
 
PEDECIBA Informática 

Instituto de Computación – Facultad de Ingeniería 
Universidad de la República 

Montevideo, Uruguay 

 
 

Tesis de Maestría 
en Informática 

 

 

An analysis of student performance 
during the introduction of PSP : 
An empirical cross course 

comparison 
 
 
 

 

Fernanda Grazioli 
 

 

 

 
 

2013 



 

 

 
                         

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fernanda Grazioli 
An analysis of student performance during 
The introduction of the PSP : an empirical  
Cross course comparison 
ISSN 0797-6410 

Tesis de  Maestría en Informática 
Reporte Técnico RT 13-07 
PEDECIBA 
Instituto de Computación – Facultad de Ingeniería 
Universidad de la República. 
Montevideo, Uruguay, 2013 
 
 



 

 

 

TESIS DE MAESTRÍA 

AN ANALYSIS OF STUDENT  
PERFORMANCE DURING THE  
INTRODUCTION OF THE PSP:  

AN EMPIRICAL  
CROSS COURSE COMPARISON 

FERNANDA GRAZIOLI 

DIRECTOR DE TESIS: WILLIAM NICHOLS 

DIRECTOR DE ESTUDIOS: HÉCTOR CANCELA 

PROGRAMA DE MAESTRÍA EN INFORMÁTICA 

JUNIO DE 2013 





 

 

 

UNIVERSIDAD DE LA REPÚBLICA 
FACULTAD DE INGENIERÍA 

El tribunal docente integrado por los abajo firmantes aprueba la Tesis de 
Investigación: 

An Analysis of Student  
Performance During the  
Introduction of the PSP:  

An Empirical  
Cross Course Comparison 

 

Autor: Ing. María Fernanda Grazioli Pita 

Director de Tesis: Dr. William Nichols 

Director Académico: Dr. Héctor Cancela 

Carrera: Maestría en Informática - PEDECIBA 

Calificación: ____________________________ 

TRIBUNAL 

Dra. Juliana Herbert (Revisora)  ____________________________ 

Dra. Cristina Cornes     ____________________________ 

M.Sc. Omar Viera     ____________________________ 

Montevideo, ____________________________ 





 

V 

 

Agradecimientos [Acknowledgements] 

Quiero agradecer primero a las personas del Grupo de Ingeniería de Software de 

la UdelaR que trabajaron conmigo y me ayudaron en distintas oportunidades: Cecilia 

Apa, Lucía Camilloni, Silvana Moreno, Leticia Pérez, Sebastián Pizard, Rosana 

Robaina y Carolina Valverde. Agradezco especialmente a Diego Vallespir por confiar 

en mí para este proyecto, motivarme y alentarme en todo momento. Su gran dedicación, 

experiencia y su apoyo durante estos meses de trabajo hicieron posible esta tesis. 

A Gabriela Mathieu y a Jim McCurley por las discusiones sobre los distintos 

métodos estadísticos posibles para este trabajo.  

A Marina Melani y Alejandra Baccino por las correcciones de la escritura en 

inglés.  

Agradezco a Adriana Marotta, quien me guió durante los cursos de la maestría y 

estuvo siempre a disposición. 

A William Nichols por ser el tutor y guía de este trabajo de tesis y a Héctor 

Cancela por ser mi director de estudios. Pude sentir en todo momento la confianza que 

tuvieron en mí y su apoyo constante. 

 Agradezco a mi hija Agustina y a Fernando por aguantar y entender.





 

VII 

 

Resumen en Español 

Hoy en día, cada vez más empresas desarrollan, combinan e incluyen software 

de distintas formas en sus productos. Además, muchos de los sistemas de los que 

nuestras vidas y medios de vida dependen, son administrados por software. Como los 

componentes de software de casi cualquier producto crecen y se vuelven cada vez más 

complejos, los retrasos en el cronograma, los sobre-costos y los problemas de calidad 

ocasionados por el desarrollo de software se están convirtiendo en uno de los 

principales problemas que deben afrontar las empresas. Los productos de software van 

desde cientos a millones de líneas de código, donde cada línea es escrita por un 

ingeniero de software. Las empresas de software dependen de las personas, por lo que 

sus técnicas y su experiencia son determinantes para el resultado del proceso de 

desarrollo. 

El Personal Software Process (PSP) es un proceso de desarrollo de software 

definido, medible, y diseñado para ser utilizado por un ingeniero de software de forma 

individual. El PSP aborda directamente las necesidades de las empresas de software 

mediante la mejora de las técnicas y las habilidades individuales de los ingenieros de 

software, proporcionando además una base cuantitativa para la gestión del proceso de 
desarrollo. Al mejorar el desempeño individual, el PSP puede mejorar el rendimiento de 

la organización.  

Durante muchos años, el Software Engineering Institute (SEI) de la Universidad 

Carnegie Mellon ha capacitado a ingenieros de software en el Personal Software 

Process. Los cursos de PSP han cambiado a lo largo de los años. Varias versiones del 

curso utilizan los mismos ejercicios de programación, pero introducen las fases del 

proceso y las técnicas en momentos diferentes. La primera versión del curso cuenta con 

varios estudios publicados que demuestran una mejora en el desempeño del 

desarrollador luego de la inserción del proceso, pero el análisis retrospectivo deja 

algunas amenazas a la validez externa. Dado que los programas del curso son en un 

mismo dominio de aplicación, una amenaza que surge es que la mejora podría ser 

causada por la repetición de la programación y no necesariamente por la introducción de 

técnicas y de fases del proceso. Por lo tanto, la pregunta es si las mejoras se deben a las 

fases y técnicas o debido a la repetición de programación durante el curso (efecto de 

aprendizaje por repetición). 

Dada esta situación, el objetivo principal de esta tesis consiste en utilizar los 

datos de las últimas dos versiones de cursos de PSP para determinar si las diferentes 

técnicas introducidas mejoran aspectos del desempeño de los desarrolladores, o si esa 

mejora surge como consecuencia de ganar experiencia en el dominio de aplicación. El 

segundo objetivo es documentar observaciones y resultados de estas dos versiones más 

recientes, las cuales aún no tienen estudios publicados. 

Analizamos el desempeño de 347 ingenieros durante el entrenamiento del PSP 

con respecto a cuatro dimensiones: la densidad de defectos en pruebas unitarias, el yield 

del proceso, la tasa de producción, y la precisión en la estimación de tamaño. 

Utilizamos los datos de los cursos de PSP que fueron dictados entre junio de 2006 y 

junio de 2010. Estos cursos fueron brindados por el SEI o por socios (partners) del SEI.  



 

VIII 

 

 

Respecto a las observaciones de los cursos, encontramos una reducción en la 

media de la densidad de defectos en pruebas unitarias de un factor de 2.3, un aumento 

en la media del yield del proceso en un factor de 1.9 y una reducción en la media de la 

precisión de la estimación de tamaño en un factor de 2.6 . Estos tres resultados muestran 

mejoras significativas, que siguen la misma línea que los resultados publicados del 

curso anterior. También encontramos una reducción en la media de la tasa de 

producción en un factor de 0.7, lo que difiere de los estudios anteriores y muestra un 

deterioro en la productividad de los ingenieros.  

Además, nuestros resultados sugieren que las mejoras en la densidad de defectos 

en pruebas unitarias y en el yield del proceso son más plausibles por las técnicas del 

PSP que por la repetición de la programación. Para la precisión en la estimación de 

tamaño y para la tasa de producción no pudimos descartar por completo el efecto del 

aprendizaje en el dominio de aplicación como la principal causa de los cambios. Sin 

embargo, los resultados nos llevan a pensar que las fases del proceso son probablemente 

una de las principales razones de los cambios. Como trabajo futuro proponemos varios 

experimentos controlados, los que permitirán evaluar en profundidad los efectos de la 

repetición de la programación.  



 

IX 

 

Abstract 

Nowadays, more and more businesses develop, combine and include software in 

their products in different ways. Also, many of the systems, on which our lives and 

livelihoods depend, are run by software. As the software component of almost any 

product grows and gets more complex, schedule delays, cost overruns, and quality 

problems caused by software development are becoming a main problem for business. 

Software products are made of hundreds to millions of lines of code, each one 

handcrafted by a software engineer. Software businesses depend on people, so their 

technical practices and their experience strongly determine the outcome of the 

development process. 

The Personal Software Process (PSP) is a defined and measured software 

process designed to be used by an individual software engineer. The PSP directly 

addresses the software businesses needs by improving the technical practices and 

individual abilities of software engineers, and by providing a quantitative basis for 

managing the development process. By improving individual performance, PSP can 

improve the performance of the organization. 

For many years, the Software Engineering Institute (SEI), of the Carnegie 

Mellon University has trained software engineers in the Personal Software Process. The 

PSP courses have changed throughout the years. Several versions of the course use the 

same programming exercises, but introduce process phases and techniques in modified 

sequences. An earlier version of the course has several published studies demonstrating 

improvement in developer performance with process insertion, but the retrospective 

analysis left some threats to external validity. One threat is the confounding of the effect 

of introducing process phases and techniques insertions with the gaining of domain 

experience as related programs are developed. Therefore, the question is if the 

improvements are due to the phases and techniques or due to the programming 

repetition during the course (learning effect). 

Given this known problem, the main goal of this thesis is to use the PSP data 

from the latest two course formats to determine whether the different techniques 

introduced improve several aspects of developers’ performance, or if such improvement 

is only a consequence of gaining experience in the problem domain. A secondary goal is 

to document observations and results of the two recent course versions, which do not 

yet have published studies. 

We analyzed the performance of 347 engineers during the PSP training with 

respect to four performance dimensions: defect density in unit testing, yield, production 

rate and size estimation accuracy. We used data from PSP courses taught between June 

2006 and June 2010. These courses were taught by the SEI or by SEI partners. 

Regarding the courses observations, considering both courses we find out that 

the mean reduction in defect density in unit testing is a factor of 2.3, the mean increase 

in yield is a factor of 1.9 and the mean reduction in size estimation accuracy is a factor 

of 2.6. All these three results reveal significant improvements, which follow the same 

line of the earlier course published results. We also find out that the mean reduction in 



 

X 

 

production rate is a factor of 0.7, which differs from the previous studies and reveals a 

deterioration of the engineers' rate. 

Also, our results suggest that improvements in defect density in unit testing and 

yield are most plausible regarding mastering PSP techniques rather than programming 

repetition. For size estimation accuracy and production rate we were not able to fully 

discard the domain learning effect as the root causes of the changes; however the results 

leads us to think that the process phases are probably one of the main reasons of the 

changes. As future work we propose several controlled experiments, which will allow 

evaluating the programming repetition effects in depth. 



 

XI 

 

Contents 

Agradecimientos [Acknowledgements] ........................................................................... V 

Resumen ........................................................................................................................ VII 

Abstract ........................................................................................................................... IX 

Contents .......................................................................................................................... XI 

 

 

Chapters 
 
1. Introduction .................................................................................................................. 1 

2. Background on Software Quality and Planning using the PSP .................................. 11 

3. Background in Empirical Software Engineering and Statistical Analysis Methods .. 27 

4. Data Quality in the PSP .............................................................................................. 39 

5. Data Analysis .............................................................................................................. 53 

6. Related Work ............................................................................................................ 115 

7. Conclusions and Future Work .................................................................................. 123 

 

 

Appendices 
 
1. Software Quality Models and Processes .................................................................. 129 

2. Concepts of Empirical Software Engineering .......................................................... 135 

3. Data Quality Metrics for the PSP ............................................................................. 179 

4. Data Quality Problems in the PSP ............................................................................ 199 

5. Extended Abstract presented for the TSP Symposium 2013 .................................... 205 

6. Publications .............................................................................................................. 209 

 

 

References .................................................................................................................... 233 

 

 

 

 



 

 

 



 

 

 

Chapter 1 

Introduction 

Nowadays, more and more businesses develop, combine and include software in 

their products in different ways. Companies need to develop software to support the 

design, manufacture or delivery of the products and services they provide. Therefore, 

without noticing, all businesses are becoming software businesses. As the software 

component of their business grows, schedule delays, cost overruns, and quality 

problems caused by software development are becoming their main business problem. 

This is why despite their best management efforts, their risk of failing increases along 

with the increase in the size or complexity of the software they produce [1]. 

In this context, software business needs improved software quality, better cost 

and schedule management as well as reduced software development cycle time. To 

reach these needs, it is becoming increasingly important to adopt processes and 
techniques which allow to improve software quality, do better estimations and keep 

software development under control. Also, if we consider that“... many of the systems 

on which our lives and livelihoods depend are run by software” [2], know whether the 

processes and the applied techniques lead to develop high quality products is of vital 

importance. 

Software products are made of hundreds to millions of lines of code, each one 

handcrafted by a software engineer. Software businesses depend on people, so their 

technical practice and their experience strongly determine the outcome of the 

development process. 

The Personal Software Process (PSP) is a defined and measured software 

process designed to be used by an individual software engineer. The PSP directly 

addresses the software businesses needs by improving the technical practices and 

individual abilities of software engineers, and by providing a quantitative basis for 

managing the development process. By improving individual performance1 PSP can 

improve the performance of the software development team and the organization [3]. 

The Team Software Process (TSP) is a software development process for teams 

that satisfies the aforementioned software business needs and which uses the PSP for 

each team member [4] [5]. The TSP is used in the software industry and a recent book 

by Caper Jones, in an independent evaluation, indicates that it is the best software 

development process for medium and large scale projects [6]. A large percentage of the 

TSP practices take place at an individual level, that is, practices that arise during the use 

of the PSP. 

                                                 
1 The term “performance” covers several aspects, such as improve the quality of the produced product, 

produce better estimations, and increase the code production rate, among others. It should not be confused 

with productivity.  



Chapter 1. Introduction 

 

2 

 

Therefore, is important to know whether the processes and the applied 

techniques of the PSP lead to develop high quality products. The main topic of this 

thesis is to know if the different techniques and phases of the PSP (and so, the PSP 

itself) produce positive changes in the aforementioned aspects of the software 

development. 

1. Context and Motivation 

“The Personal Software Process is a self-improvement process that helps you to 

control, manage, and improve the way you work." - W. S. Humphrey, 2005. 

The PSP is a software development process for the individual. The process helps 

the engineer to control, manage and improve his or her work. The PSP establishes a 

highly instrumented development process that includes a rigorous measurement 

framework for effort and defects. This process includes phases that the engineer 

completes while building the software.  

For each software development phase, the PSP has scripts that help the software 

engineer to follow the process correctly. The phases include Planning, Detailed Design, 

Detailed Design Review, Code, Code Review, Compile, Unit Test, and Post Mortem. 

For each phase, the engineer collects data on the time spent in the development phase 

and the defects injected and removed, as is shown in Figure 1. 

 
Figure 1: The PSP phases, scripts, logs and project summary 

The PSP is taught through a course. There are three different course versions. 

During the course, the engineer builds programs while progressively learning PSP 

planning, development, and process assessment practices. For the first exercise, the 

engineer starts with a simple and defined process. As the class progresses, new process 

phases and elements are added, from Estimation and Planning to Code Reviews, to 

Design, and Design Review. As these elements are added, the process changes.  



Chapter 1. Introduction 

 

3 

 

There are six PSP processes, also called PSP levels: PSP0, PSP0.1, PSP1, 

PSP1.1, PSP2, and PSP2.1. Each process builds on the prior process by adding 

engineering or management activities, as shown in Figure 2. By gradually adding 

techniques, the developer is able to analyze the impact of the new techniques on his or 

her individual performance. The PSP is in fact the PSP2.1 level. The other PSP levels 

exist exclusively for the purposes of the teaching the PSP. 

 
Figure 2 : The PSP Process Levels 

In the last 20 years, thousands of software engineers attended the different 

courses and were trained in the techniques of the PSP. The PSP courses are taught by 

the Software Engineering Institute (SEI), of the Carnegie Mellon University, or by SEI 

partners. A systematic data collection is conducted for all training participants. Data 

from which learning effectiveness and quality improvements of the software being 

developed can be derived. 

Data of the first version of the PSP course show that PSP can improve the 

business of software development in several ways: 

· Data from the PSP improve planning and tracking of software projects. 

· Early defect removal results in higher quality products, as well as 

reductions in test costs and cycle time. 

· PSP provides a classroom setting for learning and practicing process 
improvement. Short feedback cycles and personal data make it easier to 

gain understanding through experience. 

· PSP helps engineers and their managers learn how to practice 
quantitative process management. They learn to use defined processes 

and collect data to manage, control, and improve the work. 



Chapter 1. Introduction 

 

4 

 

Several versions of the course use the same programming exercises, but 

introduce process phases and techniques in modified sequences. An earlier version of 

the course has several published studies demonstrating improvement in developer 

performance with process insertion [7] [8] [9] [10] [11] [12], but the retrospective 

analysis left some threats to the validity of these claims.  One threat to the validity of 

the claims of these studies is the confounding of the effect of introducing process phases 

and techniques insertions with the gaining of domain experience as related programs are 

developed. Therefore, the question is if the improvements are due to the phases and 

techniques or due to the programming repetition during the course.   

To clarify the threat to validity mentioned above, we present a simple example. 

Suppose that when studying the PSP course data through a statistical analysis we find a 

significant improvement in some aspect of the engineers' performance. Looking in 

detail, we see that such improvement is happening between the fourth and the fifth 

program. If in that course, a PSP phase or a new technique was introduced in the fifth 

program (i.e. a PSP level change has occurred between programs 4 and 5), then we 

might think that that PSP level change is the responsible for the improvement on the 

engineers' performance. However, it may happen that the improvement is occurring 

because the engineers tend to improve that particular aspect of the performance in the 

fifth program due to the programming repetition, independently if a technique (or a PSP 

phase) is introduced or not in that assignment. 

It is important to dispose of this threat to validity and be able to know if the 

introduction of the phases and the techniques are the root cause of the improvements of 

the engineers’ performance. It is essential to know that the PSP and the techniques that 

are applied during the process are the ones that produce these improvements in order to 

provide research opportunities to the scientific community of software engineering and 

software development companies as well as supply opportunities to adopt these 
techniques and acquire best software products in controlled costs, on schedule and with 

the desired quality. 

2. Problem and Goals 

Based on studies of the first PSP course version, the community assumes that 

current PSP courses and the PSP are working due to the specific techniques introduced, 

and that the process insertion has positive and substantial benefits.  

Several empirical studies on the effects of PSP were published during the last 15 

years, among others by Hayes et al. in 1997 [7] and by Rombach et al. in 2007 [8]. 

Hayes identified five hypotheses for validating the effectiveness of the PSP based on the 

first course version data. In 2007 Rombach, with a larger data set of the same course 

version, re-analyzed Hayes’ hypotheses and suggested an additional hypothesis. For 

some hypotheses, their findings confirm each other while other hypotheses are 

answered in contradictory ways. 

Something that has not yet been extensively studied is the effect of the exercise 

repetition during the course. We believe that gaining experience in the problem domain 

could not yet be discarded as one of the reason of the improvements. It is necessary to 

analyze the data of the courses in order to separate the different technique introduction 
effects from the domain learning effects. In this way, we will be able to evaluate the 

main reasons of improvements, and also make a contribution by giving more tools to the 

community and the industry to evaluate the cost and benefits of using PSP. 



Chapter 1. Introduction 

 

5 

 

Given this known problem (validity threat to prior experiments in PSP), the main 

goal of this thesis is to use the PSP data from the latest two course formats to determine 

whether the different techniques introduced improve several aspects of developers’ 

performance, or if such improvement is only a consequence of gaining experience in the 

problem domain. More specifically, we intend to conduct an empirical investigation of 

the data collected during the courses to evaluate the effectiveness of the techniques and 

phases that are involved in the process, and the impact of programming repetition 

during the course. A secondary goal is to document observations and results of the two 

recent course versions, which do not have yet published works. 

For our thesis, we decided to base our work in the aforementioned studies of 

Hayes and Rombach, and evaluate the effects of the last two PSP course versions by 

selecting a group of four hypotheses. But in our study we focus on determining the main 

reason of the improvements and not just evaluating the effect size2 of the improvements. 

Therefore, we defined the particular goals of this thesis as: 

· Analyze and compare the data collected at the PSP levels in two different 
courses for the purpose of evaluating performance improvements of 

engineers with respect to defect density in unit testing / yield / 

production rate / size estimation accuracy from the viewpoint of a 

researcher in the context of the PSP training of engineers in “PSP for 

Engineers I/II revised” course and the training of engineers in “PSP 

Fundamentals and Advance” course.  

· In case of improvements, determine if these are due to the specific 
techniques introduced or if such improvements are only a consequence of 

the experience in the problem domain. 

3. Proposal and Development 

Based on the previous studies of the effectiveness of PSP we defined our 

particular goals. We define one hypothesis test for each of the variables under study 

(defect density in unit testing, yield, production rate and size estimation accuracy). 

So as to reach our particular goals it was necessary to carry out statistical 

analysis of the data collected in the last two PSP courses versions, the SEI provided us 

all necessary data from PSP classes, with appropriate precautions to protect the students’ 

privacy.  

Even knowing that the PSP brings a tool for each student to collect the process 

data during the assignments, it could be of poor quality. We consider that it was 

important to find a way to ensure that the statistical analyses were based on quality data. 

Therefore, in order to reach this, we developed an integrated data storage model. We 

designed the model in order to support the analysis and the assessment of data quality, 

based on the data quality theory [13].  

The first step towards identifying quality problems was to understand the reality 

and context to analyze. This includes the PSP in itself, exploring the tool the students 

use for recording their data and the model of the database. Afterwards, we analyzed the 

dimensions and quality factors of this set of data, which are interesting to measure and 

                                                 
2 An effect size is a measure of the strength of a phenomenon. This is explained in detail in Chapter 5, 

Section 2.1. 



Chapter 1. Introduction 

 

6 

 

consider. In this way, we thoroughly identified and defined possible quality problems 

that the data under study might contain, we implemented the algorithms required for 

measuring, cleaning and collecting the metadata and executed those algorithms 

afterwards. After the data cleaning process we obtain a data set with the necessary 

quality for our statistical analyses. Our proposal to assess the quality of the collected 

data and the cleaning procedure are presented in Chapter 4and in Appendix 3. 

Differences in performance between engineers are typically the greatest source 

of variability in software engineering research, and this study is no exception. However, 

the design of the PSP training class and the standardization of each engineer’s 

measurement practice allow the use of statistical models which are well suited for 

dealing with the variation among engineers. 

To know whether engineers improve their performance during the course, we 

studied the changes in engineers’ data over seven different programming assignments. 

Rather than analyzing changes in group averages, this study focuses on the average 

changes of individual engineers. Some engineers performed better than others from the 

first assignment, and some improved faster than others during the course. In order to 

discover the pattern of improvement in the presence of these natural differences 

between engineers, the statistical method known as the repeated measures analysis of 

variance (ANOVA for repeated measures) is used [14]. Briefly, the repeated measures 

analysis of variance takes advantage of situations where the same subject (in this case 

the students) are measured over a succession of trials. By treating previous trials as 

baselines, the differences in measures across trials (rather than the measures themselves) 

are analyzed to uncover trends across the data. This allows for differences among 

baselines to be factored out of the analysis. In addition, the different rates of 

improvement between people can be viewed more clearly. If the majority of people 

change substantially (relative to their own baselines), the statistical test will reveal this 
pattern. If only a few people improve in performance, the statistical test is not likely to 

suggest a statistically significant difference, no matter how large the improvement of 

these few people may be.  

To analyze whether performance improvements are due to the programming 

repetition or due to the phases and techniques introduction, we used an indirect 

statistical method of analysis. This method consists of three steps in which the 

relationships between program number, PSP level, course version and engineers’ 

performance are examined applying ANOVA. 

The first step tries to find out whether are there differences between the two 

courses by comparing the variable under study for each program assignment. If there are 

significant differences in the dependent variable with the exercise sequence but without 

change in the PSP level, then the PSP level cannot be the root cause of the differences 

in the variable under study. On the other hand, when we find differences through the 

exercises with different PSP level, then we should move forward to the second step in 

order to find if the PSP level could be the root cause of the changes. 

We know that in each course, each program assignment is completed following a 

specific PSP level. The second step looks at each course separately, and tries to find if 

the differences between the course programs assignments are taking place when the PSP 

level has changed or if the differences are taking place even when the PSP level has not 

changed between two assignments. If there are significant changes between programs 

assignments with the same PSP level, this can lead us to think that the effects on the 

dependent variable are due to the repetition of exercises and not due to a specific 



Chapter 1. Introduction 

 

7 

 

technique introduction. Otherwise, if the significant changes are only between programs 

assignments with different PSP level, then we must study (in the third step) the behavior 

of the engineers’ performance through the PSP levels, when grouping the program 

assignments by PSP level. 

The third and last step looks at each course separately again, and tries to find if 

the differences between the PSP levels are taking place when a specific technique that is 

expected to improve an aspect of the engineers’ performance is in fact introduced. If 

there are significant changes between PSP levels where the technique is introduced, this 

will be showing that the technique introduced is the factor affecting the introduced 

engineers’ performance and not the program repetition. The hypothesis test, the design 

of the experiment and the proposed analysis method are detailed in Chapter 5.  

4. Results 

In order to determine if there are improvements in the individual engineers’ 

performance through the courses, the data of the last two course version were analyzed, 

both separately and together. This analysis corresponds to our secondary particular goal. 

When performing the analysis we found: 

· A significant improvement in defect density in unit testing with a mean 

reduction of a factor of 2.3 

· A significant improvement in process yield with a mean increase of a 
factor of 1.9 

· A significant deterioration in production rate with a mean reduction of a 
factor of 0.7 

· A significant improvement in size estimation accuracy with a mean 
reduction of a factor of 2.6 

Our findings in regards to defect density in unit testing and yield are consistent 

with both Hayes and Rombach findings. Regarding to production rate, our findings 

differ from both previous studies, as Hayes findings reveals no gain or loss while 

Rombach findings reveals an improvement. On the other hand, our findings regarding 

size estimation accuracy are consistent with Hayes findings, but differ from Rombach’s. 

In order to reach our main goal, in regards to the study of the programming 

repetition effects and the effects of the phases and techniques introductions, we 

followed the three step analysis approach that we defined for each hypothesis to 

determine the main reason of the changes. Our results suggest that: 

· The improvements in defect density in unit testing are most plausible 
regarding mastering PSP techniques rather than programming repetition 

· That design and code reviews techniques are the main reason of the 
improvements in process yield rather than the learning effect. 

· We cannot affirm that the PSP level is the main reason of the production 
rate changes, although both courses appear to be effective in 

demonstrating that the increments in the amount of design documentation 

and data tracking proposed by the PSP deteriorates the production rate 

· We were not able to discard the domain learning effect as the root causes 

of the size estimation accuracy improvements, as the estimation 



Chapter 1. Introduction 

 

8 

 

technique introduced in the PSP courses is based on historical data and 

needs repetition. 

The results for both, the first and the second objective of this thesis are presented in 

Chapter 5. 

5. Publications 

During the thesis, two articles were published. The first one was accepted for the 

proceedings of the TSP Symposium 2012 and included in a SEI Special Report. The 

other was accepted and presented in the IX Jornadas Iberoamericanas de Ingeniería de 

Software e Ingeniería del Conocimiento (Iberoamerican Conference in Software 

Engineering and Knowledge Engineering), 2012. Both articles are included in Appendix 

6. 

· A Cross Course Analysis of Product Quality Improvement with PSP 
Fernanda Grazioli, William Nichols. 

Proceedings TSP Symposium 2012: Delivering agility with discipline (Special 

Report Software Engineering Institute, Carnegie Mellon University, CMU/SEI-

2012-SR-015), pp.76—89, Saint Petersburg, Florida, EEUU, September 2012. 

· Un Estudio de la Calidad de los Datos Recolectados durante el Uso del 

Personal Software Process (An Study of the Quality of the Data Collected 

During the Use of the Personal Software Process) 

Carolina Valverde, Fernanda Grazioli, Diego Vallespir 

IX Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería del 

Conocimiento (JIISIC), pp. 37—44, Lima, Perú, Noviembre de 2012. 

6. Document Structure 

This document consists of this introduction and six more chapters. The chapter 

“Background on Software Quality and Planning using the PSP” presents the necessary 

background in software quality and PSP in order to understand the thesis work. 

The chapter “Background in Empirical Software Engineering and Statistical 

Analysis Methods” contains fundamental terms and concepts of Empirical Software 

Engineering (ESE). It also presents the statistical data analysis methods that were used 

as a basis for the approaches applied in this study.  

In the chapter “Data Quality in the PSP” the data quality theory is introduced, 

and presents the impact of data quality in ESE. The data error analysis that was done for 

the available data, the applied methodology and the error types that were defined for 

this study are explained. A brief summary of the metric definitions, measures and data 

cleaning for the data cut-offs is also included. 

The “Data Analysis” chapter presents the analysis, results, threats to validity 

and conclusions for each of the four hypotheses studied. Also an explanation of the data 

set and an indirect statistical method proposed for the analysis are presented. 

The chapter “Related Work” presents several empirical studies on the effects of 

PSP and their results are compared against the results that were obtained in this work. 



Chapter 1. Introduction 

 

9 

 

Finally, in the chapter “Conclusions and Future Work” the conclusions, the 

contributions of the research, as well as the future work are presented. 





 

 

 

Chapter 2 

Background on Software Quality and 
Planning using the PSP 

There are models and processes that seek to improve the quality of software 

products. Many of these models have been used successfully in the industry. The 

Personal Software Process is one of them. This chapter introduces the concept of 

software quality, in order to understand the need for these models at different 

organizational levels. Then, the PSP is presented in detail in order to know its 

principles, phases, techniques and metrics. Since the PSP is taught through the courses, 

and it is during the courses that the data analyzed in this work is collected, in the final 

section the different formats for the existing courses are presented. It is essential to 

understand and know the PSP, as well as knowing how the different techniques are 

introduced during the several courses, in order to define how to evaluate the PSP 

application process. 

1. Software Quality 

Until shortly after World War II, the quality strategy in most industrial 

organizations was based almost entirely on testing. Groups would typically establish 

special quality departments to detect and fix problems after products had been 

produced. It was not until the 1970s and 1980s that W. Edwards Deming and J.M. Juran 

convinced the U.S. industry to focus on improving the way people did their jobs [15] 

[16]. In the succeeding years, this focus on working processes has been responsible for 

major improvements in the quality of automobiles, electronics, or almost any other kind 

of product. The traditional test-and-fix strategy is now recognized as expensive, time-

consuming, and ineffective for engineering and manufacturing work. 

Watts Humphrey said that even though most industrial organizations have now 

adopted modern quality principles, the software community has continued to rely on 

testing as the principal quality management method [17]. For software, the first major 

step was taken by Michael Fagan when in 1976 he introduced software inspections [18] 

[19]. By using inspections, organizations have substantially improved software quality. 

Another significant step in software quality improvement was taken with the initial 

introduction of the Capability Maturity Model (CMM) for software in 1987 [20] [21]. 

The CMM’s principal focus was on the management system and the support and 

assistance provided to the development engineers. The CMM has had a substantial 

positive effect on the performance of software organizations [22]. Later in time, the 

Capability Maturity Model Integration (CMMI) project was formed to sort out the 

problem of using multiple models for software development processes, thus the CMMI 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

12 

 

model has superseded the CMM model, though the CMM model continues to be a 

general theoretical process capability model used in the public domain. 

A further significant step in software quality improvement was taken with the 

Personal Software Process (PSP) [3]. The PSP extends the improvement process to the 

people who actually do the work—the practicing engineers. The PSP concentrates on 

the work practices of the individual engineers. The principle behind the PSP is that to 

produce quality software systems, every engineer who works on the system must do 

quality work. 

The PSP is designed to help software professionals to consistently use sound 

engineering practices. It shows them how to plan and track their work, use a defined and 

measured process, establish measurable goals, and track performance against these 

goals. The PSP shows engineers how to manage quality from the beginning of the job, 

how to analyze the results of each job, and how to use the results to improve the process 

for the next project. 

Following the PSP, a further important step in software process improvement 

was the introduction of the Team Software Process (TSP) [23]. The TSP provides a 

disciplined context for engineering work. The principal motivator for the development 

of the TSP was the conviction that engineering teams can do extraordinary work, but 

only if they are properly formed, suitably trained, staffed with skilled members, and 

effectively led. The objective of the TSP is to build and guide such teams. 

The following section presents the Personal Software Process created by the 

Software Engineering Institute (SEI), as this process is the one that is used in the frame 

of this thesis. For completeness, other models and processes created by the SEI are 

presented, as the CMMI and the TSP in Appendix 1. All these models and processes 

that seek to improve the quality of software development, have been successfully used 

in the industry. 

Before starting to discuss the model it is appropriate to give a definition of 

software quality. The IEEE definition is provided below: 

 

Quality – IEEE 610.12 [24] 

1) The degree to which a system, component, or process meets specified 

requirements.  

2) The degree to which a system, component, or process meets customer or user 

needs or expectations. 

 

The following category models are applicable to software quality and its 

improvement:  quality models, maturity models for process improvements, process 

models and models of quality management not specific for software.  

As it was mentioned in the previous paragraphs, the SEI created maturity models 

for process improvements as CMM and CMMI and they also created process models as 

PSP and TSP. 

The Capability Maturity Model Integration (CMMI) provides the overall 

improvement framework needed for effective engineering work. The Personal Software 

Process (PSP) provides the engineering disciplines that engineers need for consistently 

using a defined, planned, and measured process. The TSP couples the principles of 

integrated product teams with the PSP and CMM methods to produce effective teams.  

In essence, the CMM and PSP provide the context and skills for effective engineering 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

13 

 

while the TSP guides engineers in actually doing the work. Thus, the TSP capitalizes on 

the preparation provided by the PSP and CMM, while also providing explicit guidance 

on how to do the work. This is clearer in Figure 3. 

 

 
Figure 3: Process Improvement Methods 

2. The Personal Software Process 

This section presents the main characteristics of the Personal Software Process 

(PSP). The PSP was created by Watts Humphrey, at the SEI. This description of the 

PSP is based on the SEI technical report The Personal Software Process [17]. A 

complete presentation can be found at [3]. 

The PSP is a defined and measured software process designed to be used by an 

individual software engineer. Its intended use is to guide the planning and development 

of software modules or small programs, but it is adaptable to other personal tasks. 

Like the SEI Capability Maturity Model for Software, the PSP is based on 

process improvement principles. While the CMMI is focused on improving 

organizational capability, the focus of the PSP lies on the individual engineer. To foster 

improvement at the personal level, PSP extends process management and control to the 

software engineer. With PSP, engineers develop software using a disciplined, structured 

approach. 

2.1. The Principles of the PSP 

These principles are extracted from [17]. 

“The PSP design is based on the following planning and quality principles: 

· Every engineer is different; to be most effective, engineers must plan 
their work and they must base their plans on their own personal data. 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

14 

 

· To consistently improve their performance, engineers must personally 

use well-defined and measured processes. 

· To produce quality products, engineers must feel personally responsible 
for the quality of their products. Superior products are not produced by 

mistake; engineers must strive to do quality work. 

· It costs less to find and fix defects earlier in a process than later. 

· It is more efficient to prevent defects than to find and fix them. 

· The right way is always the fastest and cheapest way to do a job.” 

2.2. The PSP Process Structure 

The structure of the PSP process is shown conceptually in Figure 4. The process 

starts with the requirements and several phases are executed, being planning the first 

one. PSP provides scripts (instructions) that guide the work. They record their time and 

defect data on the time and defect logs. During the postmortem phase, they summarize 

the time and defect data from the logs, measure the program size, and enter these data in 

the plan summary form.  

 
Figure 4: The PSP phases, scripts, logs and project summary 

The planning phase has requirements as input. In this phase, the developer 

completes a conceptual design, the product size estimation, the resources estimation and 

development schedule. After the product is developed, the real size of the product and 

the consumed time are stored in the historical database. These are useful to estimate the 

product size and resources for future tasks. The planning process is shown in Figure 5. 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

15 

 

The conceptual design is produced during planning based on the requirements. 

That is a first approach to problem solution. Then, in the design phase, the engineer 

examines design alternatives and produces a complete product design. This is useful to 

make the necessary estimations to create the schedule.  

In the PSP the estimation of the size of the software product to be produced and 

the estimation of the resources needed to complete the software project are done using 

the PROxy Based Estimating method (PROBE). First are defined the necessary objects 

to build the product described in the conceptual design. Then, based on the historical 

data of similar objects and using linear regression, the final size of the product is 

estimated. With this estimation, the historical data of productivity and linear regression 

and the time needed for each process phase is calculated. When the engineer finishes 

this process, he has an estimation of the total product size, total development time and 

time required for each phase. 

 
Figure 5: Project Planning Process 

The development schedule is created from the time estimations for each phase. It 

is also necessary to know how much time the developer can devote to the project per 

day or week.  

2.3. PSP Basic Measures 

There are three basic measures in the PSP: development time, defects, and size. 

All other PSP measures are derived from these three basic measures. 

2.3.1. Development Time Measurement 

Minutes are the unit of measure for development time. Engineers track the 

number of minutes they spend on each PSP phase, except the time spent on any 

interruptions such as phone calls, coffee breaks, etc. Some call this “direct time”. In 

TSP it is converted to hours and called “task-hour”. A form called “Time Recording 

Log” is used to record development time. 

The advantages of this approach to measuring development time are: 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

16 

 

· Using minutes is precise and simplifies calculations involving 

development time. 

· Recording interruptions to work reduces the number of time log entries, 
provides a more accurate measure of the actual time spent, and a more 

accurate basis for estimating actual development time. 

· Tracking interruption time separately can help engineers to deal 
objectively with issues that affect time management, such as a noisy 

work environment or inappropriate mix of responsibilities (e.g., software 

development and help desk support). 

· Time log entries take substantially less than a minute to record, but 
provide a wealth of detailed historical data for planning, tracking, and 

process improvement. 

2.3.2. Defect Measurement 

The principal quality focus of the PSP is on defects. A defect is defined as any 

change that must be made to the design or code in order to get the program to compile 

or test correctly.  

To manage defects, engineers need data on the defects they inject, the phases in 

which they injected them, the phases in which they found and fixed them, and how long 

it took to fix them. With the PSP, engineers record data on every defect found in every 

phase, including reviews, inspections, compiling, and testing. Defects are recorded on 

the Defect Recording Log as they are found and fixed.  

2.3.3. Size Measurement 

The primary purpose of size measurement in the PSP is to provide a basis for 

estimating development time. Lines of code are used for this purpose because they meet 

the following criteria: they can be automatically counted, precisely defined, and are well 

correlated with development effort based on the PSP research [3]. Size is also used to 

normalize other data, such as productivity (LOC per hour) and defect density (defects 

per KLOC).  

PSP uses a LOC accounting scheme:  

· Base LOC are any LOC from an existing program that will serve as the 
starting point for the program being developed.  

· Deleted and modified LOC are those base LOCs that are being deleted 

or modified in the already existing programs or modules.  

· Added LOC is the sum of all newly developed object, function, or 
procedure LOC, plus additions to the base LOC.  

· Reused LOCs are the LOC taken from the engineer’s reuse library and 

used without modification. If these LOC are modified, then they are 

considered to be base LOC.  

· Added and Modified LOC is the sum of added LOC and modified 
LOC. Added and Modified LOC, not total LOC, is the most commonly 

used size measure in the PSP.  

· Total LOC is the total program size. 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

17 

 

· Total new reused LOC are those added LOC that were written to be 

reused in the future. 

2.4. PSP Quality Process and Product Measures 

With size, time, and defect data, there are many ways to measure, evaluate, and 

manage the quality of a program. The PSP provides a set of quality measures that helps 

engineers examine the quality of their process and programs from several perspectives. 

While no single measure can adequately indicate the overall quality of a process or a 

program, the aggregate picture provided by the full set of PSP measures is a generally 

reliable quality indicator.  

The principal PSP quality measures are: 

· Defect density 

· Review rate 

· Development time ratios 

· Defect ratios 

· Yield 

· Defect removal leverage 

· Appraisal to failure ratio (A/FR) 

Only the Defect Density and Yield are described in the following paragraphs, as 

these are the ones that are used in this thesis work. A complete description of the PSP 

quality measures is presented in Appendix 1.  

Defect Density. Defect density refers to the defects per Added and Modified 

KLOC found in a program. Thus, if a 150 LOC program had 18 defects, the defect 

density would be 1000*18/150 = 120 defects/KLOC. Defect density is measured for the 

entire development process and for specific process phases. Since testing only removes 

a fraction of the defects in a product, when there are more defects that enter a test phase, 

there will be more remaining after the test phase is completed. Therefore, the number of 

defects found in a test phase is a good indicator of the number that remains in the 

product after that test phase is completed. 

Yield. In the PSP, yield is measured in two ways. Phase yield measures the 

percentage of the total defects that are found and removed in a phase. For example, if a 

program entered unit test with 20 defects and unit testing found 9, the unit test phase 

yield would be 45%. Similarly, if a program entered code review with 50 defects and 

the review found 28, the code review phase yield would be 56%. Process yield refers to 

the percentage of defects removed before the first compile and unit test. Since the PSP 

objective is to produce high quality programs, practiced reviewers can find 70% or more 
of the defects before compiling or testing. 

2.5. The PROxy Based Estimating Method 

With PROBE, engineers use the relative size of a proxy to make their initial 

estimate, and then use historical data to convert the relative size of the proxy to LOC. 

Example proxies for estimating program size are objects, functions, and procedures. For 

object-oriented languages, the relative size of objects and their methods is used as a 

proxy. For procedural languages, the relative size of functions or procedures is used as a 

proxy. Any proxy for size may be used so long as the proxy is correlated with effort, it 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

18 

 

can be estimated during planning, and it can be counted in the product. Other examples 

include screens or screen objects, scripts, reports, and document pages. 

The PROBE method requires some preliminary design that requires associating 

functionality with physical components. This is a design activity requiring detailed 

understanding of the requirements. It is quite plausible that this activity will reduce the 

defects injected in later design and code. 

Using PROBE, the size estimate is made by first identifying all of the objects 

that must be developed. Then the type and relative size of the object are determined. 

The type refers to the general category of component—e.g., computational, 

input/output, control logic, etc. The five relative size ranges in the PSP are: very small, 

small, medium, large, and very large. The relative size is then converted to LOC using a 

size range table based on historical size data for the proxy. The estimated size of the 

newly developed code is the sum of all new objects, plus any modifications or additions 

to the existing base code. Predicted program size and effort are estimated using the 

statistical method linear regression. Linear regression makes use of the historical 

relationship between prior estimates of size and actual size and effort to generate 

predicted values for program size and effort. Finally, a prediction interval is calculated 

that gives the range around the estimate, based on the variance found in the historical 

data. The prediction interval can be used to assess the quality of the estimate. 

The process explained above about how to get the estimation using PROBE is 

represented in Figure 6. 

 
Figure 6: The PROBE estimating method 

The PROBE method is not just one technique. In fact, it is a package of different 

methods:  

Conceptual

designStart

Identify and size the proxies

Number of

items

Part

Type

Relative

size

Reuse

categories

Estimate other 

element sizes

Estimate

program size

Calculate

prediction interval

Size estimate
and range

Estimate

resources

Calculate

prediction interval

Resource estimate
and range



Chapter 2. Background on Software Quality and Planning using the PSP 

 

19 

 

· PROBE A - regression with estimated proxy size 

· PROBE B - regression with plan added and modified size 

· PROBE C - the averaging method 

· PROBE D - engineering judgment 

The method selection procedure depends on the quality of the data: 

· The method D must be used when there is no historical data. It should 

only be used when it is not possible to use methods A, B, or C. 

· The method C uses a ratio to adjust size or time based on historical 
averages. The averaging method is easy to use and requires only one data 

point. 

· The method B applies a regression by using the relationship between 
plan added and modified size and the actual added and modified size, and 

also the actual development time. The criteria for using this method are 

three or more data points that correlate and have reasonable regression 

parameters. 

· The method A applies a regression by using the relationship between 
estimated proxy size (E) and actual added and modified size, and also the 

actual development time. 

The criteria for using this method are also three or more data points that 

correlate and reasonable regression parameters. More details about the regression 

parameters for each PROBE method are explained in [3]. 

3. The PSP Courses 

The PSP is taught through a course. During the course, the engineers build 

programs while they are progressively learning PSP planning, development, and process 

assessment practices. For the first exercise, the engineer starts with a simple, defined 

process (the baseline process, called PSP 0); as the class progresses, new process phases 

and elements are added, from Estimation and Planning to Code Reviews, to Design, and 

Design Review. As these elements are added, the process changes. The name of each 

process and which elements are added in each one are presented in the following 

subsection. The PSP 2.1 is the complete PSP process. Then, the different PSP courses 

version that the SEI offers are presented. 

3.1. The PSP Process Levels 

The six process levels used to introduce the PSP are shown in Figure 7 [3]. Each 

level builds on the prior level by adding a few process phases to it. This minimizes the 

impact of process change on the engineer, who only needs to adapt the new techniques 

into an existing baseline of practices. 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

20 

 

 
Figure 7: The PSP Process Levels 

3.1.1. The Baseline Personal Process - PSP0 and PSP0.1 

The baseline personal process (PSP0 and PSP0.1) provides an introduction to the 

PSP and establishes an initial base of historical size, time, and defect data. Engineers are 

allowed to use their current methods, but they do so within the framework of the six 

phases in the baseline process shown in Table 1. 

Phase Description 
Plan Plan the work and document the plan 

Design Design the program 

Code Implement the design 

Compile Compile the program and fix and log all defects found 

Test Test the program and fix and log all defects found 

Postmortem Record actual time, defect, and size data on the plan 

Table 1: Phases in the Baseline PSP 

PSP0 introduces basic process for measurement and planning. Development 

time, defects, and program size are measured and recorded on provided forms. A simple 

plan summary form is used to document planned and actual results. A form for 

recording process improvement proposals (PIPs) is also introduced (PSP0.1). The PIP 

form provides engineers with a convenient way to record process problems and 

proposed solutions. 

3.1.2. Personal Project Management - PSP1 and PSP1.1 

PSP1 and PSP1.1 focus on personal project management techniques, introducing 

size and effort estimating, schedule planning, and schedule tracking methods. Size and 

effort estimates are made using the PROBE method.  



Chapter 2. Background on Software Quality and Planning using the PSP 

 

21 

 

PSP uses the earned value method for schedule planning and tracking. The 

earned value method is a standard management technique that assigns a planned value 

to each task in a project. A task’s planned value is based on the percentage of the total 

planned project effort that the task will take. As tasks are completed, the task’s planned 

value becomes earned value for the project. The project’s earned value then becomes an 

indicator of the percentage of completed work. When tracked week by week, the 

project’s earned value can be compared to its planned value to determine status, to 

estimate rate of progress, and to project the completion date for the project. 

3.1.3. Personal Quality Management - PSP2 and PSP2.1 

PSP2 and PSP2.1 add quality management methods to the PSP: personal design 

and code reviews, a design notation, design templates, design verification techniques, 

and measures for managing process and product quality. 

The goal of quality management in the PSP is to find and remove all defects 

before the first compile. The measure associated with this goal is yield. Yield is defined 

as the percentage of defects injected before compile that were removed before compile. 

A yield of 100% occurs when all the defects injected before compile are removed before 

compile.  

Two new process phases, design review and code review, are included at PSP2 

to help engineers achieve 100% yield. These are personal reviews conducted by an 

engineer on his/her own design or code. They are structured, data-driven review 

processes that are guided by personal review checklists derived from the engineer’s 

historical defect data. 

Starting with PSP2, engineers also begin using the historical data to plan for 

quality and control quality during development. Their goal is to remove all the defects 

they inject before the first compile. During planning, they estimate the number of 

defects that they will inject and remove in each phase. Then they use the historical 
correlation between review rates and yield to plan effective and efficient reviews. 

During development, they control quality by monitoring the actual defects injected and 

removed versus planned, and by comparing actual review rates to established limits 

(e.g., less than 200 lines of code reviewed per hour). With sufficient data and practice, 

engineers are capable of eliminating 60% to 70% of the defects they inject before their 

first compile. 

Reviews are quite effective in eliminating most of the defects found in compile, 

and many of the defects found in test. But to substantially reduce test defects, better 

quality designs are needed. PSP2.1 addresses this need by adding a design notation, four 

design templates, and design verification methods to the PSP. The intent is not to 

introduce a new design method, but to ensure that the designer examines and documents 

the design from different perspectives. This improves the design process and makes 

design verification and review more effective. The design templates in the PSP provide 

four perspectives on the design: an operational specification, a functional specification, 

a state specification, and a logic specification. 

3.2. Courses structures and assignments 

Since the beginnings up to now, the course has changed twice. The first version 

of the course is called PSP I/II original. Second version is called PSP I/II revised. And 

finally, the third version is called PSP Fundamentals and Advanced 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

22 

 

The first version of the PSP course involved preparing an engineer to apply the 

PSP in practice. The course followed a staged learning strategy described in the 

textbook A Discipline for Software Engineering [3]. The text was designed to be used in 

graduate and senior-level undergraduate courses. Because the textbook was self-

contained, experienced engineers could use the textbook to help them learn the PSP on 

their own, but most engineers needed the structure and support of a formal training 

course to complete the training. 

The first version of the PSP course incorporated what had been called a “self-

convincing” learning strategy, which used data from the engineer’s own performance to 

improve learning and motivate use. The course introduced the PSP practices in phases 

corresponding to six PSP process levels. Each level was built on the capabilities 

developed and historical data gathered in the previous level. Engineers learnt to use the 

PSP by writing ten programs, one or two at each of the seven levels, and by preparing 

five written reports. Engineers could use any design method or programming language 

in which they were fluent. The programs were typically around one hundred lines of 

code (LOC) and required a few hours on average to be completed. While writing the 

programs, engineers gathered process data that were summarized and analyzed during a 

postmortem phase. With such a short feedback loop, engineers could quickly see the 

effect of PSP on their own performance. They convinced themselves that the PSP could 

help them to improve their performance; therefore, they were motivated to begin using 

the PSP after the course. Table 2 shows the course structure for the PSP I/II Original 

course. This is extracted from the book “A Discipline for Software Engineering”, by 

Watts Humphrey [3]. 

Program PSP Level Description 
1A PSP0 Calculate the mean and the standard deviation of N real numbers 

stored in a linked list 

2A PSP0.1 Count the LOC in a program source file 

3A PSP0.1 Enhance program 2A to count object LOC or function/procedure 
LOC 

4A PSP1 Calculate the linear regression parameters for N pairs of real 
numbers stored in a linked list 

5A PSP1.1 Numerical integration using Simpson’s rule 

6A PSP1.1 Enhance program 4A to calculate a 90% and 70% prediction 
interval 

7A PSP2 Calculate the correlation of N pairs of real numbers stored in a 

linked list 

8A PSP2.1 Sort a linked list 

9A PSP2.1 Chi-square test for normality 

10A PSP3 Calculate the multiple linear regression parameters for N sets of 
four real numbers stored in a linked list 

Table 2: PSP I/II Original course structure 

An important change in the revised PSP I/II course is the reduction from ten to 

eight programming assignments. The completion rate for the course had been identified 

as a problem and the take home assignments had been identified as a root cause. This 

version of PSP has no programming assignments on the last day of each week. In 

principle, this enables students to complete the programming assignments in class rather 

than as take home work. The reduction in assignments was achieved by modifying 

several assignments and combining the counting exercises.  One programming 

assignment was removed from PSP process levels 0.1 and 1.1.  The result is a more 



Chapter 2. Background on Software Quality and Planning using the PSP 

 

23 

 

rapid process introduction sequence. The following table summarizes the 8 

programming assignments for this version of PSP I/II and identifies relationships with 

the previous programming assignments. Table 3 shows the PSP I/II Revised course 

structure. 

Program PSP Level Description 

1 PSP0 mean and standard deviation (same as 1A) 

2 PSP0.1 size counting for a program and its constituent parts (same as 3A) 

3 PSP1 linear regression parameters and estimation (4A plus first step of 6A) 

4 PSP1.1 relative size table (new) 

5 PSP2 Simpson’s rule integration with t distribution (similar to 5A) 

6 PSP2.1 Integrate to find x value for a given area (second step of 6A) 

7 PSP2.1 Correlation, significance and prediction interval (rest of 6A and 7A) 

8 PSP2.1 Multiple regression (same as 10A) 

Table 3: PSP I/II Revised course structure 

Table 4 highlights the changes to the programming assignments from the 

Original 10 assignment PSP I/II through the 8 assignment PSP I/II and the 7 assignment 

PSP Fundamentals/Advanced.  Programming assignment 8, the multiple regressions 

was eliminated from PSP Advanced. The remaining program requirements were not 

changed between the 8 assignment course, and Fundamentals/Advanced but the process 

sequence used to develop the assignments was changed.  In the first four exercises, the 

students are now required to use PSP0 through PSP2 in order to prepare them to 

conduct reviews and inspections on TSP teams. In the last three exercises, the students 

are required to use PSP2.1 for all programming assignments.    



Chapter 2. Background on Software Quality and Planning using the PSP 

 

24 

 

 

Table 4: Programming assignments of all three PSP courses 

Figure 8 shows a line chart of the PSP level vs. Program assignment number, for 

the three PSP courses. In this chart, we can see graphically how each PSP course 

evolves and how the different PSP levels are introduced among the exercises.  

 

 
Figure 8: PSP level vs Program number for the three PSP courses 

Prog. PSP I/II original PSP I/II revised PSP Fundamentals 

 PSP 
Level 

Assignment PSP 
Level 

Assignment PSP 
Level 

Assignment 

1 0 Std dev/mean 0 Std dev/mean 0 Std dev/mean 

2 0.1 Size Count 
Program 

0.1 Size counter 1 Size counter 

3 0.1 Size count 
Program and 

Parts 

1 Correlation/ 
significance 

2 Correlation/ 
significance 

4 1 Linear 

regression 
1.1 Relative size table 2 Relative size 

table 

5 1.1 Simpson’s rule 2 Simpson’s rule 2.1 Simpson’s rule 

6 1.1 Prediction 
Interval 

2.1 Search algorithm 2.1 Search 
algorithm 

7 2 Correlation/ 
significance 

2.1 Prediction 
interval 

2.1 Prediction 
interval 

8 2.1 Sort List of 

Pairs 
2.1 Multiple 

regression 
  

9 2.1 Chi square     

10 2.1 Multiple 
regression 

    



Chapter 2. Background on Software Quality and Planning using the PSP 

 

25 

 

It is interesting to see how differently engineers are introduced to the specific 

techniques. For example, according to program number 3, a student of the PSP I/II 

Original course is still in PSP0.1, recollecting data to find out how his base process 

behaves. On the other hand, a student of the PSP I/II revised course is on PSP1, 

applying the PROBE method for size and time estimations. And a PSP Fund/Adv 

student is not only applying the PROBE method for estimations, but also applying 

design and code reviews. It is important to notice this because in our work we are going 

to use the PSP levels and the program assignment numbers correspondence in order to 

analyze the effects of the PSP-learning effects on the engineers’ performance, as well as 

we will try to determine if the introduced techniques are the root cause of the 

improvements of if they are only a consequence of gaining experience in the problem 

domain.  

In our thesis work, we use the data of the last two versions of the PSP courses: 

the PSP I/II revised course and the PSP Fundamentals and Advance course.  





 

 

 

Chapter 3 

Background in Empirical Software 
Engineering and Statistical Analysis 
Methods 

Carrying out a formal statistical analysis requires an understanding of concepts, 

techniques and tools normally used in the Empirical Software Engineering (ESE).  

The objective of this section is to present the basics of ESE, in order to be able 

to apply all these concepts in our main work. This chapter is almost completely based 

on the books “Experimentation in Software Engineering: An Introduction” [25], “Basics 

of Software Engineering Experimentation” [26], “Software Metrics - A Rigorous and 

Practical Approach” [27]  and “Using Multivariate Statistics” [14]. 

In the following sections an introduction to the empirical methods and controlled 

experiments is presented. Also, the main concepts of statistical data analysis are 

presented, including different statistical data analysis methods that have been used to 

complete this work. Finally, an explanation of how the concepts are applied in our study 

is presented. 

1. Introduction to the Empirical Methods 

The ESE uses methods and experimental techniques as tools for research. The 

empirical evidence provides support for the evaluation and validation of attributes (e.g. 

cost, efficiency, quality) in various types of software engineering elements (e.g. 

products, processes, techniques). It is based on experimentation as a method to match 

ideas or theories with reality. Such experimentation refers to the speculations shown 

with facts, assumptions and beliefs about building software.  

We can distinguish two different approaches to empirical research: the 

qualitative and the quantitative approach. The qualitative approach is based on studying 

the nature of the object and interpreting a phenomenon based on the concept that people 

have of it. The data obtained from these investigations are mainly composed of text, 

graphics and images, among others.  The quantitative approach implies finding a 

numerical relationship between two or more groups. It relies on quantifying a 

relationship or comparing variables or alternatives under study. The data obtained in 

these studies are always numeric values, allowing comparisons and statistical analysis.  

The controlled experiments are one of the strategies for empirical research. The 

experiments are often performed in a laboratory environment, which allows having a 

great degree of control. The aim of an experiment is to manipulate one or more 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

28 

 

variables and to control the rest. An experiment is a rigorous and controlled formal 

technique used to carry out an investigation. More strategies for empirical research can 

be found in Appendix 2. 

2. Experimentation Concepts 

Before software engineers can experiment, they must be acquainted with 

experimental design terminology. The most commonly used terms in experimental 

design are discussed below.  

Unit of Analysis: The unit of analysis is the major entity that you are analyzing 

in your study. For instance, any of the following could be a unit of analysis in a study: 

individuals, groups, artifacts (books, photos, newspapers), geographical units (town, 

census tract, state), social interactions (dyadic relations, divorces, arrests). It is called 

unit of analysis because it is the analysis you do in your study that determines what the 

unit is. For instance, if you are comparing the children in two classrooms on 

achievement test scores, the unit is the individual child because you have a score for 

each child. On the other hand, if you are comparing the two classes on classroom 

climate, your unit of analysis is the group, in this case the classroom, because you only 

have a classroom climate score for the class as a whole and not for each individual 

student. For different analyses in the same study you may have different units of 

analysis.  

Unit of Generalization: “A factor in deciding the unit of analysis is the level of 

generalization that the researcher seeks to make” [28]. Consider a researcher who 

measures 10 students in 10 classes from 10 different class types, or 1000 students in all.  

There are three possible levels of generalizations: the student, the classes, and the class 

types. “One simple rule is to conduct the analysis at the level at which one wants to 

make generalizations” [28].  So if one wants to draw conclusions about students, 

students should be the unit of analysis. “However, as will be seen, this simple rule 

cannot always be followed. The conclusions drawn from an analysis conducted at a 

group level may not apply at the individual level.  Conversely, analyses at the individual 

level may not apply to the group level.  In principal, the analysis should be conducted at 

the level at which generalizations should be made.” [28] 

Unit of Measurement: Another consideration is the unit of measurement. Again 

returning to the example of students, classes, and class types, some variables may be 

measured on students (e.g., achievement), some on the classes (e.g., instructor's gender), 

and some on the class type (e.g., evaluation method).  “Just because one measures a 

variable at a certain level does not imply that the variable operates at that level.  

Consider the variable group size.  Presumably this variable operates at the group level.  

However, if a researcher changed the unit of measurement of the variable and asked 

persons how big the group was, the variable will still likely operates at the group level, 

not at the individual level. A related issue is that sometimes a researcher aggregates 

across units (i.e., averages) and so changes the unit of measurement.  For example, to 

measure organizational climate, the mean of individual measures might be used.  Just 

because the mean is at the level of the organization, does not mean that it, in fact, 

operates at that level.” [28] 

Experimental unit: The objects on which the experiment is run are called 

experimental units or experimental objects. For example, patients are experimental units 

in medical experiments, as it is each piece of land in agricultural experiments. SE 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

29 

 

experiments involve subjecting project development or a particular part of the above 

development process to certain conditions and then collecting specific data set for 

analysis.  

Experimental subjects: The person who applies the methods or techniques to 

the experimental units is called experimental subject. Unlike other disciplines, the 

experimental subject has a very important effect on the results of the experiments in SE 

and, therefore, this variable has to be carefully considered during experiment design.  

Response variable: The outcome of an experiment is referred to as a response 

variable. This outcome must be quantitative. The response variable of an experiment in 

SE is the project, phase, product or resource characteristic that is measured to test the 

effects of the provoked variations from one experiment to another. Each response 

variable value gathered in an experiment is termed observation, and the analysis of all 

the observations will decide whether or not the hypothesis to be tested can be validated. 

The response variable is sometimes called dependent variable.  

Parameters: Any characteristic (qualitative or quantitative) of the software 

project that appears invariable throughout the experimentation will be called parameter. 

These are, therefore, characteristics that do not influence or that we do not want to 

influence the result of the experiment or, alternatively, the response variable.  

Factors: Each software development characteristic to be studied that affects the 

response variable is called a factor. Each factor has several possible alternatives. 

Experimentation aims to examine the influence of these alternatives on the value of the 

response variable. Therefore, the factors of an experiment are any project characteristics 

that are intentionally varied during experimentation and that affect the result of the 

experiment. Another term used for the factors is independent variables.  

Alternatives or levels: The possible values of the factors during each 

elementary experiment are called levels. This means that each level of a factor is an 
alternative for that factor. The term treatment is often used for this concept of 

alternatives of a factor in experimental design.  

Undesired variations or blocking variables: Although the aim to set the 

characteristics of an experiment that are not intended to be examined at a constant 

value, it is not always possible to do so. There are inevitable, albeit undesired variations 

from one experiment to another. These variations can affect several elements of the 

experiment: the subjects who run the experiment (not enough subjects with similar 

characteristics can be found to apply the different techniques); the experimental unit (it 

is not possible to get very similar projects on which to apply the different alternatives); 

the time when the experiment is run (each alternative has to be applied at different 

points in time), etc. In short, these variations can affect any conditions of the 

experiment. These variations are known as blocking variables. 

3. Validity Assessment 

A fundamental question before moving on to run the experiment is how the 

results would be validated. There are four categories of threats to validity: conclusion 

validity, internal validity, construct validity and external validity.  

The threats that affect the validity of the conclusions refer to statistical 
conclusions. Threats that affect the ability to determine whether a relationship exists 

between the alternative and the result, and if the conclusions reached in this regard are 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

30 

 

valid. Examples of these are the choice of statistical methods and the choice of sample 

size, among others.  

The threats that affect the internal validity are those related to observing 

relationships between the alternative and the results that are product of chance and not 

the result of applying a factor. This "accident" is caused by unknown elements that 

influence the results without the knowledge researchers. That is, internal validity is 

based on ensuring that the alternative in question produces the observed results.  

Construct validity indicates how measurement relates to others in accordance 

with the theory or hypotheses concerning the concepts being measured. An example can 

be observed when selecting the subjects in an experiment. If the number of approved 

courses in college was used as a measure of the subject's experience, one would not be 

using a good measure of experience. In contrast, a good measure would be to use the 

number of years of industry experience or a combination of both.  

External validity is related to the ability to generalize the results. It is affected by 

the experimental design. The three main risks that have external validity are having the 

wrong participants as subjects, running the experiment in a wrong way, and making the 

experiment in a time to affect the results. 

4. Introduction to the Controlled Experiments 

The process for conducting an experiment consists of several stages: definition, 

planning, operation, analysis and interpretation, and presentation.  

The first phase is the definition, which defines the experiment in terms of the 

problem, objectives and goals. The next phase is planning, which determines the design 

of the experiment. In phase operation the experimental design is performed, where data 

are collected to be analyzed further at the stage of analysis and interpretation. In this last 

phase, statistical concepts are applied to analyze the data. Finally, the results obtained 

are presented in the presentation phase.  

As in this thesis the focus lies on the analysis and interpretation phase, only the 

necessary concepts and methods of that phase are going to be presented. More details 

about the stages of the controlled experiments can be found in Appendix 2. 

5. Scales 

After data has been collected, we must start the analysis phase. An important 

aspect to consider in the analysis of the data is the measurement scale. The 

measurement scale of the data restricts the type of statistical calculations that can be 

performed. A measure is a mapping of an attribute of an entity as a value, usually a 

numeric value. Entities are objects that are observed in reality. 

The purpose of mapping attributes to a value of measurement is to characterize 

and manipulate the attributes formally. The measure selected should be valid, therefore, 

must not violate any property necessary for the attribute that measures, and should be a 

proper mathematical characterization of the attribute.  

Mapping an attribute to a measurement value can take many forms. Each type of 

mapping of an attribute may be known as scale. The most common types of scales are:  



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

31 

 

Nominal level: It is the least powerful of the scales. It only maps the attribute of 

the entity in a name or symbol. The mapping can be viewed as a classification of 

entities according to the attribute. Examples of nominal scale are graded, labeled, 

among others.  

Ordinal scale: The entities are categorized as a sort. It is mightier than the 

nominal level. Examples of sorting criteria are "greater than", "best" and "more 

complex". Examples of ordinal scales are degrees nominal scale, complexity of 

software, among others.  

Interval scale: The interval scale is used when the difference between two 

measurements is significant, but not the value itself. This type of scale orders the values 

in the same way that the ordinal scale, but there is a notion of "relative distance" 

between two entities. This scale is more powerful than the ordinal one. Examples of 

interval scale are the temperature measured in Celsius or Fahrenheit. 

Scale ratio (the ratio of two numbers): If there is a significant zero and the 

division between two measures is significant, you can use a ratio scale. Ratio scale 

examples are distance and temperature measured in Kelvin. 

After obtaining the necessary data we need to interpret them to draw valid 

conclusions. The interpretation is done in three stages: characterize the data set using 

descriptive statistics, reduce the data set and conducting hypothesis tests. 

6. Descriptive Statistics 

Descriptive statistics are used prior to hypothesis testing, to understand better the 

nature of the data and to identify abnormal or false data. The main points discussed are: 

central tendency, dispersion and dependence. Below are the most common measures of 

each of these aspects. To do this it is assumed that there are x1. . . xn samples. 

The measures of central tendency indicate "the middle" of a dataset. Among the 

most common are: the arithmetic mean, median and mode.  

The arithmetic mean is known as the average and it is calculated by adding all 

samples and dividing the total by the number of samples: 

 

The mean, denoted , sums up the characteristics value of a variable taking into 
account all cases. It is significant for interval and ratio scales.  

The median represents the average value of a data set, so that the number of 

samples that are greater than the median is the same as the number of samples that are 

less than the median. It is calculated by ordering the samples in ascending or descending 

order and selecting the observation of the environment. This calculation is well defined 

if n is odd. If n is even, the median is defined as the arithmetic mean of the two values. 

This measure is meaningful for ordinal scales, interval and ratio. 

 The mode is the most common sign. It is calculated by counting the number of 

samples for each unique value and selecting the value with more quantity. The trend is 

well defined if there is only one common value. If this is not the case, it is calculated as 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

32 

 

the median of the most common samples. The trend is significant for nominal scales, 

ordinal, interval and ratio.  

The arithmetic mean and median are equal if the sample distribution is 

symmetric. If the distribution is symmetrical and has a single maximum value, the three 

measures are equal.  

The central tendency measures do not provide information on the dispersion of 

the data set. The greater the dispersion, more variables are the samples, the smaller the 

dispersion, more homogeneous are the samples.  

Dispersion measures the level of deviation of the central tendency, or how 

scattered or concentrated the data are from the central value. Among the main measures 

of dispersion are: variance, standard deviation, range and coefficient of variation.  

The variance (s2), which is the distribution from its mean, is calculated as the 

average of the deviations of the samples with respect to the arithmetic mean. Since the 

sum of the deviations is always zero, we use the squared deviations: 

 

Divided by , not n, because dividing by provides the variance of 

desirable properties. The variance is significant for interval and ratio scales. The 

standard deviation, denoted  is defined as the square root of the variance: 

 

Often this measure is preferred over variance because it has the same dimensions 

(unit) that the values of the samples. In contrast, the variance is measured in units 

squared. The standard deviation is significant for interval and ratio scales.  

The range of a data set is the distance between the maximum and minimum: 

 

It is a meaningful measure for interval and ratio scales. When the data set 

consists of samples related in pairs  of two variables, X and Y, it may be 
interesting to examine the dependence between these variables. The main measures of 

dependence are: linear regression, covariance and the linear correlation coefficient. 

6.1. Reduced Data Set 

For hypothesis testing we must use statistical methods. The result of applying 

these methods depends on the quality of the data. If the data do not represent what is 

believed, the conclusions drawn from the results of the methods will be incorrect. 

Descriptive statistics are strongly influenced by those observations which its 

values are significantly far from the rest of the values collected. These observations are 

named outliers.  

The outliers influence the measures of dispersion, increasing the variability of 

what is being measured. In some cases, an analysis on these values that differ 

significantly from the mean is done and it can be decide to remove them from the data 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

33 

 

to be analyzed because they are not representative of the population as they were caused 

by some kind of problem: measurement error, non desired changes of the characteristics 

of the subjects, among others. This would be a special or assignable cause. Typically a 

data point that is more than 3 standard deviations away from the mean, can be 

considered as suspect. 

Once an outlier is identified, its origin should be determined in order to decide 

what to do with it. If it is consequence of a rare or unusual event that will not happen 

again, the point can be excluded. If it consequence of a rare event that can happen again, 

it is not advisable to exclude the value of analysis, because it has relevant information. 

If it is consequence of a variable that was not considered, it should be considered for 

base calculations and models also in this variable. 

Other methods to reduce the data set are also included in this work. Such 

methods are based on the Data Quality theory, and are presented in the next chapter. 

7. Hypothesis Tests 

A statistical hypothesis is an assumption about a population parameter. This 

assumption may or may not be true. Hypothesis testing refers to the formal procedures 

used by statisticians to accept or reject statistical hypotheses. 

The best way to determine whether a statistical hypothesis is true would be to 

examine the entire population. Since it is often impractical, researchers typically 

examine a random sample from the population. If sample data are not consistent with 

the statistical hypothesis, the hypothesis is rejected. 

There are two types of statistical hypotheses: 

· Null hypothesis. The null hypothesis, denoted by H0, is usually the 

hypothesis that sample observations result purely from chance.  

· Alternative hypothesis. The alternative hypothesis, denoted by H1, is 
the hypothesis that sample observations are influenced by some non-

random cause.  

The aim of the hypothesis test is to determine whether it is possible to reject the 

null hypothesis H0. If the null hypothesis is not rejected, nothing can be said about the 

results. In contrast, if rejected, it can be declared that the hypothesis is false with a given 

significance (α). This significance level is also called probability of error, because there 

is a risk of rejecting the hypothesis when in fact is true. This level is controlled by the 

experimenter. 

To test H0, a test unit t and a critic area C must be defined, which is part of the 

area where t varies. From these definitions, the significance test formula is as follows: 

If t  C, reject H0 

If t  C, not reject H0 

There are several statistical methods, denoted tests that can be used to evaluate 

the results of an experiment, more specifically to determine whether to reject the null 

hypothesis. When carrying out a test it is feasible to calculate the lowest possible value 

of significance (denoted p-value) which determines when is possible to reject the null 

hypothesis. Null hypothesis is rejected if the p-value associated with the observed result 

is less than or equal to the significance level set. 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

34 

 

The following are three important chances to test hypotheses: 

α = P (commit error type I) = P (reject H0 | H0 is true). It is the probability of 

rejection H0 when H0 is true. 

β = P (commit error type II) = P (not reject H0 | H0 is false). It is the probability 

of acceptance H0 when H0 is false. 

Statistical Power = 1 – β = P (reject H0 | H0 is false). The statistical power of the 

test is the probability of rejection H0 when H0 is false. 

The experimenter must choose a test with a statistical power as high as possible.  

High is desirable, but it often comes at a cost to alpha. Power >0.8 is typically chosen as 

acceptable and it is a common convention.  

Several factors affect the power of a test. First, the test itself may be more or less 

effective. Second, the amount of samples: most samples equals more statistical power. 

Another aspect is the selection of an alternative hypothesis unilateral or bilateral. A 

unilateral hypothesis gives a greater power than a bilateral. 

The probability of committing a type I error can be controlled and reduced. If the 

probability is very small, the null hypothesis will only be rejected if we obtain very 

strong evidence against this hypothesis. The maximum probability of committing a type 

I error is known as the significance of the test (α). 

The most commonly used values for the significance of a test are 0.01, 0.05 and 

0.10. The significance is sometimes presented as a percentage, such as 1%, 5% or 10%. 

This means that the experimenter is willing to allow a probability of 0.01, 0.05, or 0.10 

to reject the null hypothesis when it is true, that is, committing a type I error. The 

significance value is selected before starting to do the experiment in one of several 

ways. 

The α value can be established in the area of research, for example, it can be 

obtained from articles published in scientific journals. It can also be imposed by the 
person or company for which one works. Finally, it can be selected taking into account 

the cost of committing a type I error. The higher the cost, the smaller probability of 

committing a type I error should be the. The usual value in natural and social sciences is 

0.05. In Software Engineering, the value of α is has not yet been established.  

There are two types of tests: parametric and nonparametric. Parametric tests are 

based on a model that involves a specific distribution. In most cases, it is assumed that 

some of the parameters involved in a parametric test are normally distributed. 

Parametric tests also require that the parameters can be measured at least in an interval 

scale. If parameters cannot be measured in at least an interval scale, generally a 

parametric test cannot be used. In this case there are a wide range of nonparametric tests 

available. In this work nonparametric tests are not going to be used, therefore they will 

be left out of the scope of this thesis.  

8. Parametric tests 

This section presents only the parametric tests that are used in this work. 

  



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

35 

 

8.1. Analysis of Variance 

ANOVA (ANalysis Of VAriance) is one of the most used parametric tests in 

Software Engineering experiments for comparing the means of groups of measurement 

data. 

In a one-way ANOVA there is one dependent variable (measurable variable) and 

one nominal variable (factor). Multiple observations of the measurement variable are 

made for each value of the nominal variable. The statistical null hypothesis states that 

the means of the measurement variable are the same for the different categories of data; 

the alternative hypothesis is that they are not all the same. 

The basic idea is to calculate the mean of the observations within each group, 

then compare the variance among these means to the average variance within each 

group. Under the null hypothesis that the observations in the different groups all have 

the same mean, the weighted among-group variance will be the same as the within-

group variance. As the means get further apart, the variance among the means increases. 

The test statistic is thus the ratio of the variance among means divided by the average 

variance within groups, or Fs. This statistic has a known distribution under the null 

hypothesis, so the probability of obtaining the observed Fs under the null hypothesis can 

be calculated.  

A two-way ANOVA is used when there is one measurement variable and two 

nominal variables. The nominal variables are found in all possible combinations.  

Repeated measures ANOVA is referred to as within-subjects. In order to analyze 

data, repeated measures ANOVA for two types of study design can be used. Studies that 

investigate either: 

· changes in mean scores over three or more time points, or  

· differences in mean scores under three or more different conditions.  

For example, for (1), one might be investigating the effect of a 6-month exercise 

training program on blood pressure and want to measure blood pressure at 3 separate 

time points (pre-, midway and post-exercise intervention), which would allow the 
person to develop a time-course for any exercise effect. For (2), one might get the same 

subjects to eat different types of cake (chocolate, caramel and lemon) and rate each one 

for taste, rather than having different people flavor each different cake. The important 

point with these two study designs is that the same people are being measured more 

than once on the same dependent variable. 

In the broadest terms, all the ANOVA statistical models assume that: 

· Subjects are representative of the population of interest and are randomly 
selected 

· Observations on these subjects are independent (from subject to subject) 

· Dependent variables are normally distributed in the population 

· The variance-covariance matrices of dependent variables are identical 

8.2. Analysis of Covariance 

The goal of a correlation analysis is to see whether two measurement variables 

covary, and to measure the strength of any relationship between the variables.  



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

36 

 

The results of correlation are expressed as a P-value (for the hypothesis test) and 

an r-value (correlation coefficient) or r2 value (coefficient of determination). The goal 

of linear regression is to find the equation (slope and intercept) of the line that best fits 

the points; this line is then used as a visual summary of the relationship between the 

variables, or for estimating unknown values of one variable when given the value of the 

other. 

ANCOVA (ANalysis of COVAriance) is used when you have two measurement 

variables and two nominal variables. One of the nominal variables groups is the 

"hidden" nominal variable that groups the measurement observations into pairs, and the 

other nominal variable divides the regressions into two or more sets. 

The purpose of ANCOVA is to compare two or more linear regression lines. It is 

a way of comparing the Y variable among groups while statistically controlling for 

variation in Y caused by variation in the X variable. 

Two null hypotheses are tested in an ANCOVA. The first is that the slopes of 

the regression lines are all the same. If this hypothesis is not rejected, the second null 

hypothesis is tested: that the Y-intercepts of the regression lines are all the same. 

There are five assumptions that underlie the use of ANCOVA: 

· The residuals (error terms) should be normally distributed. 

· The error variances should be equal for different treatment classes. 

· The slopes of the different regression lines should be equal. 

· The regression relationship between the dependent variable and 
concomitant variables must be linear. 

· The error terms should be uncorrelated. 

9. Application of Concepts 

Although we do not went through all the process stages for conducting an 

experiment, our study can be considered a controlled experiment. Both courses are 

executed in a controlled environment, with the appropriate tools that allow engineers to 

collect the process data. In our experiment, we have 169 engineers that executed the 

PSP Fund/Adv course and 178 engineers that executed the PSP I/II revised course. With 

the recollected data, we are able to analyze these engineers during the PSP training with 

respect to the four performance dimensions that we want to study: defect density in unit 

testing, yield, production rate and size estimation accuracy.  

Each dimension arises as a hypothesis in itself. As it is really important to ensure 

that the statistical analyses are based on quality data, a data cleaning process was 

defined and executed to obtain a data set with the necessary quality. Therefore, the data 

set is reduced differently for each dimension that is going to be studied. This data 

quality process is explained in Chapter 4. 

To analyze the impact of the different introduced techniques on engineers’ 

performance and the effects of programming repetition, we will be looking for 

relationships between PSP level, program assignment and course version. These 

relationships allow us to define the hypotheses tests for each dimension to be studied. 

In our study, the primary unit of experiment is the student (engineer). The 

student is also a unit of analysis. Although we are looking for relationships with PSP 



Chapter 3.  Background in Empirical Soft. Eng. and Statistical Analysis Methods 

37 

 

level, program assignment and course version, these are units of generalization. Our 

data is at the individual level. By aggregating data with means, however, we shift the 

unit of analysis to PSP Level, program assignment or course version.  We will conduct 

analysis at the individual level, the PSP level, the program assignment and the course 

version. That is four units of analysis, but we have a single unit of observation, the 

individual student.  

In Chapter 5 each hypothesis is presented, as well as are defined the related 

dependent variables, factors, parameters, threats to validity as well as the hypotheses 

tests to be executed. The parametric tests are applied according to a defined indirect 

analysis approach that we propose. During the execution of this approach, null 

hypothesis are being rejected or accepted in order to get to know if for the dependent 

variable under study the main reason of the changes is the PSP level or the 

programming repetition. Also when executing this approach, the effects sizes of the 

changes are visible and discussed. This allows us to contribute to the observations of the 

last two course formats, which do not have published studies.





 

 

 

Chapter 4 

Data Quality in the PSP 

The quality of the information is a factor of great significance for any activity 

based on such information. The quality of the information in every informatics system 

is fundamental and becoming more and more important every day. 

In the Empirical Software Engineering (ESE), conclusions about the 

experiments can be drawn based on the great amount of the collected data. For our 

work, it is necessary to analyze and measure the quality of the data recorded by students 

that participate on the different PSP courses. The data collection is performed by the 

students using a Microsoft Office Access tool implemented for such purpose: the PSP 

Student Workbook.  

PSP is a defined and measurable software process designed to meet the needs of 

the software business through the improvement of the practices, techniques and 

individual skills of the engineers, and by providing a quantitative base to manage the 

development process. However, if this data has quality problems (data with errors or 

suspicious of having errors), it would be essential to identify them and put them down 

for further analysis. It is necessary assess the quality of the data and even clean the data 

if necessary, so that the conclusions of experiment are based on acceptable quality data 

rather than on poor quality data. 

As part of the data quality analysis, errors are categorized either as real errors 

related to the data, or as suspect data that may contain errors. The former implies that 

there is certainty about the existence of an error regarding the data quality, and 

therefore, correcting it would be the following step. The latter implies that it is not 

possible to ensure the existence of an error. For both categories, it will be defined which 

cases would cause the data not to be considered for the statistical analysis in question. 

To carry out this study we applied knowledge regarding Data Quality and Data 

Quality in Software Engineering. The background of the data quality theory, as well as 

its importance and the basic concepts are introduced in the first section. Then, the data 

quality impact on ESE is presented. The last section presents the methodology that was 

applied to identify the data quality problems and to define the data quality metrics. The 

results the data quality assessment of the available data for both courses are presented, 

as well as the procedure that has been followed to perform the data cleaning and the 

data set cut-offs in order to prepare the data for the following statistical analyses. 

1. Background on Data Quality 

Before any data analysis, it is important to know about the relevance of the data 

quality. Therefore, it will be necessary to briefly mention what data quality is and the 

main concepts framed in this field of study. This section is strongly based on [13] [29]. 



Chapter 4.  Data Quality in the PSP 

40 

 

The data represents objects from the real world. Such representations are 

applicable to contexts of different and varied characteristics. The data can be either 

stored or put under certain processes or transformations. Use of such data is always 

essential to guarantee the survival and success of organizations. 

The problem of the data quality has been subject of study from different 

perspectives, and by different areas throughout the years, such is the case of Statistics, 

Management, or Computer Science. While its importance becomes more evident to the 

eyes of these and other areas, investigations and improvement intentions increase as 

well. 

It is unquestionable that the storage and/or processing of data is of vital 

relevance in every person and organizations' lives, within a great range of activities 

(beyond informatics and informatics systems). There are many examples from our daily 

life that require storing, processing, transmitting and using data. One of them is when 

we make the grocery list, because we store data regarding which products to buy, how 

many of them, and which brands. 

Regarding the concept of data quality, it usually happens that one intuitively 

thinks about certain aspects of the data. Most frequently one tends to think that the data 

is exact. However, it is necessary to delve deeper into this concept, so as to understand 

that there are several sides or aspects (the so-called dimensions) that make to the quality 

of the data. Along the document, some dimensions are explained (accuracy, uniqueness, 

completeness and consistency). As a trivial example, the act of making a grocery list 

can be considered: 

· If a product or the amount to be bought of a certain product is omitted, it 
would be an example of completeness problem. 

· If there is a mistake in the amount of a product, or if its brand is 
misspelled, it would be an example of accuracy problem. 

· If there are many lists containing the same products, it would be an 
example of uniqueness problem. 

Therefore, it can be said that the definition of data quality is strongly related to 

accuracy, completeness, consistency and uniqueness of the data (among others). It is 

because of this that the data quality is called a multifaceted concept, since it depends on 

the dimensions that define it. 

1.1. The Importance of Data Quality 

It is in few occasions that there is awareness of the consequences that poor data 

quality entails. Nevertheless, being able to identify its causes to either eliminate or 

improve the root of the problem is of vital importance. 

In the previous grocery list example, the poor data quality may entail unwanted 

consequences (such as omitting buying a needed product, or buying the wrong amount 

of it). In this example, none of these would be too serious. But it is not hard to imagine 

other situations (lists regarding bulk products importation, duplicated client names, 

payment mistakes, medical errors), where a non quality data could provoke serious 

problems. 

1.2. Data Quality Dimensions 



Chapter 4.  Data Quality in the PSP 

41 

 

In the previous section, some example concepts such as accuracy, completeness 

and consistency were introduced. All these characteristics (and much more) of the data, 

are called dimensions of the data quality. 

Each dimension reflects a different aspect of the data quality. It can refer to the 

extension of the data (its value), or the intention (its schema). In this way we can 

distinguish from data quality and schema quality. The focus of this study lies on the 

quality inherent to the data. 

A quality factor is defined as a particular aspect of a dimension. This means that 

a dimension can be seen as a group of quality factors that share the same purpose. 

It is clear that poor data quality can entail various problems, just as the poor 

schema quality (for example a schema of a relational database without normalizing) can 

cause bigger problems, such as redundancies. Both types of dimensions, the ones 

referring to the data and the ones referring to the schema, provide a qualitative view of 

the quality; while the quantitative measurements are represented by metrics. 

A metric is an instrument that defines how to measure a quality factor. The same 

quality factor can be measured with different metrics. On the other side, we define a 

measuring method as a process that implements a metric. And at the same time, the 

same metric can be measured with different methods. 

Measurements in a relational database can be performed at various levels of 

granularity: cell, tuple, table, or even at the level of the entire database. Thus 

aggregation functions are defined, which move from one level of granularity of data to 

another, getting a quality summary for that new level. For example, it is possible to 

obtain a measure of quality of a tuple based in the quality measures of each of their 

cells. 

There are many dimensions that reflect the different aspects of the data quality. 

This does not come as a surprise due to the fact that the data tries to represent every 

characteristic about the reality, from spatial and temporal, to social ones. The following 

contains description of some dimensions of the data quality in which our study will 

focus on. 

1.2.1. Accuracy and Uniqueness 

Accuracy can be defined as the closeness between a value v from the real world 

and its representation v. According to the theoretical approach, accuracy is defined as 

the correct and precise association between the information system states and the real 

world objects. 

There are three accuracy factors: semantic accuracy, syntactic accuracy and 

precision accuracy. 

The syntactic accuracy refers to the closeness between a value v and the 

elements of a domain D. This is, if v corresponds to any valid value from D (regardless 

if such value corresponds with one from the real world). In order to be able to measure 

the syntactic accuracy, the function comparison can be used. This is the metric that 

measures the distance between a value and the values of a domain D. Other possible 

alternatives imply using dictionaries that accurately represent the domain, or checking 

data against syntactic rules. 

The semantic accuracy refers to the closeness between a value v and a real value 

v. This dimension is mainly measured by the boolean values (indicating if it is a correct 

value or not). For this, it is necessary to know which real values need to be considered. 



Chapter 4.  Data Quality in the PSP 

42 

 

In this case, it becomes relevant to measure how well the real world states are 

represented. One of the used metrics is the comparison of the data with references 

considered as valid. 

The precision, on the other hand, refers to the level of detail of the data.  

In order to clarify the concepts, a simple example is presented. Take a database 

that stores the name and age of certain people. For the information related to the Age of 

the people, it is specified that its value must be between 0 and 120. It is also known that 

there is a person called Oscar Javier Morales, who is 23 years old. The following cases 

are considered: 

· If there was a record for a person where the age field had a 234 value, 
then it there would be a syntactic error (out of the range 0 to 120) 

· If there was a record for Oscar where the age field was 19, then it would 
be a semantic error, because it is known that Oscar is not 19 but 23 (in 

this case there is no syntactic error because 19 is a valid value for age) 

· If there was interest in knowing the age of Oscar in days (or month), 
there would be a precision problem because that information is given in 

years only, not months or days. 

Despite the fact that semantic accuracy is usually more complex to measure than 

the syntactic one (because it implies knowing the real world values), when a typing 

error occurs, both types of accuracies coincide. When a value is altered, the syntactic 

accuracy will be achieved, because the correct written value will correspond with one 

from the domain. Semantic accuracy will also be achieved, because there will be a real 

value associated with the correct written value. 

One way of checking the semantic accuracy is comparing different data sources, 

and from that, finding the desired correct value. This also depends on the resolution of 

the identification of objects problem, which consists on identifying if two tuples 

represent the same object from the real world. 

Considering accuracy among a group of values, it would be necessary to 

consider duplication as well. Such problematic occurs when an object from the real 

world appears more than one time (more than one tuple represents exactly the same 

object). 

However, tuples that represent the same object from the real world but with a 

different key could also exist. This aspect is considered by the Uniqueness dimension. It 

is important to highlight that different situations may lead to data duplication: 

· When the same entity is identified in different ways 

· When errors occur in the primary key of an entity 

· When the same entity is repeated with different keys 

There are two factors of the Uniqueness dimension to point out: 

· Duplication: the same entity appears equally repeated 

· Contradiction: the same entity appears repeated with contradictions 

1.2.2. Completeness 



Chapter 4.  Data Quality in the PSP 

43 

 

Completeness can be defined as the measure to which the data is of sufficient 

scope and depth.  According to the theoretical approach, this dimension is defined as the 

capacity of the informatics system to represent every significant state of a given reality. 

There are two factors related to completeness: coverage and density. 

Coverage refers to the part of the reality data that are contained in the 

informatics system. Just as for semantic accuracy, coverage involves a comparison of 

the informatics system with the real world. Once again, a reference is required. As it is 

usually hard to obtain, the alternative lies on estimating the size of such reference. 

Density refers to the amount of information contained, and the lack of 

information about the informatics system entities. 

Given a relational model, completeness can be characterized by null values, 

which could mean different things. A null value might indicate that such value does not 

exist in the real world, or that it does exist but it is unknown, or that there is no certainty 

about its existence in the real world. It is important to know the cause of its appearance. 

For instance, if it was required to record all data about the Earth inhabitants 

(name, age, gender) within a database, each non-registered person would reduce the 

completeness of the data (this would be completeness at the relational level). Moreover, 

completeness would also be reduced if the age or gender of certain people were 

unknown. 

1.2.3. Consistency 

This dimension refers to the compliance with the semantic rules defined over the 

data. According to the theoretical approach, the inconsistency of data appears when 

there is more than one informatics system state associated with the same object from 

reality. Incorporating external data as well as data with different formats could lead to 

inconsistency. 

A simple example: if there are data about certain people stored in a table - such 
as information about date of birth and age-, and there is a record that shows 2005.01.01 

as the date of birth, and 42 as the age, there is an inconsistency (it would be a violation 

of the intra-relational rule, as it is explained below). 

· Integrity constraints define properties that must be met by all the stages 
of the relational schema. There are three types of integrity constraints: 

· Domain constraints: it refers to the compliance with the rules about the 
content of the relation attributes. 

· Intra-relational constraints: it refers to the compliance with the rules 
about one or more than one relation attributes. 

· Inter-relational constraints: it refers to the compliance with the rules 
about different relations attributes. 

  



Chapter 4.  Data Quality in the PSP 

44 

 

1.3. Data Cleaning 

The activities related to data quality refer to any process (or transformation) 

applied to the data, with the purpose of improving its quality. In order to carry out such 

activities, different techniques are used. 

Data cleaning is fundamental to achieve the improvement of data quality. It is 

because of this that it is very useful to address this topic, in order to know and 

understand the problems that must be faced. 

Data cleaning tries to solve the problem related to detection and correction of 

errors and inconsistencies within the data, with the purpose of improving its quality. 

These activities are more important in databases in which information has been entered 

in a way that creates room for errors. For instance, when the information is entered by 

people using a keyboard, or when it is obtained from non-reliable sources, or when 

different information sources are integrated. The latter also implies consolidating the 

data that has the same meaning (but different representation), as well as discarding 

duplicated data. Data warehouses and informatics systems based on the web are an 

example of that. 

There are different tools that provide support to data cleaning. Nevertheless, it is 

important to bear in mind that besides the use of certain tools, this task also implies 

tough manual work or a low level programming work for its resolution. 

Error Detection, Correction and Prevention 

Finding (or detecting) and correcting errors is done for data that it is rarely 

created or updated. However, when dealing with data that is frequently updated and 

created, preventing errors through processes management is widely used. Control stages 

in the processes of data creation and/or updating take place in order to avoid 

inconsistencies. 

To locate errors, the Data editing technique is used, which consists on defining 
the rules (edits) that must be respected by certain group of data. In this way it is possible 

to detect inconsistencies. The edits represent error conditions, for which they must be 

consistent, and not redundant. 

The edits can also be used for error prevention and improvement of processes, 

avoiding inconsistencies on the database. We will not provide details about the error 

prevention techniques as we do not use them on our work. 

For anomalies’ detection and correction, which is when the value of a single 

datum or more widely differs from the rest of the data, the situation can be any of the 

ones that follow: 

· The value was incorrectly  measured, or incorrectly entered on the 

database 

· The value corresponds to a sample that is different from the rest 

· The value is incorrect and it simply corresponds to some unusual event 
from reality 

These data can be identified based on two different measurements: by measuring 

the distance from the registered values to the expected values (internal deviation), or by 

measuring the variation of the data throughout time in comparison with other data 

(relative deviation). There are different techniques for that. One of them calculates the 

average value and the standard deviation of a certain group of data, to identify those 



Chapter 4.  Data Quality in the PSP 

45 

 

values that deviate too much from the average value. A limit value could be defined so 

that if the data were beyond the boundary, the data is suspected of being incorrectly 

recorded. Other techniques also use the time factor to identify outlier data. Some are 

based on the fact that certain measured or registered data on a specific lapse of time can 

be strongly related to each other. Others take into account possible cycles where peak 

values appear, for instance the use of cell phones during Christmas or New Year's Eve. 

Dealing with these anomalies implies double effort: first they must be identified, 

and then it must be decided if they correspond either to correct data of unusual events 

from reality, or incorrect data, which should be corrected. These are the cases that we 

categorize as suspect of containing errors, given that we cannot ensure that there is 

indeed an error in the data. 

2. Impact of Data Quality in Empirical Software Engineering 

Regarding Software Engineering, the need to improve the quality of the obtained 

products as well as the Software Development process itself, has become a critical and 

fundamental aspect. This tendency can also be seen in the Quality Data field, given the 

growing amount of information generated and stored, increasing as well its value and 

importance for organizations. 

The analysis presented here is no exception in that sense. It is highly important 

to obtain good quality data in every experiment. This is due to the fact that such data is 

the starting point for further statistical analysis, comparative studies and data analysis, 

in which the results of the experiences are based on. It would be worthless to draw 

conclusions based on poor quality data. Furthermore, it would be detrimental because a 

false reality would be represented. 

Unfortunately, in an extensive and very recent literature review, Bachmann 

realized there are very few studies that examine the quality of the data collected during 

the use of a software development process [30]. Most of the few works are studies about 

the defect records’ data and about the data of the software for version control, ignoring 

other data generated during the use of a software development process. 

In another study, the authors found that poor quality data collected during the 

development process affects the quality of the software product developed [31]. It is due 

to the severe negative impact that poor data quality can have, that Shepperd says "... I 

therefore suggest that this topic [data quality] should become a higher priority amongst 

empirical software engineering researchers" [32].  

This situation encourages us to move forward and analyze the quality of the PSP 

data before running the statistical analysis. Particularly we focus on knowing and 

improving the quality of the data recollected by the students during the execution of a 

discipline software development process3 as it is the PSP. The way ahead implies 

analyzing and measuring the data quality generated by different PSP courses. 

In this way, it will be possible to identify certain errors within the data that will 

cause them to be dismissed for further analysis. Moreover, it will allow the obtained 

results to produce a better and more faithful representation of the reality. 

                                                 
3 It should be clear that the data quality of a process’ execution, the quality of the process and the quality 

of a product are very different concepts. We are assessing the quality of the data generated by the 

execution of the PSP during the PSP courses. 



Chapter 4.  Data Quality in the PSP 

46 

 

Undoubtedly, making analysis over data that contains errors might cause taking 

wrong corrective actions. In other words, we would be might take actions to improve 

aspects that should not be the focus, or we might take actions that do not have the 

intended effect. This might cause not only a loss in important resources (time, effort, 

dedication) over actions that will not help to improve the critical aspects -because we 

are focusing on incorrect improvement actions- but also may damage those aspects that 

did not needed to be acted upon. 

Therefore, the main issue to consider is that the sample of data from which the 

statistics analysis are going to be made, must be of high quality.  In order to achieve 

this, the first step would be to measure the quality over the relevant data for further 

studies, with the purpose of detecting data containing errors, and data suspicious of 

containing errors. Two possible ways appear then. The first consists on identifying 

corrective actions, or cleaning actions over the detected errors. Another alternative 

might be not considering such data on the sample. Despite the data cleaning allows 

having more available data, and clean, many times the cost of this task is too high, or 

even impossible, given the context and the data origin. Therefore, not considering data 

with errors ends up being in many cases not only a cheaper alternative, but also an 

executable one. And besides, it will lead to obtaining results that would contribute on 

the improvement of the process under study. 

3. Data Quality Analysis in the PSP 

In order to carry out any data quality study, the first step must be to know the 

reality and the context under analysis. It is because of this that the study of the Personal 

Software Process (PSP) is done as deeply as possible, including the use of the tool for 

data recording. This would allow us to identify the potential quality problems the data 

under study could have. 

After being aware of the domain to be analyzed, an evaluation of the possible 

dimensions and quality factors interesting to be measured and considered takes place as 

the first step. It is important to highlight here that the focus lies on how the data is 

recorded by the tool, given that it is the only way for entering data in the database. This 

means that all controls made automatically by the tool will not be worth measuring, 

because we can be sure that there will not be errors on such data (as an example: 

constraints of non null values, foreign keys, automatic calculations already existing in 

the database). In this way, the focus lies on the values that are entered manually, 

because it is here where most errors will occur. Unfortunately no documentation (user's 

manual, technical and/or functional documentation, database diagram) about the tool 

was available. The automatic controls identified on the tool -and that are considered in 

this study- were a consequence of the use of it, meaning they were detected along with 

the use of such tool. As part of the first analysis, the Grading Checklists are considered 

input of great contribution. They are used by the instructors for correcting exercises 

done during the course. Based on these checklists, it is possible to identify possible data 

quality problems to bear in mind, from which measurements can be defined. Moreover, 

possible completeness and accuracy problems can be identified. The detailed 

description of these metrics can be found in Appendix 3. 

It is worth mentioning that for many cases, suspect values can be found. This 

means that they appear to be wrong but it is impossible to ensure if they do represent to 

a data quality problem, or if they represent an unusual but real event, and therefore 



Chapter 4.  Data Quality in the PSP 

47 

 

should not be considered as data errors. For such cases, given that access to the sources 

is not possible (participants of the course) to know the real origin of the error, the 

proposed alternatives are the following. For those cases in which analyzing manually is 

feasible (according to the amount of data), they will be considered as a separate sample 

with the purpose of identifying if they contain -or not- data quality problems. For the 

rest of the cases, data will be dismissed and will not be considered for the statistical 

analysis due to its suspiciousness. 

Regarding the scope of the data that needs to be measured (the whole database, 

or only certain data or tables), focus will be on those data in which this thesis is based. 

Nevertheless, possible relations with other data that might affect the global results will 

not be left aside. 

3.1. Data Quality Problems 

A classification and detailed description of the main quality problems found are 

obtained after analyzing all possible data errors identified in the first stage. For every 

identified quality problem, the following aspects are included: 

· A brief description of what it consists of and why its consideration is to 
be of importance. 

· The probable causes or known causes (if they are already known) 

· The metrics used to measure it, including its granularity (which it may be 
at cell level, tuple, table or entire database). For all cases the result unit 

of the measure is Boolean, meaning that whether the measured object 

contains an error or not is indicated. 

The quality data dimensions to be measured are: accuracy, completeness, 

consistency and uniqueness. On Table 5, the quality problems are presented for each 

dimension and factor. 

Dimension Factor Quality Problem 

Accuracy 

Syntactic Accuracy Out of range value 

Semantic Accuracy Incorrect project identifier 

Precision Precision in times 

Completeness 
Density Null value 

Coverage Non-existing record 

Consistency 

Domain Integrity Domain integrity rules 

Intra-relationship integrity Intra-relationship integrity rules 

Referential integrity Referential integrity rules 

Invalid reference 

Uniqueness Duplication Duplicated register 

Table 5: Data Quality Problems 

In the following subsections all the quality problems are presented briefly. A 

detailed presentation about the data quality problems addressed in our work can be 

found in Appendix 4. For all cases, the unit of measure of the result is boolean: what is 

measured is whether the object has a problem or not. In most cases -except if stated not 

to- problems are measured by the definition and execution of SQL queries. 

  



Chapter 4.  Data Quality in the PSP 

48 

 

3.1.1. Out of Range Value 

The out of range values are those which are situated outside a previously defined 

valid range. Such values could correspond to anomalous values and as a consequence, 

results and conclusions obtained through the data analysis might not accurately reflect 

reality. 

For each of the identified cases (for instance, times), it is necessary to define 

certain criteria to appropriately determine the range in which values are going to be 

evaluated. Outliers are going to be identified by SQL queries. An outlier is a value that 

is unusually higher or lower than the others within a group of data, but that does not 

necessarily correspond to a wrong value. The range is determined considering the mean 

value and the standard deviation of the registered values. Values outside such range will 

be considered as probable of containing errors, and therefore they will be analyzed 

isolated from the rest.  

3.1.2. Incorrect Project Identifier 

All users should use the same indicators to refer to the same projects of reality. 

If not, it is impossible to do data analysis by project. With this problem all projects that 

have the right PSP process associated are indentified, but their project identifier does 

not correspond to reality4.   

3.1.3. Precision in Times 

With this problem the objective is to measure the precision level of the 

registered times, given that it is of interest knowing the exact moment in which a defect 

was registered. Hours, minutes and seconds of the registered times should never be 0. 

3.1.4. Null Value 

It is of interest knowing which information was registered and which was 

omitted. For the omitted information, it is important to know the cause of such 

omission, and if possible, to determine the value it should take instead of the null one. 

Fields that admit null values are identified, but in reality they should have a 

value different from empty (the fact that they admit null values is due to an incorrect 

design of the database that the PSP course tool uses). 

3.1.5. Non-existing Records 

Those registers that do not exist in the database but that do exist in reality are 

identified, meaning its entry was omitted. In other words, there is a portion of data that 

exists in reality, but is not reflected in the database. If we do not count with the whole 

universe of data, the statistic analyses that are carried out would only reflect a part of 

the reality under study.  

3.1.6. Domain Integrity Rules 

For some attributes it is possible to define the domain to which its values must 

belong to. In this case, it is defined that the valid domain for certain values must always 

be greater than zero. 

  

                                                 
4
 In the PSP student database, each program assignment has a project identifier. 

 



Chapter 4.  Data Quality in the PSP 

49 

 

3.1.7. Intra-relationship Integrity Rules 

A set of rules are defined under certain attributes of a same table, which must be 

met within the database under study. If any of these rules were to be violated, data 

consistency would be affected, and therefore any analysis done over such data would be 

affected as well. 

3.1.8. Referential Integrity Rules and Invalid Reference 

A set of rules are defined under certain attributes of a same table, which must be 

met within the database under study. Particularly, certain references towards certain 

inexistent tuples in the database are identified; therefore, they end up being invalid 

references. This is a consequence of an error in the schema design of the database, 

because the definition of the foreign keys over certain attributes is omitted. 

3.1.9. Duplicated Register 

This quality problem is identified when there are two or more registers that 

appear repeated in the exact same way. There are two situations: 

· When they have the same value for the key and the rest of the attributes (or null 
values). This case is dealt with RDBMS5 controls. 

· Despite having different primary key, they refer to the same object from reality 
and contain the same data regarding the defined fields. For this case, it is 

necessary to verify that there are not repeated registers (according to defined 

criteria) in the database under study. Two cases are considered: defects 

duplication, which corresponds to defects that were registered at the exact same 

hour, and students duplication, which corresponds to students that have the same 

name, same instructor and same date of creation of their profile within the tool. 

3.2. Data Quality Analysis Results 

Ten quality problems were identified, and a total of 91 metrics were defined to 

measure these problems applied to objects (cells and/or tuples) of the database. We did 

the measuring of the totality of the metrics that were defined. The execution of the 

measuring for these metrics was done automatically through SQL sentences in all cases. 

For the 20% of the cases, PHP programmed algorithms were used. This section presents 

the most important results in a general way. The complete results of our analysis can be 

found in Appendix 3.  

Table 6 shows the amount of defined metrics for each quality problem, the 

amount of metrics that correspond to errors, and the amount that correspond to 

suspicious cases. Besides, it also indicates for each quality problem the percentage of 

objects with such quality problem according to the metrics that measure errors and 

according to the metrics that measure suspicious cases. 

After executing all measuring we observe that 1.34% of the total of the 

measured objects has some error or possible error. If we only consider the metrics that 

measure errors (and we do not count suspect cases) such value decreases to 0.99%, and 

if we only consider the metrics that measure suspect cases, the percentage of objects 

with errors increases to 2.10%.  

                                                 
5 The term RDBMS refers to Relational Database Management System 



Chapter 4.  Data Quality in the PSP 

50 

 

A prior study on the quality of the PSP data presented a 4.8% of errors within 

data [33]. In that case, many of the errors in the data were due to manual calculations of 

derived data, something that no longer occurs with the current PSP tools. This 

difference in data quality given by the used tools is also mentioned by Bachmann and 

Bernstein “We also discussed the impact of varying data characteristics across [the 

studied] projects and concluded that, e.g., the nature of used software engineering 

processes, the use of process support tools […] result in differing data characteristics” 

[31]. 

 

Quality  Problem 
# total 
metrics 

# metrics 
for  

errors 

# metrics 
for 

suspicious 

% 
objects 

with error 

% 
suspicious     

objects 
Out of range value 8 0 8 0,00 % 3,20 % 

Incorrect project 

identifier 

1 1 0 8,66 % 0,00 % 

Precision in times 1 1 0 7,23 % 0,00 % 

Null value 26 26 0 1,32 % 0,00 % 

Non-existing 

record 

3 1 2 0,12 % 16,90 % 

Domain integrity 

rules 

15 15 0 1,29 % 0,00 % 

Intra-relationship 

integrity rules 

5 2 3 1,05 % 0,40 % 

Referential 

integrity rules 

10 9 1 11,94 % 3,44 % 

Invalid reference 20 20 0 0,04 % 0,00% 

Duplicated 

register 

2 2 0 1,62 % 0,00 % 

Table 6: Amount of metrics and percentage of objects with error for each quality 

problem 

These quality results, both seen from a global and particular point of view for 

each quality problem, are indicating that data cleaning is needed, in order to guarantee 

that the statistic analyses of data from these courses will be done over valid data. 

3.3. Data cleaning and cut-offs applied 

In order to consider only the data with no known quality problems in our 

analyses, we performed the appropriate data cleaning procedures as well as discarded 

the poor data quality that was not possible to be cleaned. Those procedures are based on 

91 defined metrics for the 10 data quality problems addressed. These are presented in 

detail in Appendix 3. 

Besides the already explained metrics’ classification, we classified the metrics in 

three groups, according to what aspect of the PSP basic concepts they measure: size, 

effort or defect. We also associated the four engineers’ performance dimension that we 

are going to analyze with these three concepts as follows: 

· Defect density in unit testing is associated with “defect” and “size”. This 

is because this variable depends on the removed defects records and the 

actual size records. 



Chapter 4.  Data Quality in the PSP 

51 

 

· Yield is associated with “defect”. This is because this variable depends 

on the removed and injected defects records. 

· Production rate is associated with “size” and “effort”. This is because 

this variable depends on the actual size and actual effort records. 

· Size estimation accuracy is associated with “size”. This is because this 

variable only depends on the actual size and estimated size records. 

According to these associations, we applied the data cleaning and data cut-off 

for each dependent variable we studied based on the objects with quality errors that 

were detected by the metrics associated to the same concepts. In the following chapter, 

the final data set (the one after the data cleaning process) considered for each hypothesis 

is presented. 

The data quality analysis of PSP’s data done in this thesis was published in the 

Proceedings of the IX Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería 
del Conocimiento (Iberoamerican Conference in Software Engineering and Knowledge 

Engineering), 2012 [34]. 

  

 





 

 

 

Chapter 5 

Data Analysis 

As we know, the strategy of PSP is to improve the work discipline and thus to 

improve the performance of practicing software developers. The underlying assumption 

is that such a defined and well-structured process leads to better estimating, better 

planning and tracking, protection against over commitment, a better personal 

commitment to quality, and the engineer’s involvement in continuous process 

improvement. Based on these goals, Hayes et al. examined five dimensions of the PSP; 

size estimation, effort estimation, product quality, process quality, and personal quality 

[7]. For each of these dimensions he formulated an individual hypothesis. Later 

Rombach et al. added another dimension and hypothesis, defect estimation [8]. Closer 

in time, Nichols et all. in a technical report re-analyzed and reflected on each hypothesis 

with a more complete data set [10]. 

Our general goal is to know if the different techniques and phases of the PSP 

(and therefore, the PSP itself) produce positive changes in different software 

development aspects. More specifically, we intend to conduct an empirical investigation 

of the data recollected during the courses to analyze and evaluate the effectiveness of 

the PSP and the impact of the domain experience. 

In our work we took some of the hypothesis that Hayes et al. defined, and 

extended them to analyze whether the introduction of a specific technique improves a 

dimension or if such improvement is only a consequence of gaining experience in the 

problem domain.  

We analyzed and compared the data from the latest two courses versions of PSP 

for the purpose of evaluating engineers’ performance improvements with respect to 

defect density in unit testing / yield / production rate / size estimation accuracy from the 

viewpoint of a researcher in the context of the PSP training of engineers in “PSP for 

Engineers I/II revised” course and the training of engineers in “PSP Fundamentals and 

Advance” course.  

This chapter is structured as follows. Section 1 defines the four hypotheses to be 

studied. Section 2 describes the origin of the data, its preparation for further analysis, 

the statistical model and an indirect statistical method proposed to analyze the data.  

Section 3 presents general internal and external threats to validity of the data analysis 

that apply to all the hypotheses. Sections 4 to 7 present the detailed results of the data 

analysis for each hypothesis. In the General Conclusions of the Data Analysis, the 

general conclusions are presented. 

  



Chapter 5.  Data Analysis 

54 

 

1. Hypotheses Definition 

This section presents each one of the hypothesis defined and studied to evaluate 

changes in engineers’ performance.  

1.1 Hypothesis 1 - Defect Density in Unit Testing 

Defect counts and measures of defect density (i.e., defects per KLOC) have 

traditionally served as software quality measures. The PSP uses this method of 

measuring product quality, as well as several process quality metrics. The consequence 

of high defect density in software engineering is typically seen in the form of defect 

fixing or rework effort incurred on projects. 

Here we address the impact of PSP application on the defect density of the 

programs produced by the engineers. In addition to overall defect density, a specific 

focus on the defect density of programs during the compile and test phases of the life 

cycle is provided. Defects that remain in the product at the end of the life cycle are the 

most costly to remove and have frequently been used to estimate the defect density of 

the delivered product; therefore, a reduction in these ‘late’ defects has a beneficial effect 

above and beyond the impact of a reduction in overall defect density. 

PSP2.1 introduces design notation, four design templates, and design 

verification methods to the PSP. These ensure that the designer examines and 

documents the design from different perspectives. This improves the design process, 

which makes the engineer consider many perspectives. The design templates in the PSP 

provide four perspectives on the design: an operational specification, a functional 

specification, a state specification, and a logic specification. Design is considered a 

defect prevention activity, so we think that total defect density should decrease 

significantly. 

The hypothesis to be investigated is as follows: 

As engineers progress through PSP training, the number of defects injected and 

therefore removed per thousand lines of code (KLOC) decreases. With the 

introduction of design and code reviews in PSP level 2, the defect densities of 

programs entering the compile and test phases decrease significantly. 

1.2 Hypothesis 2 - Yield 

One of the most powerful process metrics used in the PSP is the pre-compile 

defect yield (hereafter referred to simply as yield). Yield is the percentage of defects 

injected before the compile phase that are removed before the first compile. The PSP 

teaches engineers to examine process quality by quantifying the yield of their personal 

software process. By understanding how well their process works to prevent defects 

from “entering” the last phases of the process, engineers can see for themselves the 

benefit of changes they make to their processes. In general, the goal is to work for a 

yield of 100%. 

The hypothesis to be addressed is as follows: 

As engineers progress through the PSP training, their yield increases 
significantly. More specifically, the introduction of design review and code review 

following PSP level 1 has a significant impact on the value of engineers’ yield. 



Chapter 5.  Data Analysis 

55 

 

1.3 Hypothesis 3 – Production Rate 

Production rate is a major focus of most organizations that produce goods for 

customers. The quantification of product output per unit of time spent is as old a metric 

as can be found in any industry. In PSP, the data collected by the engineers allow them 

to compute lines of code per hour (LOC/Hr) as a measure of their personal production 

rate. 

We believe that even when PSP increments the amount of design documentation 

and data tracking, production rate remains unchanged during the PSP course.  

The hypothesis to be tested is: 

As engineers progress through the PSP training, there is no real substantive gain 

or loss in production rate. That is, the number of lines of code designed, written, 

and tested, per hour spent does not change with a higher PSP level. 

1.4 Hypothesis 4 - Size Estimation Accuracy 

Estimating the size of a job prior to deciding how long it will take to complete, 

while logical to most people, seems to be a difficult practice to instill in software 

engineers. The PSP provides a proxy-based estimation method (introduced during PSP 

level 1) to help engineers decompose the program and estimate the size of each element, 

based on historical data. Introduction of this method is designed to enable engineers to 

become more accurate estimators of their own work.  

While there will always be a subjective element to estimation no matter how 

much data it is based on, the PSP training strives to teach engineers how to make the 

best use of their own past experience. When the size estimation method is introduced at 

the start of PSP level 1, the engineers have data from previous assignments as a basis 

for estimating.  

Therefore, the hypothesis tested is as follows: 

As engineers progress through the PSP training, their size estimates gradually 

grow closer to the actual size of the program at the end. More specifically, with 

the introduction of a formal estimation technique for size in PSP level 1, there is a 

notable improvement in the accuracy of engineers’ size estimates. 

2. Data Set and Statistical Model 

The data for this analysis was reported and collected by the Software 

Engineering Institute. We used data from the eight program course version, PSP for 

Engineers I and II (PSPI/II), taught between June 2006 and June 2010. And we used 

data from the seven program course version of PSP Fundamentals and Advanced (PSP 

Fund/Adv), taught between December 2007 and September 2010. These courses were 

taught by the Software Engineering Institute (SEI) at Carnegie Mellon University or by 

SEI partners, including a number of different instructors in multiple countries.  

We began with 347 subjects in total, 169 from the PSP Fund/Adv course and 
178 from the PSPI/II course. From this we made several cuts and run data cleaning 

algorithms to include only the students who had completed all programming exercises, 

in order to clean and remove errors and questionable data. 



Chapter 5.  Data Analysis 

56 

 

To determine the cuts on the data set, we first developed an integrated data 

storage model. We designed such model in order to support the analysis and the 

assessment of data quality, based on the data quality theory, as it is explained in 

Chapter 4. In this way, we thoroughly identified and defined possible quality problems 

that the data under study might contain, we implemented the algorithms required for 

cleaning and collecting the metadata and finally, we executed those algorithms. Major 

data quality problems were related to the consistency, accuracy, completeness and 

uniqueness dimensions. This meant that after that data quality process, our data set was 

reduced as can be seen in Table 7. 

Number of Engineers 
Course Defect 

Density 
in UT 

Yield Production 
rate 

Size 
Estimation 
Accuracy 

PSP I/II 48 97 78 163 

PSP Fund/Adv 45 120 82 148 

Total 93 217 160 311 
Table 7: Number of engineers who provided complete sets of data for each hypothesis 

Differences in performance between engineers are typically the greatest source 

of variability in software engineering research, and this study is no exception. However, 

the design of the PSP class, and the standardization of each engineer’s measurement 

practice, allow the use of statistical models which are well suited for dealing with the 

variation among engineers. 

In the summarized analyses presented, we studied the changes in engineers’ data 

over seven programming assignments. Rather than analyzing changes in group 

averages, this study focuses on the average changes of individual engineers. Some 

engineers performed better than others from the first assignment, and some improved 

faster than others during the course. In order to discover the pattern of improvement in 

the presence of these natural differences between engineers, the statistical method 

known as the repeated measures analysis of variance (ANOVA) is used [14]. In brief, 

the repeated measures analysis of variance takes advantage of situations where the same 

people are measured over a succession of trials. By treating previous trials as baselines, 

the differences in measures across trials (rather than the measures themselves) are 

analyzed to uncover trends across the data. This allows differences among baselines to 

be factored out of the analysis. In addition, the different rates of improvement between 

people can be viewed more clearly. If the majority of people change substantially 

(relative to their own baselines), the statistical test will reveal this pattern. If only a few 

people improved in performance, the statistical test would not be likely to suggest a 

statistically significant difference, no matter how large the improvement of these few 

people was.  

Below we define some terms and independent variables that must be clear to 

understand the analyses: 

· Subject – A student who performs a complete PSP course. 

· Course Type – Refers to a PSP course version. It can be PSP Fund/Adv 
or PSPI/II. This variable in plots can be seen as 1 and 2 respectively. 

· Program Assignment or Program Number – Refers to an exercise that a 
student has performed during the PSP course.  Values go from 1 to 7. 

Program assignment 8 of the PSP I/II course version is not going to be 



Chapter 5.  Data Analysis 

57 

 

analyzed as there is no way to compare it with another assignment in the 

PSP Fund/Adv course version. 

· PSP Level – Refers to one of the six process levels used to introduce the 
PSP in these course versions. It can be PSP0, PSP0.1, PSP1, PSP1.1, 

PSP2, PSP2.1. Each program assignment has a corresponding PSP level 

according to the PSP course version. As we want to analyze the 

introduction of phases and techniques during the courses, we group PSP0 

and PSP0.1 and we group PSP1.0 and PSP1.1, and analyze PSP2.0 and 

PSP2.1 separately. So the PSP Level variable can be seen in plots as 0, 1, 

2 or 3 respectively. 

To apply ANOVA, the dependent variable needs to be continuous, and an 

independent variable is necessary to represent the time points or conditions 

(categorical). In this study we are considering the PSP Course, the PSP assignment and 

the PSP level to be the independent variables, and the analyzed hypotheses to be the 

dependent variables. Table 8 describes the dependent variable in detail. 

Dependent Variable Value 

Defect Density in Unit 
Testing (H1) 

1000 * Total defects removed in testing / Actual 
added and modified LOC 

 

Yield (H2) 100 * Defects removed before the compile phase / 

Defects injected before the compile phase 

Production Rate (H3) (Actual A&M LOC / Actual Minutes) * 60 

 

Size Estimation 
Accuracy (H4) 
 

(Estimated LOC – Actual LOC) / Estimated LOC 

Table 8: Dependent variables for each hypothesis and their values 

2.1 An Indirect Statistical Method of Analysis 

As we said in the introduction, the global objective of this study is to use the 

PSP data from the latest two course formats to demonstrate whether the effects on the 

engineers’ performance are associated only with PSP level and the introduced 

techniques rather than number of programs experience.  

To reach that objective, we considered a direct way through an Analysis of 

covariance (ANCOVA). As we explained in Chapter 3, the covariance is a measure of 

how much two variables change together and how strong the relationship is between 

them. The ANCOVA is a general linear model which blends ANOVA and regression. 

ANCOVA evaluates whether population means of a dependent variable (DV) are equal 

across levels of a categorical independent variable (IV), while statistically controlling 

for the effects of other continuous variables that are not of primary interest, known as 

covariates (CV). Therefore, when performing ANCOVA, we are adjusting the DV 

means to what they would be if all groups were equal on the CV.  

Based on these ideas, we try to solve our problem by using the corresponding 

dependent variable according to the hypothesis to be studied; using PSPI/II and PSP 

Fund/Adv as categorical values to segment the data into two parts; using the program 

assignment as the independent variable; and using the PSP level as the hidden variable.  



Chapter 5.  Data Analysis 

58 

 

When attempting to apply ANCOVA, we discovered that the correlation 

between PSP level and program number across the two courses was stronger than we 

believed. As explained in Chapter 3, correlations between the factors are a strong anti-

indication for ANCOVA [14]. Therefore, as we could not satisfy the ANCOVA 

assumptions, we decided to create a more indirect procedure and analyze the results 

based on specific differences between the two courses using the PSP level.  

To develop this indirect procedure we examine some relationships between 

program number, PSP level, course type and engineers’ performance, which is 

represented by the value of the dependent variable under study. The following 

procedure consists of three steps, each one based on an ANOVA analysis using the 

corresponding dependent variable for each hypothesis.  

To present this approach, let us define DepVar as a dependent variable to be 

studied. All the three presented steps will be related to the study of this unique 

dependent variable. If we want to study other dependent variables, we should execute 

all the three step approach again. 

The first step is like a gate, that if we are able to open it, this can lead us to think 

that the changes are not due to programming repetition. This step tries to find out 

whether there are differences between the two courses by comparing the dependent 

variable for each program assignment. That is, we compare the dependent variable at 

the program number x of PSP Fund/Adv vs. the same program number x of PSP I/II. 

And we made this comparison for all the program assignments. If there is no 

statistically significant difference, that means that the dependent variable value in the 

same program assignment of both courses is not changing. However, in the courses each 

program assignment has different PSP level. So, it seems that the changes in the PSP 

levels are not affecting the dependent variable changes. In this case, if any changes in 

the dependent variable existed through the exercises, then the exercise repetition and 

domain learning would be the root causes of the changes in the dependent variable. On 

the other hand, when we find differences, we should move forward to the second step in 

order to find if the PSP level could be the root cause of the changes. 

Figure 9 to Figure 12 show examples of how differently a dependent variable 

can evolve during the courses. 



Chapter 5.  Data Analysis 

59 

 

 
Figure 9: Example - DepVar keeps constant and unchanged during the 7 program 

assignments on both courses. There are no improvements. 

 
Figure 10: Example - DepVar keeps changes constantly by course during the 7 program 

assignments, but keeps unchanged between courses. Here the improvements are due to 

exercise repetition. 



Chapter 5.  Data Analysis 

60 

 

 
Figure 11: Example - DepVar changes with a different course pattern during the 7 

program assignments, but the changes are happening on programs assignments with 

the same PSP level on both courses: Program 6 with PSP level 2.1, and Program 7 with 

PSP 2.1. Here the improvements are probably due to exercise repetition 

 
Figure 12: Example - DepVar changes with a different course pattern during the 7 

program assignments, and the changes are happening on programs assignments with 

different PSP level on both courses: Program 2, with PSP1 in PSP Fund/Adv and PSP0 

in PSP I/II; Program 2,  with PSP2 in PSP Fund/Adv and PSP1 in PSP I/II; Program 5,  

with PSP2.1 in PSP Fund/Adv and PSP2 in PSP I/II. When this is the situation, we can 

move forward to the next step. 

To perform the analysis for this first step, we use a series of one-way ANOVA 

between each program number using course as the grouping factor. This establishes if 

the assignments have statistically significant different means of the dependent variable 



Chapter 5.  Data Analysis 

61 

 

between the courses. If there are not different means between courses, then the analysis 

is done because the program by program results for the two courses do not differ. We 

must run a set of test, one for each program number. If we find significant differences in 

at least one program number that has different PSP levels in each course, then we 

proceed to the next step. It is important to be sure that the significance difference is 

found in a program assignment that has one PSP level in one course and another PSP 

level in the other course version, because that is what will allow us to discard the 

repetition of the main root cause of the changes. 

To present the first step in a more formal way, a set of parametric tests of 

ANOVA are applied, one for each program number, to find out if it is possible to state 

that DepVar for program assignment x in PSP Fund/Adv course version is different 

from DepVar for the same program assignment x in PSP I/II with statistical validity. 

DepVar is the dependent variable and course type is the factor. The null hypothesis H0 

states the means are the same; the alternative hypothesis states that they are different. 

H0x : μDepVarx, PSP F/A = μDepVarx, PSP I/II 

H1x : μDepVarx, PSP F/A <> μDepVarx, PSP I/II  

Where the x refers to the program assignment numbers, which generally will go 

from 1 to 7 (it depends on the dependent variable under study). 

Then, if at least one test, where the PSP level of the program number x is 

different in both courses, rejects H0 with α ≤ 0.05, we would proceed to the next step. 

We know that in each course, each program assignment is completed following a 

specific PSP level. The second step looks at each course separately, and tries to find out 

if the differences between the course programs assignments are happening when the 

PSP level has changed or if the differences are happening even when the PSP level has 

no changed between two assignments. If there are significant changes between 

programs assignments with the same PSP level, this can lead us to think that the effects 

on the dependent variable are due to the repetition of exercises and not due to a specific 

technique introduction. Otherwise, if the significant changes are only between programs 

assignments with different PSP level, then we must study (in the third step) the behavior 

of the engineers’ performance through the PSP levels, when grouping the program 

assignments by PSP level. We should also check that changes are significant according 

to the first step results. 

To perform the analysis for the second step, we must perform a one-way 

ANOVA for repeated measures for each course type, using the program number as the 

grouping factor. This establishes a pair by pair comparison between all the assignments 

of each course separately. If in one course, two assignments have different means of the 

dependent variable, we should take a look at the applied PSP level of each assignment 

of that course. When they PSP level is the same, we can think that the effects are not 

due to the PSP level but due to exercise repetition.  

Formally, in the second step, a one-way ANOVA for repeated measures is 

applied for each course version, to find out if it is possible to state that DepVar for 

program assignment x in course version Z is different from DepVar for program 

assignment y in course version Z with statistical validity, for each program assignment 

x, y  where x<y; and Z= belongs to {PSP Fund/Adv, PSP I/II}. DepVar is the dependent 

variable and program assignment is the factor. The null hypothesis H0 states the means 

are the same; the alternative hypothesis states that they are different. 

H0 : μDepVarx, Z = μDepVary, Z 



Chapter 5.  Data Analysis 

62 

 

H1 : μDepVarx, Z <> μDepVary, Z 

Where x and y refer to all the program assignment numbers, which generally 

will go from 1 to 7 (it depends on the dependent variable under study), where x<y; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

The third and last step looks at each course separately again, and tries to find out 

if the dependant variable differences between the PSP levels are happening when a 

specific technique that is expected to improve an aspect of the engineers’ performance 

is in fact introduced. If there are significant changes between PSP levels where the 

technique is introduced, this will be showing that the introduced technique is the factor 

affecting the engineers’ performance and not the program repetition. We should also 

check that changes are significant according to the second step results. 

To perform the analysis for this third step, we must perform a two-way ANOVA 

for repeated measures, using the PSP level and the course type as the grouping factors. 

This establishes a pair by pair comparison between all the PSP levels of each course 

separately. If in one course, two PSP levels have no statistically different means, we can 

say that the techniques introduced in that PSP level are not affecting the engineers’ 

performance that are related to the specific dependent variable under study. 

Formally, in the third step, a two-way ANOVA is applied, to find out if it is 

possible to state that DepVar for PSP level v in course version Z is different from 

DepVar for PSP level w in course version Z with statistical validity, for each PSP levels 

v, w where v<>w and v, w belongs to {PSP0, PSP1, PSP2, PSP2.1}; and Z belongs to 

{PSP Fund/Adv, PSP I/II}. DepVar is the dependet variable and PSP level and course 

type are the factors. The null hypothesis H0 states the means are the same; the 

alternative hypothesis states that they are different.  

As the engineers’ data is recorded by program number during the courses, to 

have the data by PSP level we calculate the average of the dependent variable of all the 
programs grouped by PSP level. 

H0 : μDepVarv, Z = μDepVarw, Z 

H1 : μDepVarv, Z <> μDepVarw, Z 

Where v and w refers to all the PSP levels, PSP0, PSP1, PSP2 and PSP2.1; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

In the third step, the effect sizes are calculated when significant differences are 

found. An effect size is a measure of the strength of a phenomenon. It is known that 

conclusions drawn from hypothesis testing results might be erroneous if effect sizes are 

not judged in addition to statistical significance [35]. 

For each ANOVA test specified in this third step approach, we decided to apply 

the two-tailed significance test at 0.05. When using a two-tailed test, regardless of the 

direction of the relationship we hypothesize, we are testing the possibility of the 

relationship in both directions.  For example, we may wish to compare the mean of a 

sample to a given value x using a t-test. Our null hypothesis is that the mean is equal to 

x. A two-tailed test will test both if the mean is significantly greater than x and if the 

mean is significantly less than x. The mean is considered significantly different from x 

if the test statistic is in the top 2.5% or bottom 2.5% of its probability distribution, 

resulting in a p-value less than 0.05.      

Figure 13 shows a flowchart that represents in a clear graphic way the flow of 

the third step analysis procedure that we propose. 



Chapter 5.  Data Analysis 

63 

 

 
Figure 13: Three Step Analysis Approach Flowchart 

3. General Threats to Validity and Limitations 

The participating engineers in the PSP course have huge variety in their 

background, their knowledge and their experience. All those variables are influencing 

the collected measures and data. PSP application effects might for example be affected 

depending on the pre-class skills of the participants. Besides, assumptions were made 

on the validity of the data and the used tests. Although the data is prepared by the 

above-mentioned data quality cut-offs to be as complete and consistent as possible for 

the statistical tests, several threats to validity could be identified. 

There are some threats to validity and limitations in this study that apply for all 

the hypotheses analysis. In this section we describe them. Later in other sections of this 

chapter, for each hypothesis analysis we discuss also the specific threats for that 

particular hypothesis.  

To apply the repeated measures ANOVA some assumptions must be met: 

· Subjects must be randomly selected 

· Observations on these subjects are independent 

· Dependent variables must be normally distributed 



Chapter 5.  Data Analysis 

64 

 

· Equality of variances 

The researchers did not select the subjects; they were the ones that selected the 

course, and there is no precondition to do one course or another. So the random 

selection seems to be satisfied. But, on the other hand, some other biasing factor 

remains, because the students that took the PSP Advanced are more likely to go onto 

instruction or teaching. So, this group might respond better to the PSP instruction, and 

this could be seen as a threat to validity. 

As other potential factors, a completely independent observation of the subject is 

almost impossible to achieve as classes are working together with the same instructor 

and thus they do not only depend on the sole quality of the instructions. Given the quite 

large set of data, the large number of different instructors, and numerous different 

classes this assumption should however not be completely violated. 

The analysis of the collected data showed that the requirement for normal 

distribution of the dependent variables is not fully met. However, the data are mounded 

without severe outliers. Nevertheless, different transformation techniques were applied 

to better meet this assumption for each hypothesis to reach a more normal distribution 

variable. Fortunately, an ANOVA is not very sensitive to moderate deviations from 

normality; simulation studies, using a variety of non-normal distributions, have shown 

that the false positive rate is not affected very much by this violation of the assumption 

[36] [37] [38].  The transformations to reach a more normal distribution variables are 

explained later. 

The PSP training aims at providing engineers with techniques to improve their 

daily work with 7 or 8 assignments, depending on the course version. The data is 

collected within a class set-up where the attendees can concentrate on the assignment 

and are not distracted by colleagues, working on multiple projects, etc. The 

investigation thus can only show the improvements achieved during the duration of the 

class.  

A general translation of the achieved improvement effects to generally improved 

workplace performance must however be seen very carefully. The results show trends 

and it can be interpreted that the trend might continue and finally lead to the assumed 

results. It is also not directly possible to conclude that the results are immediately valid 

for large scale projects, when the engineers are working in multiple project teams, and 

the project is executed over a long time span.  

We are comparing program assignments of two course versions as if they were 

identical. Some of them are exactly the same assignments, others are very similar. This 

can be considered a threat to validity, as they are not all exactly the same.  

Engineers attending the PSP course are unfamiliar with the process phases and 

need to evolve them by using PSP and understand more about the process each time it is 

used. The data of the PSP courses are all collected at a stage were the engineer has the 

idea of “what he wants to do” but still not enough experience to stabilize his process. 

With the introduction of each new phase the process is getting more complex and thus, 

with each PSP-level, the engineer is forced to extend his knowledge on the process.  

This situation may have an impact in the way some techniques are applied. So, 

the collected data is not really showing the use of PSP but the use during the PSP 
learning (which is not the same). In the practice it is expected that the data not only 

differ from the ones studied, but also it is expected to be better regarding to the studied 

hypotheses.  



Chapter 5.  Data Analysis 

65 

 

4. Defect Density in Unit Testing 

This section presents the analysis, results, threats to validity and conclusions 

related to the study of the performance of the engineers regarding defect density in unit 

testing. 

4.1 Analyses and Results 

This subsection presents in detail each step of the descriptive and the statistical 

analysis, discussing the results of each step. 

4.1.1 Descriptive Statistics 

The objective of this study is to demonstrate whether reviews and design 

improve the quality of a product in test. And we use defect density as a measure of 

quality, so we define defect density in unit testing (DDUT) as the dependent variable in 

our analyses:  

DDUT = 1000 · Total defects removed in testing / Actual added and modified LOC 

As we said earlier, after the data quality process our data set was reduced to 93 

subjects in total, 45 from the PSP Fund/Adv course and 48 from the PSPI/II course. The 

descriptive statistics for the dependent variable are displayed in Table 9.  

 N Min Max Media St. dev. 

Defect Density in Unit 

Testing 
651 ,00 1000,00 20,1653 54,21639 

      

Table 9: Descriptive statistics of Defect Density in Unit Testing 

The independent variables are: 

· Course Type – It can be PSP Fund/Adv (labeled by “1” in plots) or 

PSPI/II (labeled by “2”). 

· Program Assignment – It can be 1, 2, 3, 4, 5, 6, 7  

· PSP Level – It can be 0 (PSP0.1) , 1 (PSP1.0 and 1.1), 2 (PSP2) or 3 

(PSP2.1)  

In Table 9, the number of samples N is the sum of the assignments’ samples 

considered for each student of both courses. N = 148 * 6 + 163 * 6 = 1866. The 

minimum and maximum values, the media and the standard deviation are also shown.  

Figure 14 shows a box and whisker chart of DDUT grouped by course type and 

PSP level. Figure 15 shows a box and whisker chart of DDUT too, but in this case 

grouped by course type and program assignment. 



Chapter 5.  Data Analysis 

66 

 

 
Figure 14: Box and whisker chart of DDUT for each PSP level, for both courses PSP 

Fund/Adv and PSP I/II 

 
Figure 15: Box and whisker chart of DDUT for each program assignment, for both 

courses PSP Fund/Adv and PSP I/II 

As that variable is not normal, we tried to normalize with a log-transform. Even 

the normality assumption could not be fully satisfied; this new variable is clearly near to 

a normal variable.  

It is important to clarify that as total defects removed in testing can be zero, this 

variable is not defined on this point. That is the reason for adding a constant value of 0.5 

before the log-transformation. 

So, our new dependent variable is: 



Chapter 5.  Data Analysis 

67 

 

LN(DDUT)  =  LN((Total defects removed in testing / Actual added and modified 

LOC) + 0,5)  

Basically, we did the following: 

· Prior to transformation, added a constant of 0.5 to everything. This will 
not alter the shapes or the slopes. 

· Log-transformed the data. Now have no infinities at zero.  

· Performed the fits 

· Untransformed the data 

· Subtracted the constant from the mean to calculate the effect size and the 
confidence intervals. 

4.1.2 Three Step Approach Analysis 

To complete the statistical analysis, we must follow the three step analysis 

procedure that was explained in the Section 2.1. 

The first step tries to find out whether there are differences between the two 

courses by comparing the LN(DDUT) for each program assignment. If there is no 

statistically significant difference, that means that the defect density in UT in the same 

program assignment of both courses is not changing. However, in the courses each 

program assignment has different PSP level. So, it seems that the changes in the PSP 

levels are not affecting the defect density changes. In this case, if any changes in the 

defect density in unit testing existed through the exercises, then the exercise repetition 

and domain learning would be the root causes of the changes. On the other hand, when 

we find differences, we should move forward to the second step in order to find if the 

PSP level could be the root cause of the changes. 

So we applied a set of parametric tests of ANOVA, one for each program 

number, to find out if it is possible to state that LN(DDUT) for program assignment x in 

PSP Fund/Adv course version is different from LN(DDUT) for the same program 

assignment x in PSP I/II with statistical validity. LN(DDUT) is the dependent variable 

and course type is the factor. The null hypothesis H0 states the means are the same; the 

alternative hypothesis states that they are different. 

H0x : μLN(DDUT)x, PSP F/A = μLN(DDUT)x, PSP I/II 

H1x : μLN(DDUT)x, PSP F/A <> μLN(DDUT)x, PSP I/II  

Where the x refers the program assignment numbers, which go from 1 to 7. 

As at least one test where the PSP level of the program number is different in 

both courses rejects H0 with α ≤ 0.05, we proceed to the next step. 

The second step looks at each course separately, and tries to find out if the defect 

density in UT differences between the course programs assignments are happening 

when the PSP level has changed or if the differences are happening even when the PSP 

level has no changed between two assignments. If there are significant changes between 

programs assignments with the same PSP level, this can lead us to think that the effects 
on the LN(DDUT) are due to the repetition of exercises and not due to the design and 

code review introduction. Otherwise, if the significant changes are only between 

programs assignments with different PSP level, then we must study (in the third step) 



Chapter 5.  Data Analysis 

68 

 

the behavior of the defect density in unit testing through the PSP levels, when grouping 

the program assignments by PSP level. 

So, for this second step a one-way ANOVA was applied for each course version 

to find out if it is possible to state that LN(DDUT) for program assignment x in course 

version Z is different from LN(DDUT) for program assignment y in course version Z 

with statistical validity, for each program assignment x, y  where x<y; and Z= belongs 

to {PSP Fund/Adv, PSP I/II}. LN(DDUT) is the dependent variable, and program 

assignment is the factor. The null hypothesis H0 states the means are the same; the 

alternative hypothesis states that they are different. 

H0 : μLN(DDUT)x, Z = μLN(DDUT)y, Z 

H1 : μLN(DDUT)x, Z <> μLN(DDUT)y, Z 

Where x and y refer to all the program assignment numbers, which go from 1 to 

7, where x<y; and Z refers to one of both of the courses version, PSP Fund/Adv and 

PSP I/II. 

Table 10 and Table 11 summarize the ANOVA discussed above for this step for 

the courses PSP Fund/Adv and PSP I/II respectively.  

PSP Fund/Adv 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 1 ,154 1,000 

3 2 1,364 ,003 

4 2 2,348 ,000 

5 2.1 1,602 ,000 

6 2.1 2,139 ,000 

7 2.1 2,347 ,000 

2 

3 2 1,210 ,015 

4 2 2,193 ,000 

5 2.1 1,448 ,001 

6 2.1 1,985 ,000 

7 2.1 2,192 ,000 

3 

4 2 ,983 ,111 

5 2.1 ,237 1,000 

6 2.1 ,774 ,550 

7 2.1 ,982 ,120 



Chapter 5.  Data Analysis 

69 

 

4 

5 2.1 -,745 ,722 

6 2.1 -,208 1,000 

7 2.1 -,001 1,000 

5 
6 2.1 ,537 1,000 

7 2.1 ,744 1,000 

6 7 2.1 ,207 1,000 

Table 10: LN(DDUT)  ANOVA outputs for program assignment comparison in PSP 

Fund/Adv  

PSP I/II 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 0.1 -,485 1,000 

3 1 ,502 1,000 

4 1.1 ,730 ,822 

5 2 ,816 ,447 

6 2.1 ,948 ,153 

7 2.1 1,517 ,001 

2 

3 1 ,987 ,128 

4 1.1 1,216 ,014 

5 2 1,301 ,006 

6 2.1 1,434 ,001 

7 2.1 2,003 ,000 

3 

4 1.1 ,228 1,000 

5 2 ,314 1,000 

6 2.1 ,446 1,000 

7 2.1 1,015 ,093 

4 

5 2 ,0854 1,000 

6 2.1 ,2179 1,000 

7 2.1 ,786 ,599 



Chapter 5.  Data Analysis 

70 

 

5 
6 2.1 ,132 1,000 

7 2.1 ,701 1,000 

6 7 2.1 ,569 1,000 

Table 11: LN(DDUT) ANOVA outputs for program assignment comparison in PSP I/II 

When we analyze the results at Table 10 and Table 11, we should look at the 

values that are lower or equal than 0.05 in the significance column. In the PSP 

Fund/Adv course we found that there is significant difference between Program 1 and 

Programs 3, 4, 5, 6, 7. We also found that there is significant difference between 

Program 2 and Program 3, 4, 5, 6, 7. That means that H0 is rejected and the LN(DDUT) 

means in the PSP Fund/Adv course are significantly different between Program 1 and 

Programs 3, to 7 and also are significantly different between Program 2 and Programs 3 

to Program 7. In PSP Fund/Adv Program 2 is completed following the PSP1 script, 

Program 3 and 4 are completed following the PSP2 script, and Program 5 to 7 are 

completed following PSP 2.1 script. So, we interpret this ANOVA results as 

improvements between PSP0 and PSP2, between PSP0 and PSP2.1, and also 

improvements between PSP1 and PSP2 and between PSP1 and PSP2.1. 

Regarding PSP I/II we found that there is significant difference between 

Program 1 and Program 7, and also that there is significant difference between Program 

2 and Program 4, 5, 6, 7. In PSP I/II Program 1 and 2 are completed following PSP0; 

Program 4 is completed following PSP1; Programs 5 is completed following PSP2; and 

Programs 6 and 7 are completed following PSP2.1. So, these results are consistent with 

improvements between PSP0 and PSP2.1, as well as improvements between PSP0 and 

PSP1, PSP0 and PSP2; and improvements between PSP0 and PSP2.1. 

Separate course data showed a general downward trend in defect level with 

program number, irrespective of process level. This was as we expected based on the 

correlation between PSP level and program number. As a summary of this step, we can 
say that for each course we only found significant difference between assignments with 

different PSP level. According to the design and review techniques introduced in the 

corresponding PSP levels, these improvements were expected. 

Figure 16 shows the estimated marginal means of defect density in unit testing 

vs. program number, for both courses. The graphic shows how the two courses perform 

differently. The declining defect level is more consistent and larger in PSP 

Fundamentals through the introduction of PSP 2.0. Defect levels appear to be more 

consistent by the end of the courses.   



Chapter 5.  Data Analysis 

71 

 

 

Figure 16: Estimated marginal means of DDUT vs. program number, for PSP 

Fund/Adv and PSP I/II 

In the third and last step looks at each course separately again, and tries to find 

out if the defect density in unit testing differences between the PSP levels are happening 

when the design and code reviews are in fact introduced. If there are significant changes 

between PSP levels where the reviews are introduced, this will be showing that the 

introduced techniques are the factor affecting the engineers’ performance and not the 

program repetition.  

So, in the third step, a two-way ANOVA is applied, to find out if it is possible to 

state that LN(DDUT) for PSP level v in course version Z is different from LN(DDUT) 

for PSP level w in course version Z with statistical validity, for each PSP levels v, w  

where v<>w and v, w belongs to {PSP0, PSP1, PSP2, PSP2.1}; and Z belongs to {PSP 

Fund/Adv, PSP I/II}. LN(DDUT) is the dependent variable, PSP level and course type 

are the factors. The null hypothesis H0 states the means are the same; the alternative 

hypothesis states that they are different. 

H0 : μLN(DDUT)v, Z = μLN(DDUT)w, Z 

H1 : μLN(DDUT)v, Z <> μLN(DDUT)w, Z 

Where v and w refers to all the PSP levels, PSP0, PSP1, PSP2 and PSP2.1; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

Looking at the two-way ANOVA results, we found that there is significant 

difference between PSP0 and PSP1, between PSP0 and PSP2, and also between PSP0 

and PSP2. We also found that there is significant difference between PSP1 and PSP2, 

and between PSP1 and PSP2.1.  



Chapter 5.  Data Analysis 

72 

 

Figure 17 shows the 95% confidence intervals of defect density in unit testing 

for each PSP level, for both courses together.  

 
Figure 17: 95% Confidence interval of DDUT for each PSP level 

Looking at both courses together in more detail, results show that: 

· PSP1 was a factor of 1.52 more effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [0.607, 2.70].  

· PSP2 was a factor of 2.26 more effective than PSP0 at an alpha level of 

0.05 with a confidence range of the differences of [1.965, 6.677].  

· PSP2.1 was a factor of 2.28 more effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [2.861, 8.220].  

· PSP2 was a factor of 0.78 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [0.809, 3.309].  

· PSP2.1 was a factor of 0.89 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [1.284, 4.130]. 

The term “more effective”, in this study means that the defect density in unit 

testing is reduced. 

4.2 Threats to validity and limitations 

By definition, defect density depends on the amount of defects removed. But the 

amount of defects found and removed in the test phase depends on the experience and 

on how good the student is in doing unit testing. Therefore, we have a threat related to 

testing, because the tests - that are coincident with the treatment- may influence the 

student behavior.  

According to the history, these courses were taught largely, but not entirely at 

different times. Newer development environments and changes in the computer 



Chapter 5.  Data Analysis 

73 

 

language instruction may alter subject behavior or the defect injection profile. This 

could affect course differences. 

Even after having transformed the data, the normality assumption for ANOVA 

could not be satisfied. The distributions of defect density tend to be positively skewed, 

with long tails extending to the right and a truncated range at zero. This type of non-

normal distribution is to be expected given the source of the data. There can never be a 

negative count for defects, so the truncation at zero is expected. In addition, we would 

expect many small values of defect density and relatively fewer large values. This 

positively skewed distribution is particularly expected when engineers (as a group) 

reduce the defect density of the programs as they improve their quality during the 

course. This is the type of data where either a logarithmic or inverse transformation can 

be used to create a more nearly normal distribution [14]. Based on our examination of 

the effects of these two types of transformations on the distribution of residuals, the 

logarithmic transformation was used in the confirmatory analysis. 

4.3 Conclusions 

In this analysis we considered the work of 93 software engineers, who during 

PSP work, developed 7 or 8 programs, depending on the course version. Each subject 

took the complete PSP course, either PSP for Engineers I and II or PSP Fundamentals 

and Advance. We analyzed the data collected by each student to determine whether the 

design and reviews improve the quality of a product in test or if such improvement is 

only a consequence of gaining experience in the problem domain.  

Both courses appear to be effective in demonstrating effective use of design and 

reviews and both show reduction in defect injections. Levels achieved at the end of the 

course are consistent with best in class practice. This cross course comparison allowed 

us to find out that a) “Hawthorne effect” is not as plausible as “gaining experience in the 

problem domain” or b) PSP techniques associated with PSP level as a causal 

explanation for the improvements.  The strong association with PSP level suggests that 

improvement effects are most plausible regarding mastering PSP techniques rather than 

general domain knowledge. This might be further examined in a future study with an 

analysis of phase injection and removal.  

Because PSP level changes so rapidly in the PSP Fund/Adv and PSP I/II 

program number and PSP process level are tightly correlated in a way that makes 

separating the effects difficult.  These results cannot ensure that the observed 

improvements are exclusively due to mastering the process techniques introduced in the 

PSP. We propose future analysis in Chapter 7 to obtain more generalizable results.  

The study of this particular hypothesis was published in the Proceedings of the 

TSP Symposium 2012 and included in a SEI Special Report [39]. 

5. Yield 

This section presents the analysis, results, threats to validity and conclusions 

related to the study of the performance of the engineers in pre-compiled defect yield 

  



Chapter 5.  Data Analysis 

74 

 

5.1 Analyses and Results 

This subsection presents in detail each step of the descriptive and the statistical 

analysis, discussing the results of each step. 

5.1.1 Descriptive Statistics 

The objective is to demonstrate whether the introduction of design review and 

code review following PSP level 2 has a significant impact on the value of engineers’ 

yield, or if such improvement is only a consequence of gaining experience in the 

problem domain. 

We define Process Yield, our dependent variable, as follows: 

Yield = (100 * Defects removed before the compile phase) / Defects injected before the 

compile phase 

As we said earlier, after the data quality process, our data set was reduced to 217 

subjects in total, 120 from the PSP Fund/Adv course and 97 from the PSPI/II course. 

The descriptive statistics for the dependent variable are displayed in Table 12. 

 N Min Max Media St. dev. 

Yield 1519 ,00 100,00 37,4024 37,83361 

      

Table 12: Descriptive statistics of Yield 

The independent variables are: 

· Course Type – It can be PSP Fund/Adv (labeled by “1” in plots) or 

PSPI/II (labeled by “2”). 

· Program Assignment – It can be 1, 2, 3, 4, 5, 6, 7  

· PSP Level – It can be 0 (PSP0.1) , 1 (PSP1.0 and 1.1), 2 (PSP2) or 3 
(PSP2.1)  

In Table 12, the number of samples N is the sum of the assignments’ samples 

considered for each student of both courses. N = 120 * 7 + 97 * 6 = 1866. The 

minimum and maximum values, the media and the standard deviation are also shown.  

Figure 18 shows a box and whisker chart of Yield grouped by course type and 

PSP level. Figure 19 shows a box and whisker chart of Yield too, but in this case 

grouped by course type and program assignment. 



Chapter 5.  Data Analysis 

75 

 

 
Figure 18: Box and whisker chart of Process Yield for each PSP level, for both courses 

PSP Fund/Adv and PSP I/II 

 
Figure 19: Box and whisker chart of Process Yield for each program assignment, for 

both courses PSP Fund/Adv and PSP I/II 

  



Chapter 5.  Data Analysis 

76 

 

5.1.2 Three Step Approach Analysis 

To complete the statistical analysis, we must follow the three step analysis 

procedure that was explained in the Section 2.1. 

The first step tries to find out whether there are differences between the two 

courses by comparing the process yield for each program assignment. If there is no 

statistically significant difference, that means that the yield in the same program 

assignment of both courses is not changing. However, in the courses each program 

assignment has different PSP level. So, it seems that the changes in the PSP levels are 

not affecting the process yield changes. In this case, if any changes in the process yield 

existed through the exercises, then the exercise repetition and domain learning would be 

the root causes of the changes. On the other hand, when we find differences, we should 

move forward to the second step in order to find if the PSP level could be the root cause 

of the changes. 

So we applied a set of parametric tests of ANOVA, one for each program 

number, to determine if it is possible to state that the yield for program assignment x in 

PSP Fund/Adv course version is different from the yield for the same program 

assignment x in PSP I/II with statistical validity. Yield is the dependent variable, and 

course type is the factor. The null hypothesis H0 states the means are the same; the 

alternative hypothesis states that they are different. 

H0x : μYieldx, PSP F/A = μYieldx, PSP I/II 

H1x : μYieldx, PSP F/A <> μYieldx, PSP I/II  

Where the x refers the program assignment numbers, which go from 1 to 7. 

As at least one test where the PSP level of the program number is different in 

both courses rejects H0 with α ≤ 0.05, we proceed to the next step. 

The second step looks at each course separately, and tries to find out if the yield 

differences between the course programs assignments are happening when the PSP level 

has changed or if the differences are happening even when the PSP level has no 

changed between two assignments. If there are significant changes between programs 

assignments with the same PSP level, this can lead us to think that the effects on the 

process yield are due to the repetition of exercises and not due to the design and code 

review introduction. Otherwise, if the significant changes are only between programs 

assignments with different PSP level, then we must study (in the third step) the behavior 

of the process yield through the PSP levels, when grouping the program assignments by 

PSP level. 

So, for this second step a one-way ANOVA for repeated measures was applied 

for each course version, to find out if it is possible to state that Yield for program 

assignment x in course version Z is different from Yield for program assignment y in 

course version Z with statistical validity, for each program assignment x, y where x<y; 

and Z= belongs to {PSP Fund/Adv, PSP I/II}. Yield is the dependent variable, and 

program assignment is the factor. The null hypothesis H0 states the means are the same; 

the alternative hypothesis states that they are different. 

H0 : μYieldx, Z = μYieldy, Z 

H1 : μYieldx, Z <> μYieldy, Z 



Chapter 5.  Data Analysis 

77 

 

Where x and y refer to all the program assignment numbers, which go from 1 to 

7, where x<y; and Z refers to one of both of the courses version, PSP Fund/Adv and 

PSP I/II. 

Table 13 and Table 14 summarize the ANOVA discussed above for this step for 

the courses PSP Fund/Adv and PSP I/II respectively.  

PSP Fund/Adv 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 1 ,354 1,000 

3 2 -42,488 ,000 

4 2 -45,780 ,000 

5 2.1 -50,867 ,000 

6 2.1 -57,087 ,000 

7 2.1 -52,325 ,000 

2 

3 2 -42,841 ,000 

4 2 -46,134 ,000 

5 2.1 -51,221 ,000 

6 2.1 -57,441 ,000 

7 2.1 -52,679 ,000 

3 

4 2 -3,293 1,000 

5 2.1 -8,380 ,807 

6 2.1 -14,600 ,008 

7 2.1 -9,838 ,370 

4 

5 2.1 -5,087 1,000 

6 2.1 -11,307 ,146 

7 2.1 -6,545 1,000 

5 
6 2.1 -6,220 1,000 

7 2.1 -1,458 1,000 

6 7 2.1 4,762 1,000 

Table 13: Yield ANOVA outputs for program assignment comparison in PSP Fund/Adv  



Chapter 5.  Data Analysis 

78 

 

PSP I/II 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 0.1 2,009 1,000 

3 1 5,105 1,000 

4 1.1 5,367 1,000 

5 2 -46,287 ,000 

6 2.1 -50,577 ,000 

7 2.1 -50,972 ,000 

2 

3 1 3,096 1,000 

4 1.1 3,359 1,000 

5 2 -48,296 ,000 

6 2.1 -52,586 ,000 

7 2.1 -52,980 ,000 

3 

4 1.1 ,263 1,000 

5 2 -51,392 ,000 

6 2.1 -55,682 ,000 

7 2.1 -56,076 ,000 

4 

5 2 -51,654 ,000 

6 2.1 -55,944 ,000 

7 2.1 -56,339 ,000 

5 
6 2.1 -4,290 1,000 

7 2.1 -4,685 1,000 

6 7 2.1 -,394 1,000 

Table 14: Yield ANOVA outputs for program assignment comparison in PSP I/II 

When we analyze the results at Table 13 and Table 14, we should look at the 

values that are lower or equal than 0.05 in the significance column. In the PSP 

Fund/Adv course we found that there are significant differences between Program 1 and 

Programs 3, 4, 5, 6, 7. That means that H0 is rejected and the Yield means in the PSP 

Fund/Adv course are significantly different between Program 2 and Program 3,4,5,6 

and 7. In PSP Fund/Adv Program 1 is completed following the PSP0 script, Program 3 



Chapter 5.  Data Analysis 

79 

 

and 4 are completed following the PSP 2 script, and Program 5 to 7 are completed 

following the PSP2.1 script. So, we interpret that this shows improvements between 

PSP0 and PSP 2 or PSP2.1 (depending on which assignment). Exactly the same happens 

between Program 2 and all the next assignments. In this course, Program 2 is completed 

following the PSP1 script, se we interpret that this shows improvements between PSP1 

and PSP 2 or PSP2.1. We also found that there is significant difference between 

Program 3 and Programs 6, so we consider that this shows improvements between PSP2 

and PSP2.1. 

In the PSP I/II Adv course we found that there is significant difference between 

Program 1 and Program 5, 6, 7. Exactly the same happens between Program 2 and 5, 6, 

7; between Program 3 and 5, 6, 7; and between Program 4 and all the next assignments. 

In PSP I/II course, Program 1 and 2 are completed following PSP0; Program 3 and 4 are 

completed following PSP1; Program 5 following PSP 2; Program 6 and 7 are completed 

following PSP2. We interpret all this significant differences as improvements between 

PSP0 and PSP 2, PSP0 and PSP2.1, PSP1 and PSP 2, PSP1 and PSP2.1. 

As a summary of this step, we can say that for each course we only found 

significant difference between assignments with different PSP level, and we did not find 

significant difference in process yield between PSP0 and PSP1. According to the design 

and code review introduction in PSP level 2 these improvements were expected. 

Figure 20 shows the estimated marginal means of Yield vs. program number, for 

both courses. The graphic shows how the two courses have low yield during 

assignments with PSP level 0 or 1, then an important increment on yield on the first 

PSP2 introduction.  



Chapter 5.  Data Analysis 

80 

 

 
Figure 20: Estimated marginal means of Yield vs. program number, for PSP Fund/Adv 

and PSP I/II 

In the third and last step looks at each course separately again, and tries to find 

out if the process yield differences between the PSP levels are happening when the 

design and code reviews are in fact introduced. If there are significant changes between 

PSP levels where these techniques are introduced, this will be showing that the design 

and code reviews are the factor affecting the engineers’ performance and not the 

program repetition.  

So, in the third step, a two-way ANOVA is applied, to find out if it is possible to 

state that Yield for PSP level v in course version Z is different from Yield for PSP level 

w in course version Z with statistical validity, for each PSP levels v, w where v<>w and 

v, w belongs to {PSP0, PSP1, PSP2, PSP2.1}; and Z belongs to {PSP Fund/Adv, PSP 

I/II}. Yield is the dependent variable and PSP level and course type are the factors. The 

null hypothesis H0 states the means are the same; the alternative hypothesis states that 

they are different.  

H0 : μYieldv, Z = μYieldw, Z 

H1 : μYieldv, Z <> μYieldw, Z 

Where v and w refers to all the PSP levels, PSP0, PSP1, PSP2 and PSP2.1; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

Looking at the two-way ANOVA results, in both courses we find out that there 

is significant difference between PSP0 and PSP2, PSP2.1. We also found that there is 

significant difference between PSP1 and PSP2, PSP2.1.  



Chapter 5.  Data Analysis 

81 

 

Figure 21 shows the 95% confidence intervals of Yield for each PSP level, for 

both courses.  

 
Figure 21: 95% Confidence interval of Yield for each PSP level in PSP Fund/Adv and 

PSP I/II 

Looking at both courses together results show that: 

· PSP2 was a factor of 1.72 more effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [39.46, 51.90].  

· PSP2 was a factor of 1.82 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [41.71, 54.23].  

· PSP2.1 was a factor of 1,83 more effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [47.09, 58.07].  

· PSP2.1 was a factor of 1.92 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [49.34, 60.41].  

· PSP2.1 was a factor of 0.23 more effective than PSP2 at an alpha level of 
0.05 with a confidence range of the differences of [1.24, 12.57].  

The term “more effective”, in this study means that the yield is improved. 

5.2 Threats to validity and limitations 

The normality assumption for ANOVA could not be satisfied with raw data. 

That is why we performed transformations on the original data and replicated the 

analyses with the transformed scores. When the statistical results derived from the 

transformed variables are consistent with those of the raw variables (and the plot of 



Chapter 5.  Data Analysis 

82 

 

residuals indicates a more nearly normal distribution), we can be confident that the lack 

of normality is not leading us astray. 

The yield values for PSP levels 0 and 1 were consistently low, and only during 

PSP level 2 did they begin to more fully reflect the entire range of possible values. This 

presents us with two highly skewed distributions (PSP levels 0 and 1) and one fairly 

symmetrical distribution (PSP level 2 and 3). We are hard-pressed to devise a single 

transformation that can be applied to all of these distributions in order to make them all 

more normal simultaneously. Examination of the normal probability plots with the 

residuals from the ANOVA confirmed that the distribution for PSP level 2 and 3 is 

fairly normal in form, whereas the distributions for PSP levels 0 and 1 are grossly non-

normal. 

Given this condition, we rely on a nonparametric alternative to the repeated 

measures ANOVA to perform the confirmatory analysis. Results test indicate 

statistically significant ordered differences in yield from PSP level to PSP level. This 

analysis confirms the statistically significant increase in yield found in our study. 

5.3 Conclusions 

In this analysis we considered the work of 217 software engineers, who during 

PSP work, developed 7 or 8 programs, depending on the course version. Each subject 
took the complete PSP course, either PSP for Engineers I and II or PSP Fundamentals 

and Advance. We analyzed the data collected by each student to determine whether the 

introduction of design and code reviews improve the engineer’s yield or if such 

improvement is only a consequence of gaining experience in the problem domain. 

Both courses appear to be effective in demonstrating that the introduction and 

application of design and code reviews improve the engineer’s yield value in a very 

significant way.  

Early defect removal is one of the most economical ways to improve the quality 

of delivered software products. Preventing unplanned rework from occurring in the final 

stages of a software project allows more complete testing and assurance that the product 

will function as expected when it is delivered.  

6. Production Rate 

This section presents the analysis, results, threats to validity and conclusions 

related to the study of the performance of the engineers regarding production rate. 

6.1 Analyses and Results 

This subsection presents in detail each step of the descriptive and the statistical 

analysis, discussing the results of each step. 

6.1.1 Descriptive Statistics 

The objective is to demonstrate that as engineers progress through the PSP 

training, there is no real substantive gain or loss in production rate. That is, the number 

of lines of code designed, written, and tested, per hour spent does not change with a 

higher PSP level. 



Chapter 5.  Data Analysis 

83 

 

But, if there is gain or loss in production rate, we want to demonstrate whether 

the changes are due to the introduced process or if such changes are only a consequence 

of gaining experience in the problem domain. 

We define production rate, our dependent variable, as follows: 

Production Rate = (Actual A&M LOC / Actual Minutes) * 60 

As we said earlier, after the data quality process our data set was reduced to 160 

subjects in total, 82 from the PSP Fund/Adv course and 78 from the PSPI/II course. The 

descriptive statistics for the dependent variable are displayed in Table 15.  

 N Min Max Media St. dev. 

Production rate 1120 ,51 229,18 37,6795 26,97612 

      

Table 15: Descriptive statistics of Production rate 

The independent variables are: 

· Course Type – It can be PSP Fund/Adv (labeled by “1” in plots) or 

PSPI/II (labeled by “2”). 

· Program Assignment – It can be 1, 2, 3, 4, 5, 6, 7  

· PSP Level – It can be 0 (PSP0.1) , 1 (PSP1.0 and 1.1), 2 (PSP2) or 3 
(PSP2.1)  

In Table 15, the number of samples N is the sum of the assignments’ samples 

considered for each student of both courses. N = 82 * 7 + 78 * 6 = 1866. The minimum 

and maximum values, the media and the standard deviation are also shown.  

Figure 22 shows a box and whisker chart of Production rate grouped by course 

type and PSP level. Figure 23 shows a bar-whisker chart of Production rate too, but in 

this case grouped by course type and program assignment. 

 
Figure 22: Bar-whisker chart of Production rate for each PSP level, for both courses 

PSP Fund/Adv and PSP I/II 



Chapter 5.  Data Analysis 

84 

 

 
Figure 23: Bar-whisker chart of Production rate for each program assignment, for both 

courses PSP Fund/Adv and PSP I/II 

6.1.2 Three Step Approach Analysis 

To complete the statistical analysis, we must follow the three step analysis 

procedure that was explained in the Section 2.1. 

The first step tries to find out whether there are differences between the two 

courses by comparing the production rate for each program assignment. And we made 

this comparison for all the program assignments. If there is no statistically significant 

difference, that means that the production rate in the same program assignment of both 

courses is not changing. However, in the courses each program assignment has different 

PSP level. So, it seems that the changes in the PSP levels are not affecting the 

production rate changes. In this case, if any changes in the production rate existed 

through the exercises, then the exercise repetition and domain learning would be the 

root causes of the changes. On the other hand, when we find differences, we should 

move forward to the second step in order to find if the PSP level could be the root cause 

of the changes. 

So we applied a set of parametric tests of ANOVA, one for each program 

number, to find out if it is possible to state that Production rate for program assignment 
x in PSP Fund/Adv course version is different from Production rate for the same 

program assignment x in PSP I/II with statistical validity. ProductionRate is the 

dependent variable and course type is the factor. The null hypothesis H0 states the 

means are the same; the alternative hypothesis states that they are different. 

H0x : μProductionRatex, PSP F/A = μProductionRatex, PSP I/II 

H1x : μProductionRatex, PSP F/A <> μProductionRatex, PSP I/II  

Where the x refers the program assignment numbers, which go from 1 to 7. 

As at least one test where the PSP level of the program number is different in 

both courses rejects H0 with α ≤ 0.05, we proceed to the next step. 



Chapter 5.  Data Analysis 

85 

 

The second step look each course separately, and tries to find out if the 

production rate differences between the course programs assignments are happening 

when the PSP level has changed or if the differences are happening even when the PSP 

level has no changed between two assignments. If there are significant changes between 

programs assignments with the same PSP level, this can lead us to think that the effects 

on the production rate are due to the repetition of exercises and not due to the process 

changes. Otherwise, if the significant changes are only between programs assignments 

with different PSP level, then we must study (in the third step) the behavior of the 

production rate through the PSP levels, when grouping the program assignments by PSP 

level. 

So, for this second step a one-way ANOVA for repeated measures was applied 

for each course version, to find out if it is possible to state that Production rate for 

program assignment x in course version Z is different from Production rate for program 

assignment y in course version Z with statistical validity, for each program assignment 

x, y where x<y; and Z= belongs to {PSP Fund/Adv, PSP I/II}. ProductionRate is the 

dependent variable, and program is the factor. The null hypothesis H0 states the means 

are the same; the alternative hypothesis states that they are different. 

H0 : μProductionRatex, Z = μProductionRatey, Z 

H1 : μProductionRatex, Z <> μProductionRatey, Z 

Where x and y refer to all the program assignment numbers, which go from 1 to 

7, where x<y; and Z refers to one of both of the courses version, PSP Fund/Adv and 

PSP I/II. 

Table 16 and Table 17 summarize the ANOVA discussed above for this step for 

the courses PSP Fund/Adv and PSP I/II respectively.  

 

PSP Fund/Adv 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 1 13,069 ,041 

3 2 14,573 ,012 

4 2 13,645 ,026 

5 2.1 26,457 ,000 

6 2.1 25,336 ,000 

7 2.1 20,185 ,000 

2 

3 2 1,503 1,000 

4 2 ,576 1,000 

5 2.1 13,388 ,032 

6 2.1 12,266 ,076 



Chapter 5.  Data Analysis 

86 

 

7 2.1 7,116 1,000 

3 

4 2 -,927 1,000 

5 2.1 11,884 ,101 

6 2.1 10,763 ,222 

7 2.1 5,612 1,000 

4 

5 2.1 12,812 ,050 

6 2.1 11,690 ,116 

7 2.1 6,540 1,000 

5 
6 2.1 -1,122 1,000 

7 2.1 -6,272 1,000 

6 7 2.1 -5,150 1,000 

Table 16: Production rate ANOVA outputs for program assignment comparison in PSP 

Fund/Adv  

PSP I/II 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

1 

2 0.1 10,534 ,118 

3 1 9,635 ,236 

4 1.1 7,396 1,000 

5 2 20,915 ,000 

6 2.1 32,864 ,000 

7 2.1 26,162 ,000 

2 

3 1 -,899 1,000 

4 1.1 -3,138 1,000 

5 2 10,381 ,133 

6 2.1 22,330 ,000 

7 2.1 15,628 ,001 

3 
4 1.1 -2,238 1,000 

5 2 11,280 ,064 



Chapter 5.  Data Analysis 

87 

 

6 2.1 23,229 ,000 

7 2.1 16,527 ,000 

4 

5 2 13,518 ,008 

6 2.1 25,468 ,000 

7 2.1 18,766 ,000 

5 
6 2.1 11,949 ,036 

7 2.1 5,247 1,000 

6 7 2.1 -6,702 1,000 

Table 17: Production rate ANOVA outputs for program assignment comparison in PSP 

I/II 

When we analyze the results at Table 16 and Table 17, we should look at the 

values that are lower or equal than 0.05 in the significance column. In the PSP 

Fund/Adv course we found that there is significant difference between Program 1 and 

Programs 2, 3, 4, 5, 6, 7. According to the PSP levels followed to complete each 

assignment, we interpret that this shows loss of production rate between PSP0 and 

PSP1, PSP 2 or PSP2.1 (depending on which assignment). We also found that there is 

significant difference between Program 2 and Programs 5, and between Program 4 and 

Program 5. We interpret that this shows loss of production rate between PSP1 and 

PSP2.1, and between PSP2 and PSP2.1. 

In the PSP I/II Adv course we found that there is significant difference between 

Program 1 and Program 5, 6, 7. According to the PSP levels followed to complete each 

assignment, these are consistent loss of production rate between PSP0 and PSP 2 or 

PSP2.1 (depending on which assignment). We found that there is significant difference 

between Program 2 and Program 6, 7. These are consistent with deterioration between 

PSP0 and PSP2.1. We also see same behavior between program 3 and Program 6, 7. 

These reflect deterioration between PSP1 and PSP2.1. We also found that there is 

significant difference between Program 4 and Program 5, 6, 7. These are consistent with 

deterioration between PSP1 and PSP2 or PSP2.1. Finally we found significance 

between Program 5 and Program 6. These are consistent with deterioration between 

PSP2 and PSP2.1. 

As a summary of this step, we can say that for each course we only found 

significant difference between assignments with different PSP level. There is a 

deterioration of production rate as engineer’s move forward in the PSP level. 

Figure 24 shows the estimated marginal means of Production rate vs. program 

number, for both courses. The graphic shows how engineer’s production rate evolves 

during the complete courses. 



Chapter 5.  Data Analysis 

88 

 

 
Figure 24: Estimated marginal means of Production Rate vs. program number, for PSP 

Fund/Adv and PSP I/II 

In the third and last step looks at each course separately again, and tries to find 

out if the production rate differences between the PSP levels are happening when 

changes in the PSP levels are happening. If there are significant changes between 

different PSP levels, this will be showing that the process changes are the factor 

affecting the engineers’ performance and not the program repetition.  

So, in the third step, a two-way ANOVA is applied, to find out if it is possible to 

state that Production rate for PSP level v in course version Z is different from 

Production rate for PSP level w in course version Z with statistical validity, for each 

PSP levels v, w where v<>w and v, w belongs to {PSP0, PSP1, PSP2, PSP2.1}; and Z 

belongs to {PSP Fund/Adv, PSP I/II}. ProductionRate is the dependent variable, and 

PSP level and course type are the factors. The null hypothesis H0 states the means are 

the same; the alternative hypothesis states that they are different.  

H0 : μProductionRatev, Z = μProductionRatew, Z 

H1 : μProductionRatev, Z <> μProductionRatew, Z 

Where v and w refers to all the PSP levels, PSP0, PSP1, PSP2 and PSP2.1; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

Looking at the two-way ANOVA results without course discrimination, we find 

out that there is significant difference between each PSP level compared in pairs. 

Figure 25 shows the 95% confidence intervals of Production rate for each PSP 

level, considering both courses together. 



Chapter 5.  Data Analysis 

89 

 

 
Figure 25: 95% Confidence interval of Production rate for each PSP level 

Looking at both courses together results show that: 

· PSP1 was a factor of 0.23 less effective than PSP0 at an alpha level of 

0.05 with a confidence range of the differences of [1.68, 14.64].  

· PSP2 was a factor of 0.42 less effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [8.37, 21.39].  

· PSP2.1 was a factor of 0.72 less effective than PSP0 at an alpha level of 
0.05 with a confidence range of the differences of [18.39, 29.85].  

· PSP2 was a factor of 0.22 less effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [0.21, 13.23].  

· PSP2.1 was a factor of 0.70 less effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [10.23, 21.69].  

· PSP2.1 was a factor of 0.44 less effective than PSP2 at an alpha level of 
0.05 with a confidence range of the differences of [3.48, 15.00].  

6.2 Threats to validity and limitations 

The normality assumption for ANOVA could not be fully satisfied. The 

distributions of production rate for each PSP level show moderate positive skew. Again, 

this type of distribution is to be expected, given the source of the data. There can never 

be a production rate value of zero, since that would translate to zero lines of code per 

hour. While vast differences in individual production rate exist among engineers, the 

number of very high production rate values expected (versus very low) is relatively 



Chapter 5.  Data Analysis 

90 

 

small. Therefore, we see many engineers reporting moderate to low values of 

production rate, and a few engineers reporting relatively high values of production rate. 

This type of “non-normality” is often treated with a square-root transformation. The 

normal probability plots of residuals for the original analysis (using “raw” values of 

production rate) indicated a departure from normality, so the confirmatory analysis was 

carried out with square root-transformed production rate values. Examination of the 

normal probability plots (from the analysis of transformed data) confirmed that the 

transformation did, in fact, result in more nearly normal distributions of residuals. 

6.3 Conclusions 

In this analysis we considered the work of 160 software engineers, who during 

PSP work, developed 7 or 8 programs, depending on the course version. Each subject 

took the complete PSP course, either PSP for Engineers I and II or PSP Fundamentals 

and Advance. We analyzed the data collected by each student in order to see how 

production rate evolves during the courses. 

Despite of what we expected, both courses appear to be effective in 

demonstrating that the increments in the amount of design documentation and data 

tracking proposed by the PSP deteriorates the production rate during the PSP course. 

This is an important result that suggests further study or design of the courses. 

With these results, we can see the production rate deterioration up to unit testing 

phase. However, we still need to know what happens after that. That is, how PSP 

impacts production rate in integration and system test phases (stages that are not 

included in PSP). We think that this would be an interesting investigation line to be 

considered as a future work. That is, evaluate the whole PSP application effects in the 

next stages of the software development process. 

7. Size Estimation Accuracy 

This section presents the analysis, results, threats to validity and conclusions 

related to the study of the performance of the engineers regarding the accuracy of the 

size estimation. 

7.1 Analyses and Results 

This subsection presents in detail each step of the descriptive and the statistical 

analysis, discussing the results of each step. 

7.1.1 Descriptive Statistics 

The objective is to demonstrate whether the introduction of a formal estimation 

technique for size in PSP level 1 improves the accuracy of engineers’ size estimates, or 

if such improvement is only a consequence of gaining experience in the problem 

domain. 

We define size estimation accuracy, our dependent variable, as follows: 

Size Estimation Accuracy = (Estimated LOC - Actual LOC)/Estimated LOC  



Chapter 5.  Data Analysis 

91 

 

As we said earlier, after the data quality process our data set was reduced to 311 

subjects in total, 148 from the PSP Fund/Adv course and 163 from the PSPI/II course. 

The descriptive statistics for the dependent variable are displayed in Table 18. 

 N Min Max Media St. dev. 

Size Estimation 

Accuracy 
1866 ,000 3,000 0,4,6684 ,495140 

      

Table 18: Descriptive statistics of Size Estimation Accuracy 

As in PSP0, no size estimation value is requested to the student, the first 

assignment data of each course could not be included in this study. So, the independent 

variables are: 

· Course Type – It can be PSP Fund/Adv (labeled by “1” in plots) or 

PSPI/II (labeled by “2”). 

· Program Assignment – It can be 2, 3, 4, 5, 6, 7  

· PSP Level – It can be 0 (PSP0.1) , 1 (PSP1.0 and 1.1), 2 (PSP2) or 3 
(PSP2.1)  

In Table 18, the number of samples N is the sum of the assignments’ samples 

considered for each student of both courses. N = 148 * 6 + 163 * 6 = 1866. The 

minimum and maximum values, the media and the standard deviation are also shown.  

The first inconvenient that we found, is that in PSP Fund/Adv we cannot 

compare PSP1 to something previous, as there is not a previous assignment with a size 

estimation calculus done by the student. We can analyze the evolution of the rest of the 

course, but not specifically the PSP1 introduction. 

In order to get a clearer idea of the group trends we can take a look to some 

histograms. The distributions shown in Figure 26 illustrate the performance of 

engineers’ size estimation for the three PSP levels, for both courses. The values plotted 

were derived by summing the data for the assignments in each PSP level and computing 

the estimation accuracy value by calculating (Estimated LOC - Actual LOC) / Estimated 

LOC. The distributions shown in Figure 27 illustrate the performance of engineers’ size 

estimation for each program assignment, from 2 to 7, for both courses. 

With respect to the performance of the group by PSP level, the distributions in 

Figure 26 show a general reduction in the distance from zero for the values of size 

estimation accuracy. The long ‘tail’ of the distribution PSP1 panel is considerably 

shortened by the lasts panel, which represents PSP level 2 and 2.1. In addition, the 

distribution appears to be more symmetrically spread around zero in the lasts panels. 

These observations are not so clear when viewing distributions when program number 

increases. 

Improvement in accuracy for any given engineer (as opposite to group trends as 

shown in the figures mentioned above) could be seen in two different ways. First, the 

absolute distance of the estimation accuracy metric from zero would be reduced. 

Second, over the course of several assignments, both overestimates and underestimates 

would be seen. This is in contrast to a pattern of consistent underestimating (or 

overestimating). 



Chapter 5.  Data Analysis 

92 

 

 

Figure 26: Distributions grouped by PSP level, for each course 

 

Figure 27: Distributions grouped by Program Number, for each course 

Regarding to this group trends descriptive observations, we think that we have 

an important threat to validity, as when we summarized the data, we do not have the 

same amount of assignments considered on each level. For PSP Fund/Adv, there is only 

one assignment in PSP 1, two assignments in PSP 2 and three assignments in PSP 2.1. 

And for PSP I/II, there is one assignment in PSP 0, two assignments in PSP 1, one 

assignment in PSP 2, and three assignments in PSP2.1. So, we do not give an 



Chapter 5.  Data Analysis 

93 

 

opportunity to PSP0 and PSP1 to compensate their mistake among various programs. 

The PROBE method works by doing compensation by itself. So, it is expected that the 

individual will be ovestimating and underestimating. But, as there only one sample in 

one level, that level is not having the opportunity of the compensation. 

Now that we have a general idea of the group trends, we move forward to the 

individual analysis of the size estimation accuracy. What we expect is that in the 

individual behavior, each student became to oscillate nearer to 0 after proxy technique is 

introduced, something similar to Figure 28. 

 
Figure 28: Example of size estimation accuracy evolution for one engineer 

The ANOVA works as one would want and expect when the trend is always in 

the same direction, but not if some are overestimating and others underestimating. So it 

is necessary to define a new dependent variable that is the absolute value of size 

estimation accuracy: ABS ((Estimated LOC - Actual LOC)/Estimated LOC) 

As that variable is not normal, we tried to normalize with a log-transform. Even 

the normality assumption could not be fully satisfied; this new variable is clearly near to 

a normal variable. 

It is important to clarify that when Estimated LOC=Actual LOC, this variable is 

not defined on this point. That is the reason for adding a constant value of 0.5 before the 

log-transformation. 

So, our new dependent variable is: 

LN(ABS(SEA))  =  LN( ABS (Estimated LOC - Actual LOC +0,5)/Estimated LOC )  

Basically, we did the following: 

· Prior to transformation, added a constant of 0.5 to everything. This will 
not alter the shapes or the slopes. 

· Log-transformed the data. Now have no infinities at zero.  

· Performed the fits 

· Untransformed the data 

· Subtracted the constant from the mean to calculate the effect size and the 
confidence intervals. 



Chapter 5.  Data Analysis 

94 

 

Figure 29 shows a box and whisker chart of LN(ABS(SEA)) grouped by course 

type and PSP level. Figure 30 shows a box and whisker chart of LN(ABS(SEA)) too, 

but in this case grouped by course type and program assignment. 

 
Figure 29: Box and whisker chart of ABS(SEA) for each PSP level, for both courses 

PSP Fund/Adv and PSP I/II 



Chapter 5.  Data Analysis 

95 

 

 
Figure 30: Box and whisker chart of LN(ABS(SEA)) for each program assignment, for 

both courses PSP Fund/Adv and PSP I/II 

7.1.2 Three Step Approach Analysis 

To complete the statistical analysis, we must follow the three step analysis 

procedure that was explained in the Section 2.1. 

The first step tries to find out whether there are differences between the two 

courses by comparing the LN(ABS(SEA)) for each program assignment. If there is no 

statistically significant difference, that means that the size estimation accuracy in the 

same program assignment of both courses is not changing. However, in the courses each 

program assignment has different PSP level. So, it seems that the changes in the PSP 

levels are not affecting the dependent variable changes. In this case, if any changes in 

the size estimation accuracy existed through the exercises, then the exercise repetition 

and domain learning would be the root causes of the changes. On the other hand, when 

we find differences, we should move forward to the second step in order to find if the 

PSP level could be the root cause of the changes. 

So we applied a set of parametric tests of ANOVA, one for each program 

number, to find out if it is possible to state that LN(ABS(SEA)) for program assignment 

x in PSP Fund/Adv course version is different from LN(ABS(SEA)) for the same 

program assignment x in PSP I/II with statistical validity. LN(ABS(SEA)) is the 

dependent variable and course type is the factor. The null hypothesis H0 states the 

means are the same; the alternative hypothesis states that they are different. 

H0x : μLN(ABS(SEA))x, PSP F/A = μLN(ABS(SEA))x, PSP I/II 

H1x : μLN(ABS(SEA))x, PSP F/A <> μLN(ABS(SEA))x, PSP I/II  

Where the x refers the program assignment numbers, which go from 2 to 7. 



Chapter 5.  Data Analysis 

96 

 

As at least one test where the PSP level of the program number is different in 

both courses rejects H0 with α ≤ 0.05, we proceed to the next step. 

The second step look each course separately, and tries to find out if the size 

estimation accuracy differences between the course programs assignments are 

happening when the PSP level has changed or if the differences are happening even 

when the PSP level has no changed between two assignments. If there are significant 

changes between programs assignments with the same PSP level, this can lead us to 

think that the effects on the LN(ABS(SEA)) are due to the repetition of exercises and 

not due to the estimation technique introduction. Otherwise, if the significant changes 

are only between programs assignments with different PSP level, then we must study 

(in the third step) the behavior of the size estimation accuracy through the PSP levels, 

when grouping the program assignments by PSP level. 

So, for this second step a one-way ANOVA for repeated measures was applied 

for each course version, to find out if it is possible to state that LN(ABS(SEA)) for 

program assignment x in course version Z is different from LN(ABS(SEA)) for 

program assignment y in course version Z with statistical validity, for each program 

assignment x, y  where x<y; and Z= belongs to {PSP Fund/Adv, PSP I/II}. 

LN(ABS(SEA)) is the dependent variable, and program assignment is the factor. The 

null hypothesis H0 states the means are the same; the alternative hypothesis states that 

they are different. 

H0 : μLN(ABS(SEA))x, Z = μLN(ABS(SEA))y, Z 

H1 : μLN(ABS(SEA))x, Z <> μLN(ABS(SEA))y, Z 

Where x and y refer to all the program assignment numbers, which go from 2 to 

7, where x<y; and Z refers to one of both of the courses version, PSP Fund/Adv and 

PSP I/II. 

Table 19 and Table 20 summarize the ANOVA discussed above for this step for 

the courses PSP Fund/Adv and PSP I/II respectively.  

PSP Fund/Adv 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

2 

3 2 ,233 1,000 

4 2 ,311 ,352 

5 2.1 ,606 ,000 

6 2.1 ,216 1,000 

7 2.1 ,505 ,003 

3 

4 2 ,078 1,000 

5 2.1 ,373 ,102 

6 2.1 -,017 1,000 



Chapter 5.  Data Analysis 

97 

 

7 2.1 ,271 ,718 

4 

5 2.1 ,295 ,480 

6 2.1 -,094 1,000 

7 2.1 ,194 1,000 

5 
6 2.1 -,390 ,069 

7 2.1 -,102 1,000 

6 7 2.1 ,288 ,532 

Table 19: LN(ABS(SEA))  ANOVA outputs for program assignment comparison in PSP 

Fund/Adv  

PSP I/II 

Program 
Assignment            

(I) 

Program 
Assignment 

(J) 

PSP 
Level 

Mean 
difference     

(I-J) 

Sig. 

2 

3 1 -,156 ,853 

4 1.1 -,096 ,980 

5 2 ,299 ,225 

6 2.1 ,007 1,000 

7 2.1 ,322 ,157 

3 

4 1.1 ,059 ,998 

5 2 ,456 ,009 

6 2.1 ,164 ,827 

7 2.1 ,478 ,005 

4 

5 2 ,396 ,039 

6 2.1 ,104 ,972 

7 2.1 ,419 ,023 

5 
6 2.1 -,291 ,251 

7 2.1 ,022 1,000 

6 7 2.1 ,314 ,178 

Table 20: LN(ABS(SEA)) ANOVA outputs for program assignment comparison in PSP 

I/II 



Chapter 5.  Data Analysis 

98 

 

When we analyze the results at Table 19 and Table 20, we should look at the 

values that are lower or equal than 0.05 in the significance column. In the PSP 

Fund/Adv course we found that there is only significance between Program 2 and 

Programs 5, 7. That means that H0 is rejected and the LN(ABS(SEA)) means in the PSP 

Fund/Adv course are significantly different between Program 2 and Program 5, and also 

are significantly different between Program 2 and Program 7. In PSP Fund/Adv 

Program 2 is completed following the PSP1 script and Program 5 and 7 are completed 

following the PSP 2.1 script. So, we interpret that this changes in the means shows 

improvements between PSP1 and PSP2.1. 

In the PSP I/II Adv course we found that there is significant difference between 

Program 3 and Program 5, 7. And we also found that there is significant difference 

between Program 4 and Program 5, 7. That means that H0 is rejected and the 

LN(ABS(SEA)) means in the PSP I/II course are significantly different between 

Program 3 and Program 5, between Program 3 and Program 7, between Program 4 and 

Program 5 and also between Program 4 and Program 7.  In PSP I/II Program 3 and 4 are 

completed following the PSP1 script, Program 5 is completed following the PSP2 script 

and Program 7 is completed following the PSP 2.1 script. So, these significant changes 

are consistent with improvements between PSP1 and PSP 2, and between PSP1 and 

PSP2.1 (depending on which assignment). 

As a summary of this step, we can say that for each course we only found 

significant difference between assignments with different PSP level. According to the 

PROBE technique introduced, which is based on engineer historical data, these 

improvements were expected. 

Figure 31 shows the estimated marginal means of ABS(SEA) vs. program 

number, for both courses. The graphic shows how the two courses perform differently, 

even we cannot see the specific effect of the introduction of the size estimation 

technique in PSP Fund/Adv course. Remember that in PSP Fund/Adv we cannot 

compare PSP1 to something previous, as there is not a previous assignment with a size 

estimation calculus done by the student. We can see the evolution of the rest of the 

course, but not specifically the PSP1 introduction. In this graphic of the estimated 

marginal means, the size estimation accuracy appears to be more consistent by the end 

of the courses.   



Chapter 5.  Data Analysis 

99 

 

 
Figure 31: Estimated marginal means of ABS(SEA) vs. program number, for PSP 

Fund/Adv and PSP I/II 

In the third and last step looks at each course separately again, and tries to find 

out if the size estimation accuracy differences between the PSP levels are happening 

when the PROBE method is in fact introduced. If there are significant changes between 

PSP levels where the PROBE is introduced, this will be showing that the introduced 

estimation technique is the factor affecting the engineers’ performance and not the 

program repetition.  

So, in the third step, a two-way ANOVA is applied, to find out if it is possible to 

state that LN(ABS(SEA)) for PSP level v in course version Z is different from 

LN(ABS(SEA)) for PSP level w in course version Z with statistical validity, for each 

PSP levels v, w where v<>w and v, w belongs to {PSP0, PSP1, PSP2, PSP2.1}; and Z 

belongs to {PSP Fund/Adv, PSP I/II}. LN(ABS(SEA)) is the dependent variable, and 

PSP level and course type are the factors. The null hypothesis H0 states the means are 

the same; the alternative hypothesis states that they are different.  

H0 : μLN(ABS(SEA))v, Z = μLN(ABS(SEA))w, Z 

H1 : μLN(ABS(SEA))v, Z <> μLN(ABS(SEA))w, Z 

Where v and w refers to all the PSP levels, PSP0, PSP1, PSP2 and PSP2.1; and 

Z refers to one of both of the courses version, PSP Fund/Adv and PSP I/II. 

Looking at the two-way ANOVA results, in the PSP Fund/Adv course we found 

that there is significant difference between PSP1 and PSP2.1. But as we do not have 

assignments with PSP0, we cannot study the effects of introduction of PSP1. 



Chapter 5.  Data Analysis 

100 

 

Regarding to the two-way ANOVA results for the PSP I/II course, we found that 

there is significant difference between PSP1 and PSP2, PSP2.1.   

Figure 32 shows the 95% confidence intervals of absolute value of size 

estimation accuracy for each PSP level, for both courses.  

 
Figure 32: 95% Confidence interval of ABS(SEA) for each PSP level in PSP Fund/Adv 

and PSP I/II 

Looking at both courses together results show that: 

· PSP2 was a factor of 2.29 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [1.07, 1.60].  

· PSP2.1 was a factor of 2.65 more effective than PSP1 at an alpha level of 
0.05 with a confidence range of the differences of [1.16, 1.66].  

The term “more effective”, in this study means that the size estimation accuracy 

is improved. 

As a summary of this step, we can say that there is significant difference 

between PSP1 and PSP2, and also between PSP1 and PSP2.1.   

The lack of significance between PSP0 and all others PSP levels in PSP I/II may 

be because: 

· There is only one exercise on PSP0 that can be analyzed, the difference 
is too small to resolve (power of the sample) 

· The log-transformation hides the results (transforming those zeros will 
reduce the effect)  



Chapter 5.  Data Analysis 

101 

 

· There is no difference  

With these results, we do not really see directly that the introduction of the 

estimation technique improves the size estimation accuracy, because in PSP2 and 

PSP2.1 are introduced the design and code reviews and design templates, not the 

estimation’ techniques. Here we can say that introduction of reviews and the use of 

design templates is correlated with the size estimation accuracy improvement. But we 

are not able to see if there is a relationship between the introduction of the estimation 

technique and the accuracy of engineers’ size estimates. Here we should remember that 

the introduction of the templates occurs after the estimate was made. 

An interesting point here is that PSP 2 coincides with the stage at which we have 

enough historic data to use PROBE A. For size, this occurs on exercise 4 in PSP 

Fund/Adv and on exercise 5 in PSP I/II. Just estimating smaller parts does not seem to 

help much immediately, but there does seem to be a correlation across courses with 

sufficient data to use PROBE A. This could be experience, or it could be the PROBE A 

estimator. 

It is important to remember that the estimation technique introduced in the PSP 

courses is based on historical data and needs repetition, so it is really hard to see with 

the available data that the improvements are due to the technique or due to the exercise 

repetition.  

7.1.3 Complementary Analysis by PROBE method 

In order to get a clearer idea of the relationship between the estimation 

techniques introduction and the size estimation accuracy, we propose to analyze the data 

in a different way. Not looking at the PSP level, but looking at the specific PROBE 

method that is applied in each assignment. 

To do this, we execute again the third step of the indirect analysis method, but 

this time reorganizing the student data by PROBE method (A, B, C or D).  So, we group 

the students by PROBE method by calculating the average of the LN(ABS(SEA)) for 

each student and for each PROBE method. Then we run the two-way repeated measures 

ANOVA grouping by PROBE method (instead of PSP level) and course type. Figure 33 

shows the 95% confidence intervals of the absolute value of size estimation accuracy 

for each PROBE method, for both courses together. 



Chapter 5.  Data Analysis 

102 

 

 
Figure 33: 95% Confidence interval of ABS(SEA) for each PROBE method. In the x-

axis (PROBE SizeCode label) values 1, 2, 3 and 4 represent PROBE D, C, B and A 

respectively. 

If we look in detail of all the students together, without doing discrimination by 

the course they took, we got that: 

· PROBE B was a factor of 2.84 more effective than PROBE D at an alpha 
level of 0.05 with a confidence range of the differences of [1.04, 1.94].  

· PROBE A was a factor of 2.32 more effective than PROBE D at an alpha 
level of 0.05 with a confidence range of the differences of [1.06, 1.75].  

· PROBE B was a factor of 2.49 more effective than PROBE C at an alpha 
level of 0.05 with a confidence range of the differences of [1.00, 1.79].  

· PROBE A was a factor of 1.95 more effective than PROBE C at an alpha 

level of 0.05 with a confidence range of the differences of [1.03, 1.60].  

Again, the term “more effective” in this study means that the size estimation 

accuracy is improved. Results are different in each course and they are also different 

when we see them globally, without course discrimination. This can be explained by the 

power of the sample.  

With the available data it is very difficult to separate the possible causes of size 

estimation improvement: the introduction of the formal estimation technique and the 

experience in the problem domain. With the presented results it is clear that data shows 

and support the hypothesis that the engineer’s size estimates improves. But we cannot 

determine if the introduction of the size estimation technique is the main reason of that 

improvement because: 

· Regression (PROBE A and B)  cannot be applied until there are a 

minimum of three historic points 



Chapter 5.  Data Analysis 

103 

 

· It takes accumulated data for the size estimation technique to become 

effective 

· The estimation process take multiple repetitions to stabilize 

· The estimation technique is not just one technique. In fact, it is a package 
of three different methods, and student varies it application during the 

course 

· The PSP level introduction on the last two courses is not the optimal to 
study this hypothesis 

Again, repetition is necessary, and with the available data and results, we are not 

really able to conclude about the main reason of the improvements. 

7.1.4 Another Descriptive Approach Proposal 

In order to do a more complete analysis of this particular hypothesis, we decided 

to complement this study by showing the same data but in a different descriptive way.   

This new descriptive approach consists on aggregating the data for each student 

and for each PROBE method to make a pair by pair comparison between each PROBE 

method. Having these results for each pair comparison by student, we will be able to see 

for example the percentage of students that produce better estimation using PROBE X 

than using PROBE Y, the percentage that produce worse estimations, and the 

percentage that suffers no changes at all. We will also be able to see if the subjects that 

improved are having a big improvement or not, and if the subjects that have not 

improved have worsened slightly or not. 

For this approach, we must define a few variables. From now on, we are going 

to call SEAX to the size estimation accuracy of a student when using the PROBE 

method X. 

So, given any two PROBE methods, X and Y that we want to compare, we call 

division of the accuracy of the size estimation (divEXY) to:   

· SEAX / SEAY , when SEAX is greater than SEAY 

· - SEAY / SEAX , otherwise 

This term, division of the accuracy of the size estimation, calculates the 

percentage of reduction in the size estimation error from one PROBE method to another 

(or the percentage of increase, depending on the sign). 

In addition, as a rule of thumb we define that: 

· the subject “improved” when there is a reduction of 10% or more 
(divEXY < -1.1) 

· the subject “worsens” when there is an increase of 10% or more  

(divEXY> -1.1) 

· otherwise, the subject “does not changed” ( -1.1 <= divEXY <= 1.1) 

With these terms, we did all the calculus between each pair of PROBE methods:  

· PROBE A vs. PROBE B 

· PROBE A vs. PROBE C 

· PROBE A vs. PROBE D 



Chapter 5.  Data Analysis 

104 

 

· PROBE B vs. PROBE C 

· PROBE B vs. PROBE D 

· PROBE C vs. PROBE D  

Pie charts, histograms and tables summarizing the results for each comparison 

are shown in Figure 34 to Figure 45. 

 

 
Figure 34: PROBE A vs. PROBE B comparison - distribution and averages 

 

Figure 35: PROBE A vs. PROBE B comparison – (100 * divEAB) histogram 

63%

33%

4%

PROBE A vs PROBE B

view by subjects

worsens improved not changed   
# 

Subjects 
DivEAB 
Average 

worsens 48 5,467405802 

improved 25 -10,92950108 

not changed 3 0,365858664 

  76   



Chapter 5.  Data Analysis 

105 

 

 

 
Figure 36: PROBE A vs. PROBE C comparison - distribution and averages 

 
Figure 37: PROBE A vs. PROBE C comparison – (100 * divEAC) histogram 

47%

45%

8%

PROBE A vs PROBE C

view by subjects

worsens improved not changed

  
# 

Subjects 
DivEAC 
Average 

worsens 34 4,549361628 

improved 33 -2,806773957 

not changed 6 -0,011104197 

  73   



Chapter 5.  Data Analysis 

106 

 

 

 
Figure 38: PROBE A vs. PROBE D comparison - distribution and averages 

 
Figure 39: PROBE A vs. PROBE D comparison – (100 * divEAD) histogram 

50%
43%

7%

PROBE A vs PROBE D

view by subjects

worsens improved not changed

  
# 

Subjects 
DivEAD 
Average 

worsens 38 5,068644572 

improved 33 -3,435743871 

not changed 5 0,644623627 

  76   



Chapter 5.  Data Analysis 

107 

 

 

 
Figure 40: PROBE B vs. PROBE C comparison - distribution and averages 

 
Figure 41: PROBE B vs. PROBE C comparison – (100 * divEBC) histogram 

41%

52%

7%

PROBE B vs PROBE C

view by subjects

worsens improved not changed   
# 

Subjects 
DivEBC 
Average 

worsens 51 4,443403873 

improved 66 -8,730598792 

not changed 9 -0,344108207 

  126   



Chapter 5.  Data Analysis 

108 

 

 

 
Figure 42: PROBE B vs. PROBE D comparison - distribution and averages 

 
Figure 43: PROBE B vs. PROBE D comparison – (100 * divEBD) histogram 

43%

51%

6%

PROBE B vs PROBE D 

view by subjects

worsens improved not changed

  
# 

Subjects 
DivEBD 
Average 

worsens 56 5,338059177 

improved 66 -6,151261868 

not changed 8 -0,004253836 

  130   



Chapter 5.  Data Analysis 

109 

 

 

 
Figure 44: PROBE C vs. PROBE D comparison - distribution and averages 

 
Figure 45: PROBE C vs. PROBE D comparison – (100 * divECD) histogram 

With the pie charts, we can see in all the comparisons that the percentages of 

subjects that improved and that worsened are not very distant. In fact, the proportions 

are all very similar. With our definition, we can see in all comparisons that generally 

near half of the subjects improved and near half of the subjects worsened between any 

two PROBE methods.  

What is interesting to see is the size of those changes. If we take a look at the 

PROBE A comparisons with PROBE C and with PROBE D, we can see that there are 

many subjects that have a big improvement (that estimates between a 500% and 1000% 

better with PROBE A than with the other method). We can also see that the majority of 

the students that have not improved, have in fact worsened their estimations by a much 

lower percentage.  When combined with Figure 26 this seems to show that the “fat tail“,  

50%
44%

6%

PROBE C vs PROBE D 

view by subjects

worsens improved not changed

  
# 
Subjects 

DivECD 
Average 

worsens 63 4,709465445 

improved 55 -5,696616916 

not changed 8 -0,012602948 

  126   



Chapter 5.  Data Analysis 

110 

 

that are the worst estimates, were removed. A very similar behavior can be seen in the 

PROBE B vs. PROBE C histograms and PROBE B vs. PROBE D histograms. 

Scatter plots for each PROBE method are presented in Figure 46 to Figure 49. 

There are presented the estimated size versus the actual size, were each point of the plot 

represents an engineer. The neaerer a point is to the y=x line, the better the estimation 

is. When a point is inside the line, the estimation is perfect. 

 
Figure 46: PROBE A - Estimated size vs Actual size scatter plot 



Chapter 5.  Data Analysis 

111 

 

 
Figure 47: PROBE B - Estimated size vs Actual size scatter plot 

 
Figure 48: PROBE C - Estimated size vs Actual size scatter plot 



Chapter 5.  Data Analysis 

112 

 

 
Figure 49: PROBE D - Estimated size vs Actual size scatter plot 

In the scatter plots we can see that for PROBE C and D, the points are more 

diffuse than the points in the PROBE A and B scatter plots.  

We know that this is just a descriptive analysis and that we cannot draw any 

conclusion about these observations. But it allows us to visualize the data in a different 

way, and we get a better idea of how subjects evolve during the application of the 

different estimation techniques during the courses. 

7.2 Threats to validity and limitations 

Estimating is a skill. The PROBE method consists on a lineal regression using 

engineer historical data that provides a framework for gathering estimating data. But if 

the engineer is not able to make a good conceptual design, with a good understanding of 

the product requirements and with a correct definition of the product elements that will 

produce the desired functions, it will not work. So, this could be a limitation to visualize 

the introduction and application of the PROBE estimation technique. 

The PSP provides a proxy-based estimation method (introduced during PSP 

level 1) to help engineers decompose the program and estimate the size of each element, 

based on historical data. During the courses, the PSP tool used by the students, provide 
a C++ Class Size Ranges matrix that is used as baseline for all the students, despite the 

programming language they use. Maybe that size ranges are not appropriate to other 

programming languages and could be distorting the real engineer estimation. Also, class 

could not be optimal proxies for different programming languages, and database 

elements, screens, reports, etc., could be better proxies for other languages. Teachers 

should control these and motivate engineers to generate and use their own proxies. 

While there will always be a subjective element to estimation no matter how 

much data it is based on, the PSP training strives to teach engineers how to make the 

best use of their own past experience. When the size estimation method is introduced at 



Chapter 5.  Data Analysis 

113 

 

the start of PSP level 1, in the first version of the PSP course (the one based on 10 

program assignments) the engineers have data from the three previous assignments as a 

basis for estimating the fourth. But in the PSP Fund/Adv course, there is only one data 

point at PSP0. Maybe the introduction strategy is not the optimal, as it does not have a 

good basis to apply the PROBE method in PSP1. 

Even having transformed the data, the normality assumption for ANOVA could 

not be fully satisfied. The distributions of ABS(SEA) tend to be positively skewed, with 

long tails extending to the right and a truncated range at zero. This type of non-normal 

distribution is to be expected given the source of the data. There can never be a negative 

absolute value, so the truncation at zero is expected. This positively skewed distribution 

is particularly expected when engineers (as a group) improve the size estimations of the 

programs as the linear regression helps them to estimate better during the course. This is 

the type of data where either a logarithmic or inverse transformation can be used to 

create a more nearly normal distribution [14]. Based on our examination of the effects 

of these two types of transformations on the distribution of residuals, the logarithmic 

transformation was used in the confirmatory analysis. 

7.3 Conclusions 

In this analysis we considered the work of 311 software engineers, who during 

PSP work, developed 7 or 8 programs, depending on the course version. Each subject 

took the complete PSP course, either PSP for Engineers I and II or PSP Fundamentals 

and Advance. We analyzed the data collected by each student to determine whether the 

introduction of a formal estimation technique for size improve the accuracy of 

engineers’ size estimates or if such improvement is only a consequence of gaining 

experience in the problem domain. 

Both courses appear to be successful in demonstrating effective use of the 

PROBE estimating method, and in showing improvement on the accuracy of engineers’ 

size estimations.  

The followings are candidate reasons for improvement that are not mutually 

exclusive: 

· Simple repetition with feedback of actual results 

· Introduction of a structured approach (PROBE D, C) including 
estimation by parts 

· PROBE A, B corrections 

Data do not clearly support our hypothesis, as we cannot analyze the PSP1 

introduction on both courses. Perhaps our hypothesis is not satisfied, but we cannot be 

sure yet because the PSP level introductions in the studied courses format are not the 

optimal to analyze this behavior. Since PSP level changes so rapidly in the PSP 

Fundamentals and PSP I course, the program number and the PSP process level are 

tightly correlated in a way that makes separating the effects difficult. We also have very 

few points with PSP0 and PSP1 to analyze. That is why the second analysis approach, 

visualizing the data using the PROBE method, was necessary. 

The results support some of our ideas and we are getting closer to see if PSP 

techniques associated with PSP level are the real causal explanation for the 

improvements, but this is not proved yet. Probably a larger study, examining the results 

by PROBE type and by PSP level together could be useful to reinforce these results. 



Chapter 5.  Data Analysis 

114 

 

These results cannot ensure that the observed improvements are exclusively due 

to mastering the process techniques introduced in the PSP. In Chapter 7, we propose 

some controlled experiments to permit the different PSP levels process changes to 

stabilize so that we could more directly examine improvements between programs with 

and without process changes. In this way, we can obtain more generalizable results. 

8. General Conclusions of the Data Analysis 

Previous studies of Personal Software Process have examined the effect of the 

PSP on the performance of software engineer and it was found that the improvements 

were statistically significant, and it was considered that the observed results could be 

generalized beyond the involved participants [7] [8] [9] [10]. Those studies only 

considered students of the first version of the PSP course which uses 10 program 

assignments and as there is a strong correlation between the program assignment and 

PSP level. Those studies may have some threats to external validity. In this work we 

tried to face the generalization threat and consider the latest two course versions to 

analyze and evaluate the effectiveness of the PSP and the impact of the domain 

experience (programming repetition). 

To reach our goal we evaluated engineers’ performance differences with respect 

to four dimensions: defect density in unit testing, yield, production rate and size 

estimation accuracy. 

Regarding defect density in unit testing, we find out significant improvement 

with a mean reduction of a factor of 2.3. Our results suggest that improvements in 

defect density in unit testing are most plausible regarding mastering PSP techniques 
rather than programming repetition. 

When analyzing yield, we find out significant improvement with a mean 

increase of a factor of 1.9. The results support that design and code reviews techniques 

are the main reasons of the improvements rather than the learning effect. 

On the other hand, regarding production rate we find out a mean reduction of a 

factor of 0.7. Despite of what we expected, both courses appear to be effective in 

demonstrating that the increments in the amount of design documentation and data 

tracking proposed by the PSP deteriorates the production rate during the PSP course.  

Finally, looking at the size estimation accuracy results, we find out significant 

improvement with a mean reduction of a factor of 2.6. For this hypothesis we were not 

able to discard the domain learning effect as the root causes of the improvements, as the 

estimation technique introduced in the PSP courses is based on historical data and needs 

repetition. 

In conclusion, the analyses reported here substantiate that trends in personal 

performance observed during PSP application are significant, and that the observed 

improvements or deteriorations represent real change in individual performance, not a 

change in the average performance of the group.  

Since PSP level changes so rapidly in the PSP Fund/Adv and PSP I/II course, the 

program number and the PSP process level are tightly correlated in a way that makes 

separating the effects difficult. This issue affected specially the size estimation accuracy 

study; however the results lead us to think that the process phases are probably one of 

the main reasons of the changes. In Chapter 7, we propose several controlled 

experiments, which will allow evaluating the programming repetition effects in depth. 



 

 

 

Chapter 6 

Related Work 

Several empirical studies on the effects of the PSP training were published 

during the last 15 years. Those studies, which try to demonstrate the benefits of 

disciplined software development on the individual level, were developed among others 

by Hayes et al. in 1997 [7], Rombach et al. in 2007 [8], Paulk in 2010 [9] and by 

Nichols et al. in 2013 [10]. In this chapter the findings of these studies are presented, as 

well as their results are compared against the findings that were obtained in our work. 

1. Hayes et al. – 1997  

 

The objectives of this study were to test key assertions about the benefits of the 

PSP and to consider whether the observed results can be generalized beyond the study 

participants. Since the PSP was developed to improve individual performance, the study 

examined changes in individual performance as new practices were introduced.  

The goal of the study was the following: 

“Analyze the data collected at the PSP levels (0, 1, 2) 
for the purpose of evaluating performance differences of engineers 

with respect to size estimation accuracy / effort estimation accuracy / 

yield / defect density / productivity6 

from the viewpoint of a researcher 

in the context of the PSP training of 298 engineers 

that performed the PSP I/II original course.” 

The findings of this study are: 

· The median individual improvement in size estimation accuracy is a 
factor of 2.5.  

                                                 
6 Hayes et al. defined Productivity in the same way as we defined Production Rate. 

The Personal Software Process (PSP): 

An Empirical Study of the Impact of PSP on Individual Engineers 
 

Authors:  Hayes, Will; Over, James W. 

Published: Software Engineering Institute, Carnegie Mellon University 

 Technical Report CMU/SEI-97-TR-001 

Year: 1997 



Chapter 6.  Related Work 

116 

 

· The median improvement in effort estimation accuracy is a factor of 

1.75.   

· The median reduction in total defect density is a factor of 1.5.  

· The median reduction in defect density for the compile phase is a factor 
of 3.7, and for the test phase, the median reduction is a factor of 2.5 

· The median improvement in yield was an increase of 50% in the number 
of defects removed before compile.  

· Although significant fluctuation in productivity occurred (statistically), 
no real substantive gain or loss in productivity was observed. 

This is an important work because it was the first to examine PSP results using 

recognized statistical techniques. It clearly states what PSP should accomplish, and it 

documents early results. 

Comparing this study against our work, there are different experimentation 

aspects. They analyzed 298 engineers of the PSP I/II original course version while we 

analyzed 347 engineers of the other two course versions, the PSP I/II revised and the 

PSP Fundamentals and Advance.  

Hayes et al. looked at the improvements during the course, without analyzing if 

the main reasons of the improvements are in fact the PSP introduced techniques and 

phases. We cannot compare our findings related to impact of the programming 

repetition against this study. But the observations about the effect size of the 

improvements can be compared against our results. 

They detect that median reduction in defect density for the test phase is a factor 

of 2.5. For the same variable, we find out that the mean reduction is a factor of 2.3. Our 

results also support that product quality improvements are due to the PSP practices 

introduced rather than the domain effect learning. 

Regarding the process yield, they detect that the median improvement was as an 

increase of 50% in the number of defects removed before compile. For the same 

variable we detect that the mean improvement is a factor of 1.9. This corresponds to a 

mean improvement in yield of a 55%. We computed this value by subtracting the yield 

for PSP level 1 from the yield for PSP level 2 for each engineer, then computing the 

mean of that distribution. 

On the other hand, they find no real substantive gain or loss in production rate. 

For the same variable we find out a loss in the rate, with a mean reduction of a factor of 

0.7.  

Moreover, they realize that the median individual improvement in size 

estimation accuracy is a factor of 2.5. For the same variable we realize that the mean 

improvement is a factor of 2.6. In this case, we were not able to fully discard the 

programming repetition as the root causes of the improvements, as the PROBE method 

for size estimation is based on historical data and needs repetition. 

As we can see, results regarding defect density in unit testing, yield and size 

estimation accuracy follow the same line in both studies. However, production rate 

results are quite different. Further research related to the last two course versions should 

be performed in order to know which could be the reasons of this production rate 

deterioration.  



Chapter 6.  Related Work 

117 

 

2. Rombach et al. – 2007  

 
 
 

 

 

 

 

 

 

 

This study is a replication and extension of the Hayes et al. study. It addresses 
the meaning of disciplined software development, its benefits, and the challenges of 

teaching it. It presents a quantitative study that demonstrates the benefits of disciplined 

software development on the individual level. 

The goal of this study was the following: 

“Analyze the data collected at the PSP levels (0, 1, 2, 37) 
for the purpose of evaluating performance differences of engineers 

with respect to size estimation accuracy / effort estimation accuracy / 

defect estimation accuracy / yield / defect density / productivity 

from the viewpoint of a researcher 

in the context of the PSP training of 3090 engineers 

that performed the PSP I/II original course”. 

The findings of this study are: 

· Neither accept nor reject the hypothesis about size estimation accuracy 

improvement 

· The effort estimation accuracy improves from an average of -25% to -
10% 

· At compile test phase, defect density improves from an average of 42 
Defects/KLOC removed to 12 Defects/KLOC. Similar differences are 

shown at the compile and test phase together, and for defect density in 

the overall. 

· Productivity8 improves from an average of 30 LOC per hour to 39 LOC 
per hour. 

· Yield improves from an average of 5% to 55%  

· Neither accept nor reject the hypothesis about defect estimation accuracy 

improvement 

                                                 
7PSP level 3 is a level that was used in the first version of the PSP course. After that it has not been used 

anymore. 

8 Rombach et al. also defined Productivity in the same way as we defined Production Rate. 

 

Teaching disciplined software development 
 

Authors:  Rombach, Dieter; Münch, Jürgen; Ocampo, Alexis; 

 Humphrey, Watts; Burton Dan 

Published: Journal of Systems and Software; Vol. 81, No. 5 

Pages: 747-763 

Year: 2008 



Chapter 6.  Related Work 

118 

 

Comparing this study against our work, there are different experimentation 

aspects. We analyze a data set rather smaller than theirs: 347 engineers of the last two 

course version and they analyze 3090 engineers of the PSP I/II original course.  

Referring the defect density, we find out that at test phase, it improves from an 

average of 15 Defect/KLOC to 2.5 Defect/KLOC. For the same variable, Rombach et 

al. find out that it improves from an average of 42 Defects/KLOC removed to 12 

Defects/KLOC.  

Regarding process yield we discover that it improves from an average of 7% to 

62%. For the same variable, Rombach et al. discover that it improves from an average 

of 5% to 55%.  

Moreover, we find out that production rate deteriorates from an average of 32 

LOC per hour to 20 LOC per hour. For the same variable, Rombach et al. find out that it 

improves from 30 LOC per hour to 39 LOC per hour. 

On the other hand, looking at the size estimation accuracy results, we find out 

significant improvement with a mean reduction of a factor of 2.6. However, Rombach et 

al. neither accept nor reject the hypothesis about size estimation accuracy improvement. 

As we can see, yield results follow the same line in both studies. Although both 

studies show that defect density in unit testing improves, the beginning defect density 

averages are quite different on both studies (15 versus 42 defects per KLOC). In 

Rombach et al. work it is specified that the PSP courses can be a two weeks training for 

engineers from industry or a semester course in an academic environment. Even though 

they say that most of the classes were taught in industry to practicing software 

developers and less than 4% of the data is from students in a university setting, we 

should not discard this experimentation difference as one of the reasons for this distinct 

behavior of defect density average at the beginning of both studies. The students’ 

previous experience and profiles can be affecting this variable, as well as the differences 
in the controlled environment between a massive undergraduate course and a SEI (or 

SEI partner) course for professional developers. On the other hand, regarding 

production rate, the studies show opposite results. Size estimation accuracy results are 

different as well, since they do not find significant improvements.

3. Paulk – 2010  

 

This work consists of a study of the impact of process discipline on personal 

software quality and productivity9. He considered a data set of 2435 programs 

developed by engineers who performed the PSP I/II original course. The article does not 

                                                 
9 Paulk also defined Productivity in the same way as we defined Production Rate. 

 

The Impact of Process Discipline on Software Quality and Productivity 

 
Author:  Paulk, Mark 

Published: ASQ Software Quality Professional; Vol. 12, No. 2 

Pages: 15-19 

Year: 2010 



Chapter 6.  Related Work 

119 

 

clarify how many engineers were involved in those developments. Only programs 

written in C were considered, in order to remove a possible confounding factor. 

The impacts found on quality are: 

· Defect density (defects/KLOC) in testing: Quality improved by 79% and 
variability decreased by 81% 

· The number of defects generally decrease across the PSP assignments 
despite the observation that the number of lines of code is increasing at 

the same time. 

· Programmer ability also affects software quality. The top-quarter 

students improved their software quality by a factor more than two, and 

the bottom-quarter students improved theirs by a factor more than four.  

The impacts found on productivity are: 

· Productivity (LOC/hour) increases but it is not practical significant.  

· Programmer ability also affects productivity. 

Comparing this study against our work, there are different experimentation 
aspects. He analyzed 2435 programs developed by engineers that performed the PSP I/II 

original version. The author does not clarify how many engineers are involved in those 

programs. We analyzed 347 engineers of the other two course versions, the PSP I/II 

revised and the PSP Fundamentals and Advance.  

Regarding defect density in unit testing, we find out that quality improved by 

84% and variability decreased by 80%. For the same variable he finds out that quality 

improved by 79% and variability decreased by 81%.  

On the other hand, regarding production rate we discover a mean reduction of a 

factor of 0.7. For the same variable he discovers not practical significant changes.  

As we can see, defect density in unit testing results follow the same line in both 

studies, while the product rate results are quite different. 

4. Nichols et al. – 2013 

 

This technical report aims at deepening the understanding of original hypotheses 

of Hayes et al. and Rombach et al. They analyzed the data of 3111 engineers that 

performed the PSP I/II original course. The data set is a superset of the data used by 

Hayes et al. and by Rombach et al. They are considering graduate and undergraduate 

students, as well as subjects that performed a two weeks training for engineers from 

industry or a semester course in an academic environment. 

The main findings in this study are: 

The Personal Software Process (PSP) Revisited: 

Empirical Benefit Analysis 

 
Author:  Nichols, William; Küpper Steffen; Andelfinger Urs 

Published: Technical Report - draft version provided by the authors 

Year: 2013  



Chapter 6.  Related Work 

120 

 

 

· Neither accept nor reject the hypothesis about size estimation accuracy 
improvement 

· Neither accept nor reject the hypothesis about size effort accuracy 
improvement 

· Regarding estimations, they find out different behavior between 
engineers that overestimate and the engineers that underestimate. 

· The defects injected per thousand lines of code does not decreases 

· The number of defects removed per thousand lines of code decrease 

· With the introduction of design and code reviews, the defect densities of 
programs entering the compile and test phases decrease significantly 

· Engineers do not lose on productivity10 

· The introduction of design review and code review has a significant 
impact on the value of engineers’ yield. 

· Reject the hypothesis about defect estimation accuracy improvement 

Comparing this study against our work, there are different experimentation 

aspects. We analyze a data set rather smaller than theirs: 347 engineers of the last two 

course version versus 3111 engineers of the PSP I/II original course.  

Both studies find out improvements in size estimation accuracy, defect density 

in unit testing and yield, while the impact on production rate is quite different on both 

studies. 

5. Comparison summary 

Four related works were presented in the previous sections. These research 

works study the effects of the PSP training and try to demonstrate the benefits of 

disciplined software development on the individual level.  

One of the main differences between these studies and our work is that all of 

them analyzed data from students who performed the PSP I/II original course while we 

analyzed data from the PSP I/II revised and PSP Fundamentals and Advance courses. 

The amount of subjects considered on each study is also a relevant difference, which 

impacts on the generalization of the observations. 

The data quality assessment and cleaning is another difference between these 

studies. Hayes et al. only considered for their analysis the students that reported 

complete data (records available for the 10 assignments involved in the course) for each 

variable under study. On the other hand, Rombach et al. reported that they assessed the 

data quality and that they only used data from those students whose data for all 10 

exercises were correct, complete, and consistent. Paulk does not include any 

specification about the quality of the analyzed data set. Besides, Nichols et al. reported 

that they considered those engineers who at least provided complete data for all the 

assignments, also reporting that further data cut-offs were made based in the PSP 

guidelines, in order to base their analysis in complete, correct and consistent data. In our 

                                                 
10 Nichols et al. also defined Productivity in the same way as we defined Production Rate. 

 



Chapter 6.  Related Work 

121 

 

work, we performed the data quality assessment and cleaning based on the Data Quality 

theory. We performed that by defining and measuring 10 data quality problems 

(associated with the accuracy, consistency, completeness and uniqueness data quality 

dimensions) through 91 specific metrics. 

Another important difference is that they looked at the improvements based on 

how the engineers’ performance evolved during the course. That approach implies a 

threat to external validity, which is the confounding of process phases and techniques 

insertions with the gaining of domain experience as related programs are developed. 

With our approach, we faced that threat. 

Table 21 presents a comparison table of the findings from all the studies 

discussed in the previous sections.  

Hypothesis Hayes et al. 
1997 

Rombach et al. 
2007 

Paulk 
2010 

Nichols et al. 
2013 

Our study 
2013 

Size 
Estimation 
Accuracy 

Improved a 

factor of 2.5 

Neither accept nor 

reject the 

hypothesis 

Not 

analyzed 

Neither accept 

nor reject the 

hypothesis 

Improved a 

factor of 2.6 

Effort 
Estimation 
Accuracy 

Improved a 

factor of 

1.75 

Improved from  

-25% to -10% 

Not 

analyzed 

Neither accept 

nor reject the 

hypothesis 

Not analyzed 

Total 
Defect 

Density 

Reduced a 

factor of 1.5 

Reduced from 103 

to 50 defects per 

KLOC 

Not 

analyzed 

Reduced 

factor not 

specified 

Not analyzed 

Defect 
Density in 
Compile 

phase 

Reduced a 

factor of 3.7 

Reduced from 57 to 

12 defects per 

KLOC 

Not 

analyzed 

Reduced 

factor not 

specified 

Not analyzed 

Defect 
Density in 

Unit 
Testing 

Reduced a 

factor of 2.5 

Reduced from 42 to 

12 defects per 

KLOC 

Improved by 

79% and 

variability 

decreased by 

81% 

Reduced 

factor not 

specified 

Reduced a 

factor of 2.3. 

Reduced from 

15 to 2.5 

defects per 

KLOC. 

Improved by 

84% and  

variability 

decrease by 

80% 

Process 
Yield 

Increase of 

50% 

Improves from 5% 

to 50% 

Not 

analyzed 

Improved 

factor not 

specified 

Increase of 

55%. 

Improves from 

7% to 62% 

Production 
Rate 

No gain or 

loss 

Improves from 30 

to 39 LOC per hour 

No gain or 

loss 

No gain or 

loss 

Reduced a 

factor of 0.7. 

Deteriorates 

from 32 to 20 

LOC per hour 

Defect 
Estimation 
Accuracy 

Not 

analyzed 

Neither accept nor 

reject the 

hypothesis 

Not 

analyzed 

Rejected the 

hypothesis 
Not analyzed 

Table 21: Findings comparison11 

                                                 
11 The table has different units for the effects because it is not possible to calculate a standardized effect 

size from the available data of the articles. To calculate effect size is necessary to have the mean of the 

groups, the standard deviation and the size of the samples. 
 



Chapter 6.  Related Work 

122 

 

All studies present an improvement in defect density in unit testing. Although 

not all the works analyzed the evolution of the total defect density and the defect density 

in the compile phase, we can see a reduction trend. Additionally, improvements are 

observed regarding process yield in all the studies that analyzed that variable. These 

observations support the PSP course benefits regarding product quality, regardless of 

whether these are achieved by the process itself or by the domain learning effects. 

However, regarding size, effort and defect estimations, some studies report 

improvements while others show not significant improvements.  

Production rate seems to be the most variable of all the analyzed hypotheses, as 

some studies find improvements, others find no real gain or loss, and we find a 

significant loss of productivity. 

Besides showing an improvement in defect density in unit testing, process yield 

and size estimation accuracy, our work includes the elimination of the threat to validity 

related to the learning by programming repetition in two of those variables: process 

yield and defect density in unit testing. This is one of the thesis’ contributions since it 

had not been previously studied.  

 



 

 

 

Chapter 7 

Conclusions and Future Work 

This chapter includes three sections: conclusion, contributions of the research 

and the future work. 

1. Conclusions 

Almost every new product or system that we use in our daily life has a software 

component for its operation. Meanwhile, both the size and complexity of the software 

increase day by day. In this context, software engineering needs improved software 

quality, better cost and schedule management as well as reduced software development 

cycle time [40]. 

The Team Software Process (TSP) is a software development process for teams 

that satisfies these needs and which uses the Personal Software Process (PSP) for each 

team member [4] [5]. The PSP is a defined and measured software process designed to 

be used by an individual software engineer to addresses the software businesses needs 

by improving the technical practices and individual abilities of software engineers, and 

by providing a quantitative basis for managing the development process [41]. 

Given that the TSP is a process successfully used and it is qualified as the best 

software development process for medium and large scale projects [6], it is important to 

know whether the processes and the applied techniques of the PSP lead to develop high 

quality products. Therefore, the general goal of this thesis is to know if the different 

techniques and phases of the PSP (and therefore, the PSP itself) produce positive 

changes in the aforementioned aspects of the software development. 

The PSP is taught through a course. Several versions of the course use the same 

exercises, but introduce process phases and techniques in modified sequences. An 

earlier version of the course has several published studies demonstrating improvement 

in developer performance with process insertion [7] [8] [9] [10] [11] [12], but the 

retrospective analysis left some threats to the validity of these claims. One threat to the 

validity of the claims of these studies is the confounding of the effect of introducing 

process phases and techniques insertions with the gaining of domain experience as 
related programs are developed.  

Given this known problem (validity threat to prior experiments in PSP), the main 

goal of this thesis is to use the PSP data from the latest two course formats to determine 

whether the different techniques introduced improve several aspects of developers’ 

performance, or if such improvement is only a consequence of gaining experience in the 

problem domain. A secondary goal is to document observations and results of the two 

recent course versions, which do not have yet published works. 



Chapter 7.  Conclusions and Future Work 

124 

 

Based on Hayes [7] and Rombach [8], we decided to evaluate the effects of the 

last two PSP course versions through four hypotheses, focusing on determining the 

main reason for the improvements and not just evaluating the effect size of the 

improvements. 

Therefore, we defined the particular goals of this thesis as: 

· Analyze and compare the data collected at the PSP levels in two different 
courses for the purpose of evaluating performance improvements of 

engineers with respect to defect density in unit testing / yield / 

production rate / size estimation accuracy from the viewpoint of a 

researcher in the context of the PSP training of engineers in “PSP for 

Engineers I/II revised” course and the training of engineers in “PSP 

Fundamentals and Advance” course.  

· In case of improvements, determine if these are due to the specific 

techniques introduced or if such improvements are only a consequence of 

the experience gained in the problem domain. 

The quality of the PSP collected data can have a relevant impact in the results. 

We considered that it was important to find a way to ensure that the statistical analyses 

were based on quality data. That is why, based on the Data Quality theory [13], we 

thoroughly identified and defined possible quality problems that the data under study 

might contain. We implemented the algorithms required for measuring, cleaning and 

collecting the metadata and we executed those algorithms afterwards.  

Ten quality problems were identified, and a total of 91 metrics were defined in 

order to measure these problems applied to objects of the database. After executing all 

measuring, we observed that a 1.34% of the total of the measured objects has some error 

or possible error. Our result is different from the findings of a prior study on the quality 

of the PSP data, in which it is reported a 4.8% of errors within data [33]. This difference 

is probably due to the previous study which was based on a version of the course for 

which there was neither computer nor tool support for the process and the calculations 

involved. After the measurement process, we executed a data cleaning procedure, 

obtaining a data set with the necessary quality for our statistical analysis for each 

hypothesis.  

The quality of the data collected during a software development project is 

relevant due to the problems that poor data quality can cause: deviated estimations, 

wrong predictions, bad project monitoring, among others. Our analysis on the quality of 

the data collected during a disciplined development process (as the PSP) shows few 

quality defects (about 1%). However, the cleaning of these few low quality data is 

necessary when performing hypothesis tests. 

After cleaning the data, we analyzed whether performance improvements are 

due to the programming repetition or due to the introduction of phases and techniques. 

To carry this out we defined and applied an indirect statistical method of analysis that 

consists of three steps in which the relationships between program number, PSP level, 

course version and engineers’ performance are examined by applying analysis of 

variance statistical methods. We followed this approach for each of the hypothesis. 

Regarding defect density in unit testing, we found significant improvement with 

a mean reduction of a factor of 2.3. This result is consistent with Hayes and Rombach 

findings. Our results not only show the effect size, but suggest that improvements in 



Chapter 7.  Conclusions and Future Work 

125 

 

defect density in unit testing are most plausible regarding mastering PSP techniques 

rather than programming repetition.  

Our results show significant improvement in the process yield with a mean 

increase of a factor of 1.9. This result is also consistent with Hayes and Rombach 

findings. Our results also support that design and code reviews techniques are the main 

reason of the improvements rather than the learning effect.  

Regarding production rate we found a mean reduction of a factor of 0.7. This 

result differs from the Hayes findings, which did not find gain or loss in the production 

rate. Our result also differs from Rombach findings, who found an improvement of the 

production rate. In our study both courses appear to be effective in demonstrating that 

the increments in the amount of design documentation and data tracking proposed by 

the PSP deteriorates the production rate during the PSP course.  

Looking at the size estimation accuracy results, we found significant 

improvement with a mean reduction of a factor of 2.6. This result is consistent with 

Hayes findings, but differs from Rombach findings, as he neither accepts nor rejects this 

hypothesis. For this particular dimension we were not able to discard the domain 

learning effect as the root causes of the improvements, as the estimation technique 

introduced in the PSP courses (the PROBE method) is based on historical data and 

needs repetition. 

The analyses executed in this work substantiate that trends in personal 

performance observed during PSP application are significant, and that the observed 

improvements or deterioration represent real change in individual performance, not in 

the average performance of the group.  

Because of the followed approach, we are able to suggest that the PSP is the root 

cause of the improvements rather than the domain learning effect in two of the four 

studied hypothesis: defect density in unit testing and process yield. Since PSP level 
changes so rapidly in the PSP Fundamentals and Advance course and in the PSP I/II 

revised course, the program number and the PSP process level are tightly correlated in a 

way that makes separating the effects difficult. This is one of the reasons why we were 

not able to reject the learning effect in the other two hypotheses. However, the results of 

our analysis related to these hypotheses lead us to think that the process phases and the 

introduced techniques are probably one of the main reasons of the changes, so further 

research and experimentation is necessary to confirm it. 

With our results, we show that the use of PSP produces positive changes 

regarding the improvement quality of the software product, which is one of major needs 

of software development. 

Given the size and complexity of modern software projects, success requires that 

all individuals produce high quality software products with predictable cost and 

schedule. It is, therefore, essential to base organizational processes on practices that 

work at an individual level and satisfy these needs. This work suggests that PSP has 

demonstrated the capability to address these needs. 

Perform controlled experiments related to the application of a software 

development process is not a trivial task. The PSP, since it is a highly instrumented 

process, allows having enough data for Software Engineering experiments. In this work 

we were able to see that from a simple recollection of direct measures like defects, times 

per phases and size, effort and quality estimations, arise many software metrics that are 

really important and which allow to effectively evaluate the process execution. 



Chapter 7.  Conclusions and Future Work 

126 

 

Given that Software Engineering cares about quality, costs and schedule [42], it 

is necessary to perform more empirical studies which show how techniques, methods 

and processes help to improve each of those issues [43]. Unfortunately, the available 

empirical evidence in this area is still not quite enough [44]. Not many software 

development processes have been as much studied as the PSP and the TSP. 

2. Contributions 

The main contributions of this work are the following: 

· We give insight into the engineers’ performance changes in the last two PSP 

course versions with respect to four dimensions: defect density in unit 

testing, yield, production rate and size estimation accuracy. The behavior on 

the engineers’ performance on these two course versions, PSP Fundamentals 

and Advance and PSP for engineers I/II revised, was not studied before. 

· We address the threat to external validity related to the learning by 
programming repetition. Results suggest that improvement effects are most 

plausible regarding mastering PSP techniques rather than general domain 

knowledge in two of the studied dimensions: process yield and defect density 

in unit testing. 

· We study the quality of the data collected during the execution of the last 

two PSP course formats. We did not find in the literature other data quality 

analysis like this one, at least not using a formal approach based on the Data 

Quality discipline. Our approach can be used, with adaptations, for other 

software development processes. 

3. Future Work 

As future work we propose several controlled experiments to continue facing the 

domain learning threat in order to obtain more generalizable results.  

One approach consists of a controlled experiment where the students must 

perform, for example, the same eight assignments defined for the PSP I/II revised 

course. But, in this experiment, the students perform the first program with PSP0 and all 

the other assignments with PSP0.1. That is, in this experiment proposal, the student 

repeats the same baseline process, without the introduction of new techniques or new 

phases. Here, the researcher will be able to see precisely how the domain learning effect 

is affecting any dimension of the engineers’ performance, blocking the effect of the PSP 

level. If there are improvements during the experiment, there is no doubt that they are 

due to programming repetition. Part of this work has already begun and an extended 

abstract has been recently sent (on April 2nd, 2013) to present an article in the TSP 

Symposium 2013. This extended abstract can be found in Appendix 5. 

A second approach could be a controlled experiment with 3 groups of students: 

X, Y and Z. The students of the group X are introduced to PSP0.1, the students of the 

group Y to PSP1.1, and the students of the group Z to PSP2.1. Then, each student of 

each group performs, for example, 10 assignments applying the higher PSP level that 

they were introduced to. In this way, each PSP level will be stable at the end of the 

experimentation process for each group of students, and the effects of programming 

repetition and of the techniques applied on each PSP level could be examined. 



Chapter 7.  Conclusions and Future Work 

127 

 

A third approach would be an extended PSP course with at least three exercises 

at each PSP level. We judge that this would permit the process changes to stabilize 

allowing us to examine improvements between programs with and without process 

change more directly. 

Any of these controlled experiments proposals are useful not only to face the 

programming repetition threat for the variables studied in this thesis work, but for any 

variable defined to analyze the changes of an aspect of the engineers’ performance in 

the PSP. Although more approaches are possible, we just present some of them. 

Regarding the production rate results that we found, which were quite different 

from the previous studies related to the PSP I/II original course, we propose to perform 

further research related to the last two course versions in order to know which could be 

the reasons of this production rate deterioration. Related with this issue, we also propose 

as future work a comparison between the techniques introduction in the different course 

versions, in order to determine the optimal way to introduce the process phases and 

techniques to teach the PSP. 

We think that it is important to analyze the PSP I/II original course in order to 

evaluate the learning effect on that course. That is, we propose to do a replication of our 

study with the old course version data as a future work. There are three main reasons for 

this replication: the programming repetition effect has never been studied on that PSP 

course version, there is more available data (more than 3000 engineers, that is, more 

than ten times the data that we analyzed), and each level of PSP is used in at least three 

assignments. The last two reasons can help generalize the results of our study, as well as 

gaining more knowledge about the size estimation accuracy. 

We consider necessary to analyze the other variables related to engineers’ 

performance that have been studied previously (for the PSP I/II original course) in the 

related works and which were not studied in this opportunity: effort estimation 

accuracy, defect estimation accuracy, total defect density and defect density per phase. 

This would allow reaching a fully complete analysis of the performance impact of the 

PSP’s phases and techniques. 

In regards to the quality of the data collected during the PSP, it is of interest to 

understand effect of data cleaning upon the hypotheses. An empirical approach would 

be analyze the same hypotheses but considering all the students’ data without the data 

quality cleaning and cut-offs applied. This result could be compared to the analysis with 

cuts applied. A substantial change would strongly suggest care should be taken when 

using that data to make decisions.  

It seems reasonable to analyze the particular data quality problems that we found 

in order to improve the PSP support tool (which is used by the students during the 

courses to recollect the process data) and prevent data errors. An example of an 

improvement could be that the tool automatically notify of any quality problem before 

saving the data. The grading checklist used by the PSP instructors could also be 

improved based on the data quality problems found, in order to improve the teaching of 

the PSP. 

Something interesting would be to conduct this kind of studies for the data 

collected during the use of the Team Software Process. The data to be used would be 

data generated by the use of this process in the industry. There, the impact of the 

process phases and techniques on the engineers’ performance can be evaluated in 

industrial scale projects, during the whole software development process. 





 

 

 

Appendix 1 

Software Quality Models and Processes 

This appendix presents software quality models and processes created by the 

SEI, as the CMMI and the TSP. Also a complete description of the PSP Quality Process 

and Product Measures is presented 

1. CMM and CMMI 

This section presents a summary of the main characteristics of the Capability 

Maturity Model (CMM), created by the Software Engineering Institute (SEI) of 

Carnegie Mellon University. This description of CMM is based on the SEI technical 

reports Key Practices of the Capability Maturity Model [45] and Capability Maturity 

Model for Software [46]. 

CMM is created to guide software organizations in the process improvement 

strategy’s selection. This is done through the determination of the maturity of the 

development process and the identification of the more critical elements.  

The following definitions are useful to understand CMM and CMMI: 

Software process capability describes the range of expected results that can be 

achieved by following a software process. The software process capability of an 

organization provides one means of predicting the most likely outcomes to be expected 

from the next software project the organization undertakes. 

Software process performance represents the actual results achieved by 

following a software process. It focuses on the achieved results, while software process 

capability focuses on expected results.  

Software process maturity is the extent to which a specific process is explicitly 

defined, managed, measured, controlled, and effective. 

The hypothesis that is handled both by CMM and CMMI is that a mature 

process is a process with high capability. 

CMM has five maturity levels. Each level is composed by Key Process Areas. 

For an organization to reach a certain maturity level, it must meet the Key Areas of that 

level and all the previous levels. In the Figure 50 are shown all levels, the software 

process types associated to each level and the key areas of each level.  



Appendix 1.  Software Quality Models and Processes 

130 

 

 
Figure 50: CMM Levels and Key Areas 

As our focus is software quality, only the key areas related to quality are 

explained. 

At level 2, the purpose of Software Quality Assurance is to provide management 

with appropriate visibility into the process being used by the software project and of the 

products being built. Software Quality Assurance is an integral part of most software 

engineering and management processes. 

The goals of the Software Quality Assurance are: 

· To plan software quality assurance activities. 

· To objectively verify the adherence of software products and activities to 
the applicable standards, procedures, and requirements. 

· To inform affected groups and individuals about software quality 
assurance activities and results. 

· To inform about noncompliance issues that cannot be resolved within the 

software project, and to address them to senior management for it to 

intervene. 



Appendix 1.  Software Quality Models and Processes 

131 

 

At level 4, the purpose of Software Quality Management is to develop a 

quantitative understanding of the quality of the project's software products and achieve 

specific quality goals. 

The goals of the Software Quality Management are: 

· To plan the project's software quality management activities.  

· To define measurable goals for software product quality and their 
priorities. 

· To manage and quantify the actual progress toward achieving the quality 

goals for the software products. 

CMMI (Capability Maturity Model Integration) is the successor of the CMM. 

The CMM was developed from 1987 until 1997. In 2002, CMMI Version 1.1 was 

released, Version 1.2 followed in August 2006, and Version 1.3 in November 2010. 

Although Capability Maturity Model Integration (CMMI) has differences with 

CMM, these have no influence in the presented work. Therefore, neither a presentation 

nor a discussion on CMMI will be done. It has been considered that it would not add to 

this work, and that it would repeat many of what has already been stated about CMM.   

2. TSP 

This section presents a summary of the main characteristics of the Team 

Software Process (TSP), developed by Watts Humphrey in 1996 at the SEI. This 

description of the TSP is based on the SEI technical report The Team Software Process 

(TSP) [23]. 

As it was stated before, the TSP provides a disciplined context for engineering 

work. The principal motivator for the development of the TSP was the conviction that 

engineering teams can do extraordinary work, but only if they are properly formed, 

suitably trained, staffed with skilled members, and effectively led. The objective of the 

TSP is to build and guide such teams. 

Early experience with the TSP shows that its use improves the quality and 

productivity of engineering teams while helping them to meet cost and schedule 

commitments more accurately. 

The teambuilding principles used in the TSP to establish the conditions that 

characterize effective teams are as follows: 

· The team members establish common goals and defined roles. 

· The team develops an agreed-upon strategy. 

· The team members define a common process for their work. 

· All team members participate in producing the plan, and each member 
knows his or her personal role within such plan. 

· The team negotiates the plan with management. 

· Management reviews and accepts the negotiated plan. 

· The team members do the job in the way that they have planned to do it. 

· The team members communicate freely and often. 



Appendix 1.  Software Quality Models and Processes 

132 

 

· The team forms a cohesive group: the members cooperate, and they are 

all committed to meeting the goal. 

· The engineers know their status, get feedback on their work, and have 
leadership that sustains their motivation. 

The principal elements of the TSP process are shown in Figure 51. Before the 

members can participate on a TSP team, they must know how to do disciplined work. 

Training in the PSP is required to provide engineers with the knowledge and skills to 

use the TSP.  

While there are many ways to build teams, they all require that the individuals 

work together to accomplish some demanding task. In the TSP, this demanding team-

building task is a four-day planning process that is called the team launch. In a launch, 

all the team members develop the strategy, process, and plan for doing their project. 

After completing the launch, the team follows its own defined process to do the job. 

 
Figure 51: TSP Team-Building 

In the TSP, the principal quality emphasis is on defect management. To manage 

quality, teams must establish quality measures, set quality goals, establish plans to meet 

these goals, measure progress against the plans, and take remedial action when the goals 

are not achieved. The TSP shows teams how to do this. The elements of TSP quality 

management are making a quality plan, identifying quality problems, and finding and 

preventing quality problems. 

TSP introduces a series of quality measures that help to identify quality 

problems. These measures are:  

· Percent defect free (PDF) 

· Defect-removal profile 

· Quality profile 



Appendix 1.  Software Quality Models and Processes 

133 

 

· Process quality index (PQI) 

3. PSP Quality Process and Product Measures 

With size, time, and defect data, there are many ways to measure, evaluate, and 

manage the quality of a program. The PSP provides a set of quality measures that helps 

engineers examine the quality of their process and programs from several perspectives. 

While no single measure can adequately indicate the overall quality of a process or a 

program, the aggregate picture provided by the full set of PSP measures is generally a 

reliable quality indicator. The principal PSP quality measures are: 

· Defect density 

· Review rate 

· Development time ratios 

· Defect ratios 

· Yield 

· Defect removal leverage 

· Appraisal to failure ratio (A/FR) 

Each of these measures is described in the following paragraphs. 

Defect Density. Defect density refers to the defects per Added and Modified 

KLOC found in a program. Thus, if a 150 LOC program had 18 defects, the defect 
density would be 1000*18/150 = 120 defects/KLOC 

Defect density is measured for the entire development process and for specific 

process phases. Since testing only removes a fraction of the defects in a product, when 

there are more defects that enter a test phase, there will be more remaining after the test 

phase is completed. Therefore, the number of defects found in a test phase is a good 

indicator of the number that remains in the product after that test phase is completed. 

Review Rate. In the PSP design and code reviews, engineers personally review 

their programs. The PSP data show that when engineers review designs or code faster 

than about 150 to 200 added and modified LOC per hour, they miss many defects. With 

the PSP, engineers gather data on their reviews and determine how fast they should 

personally review programs to find all or most of the defects. 

Development Time Ratios. Development time ratios refer to the ratio of the 

time spent by an engineer in any two development phases. In the PSP, the three 

development time ratios used in process evaluation are design time to coding time, 

design review time to design time, and code review time to coding time. 

Defect Ratios. The PSP defect ratios compare the defects found in one phase to 

those found in another. The principal defect ratios are defects found in code review 

divided by defects found in compile, and defects found in design review divided by 

defects found in unit test. A reasonable rule of thumb is that engineers should find at 

least twice as many defects when reviewing the code as they find in compiling it. The 

number of defects found while compiling is an objective measure of code quality. When 

engineers find more than twice as many defects in the code review as in compiling, it 

generally means that they have done a competent code review or that they did not 

record all the compile defects. The PSP data also suggest that the design review to unit 



Appendix 1.  Software Quality Models and Processes 

134 

 

test defect ratio should be two or greater. If engineers find twice as many defects during 

design review as in unit test, they have probably done acceptable design reviews. 

Yield. In the PSP, yield is measured in two ways. Phase yield measures the 

percentage of the total defects that are found and removed in a phase. For example, if a 

program entered unit test with 20 defects and unit testing found 9, the unit test phase 

yield would be 45%. Similarly, if a program entered code review with 50 defects and 

the review found 28, the code review phase yield would be 56%. Process yield refers to 

the percentage of defects removed before the first compile and unit test. Since the PSP 

objective is to produce high quality programs, practiced reviewers can find 70% or more 

of the defects before compiling or testing. 

Defect Removal Leverage (DRL). Defect removal leverage measures the 

relative effectiveness of two defect removal phases. For instance, if the defect removal 

leverage for design reviews over unit test is 3.06/1.71 = 1.79, it means that the engineer 

will be 1.79 times more effective at finding defects in design reviews as in unit testing. 

The DRL measure helps engineers design the most effective defect removal plan. 

A/FR. The appraisal to failure ratio (A/FR) measures the quality of the 

engineering process, using cost-of-quality parameters [16]. The A stands for the 

appraisal quality cost, or the percentage of development time spent in quality appraisal 

activities. In PSP, the appraisal cost is the time spent in design and code reviews, 

including the time spent repairing the defects found in those reviews. 

The F in A/FR stands for the failure quality cost, which is the time spent in 

failure recovery and repair. The failure cost is the time spent in compile and unit test, 

including the time spent finding, fixing, recompiling, and retesting the defects found in 

compiling and testing. 

The A/FR measure provides a useful way to assess quality, both for individual 

programs and to compare the quality of the development processes used for several 
programs. It also indicates the degree to which the engineer attempted to find and fix 

defects early in the development process. In the PSP course, engineers are told to plan 

for A/FR values of 2.0 or higher. This ensures that they plan adequate time for design 

and code review



 

 

 

Appendix 2 

Concepts of Empirical Software 
Engineering 

This appendix consists of a technical report about Concepts of Empirical 

Software Engineering. 



Appendix 2.  Concepts of Empirical Software Engineering 

136 

 



Appendix 2.  Concepts of Empirical Software Engineering 

137 

 



Appendix 2.  Concepts of Empirical Software Engineering 

138 

 



Appendix 2.  Concepts of Empirical Software Engineering 

139 

 



Appendix 2.  Concepts of Empirical Software Engineering 

140 

 



Appendix 2.  Concepts of Empirical Software Engineering 

141 

 



Appendix 2.  Concepts of Empirical Software Engineering 

142 

 



Appendix 2.  Concepts of Empirical Software Engineering 

143 

 



Appendix 2.  Concepts of Empirical Software Engineering 

144 

 



Appendix 2.  Concepts of Empirical Software Engineering 

145 

 



Appendix 2.  Concepts of Empirical Software Engineering 

146 

 



Appendix 2.  Concepts of Empirical Software Engineering 

147 

 



Appendix 2.  Concepts of Empirical Software Engineering 

148 

 



Appendix 2.  Concepts of Empirical Software Engineering 

149 

 



Appendix 2.  Concepts of Empirical Software Engineering 

150 

 



Appendix 2.  Concepts of Empirical Software Engineering 

151 

 



Appendix 2.  Concepts of Empirical Software Engineering 

152 

 



Appendix 2.  Concepts of Empirical Software Engineering 

153 

 



Appendix 2.  Concepts of Empirical Software Engineering 

154 

 



Appendix 2.  Concepts of Empirical Software Engineering 

155 

 



Appendix 2.  Concepts of Empirical Software Engineering 

156 

 



Appendix 2.  Concepts of Empirical Software Engineering 

157 

 



Appendix 2.  Concepts of Empirical Software Engineering 

158 

 



Appendix 2.  Concepts of Empirical Software Engineering 

159 

 



Appendix 2.  Concepts of Empirical Software Engineering 

160 

 



Appendix 2.  Concepts of Empirical Software Engineering 

161 

 



Appendix 2.  Concepts of Empirical Software Engineering 

162 

 



Appendix 2.  Concepts of Empirical Software Engineering 

163 

 



Appendix 2.  Concepts of Empirical Software Engineering 

164 

 



Appendix 2.  Concepts of Empirical Software Engineering 

165 

 



Appendix 2.  Concepts of Empirical Software Engineering 

166 

 



Appendix 2.  Concepts of Empirical Software Engineering 

167 

 



Appendix 2.  Concepts of Empirical Software Engineering 

168 

 



Appendix 2.  Concepts of Empirical Software Engineering 

169 

 



Appendix 2.  Concepts of Empirical Software Engineering 

170 

 



Appendix 2.  Concepts of Empirical Software Engineering 

171 

 



Appendix 2.  Concepts of Empirical Software Engineering 

172 

 



Appendix 2.  Concepts of Empirical Software Engineering 

173 

 



Appendix 2.  Concepts of Empirical Software Engineering 

174 

 



Appendix 2.  Concepts of Empirical Software Engineering 

175 

 



Appendix 2.  Concepts of Empirical Software Engineering 

176 

 



Appendix 2.  Concepts of Empirical Software Engineering 

177 

 



Appendix 2.  Concepts of Empirical Software Engineering 

178 

 



 

 

 

Appendix 3 

Data Quality Metrics for the PSP 

This appendix presents the information, categorization and results for each 

metric defined for the quality assessment of the data recollected by the students who 

performed the PSP I/II revised course and the PSP Fundamentals and Advance course. 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

0
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

1
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

2
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

3
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

4
 

 

 
  



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

5
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

6
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

7
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

8
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
8

9
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

0
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

1
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

2
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

3
 

 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

4
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

5
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

6
 

 



A
p

p
en

d
ix

 3
. 

 D
at

a 
Q

u
al

it
y
 M

et
ri

cs
 f

o
r 

th
e 

P
S

P
 

 

1
9

7
 

 

 
 





 

 

 

Appendix 4 

Data Quality Problems in the PSP 

This appendix presents a detailed explanation of the data quality problems that 

were found in the Personal Software Process recollected data.  

1. Out of Range Value 

There are specific values for which is possible to define the range they should 

belong to. However, many of the registered data during this process might take values 

that are not close to one another, and yet correspond to correct events of reality. For 

instance, the amount of defects that each student detects and records may be one, as 

well as one-hundred and, any of those might correspond to an incorrect value. This is 

why the first step is to define the relevant data to then establish a range and measure. 

In this regard, two cases are considered. On one hand, the recorded time for each 

phase and each process. On the other hand, the amount of new parts added by each 

program and course. It is important to consider, nonetheless, that if a value is out of the 

determined range it does not necessarily mean that the value is incorrect. The fact that 

outlier but correct values exist, is part of every learning process. In spite of knowing 

this, being able to discriminate those outlier (but correct) values from real errors can be 

complex. 

Due to the fact that all the fields involved in the present quality problem are 

editable (its values are entered in the tool), errors can happen when typing. 

A possible source of errors regarding time, is that they might have been gathered 

incorrectly, either because it was not completely understood how to gather them or 

because an error took place when they were calculated or recorded. 

Because times are recorded using a chronometer included in the tool, the student 

might forget to start it when beginning the work, or forget to record pauses and 

interruptions that can take place. 

Another possible source of error can be due to the misuse of the tool itself, since 

double-clicking on any of the time fields (start and end) will  automatically insert values 

for the current date and time. If this were to happen without the student noticing, the 

correct registry might be overwritten and the calculated times (delta) would not be the 

real ones. 

In the case of new parts, it is possible that entering them was omitted, or that an 

error occurred when defining them (as a consequence of misunderstanding the process). 

Both situations might be the cause for entering an inaccurate amount of them. 



Appendix 4.  Data Quality Problems in the PSP 

 

200 

 

Because the definition of parts is closely related to the learning process of the 

PROBE method, not understanding entirely this method could definitely result in 

another source of error. 

Measurement: the granularity is at cell level, because it involves the time fields 

recorded in each phase as well as the amount of parts (new, base or reused) that are 

entered. The way to measure this quality problem consists on establishing, for all the 

cell values involved, if they are within a certain range or not. For each and every case 

identified (time and amount of parts) the criteria to correctly determine the range to be 

considered to evaluate the values is established, and the outliers are then identified 

through SQL queries. 

In any of these two cases, the maximum value for the range to consider could be 

defined a priori. For the minimum value instead, it is certainly known that at least one 

new part must have been recorded, and that the time can never be less than 1. Therefore, 

it is necessary to statistically determine an interval considering the medium value and 

the standard deviation of the recorded values. Those values within the range [maximum 

(1, media - 3 *standard deviation), media + 3 *standard deviation] will be considered 

free of error, while those values outside that interval will be considered as to containing 

errors and therefore analyzed separately. Note that in the case of base or reused parts the 

minimum could reach 0 (that is, none being entered). 

2. Incorrect Project Identifier 

Project identifiers must be standardized in a way that these can be used by any 

user. Identifiers may vary depending on the course they correspond to: 

· Identifiers must be in the range from 408 to 414  for the seven 

assignment course (the current) 

· Identifiers must be in the range from 400 to 407 for the eight assignment 
course 

In addition and for all users, there must be a correspondence between the project 

that is being rendered in reality and the identifier used. If not, it is unfeasible to perform 

data analysis by project. The known cause of this quality problem is that the tool used 

for recording defects can both create and delete projects. As a consequence, projects' 

identifiers do not retain the semantics, hence it isn't possible to identify which projects 

correspond to those in reality. 

Measurement: the granularity is at cell level. According to the established order 

by date of completion of the course, it seeks to find all projects that are associated to the 

PSP process but its project identifier does not correspond to reality. 

The measurement of this quality problem is to verify if the amount of exercises 

and the level and order in which they were created is correct. This can be done 

executing SQL queries and programming. If so, projects' identifiers are renamed as so 

they are consistent with each other and with reality. Otherwise, these exercises are 

dismissed given that the student did not apply PSP correctly. 

  



Appendix 4.  Data Quality Problems in the PSP 

 

201 

 

3. Precision in Times 

Defects are recorded in the tool with the following date format “yyyy-mm-dd 

hh:mm:ss". The hours, minutes and seconds corresponding to the time at which the 

defect was recorded should not all equal 0. 

In this quality problem it is desired to measure the level of detail in the recorded 

times. If indeed they are all 0, then the desired precision is not reached and therefore it 

is not possible to know the exact time at which a defect was recorded. The possible 

causes mentioned for the out of range quality problem regarding time, apply to this 

problem as well. 

Another known cause for this quality problem lies in the use of the tool. If the 

calendar is clicked on selecting the date, when trying to enter the times, the tool will 

auto fill the time field with the time 00:00:00. If that is not updated, it entails the 

existence of error in the time value. 

Measurement: The granularity is at cell level because involves the values of 

times in which defects are recorded. The way to measure this quality problem consists 

on establishing, by SQL queries, whether there are time values where all equal 0. 

4. Null Value 

It is of interest to know what information was recorded and what was omitted. 

Knowing what caused that omission and, if possible, determining the value the null 

number should take, is of interest as well. The existence of null values influences the 

data analysis conducted, since it becomes necessary to leave those null values aside to 

obtain statistics. As an example, when calculating the average, a null value in any of the 

values recorded will affect the outcome if it is not considered as such. 

First, it is necessary to identify which fields admit null values and which do not, 

according to the updated database schema. Then, those fields that admit null values are 

identified, though in reality the value should actually be different from null (the fact that 

null values are admitted is an error in the schema of the database). The latter case is the 

one to measure. It is assumed that the control of the fields declared as non-zero is done 

correctly by the tool. 

On the other hand, it is meaningless to consider certain records in which any of 

their most significant values are complete, in spite of existing in the base.  Albeit 

measuring the non-existing records (tuples) that should be in the database, having empty 

records generated in the database is useless. This means that they contain null values 

either in all their attributes or in those most important. For example, if there is a record 

of a process improvement proposal but there is no text detailing the proposal itself, the 

existence of the tuple in the base is insignificant. 

The cause for omitting the fields could be any of the following:  

· The student omits entering the value (by accidental omission or by being 
incapable of determining it) 

· The student considers that entering the value is not necessary or 
important (because it is not mandatory to define it, it can remain null). 



Appendix 4.  Data Quality Problems in the PSP 

 

202 

 

· Due to an error in handling the data (whether it is the tool or the 
database) which causes that the value entered by the student is not 

properly recorded. 

Measurement: the granularity is at cell level because those fields that should 

have a value different than null intervene. Values of the defects' records, the program's 

size estimation, project planning, process improvement proposals and testing reports, 

among others, are involved. The way of measurement is to verify if they contain null 

values by executing SQL queries. 

5. Non-existing Records 

Among this quality problem, those records that do not exist (tuples) in the 

database but exist in reality are identified, and therefore their entry was omitted. This 

means there is a portion of data from reality which is not reflected in the database. Once 

again, if the total data universe is unavailable, the statistics analysis conducted based on 

this data sample will not accurately reflect reality, but only a part of it. 

We can discriminate two different cases. On one hand, possible errors for which 

at least one record in the database should exist, but the non-existence cannot be assumed 

as a quality problem. An example is a non-existing record in the PIP form. Although at 

least one process improvement proposal should be entered for each program (PSP 0.1 

onwards), if this does not happen it cannot be considered as error. 

On the other hand, there are errors that are considered data errors, such as the 

absence of at least one base or added part. It is pointless imagining that it does not exist, 

in reality, at least one base or added part by each program that should be recorded in the 

tool. Because of this, its omission is considered a data quality problem. 

The reason for the existence of this quality problem is the same that for the null 

value problem, with the difference that in this particular case non-existing records (no 

values) in the analyzed database are identified. 

Measurement: the granularity is at tuple level, because it involves records that 

should exist in the database but their entry was omitted. Process improvement projects 

are included, as well as testing reports, base parts and added and defects. The 

measurement of this quality problem is to verify whether these records exist or not in 

the database, by executing SQL queries. 

6. Domain Integrity Rules 

For some attributes, it is possible to define the domain to which their values 

should always belong to. In this case, the valid domain for certain values have to always 

be greater than zero. If invalid values were entered, then an error occurred during the 

recording (whether by distraction or for not understanding the process). 

The main cause this rule is not met is the lack of  controls' definition that avoid 

the entry of negative or equal to zero values, whether  it may be at database level or the 

application's. 

Measurement: the granularity is at cell level because it involves  recording fields 

of times, defects, size estimation and project planning, that shall meet the defined rule. 



Appendix 4.  Data Quality Problems in the PSP 

 

203 

 

The measurement of this quality problem is to verify if the domain integrity rule defined 

is met, by executing SQL queries. 

7. Intra-relationship Integrity Rules 

A set of rules for certain attributes of the same table is defined, which must be 

met in the database under study. If any of these rules is violated , the data consistency 

will be affected, hence any analysis conducted from this data will be as well. 

The main reason these rules are not met is the lack of definition of the 

restrictions in the database (as of design). In this case, an error might occur when a 

student records certain incorrect information of the process, by violating a rule that is 

not controlled in the base (whether by distraction or by not understanding the process). 

As an example, it can happen that the injection phase of the defect occurs after its 

removal. Which, of course, cannot happen in reality. 

Measurement: granularity can be at cell or tuple level, depending on the error. It 

involves times, defects, size estimation and planning projects, both fields and records. 

The measurement is to verify if the intra-relationship integrity rules defined for the 

reality under study are followed, by SQL queries. 

8. Referential Integrity Rules 

A set of rules on certain attributes of different tables is defined, which must be 

met in the database under study. Once again, not following these rules will affect the 

data consistency. 

The main reason why these rules are not met, is the lack of definition of the 

restrictions in the database (as of design). As an example, if the total time that took to 

remove the defects in a certain phase is added up, it can be greater than the time 

recorded for such phase. 

Measurement: granularity is at tuple level because it involves attributes on the 

recording tables, both of defects and times. The measurement of this quality problem 

consists of verifying if the referential integrity rules defined for the reality under study 

are followed, by executing SQL queries. 

9. Invalid Reference   

In the current analysis, it is necessary to consider the meeting of the rules among 

different tables' attributes. When doing an instantiation of this in the database under 

study, it is possible to identify certain references of nonexistent tuples, resulting in 

invalid references. 

The source of this quality problem is an error in the design of the database's 

schema, because the definition of foreign keys over certain attributes is omitted. 

Another possible cause could be due to the manual entry of certain identifiers, where an 

existence's control of such reference is nonexistent. 

As an example, if a defect's record refers to a previous defect's correction, the 

x_defect_id entered by the user should belong to the defect's identifiers the student has 



Appendix 4.  Data Quality Problems in the PSP 

 

204 

 

previously entered.  Nonetheless, this is a text field the user enters manually, and the 

tool does not control whether it is a valid identifier. 

For this quality problem, all foreign keys of all tables are analyzed in order to 

verify that there are no invalid references. This might cause an inconsistency that affects 

any data analysis and consider requiring project data, which in most cases are of great 

importance. 

Measurement: granularity is at tuple level because it involves those tuples that 

refer to nonexistent project identifiers. The measurement of this quality problem is to 

verify if there are tuples with invalid references, by executing SQL queries. 

10. Duplicate Register 

This quality problem is identified when two or more records are an exact copy of 

each other. Two situations exist: 

· When the value in the key and other attributes is the same (or in any 
case, null values). 

· Despite having different primary key, they refer to the same object in 

reality and have the same data in the defined fields (according to the 

duplication criteria considered). 

Although the controls of the tool used prevent the existence of duplicate records 

with the same primary keys, all necessary checks are performed to verify that there are 

no repeated records in the base under study (according to the criteria to be defined). 

Within this quality problem two cases are considered: 

· Defects' duplication. Correspond to defects recorded at the exact same 

time. They are not considered in this case times 00:00:00 

· Student's duplication. Correspond to students that have the same name, 
author and other data. 

The cause for this quality problem can be due to a mistake on the student's 

behalf (e.g. by recording the same defect more than once) or to an error in the tool that 

leads to repeated records stored in the base (e.g. entering the same student more than 

once). It is important to consider this quality problem, because if not, results obtained 

from the data analysis performed would be mistaken. For example, if records of defects 

are duplicate, i.e. referring to the same defect  in reality, the total number of defects will 

not be real (the number of records will be above the real number). 

Measurement: granularity is at tuple level, because it involves those tuples 

(defect's records) that are duplicate. The measurement of this quality problem is to 

verify whether duplicate tuples exist, according to the defined duplication criteria, by 

executing SQL queries. 



 

 

 

Appendix 5 

Extended Abstract presented for the 
TSP Symposium 2013 

 
Another Experiment on the Impact of the PSP on Software 

Quality: Trying to eliminate the programming learning effect 

 

Diego Vallespir, Fernanda Grazioli, Leticia Pérez, Silvana Moreno 

Universidad de la República 

Montevideo, Uruguay 

{dvallesp, grazioli, lperez, smoreno}@fing.edu.uy 

 

Extended abstract 
 
Data collected in the Personal Software Process (PSP) courses indicate that the PSP 

improves the quality of the products developed [1, 2]. The students (many times 

software engineers) perform several programming exercises in which techniques and 

phases of the PSP are added as the exercises advance. One of the ways of knowing if 

the PSP produces improvements in the quality of the software is by doing a statistical 

analysis of the evolution of the results obtained by the students in each program. If the 

programs developed during the course by the students are of a better quality as the 

course progresses (for example, less defects in UT), then it can be inferred that the PSP 

is responsible for the improvement. 

 

However, since the programs of the course are in the same application domain, the 

improvement could be due to programming repetition (learning effect). Recently, a 

study that compares the data obtained from different versions of the PSP courses (in 

which the practice of the PSP is introduced at different moments as the exercises 

advance) concludes that the changes in quality are most plausible regarding mastering 

PSP techniques rather than program repetition. 

  

Our work aims at contributing in this same sense but using a different approach. 

Consequently, our research question is: Are the improvements observed in the PSP 

courses due to the introduction of the phases and techniques of the PSP or due to the 

program repetition? For knowing this we designed and performed a controlled 

experiment. 12 Software Engineering undergraduate students of the Universidad de la 

República, which are the subjects of our experiment, performed the same exercises of 

the PSP for engineers I/II course in its version of 8 exercises but without applying the 

PSP techniques. 



Appendix 5. Extended Abstract Presented for the TSP Symposium 2013 

 

206 

 

 

For the first program the students use the PSP0 and for the seven remaining programs, 

the PSP0.1. These two levels of the PSP only aim at collecting data of the process (time, 

defects, etc.) but they do not introduce the practices of the PSP (reviews, design, 

PROBE, etc.). This design of the experiment makes it possible to know if the students 

improve the quality of the software products due to program repetition. 

 

Therefore, we define the goal of this work as: 

Analyze and compare the data collected at eight program assignments  

for the purpose of evaluating software quality improvements  

with respect to defect density in unit testing / total defect density  

from the viewpoint of a researcher  

in the context of the PSP0.1 level training of 12 software engineers undergraduate 

students. 

 

In order to know the quality of the products we base on two measures that are normally 

used in the experiments that involve the PSP: defect density in unit test and total defect 

density of the program (dependent variables of the experiment). We compare programs 

by pairs to find if the changes in each program are statistically significant. Therefore, 

we propose a null hypothesis and an alternative hypothesis for each dependent variable 

studied: 

  

H0 def/ut: Median (Defect density in UT i) = Median (Defect density in UT j) 

H1 def/ut: Median (Defect density in UT i) <> Median (Defect density in UT j) 

 

H0 tot def: Median (Total defect density i) = Median (Total defect density j) 

H1 tot def: Median (Total defect density i) <> Median (Total defect density j) 

 

Where i, j are the numbers of the programs (1 to 8) and i < j 

 

Results 
 

Table 1 presents median and interquartile range of defect density in unit test for the 

programs from 2 to 8. A difference between the median of program 2 and the rest of the 

programs is perceived.  

 
Table 1 – Median and interquartile range for DDUT 

 Pr 2 Pr 3 Pr 4 Pr 5 Pr 6 Pr 7 Pr 8 

Median 56.98 18.13 18.48 36.38 18.40 13.78 8.59 

IQR 21.20 31.84 18.14 30.19 17.11 25.11 12.20 

 

 

The students of our experiment are 12 (few samples) and the data of each one in the 8 

exercises of the PSP (repeated measures) are considered. In a context of few samples 

and repeated measures the most suitable statistical test for our hypotheses is Wilcoxon 

signed-ranks [4]. This test is used to compare two sets of scores that come from the 

same participants and when normality cannot be assumed. We used the 2-tailed 



Appendix 5. Extended Abstract Presented for the TSP Symposium 2013 

 

207 

 

Wilcoxon test because we do not know a priori if the dependent variable will increase or 

reduce its value. 

 

Table 2 presents the result of applying the Wilcoxon test to each pair of programs for 

the hypothesis of defect density in UT. The table presents the comparison between pairs 

of programs. Each cell contains the p-value (2-tailed) of the Wilcoxon test. The cells in 

green indicate that the null hypothesis has been rejected (p<=0.05) and that there has 

been an improvement in defect density   in UT as the students advance in the exercises. 

The grey cells indicate that it has not been possible to reject the null hypothesis.  

 

It can be observed that it is statistically significant that the defect density in UT for 

program 2 is higher than in the rest of the programs. There are two motives that can 

explain this behavior. The first is based on the fact that program 2 of the PSP course is 

the only one that is not a mathematical program. Exercise 2 consists in developing a 

program to count lines of code of a program. Although this can be a cause for a higher 

defect density, we cannot assure so. The second possibility is that the systematization in 

the recording of defects by the students (from the PSP0) has its positive effects and 

produces fewer injected defects. 

 

Table 2 – Wilcoxon test for DDUT 

Prog. 3 4 5 6 7 8 

2 p=0.006 p=0.003 p=0.019 p=0.002 p=0.010 p=0.002 

3  p=0.754 p=0.084 p=0.937 p=0.754 p=0.272 

4   p=0.117 p=0.929 P=1.000 p=0.136 

5    p=0.015 p=0.084 p=0.006 

6     p=0.929 p=0.084 

7      p=0.209 

 

It can also be observed that in program 5 the defect density in UT is statistically higher 

than the one found in programs 6 and 8. But the hypothesis cannot be rejected between 

programs 5 and programs 3, 4, and 7. 

 

These results show there is not a continuous improvement as regards defect density in 

UT. Removing exercise 2 from the analysis, no difference can be detected between 

exercise 3 and the following, or between exercise 4 and the following, or 6 and the two 

following, neither between exercises 7 and 8. The differences found between exercises 5 

and 6, and between exercises 5 and 8 may be due to the characteristics of exercise 5. 

However, other experiments are necessary to prove it. 

 

Since the experiment does not change the level of PSP used (PSP0.1) the results of this 

experiment indicate that the repetition of programs in the same application domain and 

the collection of data of the processes do not improve defect density in UT by 

themselves. 

 
  



Appendix 5. Extended Abstract Presented for the TSP Symposium 2013 

 

208 

 

Conclusions 
 

The presented results contribute to the elimination of an important threat to the validity 

of different experiments performed with the PSP. This result, together with a previous 

one [3], indicates that the practices introduced by the PSP and not program repetition 

would contribute to the improvement of software quality. 

 

Besides, it is found that there is a different behavior in program 2 and in program 5 

regarding software quality. This behavior, which we showed is independent from the 

PSP practices, has to be analyzed more deeply performing new controlled experiments. 

 

Note: We will have analyzed other variables for the TSP Symposium which we have 

not been able to analyze now for time constraints: total defect density, time spent in 

UT per Kloc and average time in UT per defect. 

 

 

References 
 

[1] Hayes, Will; Over, James; The Personal Software Process: An Empirical Study of 

the Impact of PSP on Individual Engineers. Technical Report, Software Engineering 

Institute, Carnegie Mellon University, CMU/SEI-97-TR-001, 1997. 

 

[2] Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts S.; Burton, 

Dan; Teaching Disciplined Software Development. The Journal of Systems and 

Software 81, (5): 747-763, 2008. 

 

[3] Grazioli, Fernanda; Nichols, William; A Cross Course Analysis of Product Quality 

Improvement with PSP. TSP Symposium 2012 Proceedings, Special Report, Software 

Engineering Institute, Carnegie Mellon, CMU/SEI-2012-SR-015: 76-89, 2012. 

 

[4] Wilcoxon, Frank; Individual comparisons by ranking methods. Biometrics Bulletin 

1 (6): 80-83, 1945. 



 

 

 

Appendix 6 

Publications 

During the thesis, two articles were published. The first one was accepted for the 

proceedings of the TSP Symposium 2012 and included in a SEI Special Report. The 

other was accepted and presented in the IX Jornadas Iberoamericanas de Ingeniería de 

Software e Ingeniería del Conocimiento (Iberoamerican Conference in Software 

Engineering and Knowledge Engineering), 2012. This appendix contains both articles. 

· A Cross Course Analysis of Product Quality Improvement with PSP 
Fernanda Grazioli, William Nichols. 

Proceedings TSP Symposium 2012: Delivering agility with discipline (Special 

Report Software Engineering Institute, Carnegie Mellon University, CMU/SEI-

2012-SR-015), pp.76—89, Saint Petersburg, Florida, EEUU, September 2012. 

· Un Estudio de la Calidad de los Datos Recolectados durante el Uso del 

Personal Software Process (An Study of the Quality of the Data Collected 

During the Use of the Personal Software Process) 

Carolina Valverde, Fernanda Grazioli, Diego Vallespir 

IX Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería del 

Conocimiento (JIISIC), pp. 37—44, Lima, Perú, Noviembre de 2012.  



Appendix 6. Publications 

 

210 

 



Appendix 6. Publications 

 

211 

 



Appendix 6. Publications 

 

212 

 



Appendix 6. Publications 

 

213 

 



Appendix 6. Publications 

 

214 

 



Appendix 6. Publications 

 

215 

 



Appendix 6. Publications 

 

216 

 



Appendix 6. Publications 

 

217 

 



Appendix 6. Publications 

 

218 

 



Appendix 6. Publications 

 

219 

 



Appendix 6. Publications 

 

220 

 



Appendix 6. Publications 

 

221 

 



Appendix 6. Publications 

 

222 

 



Appendix 6. Publications 

 

223 

 



Appendix 6. Publications 

 

224 

 



Appendix 6. Publications 

 

225 

 



Appendix 6. Publications 

 

226 

 



Appendix 6. Publications 

 

227 

 



Appendix 6. Publications 

 

228 

 



Appendix 6. Publications 

 

229 

 



Appendix 6. Publications 

 

230 

 



Appendix 6. Publications 

 

231 

 

 





 

 

 

References 

 

[1]  W. S. Humphrey, Winning with Software: An Executive Strategy, Addison-Wesley 

Longman Publishing Co., Inc., Boston, MA, USA, 2002.  

[2]  W. S. Humphrey and W. R. Thomas, Reflections on Management: How to Manage 

Your Software Projects, Your Teams, Your Boss, and Yourself (1st Edition), 

Addison-Wesley Professional, 2010.  

[3]  W. S. Humphrey, A Discipline for Software Engineering, Addison-Wesley, 1995.  

[4]  W. S. Humphrey, TSP: Leading a Development Team, Addison-Wesley, 2005.  

[5]  W. S. Humphrey, TSP: Coaching Development Teams, Addison-Wesley, 2006.  

[6]  C. Jones, Software Engineering Best Practices: Lessons from Successful Projects in 

the Top Companies, McGraw Hill Professional, 2010.  

[7]  W. Hayes and J. W. Over, The Personal Software Process (PSP): An Empirical 

Study of the Impact of PSP on Individual Engineers, Techical Report CMU/SEI-

97-TR-001, Software Engineering Institute, Carnegie Mellon University, 

December 1997.  

[8]  H. D. Rombach, J. Münch, A. Ocampo, W. S. Humphrey and D. Burton, "Teaching 

Disciplined Software Development," Journal of Systems and Software, vol. 81, no. 

5, pp. 747-763, 2008.  

[9]  M. C. Paulk, "The Impact of Process Discipline on Personal Software Quality and 

Productivity," ASQ Software Quality Professional, vol. 12, no. 2, pp. 15-19, 2010.  

[10]  W. Nichols, S. Küpper and U. Andelfinger, The Personal Software Process (PSP) 

Revisited: Empirical Benefits Analysis, Technical Report (draft version provided 

by the authors), 2013.  

[11]  M. C. Paulk, "Factors Affecting Personal Software Quality," Cross-Talk: The 

Journal of Defense Software Engineering, vol. 19, no. 3, pp. 9-13, 2006.  

[12]  C. Kemerer and M. C. Paulk, "The Impact of Design and Code Reviews on 

Software Quality: An Empirical Study Based on PSP Data," IEEE Transactions on 

Software Engineering, vol. 35, no. 4, 2009.  

[13]  C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies and 

Techniques, Springer, 2006.  

[14]  B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics, New York: Harper 

Collins, 1989.  

[15]  W. E. Deming, Out of the Crisis, MIT Center for Advanced Engineering Study, 

Cambridge, MA, 1982.  

[16]  J. Juran and F. Gryna, Juran's Quality Control Handbook, Fourth Edition, New 

York: McGraw-Hill Book Company, 1988.  

[17]  W. S. Humphrey, The Personal Software Process (PSP), Technical Report 

CMU/SEI-2000-TR-022, Software Engineering Institute, Carnegie Mellon 

University, November 2000.  

[18]  M. Fagan, "Design and Code Inspections to Reduce Errors in Program 



References 

234 

 

Development," IBM Systems Journal, vol. 15, no. 3, 1976.  

[19]  M. Fagan, "Advances in Software Inspections," IEEE Transactions on Software 

Engineering, vol. 12, no. 7, July 1986.  

[20]  W. S. Humphrey, Managing the Software Process, Reading, MA: Addison-Wesley, 

1989.  

[21]  M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber, The Capability Maturity 

Model: Guidelines for Improving the Software Process, Reading, Ma: Addison 

Wesley, 1995.  

[22]  J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes and M. C. Paulk, "Software 

Quality and the Capability Maturity Model," Communications of the ACM, vol. 40, 

no. 6, pp. 30-40, June 1997.  

[23]  W. S. Humphrey, The Team Software Process (TSP), Technical Report CMU/SEI-

2000-TR-023, Software Engineering Institute, Carnegie Mellon University, 

November 2000.  

[24]  IEEE, Standard Glossary of Software Engineering Technology, ANSI/IEEE Std. 

610. 12, 1990.  

[25]  C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén, 

Experimentation in Software Engineering: An Introduction, Kluwer Academic 

Publishers, Norwell, MA, USA, 2000.  

[26]  N. Juristo and A. M. Moreno, Basics of Software Engineering Experimentation, 

Kluwer Academic Publishers, 2001.  

[27]  N. E. Fenton and S. L. Pflegger, Software Metrics: A Rigorous and Practical 

Approach, Revised, Course Technology, February 1998.  

[28]  D. A. Kenny, D. A. Kashy and W. L. Cook, Dyadic Data Analysis, New York: 

Guilford, 2006.  

[29]  A. Marotta, Data Quality course material, Institute of Computing, Engineering 

College, UdelaR, 2009.  

[30]  A. J. E. Bachmann, Why Should We Care about Data Quality in Software 

Engineering?, PhD thesis, University of Zurich, 2010.  

[31]  A. Bachmann and A. Bernstein, "When Proces Data Quality Affects the Number of 

Bugs: Correlations in Software Engineering Datasets," 7th IEEE Working 

Conference on Mining Software Repositories (MSR), pp. 62-71, May 2010.  

[32]  M. Shepperd, "Data Quality: Cinderella at the Software Metrics Ball?," In 

Proceedings of the 2nd International Workshop on Emerging Trends in Software 

Metrics, WETSoM'11, pp. 1-4, 2011.  

[33]  P. M. Johnson and A. M. Disney, "A Critical Analysis of PSP Data Quality: 

Results from a Case Study," Empirical Software Engineering, vol. 4, no. 4, pp. 

317-349, December 1999.  

[34]  C. Valverde, F. Grazioli and D. Vallespir, "Un Estudio de la Calidad de los Datos 

Recolectados durante el Uso del Personal Software Process," In Proceedings of the 

IX Jornadas Iberoamericanas de Ingeniería de Software e Ingeniería del 

Conocimiento (JIISIC), pp. 37-44, 2012.  

[35]  V. B. Kampenes, T. Dybå, J. E. Hannay and D. I. K. Sjøberg, "A Systematic 

Review of Effect Size in Software Engineering Experiments," Information and 

Software Technology, vol. 49, no. 11-12, pp. 1073-1086, November 2007.  

[36]  G. V. Glass, P. D. Peckham and J. R. Sanders, "Consequences of failure to meet 



References 

235 

 

assumptions underlying effects analyses of variance and covariance," Rev. Educ. 

Res., vol. 42, pp. 237-288, 1972.  

[37]  M. R. Harwell, E. N. Rubinstein, W. S. Hayes and C. C. Olds, "Summarizing 

Monte Carlo results in methodological research: the one- and two- factor fixed 

effects ANOVA cases," J. Educ. Stat., vol. 17, pp. 315-339, 1992.  

[38]  L. M. Lix, J. C. Keselman and H. J. Keselman, "Consequences of assumption 

violations revisited: A quantitative revew of alternatives to the one-way analysis of 

variance F test," Rev. Educ. Res., vol. 66, pp. 579-619, 1996.  

[39]  F. Grazioli and W. Nichols, "A Cross Course Analysis of Product Quality 

Improvement with PSP," In Proceedings of the TPS Symposium 2012: Delivering 

Agility with Discipline. Special Report, Software Engineering Institute, Carnegie 

Mellon University CMU/SEI-2012-SR-015, pp. 76-89, September 2012.  

[40]  I. Sommerville, Software Engineering - 9th Edition, Addison-Wesley, 2010.  

[41]  W. S. Humphrey, PSP: A Self-Improvement Process for Software Engineers, 

Addison-Wesley Professional, 2005.  

[42]  B. B. Agarwal and S. P. Tayal, Software Engineering, Laxmi Publications, 2008.  

[43]  R. L. Glass, "Matching methodology to problem domain," Communications of the 

ACM, vol. 47, no. 5, pp. 19-21, May 2004.  

[44]  A. Höfer and W. F. Tichy, "Status of empirical research in software engineering," 

International Conference on Empirical Software Engineering Issues: Critical 

Assessment and Future Directions, pp. 10-19, 2006.  

[45]  M. C. Paulk, C. V. Weber, S. García, M. B. Chrissis and M. Bush, Key Practices of 

the Capability Maturity Model, version 1.1, Technical Report CMU/SEI-93-TR-25, 

Software Engineering Institute, Carnegie Mellon University, February 1993.  

[46]  M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber, Capability Maturity Model 

for Software, version 1.1, Technical Report CMU/SEI-93-TR-24, Software 

Engineering Institute, Carnegie Mellon University, February 1993.  

 

 


