PEDECIBA Informatica

Instituto de Computaciéon - Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay

Tesis de Maestria
en Informatica

Lossless Data Compression via
Sparse Models and its application to
Binary Images

Alix Lhéritier

2010

Lossless data compression via sparse models and its application to binary images
Lhéritier, Alix

ISSN 0797-6410

Tesis de Maestria en Informatica

Reporte Técnico RT 10-04

PEDECIBA

Instituto de Computacion — Facultad de Ingenieria

Universidad de la Republica.

Montevideo, Uruguay, febrero de 2010

Master’s Thesis in Computer Science
Lossless Data Compression via Sparse Models and its

application to Binary Images

Alix Lhéritier

alherit@gmail.com

Thesis Advisor:

Dr. Gadiel Seroussi
Hewlett-Packard Laboratories and Facultad de Ingenieria de la Universidad de la Republica

gseroussi@ieee.org

Academic Advisor:
Dr. Alfredo Viola
Facultad de Ingenieria de la Universidad de la Reptublica

viola@fing.edu.uy

February 2010

Abstract

In lossless data compression, the goal is describing a given sequence =™ = x5 . . . z,, of n symbols in
a shorter manner by using a code. This can be shown to be equivalent to the problem of capturing
statistical regularities of the given sequence by means of a statistical model that assigns probabilities
to sequences.! If a model assigns a probability P(z™) to a given sequence, then the sequence can
be described [Pas76, Ris76] with a length L(z™) = —log P(z™) 4+ O(1) bits when n — oo. Thus,
the higher the probability assigned by the model, the shorter the sequence can be described. For
example, in order to better capture these regularities and get shorter sequence descriptions, models
may condition the probability of each symbol on the values of symbols belonging to a neighboring
context. Although the probability assignments need not be sequential, in this thesis, we focus on
the sequential ones and, in particular, on finite memory models, i.e., models where the probability
of a symbol is conditioned on a finite number of past symbols.

When considering a class of models, the goal of universal coding is to find an algorithm that
describes any given sequence z™ with a length per input symbol that is asymptotically as short as
the one given by the best model in the class for ™. In this case, the model is not assumed known
in advance and, therefore, it needs to be described along with the data or learned from the data
itself. Indeed, while a richer class may have an optimum model that assigns a higher probability
(i.e. a model that better “fits” the data), Rissanen’s lower bound [Ris84, Theorem 1] shows, in a
stochastic setting, that there is a “model description cost” to be paid, which is proportional to the
number of free parameters that describes the models of the class.

Going further, twice-universal coding aims at finding an optimum for this trade-off between
model fitness and model cost, by considering a sequence of model classes of growing dimensionality
and optimizing the size of the class at the same time it optimizes the particular model.

Contiguous context modeling (i.e., Markov modeling in which the probability of a symbol is
conditioned on the K contiguous symbols that precede it), though quite popular, has the drawback
that the number of free parameters, which is proportional to the number of possible conditioning
states, increases exponentially with the distance, K, to the furthest conditioning location. Thus, a
high model cost is incurred if locations are needed in order to capture distant dependencies. Such
distant dependencies do occur in some types of data, e.g., images of text, where the value of a pixel
may depend on traces that occur far from the pixel.

Tree models, for which twice-universal coding algorithms exist, allow much economy (in terms
of model cost) by allowing a variable length context. Still, in this case, the context is contiguous
and, sometimes, this forces the inclusion of dependencies that unnecessarily increase model cost.

Sparse models are a type of statistical model in which each sample can be conditioned on
neighboring samples that are not necessarily contiguous. Therefore, they allow to capture some
distant dependencies without being forced to include all the contiguous locations in between,
potentially saving model cost. Additionally, these sparse contexts can be of variable length, which
can provide additional model cost savings.

The main problem studied in this thesis is how to efficiently estimate, for some given data,
the best set of fixed conditioning locations within a window of size K. This problem has been
addressed with different approaches. For example, exact algorithms with high complexity that are

L Probabilities must be consistent, i.e., the sum of the probabilities of all the sequences of length n must be 1.

practical only for small values of K have been proposed in [FWAO04]| and exact algorithms for a
highly restricted class of sparse models that are practical for larger K values (around 100) have
been proposed in [FLSV, FSV08, Fra08].

In this work, we adopt an heuristic approach similar to that of [RSP08, STHO1]. We present and
empirically analyze two heuristic algorithms (a greedy and a genetic one) for the search of good
location sets (templates) for two specific classes of sparse models. The compression performance of
the greedy algorithm is quite satisfactory in many cases but it is prone, in other cases, to getting
stuck in some bad local minima because of its deterministic nature. Although computationally more
expensive in general when compared to the greedy one, our genetic algorithm, which improves in
many aspects the genetic algorithm implementation of [Ser04], overcomes these difficulties, and
has very good compression performance and reasonable computational cost even in the case of
sparse models with variable length conditioning and rather large window sizes (around 1000).
Additionally, even in cases where the encoding is slower, due to the search for the best context
template, the decoding is fast, since the optimized template is appended to the encoded data and,
therefore, available to the decoder. This is appropriate in applications of data compression where
the data is encoded once and stored, but it is accessed (and decompressed) many times.

Based on the results given by these algorithms, we observe that sparse context modeling has an
important potential for compressing binary images because of their great ability to economically
capture different types of regular structures that can be found in this kind of data. Our algorithms,

in many cases, largely outperform standard binary image compression algorithms.

keywords: statistical modeling, context modeling, lossless compression, twice-universal coding,
binary images, genetic algorithms, greedy algorithms, sparse contexts, tree models, sparse tree

models

ii

Resumen

En compresiéon de datos sin pérdida, el objetivo es describir una secuencia dada z"™ = z1x3 ...z,
de n simbolos en una forma més corta mediante el uso de un cédigo. Esto puede demostrarse
que es equivalente al problema de capturar regularidades estadisticas de la secuencia dada, por
medio de un modelo estadistico que asigna probabilidades a las secuencias.? Si un modelo asigna
una probabilidad P(z™) a una secuencia dada, la secuencia se puede describir [Pas76, Ris76] con
una longitud L(z") = —log P(2™) + O(1) bits cuando n — oco. Por lo tanto, cuanto mayor es
la probabilidad asignada por el modelo, méas corta puede ser la descripcién de la secuencia. Por
ejemplo, con el fin de capturar mejor estas regularidades y obtener una descripcién mas corta de la
secuencia, los modelos pueden condicionar la probabilidad de cada simbolo basandose en los valores
de los simbolos que pertenecen a un contexto cercano. Si bien las asignaciones de probabilidad
no necesitan ser secuenciales, en esta tesis, nos enfocamos en las secuenciales y, en particular, en
los modelos de memoria finita, es decir, modelos en los que la probabilidad de un simbolo esta
condicionada a un ntmero finito de simbolos del pasado.

Cuando se considera una clase de modelos, el objetivo de la codificacién universal es encontrar
un algoritmo que describe cualquier secuencia dada z™ con una longitud por simbolo de entrada
asintoticamente tan corta como aquella dada por el mejor modelo de la clase para ™. En este caso,
el modelo no se asume conocido de antemano y, por tanto, debe ser descrito junto con los datos
o extraido de los propios datos. De hecho, mientras que una clase rica puede tener un modelo
optimo que asigna una probabilidad mas alta (es decir, un modelo que se “ajusta” mejor a los
datos), la cota inferior de Rissanen [Ris84, Teorema 1] pone de manifiesto, en una configuracion
estocéstica, que existe un costo de descripciéon del modelo a pagar, que es proporcional al ntiimero
de parametros libres que describe los modelos de la clase.

Yendo més lejos, la codificacién doblemente universal aspira a encontrar un grado 6ptimo para
esta disyuntiva entre el ajuste del modelo a los datos y el costo del mismo, al considerar una
secuencia de clases de modelos de creciente dimensionalidad y al optimizar el tamano de la clase
al mismo tiempo que se optimiza el modelo en particular.

El modelado de contexto contiguo (es decir, modelos de Markov en el cual la probabilidad de
un simbolo esta condicionada a los K simbolos contiguos que lo preceden), aunque muy popular,
tiene el inconveniente de que el nimero de parametros libres, que es proporcional a la cantidad
de posibles estados, aumenta exponencialmente con la distancia, K, a la ubicacién del simbolo
condicionante mas lejano. Asi, se incurre en un alto costo de modelo si se necesitan ubicaciones
para capturar dependencias lejanas. Estas dependencias lejanas se producen en algunos tipos de
datos, por ejemplo, en las imagenes de texto, donde el valor de un pixel puede depender de huellas
que se producen lejos del mismo.

Los modelos arbol, para los cuales existen algoritmos de codificaciéon doblemente universales,
facultan importantes ahorros (en términos de costo del modelo) al permitir un contexto de longitud
variable. Sin embargo, en este caso, el contexto es contiguo y, a veces, esto obliga a la inclusiéon de
dependencias que aumentan innecesariamente el costo del modelo.

Los modelos dispersos son un tipo de modelo estadistico en los cuales cada muestra puede ser

condicionada a muestras vecinas que no son necesariamente contiguas. Por lo tanto, permiten la

2Tas probabilidades deben ser coherentes, es decir, la suma de las probabilidades de todas las secuencias de largo
n debe ser 1.

iii

captura de algunas dependencias distantes sin estar obligados a incluir a todos los lugares contiguos
en el medio, con potencial ahorro en el costo del modelo. Ademas, estos contextos dispersos pueden
ser de longitud variable, lo cual puede proporcionar ahorros adicionales en el costo del modelo.

El principal problema estudiado en esta tesis es como estimar eficientemente, para ciertos datos
dados, el mejor conjunto fijo de ubicaciones condicionantes dentro de una ventana de tamano K.
Este problema ha sido abordado con diferentes enfoques. Por ejemplo, algoritmos exactos de alta
complejidad que son précticos solo para valores pequenos de K han sido propuestos en [FWAQ4]
y algoritmos exactos para una clase muy restringida de modelos dispersos que son practicos para
valores mas grandes de K (alrededor de 100) han sido propuestos en [FLSV, FSV08, Fra08|.

En este trabajo, adoptamos un enfoque heuristico similar al de [RSP08, STHO1]. Se presentan
y analizan empiricamente dos algoritmos heuristicos (uno voraz y otro genético) para la busqueda
de buenos conjuntos de ubicaciones (plantillas) para dos clases especificas de modelos dispersos.
El rendimiento de compresion del algoritmo voraz es bastante satisfactorio en muchos casos, pero
es propenso, en otros casos, a quedarse atascado en algunos minimos locales malos debido a su
naturaleza determinista. Aunque computacionalmente mas costoso, en general, en comparacion
con el algoritmo voraz, nuestro algoritmo genético, el cual mejora en muchos aspectos el algoritmo
genético de [Ser04], supera estas dificultades, y tiene un rendimiento de compresiéon muy bueno y
un costo computacional razonable, incluso en el caso de modelos dispersos con condicionamiento
de longitud variable y tamafios de ventana mas grandes (alrededor de 1000). Ademas, incluso en
los casos en que la codificacion es méas lenta, debido a la busqueda de la mejor plantilla de contexto,
la decodificacion es rapida, ya que la plantilla optimizada se anade a los datos codificados y, por
tanto, queda disponible para el decodificador. Esto es adecuado en aplicaciones de compresion de
datos donde los datos se codifican una vez y se almacenan, pero son accedidos (y descomprimidos)
muchas veces.

Basado en los resultados obtenidos por estos algoritmos, se observa que el modelado de contexto
disperso tiene un importante potencial para la compresion de imagenes binarias, debido a su gran
capacidad para capturar econémicamente los diferentes tipos de estructuras regulares que se pueden
encontrar en este tipo de datos. Nuestros algoritmos, en muchos casos, superan en gran medida a

algoritmos estandares de compresién de imagenes binarias.

palabras claves: modelado estadistico, modelado de contexto, compresién sin pérdida, codifi-
cacién doblemente universal, imagenes binarias, algoritmos genéticos, algoritmos voraces, contextos

dispersos, modelos arbol, modelos arbol dispersos

iv

Contents

Acknowledgements vii
Agradecimientos ix
Notations and Abbreviations xi

1 Introduction 1
1.1 Statistical data modeling and universal lossless compression 1
1.2 Efficient parametrizations of Markov models 2
1.3 Main contributions and organization of the thesis 5

2 Mathematical background 9
2.1 Lossless compression and model cost oL
2.2 Context models 14

2.2.1 Fixed-length contiguous context models 14
222 Treemodels e 15
2.2.3 Sparsemodels. Lo 16

3 Genetic algorithms for sparse template approximation 19
3.1 Genetic algorithms in general oL o Lo 19
3.2 A genetic algorithm for the template optimization problem 21

4 Binary images 25
4.1 The context geometry L. e 25
4.2 Common types of binary images o o 26
4.3 Standard compression methods for binary images oL L. 28

4.3.1 JBIG 29
4.3.2 JIBIG2 30
433 DjVu. . . oo e 31
4.3.4 Concluding remarks L Lo 31
4.4 Random binary image generation based on sparse models 31
4.4.1 Generation based on random K- SCMs 32
4.4.2 Generation based on trained K-WLSTMs 32
4.4.3 Entropy estimation of the generating processes 33
4.5 Testimageset e 34

5 Computational issues in sparse model code length evaluation 37

51 K-SCM evaluation L 37
5.2 K-WLSTM evaluation 39
5.3 Optimizations L e e 40

6 Greedy algorithms for sparse template approximation 43
6.1 A basic greedy algorithm o 43
6.1.1 Compression performance on images generated by K-SCMs 44

6.1.2 Compression performance on non-synthetic images 45

6.2 Greedy algorithms with corrections 0L 46
6.2.1 Deletion of template locations L0 46

6.2.2 Substitution of template locations, 47

6.3 Cost of model evaluation: greedy vs. random templates 49
6.4 Conclusions 50

7 ERGTO: an improved genetic algorithm 55
7.1 Optimization criteria and procedure 0. 55
7.2 Comparison with BRGTO 60
7.3 Stopping criterion L. 61
7.4 Conclusions 62

8 Compression performance of sparse models and their algorithms 63
8.1 Variable vs. fixed length conditioning (K-WLSTMs vs. K-SCMs) 63
8.1.1 K-WLSTMs based on K-SCM optimized templates 66

8.2 Sparse models vs. contiguous models oo oL 66
8.3 Evaluation of the benefit of increasing window size 68
8.4 Resemblance of sparse templates with binary image structures. 69
8.5 Comparison of ERGTQX -WLSTM against popular standard methods 70
8.5.1 Results on non-synthetic images 71

8.5.2 Results on generated images. L. 73

8.6 Conclusions 73

9 Conclusions and future work 75
Bibliography 7T
A Image set and best sparse and contiguous results 81
B 2D Context locations 115
C Sparse encoder-decoder 117
D Details on contiguous tree optimization 119

vi

Acknowledgments

First, I would like to thank my wife Ana, my daughter Amélie and my son Yann for supporting
me and for enduring this long process, and my parents for their support and for encouraging me
to take the path of science in a country where science is undervalued. I would also like to thank
the rest of my family and my friends for giving me their support at all times.

I would like to express my gratitude to my advisors for giving me the chance to work on such an
interesting and challenging project, for their guidance throughout the whole project and for giving
me the opportunity of visiting the Mathematical Sciences Research Institute and the University of
Minnesota, which was an enriching and unique experience.

I would like to especially thank Guillermo Sapiro for receiving me so warmly in his laboratory
in which I met many interesting people that I would like to thank for the good times we shared.
These people are Iman Aganj, Pablo Arias, Gloria Haro, Hstau Liao, Mona Mahmoudi, Anish
Mohan, Kedar Patwardhan , Alexis Protiére, Diego Rother and Pablo Sprechmann.

I would also like to thank Alvaro Martin, Gonzalo Tejera, Gustavo Brown and Ignacio Ramirez
of the “Facultad de Ingenieria”, who gave me their moral support and valuable advices in tough
times. I also want to highlight and acknowledge the help that Alvaro Martin gave me to integrate
its software libraries into my programs.

I would also like to thank Margot for caring about me and for his optimistic messages in difficult
times.

Special thanks go to my ex-coworkers of the Banco Central del Uruguay and friends Guillermo
Pérez and Gabriel Yerman for their moral support and for the valuable computing resources that
they gave me to run a large number of experiments. For the same computing reasons, I would also

like to thank my mother and Andrzej Lipinski who also ran several experiments on their PCs.

vii

viii

Agradecimientos

En primer lugar, quisiera agradecer a mi esposa Ana, a mi hija Amélie y a mi hijo Yann por
apoyarme y por soportar este largo proceso, y a mis padres por su apoyo y por alentarme a
tomar el camino de la ciencia en un pais donde la ciencia no se valora adecuadamente. También
me gustaria dar las gracias al resto de mi familia y a mis amigos por darme su apoyo en todo
momento.

Me gustaria expresar mi gratitud a mis tutores por haberme dado la oportunidad de trabajar
en un proyecto tan interesante y desafiante, por su orientacion a lo largo de todo el proyecto y por
darme la oportunidad de visitar el Mathematical Sciences Research Institute y la Universidad de
Minnesota, lo cual fue una experiencia enriquecedora y unica.

Quisiera agradecer especialmente a Guillermo Sapiro por haberme recibido tan calurosamente
en su laboratorio en el cual conoci a muchas personas interesantes a las cuales me gustaria agradecer
por los buenos momentos que compartimos. Estas personas son Iman Aganj, Pablo Arias, Gloria
Haro, Hstau Liao, Mona Mahmoudi, Anish Mohan, Kedar Patwardhan, Alexis Protiére, Diego
Rother y Pablo Sprechmann.

También me gustaria dar las gracias a Alvaro Martin, Gonzalo Tejera, Gustavo Brown e Ignacio
Ramirez de la Facultad de Ingenieria, los cuales me dieron su apoyo moral y consejos valiosos en
momentos dificiles. Ademéas, quiero destacar y agradecer la ayuda que Alvaro Martin me brindo6
para integrar sus bibliotecas de software en mis programas.

También quiero agradecer a Margot por preocuparse por mi y por sus mensajes optimistas en
momentos dificiles.

Un agradecimiento especial va para mis ex-companeros del Banco Central del Uruguay y amigos
Guillermo Pérez y Gabriel Yermén por su apoyo moral y por los valiosos recursos computacionales
que me brindaron para ejecutar una gran cantidad de experimentos. Por las mismas razones
computacionales, también me gustaria dar las gracias a mi madre y a Andrzej Lipinski que corrieron

también muchos experimentos en sus PCs.

ix

Notations and Abbreviations

BRGTO

Cr (Ii_l)

Cr(a™*",1,)

DITO

italics

JBIG2

A discrete finite alphabet of symbols, page 1

The alphabet size, i.e., « = |A], page 1

Notation for indexed arrays or vectors, e.g., s = (z1, x2, z3), page 10
Assignments in algorithms, page 26

Basic Randomized Genetic Template Optimization, page 22

Conditioning state x;_;, x;_i,., ... ;—;, defined by a template T = Iy, 1a,. .., I,
page 17

Conditioning state of the current sample z; ; of a two-dimensional sequence,
according to the template 7, page 26

Conditioning state function of x;, page 14

“distributed as”, e.g., X ~ p(x) means that the random variable z obeys the

probability law function p(z), page 9

Deterministic Incremental Template Optimization. Subscripts p or g indicate
that, respectively, deletions or substitutions are performed (additions are al-
ways performed). As a superscript we indicate in which model space the algo-
rithm searchs, i.e., K-SCMs or K-WLSTMs. For example, DITOg_WLSTM
refers to the greedy algorithm that performs deletions in the setting of K-
WLSTMs, page 43

A system for compressing images, page 28
The expectation of F' with respect to the probability distribution p, page 13

Enhanced Randomized Genetic Template Optimization. As a superscript we
indicate in which model space the algorithm searchs, i.e., K-SCMs or K-
WLSTMs. For example, ERGTOX ~WESTM peforg t0 the enhanced genetic
algorithm that searchs in the space of K-WLSTMs. When omitted, the su-
perscript is assumed to be K-WLSTM, page 55

Concepts that are introduced for the first time are shown in italics, page 1

Joint Bi-level Image experts Group Standard, ISO/TEC 14492 and ITU T.88,
page 28

xi

JBIG

K

k

K-SCM
K-WLSTM

KT

net (a | 5)

nat (s)

PRNG
P(ai]C(a'1))
0

STL

STM

x{° or

x} or z"

Z;

<.

Joint Bi-level Image experts Group Standard, ISO/IEC 11544 and ITU-TRec.
T. 82, page 28

Order of finite memory (or Markov) model, page 2

Weight (i.e., number of locations) of the context template, page 17
K-window sparse context model, page 4

K-window whole level sparse tree model, page 4
Krichevsky-Trofimoff, page 12

Actual memory window, page 17

Code length assigned by a code ¢ to the sequence x™, page 11

Base 2 logarithm, page 9

Number of times that the symbol a occurs on a state s in x?, page 12
Number of times that the state s occurs in zt, page 12

Pseudo random number generator, page 21

Conditional probability distribution defining a causal context model, page 14
Notation for sets, e.g., S = {a, b, c}, page 16

C++ Standard Template Library, page 40

Sparse tree model, page 4

A template, i.e., an ordered set of locations that defines the conditioning states

of a sparse model, page 16

A infinite sequence zixs...x;... of symbols belonging to some alphabet A,

page 10
A finite sequence z1xs...x, of symbols belonging to some alphabet A, page 1
The current sample, page 14

A subsequence x;x;41...x; of ™, page 2

xii

Chapter 1

Introduction

1.1 Statistical data modeling and universal lossless compres-
sion

In a general framework, the problem we want to address is the one of finding good statistical
models in order to describe, in a probabilistic fashion, the regularities of a given sequence of data
™ = x129...x,, where z; takes values in some alphabet A of size a. A statistical model assigns
probabilities to sequences in a consistent way, i.e., the sum of the probabilities of all the sequences
of length n must be 1. There are many applications for which it is necessary or useful to have
such models, such as lossless compression, forecasting, denoising, genomic data analysis, financial
modeling, etc.

Lossless compression (or lossless source coding) aims at describing some given input data in
a shorter manner so that the original data can be recovered from this shorter sequence without
any loss. This description is always based, explicitly or implicitly, on a statistical model whose
suitability is measured by the length of the output data. In opposition, in lossy compression, we
are allowed to recover a slightly different sequence, which may be appropriate enough for the appli-
cation (e.g., music or photography for non-professional usage). Both kinds of compression can be
very valuable since they allow the efficient use of important resources like data storage (hard disks,
optical media, etc.), bandwidth or energy. Lossless compression is of particular interest when mod-
ification of the original data is not allowed or not desired, for example, when compressing images
that are intended for further analysis and processing or that were obtained at great cost, or when
loss might have legal implications. Besides its resource-saving importance, lossless compression is
also useful in a pure statistical setting, as the Minimum Description Length principle developed by
J. Rissanen [Ris78, Ris96, Ris87] states that, if we can achieve a short description of the data, then
we are capturing appropriately the redundancies of the data and thus its statistical regularities.

In his seminal paper [Sha48], Shannon showed a fundamental limit for the average description
length when compressing the output of a random process, in the case when the parameters that
define the process are known. Universal data compression deals with the case when the parameters
are not known but the process is known to belong to a certain class of models.! In this case,

Rissanen’s lower bound [Ris84] states that Shannon’s limit is still asymptotically attainable but at

I'Universal compression also applies when the input sequence is arbitrary, and is not assumed to have been
emitted by a random process, as we will see in Chapter 2.

a convergence rate that includes a model cost term proportional to the number of parameters that

describe the models in the class.?

1.2 Efficient parametrizations of Markov models

In a Kth order finite memory (random) process, the probability of a sample z; in a sequence

In

= x1,Z2, ..., T, defined over a finite alphabet A is given by a discrete conditional distribution
P (2;]%{"}), conditioned on the value of the consecutive K —tuple immediately preceding ;, i.e.,

the conditioning state or context of x;. The probability of the whole sequence z" is:

n

P(z™) = Z P (a:(iK_H) HP (xl|x§j())

w0 g1 €EAK =1

where P’ is some probability distribution that governs the initial condition (for example, we could
assume that 2% ., is some fixed string, which captures all the mass of P’).

Finite memory random processes are always Markov chains and, thus, they can be naturally de-
scribed (or parametrized) as Markov models of order K. However, these models require o€ (o — 1)
parameters corresponding to « —1 free conditional symbol probabilities for each possible condition-
ing K —tuple, where « is the alphabet size.®> Therefore, the number of free parameters increases
exponentially with K.

In a tree model [Ris83, WRF95] of the same process, the memory length is allowed to vary from
location to location in the sequence.® These models are efficient parametrizations of finite memory
processes, as the exponential number of statistical parameters in the Markov model can often be
dramatically reduced in a well tuned model. Thus, tree models can improve the rate at which
the average length of a universal code converges to Shannon’s limit. In practice, tree models are
appealing because they seem to economically capture redundancies typical of real life data (e.g.,
text or images) and because of the existence of computationally efficient universal coding schemes
[Ris83, WRF95, WST95, Wil98, Noh93, MSW04] for this class of models (see Chapter 2).

The savings in the number of statistical parameters realized by tree models can be seen as
the result of lumping together equivalent states, i.e., K-tuples that induce the same conditional
distribution in the “full” Markov model. Thus, a conditioning state of ¢ = K — [symbols in a
tree model for a Kth order Markov model corresponds to the merging of o! equivalent states in
the full Markov model. This observation, in fact, characterizes the special structure of the sets of
full-length states that can be lumped together in a tree model: each such set must consist of all
the extensions of a given string of length K — [, 0 <! < K. Hence, tree models are represented by
full a-ary trees, i.e., trees in which every node other than the leaves has exactly « children. Figure
1.1 shows a graphical example in which some states of a Markov model get lumped together in a
tree model.

With real data, other sets of equivalent states might arise, and it is natural to ask whether it
is possible to optimize models where more general sets of states are allowed to merge. In practice,
the distributions that are merged are empirical and not necessarily identical, and an exhaustive

search for the best state space partition is unfeasible. The problem is also known as the context

2From a statistical point of view, this model cost term avoids models that overfit the input data and thus
unreliable statistics.

3The a-th conditional probability for each K-tuple is not free, as probabilities must add to one.

4Tree models are sometimes termed wariable length Markov chains in the statistical literature (see, e.g., [BW99)).

—P(x, |111)
P(x [104) P(x |110)

Bl 1060

Figure 1.1: The tree model (right) shows the lumping of some states of a fully parametrized
Markov model (left). The symbol ¢ indicates that a context location is ignored and, thus, the
corresponding states are lumped together. The value of the conditioning state appearing in condi-
tional probabilities is written in reverse order, e.g., P (x;|100) indicates that the conditioning state
is L;—3T;—2L;—1 = 001.

quantization problem, and it has been studied in various settings, with the proposed solutions
being generally ad-hoc, and of varying degrees of complexity as a function of K, which is usually
kept relatively small (see, e.g., [FWAO4], for a recent setting).

This work focuses on models that use sparse dependencies in the past symbols in order to
condition the probability of each symbol of the sequence, with the goal of significantly extending
K in practice while keeping the number of conditioning states feasible as shown in Figure 1.2.
These sparse models allow the merging of more general sets of states with similar conditional
distributions. As for tree models, ¢ refers to an ignored location but, in the case of sparse models,
in order to emphasize that these locations may break the context contiguity, we also call them

“holes”.

"ignored" samples

Figure 1.2: Sparse dependencies allowing to extend K, the size of the memory window.

The technique of conditioning on non-contiguous past symbols is known in the literature. The
JBIG bi-level image compression standard [Joi93], for example, conditions the current sample on
a template of contiguous past samples close to x;, plus a floating past sample that is allowed to be
located away from the template. Its successor, JBIG2 [Joi01], allows 4 floating past samples to be
used to condition each sample. In [SIHO1], the authors suggest using 16 adaptive positions and no
fixed locations, in order to extend the JBIG2 standard. They address the problem of choosing these
locations, in a window of size K = 26 by using a genetic algorithm as we do in our work (in our

case, the number of adaptive locations is not fixed, and will often be larger than 16, see Chapters

3 and 7). Sparse dependencies have also been studied in biology (e.g., [ZHS05, BR04]) but the
algorithms presented are practical for rather small values of K. Also in the biology field, [RSP0§]
takes advantage of sparsity for estimating probability density functions in very high dimensions
when sample size is not accordingly high. The algorithm used in that work is similar to the one
studied in Section 6.1.

In [Suz95, VW96|, generalized tree models were studied and a coding scheme with computing
complexity exponential in K was presented. Similar to generalized tree models, sparse tree models
(STMs) are a generalization of tree models where more general sets of states with similar conditional
distributions are allowed to merge. In an STM, samples are conditioned on finite strings of not
necessarily contiguous past symbols, and the context determine not only how far into the past the
conditioning samples are, but also what their (possibly non-contiguous) locations are. In STMs,
holes are allowed to be in any place of the tree representation as shown in Figure 1.3. More precisely,
every internal node must have either exactly « children or 1 child, the latter case corresponding

to a hole.

P(x, [060) P(x |0¢1)

Figure 1.3: Lumping of equivalent states not obeying the complete subtree restriction imposed by
tree models.

K-window r-hole STMs have memory bounded by a positive integer K, and each conditioning
context used is allowed to have at most r runs of ¢ symbols (i.e., concatenations of holes). In
[FSVO08, FLSV, Fra08], a semi-predictive algorithm with time complexity O (K 2”‘1) that estimates
a K-window r-hole STM for a given input sequence is presented and used as the basis for a lossless
compression scheme that is universal in the class of K-window, r-hole STMs. The algorithm is
implementable in practice up to moderately large values of K around 100 for r = 1.

In this work, we focus on two classes of sparse models. The first one is referred to as K-window
sparse context models (K-SCMs). K-SCMs condition the probability of each sample on a fixed set
of locations and, thus, no variable length conditioning is allowed. Figure 1.4 shows an example of
how states are lumped together in this type of model.

The other class studied in this work is the one of K-window whole level sparse tree models (K -
WLSTM), a subclass of STMs with memory window length limited to K, that has the additional
restriction of every level in the tree having either no hole at all or a hole in every edge of the level.
In other words, for each tree level, one of these two conditions must be satisfied:

1. all the nodes in the level are either internal ones that have one child (i.e., a hole edge) or are

leaves

2. all the nodes in the level have « children.

P(x 1060) P(x [041) P(x |L60) P(x, |L61)

Figure 1.4: Lumping of equivalent states obeying the K-SCM restrictions.

Notice that the example on the right side of Figure 1.3 is not a K-WLSTM, since nodes in the
second level do not satisfy either of these conditions. Figure 1.5 shows an example of a K-WLSTM.

a=2, K=3
X1 ;
Xi—2
Xi—3

P(x 1040) P(x |01)

Figure 1.5: Lumping of equivalent states obeying the K-WLSTM restrictions.

Notice that K-SCMs are to K-WLSTMs as fixed-length contiguous context models are to tree
models. K-SCMs condition the probability of each sample on a fixed set of locations while K-
WLSTMs allow variable length conditioning, the conditioning samples being taken also among a
fixed set of locations. Figure 1.6 shows the inclusion relations between the different parametrization
of Markov models, where a class A includes a class B if any model of B can be represented by a
model of A with the same or a smaller number of states.

One important problem addressed in this work is how to efficiently estimate which is the best
set of past dependency locations (or template) for these models in order to achieve the minimum
description length for some given data. A brute force approach to this problem is of exponential
complexity because of its combinatorial nature and, thus, it is not of practical interest if we want

to use large values for K.

1.3 Main contributions and organization of the thesis

The starting point of this thesis was a genetic algorithm for searching good templates for K-SCMs,
proposed and implemented by G. Seroussi with some promising results on binary images [Ser04].
Then, the primary goals of this thesis were defined as follows:

1. Improve and optimize Seroussi’s algorithm and software implementation in order to get better

computational performance, thus allowing more experimentation, larger values of K and,

FIXED LENGTH CONTIGUOUS MODELS

Figure 1.6: Inclusion relations between different Markov model parametrizations. “JB2 EXT”
refers to the JBIG2 extension proposed in [SIHO1].

ultimately, better compression results.
2. Explore other heuristics.

3. Extend the genetic algorithm implementation, originally only for K-SCMs, to the broader and
more flexible class of K-WLSTMs, while keeping a reasonable and practical computational

complexity.

4. Experiment with a larger set of binary images in order to get a better understanding of the
suitability of sparse models for this kind of data.

In line with these goals, the main contributions in this thesis are the following:

1. An heuristic greedy algorithm for the search of good templates for both K-SCMs and K-
WLSTMs (Chapter 6). In general, this algorithm finds good solutions but, because of its
determinism, in some cases, it gets stuck in some poor local minima. Nevertheless, the

algorithm is relatively fast and practical, even in the case of the K-WLSTMs.

2. An improved genetic algorithm whose components and parameters were chosen by criteria
learned from the greedy algorithm (Chapter 7). Although this genetic algorithm is slower
than the greedy one, it is more robust and is able to search in the space of K-WLSTMs
for rather large values of K (of order 1000). Notice that, for both algorithms, even in cases

where the encoding is slower, due to the search for the best context template, the decoding

is fast since the template is described at the beginning of the encoded sequence and does not

need to be searched again.

3. Using the results given by our algorithms on a large set of binary images (Chapter 8), we found
that, K-WLSTMs are, in some cases, significantly better than K-SCMs thanks to variable-
length conditioning that allows to better “fit” the data by considering more dependencies at
a reduced model cost. In worst cases, their performance is similar since K-WLSTMs are
a superset of K-SCMs and, in exchange, only a constant cost (negligible when the image
is large) for tree description has to be paid. We also found that, in many cases, sparse
models are significantly better than contiguous models. In worst cases, they are just as good
since sparse models are a superset of contiguous models and, in exchange, only a very small
constant cost has to be paid for sparse template description. Finally, we found that our
improved genetic algorithm for K-WLSTMs outperform, in most general cases, the standard

compression methods, and, in some cases, by significant margins.

The rest of this thesis is organized as follows. Chapter 2 sets up the mathematical background and
definitions needed for this work. These include some of the theory of lossless data compression and
definitions and properties of fixed-length contiguous context, tree and sparse models. Chapter 3
introduces the paradigm of genetic algorithms and describes the scheme proposed by G. Seroussi
in [Ser04]. Chapter 4 introduces some types of binary images found in practice and describes
some standard methods for compressing them. Chapter 5 discusses some computational issues in
sparse model code length evaluation and describes some important optimizations in relation to the
computation time. Chapter 6 presents a greedy deterministic algorithm for searching good sparse
models. Chapter 7 describes and analyzes a modified and improved version of the original genetic
algorithm of [Ser04]. Chapter 8 presents the results and establishes the suitability of sparse models
and our algorithms on a large set of binary images. Chapter 9 concludes this work and gives future

directions.

Chapter 2

Mathematical background

In this chapter, we present some of the basic mathematical tools and definitions from the area
of information theory and the fundamental limits of compression with the associated concept of
model cost. Then, we formally define the classes of fixed-length contiguous context, tree, and

sparse models and some related coding schemes.

2.1 Lossless compression and model cost

In lossless compression, a compressor (or encoder) describes a given sequence of symbols in a
shorter manner so that a decompressor (or decoder) can recover the exact original sequence given
the compressed one. Thus, the performance is measured by the relation between the length of the
compressed sequence (the code length, usually measured in bits) and the length of the original one,
which is called the compression ratio (usually measured in bits per original symbol). Now, we may
ask: how much can a given sequence be compressed? The exact answer to this question depends
on the nature of the sequence to be compressed and how much we know about it. More precisely,

we are going to consider the following two scenarios:

e the probabilistic setting, in which the sequence is a realization of a random process whose

parameters we may or may not, know.

e the deterministic setting, in which the sequence is deterministic and arbitrary. However, in
this case, it is useful to describe the sequence regularities using probability tools, as we will

see later.

In the probabilistic setting, the symbols of the input sequence are realizations of random variables.
The concept of entropy presented by C. Shannon in [Sha48|, measures the amount of uncertainty
(usually expressed in bits) that an observer has about a random variable or, equivalently, the
amount of information received by him when the random variable gets realized. Given a random
variable X defined over A such that X ~ p(x), the entropy of X is defined as:

H(X)=-Y plz)logp(a), [OlogO S o}
T€EA

The entropy is maximized when the probability is uniformly distributed. When considering

the realization of multiple variables, the concept of joint entropy arises. The joint entropy of the

random variables X1, Xo,..., X, is defined as

H(X13X27"'7XTL):_ Z p(x17x27"'7xn)10gp(xla'r23"'79377/)'

(Z1,22,000sTn) EA™

When normalized, we express it in bits per symbol and write it as
1
H (X, Xo,...,X,) = EH(Xl,XQ,...,Xn)

or H, (P) if we want to emphasize that the generating model assigns a probability P () to the
sequence.
The extension of this concept to the case of a semi-infinite random process leads to the definition

of entropy rate:

H(X2) = Tim ~H(XD)

n—oo N
which is expressed in bits per symbol, if the limit exists.

A source code C for a random variable X is a mapping C : A — D* where D is a finite coding
alphabet of size d, and D* is the set of finite strings over D. C (X) is the codeword corresponding
to X and L(X) = |C(X)] its code length. A code C : A — D* extends naturally to a code
C*: A* — D* defined by

C*(\) =\, C*(z1,22...2p) =C(21)C (x2)...C(2y)

where \ is the empty string. C is called uniquely decodable if its extension is injective (in other
words, every codeword is identifiable when immersed in a sequence of codewords). Kraft-McMillan’s
inequality [Kra49, McM56] states that the codeword lengths l1,ls, . . ., I, of any uniquely decodable

code satisfy
m
Stz
i=1

where d is the coding alphabet size. Using this inequality, it can be shown (see, for example,
[Mac03, p. 97]) that H (X) is a lower bound on the expected number of bits required to describe

an outcome of X by a uniquely decodable code.

Using these concepts, Shannon derived a fundamental limit of compression [Sha48] that says

that L7, the minimum expected code length per symbol of the sequence to be encoded, satisfies

1
H(Xl,XQ,...,Xn) SL; <H(X17X27---7Xn)+ﬁ

Furthermore, if X{° is a random process with an entropy rate, then
lim L} = H (X7°)
n—oo
Thus, the entropy rate can be interpreted as the expected number of bits per symbol required
to describe the process.

Given a model that assigns a probability P (z™) to some given data sequence z", the method

of arithmetic coding presented in [Pas76, Ris76] provides a way to achieve a code length of

10

—log P (2") + O(1) as n — oo.! Thus, when considering symbols as realizations of random
variables, the expected code length given by an arithmetic encoder is minimal up to an additive
constant. Even when the sequence is not a realization of random variables, I* () = —log P («7) is
called the ideal code length for the string z7 relative to any probability assignment P to sequences

of length n.

What happens when we encode a random variable X ~ p(z) assuming a wrong distribution
g (2)? The increase in expected description length due to the incorrect distribution is the relative
entropy (see [CT06, Theorem 5.4.3] for a proof) which is defined as:

p(x)
D(pllq) Zp)log 2220)
In most practical applications, the model that generates the data is not given to us or, even
more, the sequence can be completely arbitrary (i.e., in the deterministic setting). Universal data
compression deals with the optimal description of data in the absence of an a priori statistical
model. Arithmetic coding provides an effective mean to sequentially assign a code word of almost
ideal length given a probability assignment, which means that the model probabilities can vary
and adapt to the input data as it is observed. This allows us to treat the compression problem
as a problem of finding the model that gives the minimum ideal code length for the input data.
The model can be based on the whole sequence and, in this case, it is necessary to first describe
the model to the decompressor or it can be learned on the fly (in the case of a strongly sequential
model) and, in this case, the decompressor can do the same. In both cases, there is a model
description cost to be paid (in the second case, it manifests itself implicitly as a “learning cost”).
In the deterministic setting, the optimality idea of universal data compression makes sense
considering a class of models. We say that a code that assigns a length L (-) to some given data

sequence z" is pointwise universal with respect to a class of models C if the pointwise redundancy
defined as R¢ (L,2") = L | L (2™) — minL. (z")| satisfies lim R (L,2™) = 0.
ceC n—oo

Essentially, the choice of a class is an art and some criteria can be the complexity, some prior
knowledge on the data and the practical success of some models already presented. One useful way
to define a class is to consider a set of models that can be characterized only by a d-dimensional
parameter #. This kind of class is called a parametric class. The mazimum likelihood estimate
é(a:”) characterizes the model of a given parametric class that assigns the highest probability to

an input sequence z". Therefore, in these cases, miéch (z™) = —log P B (am) (™).
ce

The Normalized Maximum Likelihood (NML) code [Sht87, Ris96] assigns the following proba-

bility to the input sequence:
—minL.(z™)
n 9 ceC
Q (ZL’) = —minL.(z™)

2ignean2 ¢

Therefore, in the case of parametric classes, the NML model assigns to each sequence a prob-

ability that is proportional to the probability given by the maximum likelihood estimate. The
pointwise redundancy of the NML code is

—minL,.
Ro (L, x" log[D 2 eee]

T EAT

ISee [WNCS87| for a practical description.

11

Since this quantity depends only on the class and is the same for all the sequences x™ € A™,
it can be easily shown that this code is optimal in the sense that it attains the best worst case
pointwise redundancy which is Ro = mLin max Re (L, z™). Under certain reasonable assumptions

T eAn

on a parametric model class, the redundancy can be written as
d n 1 1
Re = —log— + —1 1(0)|do —
¢ = gelorge+ x| VT@+o (1)

where I(-) is the Fisher information matriz® and ©, is the parameter space. Therefore, Rc grows
with the number of parameters and vanishes as n tends to infinity (i.e., the code is pointwise
universal). It can be shown (see [BRY98]) that this model can be thought as a two-part code which
means that we first encode the parameter (i.e., we describe the model) and then the data based
on this parameter. Using this point of view, we can see that the model description has a cost that
is asymptotically equivalent to %log n. Although this code attains the best worst case pointwise
redundancy, it has two important drawbacks: it is hard to compute and the sequential probability
assignment depends on the horizon n.

Since the NML model has some important drawbacks, an approximation to this model is de-
sirable. The Krichevsky-Trofimoff (KT) estimator [KT81] defines a model that is asymptotically
(when the data length goes to infinity) as good as the NML model when we consider the class
of models that conditions each sample of the sequence on a finite set of states S. Each state
is determined by some of the previous samples of the sequence. The KT estimator sequentially
assigns a probability to a symbol a occurring in a state s according to the following formula:
gzt (a] s) = % where « is the alphabet size, n, ¢ (s) counts the number of times that the
state s occurred from the beginning of the sequence up to time ¢ and n,: (a | s) counts the number
of times the symbol a occurred on a state s in the same subsequence. As desired, the estimator
does not depend on the horizon n and the formula is easy to compute. This estimator assigns the
following probability to the whole sequence up to time n:

T D) Taca T e (a1 5) 1/2)
== e

where I' is the Gamma function.

The code length assigned by the KT probability assignment to the symbols of ™ that occur in

(a 1)
2

a state s is

Lgr (¢ | 5) < nge (s) H (x| 5) + lognge (s) + O (1)

where H (z | s) = —Llog Pyanjsy (@™ | 5) (2" | s being the subsequence of symbols occurring at
state s), i.e., the code length given by the maximum likelihood memoryless model for z” | s (also
called empirical entropy rate). Adding all the KT code length contributions for every state in S

we get
Licr (o) < 0t (2) +15] ©~ D1ogn,e () + 0 (8]

2Let X (x) = X (x1,%2,...,Tn) be a random vector in R™ and let fx (x) be a probability distribution on X with
continuous first and second order partial derivatives. The Fisher information matrix of X is the n X n matrix Ix
whose (4, 7)th entry is given by

(Ux);; = / Blnjx (x) Oln /x (x) Ix (x) d"x

i Bzvl 837]'

12

where H (z) = Y oses nz;(s)H (x| s) is the empirical entropy rate of 2™ considering a model con-

ditioned on the set of states S. Since nH (z) is the minimum code length assigned by a model in
the class, pointwise universality of the KT estimator follows from the previous inequality.

Considering a worst-case pointwise redundancy means guaranteed performance, but maybe
there are only a few such “unlucky” input sequences? In order to consider averages, it is reasonable
to assume that the data was drawn from a model in C', which takes us to the probabilistic setting.
Given a probabilistic source model described by a probability function P, the pointwise redundancy
of a code that assigns a length L (-) to the data is defined as

Rp (z") =L (z")+1logP (z").

Also in the stochastic setting, we say that a code that assign a length L to the data is point-
wise universal if the normalized mazimum pointwise redundancy, defined as %max,;neAn Rp (z™)
converges to zero, when n — oo, for each model in C assigning a probability P. When consid-
ering a class of models conditioned on a finite set of states S, a pointwise universal code in the
deterministic setting assigns a normalized code length of H (x)+ o (1) bits. Since Py (yny minimizes
—log P (™) among all the distributions P of the models in the considered class, it follows that
for a pointwise universal code in the deterministic setting, the normalized maximum pointwise
redundancy (assuming the data has been generated by some model in the class) in the same class
vanishes with n and, therefore, the code is pointwise universal also in the probabilistic setting.
This is the case for the code given by the KT estimator.

The expectation of Rp 1, (z™) with respect to P is the ezpected redundancy of the code for the

given source, and it is given by

Rpy =Ep[L(z")] - H, (P).

This quantity is equal to %D (P||@), namely the normalized relative entropy between the dis-
tributions Py (that gives the probability of a sequence according to the model) and the distribution
Q (xn) — 9—L(=") 3

A theorem derived by J. Rissanen [Ris84, Theorem 1] for parametric classes, says that if the
parameters in ©4 are “distinguishable” (in some precise sense defined there), then the expected

redundancy satisfies, for all @ and all £ > 0, the following inequality:

logn
2n

for all points 0 in ©4 except in a set whose volume tends to 0 as n — oo.

%Ec (L,60) > d—2" (1-¢), L= —log Q (a")

The meaning of this bound, which applies in the probabilistic setting, is that (4/2)logn is the
inevitable cost of universality. This lower bound parallels Shannon’s coding theorem: when the
model is unknown, a model cost that depends on the size of the parameter space gets added to
the entropy. The number of parameters affects the achievable convergence rate of a universal
code length to the entropy or to the best of the class in the deterministic scenario. Thus, it is
important to find classes that fit appropriately the probabilistic source or the individual sequence

characteristics, using the fewest possible parameters. In this sense, prior knowledge of the source

3By Kraft-McMillan’s inequality, it can be shown (see, for example, [Mac03, p. 97]) that, under certain conditions,
an encoder that produces a code length L (-) implicitly defines a probability distribution Q (™) = 2~ (=") for which
the code length function is optimal.

13

data is of paramount importance in order to avoid learning characteristics already known.

One further step in the model optimization problem is to optimize the model size d at the
same time that we optimize the particular model. More precisely, consider a model class to be
the union of nested parametric classes of growing dimensionality: ©; UGy U ... U O, U ... where
0, COy; C...C Oy C.... Wesay that a code is twice-universal in this union of classes, if for
any source in the class defined by ©4, for any d, the normalized expected redundancy of the code
vanishes as % logn up to lower terms. In the deterministic setting, the definition is analogous but

using pointwise redundancy instead of expected redundancy.

A trade-off occurs since increasing the model size allows the model to better fit the data and,

thus, the data description length decreases while the model description length increases.

For more details on lossless compression (also called lossless source coding) see, e.g., [CTO06].
Next, we discuss some important models used in practice under the light of universal data com-

pression theory and the model cost concept.

2.2 Context models

One important class of models is the one of causal context models. A causal context model for a
sequence z" is a conditional probability distribution P (z; |C (2'~')), where C (z'~!) is a function
taking values in some arbitrary finite set. The value C (mi_l) is called the conditioning state of
x; and the number of samples on which it depends is called the memory of the model. When
discussing the conditioning state C (z'~!) or the conditional probability P (z; |C (2~')), we refer
to x; as the current sample.

When using higher-dimensional data (e.g., images), there is an order in which samples are
considered (e.g. raster scan)? that makes the data appear as one-dimensional, nevertheless, the
samples on which the conditioning states depend can be ordered differently, for example, using a
bi-dimensional distance criterion (see Chapter 4 for the details on the criterion used in this thesis).
In order to keep the notation clean, we continue using a one-dimensional notation but it can be

easily extended through a remapping of the conditioning locations.

2.2.1 Fixed-length contiguous context models

For a non-negative integer K, a K-th order fixed-length contiguous context model is a causal context
model in which C' (1) = @;_x®;—x41...2;—1.> In many applications, it makes sense to look
for statistical dependencies in a close contiguous neighborhood and that is a reason why fixed-
length contiguous context models are so popular. Nevertheless, the model description cost grows
exponentially with the memory of the model, which makes fixed-length contiguous context models

unable in practice to capture far dependencies.

4 Raster scan is the method used in this work and it consists in traversing an image from top to bottom, from
left to right.

5Tn lossless compression, since every sample must be encoded and thus modeled, when the conditioning state
depends on samples with negative indexes (the border samples) some arbitrary conditioning state has to be chosen,
with a rule that must be repeatable by the decompressor. These border samples determine the initial condition of
the model, as discussed in Section 1.2. In our implementation, these locations get an initial arbitrary value of 0.
Then, the first relevant (depending on K) samples of the sequence get reflected as soon as they are known. More
precisely, when evaluating the sample z;, x_j = zp if h < i, otherwise, if h > i, z_p, =0 .

14

2.2.2 Tree models

A tree model (see, e.g., [Ris83, WRF95]) consists of a full a-ary tree (defined in Section 1.2) and a
set, of conditional probability distributions on the alphabet A, one associated with each leaf of the
tree. Each leaf of the tree represents a state. Each edge of the tree is labeled with a symbol from A.
Given an input sequence z', the state selected for the sample z; is determined by descending from
the root of the tree, matching the labels of the edges with the symbols in the sequence in reverse
order, i.e., x;_1,T;_o,... until a leaf is reached. Therefore tree models are causal context models
where C' (z°™1) = @;_4@;_441...2;-1 and ¢ is determined by the conditioning state z;_¢...z;_1
itself.

In the example tree model of Figure 2.1, all subsequences ending with the symbol 0 select the
same state, while for subsequences ending with the symbol 1, it may be necessary to examine one,

or even two more past symbols of the subsequence in order to determine the state.

i —P(x |111)
P(x 1066) P(x [104) P(x |110)

Figure 2.1: Example of a tree model defined over A = {0, 1}.

Notice that a full parametrization of a binary Markov source of order K corresponds to an
underlying full balanced® tree of depth K.

This ability to reduce memory length has the potential to reduce the number of parameters
and thus model cost. A major advantage of tree models is that statistical information needed
to optimize the model can be stored in a context tree data structure, which is grown as the
sequence is observed, recording essentially all the occurrences of each symbol in every context
(including those represented by internal nodes). The precise manner in which this information is
used in the model optimization varies from approach to approach, but the recursive combinatorial
structure is key for algorithmic efficiency in all cases. Twice-universal coding schemes for this
class of models attain a redundancy term 251 |S|logn, where |S]| is the number of leaves of the
tree, since there are o — 1 parameters per leaf.” Twice-universality can be achieved with the
“plug-in” type of approach of the Context Algorithm [Ris83, WRF95], with the mixture approach
of the Context Tree Weighting (CTW) algorithm [WST95, Wil98], or with the two-pass version
of the Context Algorithm outlined in [Noh93]. Using the KT probability assignment, the latter
two algorithms attain pointwise twice-universality and the normalized pointwise redundancy is at
most (dlogn)/2n) + O (4/n) where d = (o — 1) |S| (see [MF98]), while the first one is shown to be

twice-universal only when considering expected redundancy. In the two-pass approach (also called

6A tree T is full balanced if it is full and all its leaves are at the same depth.
"Notice that the set of tree models represented by unbalanced trees has measure zero in the space of Markov
models of any order, otherwise, twice-universality would contradict Rissanen’s lower bound.

15

semi-predictive), the best tree structure is estimated and described in a first pass, and then the
data is sequentially encoded (based on this tree) in a second pass. This approach lacks sequentiality
(since the full sequence must be seen in order to estimate the best tree structure) and is redundant
in the sense that once the best tree is found, not all the input sequences z™ are possible and
the algorithm ignores this fact. For these reasons, CTW is preferred in theory but, since the
convergence rate differences with the two-pass approach are only of order O (4/n) and CTW has
some practical issues,® the two-pass approach is sometimes preferred. In [MSWO04], an efficient
implementation of this approach is presented.

At the encoder side, the two-pass algorithm has the following steps:
1. First pass: gather all the context statistics for ™ in a context tree data structure.

2. Prune the context tree (lumping together equivalent states). In [Noh93], it is shown that,
due to the (full) tree structure of the model class, pruning reduces essentially to a dynamic
programming problem,” with the cost function given by the code length that each potential
node in the context tree would contribute in case it were selected as a state. This problem
can be solved in time that is linear in the number of nodes of the context tree. The context
tree associates to each node the cost L(s) + =25 , s being the state represented by the node
and L the code length achieved using the KT estimator and, then, the dynamic programming
algorithm prunes the tree in order to find a subtree 7" with total minimum cost for the leaves.

The total cost for T is: Lp(z™) + 2%, where I7 is the number of leaves in T.'°

3. Second pass: describe T to the decoder using ng bits (see Footnote 10) and encode x"
conditioned on 7" with KT.

The decoder, once it knows the structure of 7', decodes =™ sequentially conditioned on the states

of T using the KT estimator as well.

2.2.3 Sparse models

We now define the main objects of this investigation. A relative location [refers to the sample x;_;

when z; is the current sample.

Definition 2.1. A template T is a set of relative locations {l1,la,...,lx} with 1 <1} <y < ... <
I, < K.

The elements of 7 define the conditioning states of sparse models as we see in the following

definitions.

Definition 2.2. A K-sparse context model (K-SCM) with respect to a given template 7 is a

causal context model where C (¢'71) = @y, xi—1,,, ... Ti—y,-

Therefore, the memory size of a K-SCM is fixed and equal to k.

8Because of finite precision, complexity and alphabet size restriction.

9Based on the observation that, by recursively assigning costs to sub-trees, an optimal tree consists of optimal
sub-trees.

10Notice that np = li‘izl, the total number of nodes in the tree, is also the cost of describing the full tree using
a natural code (see, e.g., [WST95] and [Noh93]), with one bit per node that determine if each node is internal or

not, assuming a preorder traversal. Therefore, minimizing aT—_Oi implies minimizing also the description cost of the
tree.

16

Definition 2.3. A K-window whole level sparse tree model (K-WLSTM) with respect to a given
template 7 is a causal context model where C (z'™') = @, @;—y,_, ... 2y, where t < k is
determined by the samples of the conditioning state itself according to an underlying tree as in
tree models!! except that, when descending from the tree root, edge labels are matched with the
symbols in the sequence selected by the template 7" in reverse order, i.e., x;_j, &;—j, until a

leaf is reached.

Thus, K-WLSTMs can be considered as tree models whose dependencies can lie only among
the finite set of relative locations given by 7. In particular, a K-WLSTM whose template is
7 ={1,2,...,k} is a tree model with memory bounded by k. The maximum memory size of a
K-WLSTM is bounded by the weight of the template k = |7| and is equal to the maximum j such
that x;_;; appears in some context (i.e., the length of the longest branch in the underlying tree).
Notice that every K-SCM can be represented, with the same number of states, by a K-WLSTM
with a fixed t = k.

Additionally, we define the actual memory window as K = max (I;). We write Cr (mi_l) =
Ti_1,Ti—1,,, --- Ti—1;, to emphasize that the conditioning state is gijven by the template 7 .

For a given template 7, the code given by the KT estimator is pointwise universal in the class
of K-SCMs defined over 7 since the models in this class are conditioned on a finite set of states
as the one considered in Section 2.1. Analogously, it can be shown'? that, given a template 7,
the code given by the two-pass approach'? is twice-universal'* in the class of K-WLSTMs defined
over 7.

This thesis focuses in the following problem. We are given an input sequence z" and a window
size bound K. The ultimate goal is to find the best sparse model (K-WLSTM or K-SCM), for 2.
Since the number of different templates is 2% an exhaustive search is not of practical interest for
large values of K. In addition, no practical universal algorithms are known for these model classes
for large K. Therefore, we look for approximate solutions, i.e., reasonably good models for the
given input sequence. More precisely, we aim at finding model sequences in which each model gives
a shorter code length than previous models. This sequence of models ends when no better models
are found or some maximum computational time is reached. For this reason, we study heuristic
methods like genetic and greedy algorithms.

Notice that, when variable length conditioning is allowed, a richer class of sparse models could
be obtained if we allowed different orderings of template locations, but this significantly increases
the problem complexity. In addition, intuitively, we assume that once a sparse set of locations is
selected, locations closer to the modeled sample are considered “more relevant”. Therefore, in this
thesis, we do not consider other orders.

In Chapters 3, 6 and 7, we present and analyze some heuristic algorithms that are intended
to address this problem. In Chapter 8, we empirically show that compression rates yielded by
K-WLSTMs found by these algorithms are generally better in comparison to algorithms widely
used in practice when the input data are binary images.

I Notice that, here, the underlying tree does not have ¢ labeled edges as in Section 1.2 (where we used a definition
analogous to the one of STMs in order to show differences between the two classes) since holes are specified by the
template.

2For example, the proof for [Mar09, eq. 3.5] extends for this case since there is no restriction on which context
locations determine each state of the trees. Therefore, the states can be determined using sparse locations.

13 The first step (statistics gathering) is performed considering the relative locations and the order given by 7.

14Notice that, in this case, the union of growing dimensional classes is finite since memory is bounded by k.

17

18

Chapter 3

Genetic algorithms for sparse

template approximation

As mentioned before, the difficulty in optimizing sparse models comes from the combinatorial
complexity of finding the best template to use to condition each sample. A starting point for this
thesis was an implementation, proposed in [Ser04], of a genetic algorithm for finding approximate
solutions to the template optimization problem for the K-SCMs defined in Definition 2.2. Next, we
will present the paradigm of genetic algorithms in general and then its application to the template

optimization problem.

3.1 Genetic algorithms in general

Genetic algorithms (GAs) are a metaheuristic! for finding approximate solutions to optimization
problems. The method was introduced in [Bar54, Hol75] and is inspired on the natural selection
mechanism described in Darwin’s theory of evolution [Dar59]. In fact, GAs are a particular class
of evolutionary algorithms (also known as evolutionary computation) that uses techniques inspired
by evolutionary biology.?

In a GA, an individual is the representation of a candidate solution to an optimization prob-
lem and a fitness function allows to evaluate each individual: it corresponds to the optimization
problem’s objective function. The goal of a GA is to find the individual with optimum fitness.
For instance, an individual, for the template optimization problem for K-SCMs, would be some
template representation and its fitness would be the code length for the input sequence given by
the KT estimator, described in Section 2.1, conditioned on this template. Finding the individual
with optimal fitness is equivalent to finding the template minimizing code length for the input
sequence, when using K-SCMs.

There are many optimization problems that can be proven to be hard (e.g., NP-hard [GJ79])
and for which no efficient (e.g., polynomial time) algorithms for finding such optimal solutions are
known. In theses cases, the best one can aspire to is to find “good” solutions for which, in many
cases, we cannot prove how close to optimal they are. However, we can often still evaluate the
solution and find it more appropriate than other solutions to the problem. This kind of algorithm

L According to [Bla09], a metaheuristic is “a high-level algorithmic framework or approach that can be specialized
to solve optimization problems”.
2For a comprehensive tutorial on GAs see, for example, [Whi94].

19

aims at finding a sequence of increasingly better candidate solutions until solutions can no longer
be improved or a prespecified time limit has been reached.

At each stage, GAs handle a set of M candidate solutions (a population) that contains the
best solutions found up to this point. For a given population, individuals are combined and
changed (through crossovers and mutations) with the goal of finding a new population in which
better solutions show up (i.e., individuals with better fitness than the individuals of the previous
population).

As mentioned before, GAs are a generic framework whose components can be adjusted to
address many specific problems. Usually there are only two main components of GAs that are

necessarily problem dependent, and they are:

e a genetic representation of the solution domain: GAs represent candidate solutions as in-
dividuals using linear binary representations called chromosomes or genotypes. The most
standard one is a binary vector. Each vector location is called a gene. Since genetic opera-
tors work with the chromosomes’ genes, the genetic representation together with the genetic

operators play an important role in GAs.

e 3 fitness function to evaluate the solution domain. In opposition to the genetic representation,
the fitness function is normally given as part of the problem description as the objective

function.

The other components are, a priori, independent of the problem to be solved but can be tailored

for better performance. Those usually are:

e a set (or population) of individuals. The cardinality of this set is called the population size.

The population must be appropriately initialized, which is usually done in a random manner.

e a recombination mechanism needed to produce new populations of individuals (or genera-

tions). This generally comprises the following steps:

— selection: individuals are chosen from the population as parents, to produce new in-
dividuals (offspring) through the crossover and mutation processes. There are several
generic selection algorithms but the common idea is to choose the parents through a
fitness-based process, where fitter individuals (as measured by the fitness function) are
typically more likely to be selected.

— crossover: parents are combined in some way to produce new individuals seeking that
the offspring inherits good characteristics from its parents, and can become fitter than
them. For example, in the uniform crossover scheme, in each recombination, from each
pair of parents P; and Ps, two children H; and Hj are generated. Then, for each vector

location 4, the following relationship holds:

(Py (@), Py (4)) with probability

(Hy (i), H2 (i) = . N o
(P (2), Py (3)) with probability

= N

— mutation: after the crossover process, the new individuals undergo a mutation process
in order to introduce some variations. Without mutation, the simulated evolution may
converge to a very limited set of genes, which is very undesirable as it leaves the rest of

the solution space unexplored. To improve the efficiency of a GA as a solver, it must

20

explore the solution space as much as possible. On the other hand, a high mutation rate
may lead to the destruction of good genes, and degrades the GA to some sort of random
search. Thus, the mutation rate controls an important trade-off and is an important
parameter of GAs. A common method of implementing the mutation operator involves
generating a random variable for each bit in the vector to determine if that bit will be

flipped or not.

e an elitist strategy that consists in copying the best m individuals (survivors) from the current
population into the next one, without undergoing any modification. It is not required that
m > 0, nevertheless, it is helpful in order to guarantee a strictly increasing fitness of the best
individual of each generation and to avoid the loss of the best individuals.

e a termination criterion that determines when the generational process must be stopped.

Common terminating criteria are:

— a solution that satisfies a minimum criteria of goodness is found

— some fixed number of generations is reached

some allocated budget (e.g., computation time) is reached

— the highest ranking solution’s fitness is reaching or has reached a plateau such that suc-

cessive iterations no longer produce better results or improvement falls below a threshold

A basic generic GA would have the steps described in Algorithm 3.1.

Algorithm 3.1 A basic generic GA.

Choose an initial population of size M

Repeat until the termination criterion is reached:
Recombine individuals from the current population in order to produce M —m
individuals to be included in the next population
Copy the m best individuals from the current population into the next one

Since some steps of GAs are of a random nature, they require random numbers to be generated.
These are normally obtained using pseudo random number generators (PRNGs) which are algo-
rithms for generating sequences of numbers that approximate the properties of random numbers.
These numbers are not truly random since they are completely determined by some initial seed
state or seed, for short, which is an input for the algorithm. For more information on PRNGs, see,
e.g., [Knu69, Lub96].

3.2 A genetic algorithm for the template optimization prob-

lem

We first present an example that illustrates why GAs are suitable for the sparse template opti-
mization problem. Let us suppose that in a given sequence =", we gather the statistics described
in Table 3.1.

If the two relative locations j and k were included in a K-SCM template, the model would

assign a probability 1 to the sequence, which gives a zero code length if we ignore model cost.

21

00 m 0
01 0 m
10 0 m
11 m 0
(a)
S=Ti—j | nan (0]5) [man (1]8) | [s=mick [nan (0] 5) [ngn (1]5) |
m m 0 m m
1 m m 1 m m

Table 3.1: Example statistics of a sequence z" showing how template locations work as “teams”.
n = 4m.

Nevertheless, if a K-SCM template includes only one of the locations individually, the resulting

code length is —4mlog (0.5) = n, i.e., the sequence is not compressed. This example illustrates

how locations work as “teams” and why the template optimization problem is a good candidate to

be solved by GAs, since GAs proceed by considering sets of genes and combining them.

Using the generic framework of GAs, G. Seroussi [Ser04] implemented an heuristic solution

to the sparse template optimization problem for the case of K-SCMs. We call this algorithm

BRGTO (for Basic Randomized Genetic Template Optimization) in opposition to our enhanced
version described in Chapter 7. BRGTO has the structure of Algorithm 3.1 with the following
specific components:

genetic representation: each individual is a binary vector I of K genes whose support repre-
sents a template of context locations. Each gene (bit) corresponds to a context location of
the K-window. The location is included in the template if and only if, the corresponding bit
is set to 1. Since [is often sparse, it is convenient to describe it as the set of vector locations

whose corresponding value is 1, i.e.,
I = {il,ig,...7ik}<:>l(i1) :I(Zg) :...:I(ik) =1.

fitness function: it is the code length for the input sequence given by the K-SCM whose

template is represented by the individual being evaluated.

initial population: for each individual of the population of size M, randomly select with
uniform distribution the weight w of the individual, then randomly select with uniform
distribution w context locations to be included in the template represented by the individual.

elitism: the best m individuals from the current population are copied into the next popula-
tion

recombination:

— selection: M —m pairs of individuals are chosen, with replacement, to play the role of

parents for each recombination with the following method:

* sort the current population according to the fitness of each individual and group
individuals into /B bins of size B. Thus, the best B individuals are grouped into

bin 0, the next B individuals are grouped into the bin 1 and so on.

22

* randomly select a bin using a geometric distribution with a finite support [0...M/B — 1],

the i-th bin having a probability of being selected P(i) = ¢!, v < 1, where c is a

1—y

the normalization constant ¢ = ——i 7.
-

* randomly select with uniform distribution one individual of the selected bin.?

— crossover: two individuals I} = {i(ll),igl), . ,i,(fll)} and I, = {i?),i(;), . ,ig)} pro-
duce one child I3 = {igg),i(zg), ... ,igz)} where k3 = L%J and the locations i§3) are

randomly chosen with uniform distribution from the union of the two sets I; and I
taken with multiplicities (a gene that appears in both parents has a higher chance of
being selected). Thus, I3 will tend to preserve common genes of I; and I. In particular,
if Iy =I5, then I3 = I, = L.

— mutation: two types of mutations are considered, namely, flips (the bit value of a gene
is flipped, which is equivalent to adding or deleting locations from the template) and
swaps (the bit value of a gene is swapped with the value of a gene with different value,
which is equivalent to substituting one template location with another one not already
present in it). Notice that flips modify the weight of the template (and therefore the
resulting model cost) while swaps preserve it. The mutation rate parameter p, controls
the probability of both types of mutations and the mutation miz parameter u,, controls
the specific probability of each type of mutation. The algorithm for the mutation process
is the following one:
for each individual resulting from the crossover process, represented by a vector of bits

I, and for each location j

* with probability i, ti,, where 0 < p, <1 and 0 < p,,, <1, I(j) «— 1 —1I(j).
x independently of the previous event, with probability u, (1 — pm), swap I () and
I (k), where k is selected randomly with uniform distribution within the set of

locations whose value is different from I (j).

e termination criterion: a fixed number of generations G is reached

In order to avoid unnecessary computation, after each new population is produced, the algorithm
identifies which individuals were present in the previous population and uses the already evaluated
fitness value. Additionally some primary tuning of the parameters of the algorithm was done
heuristically in [Ser04]. Nevertheless, the algorithm was still very time consuming. Additionally, a
priori, this algorithm could be used for K-WLSTMs by replacing the fitness function with one that
evaluates code length using K-WLSTMs instead of K-SCMs, but, in practice, the algorithm tends
to evaluate high weight templates that imply building large trees that consume high amounts of
memory and a lot of computation time, as explained in Chapter 5 and Section 6.3.

Therefore, in order to allow a faster experimentation with K-SCMs and to extend the ex-
perimentation to the setting of K-WLSTMs, in this thesis, we aimed at improving or adjusting
Seroussi’s implementation or at proposing some alternative heuristics. One way to improve the
computing performance of BRGTO is to reduce the cost of the evaluation of each individual by

carefully optimizing the software. This can be done as described in Chapter 5 and gives significant

3Therefore, if we consider the full sorted list of individuals, bins make the probability of selecting each individual
have an exponential decay by stages. If B was chosen too small, the set of selected individuals for recombination
would be concentrated on the very first individuals of the ranking and, thus, with high probability, we would exclude
other individuals that are not the best ones but that, potentially, through recombination, could lead to better ones.

23

gains in execution time (a 160x speed-up in some cases) when comparing to the original implemen-
tation. In Chapter 6, we describe a greedy deterministic method for sparse template optimization
which gives some good results with good time performance but that is far from optimal for some
binary images. In Chapter 7, we propose some adjustments of BRGTO in order to emulate some
of the desired characteristics of the greedy algorithm, with the purpose of getting a similar time
performance while keeping the stochastic GAs properties as an aid against getting stuck in local

minima.

24

Chapter 4
Binary images

Several of the experiments reported on in this thesis are performed on certain types of binary
images that seem particularly amenable to modeling with sparse models. In this chapter, we define
the structure of binary images and the context geometry that may be appropriate for modeling
them. We describe some common types of images found in practice, and explain what makes
them appropriate for sparse modeling. We also present some widely used binary image lossless
compression methods with which we will compare our algorithms based on sparse models. We
describe two methods for generating synthetic binary images, based on sparse models, which are
useful for assessing the performance of our algorithms for sparse template approximation. Finally,
we introduce a test set of binary images to be used in later chapters to assess the performance of

our sparse model algorithms.

4.1 The context geometry

MmX" i3 a two-dimensional array of m rows and n columns where each pizel (for

A digital image x
“picture element”) x; ; € A, where A is some alphabet. Pixels are the smallest individual elements
in an image, holding quantized values that represent the brightness of the image at a specific
point. A binary (or bi-level) image is a digital image that has only two possible values for each
pixel (|]A| = 2), usually representing black and white.

As mentioned in Section 2.2, by traversing an image from top to bottom and left to right,

mXxn FMn

raster scan makes the array x appear as a one-dimensional sequence T and, thus, each
x;; is mapped to Z(;_1)n4;- Nevertheless, it is useful to capture two-dimensional (2D) spatial
regularities and this requires 2D templates. In the same way that in the 1D case context locations
are naturally ordered according to their distance to the conditioned sample z;, we will define a total
order for 2D contexts locations, according to their relative positions with respect to a conditioned
sample z; ;. Formally, a 2D relative location is a vector (r,c) that refers to the sample ;_, ;.
when z; ; is the current sample.

Since lossless compression requires the models being causal, templates can include only past

locations according to raster scan order, i.e., relative locations (7, ¢) such that
r<Qor(r=0andc <0).

We assume that some total order on this set of causal relative locations is given. For instance,

25

in this work, we order the elements of this set according to their 2-norm (denoted as ||-||) and an

arbitrary but fixed tie breaking rule as follows:

1,)l < (7, N or
(re) < (', ¢) & (I)l = 11,)l and || < |r]) or
()l = I)l and [r| = [r| and ¢ < ')

The set of the first K = 32 causal relative locations according to this order is shown graphically
in Figure 4.1. Appendix B shows the causal relative locations and their order for K up to 1024.
Here, as in the 1D case, other orders could be considered, but, in this thesis, we do not consider
them for the same reasons explained for the 1D case.

27 24 28
29 21 17 14 18 22 30
31 19 11 9 6 10 12 20 32
25 15 7 3 2 4 8 16 26

23 13 5 1-

Figure 4.1: 2D relative locations with their corresponding order for K = 32. The dark rectangle
represents the current sample.

Then, a 2D template T is a set of 2D relative locations {l1,la,...,l;x} where I} <l < ... <l
(according to the given total order) and I, = (7, cp) belongs to the set of the first K 2D relative

locations. Context models using such templates have

mxXn ;o s\ __
C’]’(Jj azv.]) =Ti—r1,j—c1sLi—rg,j—car- s Li—rg,j—cK

which corresponds to

CT(Z™",1) = Z(imri 1)t (j—c1)s T(imra—1)nt-(—e2)s - - +» T(imrp—1)n+(i—cr)

in the one-dimensional notation.’

It is important to notice that a template that is contiguous in the 2D interpretation, in most
of the cases, is not contiguous in the one-dimensional template mapped according to raster scan
order.

4.2 Common types of binary images

In this section, we describe two important classes of binary images that benefit from sparse mod-
eling: images of text or similar? documents and halftoned pictures.
Binary text images are normally obtained through a scanning device. They are usually the

result of applying a thresholding operation on an image represented by a larger alphabet A’ (e.g.,

'In our implementation, border samples are assigned analogously to the way described in Footnote 5 of Chapter
2: when z; ; gets known, then the relevant border samples are assigned in the following way: z_; ; == v_; _j :=
T_;20—j i=Tj,_j = TaR_;ij ‘= TaR—i,—j ‘= T2R—4,2C—j ‘= Tj2C—; ‘= T;,j where R is the number of rows and C'
is the number of columns.

2For example, music scores.

26

gray scale images with |A’| = 256). The thresholding operation compares each pixel value of the
original image against a fixed threshold, if the value is above the threshold then the output is
1, otherwise it is 0. The example of Figure 4.2 shows that the thresholding technique is quite

appropriate for representing text documents as binary images.

onnés a été estimé a un milliard d
ront concernées par des traitement
rs énumérés plus haut ne permeita
3sive de toutes les applications suppc
‘mations, une véritable 'Banque de
ux et régionaux, et qui devra reste
la base de l'entreprise, c'est-a-d:
s d'abonnement, les services de pe
ts fichiers a constituer a donc pern
u d'ordinateurs nouveaux a mettre
f. L'obligation de faire appel 4 des o
5 de volumineuses mémoires de ma!
'pt centres de calcul interrégiona:
réduire le coit économique de l'er

o e 3 o B o e 3 .-!.__-.4.‘.__.._. [— % . R I]

Figure 4.2: Portion of a text document binary image obtained through the thresholding operation.

For this class of images, there are intrinsic regularities (like repeated symbol shapes, distances
between symbols) that could be efficiently (in terms of model cost) captured by sparse models.

When applied to pictures, the thresholding operation normally results in great loss of detail and
contouring when comparing the resulting image to the original one (see Figure 4.3b). Halftoned
pictures are obtained as the result of a digital halftoning operation on images represented by a
larger alphabet. Digital halftoning is a technique for achieving satisfactory image rendering and
color reduction (i.e., create the illusion of a large palette of colors using a much smaller set of
colors). Initially, it was principally associated with the rendering of continuous-tone (gray-scale)

images on binary video displays, which could only display full black or full white pixels, or on

27

printers, which could produce only full black spots on a printed page. In [Uli87], digital halftoning
is defined as “... any algorithmic process which creates the illusion of continuous-tone images from
the judicious arrangement of binary picture elements.”

Two important types of digital halftoning methods are described below (see Figure 4.3 for

examples).?

e ordered dithering: given a fixed matrix PV*¥ of values in A’ (called pattern), an input image

Im>" the pixels of the binary output image O™*™ are obtained by the following formula:

0, = 17 Zf Ii,j > Pimodv,jmodw
I 0, otherwise

This can be seen as an extension of the thresholding method, where the threshold is allowed
to vary in a periodic way. Different patterns can generate completely different effects and
artifacts. Two examples are the Halftone and Bayer’s patterns (cases 4.3d and 4.3¢ in the

figure).

o error-diffusion dithering: in this method, a single thresholding value is used for each pixel.
The input image is scanned in some order (e.g., raster scan) and the value of each pixel of
the input image is compared against a fixed threshold ¢. The corresponding output pixel is
obtained as in the thresholding method. Then, before processing the next pixel, the difference
between the input value and the threshold (the quantization error) is distributed and added
(“diffused”) to some of the input neighboring pixels not yet processed. For instance, in the
Floyd-Steinberg dithering, the image is traversed in raster scan order and the quantization

error (); ; is distributed in the following way:

Lijjin o= Tijp1 +7/16Qi
Livi o1 o= Lig1,5-1 1 3/16Qs 5
Lij1j o= Tigaj +5/16Qi 5

Liv1 g1 = Liga 541 + Y16Q 5

Error-diffusion dithering displays a very pleasing randomness, without the visual sensation

of rows and columns of dots (see Figures 4.3e and 4.3f).

It is important to notice that these halftoning methods produce periodicities that could also
be efficiently captured by sparse models. For example, in order to capture an horizontal period h
and a vertical period v, the sparse template 7 (i, j) = {z;—, j—1} would be sufficient.

Section 4.5 introduces a set of images chosen to represent the different types of binary images
selected for the experiments presented in the next chapters. In Chapter 8, we present compression

results demonstrating the suitability of sparse models for these types of images.

4.3 Standard compression methods for binary images

In this thesis, we compare the compression rates yielded by our algorithms based on sparse models
against the results given by three widely used lossless compression methods for binary images:
JBIG [Joi93], JBIG2 [Joi01] and DjVu [Liz05].

3Examples taken from http://en.wikipedia.org/wiki/Dither as of April 2009

28

http://en.wikipedia.org/wiki/Dither

(¢) Ordered dithering: Halftone
pattern

G L e R
- LRy -
(d) Ordered dithering: Bayer’s pat- (e) Error-diffusion: Jarvis, Judice & (f) Error-diffusion: Atkinson algo-
tern Ninke algorithm rithm

Figure 4.3: Thresholding and dithering examples.

4.3.1 JBIG

JBIG is a standard that defines a lossless compression system essentially aimed at binary images.
It has a variety of features, some of them being optional or allowed to be implemented with some
freedom. It has two main modes called progressive and sequential. The progressive mode includes,
in the encoded output, several versions of the input image in lower resolutions, in exchange for
some overhead in code length. While this mode can be quite valuable for some applications, it
is not of interest for our comparison purposes. On the other hand, in the sequential mode, the
input image is read in raster scan order and encoded as a single image as we do in our work and,
therefore, we focus on this mode.
JBIG’s sequential mode algorithm has the following steps:

1. Stripes division (optional): the input image can be broken into horizontal stripes that can

be treated as separate images.

2. Typical prediction (optional): for each line of the input image, the algorithm determines if it
is identical to the previous line. One bit in the output indicates the result of this comparison.
If the line is identical to the previous one, it does not need to be encoded, otherwise it is

encoded with steps 3 and 4.

29

3. Adaptive template modeling: each pixel of the lines to be encoded is modeled by conditioning
its value on a template. Two kinds of templates can be used for this purpose (depicted in
Figure 4.4), the three line template being the most used one. Both have nine fixed locations
and an adaptive location whose default place is indicated with an “A” in Figure 4.4. The
horizontal relative range in which adaptive locations can be moved is [—M,, M,] from the
current sample. The vertical relative range is [—M,,0]. M, can be set up to a maximum of
127 and M, up to a maximum of 255. These two parameters limit the range of values that
can be used for a given binary image. The actual location of the adaptive location can be
varied within a stripe of data and up to four moves per stripe are allowed. If M, and M,
are set to zero for a given image, then the default location will be the only possibility for
the adaptive location. The standard does not determine how to decide when to move the

adaptive location.

4. Arithmetic coding: For each encoded pixel, its value and the context in which it occurs are
passed to a binary tailored variant of arithmetic coder named QM-coder, which is a variation
of the Q-coder [PMLJAS8S], patented by IBM. This encoder estimates the probability of
each symbol given its context, based on previously seen symbols, and encodes based on this

probability.

X
X A

X X X X X A X
x X X X IR X

X X X

X
X
(a) Two line template (b) Three line template

Figure 4.4: JBIG templates. The dark square is the current sample and the shaded squares are
the template locations. Adaptive locations are marked with an “A” and fixed ones with an “X”.

JBIG offers between 10% and 50% gains in compression rate over previous fax standards (i.e.,
CCITT Group 3 (Recommendation T.4) [Int96] and Group 4 (Recommendation T.6) [Int88]) for
business-type documents (scanned images of line art and printed text) and, for halftone images, it

offers gains in compression rates from 50% to 80% (see p. 471 of [BGT00] and references therein).

4.3.2 JBIG2

The JBIG2 standard adds a lossy compression mode and aims at improving lossless compression
performance of JBIG. It allows binary images to be divided into three parts: text regions, halftone
regions, and generic regions.

Text regions consist primarily of symbols (letters, numbers, etc.) that are relatively small, such
as the standard font sizes used for document preparation. These symbols are aligned in either a
left-right or top-bottom row format. For compressing text regions, a pattern matching technique
can be used. This technique tries to recognize characters and encodes their shape only once in a
symbol dictionary and then it encodes the coordinates where they appear. For lossy compression
the difference between similar symbols (e.g., slightly different impressions of the same letter) can
be neglected; for lossless compression, this difference is taken into account by compressing each

symbol conditioned on its corresponding similar symbol in the dictionary. Therefore, this technique

30

performs especially well when compressing high resolution text documents since symbols appear
almost identically in each occurrence.

Halftone regions are identified when regularly occurring halftoning patterns are detected. These
regions can also be compressed using a pattern matching technique which in some way creates a
pseudo-grayscale image whose values lie in an alphabet of size 28. These values are indexes to a
pattern dictionary that keeps a record of the different halftone patterns found in the region. Then,
this gray scale image is compressed considering bit-planes, i.e. the eight binary images that result
from considering each bit at a time of each pixel value of the pseudo-grayscale image. Then, these
bit-planes are compressed as generic regions.

Generic regions consist of line drawings, large symbols, or other components that have not
been identified or encoded as halftone or text regions. For instance, when no lossy or progressive
compression is intended, halftone regions are normally not compressed as halftone regions but as
generic ones. Generic region encoding is quite similar to JBIG’s method. Nevertheless, JBIG2
allows larger templates that have up to 6 conditioning locations more, 4 of them being adaptive
and allowed to be located away from the fixed template, in the same window defined in JBIG. It
uses a form of arithmetic coding -another variant of the Q-coder- known as MQ-coder also patented
by IBM.

In addition, the algorithm used for compressing generic regions is the basis of the representations
for the symbol dictionary components, the pattern dictionary components, and the bit-planes of
the pseudo-grayscale images used in the halftone regions. Generic region encoding also allows
refinements to be applied to other regions. This permits quality progressive representations to be
encoded, as in JBIG. JBIG2 is claimed to have lossless compression rates that are 30% better than
JBIG (see, e.g., [STHO1]).

4.3.3 DjVu

DjVu is a system for encoding images (not only binary) with a broader scope than the previous
standards. For compressing binary images, DjVu uses an algorithm named JB2 which is a vari-
ation of AT&T’s original proposal to the JBIG2 standard (see, e.g., [BHH"98|) and has similar

components.

4.3.4 Concluding remarks

We note that, besides the pattern matching technique especially designed for text regions in JBIG2
and DjVu, the three standard systems we described have at their core a sort of restricted K-SCM
that can be slightly adapted thanks to the adaptive locations. In our approach, all the locations
are adaptive and, in the case of the K-WLSTMs, even more adaptiveness is available thanks to
variable length conditioning. In Chapter 8, we show that in many cases the additional flexibility

provided by our approach is advantageous in comparison to the standard methods described.

4.4 Random binary image generation based on sparse models

For the purposes of experimentation and testing, it is sometimes advantageous to use synthetic
images generated by sparse models. These sparse model generated images are used in this thesis
for assessing the performance of our algorithms since, except for some pathological cases, with

very high probability, the input template used in the generator is also the optimal template for

31

the generated sequence. Consistency issues for sparse models and their estimators were studied
in [FSV08, Fra08]. In this section, we describe two methods for generating random binary images
based on sparse models and some input template: one is based on a randomly built K-SCM and

the other is based on a K-WLSTM built by the statistics gathered from some given image.

4.4.1 Generation based on random K- SCMs

The procedure for random binary image generation using K-SCMs is described in Algorithm 4.1.
We start from a given template, and choose the parameters of the model at random. Two random
distributions are used and the corresponding PRNGs are initialized by different seeds. A Beta
distribution is used for drawing the probability Ps of generating a symbol of value 1 for each
occurring state s. The Beta distribution has two free parameters o and § and its probability

function is defined on the domain (0,1) as

where B is the beta function defined as

(a—1)!(b—1)!

Blab) ==y

The parameters of the Beta distribution give us some control on the probabilities in each state
and, thus, on the entropy of the process. For instance, if we set a = 8 = v for some value v, the
higher the value v, the higher is the kurtosis* of the distribution and the higher tends to be the
entropy of the resulting process. A uniform distribution is used for generating the border values
of the image, i.e. the initial condition of the process. The samples of the image itself are drawn

according to the probabilities P.

4.4.2 Generation based on trained K-WLSTMs

Another approach for building the sparse model used to generate the data is to build (or train)
it using the statistics gathered on a given data sequence for a given template. This approach
is not quite amenable for K-SCMs since it is common to find occurring states in the generated
sequence that do not occur in the input sequence and for which statistics must be arbitrarily
chosen. Nevertheless, in the case of a trained K-WLSTM based on a template 7, if a state
Cr(z™,i) = i, ®i—1,_, -..Ti—y, occurs in the generated sequence but, in the original sequence,
it does not occur® or the total number of statistics for this state is below some given threshold 7,
we can use the statistics of the state given by z;_;, ,x;—,_, ... x;—;, (where ¢ is determined by the
state and the shape of the tree), i.e., the parent node in the tree. This climbing can be repeated
until enough statistics are found. For the generated images used in this work, we used 7 = 30.
The procedure for data generation using trained K-WLSTMs is described in Algorithm 4.2.
Figure 4.5 shows two examples of images generated by this algorithm and the corresponding
original images used for the training. The input templates are the ones found by our algorithms

for K-WLSTM approximation (presented in the next chapters) on the original images.

4The kurtosis of the Beta distribution is negative for v < 1 and positive for v > 1.
5This situation can occur because the full tree restriction (see Section 1.2) may force the pruning algorithm to
include non occurring states in order to include other important states (in terms of data fitness).

32

Algorithm 4.1 Random binary image generation using a random K-SCM

Input: a template 7, two random seeds s; and Sy, beta distribution parameters
« and [
output: a random image x
initialize_uniform(s;)
initialize_beta(a, /3, s2)
create an empty hash table T
For each location (i,j) of the border
x;,5:=uniform()
For 7:=1 to m
For j:=1 to n

mxXn

C:=CT(xm><n’ Za])
If T(c) is empty
repeat

T(c) :=Beta()
until 0<T(c)<1
If uniform() <T(c)

xi,j =1
Else
xi,j:=0
End For
End For

Return T1.m,1..n

4.4.3 Entropy estimation of the generating processes

In order to assess our algorithms in different cases of entropy, it is necessary to estimate the entropy
of the generating processes. One way to evaluate the entropy of a process based on a sparse model
requires the stationary distribution of the process to be evaluated, since the entropy of the process
is the sum of the entropy in each state weighted by the stationary distribution (see, e.g., [CTO06,
Theorem 4.2.4]). The simple method for calculating the stationary distribution of a sparse model
by representing it as a fixed-length contiguous context model of memory K has an exponential
complexity in K. It is an open problem to find a more efficient way to calculate the stationary
distribution of a process generated by a sparse model.

As a consequence of the Law of Large Numbers, the asymptotic equipartition property for
a stationary ergodic® process (known as Shannon-McMillan-Breiman theorem [Sha48, McM53,
Bre57]) states that —L log P (X]') — H (X{°) with probability 1. Thus, if the process is stationary
and ergodic, the entropy can be estimated by the normalized ideal code length relative to the
probability assignment given by the generating model.

A random process generated by a K-SCM is equivalent to a Markov chain of order K. A Markov
chain is ergodic if it is possible to go from every state to every state with positive probability (not
necessarily in one transition) (see, e.g., [Doo53]| for precise definitions). In our K-SCM generated
models, we guarantee that all conditioned probabilities are positive. Thus, starting from any state,
any sequence of symbols (and, therefore, any state) can be generated with positive probability.

In order to be stationary, the state that determines the initial condition of the process must be
drawn accordingly to the stationary distribution of the process (which is hard to compute in the

6 A stochastic process is said to be stationary when P(xf) = P(:z:zLI:) Vi, j, k and ergodic when its time averages
equal the ensemble averages; thus, when a random process has both properties, its statistical properties can be

deduced from a single, sufficiently long realization of the process, see, for example, [Doo53| for a precise definition.

33

Algorithm 4.2 Random binary image generation using a trained K-WLSTM. T'(c).s represents
the number of occurrences of the symbol s in the context ¢ of the tree T. The tree pruning is
performed as in the second step of the two-pass algorithm described in Subsection 2.2.2.

Input: a template 7 = {l;ly...l;}, a random seed s;, a threshold T
output: a random image x™*"
initialize_uniform(s;)
gather statistics from z
prune (7))
For each location (i,j) of the border
z; j :=uniform()
For i:=1 to m
For j:=1 to n

mX" ysing £ in a tree T

p:=0

Repeat
C:=i_lt7pi_lt71 Ty
pi=p+1

Until T(c).0 + T(c).1 > T
If uniform()<T'(¢)

xi,j:=1
Else
xm‘:=0
End For
End For

Return x1.m,1.n

case of sparse models with large K, as previously mentioned). Nevertheless, in an ergodic Markov
chain, the probability distribution of states converges rapidly to the stationary distribution (see,
e.g., [Doo53]). Therefore, in order to estimate the entropy using the asymptotic equipartition
property, an initial portion of the generated sequences should be discarded and the sequence must
be large enough so that the Law of Large Numbers applies. For this reason, for the experiments

of this thesis, only large generated images were considered.

4.5 Test image set

Now, we introduce the images that we selected for assessing the performance of our sparse model
algorithms presented in this thesis. The set comprises the following images that are shown in

Appendix A:

e halftoned pictures with ordered dithering:

— “albert2D” (Figure A.5)

— “amb” (Figure A.6)

— “Halftone2” (Figure A.15)

— “Halftone3” (Figure A.16)

— “HALFTONE” (Figure A.14)

e halftoned pictures with error-diffusion:

— “lena_j” (Figure A.21)

34

R

(a) Portion of the original image (b) Generated image
Poge [@](2] (3] 2] B1 (&) (T B] (3]
Amlpis O QOO0 OQO0O00O0 = z 1
oL Thema fugatum
i = —F— o] v
= F T =+ =T p@ rTreT ’
" o))l
{ s ot | 1
Fhch i 7)
g -
=

. 5 i D%ki st
: F - TR
Y s TTTy v [T I M= _ gl TEC IR
!% |l ™= Wﬁ&rg "'-g"é;-l‘“ ! ;‘ ftr-uFlr;_F——'i
e £ e Frrep b — 2 =L I
Bt ‘ e — —r T B |
_— - be o P | h i
. — = = === e ﬁ IP
(c) Original image (d) Generated image

Figure 4.5: Examples of K-WLSTM generated images using a trained model.

— “pep_j” (Figure A.24)
e machine-printed text or similar documents:

— “A-fixedwidth6and8” (Figure A.4): a text document with two perfectly periodic zones

showing one repeated character
— “Bach _CPE-Sonata_flauto_solo_La_min-fi” (Figure A.7): a music score document
— “cmfuguel-0” (Figure A.12): a music score document
— “otoosfont12” (Figure A.22): a highly dense text document
— “otoosfont24” (Figure A.23): a highly dense text document with double the resolution

of “otoosfont12”

— “ccitt4small” (Figure A.9): a lower resolution version of a text document from the refer-

ence set chosen by the International Telegraph and Telephone Consultative Committee

35

(CCITT, from the French name “Comité Consultatif International Téléphonique et Télé-
graphique”) for evaluating proposals for binary image compression standards as JBIG,
JBIG2 and previous fax standards.

— “ccitt7small” (Figure A.10): a lower resolution version of a chinese text document also
from the CCITT reference set.

— “chinese_text” (Figure A.11): a chinese text document
e thresholded versions of texture” images:

— “1.1.01M” (Figure A.1)

— “1.1.13M” (Figure A.2)

— “1.5.02M” (Figure A.3)

— “flakes006-inca-100dpi-00M” (Figure A.13)

— “texmos1.p512M” (Figure A.25)

— “wallpaper003-inca-100dpi-00M” (Figure A.26)
— “wallpaper004-inca-100dpi-00M” (Figure A.27)
— “wallpaper010-inca-100dpi-00M” (Figure A.28)

e other thresholded images:

— “Bobbys_ letter _page 17 (Figure A.8): a hand-written text document
— “leeleter” (Figure A.20): a hand-written text document
— “hamilton_bw” (Figure A.17): a drawing

— “hamilton_ed” (Figure A.18): the same drawing as “hamilton bw” but obtained with
a different threshold

— “hieroglyph” (Figure A.19): a picture of hieroglyphs which has a regular layout of sym-
bols as in text documents

— ‘“writing” (Figure A.29): a drawing

Additionally, some synthetic images based on trained K-WLSTM (whose templates are the best
ones found by our algorithms on the training image) were included in the test set for an empir-
ical consistency check, since they are cases where our K-WLSTM algorithms ought to perform

significantly better than any other method. These images are:

e GEN_ A-fixedwidth6and8 (Figure A.30): based on “A-fixedwidth6and8” (Figure A.4) with
K =128

e GEN _cmfugue (Figure A.31): based on “cmfuguel-0” (Figure A.12) with K = 1024

e GEN_ otoosfont12 (Figure A.32): based on “otoosfont12” (Figure A.22) with K = 512

"Obtained from the Brodatz (http://www.ux.uis.no/~tranden/brodatz.html) and Oulu
(http:/ /www.outex.oulu.fi/index.php?page=image database) texture databases.

36

http://www.ux.uis.no/~tranden/brodatz.html
http://www.outex.oulu.fi/index.php?page=image_database

Chapter 5

Computational issues in sparse

model code length evaluation

The code length evaluation for sparse models is the most expensive step of the algorithms studied
in this thesis. In this chapter, we first describe the computations involved in these evaluations
and analyze their cost for both K-SCMs and K-WLSTMs defined in definitions 2.2 and 2.3. Then
we describe some optimizations that yielded a significant reduction of the computation time for
K-SCMs, and enabled the implementation of K-WLSTMs.

5.1 K-SCM evaluation

Given a template 7 and a sequence x”, the code length given by the K-SCM implied by 7 on z"

is calculated in our implementation by the following steps:

1. Two hash tables Hx (2™) and Hz (™) are defined with the following structure H:

(a) the key is a sequence ¢ € A* representing an occurring context in x"

(b) the value associated to the key ¢, denoted as H [c], is an array of 2 non negative integers

that count the number of times each symbol of the alphabet occurs in the context ¢ in

xn

2. Full context statistics are gathered in Hg (z™) as follows. For each sample z; of the sequence:

(a) extract its full context® of length K, i.e., ¢ := o; g, T g i1,...,Ti1
(b) if the entry Hx (z™) [c] does not exists, then create it and set Hy (z™) [¢] := (0, 0)
(c) increase Hy (") [¢] [z;] by one

3. Sparse context statistics according to 7 are gathered in Hy (z™) as follows. For each key ¢
in Hg (z™):

(a) extract the sparse context ¢y := ¢&7, where & denotes a bit masking operation resulting

from taking the |7| bits from ¢ in the positions selected by the template 7
(b) if the entry Hr (™) [cr] does not exists, then create it and set Hr (z™) [cr] := (0,0)

1The border samples are initialized as described in Footnote 1 of Chapter 4.

37

(c) increase Hr (™) [er] by Hi (™) [d]

4. Code length is calculated as follows. Set L := 0. For each key ¢y in Hy (2™), increase L by
the KT code length contribution of ¢7 using the following formula (see Section 2.1):
() Taea L (Hr (2") [e7] [a] +1/2)
p)
I (YX,eaHr (@) [er][a] +1) T (3)

L7 (2" |er) = —log

Notice that the first two steps are performed only once during the execution of any of the algorithms
discussed in this work.

In order to get an overall evaluation cost, we need to add the cost implied by each step above in
a weighted manner. For this purpose, we first derive an approximated formula for the evaluation

time on any computer architecture:

e the iteration over Hy (z") and the searches and insertions in Hy (z") take a time that is
roughly? proportional to |Hy (#™)|, assuming that searches and insertions in the hash table
are O (1) on average (which is reasonable if the hash table and function are well designed

and load balance is appropriately managed).

e the & operation takes a time proportional to W (K) |Hk (z™)|, where W (K) is the number
of computer words used to represent each context in the given computer architecture.

e the iteration over Hy (™) and the evaluation of the KT code length contribution of each

context take a time roughly® proportional to |Hz (z™)].

Therefore, the total execution time for the evaluation of the code length for ™ given by the K-SCM

implied by 7 is, on average,

tx—scmr) (&) & a1 [Hi (27)] + axW (K) [Hx (2")| + as [HT (27)].-

In order to be able to use the previous formula for comparing the evaluation cost of different
models, we need to obtain values for the coefficients. For estimating these coefficients empirically,
we used a linear regression. On the image “amb” (Figure A.6), for each K in {32,64, 128,256,512,
1024}, and for each weight in {0..18} (since the weight of the best templates found for this image
using K-SCMs is around 18 and for heavier weights the high number of non-occurring states makes
the linear approximation inaccurate, as mentioned before), 20 random templates were generated
and their evaluation time was measured. Notice that this combination of parameters generates
multiple distinct samples values for each variable of the formula and, therefore, the coefficients
resulting from this linear regression apply to other images as well. The estimated coefficients and
the correlation coefficient! are shown in Table 5.1.

Since the linear approximation turned out to be quite accurate, we can use these coefficients for

comparing evaluation costs of experiment runs, independently of the specific computer used. Using

2Tt is an approximation because sometimes insertions are performed and sometimes a counter is increased and,
also, because insertion time in the hash table is just guaranteed to be O (1) in average.

3The approximation is because for templates with many locations there can be several states with non occurring
symbols. For a non-occurring symbol a in a state s, the contribution to the total KT code length (see the formula
in Section 2.1} is —log ' (H7 (z") [e7][a] + 1/2) = logy T' (3). Therefore, the evaluation of the function logy T (-)
can be avoided using a precalculated value of log, T’ (%)

4The correlation coefficient is an indicator of how well the equation resulting from the regression analysis explains
the relationship among the variables. If it is 1, there is a perfect correlation in the sample — there is no difference
between the estimated y-value and the actual y-value. At the other extreme, if the coefficient of determination is 0,

the regression equation is not helpful in estimating a y-value.

38

] al \ as \ as \ error term \ correlation coefficient ‘
[9.73E-5 | 3.99E-7 | 448E-3 [-0.69 | 0.9976 \

Table 5.1: Coefficients for K-SCM evaluation time formula (in milliseconds) on an Intel Centrino
Duo T2300 1,66 GHz processor running Windows XP. Notice that time is measured by quanta of
approximately 15 ms in this kind of system.

the values of [Hy (z™)| and |Hy (2™)| reported by the algorithms, we calculate the evaluation cost
for K-SCMs as

ck-som(T) (2") = a1 [Hg (2")] + axW (K) [Hi (")| + as [H7 (2")].

5.2 K-WLSTM evaluation

Given a template 7 and a sequence z", the code length given by the K-WLSTM implied by 7 on
a™ is calculated in our implementation by the following steps:

1. Same as steps 1 and 2 of the K-SCM evaluation.

2. Although the insertion of the extracted contexts could be done directly into the tree structure,
they are first inserted in a hash table Hz (™) as in step 1 of the K-SCM evaluation. This
is to avoid visiting leaves each time the corresponding context occurs. For each entry of
Hr (z™), insert into a binary tree structure T7 (z™) the corresponding leave, its not yet
inserted parent nodes and the necessary nodes to obey to the full tree structure restriction.
Notice that the holes are not represented in this structure since they are determined by the

template and, thus, the tree is just like one for a plain (contiguous) tree model.

3. Prune T7 (") using the dynamic programming algorithm (see Subsection 2.2.2), obtaining

a tree T’ (z™).

As in the case of K-SCMs, the total cost will be a weighted sum of costs of the steps above, which
we analyze next.

The tree building and pruning steps have a time complexity proportional to |T7 (z™)| where
|T7r (2™)| is the number of nodes in T7 (z™). Therefore, the total execution for the evaluation of
the code length for " using the K-WLSTM implied by 7 (z") is, on average,

te—wrstar) (") = ar [Hi (&) + aaW (K) [Hx (2")] + a3 [Hr (2")] + aq |Tr (2™)].

The first three terms are explained as in the K-SCM evaluation. Nevertheless, a} < a3 since in
the K-WLSTM evaluation case, the KT code length contributions are calculated during the tree
pruning and thus this cost is not included in a4 . Also in this case, the coefficients were estimated
by a linear regression (on the same image but for weights up to 30, since the best templates found
for K-WLSTMs on this image have weights around this value). The estimated coefficients and the
correlation coefficient are shown in Table 5.2.

Therefore, we calculate the evaluation cost for K-WLSTMs as

CK—-WLSTM(T) (") = a1 [Hk (2")| + aaW (K) [Hf (2")| + aq [T (2)] .

39

] ajq \ ao \ ag \ ay \ error term \ correlation coefficient ‘
| 1.9E-4 | 4.37E-7 | forced to 0 | 5.4E-3 [-46.05 | 0.9916 \

Table 5.2: Coefficients for K-WLSTM evaluation time formula (in milliseconds) on an Intel Cen-
trino Duo T2300 1,66 GHz processor running Windows XP. Notice that time is measured by quanta
of approximately 15 ms in this kind of system. aj is negligible since it only accounts for the iteration
over Hr (a™).

Thus, the difference in the evaluation time between K-STMs and K-WLSTMs is given es-
sentially by the cost of building and pruning the corresponding tree, which is proportional to
|T7r (™) > [Hz (2™)|, because of the full tree structure restriction. Additionally, it is important
to notice that for a given sequence z", the K-WLSTMs evaluated by the algorithms studied in
this work tend to have larger |Hz (2™)| than for K-SCMs, since they tend to use templates with

more locations.

5.3 Optimizations

The original framework of [Ser04] used the hash map class of the C++ Standard Template Library
(STL) of Microsoft Visual Studio 7 (2003). The first observation we made was that a substantial
amount of time was involved in allocating and deallocating memory for building each Hy table.
Thus, in our implementation, we have a static closed hash table in order to reuse the same memory
for each H7. For this, a customized hash structure stores pointers to locations of an array in which
counters are stored contiguously in order to speed up iterations over the tables. For the hash
function h (-) (that maps a key to an integer [0, s — 1], where s is the size of the table), we chose P.
Hsieh’s SuperFastHash function [Hsi04] for its time performance and its key distribution equivalent
to a uniform random map which is appropriate to minimize collisions. Collisions are handled by
a quadratic probing method in which the i-th probe position for a key k is given by the function
h(k,i) = (h (k) + c1i + c2i?) (mod s), where ¢y # 0. For a table size that is a power of 2, a good
choice for the constants is ¢; = ca = 1/2, as the values h (k, ¢) for 7 in [0, s—1] are all distinct [Cor01,
Problem 11.3]. This leads to a probe sequence of h (k),h (k) +1,h (k) +3,h (k) +6,... where the
added values increase by 1,2,3,... Quadratic probing avoids better the clustering problem that
can occur with linear probing. In order to guarantee that there is enough space in each table and
the load factor is kept below 0.5, we initially count the number of elements of |H k| before building
the table and then Hp is built of size[log, (2 |Hk|)]. Then, the static structure for Hz is built of
the same size since |H7| < [Hg]|-

Obviously, there is an initial overhead for building these structures but it is quite negligible if
more than a few models are evaluated in the same run. The improvements of running time of the
optimized version are significant (especially for heavier templates) as seen in the example shown
in Table 5.3. The table shows an average speedup ranging from 1.3x in the (unrealistic) case of
a template of weight 0 to 164.2x in the case of templates of weight 18, which are templates with
only 3 locations more than the best found K-SCM template for this image. This improvement is
also quite noticeable when evaluating K-WLSTMs since the first steps of the evaluation are the
same and K-WLSTM algorithms tend to evaluate heavier templates than the ones for K-SCMs.

40

Template weight STL version Optimized Improvement Ratio
average time in version average
ms time in ms
0 128.1 96.4 1.3
1 124.8 63.6 2.0
2 131.1 63.6 2.1
3 135.5 68.3 2.0
4 140.1 63.6 2.2
5 1494 58.8 2.5
6 171.4 68.4 2.5
7 218.3 68.4 3.2
8 215.1 71.6 3.0
9 301.2 74.7 4.0
10 530.8 77.9 6.8
11 954.3 85.6 11.1
12 1184 91.6 12.9
13 2977.8 105.8 28.1
14 5676.1 123.3 46.0
15 3808.9 132.5 28.7
16 9252.7 148 62.5
17 7152.7 163.7 43.7
18 28890.3 175.9 164.2
19 23237.1 196.4 118.3
20 19913.6 205.8 96.8

Table 5.3: Running time comparison between STL and optimized hash versions on the image
“cmfuguel-0” (Figure A.12) with K = 512. The same random templates were evaluated in each
case (10 templates per weight). The initial overhead for building the structures in the optimized
version is approximately of 300 ms, which is less than three average evaluations of templates of

the optimal weight.

41

42

Chapter 6

Greedy algorithms for sparse

template approximation

In order to propose an alternative algorithm for sparse template optimization, we explored the
field of greedy algorithms. A greedy algorithm is any algorithm that follows the problem solving
metaheuristic of making the locally optimum choice at each stage with the goal of finding the
global optimum. It is important to have in mind that, although greedy algorithms find the globally
optimal solution for some optimization problems, they are generally characterized as “short-sighted”
and “non-recoverable” and thus they may find suboptimal solutions for some instances of other
problems. This is because these algorithms, at early stages, can take some decisions that cannot
be modified later and, although locally optimal, can lead to a solution not as good as the global
optimum.

We first present a basic greedy algorithm that we call DITO (for Deterministic Incremental
Template Optimization). This algorithm can be used in the setting of K-SCMs, in which case
it is denoted as DITOX 5™ or in the setting of K-WLSTMs, in which case it is denoted as
DITOX~WISTM = Then we present some variants to the algorithm that aim at providing some

recoverability to it.

6.1 A basic greedy algorithm

When running BRGTO, we noticed that the earliest generations of the algorithm were the most
expensive ones because of the heavy weight of the templates considered there. With that issue in
mind, we designed DITO, a basic greedy algorithm, similar to the one used in [RSP08], for sparse
template approximation. As described in Algorithm 6.1, DITO starts from an empty template
(a memoryless model) and, in each stage, it tries to add every location not already included and
keeps the one that gives the greatest improvement in code length, and repeats the step until no
more improvements are possible. In the case of K-WLSTMs, templates are evaluated using the
two-pass algorithm explained in Subsection 2.2.3. Then it is possible that, after pruning a tree,
some location of the template gets no longer used. In this case, the location is removed from the
template.

Since we have no other algorithm at hand for finding good sparse models against which the

results of this greedy algorithm can be compared, we need alternative methods to assess its per-

43

Algorithm 6.1 DITO: a basic greedy algorithm for sparse template approximation. Templates
are encoded as arrays of bits (the corresponding value is 1 when a location is included). flip(t,i)
is a function that returns a new array that is a copy of t except for the i-th value that is flipped.
codelength(t) evaluates the code length given by the template t for the input data, using K-SCMs
or K-WLSTMs, depending on the case. weight(t) returns the number of locations included in the
template t. When evaluating K-WLSTMs templates, after pruning a tree, some locations can get
no longer used. In these cases, the locations are also removed from the templates for the next steps
of the algorithm.

Input: a sequence 2", a window size K
Output: a template 7

set tempBestTemplate:=0K
set auxBestTemplate:=0K
Repeat

For each i such that tempBestTemplate[i]=0 //additions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)
set auxBestTemplate:=flip(tempBestTemplate,i)

End For

set tempBestTemplate:=auxBestTemplate
While improvements are achieved and weight (tempBestTemplate)<K
Return 7 :=tempBestTemplate

formance. For this purpose, we evaluate it on images for which we have good indications of what
the result should be.

6.1.1 Compression performance on images generated by K-SCMs

As explained in Section 4.4, one way to evaluate the compression performance of this greedy
algorithm is to run it on data generated by sparse models, since we know the templates that are
used for the data generation, which are, reasonably, good candidates to be the optimal ones or close
to. Thus, we compare the code length given by the templates found by DITOX 5™ on K-SCM
generated images against the code length given by the templates of the generating models.

Some images were generated using K-SCMs, with K = 32, by combining the following param-

eter values:

e Templates: 3 random templates of weight 13, 14 and 15, whose binary array representations
are, respectively, 00001111100011110011011000000000, 11110110000001111010101000000100
and 01010010101101001010010100101011 (the rightmost bit represents the first relative loca-
tion and the other bits to the left represent the other relative locations in the order depicted

in Figure 4.1).
o For the Beta distribution: a = 3, a € {0.1,0.2,0.4,0.8, 1.6, 3.2, 6.4, 12.8, 25.6}

The DITOX ~5M algorithm was run on each generated image. We classify the generated images
according to their estimated entropy (see Subsection 4.4.3). Table 6.1 compares the code length

O ~=5M yith the code length given by the generating template

given by the template found by DIT
for each entropy level. Notice that the difference between the estimated entropy and the code
length given by the generating template is due to model cost (i.e., the “learning” cost of the KT

estimator) included in the former but not in the latter. We ignore some combinations of parameters

44

that produce high entropy images that cannot be compressed with the generating template (i.e.,

the compression ratio is greater or equal than 1).

Estimated entropy \ Lt /[n \ Lprro/n \ (Lprro—L7)/Ls ‘

0.1907 0.2686 | 0.2686 0%
0.1959 0.3085 | 0.3085 0%
0.1965 0.2530 | 0.2530 0%
0.3260 0.3747 | 0.3747 0%
0.3300 0.4299 | 0.4299 0%
0.3362 0.4046 | 0.4046 0%
0.4981 0.5847 | 0.5847 0%
0.5006 0.5589 | 0.5589 0%
0.5009 0.5408 | 0.5408 0%
0.6703 0.7040 | 0.7040 0%
0.6713 0.7476 | 0.7476 0%
0.6732 0.7241 | 0.7241 0%
0.8048 0.8345 | 0.8345 0%
0.8058 0.8769 | 0.8769 0%
0.8085 0.8548 | 0.8548 0%
0.8949 0.9222 | 0.9222 0%
0.8964 0.9658 | 1.0000 +3.54%
0.8973 0.9415 | 0.9415 0%
0.9457 0.9719 | 0.9719 0%
0.9467 0.9897 | 1.0000 +1.04%
0.9720 0.9978 | 1.0000 +0.22%

Table 6.1: DITOX 5 results on K-SCM generated images of different, entropy levels. Lz is the
code length given by the generating template 7, Lpiro is the code length given by DITQO® ~5¢M
and n is the number of samples of the image.

We observe that DITOX ~SM generally performs very well on this kind of images for different

entropy levels.

6.1.2 Compression performance on non-synthetic images

Another way to evaluate the compression performance of this algorithm is to run it for many K
values on the same data: if the algorithm is robust, the results should not worsen when the search
space is augmented. On the image “albert2D” (Figure A.5), DITOX —5M gives a solution whose
code length for K = 512 is 9.28% worse than for K = 256, which is quite significant. On the
image “A-fixedwidth6and8” (Figure A.4), DITOX ~WIS™ giveg 3 solution whose code length for
K =512 is 45.62% worse than for K = 128.

It is important to remark that “albert2D” has a highly regular grid layout of halftoning patterns
with a well defined horizontal and vertical period p (in a loose sense). By increasing K, the
algorithm faces new choices of locations that capture greater periods (multiples of p) which can
significantly change the sequence of decisions it takes. In fact, when we observe the template found
for K = 256 (Figure 6.1a), we find that it includes several locations that are within a distance
smaller than p. This can be useful for modeling the halftoning patterns themselves. While, for
K = 512 (Figure 6.1b), most of these locations are not included and the weight of the template
is much lower (12 vs. 19). Therefore, in the second case, the algorithm mostly captures many

periods of the halftoning grid instead of the regularities inside the halftoning patterns themselves

45

and therefore does not capture so well the overall structure of the image.

I::H |
H H || || || ||

BEEg.* 1 SESaEE EEcHiEcEEndd: HEREe

\
\
(a) K = 256 (b) K =512

Figure 6.1: K-SCM templates found by DITOX 5™ on “albert2D”. The darkest square is the
current sample and the thick line shows the window for K = 256.

Something similar seems to happen for “A-fixedwidth6and8” (see templates in Figure 6.2),
where for the biggest value of K, the algorithm mostly captures the distances (and its multiples)
between letters instead of the regularities of the characters themselves.

CEEeEeEE

_— oEEE .
i ‘; & = H‘ a

(a) K =128 (b) K =512

Figure 6.2: K-WLSTM templates found by DITOX ~WESTM () “A_fixedwidth6and8”. The darkest
square is the current sample and the thick line shows the window for K = 128.

6.2 Greedy algorithms with corrections

Although DITOX M geems to perform well for K-SCM generated images with randomly gen-
erated distributions, we found some images that clearly show that both DITOX 5™ and DI-
TOK-WLSTM can get stuck in some really bad local optima. With the goal of improving the

results, we tried some variants that aim at giving some recoverability to the algorithm.

6.2.1 Deletion of template locations

A first extra step is added to DITO: after considering all the template locations to add and
eventually adding one, the algorithm now considers deleting one of the locations already added, as
described in Algorithm 6.2 which we call DITOp.

This extra step has low cost and we observe that, in some cases, it gives important improvements
over the results given by DITO. For example, for K = 256 on “albert2D” DITog*SCM gives gains
in code length of 5.7% over DITOX 5™ Nevertheless, DITO fails considerably on the same
cases where DITO does as shown in Tables 6.2 and 6.3, with losses even bigger. Although deletions

46

Algorithm 6.2 DITOp.

Input: a sequence z", a window size K
Output: a template 7

set tempBestTemplate:=OK
set auXBestTemplate:=0K
Repeat
For each i such that tempBestTemplate[il=1 //deletions
If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)
set auxBestTemplate:=flip(tempBestTemplate,i)
End For

set tempBestTemplate:=auxBestTemplate

For each i such that tempBestTemplate[i]=0 //additions
If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)
set auxBestTemplate:=flip(tempBestTemplate,i)
End For
set tempBestTemplate:=auxBestTemplate
While improvements are achieved and weight(tempBestTemplate)<K
Return 7 :=tempBestTemplate

can provide some correction ability to the algorithm, the algorithm still considers one location at

a time and no real backtracking is allowed.

| greedy algorithm | 512 vs. 256 |

DITOK—5¢M +9.28%
DITOE ¢ +15.91%

Table 6.2: Difference in code length given by DITOX 5™ and DITOIlg_SCM on “albert2D” when
increasing window size. Differences are calculated as (Lbiro”—Lbiro’)/LE525, expressed as a per-
centage. Positive numbers represent losses in compression rate, and larger magnitude numbers

represent larger losses.

| greedy algorithm [256 vs. 128 | 512 vs. 128 |

DITOX "WESTM T+ 19585% | +45.62%
DITON WIS™ | +3839% | +52.85%

Table 6.3: Difference in code length given by DITOX-WESTM 44 DITOg*WLSTM on “A-
fixedwidth6and8” when increasing window size. Differences are calculated as (L%?To*Lngo)/Lngo,
expressed as a percentage. Positive numbers represent losses in compression rate, and larger mag-
nitude numbers represent larger losses.

6.2.2 Substitution of template locations

Another extra step is added to the algorithm: between the additions and deletions steps, the
algorithm consider substituting each of the locations already included in the template with the
ones not already included. This substitution step is repeated until no more improvements can be
achieved with substitutions, as shown in Algorithm 6.3 which we call DITOpg. This step may

provide an additional correction ability, in which locations are considered by pairs in contrast with

47

the additions and deletions steps in which locations are considered individually.

Algorithm 6.3 DITOpg. swap(t,i,j) returns a copy of t with the i-th and j-th values swapped.

Input: a sequence z", a window size K
Output: a template 7

set tempBestTemplate:=OK
set auxBestTemplate:=0K
Repeat

For each i such that tempBestTemplate[il=1 //deletions

If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)
set auxBestTemplate:=flip(tempBestTemplate,i)
End For
set tempBestTemplate:=auxBestTemplate

For each i such that tempBestTemplate[i]=0 //additions
If codelength(flip(tempBestTemplate,i))<codelength(auxBestTemplate)
set auxBestTemplate:=flip(tempBestTemplate,i)
End For
set tempBestTemplate:=auxBestTemplate

Repeat //substitutions
For each i such that tempBestTemplate[i]=1
For each j such that tempBestTemplate[i]=0
If codelength(swap(tempBestTemplate,i,j))<
codelength(auxBestTemplate)
set auxBestTemplate:=swap(tempBestTemplate,i,j)
End For
End For
set tempBestTemplate:=auxBestTemplate
While substitutions keep achieving improvements

While improvements are achieved and weight (tempBestTemplate)<K
Return 7 :=tempBestTemplate

In the simpler case where this step is executed only once between additions and deletions, the
cost that this extra step adds to the algorithm is O (sz), where w is the number of locations in
the template when the algorithm stops. This step is not that practical in the K-WLSTM setting
because of the high cost of evaluating these models (detailed in Chapter 5) and usually a higher w
than for K-SCMs. Thus, we focus on the K-SCM setting. Comparing DITOp and DITOpg on all
the non-synthetic images! of the set described in Appendix A for K in {32, 64, 128, 256,512,1024},
we find that the greatest gain that the substitution step has achieved was only of 1.36% and in
some cases there was a loss, the maximum being of 0.92%. The robustness problems still remain
with DITOggSCM since the loss in code length with K = 512 vs. K = 256 on “albert2D” is of
15.65%. In conclusion, it seems that the substitution step is not really worth its high price.

This shows that both corrections steps (deletions and substitutions) are not enough for avoiding
falling in some bad local minima for some kind of data and suggests that a more robust heuristic
ought to consider less restricted kinds of corrections like, for example, the ones performed by a

genetic algorithm’s crossover and mutation steps.

lExcept “A-fixedwidth6ands”.

48

6.3 Cost of model evaluation: greedy vs. random templates

In this section, we analyze why the DITO algorithms tend to be much faster than BRGTO. This
analysis gave us important ideas about how to improve BRGTO and make it amenable to use in
a K-WLSTM setting. These ideas were used to design the enhanced version of BRGTO presented
in Chapter 7.

In order to analyze how expensive is the evaluation of the models considered by the greedy
algorithm, we need to recall the formula, derived in Chapter 5, that gives the code length evaluation
cost (defined in the same chapter). Given a template 7 and a sequence z", the evaluation cost for
2™ using a K-SCM m based on 7 is:

cx—som(r) (") = a1 [Hi (a)] + a2W (K) [Hx (2")] + a3 [Hz («")]

where |Hy (z™)| is the number of distinct contiguous K-tuples occurring in z”, |Hr (z™)] is
the number of states of m occurring in ™ and W (K) is the number of computer words used to
represent a context of memory K.

Given a template 7 and a sequence =", the evaluation cost for " using the K-WLSTM implied
by 7 is:

CK—-WLSTM(T) (") = a1 [Hp ()] + aaW (K) [Hk (2")| + a4 |T1 (2")]

where |T7 (z™)| is the number of nodes in the tree structure before pruning.
Besides the improvements described in Section 5.3, DITO algorithms have two characteristics

that make it efficient in the use of computational resources:

1. the weight of the evaluated templates starts from 0 and then successively increases. The
evaluation of lighter templates tends to reduce |Hz (2™)| and |T7 (z™)|, although it depends

on the data and the templates considered.?

2. they evaluate templates that are slight variations from the best of each stage, which makes
them likely to be good ones. The relationship here is less direct, but it is explained by the
fact that the KT estimator favors models with less occurring states in the given data unless
the extra states give enough improvement in fitting the data to compensate the extra model
cost. Thus, the evaluation of better models tends to reduce |[Hz (z™)| and |Tr (2™)| as well.

Figures 6.3 and 6.4 illustrate, using an example input image (with K = 128 for K-SCMs and
K = 1024 for K-WLSTMs), these observations by comparing the results found at each stage by
DITO (DITOpg for K-SCMs and DITOp for K-WLSTMs) against random templates. In the
case of random templates, for K-SCMs, we consider templates of weight up to the window size
since, in BRGTO, in the initial population, templates’ weights are uniformly distributed in 1..K
and, thus, templates of any weight can be evaluated. Figures 6.3a and 6.4a show, for K-SCMs
and K-WLSTMs respectively, how evaluation cost increases with weight, as stated in the first
observation. Nevertheless, we observe that in the case of random templates, the cost increases
faster than for the templates found by DITOpg. This explained, by the second observation, which
is illustrated in Figures 6.3b and 6.4b, in which we observe a significant difference in code length

between random templates and those found by DITOpg, especially in the case of higher weights.

2Except when a template 7 represents a subset of the set represented by a template 7”. In this case, it is true
that |Hz (2™)| < |Hz (&™) and [T (2™)| < [T/ (x™)].

49

Another important issue when evaluating K-WLSTMs is the amount of memory necessary to
represent the tree, which is proportional to |T7 (z™)|. Figure 6.5 shows, for the same image as
before, the amount of memory necessary (in our implementation) to represent the trees used by
the K-WLSTMs comparing random models against the ones evaluated by the greedy algorithm.
We observe that the amount of memory could easily reach unpractical values if the templates were

not carefully chosen.

6.4 Conclusions

In this chapter, we empirically demonstrated that the DITO® 5™ performs generally well on
K-SCM generated images. Nevertheless, DITOX ~5M and DITOK ~WEST™ cap considerably fail
for other images. DITOp and DITOpg can give some improvements on some images but still fail
on the same cases as DITO does. Therefore, the greedy algorithms proposed in this chapter can be
simple and fast methods to obtain good solutions for some instances of the template optimization
problem but cannot be considered reliable in every case. The evaluation cost analysis presented
in this chapter suggests that, in order to have a reasonable computing performance, an heuristic
designed for the sparse template problem ought to perform its search, when possible, by evaluating

not too heavy and not too bad (in terms of code length) templates.

50

random K-SCM evaluation cost vs. DITO_DS on otoosfont24 K=128
900
800 - W
700 TRETT
g 600 -
£
@ 500 |
o
c
S 400
©
2
©
2 300 -
200 +
100 -
0 T T T T T T
0 20 40 60 80 100 120 140
template's weight
\ DITO average time — random average time \
(a) Cost vs. weight
random K-SCM code length vs. DITO_DS on otoosfont24 K=128
0.9
0.8
0.7 §
< 061
k)
<
2 05 7 uat T
3 Wm
8 04 1L M Hﬁﬂﬂﬂﬂ%@&pﬂkﬂ# 3
£ i
: iyt
0.3 4
0.2 4
0.1 4
0 T T T T T T
0 20 40 60 80 100 120 140
template's weight
DITO best normalized code length — random average normalized codelength \

(b) Code length vs. weight

Figure 6.3: Relationships between evaluation cost and template weight and between evaluation
cost and code length for K-SCMs using random templates and those found by DITOpg. In the
random case, 20 templates per weight were evaluated.

51

random K-WLSTM evaluation cost vs. DITO_D on otoosfont24
K=1024

80000

70000 -

60000 -
[]
13
£ 50000 f
?
8
< 40000 4
2
g
= 30000 -
>
o

20000

10000 -

0 ————= 7 7 i T T T
0 5 10 15 20 25 30 35 40 45 50
template's weight
\ DITO average time — random average time \

(a) Cost vs. weight

random K-WLSTM code length vs. DITO_D on otoosfont24 K=1024

0.9

0.8

0.7 4§

0.6 T T [
R

0.4

norm. code length

0.3 4§

0.2

0.1

0 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50

template's weight

DITO best normalized code length — random average normalized codelength \

(b) Code length vs. weight

Figure 6.4: Relationships between evaluation cost and template weight and between evaluation
cost and code length for K-WLSTMs using random templates and those found by the DITOp. In
the random case, 20 templates per weight were evaluated.

52

Average memory usage for K-WLSTM evaluation on otoosfont24
K=1024 random vs. DITO_D templates

900

800

|
700 T/Yl
600 f%
500 DITO

400 —random

memory usage in MB

300

200 -

100 -

0 L — e T T
0 10 20 30 40 50
template's weight

Figure 6.5: Relationship between template weight, KT code length and memory usage for K-
WLSTMs. In the random case, 20 templates per weight were evaluated.

53

54

Chapter 7

ERGTO: an improved genetic

algorithm

In this chapter, we study modifications to the genetic algorithm BRGTO described in Section 3.2.
The goal of the modifications is to improve the computational efficiency of the algorithm. Although
more efficient computations are a worthy goal in themselves, one of our main objectives is that the
increased efficiency lead to improvements in compression performance, by enabling the practical
use of larger context templates as well as modeling extensions as K-WLSTMs. We seek to apply
some of the lessons learned from the greedy algorithms DITO described in Chapter 6, so that
the modified genetic algorithm, which we call ERGTO (Enhanced Randomized Genetic Template
Optimization), acquires some of the computational properties of DITO, while maintaining the
randomness properties that help in preventing getting stuck in local minima. The modification
will involve taking guidance from DITO in choosing parameter values for some of the components
of BRGTO, and in some cases, changes in the choice of components themselves. In particular,
we tested additional components from the genetic algorithms toolbox in the literature. In some
cases, these additional components provided some advantages, while in others they did not, as will
be detailed in the sequel. Overall, significant computational improvements were achieved, and,

consequently, the desired improvements in compression performance were also obtained.

7.1 Optimization criteria and procedure

Some generic procedures for tuning the parameters of evolutionary algorithms have been proposed
in the literature. These include Racing [BSPV02], Meta Evolutionary-Algorithms [Bic96, Gre86]
or a combination of the previous two [YGOT7]. These procedures would generally be expensive in
the case of sparse template optimization because of the high cost of model evaluation analyzed in
Chapter 5. Therefore, instead, we use a simpler method, somewhat inspired on Racing and based
on the idea of emulating the DITO algorithms.

We aimed at optimizing the total evaluation cost (time) T required by the genetic algorithm
to reach some appropriate code length value L* (™). The solution domain is defined by a set P
of parameters and a set of possible values V), for each parameter p € P. For the optimization

experiments, we used a synthetic image generated by a K-WSLTM M, since it gives us a known

55

reference code length L) (z™) to measure the genetic algorithm against.! The image, shown in
Figure 7.1, was generated by a K-WLSTM with K = 128 optimized for the image “cmfuguel-0”
(Figure A.12). The synthetic image was generated using the procedure described in Subsection
4.4.2. The image and the window size were chosen as a representative case for which K-WLSTMs
perform well. For the target code length, we used L* (z™) = 1.01Lj; (2™) since we aim at optimizing
computational complexity which is strongly determined by the weight and goodness of the evaluated
templates (see Chapter 5) and we empirically observed that, at this code length level, the algorithm

spends most of its time in evaluating templates whose weight is close to optimal.

g —

=

=T
7L
.
L
|

- [L g I

Figure 7.1: Generated image based on the best K-WLSTM found by DITOp for K = 128 on the
image “cmfuguel-0” (Figure A.12).

Additionally, since genetic algorithms are of a random nature, we need to take into account the
variance of the results and give an advantage to parameter values that yield a smaller variance in
the results when different runs initialized by different PRNG seeds (see Section 3.1) are considered.
For this reason, when evaluating T for each combination i of parameter values (v{', Vi ,vlip‘),
we performed 10 runs of the algorithm with different seeds and we measured the evaluation cost

T for each seed s. Therefore, we used the following cost function:
T (vi,vé, . ,vfpl) =T, (Uim;, e ’vliPO +or, (vi,vé, e ,Ulip‘) , (7.1)

where T and &7, are, respectively, the empirical average and the empirical standard deviation of
T over the 10 runs. We set a maximum running time of the algorithm of approximately 1 hour in
order to avoid wasted computing time, since we observed that this amount of time was sufficient in
most cases to reach the objective value L* (2™) with appropriate parameter values. In cases where
the algorithm failed to reach L* (z™) before the maximum running time, the truncation time,?
which is in this case a lower bound for the required running time, was still used, in lieu of T}, in
the cost computation (7.1) (these cases are indicated in Figure 7.2 with parentheses).

The general idea in the optimization was to modify the genetic algorithm so that it starts

L Although, due to the complexity of the procedure, only one image was used in the optimization, the resulting
optimized parameters and algorithm worked well for the variety of image types used in the test set of the results
presented in Section 8.5.

2The truncation condition is evaluated after each generation is completely evaluated and, therefore, the truncation
time can be greater than the maximum running time.

56

from a population of weight 1 and performs only slight mutations on combinations of the very best
individuals, similarly to what the greedy algorithm does. When the weight of the optimal template
is high, of course, the genetic algorithm must perform parts of its search in heavy populations,
but our intuitive idea is to make it find most of the good combinations of template locations
while searching in lighter populations instead of performing most of its search in populations
whose weight is close to the optimal one (as observed in the implementation of [Ser04]). The

optimization procedure is summarized in Algorithm 7.1.

Algorithm 7.1 Procedure for selecting the parameter values of ERGTO

Input: a set of parameters P to be optimized,
a set of values V, and an initial value vl(,o) €V, for each pc P
Output: a preferred value v; for each pe P
for each parameter pe€ P

set v, 1= v(o)

p = Up

end for
repeat as necessary

for each parameter p € P

. . o *
find v, € V), that minimizes T(vl,vg,...,vp,...,v|p|)
o —nyk
set Vp 1=V,
end for

end repeat

Next, we enumerate (in the order in which the for loop of Algorithm 7.1 was executed) each
parameter p € P and the corresponding values for V, UI(JO) and v;. The discussion refers to the

tables in Figure 7.2, which summarizes parameter values and timing results.

1. Selection strategy: when choosing parents for recombination, a probability of being selected
is assigned to each individual. Two schemes were considered:
- Windowing: the probability of selecting an individual ¢ is proportional to

wepgﬁﬁtionﬁtness (w) — fitness (i)

(as in BRGTO, the fitness of an individual is the code length given by the template repre-
sented by it)

- Ranking: the probability of selecting an individual ¢ depends only on its position r (7) in
the population sorted by fitness. The following commonly used alternatives were evaluated
as probability assignments: proportional to 1/(1+r(:), 1/(1+r(i))? and 1/\/1+r(). These alter-
natives allow different levels of probability concentration on the best individuals. We also
evaluated the same piecewise uniform geometric distribution described in Section 3.2 using
v = 0.8 and bins of size 10.

An initial value is not needed in this case, since this is the first parameter optimized. The
preferred value selected after the optimization was the ranking strategy with probability

assignment proportional to see Figure 7.2a).

1
(i+1)* (
2. Crossover type: In addition to the averaging crossover used in BRGTO and described in

Section 3.2, we evaluated a uniform crossover (defined in Section 3.1). The uniform crossover

was the initial value and also the preferred value selected after the optimization (see Figure
7.2b).

57

3. Expected number of flips per mutation: instead of specifying a mutation probability of each
gene, we specify the expected number of mutations for the whole chromosome in order to
keep this value fixed when varying K. As previously mentioned, the intention is to skew
the genetic algorithm so that it spends more of its time searching in light populations. A
mutation rate too high makes the algorithm rapidly reach a population of weight close to
the optimal one and this slows down the search and eventually might make it impractical
to reach a satisfactory solution. Therefore, we tested the values 0.5, 2 and 3. Since DITOp
adds or deletes one location per evaluated template, here we chose 1 as the initial value,

which turned out to be the preferred value selected after the optimization (see Figure 7.2c).

4. Expected number of swaps per mutation: for the same reasons as for the previous parameter,
we specify the expected number of swaps for the whole chromosome. We tested the values 0
(i.e., no swaps),0.5, 2 and 3. The initial value used was 0 but, in this case, the selected value

after the optimization was 0.5 (see Figure 7.2d).

5. Recombination type: two schemes were evaluated:

- not conservative: this is the scheme used in the original genetic algorithm, in which the
children undergo the mutation process after the crossover. A design decision we took was
that, in the case that a uniform crossover is used, one child is mutated by flips and the other
by swaps. When an averaging crossover is used, each child is mutated by flips first and then
by swaps.

- conservative: this type of reproduction keeps a copy of the result of each crossover in the
new generation without undergoing any mutation process. Another copy of each child is
mutated as in the previous scheme.

The conservative type was the initial value and also the preferred value selected after the

optimization (see Figure 7.2e).

6. Number of survivors: we evaluated how many distinct individuals should directly pass into
the next generation. In order to guarantee a strictly decreasing evolution of fitness during
the algorithm evolution, it is necessary to let survive at least the best individual of each
generation. We tested the values 1, 2, 4, 8 and 16. Higher values for this parameter tend to
concentrate the search on a fixed set of individuals, which can be bad for escaping from local
minima. In the case of the DITO algorithms, the evaluated templates are slightly modified
versions of the best of the previous stage. Therefore, we chose 1 as the initial value, which
turned out to be the selected value after the optimization (see Figure 7.2f).

7. Hill Climbing strategy: Hill climbing consists of taking the best of each generation and trying
to improve it by generating N new individuals by performing, in each case, one flip on the
best individual at a time. We tested the values 0 (i.e., no hill climbing), 5, 10 and 20 for N.
The results shown in Figure 7.2g suggest that no higher values are worth a try. The initial
value used was 0, which turned out to be the preferred value selected after the optimization

(see Figure 7.2g).

8. Population size: It is a known rule of thumb?® in GAs that population size should be propor-
tional to chromosome size. The tested values were %, %, 2K, 4K and 8K. Since DITOp
evaluates K templates in each stage, we chose K as the initial value for population size which

turned out to be the preferred value selected after the optimization (see Figure 7.2h).

3See, for example, http://eislab.gatech.edu/people/scholand/gapara.htm (as April 2009)

58

http://eislab.gatech.edu/people/scholand/gapara.htm

Figure 7.2 shows the value of the cost function T' evaluated for each combination of parameter

values resulting from the optimization procedure summarized in Algorithm 7.1.

Selection | Ranking: | Ranking: | Ranking: Ranking: Windowing
1 1 1 .
== 7 — Geometric
i+1 i+1 2 B
(i+1) V(+1) Y =08,
binsize = 10
T 58.4 49.7 (75.5) (63.0) (74.1)

(a)

Crossover type | Uniform© | Averaging

T 49.7 52.3
(b)
Expected flips | 0.5 | 10 2 3
T 51.2 | 49.7 | (68.5) | (76.2)
(c)
Expected swaps | 00 [0.5 1 2 3
T 49.7 | 34.8 | 39.5 | 60.1 | 43.1

(d)

Recombination | Conservative(® | Non conservative

T 34.8 39.5

Survivors | 1@ [2 4 8 16
T 34.8 | 43.2 | 42.2 | 46.7 | 39.1
®
N (hill climbing) | 0@ | 5 10 20
T 34.8 | 76.0 | (87.8) | (87.8)
(8)
Population size | £ E1KOJ2K | 4K | 8K
T (50.5) | 40.1 | 34.8 | 46.4 | (63.0) | (83.3)

Figure 7.2: Cost function value, according to (7.1), for each parameter value combination resulting
from the optimization procedure. The cost function value of the cases where for some run the
maximum allowed time was reached is enclosed in parentheses. The parameters are shown in
the same order that were considered in the for loop of Algorithm 7.1. The initial values v,(,O) are
indicated with a superscript (©) and the preferred values v, are displayed in boldface. Although
it would be natural to perform another iteration of the algorithm since the preferred value for
swaps differed from its initial value, it was not performed because of the high computing cost of

the iterations.

In general, we observe in Figure 7.2 that there is a high sensitivity of the evaluation cost T' to
the different parameter values, which helps explain the ultimate usefulness of the optimization.

In addition to the strategies and parameter values previously discussed, a particularity in the
design of ERGTO for K-WLSTMs (which we denote as ERGTOX ~WESTM) ig that, after the
pruning step of the evaluation algorithm, if some locations of the template get no longer used (i.e.,

they become holes), then the corresponding genes are removed from the chromosome. This helps

59

in reducing the weight of the evaluated individuals.

Finally, we tested the idea of including the result of DITOp in the initial population of the
genetic algorithm for K-WLSTMs. It was observed that in some cases where DITOp gets stuck
in a local minimum, including this “bad” solution in the initial population can make the genetic
algorithm get stuck (or spend a lot of time) in the same local minimum, so the idea was not

adopted.

7.2 Comparison with BRGTO

In this section, we compare, in the setting of K-SCMs, ERGTO (which we denote as ERGTOX-5¢M
in this case) and BRGTO in terms of overall computing performance in order to assess the opti-
mizations detailed in Sections 5.3 and 7.1. We ran both algorithms for K = 128, on the image
“albert2D” (Figure A.5). In the case of BRGTO, we used the best set of parameter values reported
in [Ser04] for that specific image and K, which are presented in Table 7.1.

(M [m] pr [pm] v [B]
300 [3 0.002]05][0.75] 7 |

Table 7.1: Parameters values used for BRGTO in the comparison experiment.

The algorithm ERGTO ~SCM \as run with the parameter values resulting from our optimiza-

tion. Table 7.2 summarizes the results.

We observe that ERGTO® ~5M Jargely outperforms BRGTO with gains in running time larger
than 32.2x. In addition, it takes less than 60% of the number of generations to reach better code

length values with less than half the number of individuals per generation of BRGTO.

This example, which is quite typical of the overall comparison on binary images, demonstrates
that our improvements were highly effective in reducing computing time by improving the con-
vergence rate of the algorithm, by reducing the computing time for each individual (as shown in
Chapter 5) and by generally selecting individuals that were faster to evaluate. These improvements

in computing efficiency enabled the study of K-WLSTMs and of larger window sizes.

Algorithm | Code length value | Number of generations | Time in s | Time ratio
reached vs. best
known K-SCM
BRGTO +1.98% 29 4669
ERGTO +1.78% 17 106 44.0 \
BRGTO +1.07% 51 5151
ERGTO +0.81% 29 160 32.2 \

Table 7.2: Performance comparison between ERGTO and BRGTO. We measured the time and
the number of generations taken by both algorithms to reach a code length close to +1% and +2%
the code length given by the best known K-SCM for the input image with K = 128. The best
result found by BRGTO in 2000 generations was within +1.06% of the best known result and was
found in 115 generations. Differences with the code length given by the best known template 7°
are calculated as (L{BIE}RGTO—LT)/LT, expressed as a percentage.

60

7.3 Stopping criterion

The last criterion to be determined was the one that tells the algorithm when to stop. The
criteria of setting a time limit or a maximum number of generations is very dependent of the input
data and, therefore, difficult to adjust. A more flexible alternative is to set a maximum number
mazstall of consecutive generations without improvements in the objective function, called stalling
generations. In other words, if the evolution gets stuck over a number of generations we assume

that there is little chance of further improvements.

Varying the number of stalling generations offers a trade-off between evaluation cost and quality
of the solutions. As an example, we evaluated this trade-off over the same generated image that
we used for the other parameters and we ran the algorithm with 20 different seeds. Four values
of mazstall were evaluated, namely 1,2,3 and 4. The results are shown in Figure 7.3. One curve
shows the average evaluation cost + 1 estimated standard deviation versus average fitness of the
best individual (normalized by the generator’s fitness) + 1 estimated standard deviation. The

other curve shows the worst case over the 20 runs for both dimensions.

maxstall variation in {1,2,3,4}
on a cmfugue1-0 based generated image
K-WLSTM K=128

120 ~ 4

1004\:)
3
80 - \:
2

60 1

40 -

Evaluation cost in min

20 -

0 T 1
0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50%

Code length difference with generator

\ average + 1 std deviation - worst case\

Figure 7.3: Trade-off between evaluation cost and quality of the solution when varying the max-
imum number of stalling generations allowed. The curve points represent the results for values
1,2,3 and 4 from right to left in each curve.

We observe that 3 stalling generations may be a good choice for this trade-off since the slope
of the curves considerably increases in the last segment and the corresponding difference with the
fitness given by the generating template for this value in both curves falls below +0.25% which
is quite small. Nevertheless, in cases where we are willing to spend more computation time in

exchange for an even better solution, the value of mazxstall can be increased.

61

7.4 Conclusions

We described ERGTO, an improved version of the genetic algorithm BRGTO of [Ser04], described
in Section 3.2. ERGTOX 5™ ghows very significant computational gains over BRGTO, en-
abling the study of K-WLSTMs and of much larger window sizes. ERGTO was optimized for
K-WLSTMs, since these models offer the best promise of compression performance, and at the

same time have the heaviest computational requirements.

62

Chapter 8

Compression performance of sparse

models and their algorithms

In this chapter, we further explore compression-complexity trade-offs quantitatively addressing the

following questions:

e How significant are the compression performance benefits of K-WLSTMs over K-SCMs

(which are cheaper to evaluate)?

e How significant are the compression performance benefits of augmenting the window size of

sparse models (which increases optimization difficulty)?

e How significant are the compression performance benefits of sparse models over the best

contiguous model within the same window size?

Additionally, in order to illustrate how our sparse modeling algorithms “learn” the structure of
binary images, we show some templates, found by the algorithms, that strongly track the patterns
of the input images.

Finally, in Section 8.5, we present the main practical results of this work: a comparison of

the compression performance of ERGTQX ~WLSTM

against that of standard compression methods
on binary images. The comparison, which was run over the test set described in Section 4.5,
shows that ERGTOX ~WLST™ (for K = 1024) outperforms, in most general cases, the standard

compression methods, and, in some cases, by significant margins.

8.1 Variable vs. fixed length conditioning (K-WLSTMs vs.
K-SCMs)

In this section, we compare the performance of K-WLSTMs against that of K-SCMs. Because of
the tree pruning step and the usually higher weight of the optimum templates (see Appendix A),
K-WLSTMs are usually significantly more expensive to be evaluated (see Chapter 5). Nevertheless,
the differences in compression rate as shown in Table 8.1 for K in {32,64,128,256,512} for the
test set, demonstrate that K-WLSTMs have a greater compression potential in comparison to
K-SCMs.

63

Tmage [K=32 [K=64 [K=128 | K =256 | K =512 |

1.1.01M -0.1% | -0.1% | -0.1% -0.1% -0.1%

1.1.13M -0.4% -0.4% -0.4% -0.4% -0.4%

1.5.02M -4.3% | -5.3% | -4.5% -4.1% -0.5%
A-fixedwidth6and8 -2.4% | -25.3% | -44.4% -44.4% -44.4%
albert2D -4.0% -3.0% -5.0% -6.0% -7.2%

amb -3.0% -3.3% -4.1% -4.1% -4.1%

Bach CPE-Sonata_flauto ... | -6.2% | -7.5% | -8.0% -8.0% -8.0%
Bobbys letter page 1 -25% | -2.7"% -2.8% -3.0% -3.2%
ccitt4small -2.6% -3.0% -4.5% -5.4% -5.4%
ccitt7small -1.9% | -2.6% -2.8% -2.6% -2.4%

chinese _text -0.7% | -1.0% | -1.4% -1.4% -1.4%
cmfuguel-0 -6.3% | -8.6% -9.1% -9.1% -9.1%
flakes006-inca-100dpi... -0.3% | -0.4% -0.4% -0.4% -0.4%
HALFTONE -1.7% | -1.7% | -2.5% -1.2% -1.9%
Halftone2 -1.1% | -2.1% -2.2% -2.5% -2.2%
Halftone3 -0.4% -2.0% -2.9% -3.2% -3.2%
hamilton bw -1.4% | -2.5% -2.5% -2.5% -2.5%
hamilton _ed -0.7% | -1.0% | -1.2% -1.2% -1.2%
hieroglyph -1.6% | -1.7% -2.6% -2.6% -3.0%

leeleter -2.0% | -2.6% -3.0% -3.1% -3.1%

lena_j +0.5% | +0.4% +0.4% +0.4% +0.4%
otoosfont12 -10.0% | -14.8% | -16.1% | -16.2% | -16.5%
otoosfont24 -13.2% | -21.1% | -23.5% | -23.5% | -23.8%

pep_j +0.3% | +0.3% +0.3% +0.3% +0.3%
texmos1.p512M -0.2% | -0.2% -0.2% -0.2% -0.2%
wallpaper003-inca-100dpi... -0.7% | -0.8% -0.8% -0.8% -0.8%
wallpaper004-inca-100dpi... -0.1% | -0.3% -0.5% -0.1% -0.1%
wallpaper010-inca-100dpi... -1.8% | -1.9% -2.0% -1.6% -1.4%
writing -2.9% -3.2% -3.2% -3.2% -3.2%

Table 8.1: Difference in compression rate of K-WLSTMs vs. K-SCMs. Differences are calculated
as (Ix-wistm—Lr-som)/Lx_som, expressed as a percentage. Negative numbers represent gains in
compression rate, and larger magnitude numbers represent larger gains.

In general, we observe that K-WLSTMs give better results, as expected, since they are a
superset of K-SCMs. In exchange for this class generalization, the tree description cost (described
in Subsection 2.2.2) has to be paid. Therefore, it is possible to have a worse compression rate with
a K-WLSTM if it actually represents a tree that is close to a K-SCM (i.e., when the tree is close to
balanced), since we would be paying the extra cost of describing the tree with little or no benefit in
code length in exchange. However, even in this case, the tree does not need to be complete, since
not all the states necessarily appear. This is the case of the halftoned images “lena_j” (Figure
A.21) and “pep_j” (Figure A.24), where the compression rates given by K-WLSTMs are slightly
worse than those given by K-SCMs, for every K in {32,64,128,256,512}. Figure 8.1 shows the
tree description cost for both images and K = 512 and confirms that the tree description overhead

is the cause of K-WLSTMs being worse in these cases.

The results for the image “1.5.02M” (Figure A.3) are particularly interesting. The circles in the
image are evenly distributed and there are only slight irregularities in each circle. In Figure 8.2, we
show the templates of the best K-WLSTM and K-SCM found for K in {256, 512}. For K = 512,

both types of sparse models are able to fully capture the distance between the centers of the circles

64

| Lk—scum (2") | Lr—wrstm (") [[T'] | [7/Lk—scm™) |
[168941 | 169612 | 2761 | 1.6% |
(a) Case of the image “lena_j” K = 512.

| Lk—scum (@) | Lk—wistm (") [[T'] | [7/Lk—scm™) |
161939 | 162346 [2611 | 1.6%
(b) Case of the image “pep j” K = 512.

Figure 8.1: Tree description cost |T”| in cases where K-WLSTMs perform worse that K-SCMs.

(horizontally and vertically). For smaller windows, the models can only “see” an alternation of
situations and cannot capture the full structure. It is reasonable to think that, in these cases,
K-WLSTMs should be beneficial thanks to the flexibility given by variable length conditioning.
This is what happens for K < 512 since there is a benefit in using a K-WLSTM while for K = 512,

there is almost no difference.

I &
899
A AN
a0 %

Figure 8.2: Best sparse templates found for “1.5.02M” (Figure A.3) displayed on a portion of the
image. On top: K = 256, on bottom: K = 512, on left: K-SCM, on right: K-WLSTM. The
current sample is marked with a cross. Shaded pixels represent template locations.

Another example of such a situation is the case of the image “A-fixedwidth6and8” (Figure A.4)
where there are two perfectly periodic zones each one with a different period and with repeated
symbols also different. Again, K-WLSTMs take advantage of this situation and give gains in
compression rate up to 44.4%.

Other cases where K-WLSTMs take a significant advantage over K-SCMs are, for example:

e text images like “otoosfont24” (Figure A.23) which have different regular structures like char-

acter shapes and distances between characters

e score images like “cmfuguel-0” (Figure A.12) which have different regular structures like lines,

notes, distance between lines, etc.

e the halftoned image “albert2D” (Figure A.5) which has a large white contiguous zone in the

hair part and a very periodic zone in the sweater part.

65

On the other hand, there are images like, for example, the texture image “1.1.01M” (Figure A.1)
which lack those kinds of regularities and make both types of models capture only the close con-

tiguous dependencies.

8.1.1 K-WLSTMs based on K-SCM optimized templates

A simple idea that can be used to improve, at a reduced computational cost, the results found by
any K-SCM optimization algorithm is to optimize a context tree based on the template 75 _scm
obtained by that algorithm, resulting in a K-WLSTM that is used for coding. Since variable length
conditioning should allow K-WLSTMs to use more locations in the templates, this simple method
would not let us use the full potential of K-WLSTMs. We tested this idea on some of the images
of the test set for which K-WLSTMs give significant improvements over K-SCMs. The results are
given in Table 8.2.

Image Weight of Weight of the K-WLSTM Best
Tk _scMm best K-WLSTM based on K-WLSTM vs.
template TK_scM VS. K-WLSTM

best K-SCM based on

Tk —scum
albert2D 17 31 -2.9% -2.1%
1.5.02M 16 27 -1.7% -2.9%
cmfuguel-0 16 31 -3.6% -5.7%
otoosfont12 21 47 -4.2% -12.4%

Table 8.2: Comparison of code length given by K-WLSTMs based on 7x_scwm
with the best found K-SCMs and K-WLSTMs. Differences in the fourth and
fifth columns are calculated as, respectively, (LK—WLSTM(TK_SCM)_LK*SCM)/LK_SCM and

(LK—WLSTM—LK7WLSTM(TK,SCM))/LK7WLSTM(TK780M), expressed as a percentage. Negative numbers
represent gains in compression rate, and larger magnitude numbers represent larger gains.

Although some improvement over K-SCMs is achieved by this method, in the last two images
we see a significant difference in advantage of the best K-WLSTM, which confirms our intuition.
Also, we observe that, in every case, the best K-WLSTM templates include much more locations
than the best K-SCM template, as expected.

8.2 Sparse models vs. contiguous models

By using sparse models, which are a superset of contiguous models, we expect to improve compres-
sion performance in cases better suited for them but at the same time to obtain a good performance
in cases better suited for contiguous models. Table 8.3 shows the difference in compression rate of
sparse models vs. contiguous models optimized for the same window sizes (K € {32,64}) on the
test set.

We see that in every case sparse models are better than contiguous models as expected. Some-
times the gains are small as in the case of the order dithered image “Halftone2” (Figure A.15) where
halftone patterns are 2 pixels away and, therefore, this distance can be captured by a contiguous
model without incurring in a great model cost. However, the order dithered image “HALFTONE”
presents a different situation in which halftone patterns are 5 pixels away. In this case, although
the distance between patterns can be fully captured within a window size K = 64 (the best con-

tiguous tree model is found at K = 43 as shown in Figure 8.3), the contiguous model gives a

66

K-SCM vs. fixed K-WLSTM vs. tree
length contiguous model
model
Image K=32] K=64 |K=32] K=64
1.1.01M -0.2% -0.2% -0.1% -0.1%
1.1.13M -0.3% -0.3% -0.1% -0.1%
1.5.02M -12.2% -25.7% -2.1% -9.9%
A-fixedwidth6and8 -2.8% -33.8% -1.1% -17.3%
albert2D -4.7% -20.7% -0.2% -4.5%
amb -4.9% -10.6% -1.2% -4.9%
Bach CPE-Sonata flauto_solo La_min-fl | -1.3% -3.6% -0.7% -3.0%
Bobbys_letter page 1 -1.3% -1.3% -0.6% -0.8%
ccitt4small -3.6% -6.1% -1.8% *
ccitt7small -1.9% -2.7% -0.8% *
chinese _text -1.2% -1.2% -0.7% -0.9%
cmfuguel-0 -4.3% -5.4% -1.9% -4.9%
flakes006-inca-100dpi-00M -0.3% -0.3% -0.3% *
HALFTONE -21.8% -37.5% -9.9% -26.7%
Halftone2 -2.6% -3.1% -1.3% -2.5%
Halftone3 -10.5% -10.4% -4.3% -5.7%
hamilton_bw -4.5% -6.5% -1.9% -4.0%
hamilton ed -0.4% -0.9% -0.3% *
hieroglyph 15% | -1.5% | -0.8% | -0.9%
leeleter -1.7% -1.8% -0.4% *
lena_j 9.4% | -9.4% | -10.0% ¥
otoosfont12 -5.2% -6.0% -0.5% -1.9%
otoosfont24 -2.0% -2.6% -0.8% -3.7%
pep_j -9.7% -9.7% -11.3% *
texmos1.p512M -0.2% -0.2% -0.1% *
wallpaper003-inca-100dpi-00M -1.2% -1.2% -0.8% *
wallpaper004-inca-100dpi-00M -0.9% -1.4% -0.7% *
wallpaper010-inca-100dpi-00M -0.7% -1.0% -0.2% *
writing -0.8% -0.7% -0.6% -0.9%

Table 8.3: Difference in compression rate of sparse models vs. contiguous models for K in
{32,64}, in both fixed and variable length conditioning cases. Differences are calculated as
(Lsparse=Leontiguous)/Leontiguous, €Xpressed as a percentage. *For some images, contiguous tree mod-
els with K = 64 could not be evaluated (because of the computer memory requirements which are
O (25)) and therefore these results are not shown (see Appendix D). Negative numbers represent
gains in compression rate, and larger magnitude numbers represent larger gains.

poor compression rate in comparison to the sparse model result, since it is forced to include many
context locations that increase model cost without having enough improvement in fitting the data
to compensate.

In the case of images like “1.1.01M” (Figure A.1) in which dependencies are taken among
contiguous pixels, we observe similar results between sparse and contiguous models. The only
overhead that sparse models have is the template description that is compressed using an adaptive
memoryless model as explained in Appendix C. Since these templates are usually sparse, they can
be greatly compressed and their description length (which is independent of n) turns out to be
negligible in most cases. For instance, Figure 8.4 shows the template description cost for the best
K-WLSTM found for K in {64,1024} for “1.1.01M” (which is a small image in relation to the set’s

size average), in relation to the code length given by the best tree model for K = 64.

67

Figure 8.3: Best contiguous tree model for the image “HALFTONE” for K = 64, found at K = 43.

‘ LTreeK64 (mn) ‘ LK—WLST]W (xn) ‘ Lmemoryless (T) ‘ Lm””"”fle“(T)/LTreeKGzL(ﬁf") ‘
| 167825 | 167710 | 34 | 0.02% |
(a) Best K-WLSTM found for K = 64.

‘ LTreeK64 (mn) ‘ LKfWLSTM (wn) ‘ Lmemoryless (T) ‘ Lnlem’oryless(T)/LT'7<55K'64(IH) ‘
[167825] 167761 | 141 | 0.08% |
(b) Best K-WLSTM found for K = 1024.

Figure 8.4: Template description cost Liemoryiess (7) for the image “1.1.01M”, a case where the
best K-WLSTM performs similarly to the best contiguous tree model.

8.3 Evaluation of the benefit of increasing window size

In order to assess the benefit of increasing the window size K when using sparse models, we focus on
the K-WLSTM case since its flexibility makes it more likely of taking advantage of larger windows
if the image has some distant dependencies. When increasing the window size, the overhead in
template description is generally quite small since it normally becomes sparser and, therefore, more
compressible. Nevertheless, complexity usually increases significantly as the search space increases
exponentially and the templates are more expensive to be evaluated (see Chapter 5). Table 8.4
shows the difference in code length when doubling K, on the test set.

For example, we notice that for “lena_j” (Figure A.21) there is almost no benefit in using
K > 32 which is reasonable since the error-diffusion structures are fully captured with K = 32. On
the other hand, for the halftoned image “albert2D” (Figure A.5), a significant benefit is obtained
when using K > 128 in comparison to the cases of smaller window sizes. The texture image
“flakes006-inca-100dpi-00M” (Figure A.13) is strongly characterized by its contiguous color zones
which makes sparsity and larger windows less useful. In the case of the text image “otoosfont12”
(Figure A.22) and the score image “cmfuguel-0” (Figure A.12), we notice that, although there could

be some additional regularities captured by the model when increasing K, in fact, there is only a

68

{64,128,256,512} vs.

K-WLSTMs with window size K/a.

Differences are calculated as

K

Image 64 vs. 32 | 128 vs. 64 | 256 vs. 128 | 512 vs. 256
1.1.01M 0.0% 0.0% 0.0% 0.0%
1.1.13M 0.0% 0.0% 0.0% 0.0%
1.5.02M -16.3% -3.8% -4.3% -13.7%
A-fixedwidth6and8 -90.5% -25.6% 0.0% 0.0%
albert2D -16.0% -5.5% -1.0% -2.1%
amb -6.4% -0.8% 0.0% 0.0%
Bach _CPE-Sonata_flauto... | -3.8% -2.1% 0.0% 0.0%
Bobbys_letter page 1 -0.3% -0.1% -0.1% -0.2%
ccitt4small -3.0% -1.9% -1.1% 0.0%
ccitt7small -1.6% -0.5% -0.4% -0.3%
chinese _text -0.3% -0.4% 0.0% 0.0%
cmfuguel-0 -3.7% -0.6% 0.0% 0.0%
flakes006-inca-100dpi... 0.0% 0.0% 0.0% 0.0%
HALFTONE -20.1% -1.9% -5.3% -2.1%
Halftone2 -1.5% -0.1% -0.3% 0.0%
Halftone3 -1.6% -1.2% -0.3% 0.0%
hamilton bw -3.2% -0.3% 0.0% 0.0%
hamilton _ed -0.8% -0.2% 0.0% 0.0%
hieroglyph -0.2% -0.9% 0.0% -0.4%
leeleter -0.8% -0.4% -0.1% 0.0%
lena_j -0.1% 0.0% 0.0% 0.0%
otoosfont12 -6.0% -1.6% -0.1% -0.4%
otoosfont24 -9.7% -5.0% 0.0% -0.4%
pep_j 20.1% 0.0% 0.0% 0.0%
texmos1.p512M 0.0% 0.0% 0.0% 0.0%
wallpaper003-inca-100dpi... -0.1% 0.0% 0.0% 0.0%
wallpaper004-inca-100dpi... -0.7% -0.3% -0.6% 0.0%
wallpaper010-inca-100dpi... -0.3% -0.1% -0.2% -0.1%
writing -0.3% 0.0% 0.0% 0.0%

Table 8.4: Difference in compression rate of K-WLSTMs with window size K

2K K . .
(L¥ wrstm—LE _wistm)/LE expressed as a percentage. Negative numbers represent gains
K—-WLSTM)?
in compression rate, and larger magnitude numbers represent larger gains.

slight improvement and the greatest improvement occurs when capturing closer dependencies like
the symbol structure. This is not the case for the image “1.5.02M” (Figure A.3) since its almost
perfect periodicity can be fully captured with K = 512 as we observed in Section 8.1 and, therefore,
an important gain in compression rate (of 13.7%) over K = 256 is achieved. In the case of the
image “A-fixedwidth6and8” (Figure A.4), doubling the window size, from K = 32 to K = 64 and
from K = 64 to K = 128, gives great gains (of 90.5% and 25.6%, respectively) which is consistent

with the size and the spacing of the characters in the image (see Figure A.4 for a detailed view).

8.4 Resemblance of sparse templates with binary image struc-

tures

In addition to the case of the image “1.5.02M” already shown in Figure 8.2, Figures 8.5 and 8.6
show cases of K-WLSTM templates found by our algorithms that present patterns quite similar

69

to structures found in the input image. These similarities illustrate how these models capture the

structure of these types of binary images.

(b) Zoomed portion of “HALFTONE”

et :!]i_ =

:
. i
mm ESREEMEEE EEE mr
NN & i #”:F HHH |
(c) Best K-WLSTM for “chinese text” (d) Best K-WLSTM for “HALFTONE”

Figure 8.5: Resemblance between best K-WSLTM templates and image structures.

In the case of the image “chinese text”, we observe that the best K-WLSTM template found
captures the horizontal and vertical distances between characters. Locations in the best K-WLSTM
template for the image “HALFTONE” are arranged in a very similar way to how halftone patterns
are in the input image. The template for “hamilton _ed” presents a striking resemblance with the
drawing patterns of the image. In the case of “wallpaper004-inca-100dpi-00M”, the template seems

to capture the right angles and the distance between parallel edges.

8.5 Comparison of ERGTOX"WESTM aoainst popular standard

methods

In this section, we show that ERGTOX-WSLTM ith K = 1024 generally outperforms standard
compression methods. The standard methods that we are going to compare with are JBIG, JBIG2,

DjVu! in their lossless compression modes.

'We used the following implementations:
e JBIG: imagemagick (http://www.imagemagick.org, as of April 2009).

e JBIG2: Power JBIG-2 Coder, Signal Processing and Multimedia Group of the University of British Columbia
and Image Power, Inc.

70

http://www.imagemagick.org

iy 6 - .. - &: -

(a) Zoomed portion of “hamilton ed”

Ll
n
|
i
. i 5
: il
o i]
Ty i :
T i EEEmuEEE i |
(c) Best K-WLSTM for “hamilton ed” (d) Best K-WLSTM for “wallpaper004-inca-100dpi-

00M”

Figure 8.6: Resemblance between best K-WSLTM templates and image structures (cont.).

In Section 8.2, we compared sparse models against contiguous models in order to assess the effect
of sparsity within the same window size. An important benefit of our sparse modeling algorithms
is to allow much larger window sizes than those that can be practically used with contiguous tree
models. Nevertheless, contiguous tree models with small window sizes (up to 64, see Appendix D)
still give good results in comparison to standard methods. Therefore, we also include these results

in the comparisons of this section.

8.5.1 Results on non-synthetic images

The results on the non-synthetic images of the test set are shown in Table 8.5.

As explained in Section 4.3, JBIG2 and DjVu use specialized pattern matching algorithms in
text regions and different algorithms in other regions, while our sparse modeling algorithms are
generic. Nevertheless, the table shows that ERGTOX-WLSTM oytperforms JBIG and JBIG2 in
every tested case. DjVu only beats ERGTOX~WLSTM i 3 cases of text documents. In particular,
we see a great advantage for DjVu in the case of “otoosfont24” (Figure A.23). Nevertheless, in the
lower resolution case of “otoosfont12” (Figure A.22), ERGTOX~WLSTM Leats DjVu by a significant
margin (of 9%).

e DjVu: DjVuLibre (http://djvu.sourceforge.net, as of April 2009)

71

http://djvu.sourceforge.net

Image Image ERGTO vS. con- vs. VS. vs. VS.
size (in normal- tiguous DITO jbig jbig2 djvu
bits, at ized code tree K ~ 64 | K = 1024
1 length
bit /pixel)| K =10
(in
bits/pixel)
1.1.01M 262144 0.640 0.0% +0.0% -4.6% -11.6% -13.4%
1.1.13M 262144 0.543 0.0% 0.0% -4.9% -9.6% -11.4%
1.5.02M 262144 0.146 -28.4% +0.6% | -51.0% -47.8% -24.3%
A-fixedwidth6and8 238128 0.00319 -27.6% -43.4% -85.1% -89.7% -97.8%
albert2D 1039360 0.0716 -12.3% 4+0.1% | -42.5% | -34.0% | -67.3%
amb 960000 0.123 -5.5% +0.1% | -40.9% | -33.8% | -67.2%
Bach_CPE-Sonata... | 513744 0.0754 -4.7% -04% | -21.2% | -18.8% | -20.5%
Bobbys letter... 1144800 0.124 -1.0% +0.2% | -10.2% -9.7% -12.3%
ccitt4small 1026432 0.187 -5.4% +1.0% -12.0% -10.4% | +5.9%
ccitt7small 1026432 0.191 -2.5% +0.2% -8.1% -10.6% +0.9%
chinese text 220604 0.364 -1.7% +0.2% -5.6% -10.0% -7.0%
cmfuguel-0 248832 0.107 -4.3% +0.7% | -20.7% | -22.1% | -20.7%
flakes006... 401348 0.506 -0.2% +0.0% | -4.5% -9.5% -6.0%
HALFTONE 223776 0.201 -32.7% +1.3% | -59.7% | -55.4% | -62.1%
Halftone2 259081 0.121 -2.5% +0.0% | -24.3% -14.4% -26.3%
Halftone3 259081 0.103 -6.4% +0.0% | -38.6% | -37.6% | -60.6%
hamilton bw 360000 0.320 -4.1% 0.0% -10.9% -15.9% -17.3%
hamilton_ed 360000 0.629 -1.0% +0.1% -4.7% -9.8% -13.8%
hieroglyph 225970 0.341 -1.9% +0.2% -5.8% -12.8% -12.0%
leeleter 1389660 0.177 -1.3% +0.3% | -10.1% -8.3% -10.1%
lena_j 262144 0.648 -10.0% +0.0% | -22.3% | -13.9% | -24.6%
otoosfont12 484704 0.191 -3.4% +0.3% | -46.5% -30.7% -9.0%
otoosfont24 484704 0.123 -8.4% 0.0% -51.0% | -39.7% | +56.1%
pep_j 262144 0.620 -11.3% -0.2% -22.8% -13.7% -29.9%
texmosl.p512M 262144 0.643 0.0% -0.2% -4.4% -11.1% -8.9%
wallpaper003... 401348 0.484 -0.9% -0.4% -4.0% -9.1% -13.3%
wallpaper004... 401348 0.515 -2.3% -0.1% -5.6% -10.7% | -17.6%
wallpaper010... 401348 0.481 -0.7% -0.7% -3.0% -7.8% -14.5%
writing 249500 0.434 -0.5% -0.2% -4.7% -10.3% -10.2%

Table 8.5: ERGTOX-WLSTM (4de length results for K = 1024 on the non-synthetic binary
images of the test set in comparison to other compression methods. Differences with each scheme
C are calculated as (Lerero—Lc)/Lc, expressed as a percentage. DITOp stands for DITON ~WESTM,
Negative numbers represent gains in compression rate, and larger magnitude numbers represent
larger gains.

In the case of halftoned images, we see that in every case, our sparse modeling algorithms are
superior and sometimes give significant gains in code length. This is consistent with what authors
observe in [STHO1]. We also observe that for music score images, there are great differences in favor
of sparse models, which is explained by the ability of K-WLSTMs to capture the alternation of
different regular structures. As shown before, because of the great regularity of image “1.5.02M”
(Figure A.3) that can be captured with some distant dependency locations, the best found K-
WLSTM gives large gains in compression rates: 47.8% in comparison to JBIG2 and 28.4% in

comparison to contiguous trees.

In the case of other textures and thresholded images considered, sparsity is generally less useful

72

since most of the dependencies are found in close locations, except in the case of “hamilton _bw”
(Figure A.17) and “hamilton ed” (Figure A.18) where K-WLSTMs capture the structure of the
evenly spaced lines and patterns.

8.5.2 Results on generated images

As an empirical consistency check, we compare the performance of ERGTOQX-WLSTM

on gen-
erated images based on trained K-WLSTMs against the code length given by the generating
template and the results given by other compression methods. Table 8.6 shows that the results
of ERGTOX~WESTM 4re quite close to the code length given by the generating template and are
significantly better than the results given by other methods as expected for this type of images

specifically generated by K-WLSTMs.

Image Image ERGTO x for | vs. gen- vs. con- VS. VS. VS.
size (in normal- ERGTO | erating tiguous jbig jbig2 djvu
bits, at ized code tem- tree K ~ 64

1 length (in plate

bit/pixel)| bits/pixel)

GEN 250000 0.0773 128 -1.1% -43.4% -64.5% | -60.4% | -78.3%

A-
fixedwidth6and8

GEN 250000 0.186 1024 | 4+0.3% -8.6% -18.4% | -26.6% | -19.5%

cmfugue

GEN 250000 0.302 512 +0.6% -3.7% -33.7% | -32.7% | -48.3%

otoosfont12

Table 8.6: ERGTOK-WESTM 5de length results on binary images generated by K-WLSTMs
trained on binary images (see Subsection 4.4.2) in comparison to other compression methods and
to the code length given by the generating template. Differences with each scheme C' are calculated
as (Lerero—Lc)/L, expressed as a percentage. Negative numbers represent gains in compression
rate, and larger magnitude numbers represent larger gains.

8.6 Conclusions

In this chapter, we demonstrated the great compression potential of K-WLSTMs with large window
sizes over smaller subclasses of models, i.e., contiguous models, K-SCMs and K-WLSTMs with
smaller window sizes. We observed that these types of class generalizations carry, at most, a small
overhead in code length and, in most cases, it is negligible. Finally, we showed that this increased
compression potential in combination with our improved algorithm ERGTOX~WSLTM goperally
outperforms standard compression methods and sometimes by significant margins.

73

74

Chapter 9

Conclusions and future work

In this work, we proposed a greedy algorithm DITO and an enhanced genetic algorithm ERGTO
for modeling and coding with sparse context models. DITO is quite efficient even for large window
sizes and also in the case of K-WLSTMs, which are more complex to be evaluated. Nevertheless,
we found that, due to its deterministic nature, it is prone to getting stuck in some bad local minima.

ERGTO is an improvement of the algorithm BRGTO of [Ser04] (originally only for K-SCMs)
and was designed by taking guidance from some properties that make the efficiency of DITO while
keeping the randomness properties that help in preventing getting stuck in local minima. Although
not as fast as DITO, ERGTO runs significantly faster (usually, more than 30x) than BRGTO for
K-SCMs but also is practical for large values of K and for K-WLSTMs.

The efficiency improvements of ERGTOX ~WESTM 1oad to better compression results that
outperform those of tree models with gains sometimes larger than 30% and, in many cases, those
of standard methods with gains sometimes larger than 55% (for the three competitors considered).

It is important to emphasize that the algorithms presented in this thesis for the sparse tem-
plate optimization problem are not restricted to the binary images application. Additionally, the
extensive experimentation over binary images gave clues of what type of structures in the data can
be captured by these models. This can be useful for the search of other data types for which these
models could suitable (even when the goal is not compression), which is not a trivial task since,
in many common cases, the most important dependencies are located within a small contiguous
window (e.g., continuous-tone natural images in which color intensities change in a smooth way).

This work was essentially of an experimental nature and, thus, future work directions could be
oriented to further understanding of the theoretical properties of these models.

75

76

Bibliography

[Bic96]

[Bar54]

[BG*00]

[BHH 98]

[Bla09]

[BRO4]

[Bre57]

[BRY98]

[BSPV02

[BW99]

[Cor01]

[CTO6]

[Dar59]

[Doo53]

T. Béick, Evolutionary algorithms in theory and practice, Oxford University Press New
York, 1996. 55

N.A. Barricelli, Esempi numerici di processi di evoluzione, Methodos 6 (1954), 21-22.
19

A.C. Bovik, J.D. Gibson, et al., Al Bovik, Handbook of Image and Video Processing,
2000. 30

L. Bottou, P. Haffner, P.G. Howard, P. Simard, Y. Bengio, and Y. LeCun, High quality
document image compression with DjVu, Journal of Electronic Imaging 7 (1998), 410—
425. 31

P.E. Black, metaheuristic, http://wwuw.itl.nist.gov/div897/sqg/dads/HTML/
metaheuristic.html, 2009. 19

P.Y. Bourguignon and D. Robelin, Modéles de Markov parcimonieux: sélection de
modéle et estimation, Proceedings of JOBIM Congress, 2004. 4

L. Breiman, The individual ergodic theorem of information theory, The Annals of
Mathematical Statistics (1957), 809-811. 33

A. Barron, J. Rissanen, and B. Yu, The minimum description length principle in
coding and modeling, IEEE Transactions on Information Theory 44 (1998), no. 6,
2743-2760. 12

M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp, A racing algorithm for
configuring metaheuristics, GECCO, 2002, pp. 11-18. 55

P. Buhlmann and A.J. Wyner, Variable length Markov chains, Annals of Statistics
(1999), 480-513. 2

T.H. Cormen, Introduction to algorithms, MIT press, 2001. 40

T.M. Cover and J.A. Thomas, Elements of information theory, Wiley-Interscience,
2006. 11, 14, 33

C. Darwin, On the origin of species, John Murray, London, 1859. 19

J.L. Doob, Stochastic processes, John Wiley & Sons, New York, 1953. 33, 34

7

http://www.itl.nist.gov/div897/sqg/dads/HTML/metaheuristic.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/metaheuristic.html

[FLSV]

[Fra08]

[FSVO08]

[FWAO04]

[GJ79]

[Gre86]

[Hol75]

[Hsi04]

[Int88]

[Int96]

[J0i93]

[Joi01]

[Knu69)

[Krad9]

[KT81]

[Liz05]

N. Fraiman, A. Lhéritier, G. Seroussi, and A. Viola, Lossless compression for sparse
finite memory sources, In Information Theory and applications (ITA’08), San Diego,
CA, USA, January 2008. ii, iv, 4

N. Fraiman, Model selection techniques € sparse markov chains, Master’s thesis, Uni-
versidad de la Republica, 2008. ii, iv, 4, 32

N. Fraiman, G. Seroussi, and A. Viola, Lossless source coding via sparse tree models,
unpublished, 2008. ii, iv, 4, 32

S. Forchhammer, X. Wu, and J.D. Andersen, Optimal context quantization in lossless
compression of image data sequences, IEEE Transactions on Image Processing 13
(2004), no. 4, 509-517. ii, iv, 3

M. R. Garey and D. S. Johnson, Computers and intractability; a guide to the theory
of np-completeness, W.H. Freeman, 1979. 19

J.J. Grefenstette, Optimization of control parameters for genetic algorithms, IEEE
Transactions on Systems, Man and Cybernetics 16 (1986), no. 1, 122-128. 55

J.H. Holland, Adaptation in natural and artificial systems, University of Michigan
Press, 1975. 19

P. Hsieh, Superfasthash function, http://www.azillionmonkeys.com/qed/hash.
html, 2004. 40

International Telecommunication Union, Facsimile coding schemes and coding control
functions for group 4 facsimile apparatus, ITU-T Recommendation T.6, November
1988. 30

, Standardization of group 8 facsimile terminals for document transmission,
ITU-T Recommendation T.4, July 1996. 30

Joint Bi-level Image experts Group (JBIG), Information technology — coded repre-
sentation of picture and audio information — progressive bi-level image compression,
ISO/IEC 11544 and ITU-TRec. T. 82, 1993. 3, 28

, Information technology — coded representation of picture and audio informa-
tion — lossy/lossless coding of bi-level images, ISO/IEC 14492 and ITU T.88, 2001.
3,28

Donald E. Knuth, The art of computer programming: Volume 2, seminumerical algo-
rithms, Addison-Wesley Publishing Company, 1969. 21

L.G. Kraft, A device for quantizing, grouping and coding amplitude-modulated pulses,
Master’s thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineer-
ing, 1949. 10

R. Krichevsky and V. Trofimov, The performance of universal encoding, IEEE Trans-
actions on Information Theory 27 (1981), no. 2, 199-207. 12

LizardTech, Djvu reference v3, http://djvu.org/docs/DjVu3Spec.djvu, 2005. 28

78

http://www.azillionmonkeys.com/qed/hash.html
http://www.azillionmonkeys.com/qed/hash.html
http://djvu.org/docs/DjVu3Spec.djvu

[Lub96]

[Mac03]

[Mar09]

[McM53]

[McMS56]

[MF9g]

[MSW04]

[Noh93]

[PasT76]

[PMLJASS]

[Ris76]

[Ris78]

[Ris83]

[Ris84]

[Ris87]

[Ris96]

[RSPOS]

[Ser04]

Michael Luby, Pseudorandomness and cryptographic applications, Princeton Univer-
sity Press, 1996. 21

D.J.C. MacKay, Information theory, inference and learning algorithms, Cambridge
University Press, 2003. 10, 13

A. Martin, Tree models: Algorithms and information theoretic properties, Ph.D. thesis,
Universidad de la Repiblica, 2009. 17

B. McMillan, The basic theorems of information theory, The Annals of Mathematical
Statistics (1953), 196-219. 33

, Two inequalities implied by unique decipherability, Information Theory, IRE
Transactions on 2 (1956), no. 4, 115-116. 10

N. Merhav and M. Feder, Universal prediction, IEEE Transactions on Information
Theory 44 (1998), 2124-2147. 15

Alvaro Martin, Gadiel Seroussi, and Marcelo J. Weinberger, Linear time universal
coding and time reversal of tree sources via FSM closure, IEEE Transactions on In-
formation Theory 50 (2004), no. 7, 1442-1468. 2, 16

R. Nohre, Topics in descriptive complexity, Ph.D. thesis, Technical University of
Linkoping, 1993. 2, 15, 16

R.C. Pasco, Source coding algorithms for fast data compression, Ph.D. thesis, Citeseer,
1976. i, iii, 10

W.B. Pennebaker, J.I.. Mitchell, G.G. Langdon Jr, and R.B. Arps, An overview of
the basic principles of the Q-coder adaptive binary arithmetic coder, IBM Journal of
research and development 32 (1988), no. 6, 717-726. 30

J. Rissanen, Generalized Kraft inequality and arithmetic coding, IBM Journal of Re-
search and Development 20 (1976), no. 3, 198-203. i, iii, 10

, Modeling by shortest data description, Automatica 14 (1978), 465-471. 1

, A universal data compression system, IEEE Transactions on information
theory 29 (1983), no. 5, 656-664. 2, 15

, Universal coding, information, prediction, and estimation, IEEE Transactions
on Information Theory 30 (1984), 629-636. i, iii, 1, 13

, Stochastic complezity, Journal of the Royal Statistical Society. Series B
(Methodological) (1987), 223-239. 1

, Fisher information and stochastic complexity, IEEE Transactions on Infor-
mation Theory 42 (1996), no. 1, 40-47. 1, 11

D. Rother, G. Sapiro, and V. Pande, Statistical characterization of protein ensembles,
IEEE/ACM Trans. Comput. Biology Bioinform 5 (2008), no. 1, 42-55. ii, iv, 4, 43

G. Seroussi, A genetic algorithm for optimizing context patterns, draft and software
implementation, 2004. ii, iv, 5, 7, 19, 22, 23, 40, 57, 60, 62, 75

79

[Sha4g]

[Sht87]

[SIHO1]

[Suz95]

[U1i87]

[VW96]

[Whi94]

[Wil9g]

[WNC87]

[WRF95]

[WSTO5|

[YGO7]

[ZHS05]

C.E. Shannon, A mathematical theory of communication, Bell System Technical Jour-
nal 27 (1948), 379-423 & 623-656. 1, 9, 10, 33

Y.M. Shtarkov, Universal sequential coding of single messages, Problemy Peredachi
Informatsii 23 (1987), no. 3, 3-17. 11

H. Sakanashi, M. Iwata, and T. Higuchi, A lossless compression method for halftone
images using evolvable hardware, Evolvable systems: from biology to hardware: 4th
International Conference, ICES 2001, Tokyo, Japan, October 3-5, 2001: proceedings,
Springer Verlag, 2001, p. 314. ii, iv, 3, 6, 31, 72

J. Suzuki, A CTW scheme for some FSM models, 1995 IEEE International Symposium
on Information Theory, 1995. Proceedings., 1995. 4

R. Ulichney, Digital halftoning, MIT press, 1987. 28

P.A.J. Volf and F.M.J. Willems, Context-tree weighting for extended tree sources, 17th
Symp. on Information Theory in the Benelux (Enschede (NL)) (G. H. L. M. Heideman,
ed.), Werkgemeenschap Informatie- en Communicatietheorie, Enschede (NL), May30-
31 1996, pp. 95-102. 4

D. Whitley, A genetic algorithm tutorial, Statistics and computing 4 (1994), no. 2,
65-85. 19

F.M.J. Willems, The context-tree weighting method: Eztensions, IEEE Transactions
on Information Theory 44 (1998), no. 2, 792-798. 2, 15

I.H. Witten, R.M. Neal, and J.G. Cleary, Arithmetic coding for data compression,
Communications of the ACM 30 (1987), no. 6, 520-540. 11

M.J. Weinberger, J. Rissanen, and M. Feder, A universal finite memory source, IEEE
Transactions on Information Theory 41 (1995), no. 3, 643-652. 2, 15

F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens, The context-tree weighting method:
Basic properties, IEEE Transactions on Information Theory 41 (1995), no. 3, 653—664.
2,15, 16

B. Yuan and M. Gallagher, Combining Meta-EAs and Racing for Difficult EA Param-
eter Tuning Tasks, Parameter Setting in Evolutionary Algorithms, Series of Studies
in Computational Intelligence (SCI) 54 (2007). 55

X. Zhao, H. Huang, and T.P. Speed, Finding short DNA motifs using permuted Markov

models, Journal of Computational Biology 12 (2005), no. 6, 894-906. 4

80

Appendix A

Image set and best sparse and

contiguous results

In this appendix, we show each image of the test set described in 4.5. For each image, a zoomed
portion (which is shaded on the full image) is shown. Additionally, we show the best sparse and
contiguous (with K ~ 64, see Appendix D) results and the corresponding template characteristics.

The darkest square in each template figure represents the current sample.

81

(a) Image (b) Zoomed portion

- =

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 9 7 6.40E-01
K-WLSTM 975 | 19 6.40E-01
Fixed-length contiguous | 8 8 6.42E-01
Tree model 10 | 10 6.40E-01

(e) Actual window size, weight and code length of the best templates

Figure A.1: Image “1.1.01M”, 512 rows x 512 columns

82

(a) Image (b) Zoomed portion

= EEm
e 0 u
i =R
- mm H H
(c) Best K-SCM template (d) Best K-WLSTM template
‘ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 24 | 16 5.45E-01
K-WLSTM 234 | 21 5.43E-01
Fixed-length contiguous | 8 8 5.46E-01
Tree model 26 | 26 5.43E-01

(e) Actual window size, weight and code length of the best templates

Figure A.2: Image “1.1.13M”, 512 rows x 512 columns

83

(b) Zoomed portion

(a) Image

(d) Best K-WLSTM template

(c) Best K-SCM template

‘ K ‘ k ‘ Best normalized code length ‘

Model

||
VNI
caljjeayjcagical
© o [o
e |2
— [|| O
eIl
Ll [a\ B [\l Ne)
Rl
[l (e
Sg|a e
2]
=
S
=
o0
i -
=l
=S8
SIIdE
A== E
_WLUbOe
K =1
x| E
e
]
R
[

Actual window size, weight and code length of the best templates

e)

(

512 rows x 512 columns

?

Figure A.3: Image “1.5.02M”

84

(a) Image (b) Zoomed portion

H
H
H
E i
i = = Hiiik
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 61 | 14 4.94E-03
K-WLSTM 961 | 16 3.19E-03
Fixed-length contiguous | 55 | 55 7.48E-03
Tree model 56 | 56 4.68E-03

(e) Actual window size, weight and code length of the best templates

Figure A.4: Image “A-fixedwidth6and8”, 484 rows x 492 columns

85

(a) Image (b) Zoomed portion

1 Ll L
1 [T
= - SIFE
:
i w u
- m
u u u
i n i
i
S =
(¢) Best K-SCM template (d) Best K-WLSTM template
’ Model \ K \ k \ Best normalized code length ‘
K-SCM 219 | 16 7.70E-02
K-WLSTM 947 | 38 7.15E-02
Fixed-length contiguous | 30 | 30 1.01E-01
Tree model 62 | 62 8.17E-02

(e) Actual window size, weight and code length of the best templates

Figure A.5: Image “albert2D”, 1160 rows x 896 columns

86

x%ﬁmmmgzmm

*mf’ﬁm%$@$%@ﬁ

(a) Image (b) Zoomed portion
m _Smm mmm
mmnmmm t:
o W
m w
X - '
i | NN BN HH
(¢) Best K-SCM template (d) Best K-WLSTM template
] Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 50 | 18 1.28E-01
K-WLSTM 976 | 33 1.23E-01
Fixed-length contiguous | 24 | 24 1.43E-01
Tree model 52 | 52 1.30E-01

(e) Actual window size, weight and code length of the best templates

Figure A.6: Image “amb”, 1200 rows x 800 columns

87

Sonata in La minore
per flauto solo, Wq 132 (H 562)
Mmicucritto del Gieddes Samling (1,28 mu 621 0.20268)
Flauto C.P.E. Bach (1714 - 1788)

Poco Adagio

(a) Image (b) Zoomed portion
.

ST =
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘

K-SCM 97 | 15 8.18E-02
K-WLSTM 1013 | 34 7.54E-02
Fixed-length contiguous | 18 | 18 8.63E-02
Tree model 61 | 61 7.93E-02

(e) Actual window size, weight and code length of the best templates

Figure A.7: Image “Bach CPE-Sonata flauto solo La min-fI”, 834 rows x 616 columns

88

i‘.zi‘us WA, Jompow Tawtmry (5, RoaS (rge |
‘ .

iA\“;'V\le}, e Leelewndic Pellament
5o ReyVlauir
EZ,CC/\N-:A

fhorotable Members of Alting::
3;,,\:, e Lrbe!s isrcd Rebeod Jowvnes
ClSenert SiperlY fienin be
Meelophic Nedion Fort dne frieadSip
?iéi&- S Shown o pma el gince £ deme
e Youltt aumtiy Mewy YeorS oo ewsd
Copnpeted Foit e e of Warid .
L\/Ww()tbfd PN cine SS—ond eleas befoe
Wq-‘ < Wau[é. Mo 1} Ne $o tedie e
Liberty o preSecting fhefalioning

e guest 4o AlThirei. fof e fosT
A Atng B \neve been foveibly oawd

I\ WNea Uy 1 MpyiSe med LA Tenpenn O Hhe,
Completell felse cvd lodietovs groumds
et & enTeled :To'\fox/\/ YA Af'r\'\‘\ 57
oot -amd et d Ve perded o shenped
10 deprat Torpoad or Toty V3, Aasd with
‘q:\/\f {NV&\U& (JMSS‘?wV‘Q‘. DU(‘CNs s (7:,(‘;0&
}(\'\\/ el s Stead ity detemonated,
lee beehs 41227 ot 0f trne fipme Forr
e bout tiae poust A Mo NS Lo,

e thentally, (45 beers ety cafetily
Holaelied out 1o tvas prese Gvt it
Lt Sen lnmmoieius ot i Fine

(a) Image (b) Zoomed portion

m IR W m
o
w L m
WH I]IIEE]]:%:::H:::H:::H::%
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model \ K \ k \ Best normalized code length ‘
K-SCM 22 | 12 1.27E-01
K-WLSTM 1020 | 48 1.23E-01
Fixed-length contiguous 10 10 1.29E-01
Tree model 51 | 51 1.25E-01

(e) Actual window size, weight and code length of the best templates

Figure A.8: Image “Bobbys_letter page 17, 1272 rows x 900 columns

89

-3 -

Liardre de lancement et de réalisation des applications fait 1'objet de décisions su plus haut
sivesa de la Direction Générzle des Télecomnumications. 1l niest certes pas question do
construire ce systieme intégré "en bloc” mais bien au contraire de procéder par étapes, par
paliers Certaines dm: i ne pourra stre assuree, @
seront pas qui ont pu
définies, sixen sont au stade de X‘txplonnﬁ.un Tix vnben e sont v dorir n priorité pour
leur réalisation,
Chague .ppuc.um est confiée & n “chef de projet”, responssble successivement de %
et de sa mise en oeuvre dans une région-pilote,
xénérnh i lterisue de Vapplication réslisée dans cette ragion-pilote dépend deos
reoaiate shienun of falt Tiobjet d'une décision de la Direction Générale. Néanmotns, le
chet de projet doit dés le départ considérer que son activité a une vocation naticnale donc
refuser tout particularieme régional. 1 est sidé d'une équipe d'analystes_programmeurs
et entourd diun “groupe de conception” chargé de rediger le document de “défwnition des
objectifs globaux" puia le “cahier des charges” de l'application, qui sont adresuds pour avis
4 tous les services utilisatours potentiels et sux chefs de projet des autres
Le groupe de conception comprend § A 10 persounes représentant les services les pius
divers concernés par le projetyet comporte obligatoirement un bon analyste atiaché A 1'ap-
plication.

i - L'IMPLA! {QUE D'UN RESEAU INF PERFORMANT

Llorgunisation de L'entreprise francaise des repose sur lexi do
20 réglons. Des calculateurs ont 6té implantés dans Jo paseé au moine dena toutes les plus
importantes, Onirouve ainei des machines Bull Gamma 30 & Lyon et Marseille, des GE 435
2 Lille, Bordeaux, Toulouse et Montpelller, un GE 437 4 Massy, enfin quelquea machines
Bull 300 TI & programmes csblés étatent récemment su sout encore en service dens les
s-usm-u Yascy, Nanies. Limoges, Poltiers ot Rouen ; ce pare est essentiellement uilise
1n comptabilits téleph

Al'averir, sile plapart dos ficators nécesssires aux applications décrites plus haut peuvent
otre gérémentemps différe, un certain nombre d'enive eux devront nécessairement etre ac-
cesgibles, volre mie & jour en temps réel : parmi ces derniers le fichier commercial des
abornés, le fichier des r«mlpement-, le fichier des circuits, le fichier technique des
abonnéu des quantit
Lo Volume total g6 caraciares & gérer en phase finale sur un ordinateur ayant en charge

quelques 500 000 sbonnés a ¢t€ estimé i un milliard de caracteres lu moing. Au moins le
tiers des données serant concernées par des iraiterments en temps rée;
Aucun dom culcalateure énuméres ps hait ne g e tete

suppose ka créstion d'un support comenun

panr toutes lew informations, une véritable 'Bangue de donnéas”, répartie sur des moyens
de traitemnent nationaux et réglonaux, et qui devra rester alimentée, mise 2 jour en perma-
nence, & pertir de la base de l'entreprise, c'est-A-dire les chantiers, les magasins, les
guichets des services d'shonnement, les services de personnel etc.
Liétude des differents fichiera & constituer a donc permis de définir les principales carace
tristiques du résequ d'ordinsteurs nowyeaix & meitre en place pour aborder 1a réatisation
du de faire appel 4 des de troisieme génération,
trés pullunuﬂdnlesdtvu)umlnwuﬁ mémoires de masse, a conduit & en réduire substan-
tiellement le nombre.
Léimplantation de sept centres de caleul ‘ un is entre ¢
d'unve part le déair de réduire le cotit . de faciliter la
des équipes d'informaticiens; et d'autre part le rem: de créer des centres trop Importants
diffciles & gérer et & diriger,et posant des problomes délicats de sécurité, Le regroupe-
ment des traitements relatifs & plusieurs réglons sur chacun de ces sept centres permettra
de leur donner une taiile relativement homogene, Chague centre "gerera” environ un mil-
lion d'abonnéa 2 la fin du Vieme Plan.
Lamiss en place de cee centres a débuté gu debut de I'année 1971 : un ordinateur IRIS 50 de
1a Compagnie Internationale pour Ulnforrmatique a été ingtallé 3 Toulouse en fdvrier ; la
méme machine vient d'#tre mise en service au centre de calcul interrégional de Bordeaux.

Photo n® 1 ~ Document trés dense lettre 1,5mm de haut -
Restitution photo n° §

(a) Image (b) Zoomed portion

|

(c) Best K-SCM template (d) Best K-WLSTM template

’ Model ‘ K ‘ k ‘ Best normalized code length
K-SCM 158 | 14 1.96E-01
K-WLSTM 685 | 29 1.85E-01
Fixed-length contiguous | 14 | 14 2.10E-01
Tree model 58 | 58 1.97E-01

(e) Actual window size, weight and code length of the best templates

Figure A.9: Image “ccitt4small”, 1188 rows x 864 columns

90

=]
Q
o=
=
—
]
o
e}
E
Qo
Q
N
—~
el
= m
QO— - QBB 27 QORI Mook CHNEGER L —hr ~ i E
AU PREREY 507 QRN S OUmb’ QU € SFRUIR
B Ram R d RN O AR 2R GOb T 8 b
VO~ BERGEEEE (D) SH0CENER (SEYR Hig TG BT ST BB Y HTRROE YW S R”
BRI QO QUNRR) § 1 il RREEDS R]
5 U # 2 e R =N MKAN MGG Sy 0 SERAN w2l
S’ ity EEREEERENEN U o RM5 A
QU CRA QO (EERREEREE) VOOt [EREER b teaal’ OUmk S MHENRS LT VI
BHEH) $10° DU’ #um—p oty om0 Ok WIS 23
BEG SUHOD L hennaE QT - WIEEES v R CovERY 4 AR (w0
~ ARBR AN LDC LR’ DO codm i A~ 2 G E 020}
et 8 LT TRV i v RS immmﬁsﬁﬁu. S UEEMIEL A4 1 S B G
an s B SRR -5
W QU mpnol- ¢ T RS B REE NS 6 WU !gﬁﬂﬂ!@&%”l 5 PEERD &SRB R 0 e LT)
o EEETUECHGHEERL R RN San wints Yo}
& nmCCITTs Ul QO = R R QN R BRER @Eﬁﬂﬁélﬁx i FERCRMUND L VEECWKEECER]
o PR = ommewE A uCIUERSY &0 FiEwhiee 1R 000 (ER o) m |
M ESEGEN G OE 2V Ak N DEEA DL LR ot s emeooiht 5 D80 T, 08T MINAKES Avig &0 =
QUM OO RGEINE 2 RPN AU RE av Kouagt LS R fon)Asis O 47 510 —~
RS % Pumia’ SEUSR E e emim REHE S 2HEB RS2 B 1SV VI IENR R W MW
#URIY lmsﬂatﬁsn:@llm.na:k [EFTE mEE 15 E NERE0" 20 aaiEly
Qe G HBEE St s R BHI 2 RO IBEL 4T 2 :&ch FEEERY R WERESH s’ .’m&mv*nk‘énms&
T L R PR S 45 TR LAV B RS €42 s " .

- WO EIE - ME - LHORE MRS Rl I ABET VLS B
D A RPEHE BERERD n-0 PTCHERY m-0 b b

CHOMMRE | v LS FEm, JHASE LY DRSBRREOR
VREMSTEERRC SRR (#EHE) 8 BERRVE S B oeE

[N ¥ & T [ETYe ©F Qamn KEES~N

W BRERS oo B RT QR g m—n 2T ey N :L.?E..eae & S B IOH R AN G W

[r ey " " SR QU=

e 1sse.~ona.ln:n,§rnn-ﬁq ~h2n KEE pa 0 e
sEE B A e

tnvxw RS OUmbsin € GEDEK Kk SORVEMELBDOU
BE L SRR G R KRR o i U D R ro R
nunnazquternuuan;n‘.nu«mh»‘ e Rl

:nilu "t lﬂluu_vn&nnnlum:.? ARTHSEE D
VoMo

Mv! e én!i&!‘?hbnt l&nkﬁu"n! AN

. =

o i

(d) Best K-WLSTM template

SCM template

Best K-

)

C

(

‘ k ‘ Best normalized code length ‘

K

Model

| | [
s
caljcajicafiea)
0 | = [[©
S
™ | |C |
N (= oo
— | = i
=)
oo
%Ml:u
w2
=
o
=
.0
= =
=gl
= EH(SE
n| el
O
Hl=2 = E
_Wte
gk
—
< |2 |
el
o}
e
=

weight and code length of the best templates

)

(e) Actual window size

itt7small”, 1188 rows x 864 columns

MCC

igure A.10: Image

F

91

HERIF 1348 SRywiinEE L 23, MEFER
%%EEW%?%# . HEAREREELERE
Wi

TRETL M R FW L REN B MANE
ERBEHNGFEEEE @ #HE . ABRL BEE
A LEEBELUTREEERE |, BENENS
CFIo, RASEEREFER
MXXHER | BRRNEREETERLENE
MRS THEEEREEER IS ERRME S
B EERBER LS A EA . T
HEBEEHERIBETHRER. LB T
Amatfianad W SIEWG EMBE AMNGE, BEL
ASOEM AE M EN, AENEEHEGR
MERTENYRAREE,
F-HBHEETHRERNIEAE, MTREDY
AR BHE, B/IT. ey, PFLANEE (F
SR LI BITEIOM A & T, Wi s
Bk tpe0-t A BRI, £347 B ReR.,
AEE, WA BN B HEBEMNRE.
AR o, & . &
FEEREREIIHLOMERMES, T
T FE A - T R — RO R AN 20089 A ST
EEHERT, B IMHEEL WA ISt
PHE%T, EEBERS IR YL fdsy

(a) Image (b) Zoomed portion

R nESa=-a, s iauuan

L "

B SECEEaHHHEEHHHEReee™e,

(¢) Best K-SCM template (d) Best K-WLSTM template
’ Model \ K \ k \ Best normalized code length ‘
K-SCM 14 10 3.71E-01
K-WLSTM 1018 | 35 3.63E-01
Fixed-length contiguous | 10 | 10 3.75E-01
Tree model 56 56 3.70E-01

(e) Actual window size, weight and code length of the best templates

Figure A.11: Image “chinese text”, 524 rows x 421 columns

92

b

oE

t
T

<

L e,

—uf [fN

-
-

-
=3

A - |

t
T

g e = e g

(a) Image (b) Zoomed portion

& e

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 43 | 16 1.17E-01
K-WLSTM 962 | 33 1.06E-01
Fixed-length contiguous | 18 | 18 1.24E-01
Tree model 56 | 56 1.12E-01

(e) Actual window size, weight and code length of the best templates

Figure A.12: Image “cmfuguel-0”, 512 rows x 486 columns

93

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 18 | 9 5.07E-01
K-WLSTM 722 | 22 5.06E-01
Fixed-length contiguous | 8 8 5.09E-01
Tree model 45 | 45 5.07E-01

(e) Actual window size, weight and code length of the best templates

Figure A.13: Image “flakes006-inca-100dpi-00M”, 538 rows x 746 columns

94

(a) Image (b) Zoomed portion

i u
u - W u ng
E :
i - i
ENEEEENEEE m . R ,{”ﬂ m
e = HiiL. B i = o (T T
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 563 | 10 2.02E-01
K-WLSTM 972 | 21 1.98E-01
Fixed-length contiguous | 27 | 27 3.56E-01
Tree model 43 | 43 2.99E-01

(e) Actual window size, weight and code length of the best templates

Figure A.14: Image “HALFTONE”, 518 rows x 432 columns

95

HHHH-HH
1 N
==
H
.
o
H i
ﬁiﬂ . o T
H 1 - ml R H
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 64 | 11 1.23E-01
K-WLSTM 905 | 27 1.21E-01
Fixed-length contiguous | 12 | 12 1.28E-01
Tree model 37 | 37 1.24E-01

(e) Actual window size, weight and code length of the best templates

Figure A.15: Image “Halftone2”, 509 rows x 509 columns

96

(a) Image (b) Zoomed portion

=
m o
o
e k-
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘

K-SCM 70 | 12 1.06E-01
K-WLSTM 256 | 22 1.02E-01
Fixed-length contiguous | 14 | 14 1.18E-01
Tree model 31 | 31 1.10E-01

(e) Actual window size, weight and code length of the best templates

Figure A.16: Image “Halftone3”, 509 rows x 509 columns

97

LAR

(a) Image

iR

s T

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 88 | 10 3.28E-01
K-WLSTM 128 | 33 3.20E-01
Fixed-length contiguous | 10 | 10 3.52E-01
Tree model 61 | 61 3.34E-01

(e) Actual window size, weight and code length of the best templates

Figure A.17: Image “hamilton bw”, 600 rows x 600 columns

98

§NE_NNN 3&: :
(a) Image (b) Zoomed portion
|
| RN \
" smEmmm HHH
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 58 | 10 6.36E-01
K-WLSTM 251 | 41 6.28E-01
Fixed-length contiguous | 10 | 10 6.41E-01
Tree model 52 | 52 6.36E-01

(e) Actual window size, weight and code length of the best templates

Figure A.18: Image “hamilton ed”, 600 rows x 600 columns

99

(b) Zoomed portion

i \;r::h,

=N A

(a) Image

n&r

iE

3 AHEEINREIN)

THES

e 2l

F AR IEs i)

(d) Best K-WLSTM template

(c) Best K-SCM template

‘ K ‘ k ‘ Best normalized code length ‘

Model
K-SCM
K-WLSTM

Fixed-length contiguous

3.50E-01
3.40E-01
3.56E-01
3.48E-01

10

11
o7

40

887 | 22
11

a7

Tree model

weight and code length of the best templates

) Actual window size,

e

(

383 rows x 590 columns

)

“hieroglyph”

Figure A.19: Image

100

: Jﬁ«%f/%‘g W»(yw //”\ﬂmﬂoﬁudém/«JMflgia

l&u f/«mg..,f
,lé» @i&o o/ 714&4[‘7 frave, ;ryfm/md :f 75 /)mulu;
m?/ nlmf ,/l~ M;Z/ﬁ /@/%ﬁ«é ‘/. comdiin
cand Lo eon z(/n-»q w fm Aorrrac.
WZ Jhad cabeutotid /A meu;, ;’mua 3
Ausharg anw;ulfmﬂéymllmd mMaL :'
. Wa dhosyrs eammencent a/é&mekﬁ GVM

K i »Jé’w v e el st
oo {,, bt lbosta mek fvlaf/ 1hrefrse Ao A’A«,%I‘ 4

ﬁa‘a ,awm/ﬁw« ikl oy vt avcd g 24 seadt- |
St of e unciserse. aud fmoun .

p&.m'j ok mstm]
,m,,,,lj‘ ey 1L eﬂm f:Z

Z,,L mu&c wmamﬁm‘z, ww&;m
orelesad & the Forlom uc}amm(7lal,y_k:{,2{ aa/o&& ";!/Iz i
Leowr tead” ¢ 2 of & Gl a..,é,
):Vt;ffmfm :‘“17 mu.m;/a ﬁltmbznt M:j,l’
" avid dhollel net Apons Execllon ve abready done o 3 s
e o e okt 1 v b ps fam il o A
o .]Pa/&,‘-ﬁam soid cwndet {ﬁmlral ﬁwa,uf W#W G trows
#ﬁ and ey desmonsdralim vvro b, et cource wll oie
d‘u« 4 ucﬁ&[}f al Sk mond

.’M?’;thi’ul&f Ak e Uy ﬂﬁ"ay M Lomim
Zﬁm“[’[%#wp /ulldw f%l‘mzfléf] 0567:;

e B e ek
ut-Chau e Uooor ol o
boltly 9 Zui.awa::‘lﬁ(ﬂ(cu& Mﬁ.(:;d»l:‘,u a.(_.

m L&’m«w{ WJ-.Z:M_ rreernbera. Jhe rsagans /'Lwc Yecarn ~
: wnd; e of o ‘paliihe .
st S Y

\

R & ey Garal:

Q,a—f’-};,
(a) Tmage (b) Zoomed portion
L1
"I
; -
!
m
i
By L
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model \ K \ k \ Best normalized code length ‘
K-SCM 37 | 12 1.83E-01
K-WLSTM 961 | 34 1.77E-01
Fixed-length contiguous | 13 | 13 1.86E-01
Tree model 55 | 85 1.80E-01

(e) Actual window size, weight and code length of the best templates

Figure A.20: Image “leeleter”,

101

1380 rows x 1007 columns

W
H
\ m
i T i
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 30 | 20 6.45E-01
K-WLSTM 822 | 20 6.48E-01
Fixed-length contiguous | 15 | 15 7.12E-01
Tree model 25 | 25 7.20E-01

(e) Actual window size, weight and code length of the best templates

Figure A.21: Image “lena_j”, 512 rows x 512 columns

102

ON THE ORIGIN OF SFECIES. INTRODUCTECN. When on board HM.S. 'Beagle,! s narumslist, 1 was much atmuck with
sertaln facts in the distribntion of the inhabitants of South America, and in the geological relanons f the present 1o the past
inbahitants of that centinent. These facts seemed ko me to throw some Light on the crigin of species—that mystery of mysteries,
sx it haz been called by one of our greatest philosophers. On my retum home, it occurred to me, in 1837, that something might
pechaps be made out on this question by paticntly sxcumulating and scflesting on all sorts of facts which conld possibly bave
any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes, these 1
calarged in 1544 into a sketch of the conclusions, which then seemed to me probable: from that period to the preseat day |
bave steadily puraned the same object. 1 hope that I may be excused for eatering on these personal details, 231 give ther to
show that [have niot been hasty in coming 1o & decision. My sork is now nearly fimished; but 3 it will take me two o three
more years to complete it, and a5 my bealth is far from strang, [have been urged to publish this Abstract 1 have more spectally
been induced to do this, as Mr. Wallace, who is now stodying the natural history of the Malay archipelago, hus arrived atal-
most exactly the same general conclsions that [have on the origin of species. Last year he sent to me & memoir on thiz sub-
ject, with & zequest thet 1 would forward it to Siz Charles Lycll, who sent it to the Linnean Socicty, and it is published in the
third volume of the Journal of that Society. Sir C. Lyell and Dr. Hooker, who both knew of my work--the Latter having read my
sketch of 1844--honoured me by thinking it dvisable to publish, with Mr. Wallace's excellent memoiz, some brief extracts

my manuseripts. This Abstuct, which 1 now publish, must necessarily be imperlect. 1 cannct hese give refereacen and 1T TT
suthorities for my several statements; and [must trust 1o the reader reposing some confidence in my accuracy. No doubt eors
will have crept Ln, though [hope [have always been cavtions in Husting to good suthorities alone. [can here give only the
general conclusions at which [have srived, with & fow facts in illustration, bot which, [hope, in mont cases will suffice. No
Sne can feel more sensible thn 1 do of the tecessity of hereatter publishing in detail all the facts, with references, on which my
conclusions bave bren gronnded; and 1 hope in & future work te do {his, For 1 am wel] awarc that scarcely a xiagle point i dis-
“usged in thia volume on which facts cannot be adduced, often apparently leading to conclusions directly oppesite to those at
which [have arrived. A fair result can be obtained only by folly stating and balancing the facts and erguments on both sides of
cach question; and this cannat pessibly be here done. 1 much regret that want of apace prevents my having the sutisfastion of
acknowledging the generons essistance which 1 have rceived from very meny namaliats, some of them personally unknowm
to me. [cannot, however, et this opportnity pass without expressing my deep obligations to Dir. Hisaker, who For the lest £I-
teen years has aided me in every possible way by his large stores of knowledge and bis eacellent fudgment. In considering the
Origin of Species, it is quite conceivable ther a natumlist, retlecting on the mutual affiniries of organic beings, on their emboyo-

logical relarions, their distriby geological succession, and other such facts, might come to the conclusicn that
cach species had not been independently created, but had descended, like varieties, From ather speeics. 3 ., such &
onclugion, even if well founded, wonld be unsatisfactory, until it conld be shown how the pecies inhabiting this

world have been modificd, so s to acquize thet perfoction of structure and coadaptation which mast justly excites our admira-
tion. Naturalists contimually refer to extemal conditions, such es climate, food, etc., 23 the oaly possible cause of variation. n
ane very limited sense, 25 we shall hercafter sce, this may be true, but it i3 preposterons to atfibute to mese external condi
tions, the structure, lar instance, of the weodpecier, with it fect, tuil, beak, and tongue, so admirably sdapted to catch insects
under the bark of trees. In the case of the missehoe, which draws ita novrishment from certain tees, which hes seeds that st
be transported by certain birds, and which has flowsrs with scparste sexes absclutely requiring the ageney of certain losects 1
bring pollen from ane fower to the other, it is equally prepasterous to aceount fer the structure of this paresite, with its rela-
tions ko several distinet organic beings, by the effects of external conditions, or of babit, or of the valition of the plant iwelE.
The suther of the "Vestiges of Cration would, [presume, say that, aftcr a certain unknewn mumber of gencrations, some bird
bad given birth to 2 woexdpecker, and some plant © the misseltor, and that these had been produeed perfect as we now see

; bit th seems to me to be for it leaves the case of the coadaprations <F crganic beings ©
cach other and to theis physical conditions of lie, Bt ond unexplained. It in, thecefore, of the highest to gain
s clear inaight i the means of 5 and Atthe of my observations it seemed to me

probable ther & careful study of domesticated animals end of cultivared plants would offer the best chance of making cut this
obscure problem. Nor have'1 been disappointed in this and in ll other perplexing casea 1 have invariably ound thet our
knowledge, imperfect though it be, of variation under domesticarion, afforded the best and safest clue. 1may veomre 1o sxpress
my cenvicticn of the high value of auch smdics, althongh they have been very commonly neglected by natralists. From these
considerations, [shall devote the first chepter of this Abstract to Veriation under Domestication. We shall thus see that large
amaunt of hereditary modification s at least possible, and, what is equally or more important, we shall see how great is the
power of man in accumulating by his Sclection sncceasive alight variations, 1 will then pess on o the variability oF apecics in &
state of nature, but 1 shall, uaforiunately, be compelled to treat this subject far too briefly, as it ean be treated properly cnly by
giving long caralogacs of facts. We shall, however, be enzbled to disouss whet cizcumstances are moat faveurable to variaton.
In the eat chapte: the Struggle for Existence amongst all organic beings throughout the world, which inevitably follows from
their high geometrical powers of increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and

vegeiable Hingdoms, AS many more ladrvieials of cach species are bam fizn can poasibly stvive, end 25, ly, there
is 4 Frequently recurving struggle for existence, it follows that any being, if it vary Bowever slightly in any munner profiteble to T
irselr, wnder the complex and sometimes varying conditions of life, will have a bemer chance of surviving, and thus be NATU- 1

RALLY SELECTED. From the strong principle of inberitance, any sclected varicty will tend to propagate its new and modi-
tied form. Thiz Fundemental subject of Natoml Selection will be treated at some leagth in the fourth chapier, and we ahall then
see how Naturel Selection almost ineviubly canses much Extinction of the less improved Forms of life and induces what [have
d Divergence of Charscter. I the aext chapter [shal] discuss the complex and little known laws of varieticn and of corre-
ation of gronth. It Tout sueceering ehaptese, doe mem appareat and grvest diftienlries on the theary will bt given.
aamely, first, the difficulties of ransitions, or in underaranding how & simple being or & simple organ cen be changed and per-
tected into a highly developed being r elzbomately consiructed organ; secondly the subjeet of Iostinet, oz the menta] powers of
animals, thirdly, Hybridism, or the inferillity of species and the fertility of varieties when intererossed; and fourthly, the imper- |_{_|_1

oo

-

(a) Image (b) Zoomed portion

"

H

(c) Best K-SCM template (d) Best K-WLSTM template

’ Model ‘ K ‘ k ‘ Best normalized code length

K-SCM 60 | 21 2.27E-01
K-WLSTM 243 | 49 1.90E-01
Fixed-length contiguous | 19 | 19 2.42E-01
Tree model 64 | 64 1.97E-01

(e) Actual window size, weight and code length of the best templates

Figure A.22: Image “otoosfont12”, 792 rows x 612 columns

103

ON THE ORIGIN OF SPECIES. INTRODUCTION. When on
board H.M.S. 'Beagle,' as naturalist, I was much struck with
certain facts in the distribution of the inhabitants of South
America, and in the geological relations of the present to the
past inhabitants of that continent. These facts seemed to me to
throw some light on the origin of species--that mystery of mys-
teries, as it has been called by one of our greatest philosophers.
On my return home, it occurred to me, in 1837, that something
might perhaps be made out on this question by patiently accu-
mulating and reflecting on all sorts of facts which could possi-
bly have any bearing on it. After five years' work I allowed
myself to speculate on the subject, and drew up some short
notes; these I enlarged in 1844 into a sketch of the conclusions, -
which then seemed to me probable: from that period to the pre-
sent day [have steadily pursued the same object. | hope that I
may be excused for entering on these persenal details, as I give
them to show that I have not been hasty in coming to a deci-
sion. My work is now nearly finished; but as it will take me
two or three more years to corplete it, and as my health is far
from strong, I have been urged to publish this Abstract. I have
more specially been induced to do this, as Mr. Wallace, who is
now studying the natural history of the Malay archipelago, has
arrived at almost exactly the same general conclusions that I
have on the origin of species. Last year he sent to me a memoir
on this subject, with a request that I would forward it to Sir
Charles Lyell, who sent it to the Linnean Society, and it is pub-
lished in the third volume of the Journal of that Society. Sir C.
Lyell and Dr. Hooker, who both knew of my work--the latter
having read my sketch of 1844--honoured me by thinking it
advisable to publish, with Mr. Wallace's excellent memoir,
some brief extracts from my manuscripts. This Abstract, which
[now publish, must necessarily be imperfect. I cannot here
give references and authorities for my several statements; and I |

(a) Image (b) Zoomed portion

“x"EE 8

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length
K-SCM 105 | 25 1.61E-01
K-WLSTM 349 | 39 1.23E-01
Fixed-length contiguous | 27 | 27 1.69E-01
Tree model 64 | 64 1.35E-01

(e) Actual window size, weight and code length of the best templates

Figure A.23: Image “otoosfont24”, 792 rows x 612 columns

104

(a) Image (b) Zoomed portion

H
mats
% | 1t
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length
K-SCM 22 | 12 6.18E-01
K-WLSTM 801 | 21 6.20E-01
Fixed-length contiguous | 15 | 15 6.85E-01
Tree model 24 | 24 7.00E-01

(e) Actual window size, weight and code length of the best templates

Figure A.24: Image “pep _j”, 512 rows x 512 columns

105

(a) Image (b) Zoomed portion

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length
K-SCM 19 | 16 6.44E-01
K-WLSTM 87 | 16 6.43E-01
Fixed-length contiguous | 7 | 7 6.46E-01
Tree model 13 | 13 6.44E-01

(e) Actual window size, weight and code length of the best templates

Figure A.25: Image “texmos1.p512M”, 512 rows x 512 columns

106

- ¥

(a) Image (b) Zoomed portion

P .

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 24 | 17 4.88E-01
K-WLSTM 988 | 27 4.84E-01
Fixed-length contiguous | 9 9 4.94E-01
Tree model 42 | 42 4.88E-01

(e) Actual window size, weight and code length of the best templates

Figure A.26: Image “wallpaper003-inca-100dpi-00M”, 538 rows x 746 columns

107

(b) Zoomed portion

(a) Image

A

(d) Best K-WLSTM template

(c) Best K-SCM template

‘ K ‘ k ‘ Best normalized code length ‘

Model

5.16E-01
5.15E-01
5.30E-01
5.28E-01

10
25

19

206
931
8

19

K-SCM
K-WLSTM

Fixed-length contiguous

Tree model

(e) Actual window size, weight and code length of the best templates

538 rows x 746 columns

-00M?,

100dpi

wallpaper004-inca-

13

Figure A.27: Image

108

. - . - e x.«..«.x*.«.ﬁ
(a) Image (b) Zoomed portion

: o o
(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length
K-SCM 305 | 10 4.88E-01
K-WLSTM 877 | 33 4.81E-01
Fixed-length contiguous | 9 9 4.97E-01
Tree model 44 | 44 4.85E-01

(e) Actual window size, weight and code length of the best templates

Figure A.28: Image “wallpaper010-inca-100dpi-00M”, 538 rows x 746 columns

109

(a) Image (b) Zoomed portion

Tl hﬁ%

(c) Best K-SCM template (d) Best K-WLSTM template
’ Model ‘ K ‘ k ‘ Best normalized code length ‘
K-SCM 18 | 12 4.47E-01
K-WLSTM 63 | 24 4.33E-01
Fixed-length contiguous | 12 | 12 4.50E-01
Tree model 27 | 27 4.37E-01

(e) Actual window size and weight of the best templates

Figure A.29: Image “writing”, 499 rows x 500 columns

110

(b) Zoomed portion

B

(a) Image

(¢) Best K-WLSTM template

‘ K ‘ k ‘ Best normalized code length ‘

Model
K-WLSTM

Tree model

7.73E-02
1.37E-01

23
42

124
42

|

(d) Actual window size and weight of the best templates

Figure A.30: Image “GEN _ A-fixedwidth6and8”, 500 rows x 500 columns

111

i Ko _mm <

HE ”ﬂ;“ﬁ
Rl e i
=l iy o)
. S

,
e =T - - o =
p— - e ey e L b :

g A S

A“f -

=

= =

: =

25

¢ e ke R
RSt B S o e Bt

1
- P v = |
E i))i
7 * Bt |
| ‘1_r Fj"l_ .
i, K]
7
L L H
' b !
? B %a T.
. L [(HY
St S =t
Ak - j irJ- i
*1 E |
2 .
(a) Image (b) Zoomed portion
|
|
|
Il
= -
=i =g Iiﬂﬁ

(¢) Best K-WLSTM template

’ Model ‘ K ‘ k ‘ Best normalized code length

K-WLSTM | 962 | 33 1.86E-01
Tree model 28 | 28 2.04E-01

(d) Actual window size and weight of the best templates

Figure A.31: Image “GEN _cmfugue”, 500 rows x 500 columns

112

T
e

o
EEE-L&E Lph r

H lU"“fa 1§,m1,m gg‘f

ﬁ F}wﬁ“ .mg ot

E‘J I1 l}\L gﬂtna

;li} 8

!ﬂ;

f‘é@mﬂ

1:_‘-,

]

!ﬁﬂ‘]‘ﬁ
&

tsu

'E{gﬂhs“;ﬁ)ﬁlm:\r}gm‘ifﬁ) “ﬂm-gm&“ﬁ

gﬂ 2 mﬁﬁ"“‘l‘c ,q,

L'i’m‘h“ﬂf"t.m [

‘Qi"%“ b S ’mf;’“
qwt}z&rm‘d‘rt ""igé 25, thar i‘%&
mf&;’“x

n., !Ru‘p
e 1%5
#‘é‘w H{SK'WEX-

uhl;“:jag *sw h gDk
§9fq, i -1_; ﬂggﬁﬂ

'g;mfwmfr

;""5#‘ oL M‘W

-,l‘ “-,F

fna’y

m]a =
f!‘

l? (1 I}, “ C;t;}:ﬂ..jﬁ&%%&n

L“?‘#m !

13‘."' “?lm

iﬁﬁ
Pﬁ E;‘:m,o, } 5

1;.,. = 1
L

“ilgl aied.‘]l ﬂéq

JEhl Jnsym

FoTP' ¥,
o fﬂff
”3"1\

°.w\r

1y

é i ‘
L\,,L

% m@
HlmlﬂJ\ch

(a) Image

S aglg N

J
;E uﬂ

]
P 0% 14; h
W puiﬂj; i

E"i‘l‘ mg‘é‘&%g;% gﬁ;réiélilﬂnh E’:‘ :ﬁj‘;}yﬁ e

A J%?ﬁﬁ?ﬁ%m »
1:{,11}?-51 i ‘ru‘ ulf; Lrﬁifn Lw[u

E‘F:K
Iy
up]_;amx

m ey ‘1\;0

ﬁ?
iﬁﬁ fr*ug;
-s;, .4 “L.}“c.‘k

L c;r—L
10LB"

ff;m;"‘

111;&::

%
il

or_fmn

unu
b

ghen
Z42g ‘L“I
o Luw.x ..H—uc ,.g,

.@iﬁpﬁ e

nw—n "y

.......

(b) Zoomed portion

(¢) Best K-WLSTM template

’ Model ‘ K ‘ k ‘ Best normalized code length
K-WLSTM | 243 | 49 3.00E-01
Tree model | 41 | 41 3.14E-01
(d) Actual window size and weight of the best templates

Figure A.32: Image “GEN _otoosfont12”, 500 rows x 500 columns

113

114

Appendix B

2D Context locations

Figure B.1 shows the 2D relative locations and their order (discussed in Section 4.1) for K =
32,64, 128,256,512, 1024.

115

g g
s 8
R @
8 e
G

Figure B.1: 2D relative locations and their corresponding order for different K values. The darkest
square represents the current sample.

116

Appendix C

Sparse encoder-decoder

The sparse encoder that was implemented for this thesis receives as input the image to be com-
pressed and a sparse template 7 for the model to be used. Then, it produces as output a string of
bits by the following steps:

e the dimensions of the image are encoded with a fixed number of bits (64 in our implementa-

tion)

e when using K-WLSTMs, the optimum tree, given 7, is found by the dynamic programming
algorithm described in Subsection 2.2.2 and is described with one bit per node

e using an arithmetic encoder:!

— the representation of 7 as a binary string is compressed by a memoryless model whose
probabilities are given by the KT estimator

— the image data is sequentially modeled and compressed using the sparse model implied
by 7 and the KT estimator, while the border values are obtained through reflection as

explained in Footnote 1 of Chapter 4.

The decoder, once it knows the sparse template and, in the case of K-WLSTMs, also the tree
structure, using the arithmetic decoder, it sequentially recovers the original image data by esti-
mating the probabilities as the encoder does, by performing the same reflection procedure for the

border data and by using the dimensions information to arrange the data.

'In our implementation, we wused A. Said’s arithmetic coder called TFastAC available at
http://www.cipr.rpi.edu/~said /Fast AC.html as of April 2009.

117

http://www.cipr.rpi.edu/~said/FastAC.html

118

Appendix D

Details on contiguous tree

optimization

Table D.1 shows which was the window size K considered for the contiguous tree evaluation of
Section 8.5 for each image of the test set, since this evaluation requires a computer memory size
O (25). Context locations were considered in the order described in Appendix B.

119

Image \ K ‘

1.1.01M 58

1.1.13M 64

1.5.02M 64
A-fixedwidth6and8 64
albert2D 64

amb 64

Bach CPE-Sonata flauto solo La min-fl | 64
Bobbys _letter page 1 64
ccitt4small 58
ccitt7small 59

chinese text 64
cmfuguel-0 64
flakes006-inca-100dpi-00M 55
HALFTONE 64
Halftone2 64

Halftone3 64

hamilton bw 64
hamilton ed 52
hieroglyph 64

leeleter 55

lena_j 54

otoosfont12 64
otoosfont24 64

pep_j 96
texmos1.p512M 58
wallpaper003-inca-100dpi-00M 56
wallpaper004-inca-100dpi-00M 54
wallpaper(010-inca-100dpi-00M 58
writing 64

GEN _A-fixedwidth6and8 64
GEN _cmfugue 62

GEN otoosfont12 64

Table D.1: Window size for contiguous tree optimization

120

