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Summary

Created in 2007, Plan Ceibal is an inclusion and equal opportunities plan with the aim of
supporting Uruguayan educational policies with technology. Throughout these years, and
within the framework of its tasks, Ceibal has an important amount of data related to the
use of technology in education, necessary to manage the plan and fulfill the assigned legal
tasks. However, the data does not they can be studied without accounting for the problem
of de-identifying the users of the Plan.

To exploit this data, Ceibal has deployed an instance of the Hortonworks Data Platform
(HDP), a open source platform for the storage and parallel processing of massive data (big
data). HDP offers a wide range of functional components ranging from large file stor-
age (HDFS) to distributed programming of machine learning algorithms (Apache Spark /
MLlib). However, as of today there are no solutions for the de-identification of personal
code data open and integrated into the Hortonworks ecosystem. On the one hand, the de-
identification tools existing data have not been designed so that they can easily scale to
large volumes of data, and they also do not offer easy integration mechanisms with HDFS.
This forces you to export the data outside of the platform that stores them to be able to
anonymize them, with the consequent risk of exposure of confidential information. On the
other hand, the few integrated solutions in the Hortonworks ecosystem are owners and the
cost of their licenses is very significant.

The objective of this project is to promote the use of the enormous amount of educa-
tional and technological data that Ceibal possesses, lifting one of the greatest obstacles that
exist for that, namely, the preservation of privacy and the protection of the personal data of
the beneficiaries of the Plan. To this end, this project seeks to generate anonymization tools
that extend the HDP platform. On In particular, it seeks to develop open source modules
to integrate into said platform, which implement a set of programmed anonymization tech-
niques and algorithms in a distributed manner using Apache Spark and that can be applied
to data sets stored in HDFS files.
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1 Introduction

Plan Ceibal was created in Uruguay in 2007 and is a plan for inclusion and equal opportu-
nities to support Uruguayan educational policies with technology. Throughout these years,
Ceibal has collected a significant amount of data related to the use of technology in edu-
cation, necessary for managing the plan and the fulfillment of the legal tasks assigned to
it. The value of this data is evident when it comes to developing learning analytics, i.e.,
quantitative techniques based on the exploitation of these data to analyze and account for
educational problems. The determination of user profiles of communication networks, the
design of personalized learning trajectories, and the development of early dropout indica-
tors and alerts are some examples of this type of analysis.

The application of machine learning (ML) algorithms, pattern recognition, anomaly de-
tection, or natural language processing using neural networks open new perspectives to
answer these questions using quantitative methods based on accumulated data. Indeed,
these techniques require the availability of consistent volumes of data for the training of
prediction and correlation algorithms, and Ceibal is in a position to perform these analyses.
In addition, Ceibal is frequently asked by other organizations to provide them with datasets
to carry out studies. However, the use of learning analytics raises legal, ethical, and tech-
nological issues. Therefore, it is essential to ensure that the conduct of these studies and
the publication of the results provide the necessary guarantees to protect the privacy of the
individuals involved and their data.

In this context, the need arises to apply automated solutions that make it possible to
de-identify (anonymize) personal data before using them in studies, either within Ceibal
or other organizations. These methods should transform data consistently and make it
extremely difficult to re-identify individuals. This approach is known as privacy-preserving
data publishing (PPDP) and has a relatively low impact on the work of data scientists. On the
other hand, the notion of differential privacy, which views privacy as a property of systems
rather than data, has gained traction in recent years. Following this second approach, it is
possible to embed privacy in database systems or machine learning algorithms.

Beyond these two approaches, Ceibal poses technological constraints regarding the so-
lutions to be used. Since 2018, Ceibal has an open-source Big Data Platform (Hortonworks
Data Platform, HDP) that covers various aspects in the exploitation of such data: stor-
age for large files (Hadoop/HDFS), computational parallelization and horizontal scaling
(YARN/MapReduce), data access control (Apache Ranger), metadata tagging and data lin-
eage (Apache Atlas), distributed programming, ML and AI libraries (Spark, MLlib, Apache
Zeppelin).

This project explores the application of PPDP and differential privacy, assuring that data
manipulation is performed within the HDP platform. Also, ensuring that the developed
solutions scale appropriately for the massive volume of data that Ceibal has accumulated
that will undoubtedly continue to grow at an even faster rate in the coming years.

This document is organized as follows: Section 2 presents the basic concepts on anonymiza-
tion and differential privacy used in our work, including also possible use cases gathered
during the project. Next, Sections 3 and 4 present the approaches presented before, includ-



ing experimental evaluation of them. Finally, in Section ?? we conclude the accomplished
work and outline future perspectives.

2 Preliminary Concepts

Data privacy or information privacy is a part of data protection that deals with the proper
treatment of data with a focus on compliance with data protection regulations. Data anonymiza-
tion is one of the techniques that organizations can use to comply with data privacy regu-
lations that require the security of personally identifiable information (PII), such as health
reports, contact information, and financial details. This approach is particularly relevant
when organizations decide to publish or release a dataset, which may expose PII.

2.1 Data anonymization: privacy as a data property

Data anonymization, also known as de-identification, is a data transformation process that
seeks to reduce the risk of disclosing sensitive micro-data. This technique assumes that,
instead of the original dataset D containing the personal data in detail, another datasetDT is
published, which is the result of applying some transformation f to each row ofD. Typically,
two different disclosure risks are considered. On the one hand, identity disclosure refers
to an attacker’s ability to deduce to which individual a published record belongs. This case
is also known as the re-identification of a record. On the other hand, attribute disclosure
risk refers to an attacker being able to determine, with a high level of security, the value of a
confidential attribute of an individual. For example, an attacker would know with certainty
that a student possesses a certain familial status.

Privacy models seek to reduce the risks described above and define a series of charac-
teristics that data sets must satisfy to mitigate them. k-anonymity[8] is one of the simplest
privacy models, and it’s main goal is to reduce the re-identification risk. The idea underlying
this model is to bound the probability for an attacker who knows a published record f(r)
can link it to its pre-image r in the original database that gave birth to it. More precisely,
we say that the transformed dataset DT is k-anonymous if each combination of values for a
subset of attributes called quasi-identifiers appears repeated at least k times in DT . If this is
the case, the attacker is always confronted to at least k possible candidates in the original
dataset that could be the pre-image of the target. Hence, the probability for the attacker to
re-identify the person associated to the record is less than 1/k.

3 Top-down k-anonymization using Spark

3.1 Preliminaries

Top-down specialization (TDS) is an algorithm for producing a k-anonymous dataset. It
proceeds by generalization and replacement of the values in the original dataset from valus
of another, enlarged dataset.



Let D be a relational dataset, made of tuples {a1 := v1, . . . am := vm} which provide
values for m attributes a1, . . . am. Each attribute ai has an associated domain D(ai) for its
values. The dataset contain N tuples, also called rows, all with n columns and the same
attributes. The attributes of D are classified into the following categories:

• Identifiers Attributes that directly identify an individual.

• Quasi-identifiers Attributes that, combined with other quasi-identifiers, from tuples
that can be associated with a small number of individuals. We assume that the attacker
may know the value of these attributes for the victim, and will use them to reidentify
the tuple of the victim in the dataset.

• Sensible attributes Attributes that the attacker do not know and wants to disclose for
the victim.

• Other Other attributes that do not fall in any of the precedent categories. They are
either uninteresting for the attacker or we assume that the attacker does not know
their value for the victim.

Let q1, . . . qn be the quasi-identifiers of D. We note D[q1, . . . qn] the dataset obtained
by dropping from D all the attributes that are not in the subset {q1, . . . qm}, and D[q1 :=
v1, . . . qn := vn] the dataset obtained by removing from D[q1, . . . qn] the rows that do not
take the values q1 := v1, . . . qn := vn.

As part of this anonymization technique, identifiers are either removed from the dataset
or transformed using a hashing function. Quasi-identifiers are transformed into other, more
generic values, in order to achieve k-anonymity. In order to introduces this concept, we first
define what is the level of anonymity provided by a daatset:

Definition 3.1 (Level of anonymity of a dataset.) We say that the level of anonymity of D
is l if l is the minimum value of |D[q1 := v1, . . . , qm := vm]| that can be obtained for any
assignment of values v1, . . . vn of its quasi-identifiers q1, . . . qn. We note the level of anonymity
of D as A[D]

Based on this definition, we formally introduce the notion of k-anonymity as follows:

Definition 3.2 (k-anonymity) We say that D is k-anonymous if the level of anonymity pro-
vided by D is greater or equal than k.

We now turn to the description of an algorithm for transforming a dataset into a k-
anonymous one.

3.2 Approach description

The goal of TDS is to generate another k-anonymous datasetDT with the attributes aT1 . . . a
T
m

such that for each quasi-identifier qi of D, the elements of the domain D(qTi ) denote sets



of elements of D(qi), while any other attribute ai of D remains unchanged and with the
same domain. For example, a quasi-identifier of D representing the age of an individual as
a positive integer less than 110 may give raise to a quasi-identifier which takes as values
ranks of ages between 0 and 110, such as for instance, the rank [25, 50].

In order to achieve this, we assume that each quasi-identifier qi is equipped with a func-
tion pi : D(qTi ) → List(D(qTi )) which provides a partition for any set of D(qi), that is, a
collection of subsets that are mutually disjoint and where the union is the given input set.
Furthermore, we consider that the tree obtained by recursively applying pi to each element
in the partition pi(x) of x is well-founded. The TDS algorithm computes a partition for each
quasi-identifier qi, starting from the whole domain D(qi) as initial approximation (which
has to be k-anonymous for a solution to exist), and iterating the functions pi until further
specializing an element of the partition would entail losing k-anonymity. The transformed
dataset DT is then obtained mapping the quasi-identifiers of each row to the set in the cor-
responding partition. Notice that, as it is a partition, it classifies all elements of the domain
D(qi).

3.2.1 Internal state

The internal state of the TDS algoritm is therefore determined by two components: the
current partition and a working dataset. The algorithm works iteratively, updating the
current partition and using the working dataset to store intermediate results. Let us further
detail each of these two components.

Current partition. This part of the internal state contains current partition that has
been reached so far. This can be though of as a list of lists of sets, each list representing
the current partition of one of the quasi-identifiers. For simplicity, this logical list of lists is
actually represented as a flat list of pairs (qi, X), where the first component of the pair is
the quasi-identifier qi and the second component is a class X of the partition of qi.

Working Dataset. This is an auxiliary dataset D∗ containing temporary calculations
introduced for the sake of the sake of the transformation. In this dataset we kept both
the original values of the quasi-identifiers qi . . . qm, the list of transformed quasi-identifiers
qT1 . . . q

T
m with the corresponding set in the partition, and an additional list of so-called

candidate columns qXi for each set (qi, X) in the current partition. These candidate columns
are computed by replacing any occurrence of the set X in the attribute qTi of the row D∗j by
the set Y ∈ pi(X) such that D∗j (qi) ∈ Y . In other words: qXi is the transformed column that
we would obtain if (qi, X) would be specialized.

The name of the attributes of D∗ may therefore have no superinex at all (the original
quasi-identifiers), the special superindex ”T” (transformed column), or the a superindex that
is the name of one of the sets in the current partition. These superindex are used create addi-
tional, auxiliary columns in the working dataset D∗. Moreover, we use the notation qi→X|Th

to denote either the candidate attribute qXi of D∗ if h = i or qTh otherwise. Consistently, we
use the notation to D∗[i → X|T ] to denote the dataset D∗[qT1 , . . . q

T
i−1, q

X
i , q

T
i+1, . . . q

T
n ] and

D∗[T ] to denote D∗[qT1 , . . . q
T
n ].



3.2.2 The algorithm

The TDS algorithm takes as inputs a dataset D, the set of its quasi-identifiers {q1 . . . qn} and
their associated partitioning functions {p1 . . . pn}. It can be sketched as follows:

1. Initialization step.

• Initialize the current partition with the whole domain of each attribute (qi,D(qi))
for i = 1 . . . n.

• Create the working dataset D∗ with the columns qTi := D(qi) and the candidate
columns qD(qi)

i resulting from replacing D(qi) by the set X ∈ pi(D(qi)) such that
D(qi) ∈ X.

• Check that D∗[qT1 , . . . q
T
n ] is k-anonymous. If it is not, then return an error: it is

not possible to transform the dataset in order to obtain a k-anonymous one.

2. Selection step. Pick an element (qi, X) in the current partition such that pi(X) =
{X1, . . . Xo} 6= {} and D∗[i → X|T ] is k-anonymous. If no such element exists in the
current partition, then stop and return the current partition. Otherwise:

3. Specialization step. Replace in the current partition the element (qi, X) by the list
(qi, X1), . . . (qi, Xo). Add to the internal dataset D∗ the (lazy) candidate columns
qX1
i , . . . qXo

i as explained.

4. Iteration step. Goto 2

Notice that the more the domains of the quasi-identifiers are specialized, the closer the
transformed dataset will be to the original one, but the less anonymous it will be. The TDS
algorithm searches for a compromise between the information and anonymity level.

This compromise is closely related with the selection step. It is clear that it may exist
several candidate subsets (qi, X) in the current partition that can be selected for special-
ization. Specializing a given subset of the partition restricts the choices of further possible
candidates in a way that depends on the dataset. For example, if in the dataset the elements
matching one of the children of X are such that they are all combined with less than k ele-
ments of attribute qj , then choosing to partition (qi, X) will prevent qj to be partitioned in
further iterations. This means that different choices of the subset to be specialized result in
different solutions. Furthermore, choosing one candidate subset may also impact the speed
with which the TDS algorithm converges to a solution. It is therefore important to establish
a criterion for selecting the candidate for further specialization.

This problem is solved using a greedy approach. At each step, the candidate that offers
the best compromise between information and anonymity is selected. This compromise is
expressed using a gain function

G(s) =
GI [s]

1 + GA[s]
(3.1)

where GI [s] represents the information gain and GA[s] the anonymity gain when specializing
the subset s of the current partition.



Let s = (qi, X). The definition of GA[s] is straightforward:

GA[(qi, X)] = A[D∗[T ]]−A[D∗[i→ X|T ]] (3.2)

In words, it is defined as the difference between the current level of anonymity achieved so
far, and the one that is achieved by specializing s.

On the contrary, several possible measures can be taken for the function GI [s]. In this
work we considered two of them: Shannon’s information entropy and squared distance.

Shannon’s information entropy is a measure of the diversity of values that can be obtained
by specializing a set of the partition. Alternatively, it can also be thought of as a measure of
the uncertainty of finding a particular value. The lower the entropy of s, the more biased
are the specialization of s to one of its subsets, and therefore the more likely is to find
their values in the dataset. In this sense, it provides fewer information that refining another
subset w which can be partitioned into subsets such that their values are equally likely to
appear in the dataset. This metric is formally defined as follows:

GI [(qi, X)] = E(D∗[T ])− E(D∗[i→ X|T ]) (3.3)

where S is the definition of Shannon entropy:

E(D) = −
N∑
j=1

Pr [Dj ] ∗ log2(Pr [Dj ]) (3.4)

where N the number of rows in D and Pr(D − j) the ratio of occurrences of the row Dj in
the whole dataset D.

Squared distance is based on the idea of focusing on the accuracy provided by the trans-
formed dataste DT . Accuracy is measured as the (square of) the distance from the value
of the attribute in the original dataset to the representative of the corresponding parti-
tion to which it belongs in the transformed dataset. For using this metric, we assume that
each quasi-identifier is equipped with a normalized distance dqi(x, y) ∈ [0, 1] from a value
x ∈ D(qi) to its abstraction y ∈ D(qTi ). In this case, we define the information gain as
follows:

GI [(qi, X)] =

N∑
j=1

Pr [Dj ] ∗
n∑
h=1

dist2(Dj(qh), Dj(q
i→C|T
h )

n
(3.5)

where n is the number of quasi-identifiers, N the number of rows in D, Pr(D− j) the ratio
of occurrences of the row Dj in the whole dataset D.

The distance for each quasi-identifier can be easily defined in for numerical attributes.
For categorical ones, we use the notions of distance on a finite domain with a lattice struc-
ture that are defined in [? ].



3.2.3 Setup

The TDS algorithm was implemented in Spark/Cloudera,a platform for processing big data
based on the Hadoop distributed file system. In Hadoop, the dataset is distributed among
the working nodes of a cluster of servers. Spark provides the primitives for performing
operations on the dataset following the map/reduce paradigm. The task on the dataset are
spread among the servers of the cluster, each one performing the part of it that involves the
piece of data it has. Spark also provides an SQL-like language in which one can describe
operations such as group-by, counting, selecting and adding up columns, creating columns
in a lazy way, etc.

The TDS algorithm was programmed in Scala, the native language of Spark. In the way
it is described in this paper, the algorithm has a natural and elegant parallel implementation
in Hadoop. The iterative part of TDS is executed in the head node, while the operation for
computing the gain function and specializing the internal dataset are launched in parallel
among the nodes of the cluster. All the parallel part of the algorithm is encapsulated in the
primitives of the Spark library.

3.3 Experimental Evaluation

This technique was evaluated on the dataset that Ceibal used for a clustering experiment.
The aim of the experiment was to determine user profiles among the CREA2 and PAM
learning platforms. The input dataset included several quasi-identifiers (sex, educational
system, course level, state, region), a sensitive attribute (family income quintil) and other
type of numeric data regarding the number of times the studen connected to the platform.
The dataset was transformed using the TDS algorithm and a taxonomy of values for each
quasi-identifier, in order to produce a 10-anonymity dataset. As a result, it was found that
the original dataset contained several unique tuples and combinations that occur less than
10 times. After curating the dataset and eliminating outilers, a transformed dataset was
produced in which all the attributes can be specialized to the original values, except from
the course level.

The performance (execution time) of the TDS algortihm in the Cloudera environment
was also evaluated with several datasets, obtained from the original one by augmenting the
number of records (from x2 to x10). It was find that the algorithm behaved linearly on the
size of the dataset.

4 Differentially Private K-Means Clustering using Spark

In this section we describe the second solution we have developed to handle sensitive
datasets, while protecting the privacy of individuals. In contrast to the approach described
in Section 3, whose goal is to release individual information about each participant of the
dataset in the form of microdata, the goal of the this approach is to release aggregated in-
formation about all participants as the result of some data analysis. These include simple



statistical analyses yielding e.g. an histogram or contingency table, as well as more complex
data mining tasks such as clustering or classification.

To achieve this goal, we apply differential privacy techniques. In a nutshell, these tech-
niques proceed by modifying the algorithm that implements the corresponding data analysis
in order to “mask” the contribution of each individual. As such, it requires a separate and
independent treatment for each data analysis task. To identify the most relevant data analy-
sis task carried out by the Plan Ceibal, we held a meeting with its data scientists where they
exposed some case studies, and came to the conclusion that the most profitable option was
to develop a differentially private version of the k-means algorithm, one of the simplest and
most commonplace algorithm for clustering purposes.

4.1 Preliminaries

Next, we review the prerequisites of our solution, namely k-means clustering and the differ-
ential privacy framework.

The k-means|| Clustering Algorithm

Given a collection of data points in the d-dimensional Euclidean space, the goal of the k-
means problem is to partition the data points into k sets, i.e. clusters, each of them identified
by its center (i.e. means of the points in the cluster), such that the average (squared) dis-
tance of a data point to the nearest center is minimized. Figure 1 illustrates the problem
over a 2-dimensional dataset with k = 3 clusters.

Figure 1: K-means clustering.

Since finding the optimal solution to the k-means problem is NP-hard [3], in practice one
uses a heuristic to find approximate solutions. The heuristic, known as Lloyd’s Algorithm,
chooses k centers at random and iteratively refines them. In each iteration it i) assigns
each data point to the cluster with the nearest center, and ii) updates the centers of the
resulting clusters. The algorithm halts when the solution stabilizes, e.g. when between two
consecutive iterations the centers move less than a given threshold distance or the points
that change from one cluster to another are below a given threshold fraction.

Even though appealing, this heuristic has two major drawbacks. First, the running time



can be exponential in the worst case, and second, it yields a solution that can be arbitrarily
far away from the optimal solution. To address the second issue, Arthur and Vassilvitskii [1]
proposed a more informed initialization step: Instead of choosing the initial k centers at
random, the idea is to spread them out, considering the distribution of data points that are
being clustered. Concretely, the first center is chosen at random among the data points and
each of the remaining center is chosen among the remaining data points, with probability
proportional to the distance of the data point to the closest existing, i.e. already selected,
center. As a result, data points further away from the already selected centers are more
likely to be chosen as centers.

Even though this modification solves the accuracy problem of the vanilla k-means al-
gorithm —it guarantees a bounded approximation ratio in O(log k)—, it introduces a new
problem: the algorithm initialization becomes inherently sequential since the probability
with which a data point is chosen to be the i-th center critically depends on the selection of
all previous i − 1 centers. As a result, its applicability to massive data —a key requirement
of our solution— is severely limited.1

Bahmani et al. [2] devised a solution for this limitation. Instead of doing k iterations,
where in each iteration 1 center is incorporated, the proposed solution, dubbed k-means||,
does only “a few” iterations, where in each iteration ` ∈ Θ(k) (e.g. 2k) centers are incorpo-
rated (in expectation). To this end, each data point is selected as a center independently,
with a probability, as before, proportional to the distance to its closest existing center.2

Observe, however, that this process outcomes a set C of more than k centers (in expecta-
tion), say k′. To select exactly k centers as required, the k-means|| proceeds by assigning a
weight wc to each point c ∈ C, defined as the number of points that would be associated to
the cluster with center c if we were to cluster the original dataset according to the centers
in C. Finally, the set C is partitioned into k clusters considering the weighted of its points,
which yields the final k centers that are to be used as initialization of the algorithm over
the dataset. In practice, C is significantly smaller than original dataset, which allows this
reclustering process to be done efficiently.

Apache Spark includes a distributed implementation of the above described k-means||
algorithm in its machine learning library MLlib. This fully-functional and optimized im-
plementation of the algorithm is a central ingredient of our final solution, as described in
Section 4.2.

Differential privacy

Intuitively, a randomized algorithm is differentially private if it behaves similarly on similar
input datasets. To formalize this intuition, the framework of differential privacy relies on
the notion of dataset adjacency: two datasets d, d′ are called adjacent, written d ∼ d′ iff they
differ in a single data point.

Definition 4.1 (Differential privacy) Given ε ≥ 0, we say that a randomized algorithm A is
1Note that this modification in effect turns the center initialization into the bottle-neck of the algorithm, since the center refine-

ments can already be parallelized
2Now, the probability normalization factor is accommodated so that ` centers are selected in expectation.



ε-differentially private if for every pair of adyacent datapoints d, d′ and every set S ⊆ range(A),

Pr [A(d) ∈ S] ≤ eε Pr [A(d′) ∈ S] .

Establishing differential privacy for numeric queries of limited sensitivity is relatively
simple. The Laplacian mechanisms [4] says that we can obtain a differentially private ver-
sion of query f : D → R by simply perturbing its output: On input d, we return f(d) plus
some noise sampled from a Laplacian distribution. The noise must be calibrated according
to the global sensitivity GSf of f , which measures its maximum variation upon adjacent
datasets; formally, GSf = maxd,d′|d∼d′ |f(d)− f(d′)|.

Theorem 4.1 (Laplacian mechanism) Given a numeric query f : D → R of global sensitivity
GSf , the randomized algorithm A(d) = f(d)+Lap

(
GSf

ε

)
is an ε-differentially private version

of f .

An appealing property fo

4.2 Approach description

In contrast to the traditional, so-called interactive approach, where one would modify the
k-means algorithm itself to yield differentially private version, we adopt a non-interactive
approach that exploits the post-processing property of differential privacy. Concretely, given
a dataset we construct a differentially private synopsis or abstraction of the dataset, and then
apply the k-means algorithm to the synopsis. The benefits of this approach are twofold.
First, we can use Spark (or any other) implementation of k-means|| as is, taking advantage
of all its carefully crafted optimizations and reducing the developing time. Second, we can
use the differentially private synopsis not only for clustering purposes but also other data
analysis tasks.

For constructing the dataset synopsis, we build on Qardaji et al. technique [5] originally
designed for 2-dimensional datasets, and generalize it to d dimensions following the EUGkM
approach of Su et al. [6, 7]. More specifically, we build the dataset synopsis adaptively,
following a 2-levels partitioning approach. We begin by partitioning the dataset domain
using a uniform grid and counting the number of points that lay within each cell. For
abstraction purposes, all the points within the same cell are mapped to the cell center.
Therefore, the dataset synopsis consists of all the cell centers together with the number of
points that each center abstracts. An illustrative example is depicted in Figure 2. As we
can see in the figure, for building the gird, each dimension is split into the same number of
intervals (3, in this case), and in each dimension all intervals have the same width.

The so-obtained synopsis presents, however, two problems. First, it is not privacy-
preserving. This can be fixed by releasing a noisy —rather than the exact— count of the
number of points that each cell center abstracts, via the Laplace mechanism . Note that
each point of the original datasets belongs to a single cell, and thus affects the count of a
single center. In view of the parallel composition theorem of differential privacy , it is thus
not necessary to split the available privacy budget among all applications of the Laplace



(a) Original dataset. (b) Dataset with grids and cell centers. (c) Dataset synopsis.

Figure 2: Dataset synopsis via uniform grids.

mechanism, but we can calibrate each application with the entire privacy budget, yielding
this way more precise results.

The second limitation originates from the partition strategy, which completely disregards
the datapoint distribution. As a result, there might be some cells with very few points and,
at the same time, other cells with a lot of points, which results in a poor abstraction of
the original dataset. Intuitively, we would expect a finer partitioning for dense regions,
and a coarser partitioning for regions with few points, which is particularly desirable in the
presence of sparse datasets. To address this phenomenon and produce more precise and
efficient synopses, we employ a two levels abstraction, where we first lay a coarse grid and
then further refine each of the 1st-level cells, according to their noisy counts: the more
populated the cells are, the finer the grid we use to refine them. An illustrative example of
this two levels abstraction is depicted in Figure 3.

Symbol Definition
", "i Total privacy budget and level-i budget
↵ AG budget split, ↵ = 0.5 means "1 = "2

N Total number of workers
N 0 Noisy worker count of level-1 cells
mi ⇥ mi Level-i grid granularity
n̄ Expected noisy worker count of a level-2 cell
t A task or its location, used interchangeably
ci A level-2 cell
nci Noisy worker count of ci

pa
ci

Acceptance rate of workers within ci

c0i Sub-cell of cell ci

Table 1: Summary of Notations

under-partition in dense regions. AG avoids these draw-
backs by using a two-level grid and variable cell granular-
ity. At the first level, AG creates a coarse-grained, fixed-
size m1 ⇥ m1 grid over the data domain. AG uses a data-
independent heuristic to choose level-1 granularity as

m1 = max(10,
l1

4

r
N ⇥ ✏

k1

m
)

where N is the total number of locations and k1 = 10 [23].
Next, AG issues m2

1 count queries, one for each level-1
cell, using a fraction of the total privacy budget: ✏1 = ✏⇥↵,
where 0 < ↵ < 1. AG then partitions each level-1 cell into
m2 ⇥ m2 level-2 cells, where m2 is adaptively chosen based
on the noisy count N 0of the level-1 cell:

m2 =
lrN 0 ⇥ ✏2

k2

m
(1)

where ✏2 = ✏� ✏1 is the remaining budget, and the constant
is set empirically to k2 = 5. Parameter ↵ determines how
privacy budget is divided between the two levels.

Figure 2 shows a snapshot of an adaptive grid, with four
level-1 cells A,B,C,D. Constructing a di↵erentially private
AG requires two steps. First, the noisy counts N 0 of A,B,C,D
are computed by adding random Laplace noise with mean
�1 = 2/"1 to the actual counts of these cells. Second, based
on the noisy counts, level-1 cells are further split into level-2
cells. According to Eq. (1), cell D, which has noisy count
200 is partitioned according to a 3x3 grid, while the gran-
ularity for other cells is 2x2. Thereafter, AG adds to each
level-2 cell (ci, i = 1..21) random Laplace noise with mean
�2 = 2/"2. Finally, their corresponding noisy counts nci

together with the structure of the AG are published. Ac-
cording to Theorem 2, the sanitized release of AG provides
"-DP.

A B

C D

Level 1

Level 2
1c 2c

3c 4c

5c 6c

7c 8c9c 10c

c c

13c 14c

16c 17c
15c

18c

c c c

)100( ' =
A

N )100( ' =
B

N

)100( ' =
C

N )200( ' =
D

N

11c 12c 19c 20c
21c

Figure 2: A snapshot of adaptive grid (" = 0.5, ↵ = 0.5)

Although AG was shown to yield good results for general-
purpose spatial queries [23], it is not directly applicable to

SC, due to its rigidity in choosing its parameters. Specif-
ically, the granularity m2 of the level-2 grid is too coarse,
leading to large geocast areas and high communication over-
head, as we show next. According to Eq. (1), the expected
number of workers (i.e., noisy count) in a level-2 cell is:

n̄ = N 0/m2
2 ⇡ k2/✏2

Table 2a presents di↵erent values of m2 and n̄ when varying
total budget ✏ with ↵ = 0.5. Note that, the values of n̄ are
rather large, especially for more restrictive privacy settings
(i.e., lower ✏). For ✏ = 0.1, n̄ is 100. In practice, a geocast
region is likely to include multiple PSD cells, hence 100 is a
lower bound on the ANW , while its typical values can grow
much higher, leading to prohibitive communication cost.

" "2 m2 n̄
1 0.5 3 11
0.5 0.25 2 25
0.1 0.05 1 100

(a) Original AG (k2 = 5)

" "2 m2 n̄
1 0.5 6 2.8
0.5 0.25 5 5.6
0.1 0.05 2 28.2

(b) Modified AG (k2 =
p

2)

Table 2: Granularity m2 and average count per cell n̄ (N 0 = 100)

We propose a more suitable heuristic for choosing k2. Re-
call that the primary requirement of SC task assignment is
to achieve high ASR. To that extent, we want to ensure
that the task request is geocast in a non-empty region, i.e.,
the real worker count is strictly positive. According to the
Laplace mechanism of DP, each PSD count is the sum of
noisy and real counts. Given the level-2 privacy budget ✏2,
we can also quantify the distribution of added noise, which
has standard deviation µ =

p
2/✏2. Therefore, if the PSD

count is larger than µ, then with high probability there will
be at least one worker in the level-2 cell.

We increase granularity m2 in order to decrease overhead,
but only to the point where there is at least one worker in
a cell. Denote by countPSD the value reported by PSD for
a certain level-2 cell. Given a Lap(1/"2) distribution, the
probability that the noisy count is larger than zero is:

ph = 1 � 1

2
exp(� countPSD

1/✏2
)

Furthermore, we want to have the PSD count larger than
the noise, i.e., n̄ = k2/"2 �

p
2/"2, so at the limit we set

k2 =
p

2. The resulting probability of having non-empty
cells is ph = 1 � 1

2
exp(�

p
2) = 0.88. According to Eq. (1),

the corresponding granularity is m2 =
lq

N 0"2/
p

2
m
.

In summary, we modify AG by carefully reducing the
granularity threshold at level-2 such that ANW is reduced,
while the probability for each level-2 cell to contain a real
worker is at least 88%. Table 2b shows that this new set-
ting significantly reduces n̄, and as a result ANW . Next, we
present a search strategy which groups cells together such
that the achieved ASR is above a given threshold.

5. TASK ASSIGNMENT
When a request for a task t is posted, the SC-server

queries the PSD and determines a geocast region GR where
the task is disseminated. The goal of the SC-server is to
obtain a high success rate for task assignment, while at the
same time reducing the worker travel distance WTD and
request dissemination overhead ANW .

923

Figure 3: Adaptive, 2-levels abstraction via uniform grids.
Source: [9].

The final synopsis consists in the centers of the 2nd-level cells, together with the number
of points from the original dataset that each of them abstracts. As before, these counts must
be perturbed using the Laplacian mechanism to ensure differential privacy.

To complete the description of the synopsis construction, we are only left to specify the
privacy budget and partitioning granularity employed in each abstraction level. As for the
first point, if ε is the overall available privacy budget, a fraction αε is spent for perturbing
the 1st-level counts, and the remaining (1−α)ε is spent for perturbing the 2nd-level counts.
For concreteness, we set α = 0.5 but in practice we observe that the value of α has little
impact on the final synopsis.

As for the second point, i.e. the partition granularity, assume we have a dataset of N



d-dimensional points. Then, the 1st-level abstraction partitions the data points domain into

M1 =

(
Nε

c1

) 2d
2+d

cells, by splitting each dimension into

m1 =
⌈
max

{
d
√

100, 1
4

d
√
M1

}⌉
intervals of equal width . As for the 2nd-level abstraction, if N ′ is the noisy count associated
to a 1st-level cell (if N ′ happens to be negative due to applied perturbation, it is zeroed), it
is further partitioned into approximately

M2 =

(
N ′(1− α)ε

c2

) 2d
2+d

cells, by splitting each dimension into

m2 =
⌈

d
√
M2

⌉
intervals of equal width.
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