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Abstract—Countermeasures to Non-Techincal Losses (NTL) are
primarily motivated by the high economic losses they represent.
Most solutions focus on detecting suspicious behavior, aiming at
identifying fraudulent activities in a data-driven and automated
fashion. The direct economic impact associated with these solutions
is commonly overlooked. In this work, we focus on the economic
impact related to an NTL solution, where the list of customers to be
inspected and the inspection routes are optimized. The clients to be
examined are selected considering estimates of the fraud probability,
the estimated magnitude of the fraud, and the costs associated with
a particular inspection route. The mathematical formulation of the
optimization problem leverages existing techniques developed in the
context of a problem known as “the salesman problem.” We validate
our approach in real-world data obtained after inspecting over 168k
(fraudulent and typical) customers in Uruguay, South America. The
results show the relevance of taking routing costs into account and
indicate that the economic harm of NTL can be reduced by 76%.

I. INTRODUCTION

Due to the form of physical transport of energy in low voltage,
companies are vulnerable to energy theft or other consumption
measurement problems. This implies that a percentage of the
total energy delivered to consumers is not monetized. Energy
losses include technical losses (TL) resulting from dissipation of
components on the grid, and non-technical losses (NTL), due to
faulty equipment, billing errors, fraudulent meter manipulation or
direct connections. NTL problem involves millions in losses to
companies and has been a subject of academic research in the
last decades. Even today, with the use of smart meters and the
rise of deep learning techniques, it is an active research area [1].

To control NTL, companies carry out on-site inspections of
clients’ meters, if an irregularity is found, they apply a fine
proportional to the estimate of the fraud carried out. Defining
the set of customers to be inspected, is one main problem, as
it is intractable to inspect all clients regularly. This work seeks
to define the subset of clients and the inspection routes that
maximize the economic return, in other words, which is the
sequence of clients to be inspected that generates the highest
income from fines, minimizing the inspection costs.

The problem of minimizing the rute’s cost in a graph (given
a set of nodes) is known as Traveling Salesman Problem (TSP).
It is a classic NP-complete combinatorial optimization problem.
In contrast with the canonical TSP, NTL involves a joint opti-
mization of the route and selecting the nodes (potential fraud-
ulent customers). On the other hand, there is a time limitation
that prevents a single route from solving the problem (work
shifts). Multiple routes are necessary to model realistically how
NTL countermeasures are implemented in practice. The research
questions are, given a set of electrical consumption data from
residential and commercial customers; 1) What is the inspection
planning method that generates the highest positive economic
impact? 2) What is the optimal number of inspections to be
performed? 3) Given a list of candidates to be inspected, what
are the most suitable inspection routes?

II. RELATED WORKS

For several decades there has been a very important academic
activity in the area of route optimization with multiple variants
and diverse applications to the Vehicle Routing Problem (VRP)
[2]. The problem of determining a route over a subset of points by
optimizing a score is known as the Orienteering Problem (OP)
[3]. This is a combination of selecting nodes and finding the
shortest path between them. The objective is to maximize the total
score of the visited nodes. This problem could also be seen as the
combination of two classic combinatorial optimization problems,
the Traveling Salesman Problem and the Knapsack Problem [4].
The TSP problem has also been addressed considering profits
[5], which adds restrictions to the TSP optimization. An in-
teresting and related approach considers route time restriction;
these methods are commonly referred to as Team Orienteering
Problems (T-OP) [6], [7]. As we shall see, these methods are
particularly well suited for optimizing routes in the context of
NTL detection. In [6] a heuristic based on simulated annealing is
used where the compromise between exploration and exploitation
of possible solutions is controlled by a “temperature” parameter
that decreases with iterations.



If we take the simplified problem (TSP): and given a reduced
set of points, suppose 20, if we want to find the route that
passing only once through the 20 points minimizes the distance
traveled, we would have to compute the permutation of 20
alternatives, meaning testing 2.4×1018 which is computationally
very inefficient. There are several approximations to this problem
that ensure local minimums. An efficient method with a low
computational cost is the adaptation of self organized maps from
a network to a ring configuration proposed by Brocki et al. [8].
This algorithm has a python implementation [9] which is used in
the present work.

To the best of our knowledge, in the context of NTL, no
prior work has study the joint optimization of detecting potential
fraudulent customers and the actual inspection routes. The present
work extends ideas introduced in Massaferro et al. [10], where
a method was proposed to maximize the economic return taking
into account a fixed inspection cost (independent of the inspection
route). In addition, the present work considers a larger dataset
(first introduced in [11]), which allows us to introduce novel
discoveries and validate previous findings in a more extensive
and diverse dataset.

III. PROBLEM FORMULATION

A. Economic return estimation

Unlike the classic TSP where the profit collected at each visited
node is known, we need to estimate the return value based on two
factors. (i) The probability that a given customer is committing
fraud, and (ii) if fraud is perpetrated, the expected magnitude
of the power stolen. To this ends, the method described in
[10] is used, training the eXtreme Gradient Boosting (XGBoost)
algorithm, which is the one that reports the best results on the
database to be used [11]. XGBoost is an efficient implementation
of the Gradient Boosting algorithm [12]. This algorithm, used
for both classification and regression, is an assembly of decision
trees with a differentiable loss function, allowing gradient descent.
Fraud probability P (yi = 1|xi) is learned using a set of labeled
training data where yi represents the class label of th ith customer
and xi the available data.

A regressor is trained using data from the positive class to
estimate the economic return of detecting fraud (ai). From now
on, the estimated economic return for the customer ik is ri =
aiP (yi = 1|xi).

B. Optimization Problem Formulation

We formulate this problem as a combination of Team Orien-
tering Problem(T-OP) and Capacitated Profitable Tour Problem
(C-PTP) [2]. Defining each route as a graph R = (V,A), where
V represents the set of vertices i and A the set of arcs (i, j), we
define the following variables:
• yik represents if the ith customer is visited at the kth path.

• xijk is equal to 1 if the node j is visited immediately after the
node i. This variables form the adjacency matrix associated
to the route graph.

The objective is to maximize the energy recovery ri by min-
imizing the inspection costs ci as seen in the objective function
defined in (1).

max
∑
i∈V

M∑
k=1

riyik −
∑
i,j∈A

M∑
k=1

ci,jxijk (1)

s.t.

M∑
k=1

n∑
j=1

x0jk =

M∑
k=1

n∑
i=1

xi0k =M (2)∑
(i,j)∈Vk

(αdij + β)xijk < T ∀k ∈ [1, 2, ...,M ] (3)

M∑
k=1

yik ≤ 1 ∀i ∈ [1, 2, ..., n] (4)

n∑
i=1

xilk =

n∑
i=1

xlik = ylk ∀l ∈ [1, 2, ..., n] ∀k ∈ [1, 2, ...,M ]

(5)
ci,j = ctime(αdij + β) + cdistancedij . (6)

Eq. (2) restricts all routes (M) to start and finish on the origin
point. The second restriction (Eq. 3) limits the travel time of all
routes to not exceed T (total time of the shift, in this case 7.5hs),
α is a time/distance coefficient (inverse of the average speed), dij
represents the distance between nodes i and j (Euclidean distance
is used) and β is the average duration of an on-site inspection. The
constraint of Eq. (4) ensures that customers are visited at most
once while the constraint presented in Eq. (5) ensures connectivity
on routes by making every client have an incoming connection
and an outgoing connection if they are part of a route. Eq (6)
shows the components of the cost of performing the j inspection
after i inspection. The constant ctime is the cost linked to the
hours of the personnel and cdistance the cost of the trip linked to
the cost of fuel and vehicles maintenance.

IV. PROPOSED APPROACH

Since the optimization problem described is NP-complete, is
common to obtain approximated solutions based on heuristics that
approaches local optimal [4]. In order to maximize the economic
return on the inspection routes, we study three methods that we
referred as: Naive, Nearest Neighbor top M and SOM/TSP.

A. Naive Method

This method consists of a ranking of customers ordered by the
estimated amount of energy recovery. The routes start at the point
of origin adding clients following the order of the ranking until
visiting the client mk and returning to the origin. The amount of
routes performed is the one that gives the highest gain according



to equation 1. Unlike the methods presented below, this method
only implies the calculation of n distances, where n is the number
of samples in the dataset.

B. Nearest Neighbor top M Method

The Naive method does not optimize the inspection route
because the cost is only defined by the customers with a fraud
likelihood and volume, without considering their relative location.
A simple method is proposed to minimize the distance traveled by
maximizing the return. In this method, clients will not necessarily
be visited in the order in which they appear in the loss recovery
ranking. From the point of origin and onward, the distance to
the M clients with the highest estimated recovery (not visited) is
evaluated and the closest one is selected. This avoids computing
the distance matrix for the entire data base and reduces the
computation of n(n − 1)/2 to M n distances. The list of top
M options ensures that clients with a high estimate of economic
recovery are visited on the first routes and the use of Nearest
Neighbor allows to reduce inspection costs by carrying out a
greater number of inspections per route.

C. SOM/TSP Method

This method involves solving the TSP for a set of m clients
and using Self Organized Maps (SOM) to choose the route. The
m clients are chosen by ranking the estimated economic recov-
ery. Determining the number of inspections, involves optimizing
routes for different values of m on the same ordered list of
customers.

1) Self Organized Maps: Also known as Kohonen maps [13],
SOM is a type of unsupervised neural network that decreases
the data dimensionality (generally to two dimensions) and allows
to organize and visualize data. In its classical formulation, each
neuron in the network is visualized as a node in a two-dimensional
grid. Each neuron is associated with a vector of weights W of the
same dimension as the input data. The objective of the training is
to generate a new distribution in the mapped space that preserves
the similarity relationship of the input data. The training is carried
out as follows:

1) Weights are initialized randomly.
2) For each input data, the closest neuron is selected by

measuring the distance of the data to all the weight vectors
of the network. The selected node is called BMU (best
matching unit).

3) BMU weights and neighboring nodes are updated accord-
ing to the following equation: Wv(k + 1) = Wv(k) +
θ(u, v, k)α(k)(Xi − Wv(K)), where k represents the it-
eration step, u the BMU neuron and v are the nodes
of the network. To update around BMU a neighborhood
factor θ is used computing a convolution with a Gaussian
kernel (kernel radius decreases with iterations). The weights
Wv are updated in the direction of the data Xi using the

(a) 1000 iter (b) 4000 iter (c) 7000 iter

Fig. 1: Routing evolution by iterations number with Self Orga-
nized Maps for 100 points in Montevideo

learning coefficient α(k) that decreases monotonously with
the iterations.

4) It iterates until the learning rate or kernel radius has fallen
below a threshold.

2) SOM to TSP adaptation: . It is proposed to adapt the SOM
technique to the TSP by modifying the proximity structure of the
network from a grid to a ring topology. In this way each node
remains in a sequence. The input data and weight vectors are of
dimension 2 (latitude and longitude). The location of a customer
is associated with each BMU, so that each node in the ring gets
closer to a customer as the iterations increase, as illustrates Fig.
1.

Exploration begins with a value of α large, which decreases
with iterations in the exploitation phase. To improve the local fit,
the neighborhood coefficient also decreases with iterations.

3) Routing with SOM/TSP: The routing method for maximum
economic return with SOM/TSP is as follows:

1) The m clients with the highest estimated economic return
are selected.

2) A route is set to minimize the distance between the m
clients using SOM/TSP.

3) The route is divided into sub routes in order to meet the
time constraints (equation 3 constraint). It is assumed that
if ro is the optimal path between the nodes [1..m] then
ro[1..k] is the optimal path of [1..k] ∀k < m.

4) The total cost of all the routes that allow the m customers
to be inspected and the actual return obtained is computed.
Finally, we return to first step to cover the range of m that
allows us to identify the number of inspections with the
highest return.

Figure 1 shows an example of SOM/TSP application to solve
the routing of 100 random clients in Montevideo.

V. EXPERIMENTS AND RESULTS

A. Data Set

A dataset of 168k customers provided and in-site inspected
by the company UTE are considered in this study. Inspections
were performed during 2017 and 2020 by expert technicians. The



Fig. 2: We illustrate the geographic location of 200 random
samples. Each cross represents a customer inspected. For those
customers for which fraud was detected, the red circle illustrates
the magnitude of the fine defined (estimated from an approxima-
tion of the magnitude of the fraud). To preserve the users privacy,
we omit providing the absolute latitude and longitude values.

percentage of fraudulent clients is 15.5% (26k). This database is
divided into a training set and a test set. The test set corresponds
to the last 20k inspections carried out in 2020. Using the training
set, we predict the estimated potential fraud using the method
described in [10]. Once the prediction on the test set is made, a
database is formed that contains the following fields: ID, latitude,
longitude, estimated economic return and real economic return.

Considering the restriction of a single source routing, the city
of Montevideo was selected for evaluation, since it concentrates
75% of all the data.

B. Experimental Results

For the experiments presented below, the following cost pa-
rameters were used in the Eqs. (3) and (6): cdistance = 10$/km,
ctime = $1000/h , α = 5min/km, β = 10min. For the
experiments carried out with SOM/TPS, a learning coefficient
α(k) = 0.8(1 − 0.3 × 10−5)k was used. The neighborhood
coefficient of the BMU is calculated using a Gaussian filter
whose variance decreases with the iterations in the following way
σ(k) = C(1−0.3×10−4)k where the constant C is proportional
to the number of samples. The network is generated with a total
of 8M neurons, being M the number of clients. The experiments
were carried out for several M values between 50 and 15000. By
achieving a more efficient route, the SOM/TSP algorithm allows
more inspections within each route. Figure 3 shows the histogram
of inspections per route for the three methods.

The objective is to maximize the economic return, so we
evaluate the three strategies by calculating the maximum value

Fig. 3: Histogram of inspections per route after tunning the
operating point that maximizes the return. The mean value of
inspections per route is 8.5, 19.4 and 34.8 for the Naive, Nearest
Neighbor and SOM/TSP methods respectively.

Fig. 4: Economic recovery ratio by method for different numbers
of total inspections. The ratio is the quotient between the profit
obtained with the method (income-costs) and the total possible
income.

of the Eq. (1) for different numbers of inspections. Figure 4
shows the economic return ratio curves comparing the three
methods. The results are expressed as a percentage of the total
amount of fraud recovered. Table I shows the maximum economic
return and for that operating point also shows the number of
inspections and the number of routes to be done. The method
that achieves the best result is SOM/TSP, generating a profit of
76.3% by performing 206 inspection routes with an average of
34.8 inspections per shift.



Methods Naive Nearest Neighbord Top M SOM/TSP

Economic return 42.2% 66.4% 76.3%
Number of routes 460 232 206

Number of inspections 3895 4520 7000
#Inspections/#Routes 8.5 19.4 34.8

Precision 63.9% 57.9% 40.8%

TABLE I: Results of routing strategies at their point of maximum
economic return over test data set.

VI. CONCLUSIONS AND FUTURE WORK

We studied the problem of joint optimization of the detection
and routing definition of inspections for customers with atypical
consumption behavior. This work expands previous work and
provides a useful and practical solution to help power companies
minimize the impact of power theft. Results are reported on a
new database of 168 thousand real customers, which were in-site
inspected and labeled by expert technicians of the Uruguayan
national power company UTE. One of the main contributions
of this work is the mathematical formalization of the objective
problem with references to the area of Vehicle Routing (VRP).
Routing problems are NP-complete problems that cannot be
solved with exact solutions when the number of samples is
moderately large (e.g., larger than a few hundred). The problem is
contextualized into the TSP, and recent advances in that field are
leveraged to optimize NTL solutions. Three routing methods are
evaluated and discussed, two of them based on simple heuristics
and a third based on Self-Organized Maps. The results obtained
show the relevance of addressing this problem using metrics that
reflect the main objectives.

Works that perform classification or identification of fraud
focus on standard classification metrics (Precision, Recall, F Mea-
sure) or metrics that compare models by modifying classification
thresholds such as the area under the receiver operating character-
istic or precision-recall curves. In this work, the economic return
is used as target optimization metric. The selection of clients to
be inspected takes into account the trade-off between profits and
cost. A non-optimized inspection routing strategy could generate
high economic costs. For example, customers for which the
transportation costs associated with inspection are high should be
inspected only if there is a substantial likelihood of fraud. This
works formalizes this intuitive idea and frames the problem into
a mathematical framework to quantitatively optimize this notion.

The experiments presented show that the SOM/TSP method
allows an average of 34.8 inspections per route while the Nearest
Neighbor TOP M method achieves an average of 19.4 inspections.
The difference of almost ten percentage points in economic
recovery between both methods can translate into a significant
amount of money in the real problem. Future work could ex-
plore other solutions used in Team-Orienteering Problems and
the Travel Salesman Problem with Profits, such as simulated
annealing. Marginal gain heuristics should also be studied to

discard nodes from routes and compare results with other state-
of-the-art algorithms, e.g., Google’s OR-Tools [14].
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