probability 1
2

(P2 (i) , P1 (i)) with probability 1
2

� mutation: after the crossover process, the new individuals undergo a mutation process

in order to introduce some variations. Without mutation, the simulated evolution may

converge to a very limited set of genes, which is very undesirable as it leaves the rest of

the solution space unexplored. To improve the e�ciency of a GA as a solver, it must
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explore the solution space as much as possible. On the other hand, a high mutation rate

may lead to the destruction of good genes, and degrades the GA to some sort of random

search. Thus, the mutation rate controls an important trade-o� and is an important

parameter of GAs. A common method of implementing the mutation operator involves

generating a random variable for each bit in the vector to determine if that bit will be

�ipped or not.

� an elitist strategy that consists in copying the bestm individuals (survivors) from the current

population into the next one, without undergoing any modi�cation. It is not required that

m > 0, nevertheless, it is helpful in order to guarantee a strictly increasing �tness of the best

individual of each generation and to avoid the loss of the best individuals.

� a termination criterion that determines when the generational process must be stopped.

Common terminating criteria are:

� a solution that satis�es a minimum criteria of goodness is found

� some �xed number of generations is reached

� some allocated budget (e.g., computation time) is reached

� the highest ranking solution's �tness is reaching or has reached a plateau such that suc-

cessive iterations no longer produce better results or improvement falls below a threshold

A basic generic GA would have the steps described in Algorithm 3.1.

Algorithm 3.1 A basic generic GA.

Choose an initial population of size M
Repeat until the termination criterion is reached:

Recombine individuals from the current population in order to produce M −m
individuals to be included in the next population

Copy the m best individuals from the current population into the next one

Since some steps of GAs are of a random nature, they require random numbers to be generated.

These are normally obtained using pseudo random number generators (PRNGs) which are algo-

rithms for generating sequences of numbers that approximate the properties of random numbers.

These numbers are not truly random since they are completely determined by some initial seed

state or seed, for short, which is an input for the algorithm. For more information on PRNGs, see,

e.g., [Knu69, Lub96].

3.2 A genetic algorithm for the template optimization prob-

lem

We �rst present an example that illustrates why GAs are suitable for the sparse template opti-

mization problem. Let us suppose that in a given sequence xn, we gather the statistics described

in Table 3.1.

If the two relative locations j and k were included in a K-SCM template, the model would

assign a probability 1 to the sequence, which gives a zero code length if we ignore model cost.
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s = xi−j , xi−k nxn (0 | s) nxn (1 | s)
00 m 0
01 0 m
10 0 m
11 m 0

(a)

s = xi−j nxn (0 | s) nxn (1 | s)
0 m m
1 m m

(b)

s = xi−k nxn (0 | s) nxn (1 | s)
0 m m
1 m m

(c)

Table 3.1: Example statistics of a sequence xn showing how template locations work as �teams�.
n = 4m.

Nevertheless, if a K-SCM template includes only one of the locations individually, the resulting

code length is −4m log (0.5) = n, i.e., the sequence is not compressed. This example illustrates

how locations work as �teams� and why the template optimization problem is a good candidate to

be solved by GAs, since GAs proceed by considering sets of genes and combining them.

Using the generic framework of GAs, G. Seroussi [Ser04] implemented an heuristic solution

to the sparse template optimization problem for the case of K-SCMs. We call this algorithm

BRGTO (for Basic Randomized Genetic Template Optimization) in opposition to our enhanced

version described in Chapter 7. BRGTO has the structure of Algorithm 3.1 with the following

speci�c components:

� genetic representation: each individual is a binary vector I of K genes whose support repre-

sents a template of context locations. Each gene (bit) corresponds to a context location of

the K-window. The location is included in the template if and only if, the corresponding bit

is set to 1. Since I is often sparse, it is convenient to describe it as the set of vector locations

whose corresponding value is 1, i.e.,

I = {i1, i2, . . . , ik} ⇔ I (i1) = I (i2) = . . . = I (ik) = 1.

� �tness function: it is the code length for the input sequence given by the K-SCM whose

template is represented by the individual being evaluated.

� initial population: for each individual of the population of size M , randomly select with

uniform distribution the weight w of the individual, then randomly select with uniform

distribution w context locations to be included in the template represented by the individual.

� elitism: the best m individuals from the current population are copied into the next popula-

tion

� recombination:

� selection: M−m pairs of individuals are chosen, with replacement, to play the role of

parents for each recombination with the following method:

* sort the current population according to the �tness of each individual and group

individuals into M/B bins of size B. Thus, the best B individuals are grouped into

bin 0, the next B individuals are grouped into the bin 1 and so on.
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* randomly select a bin using a geometric distribution with a �nite support [0 . . .M/B − 1],
the i-th bin having a probability of being selected P (i) = cγi, γ < 1, where c is a
the normalization constant c = 1−γ

1−γM/B
.

* randomly select with uniform distribution one individual of the selected bin.3

� crossover: two individuals I1 =
{
i
(1)
1 , i

(1)
2 , . . . , i

(1)
k1

}
and I2 =

{
i
(2)
1 , i

(2)
2 , . . . , i

(2)
k2

}
pro-

duce one child I3 =
{
i
(3)
1 , i

(3)
2 , . . . , i

(3)
k3

}
where k3 =

⌊
k1+k2

2

⌋
and the locations i(3)

j are

randomly chosen with uniform distribution from the union of the two sets I1 and I2

taken with multiplicities (a gene that appears in both parents has a higher chance of

being selected). Thus, I3 will tend to preserve common genes of I1 and I2. In particular,

if I1 = I2, then I3 = I1 = I2.

� mutation: two types of mutations are considered, namely, �ips (the bit value of a gene

is �ipped, which is equivalent to adding or deleting locations from the template) and

swaps (the bit value of a gene is swapped with the value of a gene with di�erent value,

which is equivalent to substituting one template location with another one not already

present in it). Notice that �ips modify the weight of the template (and therefore the

resulting model cost) while swaps preserve it. The mutation rate parameter µr controls

the probability of both types of mutations and the mutation mix parameter µm controls

the speci�c probability of each type of mutation. The algorithm for the mutation process

is the following one:

for each individual resulting from the crossover process, represented by a vector of bits

I, and for each location j

* with probability µrµm, where 0 ≤ µr ≤ 1 and 0 ≤ µm ≤ 1, I (j)← 1− I (j).

* independently of the previous event, with probability µr (1− µm), swap I (j) and

I (k), where k is selected randomly with uniform distribution within the set of

locations whose value is di�erent from I (j).

� termination criterion: a �xed number of generations G is reached

In order to avoid unnecessary computation, after each new population is produced, the algorithm

identi�es which individuals were present in the previous population and uses the already evaluated

�tness value. Additionally some primary tuning of the parameters of the algorithm was done

heuristically in [Ser04]. Nevertheless, the algorithm was still very time consuming. Additionally, a

priori, this algorithm could be used for K-WLSTMs by replacing the �tness function with one that

evaluates code length using K-WLSTMs instead of K-SCMs, but, in practice, the algorithm tends

to evaluate high weight templates that imply building large trees that consume high amounts of

memory and a lot of computation time, as explained in Chapter 5 and Section 6.3.

Therefore, in order to allow a faster experimentation with K-SCMs and to extend the ex-

perimentation to the setting of K-WLSTMs, in this thesis, we aimed at improving or adjusting

Seroussi's implementation or at proposing some alternative heuristics. One way to improve the

computing performance of BRGTO is to reduce the cost of the evaluation of each individual by

carefully optimizing the software. This can be done as described in Chapter 5 and gives signi�cant

3Therefore, if we consider the full sorted list of individuals, bins make the probability of selecting each individual
have an exponential decay by stages. If B was chosen too small, the set of selected individuals for recombination
would be concentrated on the very �rst individuals of the ranking and, thus, with high probability, we would exclude
other individuals that are not the best ones but that, potentially, through recombination, could lead to better ones.
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gains in execution time (a 160× speed-up in some cases) when comparing to the original implemen-

tation. In Chapter 6, we describe a greedy deterministic method for sparse template optimization

which gives some good results with good time performance but that is far from optimal for some

binary images. In Chapter 7, we propose some adjustments of BRGTO in order to emulate some

of the desired characteristics of the greedy algorithm, with the purpose of getting a similar time

performance while keeping the stochastic GAs properties as an aid against getting stuck in local

minima.
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Chapter 4

Binary images

Several of the experiments reported on in this thesis are performed on certain types of binary

images that seem particularly amenable to modeling with sparse models. In this chapter, we de�ne

the structure of binary images and the context geometry that may be appropriate for modeling

them. We describe some common types of images found in practice, and explain what makes

them appropriate for sparse modeling. We also present some widely used binary image lossless

compression methods with which we will compare our algorithms based on sparse models. We

describe two methods for generating synthetic binary images, based on sparse models, which are

useful for assessing the performance of our algorithms for sparse template approximation. Finally,

we introduce a test set of binary images to be used in later chapters to assess the performance of

our sparse model algorithms.

4.1 The context geometry

A digital image xm×n is a two-dimensional array of m rows and n columns where each pixel (for

�picture element�) xi,j ∈ A, where A is some alphabet. Pixels are the smallest individual elements

in an image, holding quantized values that represent the brightness of the image at a speci�c

point. A binary (or bi-level) image is a digital image that has only two possible values for each

pixel (|A| = 2), usually representing black and white.

As mentioned in Section 2.2, by traversing an image from top to bottom and left to right,

raster scan makes the array xm×n appear as a one-dimensional sequence x̄mn and, thus, each

xi,j is mapped to x̄(i−1)n+j . Nevertheless, it is useful to capture two-dimensional (2D) spatial

regularities and this requires 2D templates. In the same way that in the 1D case context locations

are naturally ordered according to their distance to the conditioned sample xi, we will de�ne a total

order for 2D contexts locations, according to their relative positions with respect to a conditioned

sample xi,j . Formally, a 2D relative location is a vector (r, c) that refers to the sample xi−r,j−c
when xi,j is the current sample.

Since lossless compression requires the models being causal, templates can include only past

locations according to raster scan order, i.e., relative locations (r, c) such that

r < 0 or (r = 0 and c < 0).

We assume that some total order on this set of causal relative locations is given. For instance,
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in this work, we order the elements of this set according to their 2-norm (denoted as ‖·‖) and an

arbitrary but �xed tie breaking rule as follows:

(r, c) < (r′, c′)⇔


‖(r, c)‖ < ‖(r′, c′)‖ or

(‖(r, c)‖ = ‖(r′, c′)‖ and |r| < |r′|) or
(‖(r, c)‖ = ‖(r′, c′)‖ and |r| = |r′| and c < c′)

The set of the �rst K = 32 causal relative locations according to this order is shown graphically

in Figure 4.1. Appendix B shows the causal relative locations and their order for K up to 1024.

Here, as in the 1D case, other orders could be considered, but, in this thesis, we do not consider

them for the same reasons explained for the 1D case.

Figure 4.1: 2D relative locations with their corresponding order for K = 32. The dark rectangle
represents the current sample.

Then, a 2D template T is a set of 2D relative locations {l1, l2, . . . , lk} where l1 < l2 < . . . < lk

(according to the given total order) and lh = (rh, ch) belongs to the set of the �rst K 2D relative

locations. Context models using such templates have

CT (xm×n, i, j) = xi−r1,j−c1 , xi−r2,j−c2 , . . . , xi−rK ,j−cK

which corresponds to

CT (x̄mn, i) = x̄(i−r1−1)n+(j−c1), x̄(i−r2−1)n+(j−c2), . . . , x̄(i−rk−1)n+(j−ck)

in the one-dimensional notation.1

It is important to notice that a template that is contiguous in the 2D interpretation, in most

of the cases, is not contiguous in the one-dimensional template mapped according to raster scan

order.

4.2 Common types of binary images

In this section, we describe two important classes of binary images that bene�t from sparse mod-

eling: images of text or similar2 documents and halftoned pictures.

Binary text images are normally obtained through a scanning device. They are usually the

result of applying a thresholding operation on an image represented by a larger alphabet A′ (e.g.,

1In our implementation, border samples are assigned analogously to the way described in Footnote 5 of Chapter
2: when xi,j gets known, then the relevant border samples are assigned in the following way: x−i,j := x−i,−j :=
x−i,2C−j := xi,−j := x2R−i,j := x2R−i,−j := x2R−i,2C−j := xi,2C−j := xi,j where R is the number of rows and C
is the number of columns.

2For example, music scores.
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gray scale images with |A′| = 256). The thresholding operation compares each pixel value of the

original image against a �xed threshold, if the value is above the threshold then the output is

1, otherwise it is 0. The example of Figure 4.2 shows that the thresholding technique is quite

appropriate for representing text documents as binary images.

Figure 4.2: Portion of a text document binary image obtained through the thresholding operation.

For this class of images, there are intrinsic regularities (like repeated symbol shapes, distances

between symbols) that could be e�ciently (in terms of model cost) captured by sparse models.

When applied to pictures, the thresholding operation normally results in great loss of detail and

contouring when comparing the resulting image to the original one (see Figure 4.3b). Halftoned

pictures are obtained as the result of a digital halftoning operation on images represented by a

larger alphabet. Digital halftoning is a technique for achieving satisfactory image rendering and

color reduction (i.e., create the illusion of a large palette of colors using a much smaller set of

colors). Initially, it was principally associated with the rendering of continuous-tone (gray-scale)

images on binary video displays, which could only display full black or full white pixels, or on
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printers, which could produce only full black spots on a printed page. In [Uli87], digital halftoning

is de�ned as �... any algorithmic process which creates the illusion of continuous-tone images from

the judicious arrangement of binary picture elements.�

Two important types of digital halftoning methods are described below (see Figure 4.3 for

examples).3

� ordered dithering : given a �xed matrix P v×w of values in A′ (called pattern), an input image

Im×n, the pixels of the binary output image Om×n are obtained by the following formula:

Oi,j :=

{
1, if Ii,j > Pimodv,jmodw

0, otherwise

This can be seen as an extension of the thresholding method, where the threshold is allowed

to vary in a periodic way. Di�erent patterns can generate completely di�erent e�ects and

artifacts. Two examples are the Halftone and Bayer's patterns (cases 4.3d and 4.3c in the

�gure).

� error-di�usion dithering : in this method, a single thresholding value is used for each pixel.

The input image is scanned in some order (e.g., raster scan) and the value of each pixel of

the input image is compared against a �xed threshold t. The corresponding output pixel is

obtained as in the thresholding method. Then, before processing the next pixel, the di�erence

between the input value and the threshold (the quantization error) is distributed and added

(�di�used�) to some of the input neighboring pixels not yet processed. For instance, in the

Floyd-Steinberg dithering, the image is traversed in raster scan order and the quantization

error Qi,j is distributed in the following way:

Ii,j+1 := Ii,j+1 + 7/16Qi,j

Ii+1,j−1 := Ii+1,j−1 + 3/16Qi,j

Ii+1,j := Ii+1,j + 5/16Qi,j

Ii+1,j+1 := Ii+1,j+1 + 1/16Qi,j

Error-di�usion dithering displays a very pleasing randomness, without the visual sensation

of rows and columns of dots (see Figures 4.3e and 4.3f).

It is important to notice that these halftoning methods produce periodicities that could also

be e�ciently captured by sparse models. For example, in order to capture an horizontal period h

and a vertical period v, the sparse template T (i, j) = {xi−v,j−h} would be su�cient.

Section 4.5 introduces a set of images chosen to represent the di�erent types of binary images

selected for the experiments presented in the next chapters. In Chapter 8, we present compression

results demonstrating the suitability of sparse models for these types of images.

4.3 Standard compression methods for binary images

In this thesis, we compare the compression rates yielded by our algorithms based on sparse models

against the results given by three widely used lossless compression methods for binary images:

JBIG [Joi93], JBIG2 [Joi01] and DjVu [Liz05].

3Examples taken from http://en.wikipedia.org/wiki/Dither as of April 2009

28

http://en.wikipedia.org/wiki/Dither


(a) Original gray-scale picture (b) Thresholding (c) Ordered dithering: Halftone
pattern

(d) Ordered dithering: Bayer's pat-
tern

(e) Error-di�usion: Jarvis, Judice &
Ninke algorithm

(f) Error-di�usion: Atkinson algo-
rithm

Figure 4.3: Thresholding and dithering examples.

4.3.1 JBIG

JBIG is a standard that de�nes a lossless compression system essentially aimed at binary images.

It has a variety of features, some of them being optional or allowed to be implemented with some

freedom. It has two main modes called progressive and sequential. The progressive mode includes,

in the encoded output, several versions of the input image in lower resolutions, in exchange for

some overhead in code length. While this mode can be quite valuable for some applications, it

is not of interest for our comparison purposes. On the other hand, in the sequential mode, the

input image is read in raster scan order and encoded as a single image as we do in our work and,

therefore, we focus on this mode.

JBIG's sequential mode algorithm has the following steps:

1. Stripes division (optional): the input image can be broken into horizontal stripes that can

be treated as separate images.

2. Typical prediction (optional): for each line of the input image, the algorithm determines if it

is identical to the previous line. One bit in the output indicates the result of this comparison.

If the line is identical to the previous one, it does not need to be encoded, otherwise it is

encoded with steps 3 and 4.
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3. Adaptive template modeling: each pixel of the lines to be encoded is modeled by conditioning

its value on a template. Two kinds of templates can be used for this purpose (depicted in

Figure 4.4), the three line template being the most used one. Both have nine �xed locations

and an adaptive location whose default place is indicated with an �A� in Figure 4.4. The

horizontal relative range in which adaptive locations can be moved is [−Mx,Mx] from the

current sample. The vertical relative range is [−My, 0]. Mx can be set up to a maximum of

127 and My up to a maximum of 255. These two parameters limit the range of values that

can be used for a given binary image. The actual location of the adaptive location can be

varied within a stripe of data and up to four moves per stripe are allowed. If Mx and My

are set to zero for a given image, then the default location will be the only possibility for

the adaptive location. The standard does not determine how to decide when to move the

adaptive location.

4. Arithmetic coding: For each encoded pixel, its value and the context in which it occurs are

passed to a binary tailored variant of arithmetic coder named QM-coder, which is a variation

of the Q-coder [PMLJA88], patented by IBM. This encoder estimates the probability of

each symbol given its context, based on previously seen symbols, and encodes based on this

probability.

(a) Two line template (b) Three line template

Figure 4.4: JBIG templates. The dark square is the current sample and the shaded squares are
the template locations. Adaptive locations are marked with an �A� and �xed ones with an �X�.

JBIG o�ers between 10% and 50% gains in compression rate over previous fax standards (i.e.,

CCITT Group 3 (Recommendation T.4) [Int96] and Group 4 (Recommendation T.6) [Int88]) for

business-type documents (scanned images of line art and printed text) and, for halftone images, it

o�ers gains in compression rates from 50% to 80% (see p. 471 of [BG+00] and references therein).

4.3.2 JBIG2

The JBIG2 standard adds a lossy compression mode and aims at improving lossless compression

performance of JBIG. It allows binary images to be divided into three parts: text regions, halftone

regions, and generic regions.

Text regions consist primarily of symbols (letters, numbers, etc.) that are relatively small, such

as the standard font sizes used for document preparation. These symbols are aligned in either a

left-right or top-bottom row format. For compressing text regions, a pattern matching technique

can be used. This technique tries to recognize characters and encodes their shape only once in a

symbol dictionary and then it encodes the coordinates where they appear. For lossy compression

the di�erence between similar symbols (e.g., slightly di�erent impressions of the same letter) can

be neglected; for lossless compression, this di�erence is taken into account by compressing each

symbol conditioned on its corresponding similar symbol in the dictionary. Therefore, this technique
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performs especially well when compressing high resolution text documents since symbols appear

almost identically in each occurrence.

Halftone regions are identi�ed when regularly occurring halftoning patterns are detected. These

regions can also be compressed using a pattern matching technique which in some way creates a

pseudo-grayscale image whose values lie in an alphabet of size 28. These values are indexes to a

pattern dictionary that keeps a record of the di�erent halftone patterns found in the region. Then,

this gray scale image is compressed considering bit-planes, i.e. the eight binary images that result

from considering each bit at a time of each pixel value of the pseudo-grayscale image. Then, these

bit-planes are compressed as generic regions.

Generic regions consist of line drawings, large symbols, or other components that have not

been identi�ed or encoded as halftone or text regions. For instance, when no lossy or progressive

compression is intended, halftone regions are normally not compressed as halftone regions but as

generic ones. Generic region encoding is quite similar to JBIG's method. Nevertheless, JBIG2

allows larger templates that have up to 6 conditioning locations more, 4 of them being adaptive

and allowed to be located away from the �xed template, in the same window de�ned in JBIG. It

uses a form of arithmetic coding -another variant of the Q-coder- known as MQ-coder also patented

by IBM.

In addition, the algorithm used for compressing generic regions is the basis of the representations

for the symbol dictionary components, the pattern dictionary components, and the bit-planes of

the pseudo-grayscale images used in the halftone regions. Generic region encoding also allows

re�nements to be applied to other regions. This permits quality progressive representations to be

encoded, as in JBIG. JBIG2 is claimed to have lossless compression rates that are 30% better than

JBIG (see, e.g., [SIH01]).

4.3.3 DjVu

DjVu is a system for encoding images (not only binary) with a broader scope than the previous

standards. For compressing binary images, DjVu uses an algorithm named JB2 which is a vari-

ation of AT&T's original proposal to the JBIG2 standard (see, e.g., [BHH+98]) and has similar

components.

4.3.4 Concluding remarks

We note that, besides the pattern matching technique especially designed for text regions in JBIG2

and DjVu, the three standard systems we described have at their core a sort of restricted K-SCM

that can be slightly adapted thanks to the adaptive locations. In our approach, all the locations

are adaptive and, in the case of the K-WLSTMs, even more adaptiveness is available thanks to

variable length conditioning. In Chapter 8, we show that in many cases the additional �exibility

provided by our approach is advantageous in comparison to the standard methods described.

4.4 Random binary image generation based on sparse models

For the purposes of experimentation and testing, it is sometimes advantageous to use synthetic

images generated by sparse models. These sparse model generated images are used in this thesis

for assessing the performance of our algorithms since, except for some pathological cases, with

very high probability, the input template used in the generator is also the optimal template for
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the generated sequence. Consistency issues for sparse models and their estimators were studied

in [FSV08, Fra08]. In this section, we describe two methods for generating random binary images

based on sparse models and some input template: one is based on a randomly built K-SCM and

the other is based on a K-WLSTM built by the statistics gathered from some given image.

4.4.1 Generation based on random K- SCMs

The procedure for random binary image generation using K-SCMs is described in Algorithm 4.1.

We start from a given template, and choose the parameters of the model at random. Two random

distributions are used and the corresponding PRNGs are initialized by di�erent seeds. A Beta

distribution is used for drawing the probability Ps of generating a symbol of value 1 for each

occurring state s. The Beta distribution has two free parameters α and β and its probability

function is de�ned on the domain (0, 1) as

P (x) =
(1− x)β−1

xα−1

B (α, β)

where B is the beta function de�ned as

B (a, b) =
(a− 1)! (b− 1)!

(a+ b− 1)!
.

The parameters of the Beta distribution give us some control on the probabilities in each state

and, thus, on the entropy of the process. For instance, if we set α = β = v for some value v, the

higher the value v, the higher is the kurtosis4 of the distribution and the higher tends to be the

entropy of the resulting process. A uniform distribution is used for generating the border values

of the image, i.e. the initial condition of the process. The samples of the image itself are drawn

according to the probabilities Ps.

4.4.2 Generation based on trained K-WLSTMs

Another approach for building the sparse model used to generate the data is to build (or train)

it using the statistics gathered on a given data sequence for a given template. This approach

is not quite amenable for K-SCMs since it is common to �nd occurring states in the generated

sequence that do not occur in the input sequence and for which statistics must be arbitrarily

chosen. Nevertheless, in the case of a trained K-WLSTM based on a template T , if a state

CT (xn, i) = xi−ltxi−lt−1 . . . xi−l1 occurs in the generated sequence but, in the original sequence,

it does not occur5 or the total number of statistics for this state is below some given threshold τ ,

we can use the statistics of the state given by xi−lt−1xi−lt−1 . . . xi−l1 (where t is determined by the

state and the shape of the tree), i.e., the parent node in the tree. This climbing can be repeated

until enough statistics are found. For the generated images used in this work, we used τ = 30.
The procedure for data generation using trained K-WLSTMs is described in Algorithm 4.2.

Figure 4.5 shows two examples of images generated by this algorithm and the corresponding

original images used for the training. The input templates are the ones found by our algorithms

for K-WLSTM approximation (presented in the next chapters) on the original images.

4The kurtosis of the Beta distribution is negative for v < 1 and positive for v > 1.
5This situation can occur because the full tree restriction (see Section 1.2) may force the pruning algorithm to

include non occurring states in order to include other important states (in terms of data �tness).
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Algorithm 4.1 Random binary image generation using a random K-SCM

Input: a template T , two random seeds s1 and s2, beta distribution parameters

α and β
output: a random image xm×n

initialize_uniform(s1)

initialize_beta(α,β,s2)

create an empty hash table T

For each location (i, j) of the border

xi,j:=uniform()
For i:=1 to m

For j:=1 to n
c:=CT (xm×n, i, j)
If T(c) is empty

repeat

T(c):=Beta()
until 0<T(c)<1

If uniform()≤T(c)
xi,j:=1

Else

xi,j:=0
End For

End For

Return x1..m,1..n

4.4.3 Entropy estimation of the generating processes

In order to assess our algorithms in di�erent cases of entropy, it is necessary to estimate the entropy

of the generating processes. One way to evaluate the entropy of a process based on a sparse model

requires the stationary distribution of the process to be evaluated, since the entropy of the process

is the sum of the entropy in each state weighted by the stationary distribution (see, e.g., [CT06,

Theorem 4.2.4]). The simple method for calculating the stationary distribution of a sparse model

by representing it as a �xed-length contiguous context model of memory K has an exponential

complexity in K. It is an open problem to �nd a more e�cient way to calculate the stationary

distribution of a process generated by a sparse model.

As a consequence of the Law of Large Numbers, the asymptotic equipartition property for

a stationary ergodic6 process (known as Shannon-McMillan-Breiman theorem [Sha48, McM53,

Bre57]) states that − 1
n logP (Xn

1 )→ H (X∞1 ) with probability 1. Thus, if the process is stationary

and ergodic, the entropy can be estimated by the normalized ideal code length relative to the

probability assignment given by the generating model.

A random process generated by aK-SCM is equivalent to a Markov chain of orderK. A Markov

chain is ergodic if it is possible to go from every state to every state with positive probability (not

necessarily in one transition) (see, e.g., [Doo53] for precise de�nitions). In our K-SCM generated

models, we guarantee that all conditioned probabilities are positive. Thus, starting from any state,

any sequence of symbols (and, therefore, any state) can be generated with positive probability.

In order to be stationary, the state that determines the initial condition of the process must be

drawn accordingly to the stationary distribution of the process (which is hard to compute in the

6A stochastic process is said to be stationary when P (xji ) = P (xj+ki+k ) ∀i, j, k and ergodic when its time averages
equal the ensemble averages; thus, when a random process has both properties, its statistical properties can be
deduced from a single, su�ciently long realization of the process, see, for example, [Doo53] for a precise de�nition.
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Algorithm 4.2 Random binary image generation using a trained K-WLSTM. T (c).s represents
the number of occurrences of the symbol s in the context c of the tree T . The tree pruning is
performed as in the second step of the two-pass algorithm described in Subsection 2.2.2.

Input: a template T = {l1l2 . . . lk}, a random seed s1, a threshold τ
output: a random image xm×n

initialize_uniform(s1)

gather statistics from xm×n using L in a tree T
prune(T)
For each location (i, j) of the border

xi,j:=uniform()
For i:=1 to m

For j:=1 to n
p:=0
Repeat

c:=xi−lt−pxi−lt−1 . . . xi−l1
p:=p+ 1

Until T(c).0 + T(c).1 ≥ τ
If uniform()≤T(c)
xi,j:=1

Else

xi,j:=0
End For

End For

Return x1..m,1..n

case of sparse models with large K, as previously mentioned). Nevertheless, in an ergodic Markov

chain, the probability distribution of states converges rapidly to the stationary distribution (see,

e.g., [Doo53]). Therefore, in order to estimate the entropy using the asymptotic equipartition

property, an initial portion of the generated sequences should be discarded and the sequence must

be large enough so that the Law of Large Numbers applies. For this reason, for the experiments

of this thesis, only large generated images were considered.

4.5 Test image set

Now, we introduce the images that we selected for assessing the performance of our sparse model

algorithms presented in this thesis. The set comprises the following images that are shown in

Appendix A:

� halftoned pictures with ordered dithering:

� �albert2D� (Figure A.5)

� �amb� (Figure A.6)

� �Halftone2� (Figure A.15)

� �Halftone3� (Figure A.16)

� �HALFTONE� (Figure A.14)

� halftoned pictures with error-di�usion:

� �lena_j� (Figure A.21)
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(a) Portion of the original image (b) Generated image

(c) Original image (d) Generated image

Figure 4.5: Examples of K-WLSTM generated images using a trained model.

� �pep_j� (Figure A.24)

� machine-printed text or similar documents:

� �A-�xedwidth6and8� (Figure A.4): a text document with two perfectly periodic zones

showing one repeated character

� �Bach_CPE-Sonata_�auto_solo_La_min-�� (Figure A.7): a music score document

� �cmfugue1-0� (Figure A.12): a music score document

� �otoosfont12� (Figure A.22): a highly dense text document

� �otoosfont24� (Figure A.23): a highly dense text document with double the resolution

of �otoosfont12�

� �ccitt4small� (Figure A.9): a lower resolution version of a text document from the refer-

ence set chosen by the International Telegraph and Telephone Consultative Committee
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(CCITT, from the French name �Comité Consultatif International Téléphonique et Télé-

graphique�) for evaluating proposals for binary image compression standards as JBIG,

JBIG2 and previous fax standards.

� �ccitt7small� (Figure A.10): a lower resolution version of a chinese text document also

from the CCITT reference set.

� �chinese_text� (Figure A.11): a chinese text document

� thresholded versions of texture7 images:

� �1.1.01M� (Figure A.1)

� �1.1.13M� (Figure A.2)

� �1.5.02M� (Figure A.3)

� ��akes006-inca-100dpi-00M� (Figure A.13)

� �texmos1.p512M� (Figure A.25)

� �wallpaper003-inca-100dpi-00M� (Figure A.26)

� �wallpaper004-inca-100dpi-00M� (Figure A.27)

� �wallpaper010-inca-100dpi-00M� (Figure A.28)

� other thresholded images:

� �Bobbys_letter_page_1� (Figure A.8): a hand-written text document

� �leeleter� (Figure A.20): a hand-written text document

� �hamilton_bw� (Figure A.17): a drawing

� �hamilton_ed� (Figure A.18): the same drawing as �hamilton_bw� but obtained with

a di�erent threshold

� �hieroglyph� (Figure A.19): a picture of hieroglyphs which has a regular layout of sym-

bols as in text documents

� �writing� (Figure A.29): a drawing

Additionally, some synthetic images based on trained K-WLSTM (whose templates are the best

ones found by our algorithms on the training image) were included in the test set for an empir-

ical consistency check, since they are cases where our K-WLSTM algorithms ought to perform

signi�cantly better than any other method. These images are:

� GEN_A-�xedwidth6and8 (Figure A.30): based on �A-�xedwidth6and8� (Figure A.4) with

K = 128

� GEN_cmfugue (Figure A.31): based on �cmfugue1-0� (Figure A.12) with K = 1024

� GEN_otoosfont12 (Figure A.32): based on �otoosfont12� (Figure A.22) with K = 512

7Obtained from the Brodatz (http://www.ux.uis.no/∼tranden/brodatz.html) and Oulu
(http://www.outex.oulu.�/index.php?page=image_database) texture databases.
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Chapter 5

Computational issues in sparse

model code length evaluation

The code length evaluation for sparse models is the most expensive step of the algorithms studied

in this thesis. In this chapter, we �rst describe the computations involved in these evaluations

and analyze their cost for both K-SCMs and K-WLSTMs de�ned in de�nitions 2.2 and 2.3. Then

we describe some optimizations that yielded a signi�cant reduction of the computation time for

K-SCMs, and enabled the implementation of K-WLSTMs.

5.1 K-SCM evaluation

Given a template T and a sequence xn, the code length given by the K-SCM implied by T on xn

is calculated in our implementation by the following steps:

1. Two hash tables HK (xn) and HT (xn) are de�ned with the following structure H:

(a) the key is a sequence c ∈ A∗ representing an occurring context in xn

(b) the value associated to the key c, denoted as H [c], is an array of 2 non negative integers

that count the number of times each symbol of the alphabet occurs in the context c in

xn

2. Full context statistics are gathered in HK (xn) as follows. For each sample xi of the sequence:

(a) extract its full context1 of length K, i.e., c := xi−K , xi−K+1, . . . , xi−1

(b) if the entry HK (xn) [c] does not exists, then create it and set HK (xn) [c] := (0, 0)

(c) increase HK (xn) [c] [xi] by one

3. Sparse context statistics according to T are gathered in HT (xn) as follows. For each key c

in HK (xn):

(a) extract the sparse context cT := c&T , where & denotes a bit masking operation resulting

from taking the |T | bits from c in the positions selected by the template T
(b) if the entry HT (xn) [cT ] does not exists, then create it and set HT (xn) [cT ] := (0, 0)

1The border samples are initialized as described in Footnote 1 of Chapter 4.
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(c) increase HT (xn) [cT ] by HK (xn) [c]

4. Code length is calculated as follows. Set L := 0. For each key cT in HT (xn), increase L by

the KT code length contribution of cT using the following formula (see Section 2.1):

LKT (xn |cT ) = − log
Γ (1)

∏
a∈A Γ (HT (xn) [cT ] [a] + 1/2)

Γ
(∑

a∈AHT (xn) [cT ] [a] + 1
)

Γ
(

1
2

)2
Notice that the �rst two steps are performed only once during the execution of any of the algorithms

discussed in this work.

In order to get an overall evaluation cost, we need to add the cost implied by each step above in

a weighted manner. For this purpose, we �rst derive an approximated formula for the evaluation

time on any computer architecture:

� the iteration over HK (xn) and the searches and insertions in HT (xn) take a time that is

roughly2 proportional to |HK (xn)|, assuming that searches and insertions in the hash table

are O (1) on average (which is reasonable if the hash table and function are well designed

and load balance is appropriately managed).

� the & operation takes a time proportional to W (K) |HK (xn)|, where W (K) is the number
of computer words used to represent each context in the given computer architecture.

� the iteration over HT (xn) and the evaluation of the KT code length contribution of each

context take a time roughly3 proportional to |HT (xn)|.

Therefore, the total execution time for the evaluation of the code length for xn given by theK-SCM

implied by T is, on average,

tK−SCM(T ) (xn) ≈ a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a3 |HT (xn)| .

In order to be able to use the previous formula for comparing the evaluation cost of di�erent

models, we need to obtain values for the coe�cients. For estimating these coe�cients empirically,

we used a linear regression. On the image �amb� (Figure A.6), for each K in {32, 64, 128, 256, 512,
1024}, and for each weight in {0..18} (since the weight of the best templates found for this image

using K-SCMs is around 18 and for heavier weights the high number of non-occurring states makes

the linear approximation inaccurate, as mentioned before), 20 random templates were generated

and their evaluation time was measured. Notice that this combination of parameters generates

multiple distinct samples values for each variable of the formula and, therefore, the coe�cients

resulting from this linear regression apply to other images as well. The estimated coe�cients and

the correlation coe�cient4 are shown in Table 5.1.

Since the linear approximation turned out to be quite accurate, we can use these coe�cients for

comparing evaluation costs of experiment runs, independently of the speci�c computer used. Using
2It is an approximation because sometimes insertions are performed and sometimes a counter is increased and,

also, because insertion time in the hash table is just guaranteed to be O (1) in average.
3The approximation is because for templates with many locations there can be several states with non occurring

symbols. For a non-occurring symbol a in a state s, the contribution to the total KT code length (see the formula
in Section 2.1) is − log Γ (HT (xn) [cT ] [a] + 1/2) = log2 Γ

(
1
2

)
. Therefore, the evaluation of the function log2 Γ (·)

can be avoided using a precalculated value of log2 Γ
(

1
2

)
.

4The correlation coe�cient is an indicator of how well the equation resulting from the regression analysis explains
the relationship among the variables. If it is 1, there is a perfect correlation in the sample � there is no di�erence
between the estimated y-value and the actual y-value. At the other extreme, if the coe�cient of determination is 0,
the regression equation is not helpful in estimating a y-value.
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a1 a2 a3 error term correlation coe�cient

9.73E-5 3.99E-7 4.48E-3 -0.69 0.9976

Table 5.1: Coe�cients for K-SCM evaluation time formula (in milliseconds) on an Intel Centrino
Duo T2300 1,66 GHz processor running Windows XP. Notice that time is measured by quanta of
approximately 15 ms in this kind of system.

the values of |HK (xn)| and |HT (xn)| reported by the algorithms, we calculate the evaluation cost

for K-SCMs as

cK−SCM(T ) (xn) = a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a3 |HT (xn)| .

5.2 K-WLSTM evaluation

Given a template T and a sequence xn, the code length given by the K-WLSTM implied by T on

xn is calculated in our implementation by the following steps:

1. Same as steps 1 and 2 of the K-SCM evaluation.

2. Although the insertion of the extracted contexts could be done directly into the tree structure,

they are �rst inserted in a hash table HT (xn) as in step 1 of the K-SCM evaluation. This

is to avoid visiting leaves each time the corresponding context occurs. For each entry of

HT (xn), insert into a binary tree structure TT (xn) the corresponding leave, its not yet

inserted parent nodes and the necessary nodes to obey to the full tree structure restriction.

Notice that the holes are not represented in this structure since they are determined by the

template and, thus, the tree is just like one for a plain (contiguous) tree model.

3. Prune TT (xn) using the dynamic programming algorithm (see Subsection 2.2.2), obtaining

a tree T ′ (xn).

As in the case of K-SCMs, the total cost will be a weighted sum of costs of the steps above, which

we analyze next.

The tree building and pruning steps have a time complexity proportional to |TT (xn)| where
|TT (xn)| is the number of nodes in TT (xn). Therefore, the total execution for the evaluation of

the code length for xn using the K-WLSTM implied by T (xn) is, on average,

tK−WLSTM(T ) (xn) ≈ a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a′3 |HT (xn)|+ a4 |TT (xn)| .

The �rst three terms are explained as in the K-SCM evaluation. Nevertheless, a′3 ≤ a3 since in

the K-WLSTM evaluation case, the KT code length contributions are calculated during the tree

pruning and thus this cost is not included in a′3 . Also in this case, the coe�cients were estimated

by a linear regression (on the same image but for weights up to 30, since the best templates found

for K-WLSTMs on this image have weights around this value). The estimated coe�cients and the

correlation coe�cient are shown in Table 5.2.

Therefore, we calculate the evaluation cost for K-WLSTMs as

cK−WLSTM(T ) (xn) = a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a4 |TT (xn)| .

39



a1 a2 a′3 a4 error term correlation coe�cient

1.9E-4 4.37E-7 forced to 0 5.4E-3 -46.05 0.9916

Table 5.2: Coe�cients for K-WLSTM evaluation time formula (in milliseconds) on an Intel Cen-
trino Duo T2300 1,66 GHz processor running Windows XP. Notice that time is measured by quanta
of approximately 15 ms in this kind of system. a′3 is negligible since it only accounts for the iteration
over HT (xn).

Thus, the di�erence in the evaluation time between K-STMs and K-WLSTMs is given es-

sentially by the cost of building and pruning the corresponding tree, which is proportional to

|TT (xn)| ≥ |HT (xn)|, because of the full tree structure restriction. Additionally, it is important

to notice that for a given sequence xn, the K-WLSTMs evaluated by the algorithms studied in

this work tend to have larger |HT (xn)| than for K-SCMs, since they tend to use templates with

more locations.

5.3 Optimizations

The original framework of [Ser04] used the hash_map class of the C++ Standard Template Library

(STL) of Microsoft Visual Studio 7 (2003). The �rst observation we made was that a substantial

amount of time was involved in allocating and deallocating memory for building each HT table.

Thus, in our implementation, we have a static closed hash table in order to reuse the same memory

for each HT . For this, a customized hash structure stores pointers to locations of an array in which

counters are stored contiguously in order to speed up iterations over the tables. For the hash

function h (·) (that maps a key to an integer [0, s− 1], where s is the size of the table), we chose P.
Hsieh's SuperFastHash function [Hsi04] for its time performance and its key distribution equivalent

to a uniform random map which is appropriate to minimize collisions. Collisions are handled by

a quadratic probing method in which the i-th probe position for a key k is given by the function

h (k, i) =
(
h (k) + c1i+ c2i

2
)

(mod s), where c2 6= 0. For a table size that is a power of 2, a good

choice for the constants is c1 = c2 = 1/2, as the values h (k, i) for i in [0, s=1] are all distinct [Cor01,
Problem 11.3]. This leads to a probe sequence of h (k) , h (k) + 1, h (k) + 3, h (k) + 6, . . . where the
added values increase by 1, 2, 3, . . . Quadratic probing avoids better the clustering problem that

can occur with linear probing. In order to guarantee that there is enough space in each table and

the load factor is kept below 0.5, we initially count the number of elements of |HK | before building
the table and then HK is built of sizedlog2 (2 |HK |)e. Then, the static structure for HT is built of

the same size since |HT | ≤ |HK |.
Obviously, there is an initial overhead for building these structures but it is quite negligible if

more than a few models are evaluated in the same run. The improvements of running time of the

optimized version are signi�cant (especially for heavier templates) as seen in the example shown

in Table 5.3. The table shows an average speedup ranging from 1.3× in the (unrealistic) case of

a template of weight 0 to 164.2× in the case of templates of weight 18, which are templates with

only 3 locations more than the best found K-SCM template for this image. This improvement is

also quite noticeable when evaluating K-WLSTMs since the �rst steps of the evaluation are the

same and K-WLSTM algorithms tend to evaluate heavier templates than the ones for K-SCMs.
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Template weight STL version
average time in

ms

Optimized
version average
time in ms

Improvement Ratio

0 128.1 96.4 1.3

1 124.8 63.6 2.0

2 131.1 63.6 2.1

3 135.5 68.3 2.0

4 140.1 63.6 2.2

5 149.4 58.8 2.5

6 171.4 68.4 2.5

7 218.3 68.4 3.2

8 215.1 71.6 3.0

9 301.2 74.7 4.0

10 530.8 77.9 6.8

11 954.3 85.6 11.1

12 1184 91.6 12.9

13 2977.8 105.8 28.1

14 5676.1 123.3 46.0

15 3808.9 132.5 28.7

16 9252.7 148 62.5

17 7152.7 163.7 43.7

18 28890.3 175.9 164.2

19 23237.1 196.4 118.3

20 19913.6 205.8 96.8

Table 5.3: Running time comparison between STL and optimized hash versions on the image
�cmfugue1-0� (Figure A.12) with K = 512. The same random templates were evaluated in each
case (10 templates per weight). The initial overhead for building the structures in the optimized
version is approximately of 300 ms, which is less than three average evaluations of templates of
the optimal weight.
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Chapter 6

Greedy algorithms for sparse

template approximation

In order to propose an alternative algorithm for sparse template optimization, we explored the

�eld of greedy algorithms. A greedy algorithm is any algorithm that follows the problem solving

metaheuristic of making the locally optimum choice at each stage with the goal of �nding the

global optimum. It is important to have in mind that, although greedy algorithms �nd the globally

optimal solution for some optimization problems, they are generally characterized as �short-sighted�

and �non-recoverable� and thus they may �nd suboptimal solutions for some instances of other

problems. This is because these algorithms, at early stages, can take some decisions that cannot

be modi�ed later and, although locally optimal, can lead to a solution not as good as the global

optimum.

We �rst present a basic greedy algorithm that we call DITO (for Deterministic Incremental

Template Optimization). This algorithm can be used in the setting of K-SCMs, in which case

it is denoted as DITOK−SCM, or in the setting of K-WLSTMs, in which case it is denoted as

DITOK−WLSTM. Then we present some variants to the algorithm that aim at providing some

recoverability to it.

6.1 A basic greedy algorithm

When running BRGTO, we noticed that the earliest generations of the algorithm were the most

expensive ones because of the heavy weight of the templates considered there. With that issue in

mind, we designed DITO, a basic greedy algorithm, similar to the one used in [RSP08], for sparse

template approximation. As described in Algorithm 6.1, DITO starts from an empty template

(a memoryless model) and, in each stage, it tries to add every location not already included and

keeps the one that gives the greatest improvement in code length, and repeats the step until no

more improvements are possible. In the case of K-WLSTMs, templates are evaluated using the

two-pass algorithm explained in Subsection 2.2.3. Then it is possible that, after pruning a tree,

some location of the template gets no longer used. In this case, the location is removed from the

template.

Since we have no other algorithm at hand for �nding good sparse models against which the

results of this greedy algorithm can be compared, we need alternative methods to assess its per-
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Algorithm 6.1 DITO: a basic greedy algorithm for sparse template approximation. Templates
are encoded as arrays of bits (the corresponding value is 1 when a location is included). �ip(t,i)
is a function that returns a new array that is a copy of t except for the i-th value that is �ipped.
codelength(t) evaluates the code length given by the template t for the input data, using K-SCMs
or K-WLSTMs, depending on the case. weight(t) returns the number of locations included in the
template t. When evaluating K-WLSTMs templates, after pruning a tree, some locations can get
no longer used. In these cases, the locations are also removed from the templates for the next steps
of the algorithm.

Input: a sequence xn, a window size K
Output: a template T

set tempBestTemplate:=0K

set auxBestTemplate:=0K

Repeat

For each i such that tempBestTemplate[i]=0 //additions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)

set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate

While improvements are achieved and weight(tempBestTemplate)<K
Return T :=tempBestTemplate

formance. For this purpose, we evaluate it on images for which we have good indications of what

the result should be.

6.1.1 Compression performance on images generated by K-SCMs

As explained in Section 4.4, one way to evaluate the compression performance of this greedy

algorithm is to run it on data generated by sparse models, since we know the templates that are

used for the data generation, which are, reasonably, good candidates to be the optimal ones or close

to. Thus, we compare the code length given by the templates found by DITOK−SCM on K-SCM

generated images against the code length given by the templates of the generating models.

Some images were generated using K-SCMs, with K = 32, by combining the following param-

eter values:

� Templates: 3 random templates of weight 13, 14 and 15, whose binary array representations

are, respectively, 00001111100011110011011000000000, 11110110000001111010101000000100

and 01010010101101001010010100101011 (the rightmost bit represents the �rst relative loca-

tion and the other bits to the left represent the other relative locations in the order depicted

in Figure 4.1).

� For the Beta distribution: α = β, α ∈ {0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6}

The DITOK−SCM algorithm was run on each generated image. We classify the generated images

according to their estimated entropy (see Subsection 4.4.3). Table 6.1 compares the code length

given by the template found by DITOK−SCM with the code length given by the generating template

for each entropy level. Notice that the di�erence between the estimated entropy and the code

length given by the generating template is due to model cost (i.e., the �learning� cost of the KT

estimator) included in the former but not in the latter. We ignore some combinations of parameters
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that produce high entropy images that cannot be compressed with the generating template (i.e.,

the compression ratio is greater or equal than 1).

Estimated entropy LT/n LDITO/n (LDITO−LT )/LT

0.1907 0.2686 0.2686 0%
0.1959 0.3085 0.3085 0%
0.1965 0.2530 0.2530 0%
0.3260 0.3747 0.3747 0%
0.3300 0.4299 0.4299 0%
0.3362 0.4046 0.4046 0%
0.4981 0.5847 0.5847 0%
0.5006 0.5589 0.5589 0%
0.5009 0.5408 0.5408 0%
0.6703 0.7040 0.7040 0%
0.6713 0.7476 0.7476 0%
0.6732 0.7241 0.7241 0%
0.8048 0.8345 0.8345 0%
0.8058 0.8769 0.8769 0%
0.8085 0.8548 0.8548 0%
0.8949 0.9222 0.9222 0%
0.8964 0.9658 1.0000 +3.54%
0.8973 0.9415 0.9415 0%
0.9457 0.9719 0.9719 0%
0.9467 0.9897 1.0000 +1.04%
0.9720 0.9978 1.0000 +0.22%

Table 6.1: DITOK−SCM results on K-SCM generated images of di�erent entropy levels. LT is the
code length given by the generating template T , LDITO is the code length given by DITOK−SCM

and n is the number of samples of the image.

We observe that DITOK−SCM generally performs very well on this kind of images for di�erent

entropy levels.

6.1.2 Compression performance on non-synthetic images

Another way to evaluate the compression performance of this algorithm is to run it for many K

values on the same data: if the algorithm is robust, the results should not worsen when the search

space is augmented. On the image �albert2D� (Figure A.5), DITOK−SCM gives a solution whose

code length for K = 512 is 9.28% worse than for K = 256, which is quite signi�cant. On the

image �A-�xedwidth6and8� (Figure A.4), DITOK−WLSTM gives a solution whose code length for

K = 512 is 45.62% worse than for K = 128.

It is important to remark that �albert2D� has a highly regular grid layout of halftoning patterns

with a well de�ned horizontal and vertical period p (in a loose sense). By increasing K, the

algorithm faces new choices of locations that capture greater periods (multiples of p) which can

signi�cantly change the sequence of decisions it takes. In fact, when we observe the template found

for K = 256 (Figure 6.1a), we �nd that it includes several locations that are within a distance

smaller than p. This can be useful for modeling the halftoning patterns themselves. While, for

K = 512 (Figure 6.1b), most of these locations are not included and the weight of the template

is much lower (12 vs. 19). Therefore, in the second case, the algorithm mostly captures many

periods of the halftoning grid instead of the regularities inside the halftoning patterns themselves
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and therefore does not capture so well the overall structure of the image.

(a) K = 256 (b) K = 512

Figure 6.1: K-SCM templates found by DITOK−SCM on �albert2D�. The darkest square is the
current sample and the thick line shows the window for K = 256.

Something similar seems to happen for �A-�xedwidth6and8� (see templates in Figure 6.2),

where for the biggest value of K, the algorithm mostly captures the distances (and its multiples)

between letters instead of the regularities of the characters themselves.

(a) K = 128 (b) K = 512

Figure 6.2: K-WLSTM templates found by DITOK−WLSTM on �A-�xedwidth6and8�. The darkest
square is the current sample and the thick line shows the window for K = 128.

6.2 Greedy algorithms with corrections

Although DITOK−SCM seems to perform well for K-SCM generated images with randomly gen-

erated distributions, we found some images that clearly show that both DITOK−SCM and DI-
TOK−WLSTM can get stuck in some really bad local optima. With the goal of improving the

results, we tried some variants that aim at giving some recoverability to the algorithm.

6.2.1 Deletion of template locations

A �rst extra step is added to DITO: after considering all the template locations to add and

eventually adding one, the algorithm now considers deleting one of the locations already added, as

described in Algorithm 6.2 which we call DITOD.

This extra step has low cost and we observe that, in some cases, it gives important improvements

over the results given by DITO. For example, for K = 256 on �albert2D� DITOK−SCM
D gives gains

in code length of 5.7% over DITOK−SCM. Nevertheless, DITOD fails considerably on the same

cases where DITO does as shown in Tables 6.2 and 6.3, with losses even bigger. Although deletions
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Algorithm 6.2 DITOD.

Input: a sequence xn, a window size K
Output: a template T

set tempBestTemplate:=0K

set auxBestTemplate:=0K

Repeat

For each i such that tempBestTemplate[i]=1 //deletions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)

set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate

For each i such that tempBestTemplate[i]=0 //additions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)

set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate

While improvements are achieved and weight(tempBestTemplate)<K
Return T :=tempBestTemplate

can provide some correction ability to the algorithm, the algorithm still considers one location at

a time and no real backtracking is allowed.

greedy algorithm 512 vs. 256

DITOK−SCM +9.28%
DITOK−SCM

D +15.91%

Table 6.2: Di�erence in code length given by DITOK−SCM and DITOK−SCM
D on �albert2D� when

increasing window size. Di�erences are calculated as (LK=512
DITO −L

K=256
DITO )/LK=256

DITO , expressed as a per-
centage. Positive numbers represent losses in compression rate, and larger magnitude numbers
represent larger losses.

greedy algorithm 256 vs. 128 512 vs. 128

DITOK−WLSTM +25.85% +45.62%
DITOK−WLSTM

D +38.39% +52.85%

Table 6.3: Di�erence in code length given by DITOK−WLSTM and DITOK−WLSTM
D on �A-

�xedwidth6and8� when increasing window size. Di�erences are calculated as (L2K
DITO−L

K
DITO)/LK

DITO,
expressed as a percentage. Positive numbers represent losses in compression rate, and larger mag-
nitude numbers represent larger losses.

6.2.2 Substitution of template locations

Another extra step is added to the algorithm: between the additions and deletions steps, the

algorithm consider substituting each of the locations already included in the template with the

ones not already included. This substitution step is repeated until no more improvements can be

achieved with substitutions, as shown in Algorithm 6.3 which we call DITODS . This step may

provide an additional correction ability, in which locations are considered by pairs in contrast with
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the additions and deletions steps in which locations are considered individually.

Algorithm 6.3 DITODS . swap(t,i,j) returns a copy of t with the i-th and j-th values swapped.

Input: a sequence xn, a window size K
Output: a template T

set tempBestTemplate:=0K

set auxBestTemplate:=0K

Repeat

For each i such that tempBestTemplate[i]=1 //deletions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)

set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate

For each i such that tempBestTemplate[i]=0 //additions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)

set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate

Repeat //substitutions

For each i such that tempBestTemplate[i]=1

For each j such that tempBestTemplate[i]=0

If codelength(swap(tempBestTemplate,i,j))<

codelength(auxBestTemplate)

set auxBestTemplate:=swap(tempBestTemplate,i,j)

End For

End For

set tempBestTemplate:=auxBestTemplate

While substitutions keep achieving improvements

While improvements are achieved and weight(tempBestTemplate)<K
Return T :=tempBestTemplate

In the simpler case where this step is executed only once between additions and deletions, the

cost that this extra step adds to the algorithm is O
(
w2K

)
, where w is the number of locations in

the template when the algorithm stops. This step is not that practical in the K-WLSTM setting

because of the high cost of evaluating these models (detailed in Chapter 5) and usually a higher w

than for K-SCMs. Thus, we focus on the K-SCM setting. Comparing DITOD and DITODS on all

the non-synthetic images1 of the set described in Appendix A for K in {32, 64, 128, 256, 512, 1024},
we �nd that the greatest gain that the substitution step has achieved was only of 1.36% and in

some cases there was a loss, the maximum being of 0.92%. The robustness problems still remain

with DITOK−SCM
DS since the loss in code length with K = 512 vs. K = 256 on �albert2D� is of

15.65%. In conclusion, it seems that the substitution step is not really worth its high price.

This shows that both corrections steps (deletions and substitutions) are not enough for avoiding

falling in some bad local minima for some kind of data and suggests that a more robust heuristic

ought to consider less restricted kinds of corrections like, for example, the ones performed by a

genetic algorithm's crossover and mutation steps.

1Except �A-�xedwidth6and8�.
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6.3 Cost of model evaluation: greedy vs. random templates

In this section, we analyze why the DITO algorithms tend to be much faster than BRGTO. This

analysis gave us important ideas about how to improve BRGTO and make it amenable to use in

a K-WLSTM setting. These ideas were used to design the enhanced version of BRGTO presented

in Chapter 7.

In order to analyze how expensive is the evaluation of the models considered by the greedy

algorithm, we need to recall the formula, derived in Chapter 5, that gives the code length evaluation

cost (de�ned in the same chapter). Given a template T and a sequence xn, the evaluation cost for

xn using a K-SCM m based on T is:

cK−SCM(T ) (xn) = a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a3 |HT (xn)|

where |HK (xn)| is the number of distinct contiguous K-tuples occurring in xn, |HT (xn)| is
the number of states of m occurring in xn and W (K) is the number of computer words used to

represent a context of memory K.

Given a template T and a sequence xn, the evaluation cost for xn using the K-WLSTM implied

by T is:

cK−WLSTM(T ) (xn) = a1 |HK (xn)|+ a2W (K) |HK (xn)|+ a4 |TT (xn)|

where |TT (xn)| is the number of nodes in the tree structure before pruning.

Besides the improvements described in Section 5.3, DITO algorithms have two characteristics

that make it e�cient in the use of computational resources:

1. the weight of the evaluated templates starts from 0 and then successively increases. The

evaluation of lighter templates tends to reduce |HT (xn)| and |TT (xn)|, although it depends

on the data and the templates considered.2

2. they evaluate templates that are slight variations from the best of each stage, which makes

them likely to be good ones. The relationship here is less direct, but it is explained by the

fact that the KT estimator favors models with less occurring states in the given data unless

the extra states give enough improvement in �tting the data to compensate the extra model

cost. Thus, the evaluation of better models tends to reduce |HT (xn)| and |TT (xn)| as well.

Figures 6.3 and 6.4 illustrate, using an example input image (with K = 128 for K-SCMs and

K = 1024 for K-WLSTMs), these observations by comparing the results found at each stage by

DITO (DITODS for K-SCMs and DITOD for K-WLSTMs) against random templates. In the

case of random templates, for K-SCMs, we consider templates of weight up to the window size

since, in BRGTO, in the initial population, templates' weights are uniformly distributed in 1..K
and, thus, templates of any weight can be evaluated. Figures 6.3a and 6.4a show, for K-SCMs

and K-WLSTMs respectively, how evaluation cost increases with weight, as stated in the �rst

observation. Nevertheless, we observe that in the case of random templates, the cost increases

faster than for the templates found by DITODS . This explained, by the second observation, which

is illustrated in Figures 6.3b and 6.4b, in which we observe a signi�cant di�erence in code length

between random templates and those found by DITODS , especially in the case of higher weights.

2Except when a template T represents a subset of the set represented by a template T ′. In this case, it is true
that |HT (xn)| ≤ |HT ′ (xn)| and |TT (xn)| ≤ |TT ′ (xn)|.
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Another important issue when evaluating K-WLSTMs is the amount of memory necessary to

represent the tree, which is proportional to |TT (xn)|. Figure 6.5 shows, for the same image as

before, the amount of memory necessary (in our implementation) to represent the trees used by

the K-WLSTMs comparing random models against the ones evaluated by the greedy algorithm.

We observe that the amount of memory could easily reach unpractical values if the templates were

not carefully chosen.

6.4 Conclusions

In this chapter, we empirically demonstrated that the DITOK−SCM performs generally well on

K-SCM generated images. Nevertheless, DITOK−SCM and DITOK−WLSTM can considerably fail

for other images. DITOD and DITODS can give some improvements on some images but still fail

on the same cases as DITO does. Therefore, the greedy algorithms proposed in this chapter can be

simple and fast methods to obtain good solutions for some instances of the template optimization

problem but cannot be considered reliable in every case. The evaluation cost analysis presented

in this chapter suggests that, in order to have a reasonable computing performance, an heuristic

designed for the sparse template problem ought to perform its search, when possible, by evaluating

not too heavy and not too bad (in terms of code length) templates.
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(a) Cost vs. weight
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Figure 6.3: Relationships between evaluation cost and template weight and between evaluation
cost and code length for K-SCMs using random templates and those found by DITODS . In the
random case, 20 templates per weight were evaluated.
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random K-WLSTM code length  vs. DITO_D on otoosfont24 K=1024
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Figure 6.4: Relationships between evaluation cost and template weight and between evaluation
cost and code length for K-WLSTMs using random templates and those found by the DITOD. In
the random case, 20 templates per weight were evaluated.
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Average memory usage for K-WLSTM evaluation on otoosfont24 
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Figure 6.5: Relationship between template weight, KT code length and memory usage for K-
WLSTMs. In the random case, 20 templates per weight were evaluated.
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Chapter 7

ERGTO: an improved genetic

algorithm

In this chapter, we study modi�cations to the genetic algorithm BRGTO described in Section 3.2.

The goal of the modi�cations is to improve the computational e�ciency of the algorithm. Although

more e�cient computations are a worthy goal in themselves, one of our main objectives is that the

increased e�ciency lead to improvements in compression performance, by enabling the practical

use of larger context templates as well as modeling extensions as K-WLSTMs. We seek to apply

some of the lessons learned from the greedy algorithms DITO described in Chapter 6, so that

the modi�ed genetic algorithm, which we call ERGTO (Enhanced Randomized Genetic Template

Optimization), acquires some of the computational properties of DITO, while maintaining the

randomness properties that help in preventing getting stuck in local minima. The modi�cation

will involve taking guidance from DITO in choosing parameter values for some of the components

of BRGTO, and in some cases, changes in the choice of components themselves. In particular,

we tested additional components from the genetic algorithms toolbox in the literature. In some

cases, these additional components provided some advantages, while in others they did not, as will

be detailed in the sequel. Overall, signi�cant computational improvements were achieved, and,

consequently, the desired improvements in compression performance were also obtained.

7.1 Optimization criteria and procedure

Some generic procedures for tuning the parameters of evolutionary algorithms have been proposed

in the literature. These include Racing [BSPV02], Meta Evolutionary-Algorithms [Bäc96, Gre86]

or a combination of the previous two [YG07]. These procedures would generally be expensive in

the case of sparse template optimization because of the high cost of model evaluation analyzed in

Chapter 5. Therefore, instead, we use a simpler method, somewhat inspired on Racing and based

on the idea of emulating the DITO algorithms.

We aimed at optimizing the total evaluation cost (time) T required by the genetic algorithm

to reach some appropriate code length value L∗ (xn). The solution domain is de�ned by a set P

of parameters and a set of possible values Vp for each parameter p ∈ P . For the optimization

experiments, we used a synthetic image generated by a K-WSLTM M , since it gives us a known
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reference code length LM (xn) to measure the genetic algorithm against.1 The image, shown in

Figure 7.1, was generated by a K-WLSTM with K = 128 optimized for the image �cmfugue1-0�

(Figure A.12). The synthetic image was generated using the procedure described in Subsection

4.4.2. The image and the window size were chosen as a representative case for which K-WLSTMs

perform well. For the target code length, we used L∗ (xn) = 1.01LM (xn) since we aim at optimizing

computational complexity which is strongly determined by the weight and goodness of the evaluated

templates (see Chapter 5) and we empirically observed that, at this code length level, the algorithm

spends most of its time in evaluating templates whose weight is close to optimal.

Figure 7.1: Generated image based on the best K-WLSTM found by DITOD for K = 128 on the
image �cmfugue1-0� (Figure A.12).

Additionally, since genetic algorithms are of a random nature, we need to take into account the

variance of the results and give an advantage to parameter values that yield a smaller variance in

the results when di�erent runs initialized by di�erent PRNG seeds (see Section 3.1) are considered.

For this reason, when evaluating T for each combination i of parameter values
(
vi1, v

i
2, . . . , v

i
|P |

)
,

we performed 10 runs of the algorithm with di�erent seeds and we measured the evaluation cost

Ts for each seed s. Therefore, we used the following cost function:

T
(
vi1, v

i
2, . . . , v

i
|P |

)
= Ts

(
vi1, v

i
2, . . . , v

i
|P |

)
+ σTs

(
vi1, v

i
2, . . . , v

i
|P |

)
, (7.1)

where Ts and σTs
are, respectively, the empirical average and the empirical standard deviation of

Ts over the 10 runs. We set a maximum running time of the algorithm of approximately 1 hour in

order to avoid wasted computing time, since we observed that this amount of time was su�cient in

most cases to reach the objective value L∗ (xn) with appropriate parameter values. In cases where

the algorithm failed to reach L∗ (xn) before the maximum running time, the truncation time,2

which is in this case a lower bound for the required running time, was still used, in lieu of Ts, in

the cost computation (7.1) (these cases are indicated in Figure 7.2 with parentheses).

The general idea in the optimization was to modify the genetic algorithm so that it starts

1Although, due to the complexity of the procedure, only one image was used in the optimization, the resulting
optimized parameters and algorithm worked well for the variety of image types used in the test set of the results
presented in Section 8.5.

2The truncation condition is evaluated after each generation is completely evaluated and, therefore, the truncation
time can be greater than the maximum running time.
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from a population of weight 1 and performs only slight mutations on combinations of the very best

individuals, similarly to what the greedy algorithm does. When the weight of the optimal template

is high, of course, the genetic algorithm must perform parts of its search in heavy populations,

but our intuitive idea is to make it �nd most of the good combinations of template locations

while searching in lighter populations instead of performing most of its search in populations

whose weight is close to the optimal one (as observed in the implementation of [Ser04]). The

optimization procedure is summarized in Algorithm 7.1.

Algorithm 7.1 Procedure for selecting the parameter values of ERGTO

Input: a set of parameters P to be optimized,

a set of values Vp and an initial value v
(0)
p ∈ Vp for each p ∈ P

Output: a preferred value v∗p for each p ∈ P
for each parameter p ∈ P

set vp := v
(0)
p

end for

repeat as necessary

for each parameter p ∈ P
find v∗p ∈ Vp that minimizes T

(
v1, v2, . . . , v

∗
p, . . . , v|P |

)
set vp:=v

∗
p

end for

end repeat

Next, we enumerate (in the order in which the for loop of Algorithm 7.1 was executed) each

parameter p ∈ P and the corresponding values for Vp, v
(0)
p and v∗p . The discussion refers to the

tables in Figure 7.2, which summarizes parameter values and timing results.

1. Selection strategy: when choosing parents for recombination, a probability of being selected

is assigned to each individual. Two schemes were considered:

- Windowing: the probability of selecting an individual i is proportional to

max
w∈population

fitness (w)− fitness (i)

(as in BRGTO, the �tness of an individual is the code length given by the template repre-

sented by it)

- Ranking: the probability of selecting an individual i depends only on its position r (i) in

the population sorted by �tness. The following commonly used alternatives were evaluated

as probability assignments: proportional to 1/(1+r(i)), 1/(1+r(i))2 and 1/
√

1+r(i). These alter-

natives allow di�erent levels of probability concentration on the best individuals. We also

evaluated the same piecewise uniform geometric distribution described in Section 3.2 using

γ = 0.8 and bins of size 10.
An initial value is not needed in this case, since this is the �rst parameter optimized. The

preferred value selected after the optimization was the ranking strategy with probability

assignment proportional to 1
(i+1)2

(see Figure 7.2a).

2. Crossover type: In addition to the averaging crossover used in BRGTO and described in

Section 3.2, we evaluated a uniform crossover (de�ned in Section 3.1). The uniform crossover

was the initial value and also the preferred value selected after the optimization (see Figure

7.2b).
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3. Expected number of �ips per mutation: instead of specifying a mutation probability of each

gene, we specify the expected number of mutations for the whole chromosome in order to

keep this value �xed when varying K. As previously mentioned, the intention is to skew

the genetic algorithm so that it spends more of its time searching in light populations. A

mutation rate too high makes the algorithm rapidly reach a population of weight close to

the optimal one and this slows down the search and eventually might make it impractical

to reach a satisfactory solution. Therefore, we tested the values 0.5, 2 and 3. Since DITOD

adds or deletes one location per evaluated template, here we chose 1 as the initial value,

which turned out to be the preferred value selected after the optimization (see Figure 7.2c).

4. Expected number of swaps per mutation: for the same reasons as for the previous parameter,

we specify the expected number of swaps for the whole chromosome. We tested the values 0

(i.e., no swaps),0.5, 2 and 3. The initial value used was 0 but, in this case, the selected value

after the optimization was 0.5 (see Figure 7.2d).

5. Recombination type: two schemes were evaluated:

- not conservative: this is the scheme used in the original genetic algorithm, in which the

children undergo the mutation process after the crossover. A design decision we took was

that, in the case that a uniform crossover is used, one child is mutated by �ips and the other

by swaps. When an averaging crossover is used, each child is mutated by �ips �rst and then

by swaps.

- conservative: this type of reproduction keeps a copy of the result of each crossover in the

new generation without undergoing any mutation process. Another copy of each child is

mutated as in the previous scheme.

The conservative type was the initial value and also the preferred value selected after the

optimization (see Figure 7.2e).

6. Number of survivors: we evaluated how many distinct individuals should directly pass into

the next generation. In order to guarantee a strictly decreasing evolution of �tness during

the algorithm evolution, it is necessary to let survive at least the best individual of each

generation. We tested the values 1, 2, 4, 8 and 16. Higher values for this parameter tend to

concentrate the search on a �xed set of individuals, which can be bad for escaping from local

minima. In the case of the DITO algorithms, the evaluated templates are slightly modi�ed

versions of the best of the previous stage. Therefore, we chose 1 as the initial value, which

turned out to be the selected value after the optimization (see Figure 7.2f).

7. Hill Climbing strategy: Hill climbing consists of taking the best of each generation and trying

to improve it by generating N new individuals by performing, in each case, one �ip on the

best individual at a time. We tested the values 0 (i.e., no hill climbing), 5, 10 and 20 for N .

The results shown in Figure 7.2g suggest that no higher values are worth a try. The initial

value used was 0, which turned out to be the preferred value selected after the optimization

(see Figure 7.2g).

8. Population size: It is a known rule of thumb3 in GAs that population size should be propor-

tional to chromosome size. The tested values were K
4 ,

K
2 , 2K, 4K and 8K. Since DITOD

evaluates K templates in each stage, we chose K as the initial value for population size which

turned out to be the preferred value selected after the optimization (see Figure 7.2h).
3See, for example, http://eislab.gatech.edu/people/scholand/gapara.htm (as April 2009)
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Figure 7.2 shows the value of the cost function T evaluated for each combination of parameter

values resulting from the optimization procedure summarized in Algorithm 7.1.

Selection Ranking:
1
i+1

Ranking:
1

(i+1)2

Ranking:
1√

(i+1)

Ranking:
Geometric
γ = 0.8,

binsize = 10

Windowing

T 58.4 49.7 (75.5) (63.0) (74.1)

(a)

Crossover type Uniform(0) Averaging
T 49.7 52.3

(b)

Expected �ips 0.5 1(0) 2 3
T 51.2 49.7 (68.5) (76.2)

(c)

Expected swaps 0(0) 0.5 1 2 3
T 49.7 34.8 39.5 60.1 43.1

(d)

Recombination Conservative(0) Non conservative
T 34.8 39.5

(e)

Survivors 1(0) 2 4 8 16
T 34.8 43.2 42.2 46.7 39.1

(f)

N (hill climbing) 0(0) 5 10 20
T 34.8 76.0 (87.8) (87.8)

(g)

Population size K
4

K
2 K(0) 2K 4K 8K

T (50.5) 40.1 34.8 46.4 (63.0) (83.3)

(h)

Figure 7.2: Cost function value, according to (7.1), for each parameter value combination resulting
from the optimization procedure. The cost function value of the cases where for some run the
maximum allowed time was reached is enclosed in parentheses. The parameters are shown in
the same order that were considered in the for loop of Algorithm 7.1. The initial values v(0)

p are
indicated with a superscript (0) and the preferred values v∗p are displayed in boldface. Although
it would be natural to perform another iteration of the algorithm since the preferred value for
swaps di�ered from its initial value, it was not performed because of the high computing cost of
the iterations.

In general, we observe in Figure 7.2 that there is a high sensitivity of the evaluation cost T to

the di�erent parameter values, which helps explain the ultimate usefulness of the optimization.

In addition to the strategies and parameter values previously discussed, a particularity in the

design of ERGTO for K-WLSTMs (which we denote as ERGTOK−WLSTM) is that, after the

pruning step of the evaluation algorithm, if some locations of the template get no longer used (i.e.,

they become holes), then the corresponding genes are removed from the chromosome. This helps
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in reducing the weight of the evaluated individuals.

Finally, we tested the idea of including the result of DITOD in the initial population of the

genetic algorithm for K-WLSTMs. It was observed that in some cases where DITOD gets stuck

in a local minimum, including this �bad� solution in the initial population can make the genetic

algorithm get stuck (or spend a lot of time) in the same local minimum, so the idea was not

adopted.

7.2 Comparison with BRGTO

In this section, we compare, in the setting ofK-SCMs, ERGTO (which we denote as ERGTOK−SCM

in this case) and BRGTO in terms of overall computing performance in order to assess the opti-

mizations detailed in Sections 5.3 and 7.1. We ran both algorithms for K = 128, on the image

�albert2D� (Figure A.5). In the case of BRGTO, we used the best set of parameter values reported

in [Ser04] for that speci�c image and K, which are presented in Table 7.1.

M m µr µm γ B

300 3 0.002 0.5 0.75 7

Table 7.1: Parameters values used for BRGTO in the comparison experiment.

The algorithm ERGTOK−SCM was run with the parameter values resulting from our optimiza-

tion. Table 7.2 summarizes the results.

We observe that ERGTOK−SCM largely outperforms BRGTO with gains in running time larger

than 32.2×. In addition, it takes less than 60% of the number of generations to reach better code

length values with less than half the number of individuals per generation of BRGTO.

This example, which is quite typical of the overall comparison on binary images, demonstrates

that our improvements were highly e�ective in reducing computing time by improving the con-

vergence rate of the algorithm, by reducing the computing time for each individual (as shown in

Chapter 5) and by generally selecting individuals that were faster to evaluate. These improvements

in computing e�ciency enabled the study of K-WLSTMs and of larger window sizes.

Algorithm Code length value
reached vs. best
known K-SCM

Number of generations Time in s Time ratio

BRGTO +1.98% 29 4669
ERGTO +1.78% 17 106 44.0

BRGTO +1.07% 51 5151
ERGTO +0.81% 29 160 32.2

Table 7.2: Performance comparison between ERGTO and BRGTO. We measured the time and
the number of generations taken by both algorithms to reach a code length close to +1% and +2%
the code length given by the best known K-SCM for the input image with K = 128. The best
result found by BRGTO in 2000 generations was within +1.06% of the best known result and was
found in 115 generations. Di�erences with the code length given by the best known template T
are calculated as (L{B|E }RGTO−LT )/LT , expressed as a percentage.
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7.3 Stopping criterion

The last criterion to be determined was the one that tells the algorithm when to stop. The

criteria of setting a time limit or a maximum number of generations is very dependent of the input

data and, therefore, di�cult to adjust. A more �exible alternative is to set a maximum number

maxstall of consecutive generations without improvements in the objective function, called stalling

generations. In other words, if the evolution gets stuck over a number of generations we assume

that there is little chance of further improvements.

Varying the number of stalling generations o�ers a trade-o� between evaluation cost and quality

of the solutions. As an example, we evaluated this trade-o� over the same generated image that

we used for the other parameters and we ran the algorithm with 20 di�erent seeds. Four values

of maxstall were evaluated, namely 1,2,3 and 4. The results are shown in Figure 7.3. One curve

shows the average evaluation cost + 1 estimated standard deviation versus average �tness of the

best individual (normalized by the generator's �tness) + 1 estimated standard deviation. The

other curve shows the worst case over the 20 runs for both dimensions.

maxstall variation in {1,2,3,4} 

on a cmfugue1-0 based generated image
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Figure 7.3: Trade-o� between evaluation cost and quality of the solution when varying the max-
imum number of stalling generations allowed. The curve points represent the results for values
1,2,3 and 4 from right to left in each curve.

We observe that 3 stalling generations may be a good choice for this trade-o� since the slope

of the curves considerably increases in the last segment and the corresponding di�erence with the

�tness given by the generating template for this value in both curves falls below +0.25% which

is quite small. Nevertheless, in cases where we are willing to spend more computation time in

exchange for an even better solution, the value of maxstall can be increased.
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7.4 Conclusions

We described ERGTO, an improved version of the genetic algorithm BRGTO of [Ser04], described

in Section 3.2. ERGTOK−SCM shows very signi�cant computational gains over BRGTO, en-

abling the study of K-WLSTMs and of much larger window sizes. ERGTO was optimized for

K-WLSTMs, since these models o�er the best promise of compression performance, and at the

same time have the heaviest computational requirements.
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Chapter 8

Compression performance of sparse

models and their algorithms

In this chapter, we further explore compression-complexity trade-o�s quantitatively addressing the

following questions:

� How signi�cant are the compression performance bene�ts of K-WLSTMs over K-SCMs

(which are cheaper to evaluate)?

� How signi�cant are the compression performance bene�ts of augmenting the window size of

sparse models (which increases optimization di�culty)?

� How signi�cant are the compression performance bene�ts of sparse models over the best

contiguous model within the same window size?

Additionally, in order to illustrate how our sparse modeling algorithms �learn� the structure of

binary images, we show some templates, found by the algorithms, that strongly track the patterns

of the input images.

Finally, in Section 8.5, we present the main practical results of this work: a comparison of

the compression performance of ERGTOK−WLSTM against that of standard compression methods

on binary images. The comparison, which was run over the test set described in Section 4.5,

shows that ERGTOK−WLSTM (for K = 1024) outperforms, in most general cases, the standard

compression methods, and, in some cases, by signi�cant margins.

8.1 Variable vs. �xed length conditioning (K-WLSTMs vs.

K-SCMs)

In this section, we compare the performance of K-WLSTMs against that of K-SCMs. Because of

the tree pruning step and the usually higher weight of the optimum templates (see Appendix A),

K-WLSTMs are usually signi�cantly more expensive to be evaluated (see Chapter 5). Nevertheless,

the di�erences in compression rate as shown in Table 8.1 for K in {32, 64, 128, 256, 512} for the
test set, demonstrate that K-WLSTMs have a greater compression potential in comparison to

K-SCMs.
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Image K = 32 K = 64 K = 128 K = 256 K = 512
1.1.01M -0.1% -0.1% -0.1% -0.1% -0.1%

1.1.13M -0.4% -0.4% -0.4% -0.4% -0.4%

1.5.02M -4.3% -5.3% -4.5% -4.1% -0.5%

A-�xedwidth6and8 -2.4% -25.3% -44.4% -44.4% -44.4%

albert2D -4.0% -3.0% -5.0% -6.0% -7.2%

amb -3.0% -3.3% -4.1% -4.1% -4.1%

Bach_CPE-Sonata_�auto_... -6.2% -7.5% -8.0% -8.0% -8.0%

Bobbys_letter_page_1 -2.5% -2.7% -2.8% -3.0% -3.2%

ccitt4small -2.6% -3.0% -4.5% -5.4% -5.4%

ccitt7small -1.9% -2.6% -2.8% -2.6% -2.4%

chinese_text -0.7% -1.0% -1.4% -1.4% -1.4%

cmfugue1-0 -6.3% -8.6% -9.1% -9.1% -9.1%

�akes006-inca-100dpi... -0.3% -0.4% -0.4% -0.4% -0.4%

HALFTONE -1.7% -1.7% -2.5% -1.2% -1.9%

Halftone2 -1.1% -2.1% -2.2% -2.5% -2.2%

Halftone3 -0.4% -2.0% -2.9% -3.2% -3.2%

hamilton_bw -1.4% -2.5% -2.5% -2.5% -2.5%

hamilton_ed -0.7% -1.0% -1.2% -1.2% -1.2%

hieroglyph -1.6% -1.7% -2.6% -2.6% -3.0%

leeleter -2.0% -2.6% -3.0% -3.1% -3.1%

lena_j +0.5% +0.4% +0.4% +0.4% +0.4%
otoosfont12 -10.0% -14.8% -16.1% -16.2% -16.5%

otoosfont24 -13.2% -21.1% -23.5% -23.5% -23.8%

pep_j +0.3% +0.3% +0.3% +0.3% +0.3%
texmos1.p512M -0.2% -0.2% -0.2% -0.2% -0.2%

wallpaper003-inca-100dpi... -0.7% -0.8% -0.8% -0.8% -0.8%

wallpaper004-inca-100dpi... -0.1% -0.3% -0.5% -0.1% -0.1%

wallpaper010-inca-100dpi... -1.8% -1.9% -2.0% -1.6% -1.4%

writing -2.9% -3.2% -3.2% -3.2% -3.2%

Table 8.1: Di�erence in compression rate of K-WLSTMs vs. K-SCMs. Di�erences are calculated
as (LK−WLSTM−LK−SCM)/LK−SCM, expressed as a percentage. Negative numbers represent gains in
compression rate, and larger magnitude numbers represent larger gains.

In general, we observe that K-WLSTMs give better results, as expected, since they are a

superset of K-SCMs. In exchange for this class generalization, the tree description cost (described

in Subsection 2.2.2) has to be paid. Therefore, it is possible to have a worse compression rate with

a K-WLSTM if it actually represents a tree that is close to a K-SCM (i.e., when the tree is close to

balanced), since we would be paying the extra cost of describing the tree with little or no bene�t in

code length in exchange. However, even in this case, the tree does not need to be complete, since

not all the states necessarily appear. This is the case of the halftoned images �lena_j� (Figure

A.21) and �pep_j� (Figure A.24), where the compression rates given by K-WLSTMs are slightly

worse than those given by K-SCMs, for every K in {32, 64, 128, 256, 512}. Figure 8.1 shows the

tree description cost for both images and K = 512 and con�rms that the tree description overhead

is the cause of K-WLSTMs being worse in these cases.

The results for the image �1.5.02M� (Figure A.3) are particularly interesting. The circles in the

image are evenly distributed and there are only slight irregularities in each circle. In Figure 8.2, we

show the templates of the best K-WLSTM and K-SCM found for K in {256, 512}. For K = 512,
both types of sparse models are able to fully capture the distance between the centers of the circles
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LK−SCM (xn) LK−WLSTM (xn) |T ′| |T ′|/LK−SCM(xn)

168941 169612 2761 1.6%

(a) Case of the image �lena_j� K = 512.

LK−SCM (xn) LK−WLSTM (xn) |T ′| |T ′|/LK−SCM(xn)

161939 162346 2611 1.6%

(b) Case of the image �pep_j� K = 512.

Figure 8.1: Tree description cost |T ′| in cases where K-WLSTMs perform worse that K-SCMs.

(horizontally and vertically). For smaller windows, the models can only �see� an alternation of

situations and cannot capture the full structure. It is reasonable to think that, in these cases,

K-WLSTMs should be bene�cial thanks to the �exibility given by variable length conditioning.

This is what happens for K < 512 since there is a bene�t in using a K-WLSTM while for K = 512,
there is almost no di�erence.

Figure 8.2: Best sparse templates found for �1.5.02M� (Figure A.3) displayed on a portion of the
image. On top: K = 256, on bottom: K = 512, on left: K-SCM, on right: K-WLSTM. The
current sample is marked with a cross. Shaded pixels represent template locations.

Another example of such a situation is the case of the image �A-�xedwidth6and8� (Figure A.4)

where there are two perfectly periodic zones each one with a di�erent period and with repeated

symbols also di�erent. Again, K-WLSTMs take advantage of this situation and give gains in

compression rate up to 44.4%.

Other cases where K-WLSTMs take a signi�cant advantage over K-SCMs are, for example:

� text images like �otoosfont24� (Figure A.23) which have di�erent regular structures like char-

acter shapes and distances between characters

� score images like �cmfugue1-0� (Figure A.12) which have di�erent regular structures like lines,

notes, distance between lines, etc.

� the halftoned image �albert2D� (Figure A.5) which has a large white contiguous zone in the

hair part and a very periodic zone in the sweater part.
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On the other hand, there are images like, for example, the texture image �1.1.01M� (Figure A.1)

which lack those kinds of regularities and make both types of models capture only the close con-

tiguous dependencies.

8.1.1 K-WLSTMs based on K-SCM optimized templates

A simple idea that can be used to improve, at a reduced computational cost, the results found by

any K-SCM optimization algorithm is to optimize a context tree based on the template TK−SCM

obtained by that algorithm, resulting in a K-WLSTM that is used for coding. Since variable length

conditioning should allow K-WLSTMs to use more locations in the templates, this simple method

would not let us use the full potential of K-WLSTMs. We tested this idea on some of the images

of the test set for which K-WLSTMs give signi�cant improvements over K-SCMs. The results are

given in Table 8.2.

Image Weight of
TK−SCM

Weight of the
best K-WLSTM

template

K-WLSTM
based on
TK−SCM vs.
best K-SCM

Best
K-WLSTM vs.
K-WLSTM
based on
TK−SCM

albert2D 17 31 -2.9% -2.1%
1.5.02M 16 27 -1.7% -2.9%

cmfugue1-0 16 31 -3.6% -5.7%
otoosfont12 21 47 -4.2% -12.4%

Table 8.2: Comparison of code length given by K-WLSTMs based on TK−SCM

with the best found K-SCMs and K-WLSTMs. Di�erences in the fourth and
�fth columns are calculated as, respectively,

(
LK−WLSTM(TK−SCM)−LK−SCM

)
/LK−SCM and(

LK−WLSTM−LK−WLSTM(TK−SCM)

)
/LK−WLSTM(TK−SCM), expressed as a percentage. Negative numbers

represent gains in compression rate, and larger magnitude numbers represent larger gains.

Although some improvement over K-SCMs is achieved by this method, in the last two images

we see a signi�cant di�erence in advantage of the best K-WLSTM, which con�rms our intuition.

Also, we observe that, in every case, the best K-WLSTM templates include much more locations

than the best K-SCM template, as expected.

8.2 Sparse models vs. contiguous models

By using sparse models, which are a superset of contiguous models, we expect to improve compres-

sion performance in cases better suited for them but at the same time to obtain a good performance

in cases better suited for contiguous models. Table 8.3 shows the di�erence in compression rate of

sparse models vs. contiguous models optimized for the same window sizes (K ∈ {32, 64}) on the

test set.

We see that in every case sparse models are better than contiguous models as expected. Some-

times the gains are small as in the case of the order dithered image �Halftone2� (Figure A.15) where

halftone patterns are 2 pixels away and, therefore, this distance can be captured by a contiguous

model without incurring in a great model cost. However, the order dithered image �HALFTONE�

presents a di�erent situation in which halftone patterns are 5 pixels away. In this case, although

the distance between patterns can be fully captured within a window size K = 64 (the best con-

tiguous tree model is found at K̃ = 43 as shown in Figure 8.3), the contiguous model gives a
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K-SCM vs. �xed
length contiguous

model

K-WLSTM vs. tree
model

Image K = 32 K = 64 K = 32 K = 64
1.1.01M -0.2% -0.2% -0.1% -0.1%

1.1.13M -0.3% -0.3% -0.1% -0.1%

1.5.02M -12.2% -25.7% -2.1% -9.9%

A-�xedwidth6and8 -2.8% -33.8% -1.1% -17.3%

albert2D -4.7% -20.7% -0.2% -4.5%

amb -4.9% -10.6% -1.2% -4.9%

Bach_CPE-Sonata_�auto_solo_La_min-� -1.3% -3.6% -0.7% -3.0%

Bobbys_letter_page_1 -1.3% -1.3% -0.6% -0.8%

ccitt4small -3.6% -6.1% -1.8% *
ccitt7small -1.9% -2.7% -0.8% *
chinese_text -1.2% -1.2% -0.7% -0.9%

cmfugue1-0 -4.3% -5.4% -1.9% -4.9%

�akes006-inca-100dpi-00M -0.3% -0.3% -0.3% *
HALFTONE -21.8% -37.5% -9.9% -26.7%

Halftone2 -2.6% -3.1% -1.3% -2.5%

Halftone3 -10.5% -10.4% -4.3% -5.7%

hamilton_bw -4.5% -6.5% -1.9% -4.0%

hamilton_ed -0.4% -0.9% -0.3% *
hieroglyph -1.5% -1.5% -0.8% -0.9%

leeleter -1.7% -1.8% -0.4% *
lena_j -9.4% -9.4% -10.0% *

otoosfont12 -5.2% -6.0% -0.5% -1.9%

otoosfont24 -2.0% -2.6% -0.8% -3.7%

pep_j -9.7% -9.7% -11.3% *
texmos1.p512M -0.2% -0.2% -0.1% *

wallpaper003-inca-100dpi-00M -1.2% -1.2% -0.8% *
wallpaper004-inca-100dpi-00M -0.9% -1.4% -0.7% *
wallpaper010-inca-100dpi-00M -0.7% -1.0% -0.2% *

writing -0.8% -0.7% -0.6% -0.9%

Table 8.3: Di�erence in compression rate of sparse models vs. contiguous models for K in
{32, 64}, in both �xed and variable length conditioning cases. Di�erences are calculated as
(Lsparse−Lcontiguous)/Lcontiguous, expressed as a percentage. *For some images, contiguous tree mod-
els with K = 64 could not be evaluated (because of the computer memory requirements which are
O
(
2K
)
) and therefore these results are not shown (see Appendix D). Negative numbers represent

gains in compression rate, and larger magnitude numbers represent larger gains.

poor compression rate in comparison to the sparse model result, since it is forced to include many

context locations that increase model cost without having enough improvement in �tting the data

to compensate.

In the case of images like �1.1.01M� (Figure A.1) in which dependencies are taken among

contiguous pixels, we observe similar results between sparse and contiguous models. The only

overhead that sparse models have is the template description that is compressed using an adaptive

memoryless model as explained in Appendix C. Since these templates are usually sparse, they can

be greatly compressed and their description length (which is independent of n) turns out to be

negligible in most cases. For instance, Figure 8.4 shows the template description cost for the best

K-WLSTM found for K in {64, 1024} for �1.1.01M� (which is a small image in relation to the set's

size average), in relation to the code length given by the best tree model for K = 64.
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Figure 8.3: Best contiguous tree model for the image �HALFTONE� for K = 64, found at K̃ = 43.

LTreeK64 (xn) LK−WLSTM (xn) Lmemoryless (T ) Lmemoryless(T )/LT reeK64(xn)

167825 167710 34 0.02%

(a) Best K-WLSTM found for K = 64.

LTreeK64 (xn) LK−WLSTM (xn) Lmemoryless (T ) Lmemoryless(T )/LT reeK64(xn)

167825 167761 141 0.08%

(b) Best K-WLSTM found for K = 1024.

Figure 8.4: Template description cost Lmemoryless (T ) for the image �1.1.01M�, a case where the
best K-WLSTM performs similarly to the best contiguous tree model.

8.3 Evaluation of the bene�t of increasing window size

In order to assess the bene�t of increasing the window sizeK when using sparse models, we focus on

the K-WLSTM case since its �exibility makes it more likely of taking advantage of larger windows

if the image has some distant dependencies. When increasing the window size, the overhead in

template description is generally quite small since it normally becomes sparser and, therefore, more

compressible. Nevertheless, complexity usually increases signi�cantly as the search space increases

exponentially and the templates are more expensive to be evaluated (see Chapter 5). Table 8.4

shows the di�erence in code length when doubling K, on the test set.

For example, we notice that for �lena_j� (Figure A.21) there is almost no bene�t in using

K > 32 which is reasonable since the error-di�usion structures are fully captured with K = 32. On
the other hand, for the halftoned image �albert2D� (Figure A.5), a signi�cant bene�t is obtained

when using K ≥ 128 in comparison to the cases of smaller window sizes. The texture image

��akes006-inca-100dpi-00M� (Figure A.13) is strongly characterized by its contiguous color zones

which makes sparsity and larger windows less useful. In the case of the text image �otoosfont12�

(Figure A.22) and the score image �cmfugue1-0� (Figure A.12), we notice that, although there could

be some additional regularities captured by the model when increasing K, in fact, there is only a
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K
Image 64 vs. 32 128 vs. 64 256 vs. 128 512 vs. 256

1.1.01M 0.0% 0.0% 0.0% 0.0%
1.1.13M 0.0% 0.0% 0.0% 0.0%
1.5.02M -16.3% -3.8% -4.3% -13.7%

A-�xedwidth6and8 -90.5% -25.6% 0.0% 0.0%
albert2D -16.0% -5.5% -1.0% -2.1%

amb -6.4% -0.8% 0.0% 0.0%
Bach_CPE-Sonata_�auto... -3.8% -2.1% 0.0% 0.0%
Bobbys_letter_page_1 -0.3% -0.1% -0.1% -0.2%

ccitt4small -3.0% -1.9% -1.1% 0.0%
ccitt7small -1.6% -0.5% -0.4% -0.3%

chinese_text -0.3% -0.4% 0.0% 0.0%
cmfugue1-0 -3.7% -0.6% 0.0% 0.0%

�akes006-inca-100dpi... 0.0% 0.0% 0.0% 0.0%
HALFTONE -20.1% -1.9% -5.3% -2.1%

Halftone2 -1.5% -0.1% -0.3% 0.0%
Halftone3 -1.6% -1.2% -0.3% 0.0%

hamilton_bw -3.2% -0.3% 0.0% 0.0%
hamilton_ed -0.8% -0.2% 0.0% 0.0%
hieroglyph -0.2% -0.9% 0.0% -0.4%

leeleter -0.8% -0.4% -0.1% 0.0%
lena_j -0.1% 0.0% 0.0% 0.0%

otoosfont12 -6.0% -1.6% -0.1% -0.4%

otoosfont24 -9.7% -5.0% 0.0% -0.4%

pep_j -0.1% 0.0% 0.0% 0.0%
texmos1.p512M 0.0% 0.0% 0.0% 0.0%

wallpaper003-inca-100dpi... -0.1% 0.0% 0.0% 0.0%
wallpaper004-inca-100dpi... -0.7% -0.3% -0.6% 0.0%
wallpaper010-inca-100dpi... -0.3% -0.1% -0.2% -0.1%

writing -0.3% 0.0% 0.0% 0.0%

Table 8.4: Di�erence in compression rate of K-WLSTMs with window size K in
{64, 128, 256, 512} vs. K-WLSTMs with window size K/2. Di�erences are calculated as
(L2K

K−WLSTM−L
K
K−WLSTM)/LK

K−WLSTM, expressed as a percentage. Negative numbers represent gains
in compression rate, and larger magnitude numbers represent larger gains.

slight improvement and the greatest improvement occurs when capturing closer dependencies like

the symbol structure. This is not the case for the image �1.5.02M� (Figure A.3) since its almost

perfect periodicity can be fully captured with K = 512 as we observed in Section 8.1 and, therefore,

an important gain in compression rate (of 13.7%) over K = 256 is achieved. In the case of the

image �A-�xedwidth6and8� (Figure A.4), doubling the window size, from K = 32 to K = 64 and

from K = 64 to K = 128, gives great gains (of 90.5% and 25.6%, respectively) which is consistent

with the size and the spacing of the characters in the image (see Figure A.4 for a detailed view).

8.4 Resemblance of sparse templates with binary image struc-

tures

In addition to the case of the image �1.5.02M� already shown in Figure 8.2, Figures 8.5 and 8.6

show cases of K-WLSTM templates found by our algorithms that present patterns quite similar
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to structures found in the input image. These similarities illustrate how these models capture the

structure of these types of binary images.

(a) Zoomed portion of �chinese_text� (b) Zoomed portion of �HALFTONE�

(c) Best K-WLSTM for �chinese_text� (d) Best K-WLSTM for �HALFTONE�

Figure 8.5: Resemblance between best K-WSLTM templates and image structures.

In the case of the image �chinese_text�, we observe that the best K-WLSTM template found

captures the horizontal and vertical distances between characters. Locations in the bestK-WLSTM

template for the image �HALFTONE� are arranged in a very similar way to how halftone patterns

are in the input image. The template for �hamilton_ed� presents a striking resemblance with the

drawing patterns of the image. In the case of �wallpaper004-inca-100dpi-00M�, the template seems

to capture the right angles and the distance between parallel edges.

8.5 Comparison of ERGTOK−WLSTM against popular standard

methods

In this section, we show that ERGTOK−WSLTM with K = 1024 generally outperforms standard

compression methods. The standard methods that we are going to compare with are JBIG, JBIG2,

DjVu1 in their lossless compression modes.

1We used the following implementations:

� JBIG: imagemagick ( http://www.imagemagick.org, as of April 2009 ).

� JBIG2: Power JBIG-2 Coder, Signal Processing and Multimedia Group of the University of British Columbia
and Image Power, Inc.
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(a) Zoomed portion of �hamilton_ed� (b) Zoomed portion of �wallpaper004-inca-100dpi-
00M�

(c) Best K-WLSTM for �hamilton_ed� (d) Best K-WLSTM for �wallpaper004-inca-100dpi-
00M�

Figure 8.6: Resemblance between best K-WSLTM templates and image structures (cont.).

In Section 8.2, we compared sparse models against contiguous models in order to assess the e�ect

of sparsity within the same window size. An important bene�t of our sparse modeling algorithms

is to allow much larger window sizes than those that can be practically used with contiguous tree

models. Nevertheless, contiguous tree models with small window sizes (up to 64, see Appendix D)

still give good results in comparison to standard methods. Therefore, we also include these results

in the comparisons of this section.

8.5.1 Results on non-synthetic images

The results on the non-synthetic images of the test set are shown in Table 8.5.

As explained in Section 4.3, JBIG2 and DjVu use specialized pattern matching algorithms in

text regions and di�erent algorithms in other regions, while our sparse modeling algorithms are

generic. Nevertheless, the table shows that ERGTOK−WLSTM outperforms JBIG and JBIG2 in

every tested case. DjVu only beats ERGTOK−WLSTM in 3 cases of text documents. In particular,

we see a great advantage for DjVu in the case of �otoosfont24� (Figure A.23). Nevertheless, in the

lower resolution case of �otoosfont12� (Figure A.22), ERGTOK−WLSTM beats DjVu by a signi�cant

margin (of 9%).

� DjVu: DjVuLibre ( http://djvu.sourceforge.net, as of April 2009 )

71

http://djvu.sourceforge.net


Image Image

size (in

bits, at

1

bit/pixel)

ERGTO

normal-
ized code
length

K = 1024

(in

bits/pixel)

vs. con-

tiguous

tree K ≈ 64

vs.
DITOD

K = 1024

vs.

jbig

vs.

jbig2

vs.

djvu

1.1.01M 262144 0.640 0.0% +0.0% -4.6% -11.6% -13.4%

1.1.13M 262144 0.543 0.0% 0.0% -4.9% -9.6% -11.4%

1.5.02M 262144 0.146 -28.4% +0.6% -51.0% -47.8% -24.3%

A-�xedwidth6and8 238128 0.00319 -27.6% -43.4% -85.1% -89.7% -97.8%

albert2D 1039360 0.0716 -12.3% +0.1% -42.5% -34.0% -67.3%

amb 960000 0.123 -5.5% +0.1% -40.9% -33.8% -67.2%

Bach_CPE-Sonata... 513744 0.0754 -4.7% -0.4% -21.2% -18.8% -20.5%

Bobbys_letter... 1144800 0.124 -1.0% +0.2% -10.2% -9.7% -12.3%

ccitt4small 1026432 0.187 -5.4% +1.0% -12.0% -10.4% +5.9%

ccitt7small 1026432 0.191 -2.5% +0.2% -8.1% -10.6% +0.9%

chinese_text 220604 0.364 -1.7% +0.2% -5.6% -10.0% -7.0%

cmfugue1-0 248832 0.107 -4.3% +0.7% -20.7% -22.1% -20.7%

�akes006... 401348 0.506 -0.2% +0.0% -4.5% -9.5% -6.0%

HALFTONE 223776 0.201 -32.7% +1.3% -59.7% -55.4% -62.1%

Halftone2 259081 0.121 -2.5% +0.0% -24.3% -14.4% -26.3%

Halftone3 259081 0.103 -6.4% +0.0% -38.6% -37.6% -60.6%

hamilton_bw 360000 0.320 -4.1% 0.0% -10.9% -15.9% -17.3%

hamilton_ed 360000 0.629 -1.0% +0.1% -4.7% -9.8% -13.8%

hieroglyph 225970 0.341 -1.9% +0.2% -5.8% -12.8% -12.0%

leeleter 1389660 0.177 -1.3% +0.3% -10.1% -8.3% -10.1%

lena_j 262144 0.648 -10.0% +0.0% -22.3% -13.9% -24.6%

otoosfont12 484704 0.191 -3.4% +0.3% -46.5% -30.7% -9.0%

otoosfont24 484704 0.123 -8.4% 0.0% -51.0% -39.7% +56.1%

pep_j 262144 0.620 -11.3% -0.2% -22.8% -13.7% -29.9%

texmos1.p512M 262144 0.643 0.0% -0.2% -4.4% -11.1% -8.9%

wallpaper003... 401348 0.484 -0.9% -0.4% -4.0% -9.1% -13.3%

wallpaper004... 401348 0.515 -2.3% -0.1% -5.6% -10.7% -17.6%

wallpaper010... 401348 0.481 -0.7% -0.7% -3.0% -7.8% -14.5%

writing 249500 0.434 -0.5% -0.2% -4.7% -10.3% -10.2%

Table 8.5: ERGTOK−WLSTM code length results for K = 1024 on the non-synthetic binary
images of the test set in comparison to other compression methods. Di�erences with each scheme
C are calculated as (LERGT O−LC)/LC , expressed as a percentage. DITOD stands for DITOK−WLSTM

D .

Negative numbers represent gains in compression rate, and larger magnitude numbers represent
larger gains.

In the case of halftoned images, we see that in every case, our sparse modeling algorithms are

superior and sometimes give signi�cant gains in code length. This is consistent with what authors

observe in [SIH01]. We also observe that for music score images, there are great di�erences in favor

of sparse models, which is explained by the ability of K-WLSTMs to capture the alternation of

di�erent regular structures. As shown before, because of the great regularity of image �1.5.02M�

(Figure A.3) that can be captured with some distant dependency locations, the best found K-

WLSTM gives large gains in compression rates: 47.8% in comparison to JBIG2 and 28.4% in

comparison to contiguous trees.

In the case of other textures and thresholded images considered, sparsity is generally less useful
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since most of the dependencies are found in close locations, except in the case of �hamilton_bw�

(Figure A.17) and �hamilton_ed� (Figure A.18) where K-WLSTMs capture the structure of the

evenly spaced lines and patterns.

8.5.2 Results on generated images

As an empirical consistency check, we compare the performance of ERGTOK−WLSTM on gen-

erated images based on trained K-WLSTMs against the code length given by the generating

template and the results given by other compression methods. Table 8.6 shows that the results

of ERGTOK−WLSTM are quite close to the code length given by the generating template and are

signi�cantly better than the results given by other methods as expected for this type of images

speci�cally generated by K-WLSTMs.

Image Image

size (in

bits, at

1

bit/pixel)

ERGTO

normal-

ized code

length (in

bits/pixel)

K for

ERGTO

vs. gen-

erating

tem-

plate

vs. con-

tiguous

tree K ≈ 64

vs.

jbig

vs.

jbig2

vs.

djvu

GEN_

A-

�xedwidth6and8

250000 0.0773 128 -1.1% -43.4% -64.5% -60.4% -78.3%

GEN_

cmfugue

250000 0.186 1024 +0.3% -8.6% -18.4% -26.6% -19.5%

GEN_

otoosfont12

250000 0.302 512 +0.6% -3.7% -33.7% -32.7% -48.3%

Table 8.6: ERGTOK−WLSTM code length results on binary images generated by K-WLSTMs
trained on binary images (see Subsection 4.4.2) in comparison to other compression methods and
to the code length given by the generating template. Di�erences with each scheme C are calculated
as (LERGT O−LC)/LC , expressed as a percentage. Negative numbers represent gains in compression
rate, and larger magnitude numbers represent larger gains.

8.6 Conclusions

In this chapter, we demonstrated the great compression potential ofK-WLSTMs with large window

sizes over smaller subclasses of models, i.e., contiguous models, K-SCMs and K-WLSTMs with

smaller window sizes. We observed that these types of class generalizations carry, at most, a small

overhead in code length and, in most cases, it is negligible. Finally, we showed that this increased

compression potential in combination with our improved algorithm ERGTOK−WSLTM generally

outperforms standard compression methods and sometimes by signi�cant margins.
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Chapter 9

Conclusions and future work

In this work, we proposed a greedy algorithm DITO and an enhanced genetic algorithm ERGTO
for modeling and coding with sparse context models. DITO is quite e�cient even for large window

sizes and also in the case of K-WLSTMs, which are more complex to be evaluated. Nevertheless,

we found that, due to its deterministic nature, it is prone to getting stuck in some bad local minima.

ERGTO is an improvement of the algorithm BRGTO of [Ser04] (originally only for K-SCMs)

and was designed by taking guidance from some properties that make the e�ciency of DITO while

keeping the randomness properties that help in preventing getting stuck in local minima. Although

not as fast as DITO, ERGTO runs signi�cantly faster (usually, more than 30×) than BRGTO for

K-SCMs but also is practical for large values of K and for K-WLSTMs.

The e�ciency improvements of ERGTOK−WLSTM lead to better compression results that

outperform those of tree models with gains sometimes larger than 30% and, in many cases, those

of standard methods with gains sometimes larger than 55% (for the three competitors considered).

It is important to emphasize that the algorithms presented in this thesis for the sparse tem-

plate optimization problem are not restricted to the binary images application. Additionally, the

extensive experimentation over binary images gave clues of what type of structures in the data can

be captured by these models. This can be useful for the search of other data types for which these

models could suitable (even when the goal is not compression), which is not a trivial task since,

in many common cases, the most important dependencies are located within a small contiguous

window (e.g., continuous-tone natural images in which color intensities change in a smooth way).

This work was essentially of an experimental nature and, thus, future work directions could be

oriented to further understanding of the theoretical properties of these models.
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Appendix A

Image set and best sparse and

contiguous results

In this appendix, we show each image of the test set described in 4.5. For each image, a zoomed

portion (which is shaded on the full image) is shown. Additionally, we show the best sparse and

contiguous (with K ≈ 64, see Appendix D) results and the corresponding template characteristics.

The darkest square in each template �gure represents the current sample.
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 9 7 6.40E-01
K-WLSTM 975 19 6.40E-01

Fixed-length contiguous 8 8 6.42E-01
Tree model 10 10 6.40E-01

(e) Actual window size, weight and code length of the best templates

Figure A.1: Image �1.1.01M�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 24 16 5.45E-01
K-WLSTM 234 21 5.43E-01

Fixed-length contiguous 8 8 5.46E-01
Tree model 26 26 5.43E-01

(e) Actual window size, weight and code length of the best templates

Figure A.2: Image �1.1.13M�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 921 13 1.46E-01
K-WLSTM 1024 22 1.45E-01

Fixed-length contiguous 24 24 2.63E-01
Tree model 63 63 2.05E-01

(e) Actual window size, weight and code length of the best templates

Figure A.3: Image �1.5.02M�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 61 14 4.94E-03
K-WLSTM 961 16 3.19E-03

Fixed-length contiguous 55 55 7.48E-03
Tree model 56 56 4.68E-03

(e) Actual window size, weight and code length of the best templates

Figure A.4: Image �A-�xedwidth6and8�, 484 rows x 492 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 219 16 7.70E-02
K-WLSTM 947 38 7.15E-02

Fixed-length contiguous 30 30 1.01E-01
Tree model 62 62 8.17E-02

(e) Actual window size, weight and code length of the best templates

Figure A.5: Image �albert2D�, 1160 rows x 896 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 50 18 1.28E-01
K-WLSTM 976 33 1.23E-01

Fixed-length contiguous 24 24 1.43E-01
Tree model 52 52 1.30E-01

(e) Actual window size, weight and code length of the best templates

Figure A.6: Image �amb�, 1200 rows x 800 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 97 15 8.18E-02
K-WLSTM 1013 34 7.54E-02

Fixed-length contiguous 18 18 8.63E-02
Tree model 61 61 7.93E-02

(e) Actual window size, weight and code length of the best templates

Figure A.7: Image �Bach_CPE-Sonata_�auto_solo_La_min-��, 834 rows x 616 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 22 12 1.27E-01
K-WLSTM 1020 48 1.23E-01

Fixed-length contiguous 10 10 1.29E-01
Tree model 51 51 1.25E-01

(e) Actual window size, weight and code length of the best templates

Figure A.8: Image �Bobbys_letter_page_1�, 1272 rows x 900 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 158 14 1.96E-01
K-WLSTM 685 29 1.85E-01

Fixed-length contiguous 14 14 2.10E-01
Tree model 58 58 1.97E-01

(e) Actual window size, weight and code length of the best templates

Figure A.9: Image �ccitt4small�, 1188 rows x 864 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 452 12 1.95E-01
K-WLSTM 846 21 1.91E-01

Fixed-length contiguous 10 10 2.04E-01
Tree model 59 59 1.96E-01

(e) Actual window size, weight and code length of the best templates

Figure A.10: Image �ccitt7small�, 1188 rows x 864 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 14 10 3.71E-01
K-WLSTM 1018 35 3.63E-01

Fixed-length contiguous 10 10 3.75E-01
Tree model 56 56 3.70E-01

(e) Actual window size, weight and code length of the best templates

Figure A.11: Image �chinese_text�, 524 rows x 421 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 43 16 1.17E-01
K-WLSTM 962 33 1.06E-01

Fixed-length contiguous 18 18 1.24E-01
Tree model 56 56 1.12E-01

(e) Actual window size, weight and code length of the best templates

Figure A.12: Image �cmfugue1-0�, 512 rows x 486 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 18 9 5.07E-01
K-WLSTM 722 22 5.06E-01

Fixed-length contiguous 8 8 5.09E-01
Tree model 45 45 5.07E-01

(e) Actual window size, weight and code length of the best templates

Figure A.13: Image ��akes006-inca-100dpi-00M�, 538 rows x 746 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 563 10 2.02E-01
K-WLSTM 972 21 1.98E-01

Fixed-length contiguous 27 27 3.56E-01
Tree model 43 43 2.99E-01

(e) Actual window size, weight and code length of the best templates

Figure A.14: Image �HALFTONE�, 518 rows x 432 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 64 11 1.23E-01
K-WLSTM 905 27 1.21E-01

Fixed-length contiguous 12 12 1.28E-01
Tree model 37 37 1.24E-01

(e) Actual window size, weight and code length of the best templates

Figure A.15: Image �Halftone2�, 509 rows x 509 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 70 12 1.06E-01
K-WLSTM 256 22 1.02E-01

Fixed-length contiguous 14 14 1.18E-01
Tree model 31 31 1.10E-01

(e) Actual window size, weight and code length of the best templates

Figure A.16: Image �Halftone3�, 509 rows x 509 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 88 10 3.28E-01
K-WLSTM 128 33 3.20E-01

Fixed-length contiguous 10 10 3.52E-01
Tree model 61 61 3.34E-01

(e) Actual window size, weight and code length of the best templates

Figure A.17: Image �hamilton_bw�, 600 rows x 600 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 58 10 6.36E-01
K-WLSTM 251 41 6.28E-01

Fixed-length contiguous 10 10 6.41E-01
Tree model 52 52 6.36E-01

(e) Actual window size, weight and code length of the best templates

Figure A.18: Image �hamilton_ed�, 600 rows x 600 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 40 10 3.50E-01
K-WLSTM 887 22 3.40E-01

Fixed-length contiguous 11 11 3.56E-01
Tree model 57 57 3.48E-01

(e) Actual window size, weight and code length of the best templates

Figure A.19: Image �hieroglyph�, 383 rows x 590 columns

100



(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 37 12 1.83E-01
K-WLSTM 961 34 1.77E-01

Fixed-length contiguous 13 13 1.86E-01
Tree model 55 55 1.80E-01

(e) Actual window size, weight and code length of the best templates

Figure A.20: Image �leeleter�, 1380 rows x 1007 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 30 20 6.45E-01
K-WLSTM 822 20 6.48E-01

Fixed-length contiguous 15 15 7.12E-01
Tree model 25 25 7.20E-01

(e) Actual window size, weight and code length of the best templates

Figure A.21: Image �lena_j�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 60 21 2.27E-01
K-WLSTM 243 49 1.90E-01

Fixed-length contiguous 19 19 2.42E-01
Tree model 64 64 1.97E-01

(e) Actual window size, weight and code length of the best templates

Figure A.22: Image �otoosfont12�, 792 rows x 612 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 105 25 1.61E-01
K-WLSTM 349 39 1.23E-01

Fixed-length contiguous 27 27 1.69E-01
Tree model 64 64 1.35E-01

(e) Actual window size, weight and code length of the best templates

Figure A.23: Image �otoosfont24�, 792 rows x 612 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 22 12 6.18E-01
K-WLSTM 801 21 6.20E-01

Fixed-length contiguous 15 15 6.85E-01
Tree model 24 24 7.00E-01

(e) Actual window size, weight and code length of the best templates

Figure A.24: Image �pep_j�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 19 16 6.44E-01
K-WLSTM 87 16 6.43E-01

Fixed-length contiguous 7 7 6.46E-01
Tree model 13 13 6.44E-01

(e) Actual window size, weight and code length of the best templates

Figure A.25: Image �texmos1.p512M�, 512 rows x 512 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 24 17 4.88E-01
K-WLSTM 988 27 4.84E-01

Fixed-length contiguous 9 9 4.94E-01
Tree model 42 42 4.88E-01

(e) Actual window size, weight and code length of the best templates

Figure A.26: Image �wallpaper003-inca-100dpi-00M�, 538 rows x 746 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 206 10 5.16E-01
K-WLSTM 931 25 5.15E-01

Fixed-length contiguous 8 8 5.30E-01
Tree model 19 19 5.28E-01

(e) Actual window size, weight and code length of the best templates

Figure A.27: Image �wallpaper004-inca-100dpi-00M�, 538 rows x 746 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 305 10 4.88E-01
K-WLSTM 877 33 4.81E-01

Fixed-length contiguous 9 9 4.97E-01
Tree model 44 44 4.85E-01

(e) Actual window size, weight and code length of the best templates

Figure A.28: Image �wallpaper010-inca-100dpi-00M�, 538 rows x 746 columns
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(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template

Model K̃ k Best normalized code length

K-SCM 18 12 4.47E-01
K-WLSTM 63 24 4.33E-01

Fixed-length contiguous 12 12 4.50E-01
Tree model 27 27 4.37E-01

(e) Actual window size and weight of the best templates

Figure A.29: Image �writing�, 499 rows x 500 columns
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(a) Image (b) Zoomed portion

(c) Best K-WLSTM template

Model K̃ k Best normalized code length

K-WLSTM 124 23 7.73E-02
Tree model 42 42 1.37E-01

(d) Actual window size and weight of the best templates

Figure A.30: Image �GEN_A-�xedwidth6and8�, 500 rows x 500 columns
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(a) Image (b) Zoomed portion

(c) Best K-WLSTM template

Model K̃ k Best normalized code length

K-WLSTM 962 33 1.86E-01
Tree model 28 28 2.04E-01

(d) Actual window size and weight of the best templates

Figure A.31: Image �GEN_cmfugue�, 500 rows x 500 columns
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(a) Image (b) Zoomed portion

(c) Best K-WLSTM template

Model K̃ k Best normalized code length

K-WLSTM 243 49 3.00E-01
Tree model 41 41 3.14E-01

(d) Actual window size and weight of the best templates

Figure A.32: Image �GEN_otoosfont12�, 500 rows x 500 columns
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Appendix B

2D Context locations

Figure B.1 shows the 2D relative locations and their order (discussed in Section 4.1) for K =
32, 64, 128, 256, 512, 1024.
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Figure B.1: 2D relative locations and their corresponding order for di�erent K values. The darkest
square represents the current sample.
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Appendix C

Sparse encoder-decoder

The sparse encoder that was implemented for this thesis receives as input the image to be com-

pressed and a sparse template T for the model to be used. Then, it produces as output a string of

bits by the following steps:

� the dimensions of the image are encoded with a �xed number of bits (64 in our implementa-

tion)

� when using K-WLSTMs, the optimum tree, given T , is found by the dynamic programming

algorithm described in Subsection 2.2.2 and is described with one bit per node

� using an arithmetic encoder:1

� the representation of T as a binary string is compressed by a memoryless model whose

probabilities are given by the KT estimator

� the image data is sequentially modeled and compressed using the sparse model implied

by T and the KT estimator, while the border values are obtained through re�ection as

explained in Footnote 1 of Chapter 4.

The decoder, once it knows the sparse template and, in the case of K-WLSTMs, also the tree

structure, using the arithmetic decoder, it sequentially recovers the original image data by esti-

mating the probabilities as the encoder does, by performing the same re�ection procedure for the

border data and by using the dimensions information to arrange the data.

1In our implementation, we used A. Said's arithmetic coder called FastAC available at
http://www.cipr.rpi.edu/∼said/FastAC.html as of April 2009.
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Appendix D

Details on contiguous tree

optimization

Table D.1 shows which was the window size K considered for the contiguous tree evaluation of

Section 8.5 for each image of the test set, since this evaluation requires a computer memory size

O
(
2K
)
. Context locations were considered in the order described in Appendix B.
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Image K

1.1.01M 58
1.1.13M 64
1.5.02M 64

A-�xedwidth6and8 64
albert2D 64
amb 64

Bach_CPE-Sonata_�auto_solo_La_min-� 64
Bobbys_letter_page_1 64

ccitt4small 58
ccitt7small 59
chinese_text 64
cmfugue1-0 64

�akes006-inca-100dpi-00M 55
HALFTONE 64
Halftone2 64
Halftone3 64

hamilton_bw 64
hamilton_ed 52
hieroglyph 64
leeleter 55
lena_j 54

otoosfont12 64
otoosfont24 64

pep_j 56
texmos1.p512M 58

wallpaper003-inca-100dpi-00M 56
wallpaper004-inca-100dpi-00M 54
wallpaper010-inca-100dpi-00M 58

writing 64
GEN_A-�xedwidth6and8 64

GEN_cmfugue 62
GEN_otoosfont12 64

Table D.1: Window size for contiguous tree optimization
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