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Resumen

Una red de área extendida (Wide Area Network - WAN) puede ser considerada como un con-
junto de sitios interconectados por líneas de comunicación. Topológicamente una red WAN
esta organizada en dos niveles: la Red Dorsal (Backbone) y la Red de Acceso (Access Net-
work) compuesta por un cierto número de Redes de Acceso Locales. Cada red de acceso local
usualmente tiene topología de árbol, teniendo como raíz un nodo de la Red Dorsal (sitio dor-
sal). Los sitios terminales (o clientes) se conectan directamente al sitio dorsal correspondiente
a una red de acceso o bien a un sitio concentrador de la misma. La Red Dorsal tiene usualmente
topología de malla y su propósito es permitir comunicación eficiente y confiable entre nodos
de la Red Dorsal que actúan como puntos de entrada para las Redes de Acceso Locales.

En esta tesis atacamos el problema del diseño de una red WAN descomponiéndola en dos
sub-problemas interrelacionados: el diseño de la Red de Acceso (the Access Network Design
Problem - ANDP) y el diseño de la Red Dorsal (the Backbone Network Design Problem -
BNDP). En ambos modelos consideramos solamente los costos de construcción, por ejemplo,
los costos de dragados para el tendido de líneas y la puesta en servicio del cableado de la red.

Nuestro objetivo es estudiar los problemas ANDP y BNDP. Nos concentramos en ANDP
con el objetivo de proponer un nuevo enfoque para resolverlo. Introducimos diferentes resul-
tados en lo que concierne a las propiedades estructurales de las soluciones del ANDP. Pre-
sentamos el enfoque de clúster como una de las estrategias más usadas por las herramientas
comerciales de diseño. Modelamos el ANDP como una variante del Problema de Steiner en
Gráfos (the Steiner Problem in Graphs - SPG). Dada la complejidad del problema (es NP-
Hard); es útil proveer técnicas para reducir la dimensión del problema original en uno equiva-
lente de menor tamaño. Luego nos concentramos en algunas propiedades estructurales de las
soluciones óptimas del BNDP.

Finalmente proponemos recurrencias para resolver los problemas ANDP y BNDP basadas
en las metodologías de Programación Dinámica y Programación Dinámica con Relajación del
Espacio de Estados.

Key words: Diseño topológico, Red de Acceso, Red Dorsal, Programación Dinámica con
Relajación del Espacio de Estados.
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Abstract

A wide area network (WAN) can be considered as a set of sites and a set of communication
lines that interconect the sites. Topologically a WAN is organized in two levels: the Backbone
Network and the Access Network composed of a certain number of Local Access Network. Each
local access network usually has a tree-like structure, rooted at a single site of the backbone,
and connected users (terminal sites) either directly to this backbone site or to a hierarchy of in-
termediate concentrator sites which are connected to the backbone site. The backbone network
has usually a meshed topology, and this purpose is to allow efficient and reliable communica-
tion between the switch sites that act as connection points for the local access networks.

In this thesis we tackled the problem of designing a WAN by breaking it down into two
inter-related sub-problems: the Access Network Design Problem (ANDP) and the Backbone
Network Design Problem (BNDP). In both models we considered only the construction costs,
e.g. the costs of digging trenches and placing a fiber cable into service.

Our aim in this thesis is the study of the ANDP and the BNDP problems. We concentrate
on the ANDP with the objective of to propose a new approach for solving this problem. We
study differents results related to the topological structure of the ANDP solutions. We present
the clustering approach as one of the strategies more frequently used by the commercial tools
of the design. We also formulate the ANDP as a Steiner Problem in Graphs (SPG). Given
the complexity of the ANDP (the problem belongs to the NP-Hard class); it is very useful to
provide techniques capable of reducing the dimension of the original problem to an equivalent
smaller problem. After we concentrate on some structural property about the BNDP.

Finally we propose recurrences to solve the ANDP and BNDP which are based on Dy-
namic Programming and Dynamic Programming with State-Space Relaxation methodology.

Key words: Topological Design, Access Network, Backbone Network, Dynamic Program-
ming with State-Space Relaxation.
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Chapter 1

Global presentation of the thesis

1.1 Motivation and General Context

Telecomunication networks have become strategic resources for private and state-owned insti-
tutions and its economic importance continuously increases. There are series of recent tenden-
cies that have a considerable impact on the economy evolution such as growing integration of
networks in the productive system, integration of different services in the same communication
system, important modification in the telephone network structure (voice and data integration,
mobility, telephony development on IP plataforms, etc). Such evolutions accompany a signif-
icant growth of the design complexity of these systems. The integration of different sorts of
traffics and services, the necessity of a more accurate management of the service quality, in
particular on IP plataforms (but on which the management evolution and the coexistence of
technologies have not been anticipated), are factors that make this type of systems very hard to
design, to dimension and therefore to optimize. This situation is aggravated with a very high
competitiveness context, in an area of critical strategic importance.

In this work, we will focus on modern communication network planning. This field has
considerably developed recently mostly owing to the introduction of optic fiber technologies
which have very good performance. The planning and design of telecommunication networks is
a very complex and generally expensive task. It integrates optimization process loops, analysis
activities and quantitative evaluations. The planning team must consider the already existent or
anticipated needs, the costs of the different elements that compose the systems, the restrictions
on the performance, the reliability, the evolutiveness, the service quality, etc., besides specific
restrictions on each particular system and, as a function of these, design a network as adapted as
possible to the technical and the business plan. In the case of small size networks, the team may
consist of a single person while in large-scale nerworks as a wide telecommunication networks
(a WAN: Wide Area Network) the planning team may be constituted by several people working
at different organization levels.

The conception of a WAN is a process in which dozens of sites with different characteris-
tics require to be connected in order to satisfy certain reliability and performance restrictions
with minimal costs. This design process involves the terminal sites location, the concentrators
location, the backbone (central network or kernel) design, the routing procedures, as well as

9



10 Global presentation of the thesis

the lines and nodes dimensioning. A key aspect on WAN design is the high complexity of the
problem, as much in its globality as in the principal sub-problems in which it is necessary to
descompose it. Due to the high investment levels a cost decrease of very few percentage points
while preserving the service quality results in high economic benefits.

Tipically, a WAN network global topology can be descomposed into two main components:
the access network and the backbone network. These components have very different proper-
ties, and consequently they introduce specific design problems (although they are strongly in-
terdependent). On one hand, this causes complicated problems (particulary algorithmic ones);
on the other hand, it leads to stimulating and difficult research problems.

A WAN access network is composed of a certain number of access sub-networks, having
tree-like topologies; and the flow concentration nodes allow to diminish the costs. These in-
tegrated flows reach the backbone which has a meshed topology, in order to satisfy security,
reliability, vulnerability, survivability and performance criteria. Consequently, the backbone is
usually formed by high capacity communication lines such as optic fiber links. In general, this
WAN topological feature is valid in the case of a datagram based network (as in IP technology)
and also in circuit switching (as in the current telephone network or other technologies like
X25, Frame Relay or ATM).

Globaly, the designing team manages an important amount of data to propose a model
that fulfills the preestablished requirements. For instance, it has information about the set of
the terminal sites positions (the company customers, the service subscribers, etc.) and about
the characteristics (most of the time estimated) of the inter-site flows (volume, temporary be-
haviour, etc.). Also there is information about the performance restrictions (for example de-
lays), about the service quality (for example of video data quality), and on aspects such as
reliability, vulnerability, connectivity, security and availability. On the network components
aspect, the designer has a list of possible components according to the involved network na-
ture, with its characteristics and costs. The technical nature of the considered network leads to
specific routing procedures that should be taken into account of searching efficient solutions,
or if possible optimal solutions. In general there are many other complementary data such
as the sites in which it is suitable to install concentrator, which ones are no suitable for that,
which backbone sites must have switch servers, special characteristics or security restrictions
for some flows, etc.

Based on this data set, the designer must specify the access network and the backbone
network topologies as well as the characteristics of the different sites and connections, the
traffic routing, etc. The result of this process are specific optimization models for the design
of both subnetworks and for the global WAN design problem. This global set of problems
typically include the evaluation of performance, reliability among others.

1.2 A general WAN design process

Modelling a WAN design by means of the formulation of a single mathematical optimization
problem is very intricate due to the interdependence of its large amount of parameters. There-
fore the design of a WAN is usually divided into different sub-problems. A good example of a
possible descomposition approach for the WAN design process is the following [53]:
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I) Access and backbone network topologies design. Specific knowledge about the cost of
laying lines between different network sites (terminals, concentrators and backbone) is
assumed. Frequently, these costs are independent of the type of line that will effectively
be installed since they model the fixed one-time costs (cost of digging trenches in the
case of optic fiber, installing cost, placing a fiber cable into service). A high percentage
from the total construction network budget is spent in this phase [57].

II) Dimensioning of the lines that will connect the different sites of the access and backbone
networks, and the equipment to be settled in the mentioned sites.

III) Definition of the routing strategy of the flow on the backbone network.

These three sub-problems have different types of constraints:

• For the sub-problem (I):

– The terminal sites (the clients) must be connected either directly to a backbone
node, or through a hierarchy of intermediate concentrator sites which are connected
to the backbone. Usually, there exist additional restrictions such as limiting the
number of concentrators connected in cascade, so that in the case of a trunk line
cut a significant number of terminal sites will not be affected.

– The backbone must satisfy reliability restrictions that allow it to remain operational
(connected) when failures occur in its servers or links. These reliability restrictions
are often expressed in terms of the network connectivity. For instance, telecom-
munication network topologies which have proved being highly performant are
2-node-connected optic fiber networks. Its physical components have very low
failure rates; and the network itself is resilient in the presence of a failure in a node
or link. In the same direction, 3 node-connected topologies have been used in optic
fiber networks connecting critical sites of a aircraft carrier [38, 57].

• Once the topological structure of the WAN is designed, its components are dimensioned
in order to fulfill the performance requirements. A routing plan design and the projection
of flow over the backbone must be done so that the performance restrictions imposed be
respected. In this way, it can be noticed that (II) and (III) are not independent. Taking
into account the technologies used, some of the usual performance restrictions are:

– the traffic delay should not be greater than a certain prefixed limit. This restriction
is imposed to the access network as well as to the backbone.

– the blocking factor (the probability of a new connection to not succeed) must be
lower than a certain prefixed value.

– the packet loss rate must be relatively low. A level of 10−4 constitutes the agreed
maximal level of the packet loss rate for a network normally working, for today
standards.

We give below a generic WAN planning process as well as references related to other works
in this area, including topics such as hierarchical network design, multitechnology network
design, etc. Taken from [53]:
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1. Backbone nodes localization. This implies producing a hypothesis H regarding the back-
bone sites localization or modifying the precedent hypothesis. These hypothesis must
consider the switches installation in the core of the most dense zones.

2. Access network design:

(a) Depending on the hypothesis H, an access topology is constructed by optimally
placing the concentrator equipments. If this is not possible, at least a local optimum
should be reached as the result of applying clustering strategies.

(b) Determination of the needed capacities in the access network (links and nodes).

(c) Determination of the access network performances by tuning them to the required
level (specified in 2b).

(d) Determination of the access network reliability by tunning corresponding parame-
ters to meet the required level (specified in 2b).

(e) Compute the access network cost.

(f) Determination of the reduced matrix of point-to-point traffic between the backbone
switch nodes which are entries of the access sub-networks induced by 2a. These
flows must be routed over the backbone topology once this last one has been de-
signed.

3. Backbone network design:

(a) Based on the hypothesis H, a backbone network topology is built adjusted to the
reliability demands.

(b) A routing strategy is defined. The point-to-point flows are projected into the net-
work designed in 3a. Thus, the paths of the backbone on which will circulate the
effective traffic are obtained.

(c) Determination of the needed capacities in the backbone network (links and nodes).

(d) Determination of the backbone network performance in order to check if the re-
quired levels are fulfilled. If necessary the netwok of 3a or the capacities of 3c are
redefined.

(e) Determination of the backbone network reliability by adjusting it to the required
level. If necessary the topology computed in 3a is redefined.

(f) Determination of the network fairness in order to achieve some required level. If
necessary the topology computed in 3a is redefined.

(g) Computation of the backbone network cost.

4. Results consolidation and gloabal balance:

(a) Determination of the global performances involving the access and the backbone
networks simultaneously. If appropriate, return to 2 or 3 depending on where per-
formance restrictions violations happen (i.e. in the access network, the backbone
or both).
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(b) Determination of the global reliability involving the access and the backbone net-
works. If appropriate, return to 2 or 3 depending on where reliability restrictions
violations happen (i.e. in the access network, the backbone or both).

(c) Compute the overall cost (composed of the access network cost and the backbone
network cost). If the WAN cost is approved, the obtained topology is returned as a
solution. Otherwise, return to 1 in order to produce a new hypothesis H.

Based on performance evaluation procedures and dimensioning rules common to both net-
work levels (access network and backbone), in [53] each sub-problem is studied and specific
algorithms to solve them are proposed. The connections cost taking into account the geographic
distances among the involved sites and the annual connection tariffs provided by the telecom
operators are estimated. For the topological design of the access network the authors use clus-
tering approaches around the backbone switch nodes whereas for the topological design of
the backbone network they apply a Hierarchical Method. Even if the testing cases presented
are relatively small, the suggested metodology can be useful as a reference about the way of
descomposing the WAN topological planning process into several sub-problems.

Increasingly, survivability is becoming an important criterion in the design of telecommu-
nication networks. Several recent developments have prompted this change.The first is tech-
nological: fiber-optic and opto-electronic cables are replacing traditional copper cables as a
telecommunication medium. Because these newer technologies can carry substantially more
traffic (both more channels and at a higher frequency) than traditional copper cables, telecom-
munication networks designed solely to minimize costs will tend to be sparse. In this case,
the failure of a single edge can create significant system-wide disruptions disabling traffic be-
tween many customer locations if the network does not provide alternate paths for routing.
Second, customers, individual as well as industrial are increasingly using telecommunication
networks not only for transmitting voice, but also to transmit video and data. The Multi-level
Network Design problem seeks a fixed cost minimizing design that spans all the nodes and
connects the nodes at each level by facilities of the corresponding or higher grade. Balakrishn
in [7, 8, 10, 11] develops a dual-based algorithm for the Multi-Layer Network Design problem.
He has identified some structural properties of optimal solutions that enable preprocessing, de-
veloped a dual ascent method for generating lower and upper bounds, and performed extensive
computational testing. For other related works concerning the optimal design of a multi-level
hierarchical network the reader can consult the references [19, 20, 23, 40, 41, 58].

In this thesis, we will concentrate on phase (I) of the descomposition of a WAN design
process. More precisely, we are interested in the topology planning process concerning the
the access network and the backbone network. Our motivation comes from the necessity of
devising efficient algorithms for these topological design highly-combinatorial problems. Due
to the NP-hard nature of the problem and even though there exist some results, there is still
room for improving industrial practices applied today. In this sense, we believe it is of strategic
importance to design powerful quantitative analysis techniques, potentially easy to integrate
into tools. We introduce combinatorial optimization models to formally define the topological
design of the access and backbone networks. Moreover, we introduce differents results related
to the topological structure and we study one of the strategies more frequently used by the com-
mercial tools. Finally, we propose different algorithms to solve the topological design which
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are based on Dynamic Programming and Dynamic Programming with State Space Relaxation
metodology.

1.3 Access and Backbone Network Design Problems

We will define these problems in terms of graph theory; for this purpose we introduce the
following notation:

• ST is the set of terminal sites (clients) to be connected to the backbone.

• SC is the set of feasible concentrator sites of the access network. On each one of these
sites, an intermediate server equipment might be placed. From this one, a trunk line is
laid towards the backbone or other concentrator site.

• SD is the set of feasible switch sites of the backbone network. On each one of these sites,
a powerful server might be placed and from it, connection lines towards other backbone
server equipments.

• V = ST ∪ SC ∪ SD are all the feasible sites of the WAN network.

• A = {aij}i,j∈V is a matrix which gives for any pair of sites i, j ∈ V , the cost aij ≥ 0 of
laying a line between them. When the direct connection between i and j is not possible,
we define aij =∞

• U = {(i, j)|i, j ∈ V, aij < ∞} is the set of all the feasible connections between the
different sites of the WAN network.

• G = (V,U) is the simple graph which models every node and feasible connection of the
WAN.

The General Access Network Design Problem (GANDP) consists of finding a minimum-
cost subgraph H ⊂ G such that all the sites of ST are communicated with some node of the
backbone. This connection can be direct or through intermediate concentrators. The use of
terminal sites as intermediate nodes is not allowed; this implies that they must have degree one
in the solution.
We simplified the GANDP problem by collapsing the backbone into a fictitious node. We call
it the Access Network Design Problem (ANDP) and the equivalence between both problems,
GANDP and ANDP, is proved in [4]. The ANDP belongs to NP-Hard class [4].
Given a subset of switch sites S(I)

D ⊆ SD and a non-negative integer matrix R = {rij}i,j∈S(I)
D

the Backbone Network Design Problem (denoted by BNDP) consists of finding a minimum-
cost subgraph H ⊆ G(SD) such that S(I)

D ⊆ H and ∀i, j ∈ S
(I)
D there exist at least rij

node-disjoint paths connecting i with j in H . This problem can be modelled as a Generalized
Steiner Problem in Graphs with Node-Connectivity constraints (denoted by GSP-NC) which is
NP-Hard in the general case [62].
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For further details on the formulations of the Generalized Steiner Problem in its both ver-
sions, Edge-Connectivity (denoted by GSP-EC) and Node-Connectivity , the reader may con-
sult [1, 25, 60–62].
A particular case of the BNDP is when rij = 2,∀i, j ∈ S(I)

D . This is known in the literature as
the Steiner 2-node-survivable network problem (denoted by STNSNP) [4, 6, 26].
We call S(I)

D the set of fixed switches nodes. These will necessarily have to be integrated to
the solution, either because they are access sub-network entry points to the backbone or due to
specific conception requirements. The sites SD\S(I)

D are optional (commonly named Steiner
nodes) and may be used to reduce the backbone cost.

This thesis work divides the WAN network topological design problem into two separared
parts: backbone (BNDP) and access (ANDP) network. Our aim in this thesis is the study
of the ANDP and the BNDP problems. We concentrate on the ANDP with the objective of
proposing a new approach for solving this problem. We study differents results related to the
topological structure of the ANDP solutions. In particular we present results that characterize
the topologies of the feasible solutions of an ANDP instance. Moreover, for certain types of
network classes we present results that characterize the structure of the global optimal solu-
tion. We present the clustering approach as one of the strategies more frequently used by the
commercial tools of the design. We also formulate the ANDP as a Steiner Problem in Graphs
(SPG). Given the complexity of the ANDP (the problem belongs to the NP-Hard class), it is
very useful to provide techniques capable of reducing the dimension of the original problem
to an equivalent smaller problem. After we concentrate on some structural property about the
BNDP.

Finally we propose algoriths to solve the ANDP and BNDP which are based on Dynamic
Programming and Dynamic Programming with State-Space Relaxation metodology.

1.4 Related Literature

As we already mentioned when we are talking of networks in this thesis, we are interested only
in their topology, that is, we see a network as a set of sites and links that are placed between
sites. Survivability in this context means that between any two sites there exists a pre-specified
number of paths (consisting of nodes and links) that have no node or link in common. The
problems ANDP, BNDP, and BNDP2NS correspond to this context. In practice, the topology
of a network with low placement costs is created first, and in a second optimization stage, traffic
and routing costs are considered [57].

We concentrate first in the literature related to ANDP. In [2, 5, 12, 27, 34, 36, 45, 47, 54,
55], the authors propose different approximate algorithms for the topological design of local
and large-scale access networks. They are based on different approaches, and consider differ-
ent parameters and restrictions, including aspects such as: the design of the access network
is restricted to specific topologies; the number of concentrators to be placed is limited; net-
work components dimensioning, etc. The resolution techniques used in these works include:
Lagrangian Relaxation mixed with the Sub-gradient Method [47], Simulated Annealing [45],
Linear Programming Relaxation [5], Lagrangian Heuristic, Greedy Heuristics [36], Branch-



16 Global presentation of the thesis

and-Bound mixed with Lagrangian Relaxation, Branch-and-Bound with Benders decomposi-
tion [54, 55], Neural Networks [2], Tabu Search [34], Genetic Algorithms, plus other specific
methods.

Next we will focus on the GSP-NC and STNSNP (which are the reference models of base
for our BNDP and BNDP2NS problems) and their related survivability models like those pre-
sented in [57, 61, 62].

Winter [60–62] demonstrated that the GSP-NC can be solved in linear time if the network
is series-parallel, outerplanar or a Halin graph. Nextly, we will give a summary of the sur-
vivability problems related to the GSP-NC and STNSNP. Gröstchel, Monma and Stoer [37]
consider a particular case of the GSP-NC working on a slightly different context. They called
it the NCON problems. In [57], Stoer gives an extensive survey for the NCON and the ECON
(the version with edge-connectivity constraints), and some particular cases. The NCON (resp.
ECON) is formalized as follows. Given an undirected graph G = (V,E) such that each edge
e ∈ E has a fixed weight ce representing the cost of establishing the direct link connection. In
particular, each node i ∈ V has an associated nonnegative integer ri, the type of i (the surviv-
ability requirement or “importance" of a node is modeled by node types). Let H = (W,F )
be a subgraph of G. We say that H satisfies the node-survivability conditions (also called
node-connectivity constraints or requirements), if, for each pair i, j ∈ V of distinct nodes,
H contains at least rij = min{ri, rj} node-disjoint paths communicating i with j. Simi-
larly, we say that H satisfies the edge-survivability conditions (also called edge-connectivity
constraints or requirements), if, for each pair i, j ∈ V of distinct nodes, H contains at least
rij = min{ri, rj} edge-disjoint paths communicating i with j. These conditions ensure that
some communication path between i and j will survive a prespecified level of node (or edge)
failures.

Let us observe that the GSP-NC model generalizes the model given above since in the GSP-
NC there exist general survivability requirements rij that are specified for each pair i, j of fixed
nodes independently. Nevertheless, Grötschel, Monma and Stoer [38, 39] introduce the use of
node types to define survivability requirements based on the premise that these adequately
express the relative importance placed on maintaining connectivity between offices. They clas-
sify the different problem types according to the largest occurring node type and according to
whether the node types represent node or edge connectivity requirements. In this way, given a
graphG = (V,E) and a vector r = (ri)i∈V , by assuming (without loss of generality) that there
exist at least two node types of type k (which is defined as the largest node type), they speak
of the kNCON problem (resp. kECON) when the objective is to find a minimum-cost network
that satisfies the node survivability conditions (resp. the edge survivability conditions). If the
highest value of k is not specified, these problems are called NCON and ECON respectively.
In particular, if all node types have the same value k, the problem NCON (resp. ECON) is
reduced to find k-node-survivable (resp. k-edge-survivable) networks having minimum cost.

Let us note that there exist many specializations of the survivability problems which can be
formulated by varying its parameters as follows:

• As mentioned previously, the GSP-NC and GSP-EC are more general models of sur-
vivability than NCON and ECON, since the connectivity requirements are associated to
pairs of nodes in independent form and not necessarily involving all the nodes of V .
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• In the NCON and ECON, we have rij = min{ri, rj} for given nodes types ri, rj , which
in turn may be:

– general (kECON or kNCON problem),

– uniform (k-edge or k-node connected graphs),

– in {0, 1} (Steiner trees)

• general or euclidean or uniform costs.

There exist polynomially solvable cases of the NCON and ECON problem. They re-
sult from relaxing the original problem with restrictions like uniform costs, 0/1 costs, re-
stricted node types, and special underlying graphs such as outerplanar, series-parallel, and
Halin graphs. All these particular cases are referenced and briefly exposed in [57]. On the
other hand, lower bounds and heuristics with worst-case guarantees for kECON problems were
found for restricted costs, e.g., uniform costs or costs satisfying the triangle inequality, as well
as very important results on the structure of optimal survivable networks for this cost structure.
Details of these works can be seen in [13, 35, 49] and in a summarized form in [57]. In [57],
Stoer also summarizes heuristic procedures to solve general kNCON and kECON problems.
Monma and Shallcross [50] give heuristics for the 2ECON and 2NCON problems. Frederick-
son and Jájá [28] propose a heuristic for the 2NCON problem with worst-case guarantee of 3/2
under costs satisfying triangle inequality. Consider the NCON problem where instead a vector
r = (ri)i∈X we have a matrix R = (rij)ij∈V . They developed a simple heuristic for this prob-
lem which basically consists of a randomized starting routine and an optimizing routine where
local transformations are applied to a feasible solution. Recently, Balakrishnan, Magnanti and
Mirchandani [9] presented a family of new mixed-integer programming formulations for the
GSP-EC, whose associated linear programming relaxations can be tighter than those of the
usual cutset formulation. They provide several combinatorial heuristics for these formulations,
which satisfy that the bounds on the heuristic costs relative to the optimal values of the integer
program and the linear programming relaxation of the tighter formulation are stronger than
some previously known performance bounds for combinatorial heuristics. For further details
of these works (and their performance tests) the reader may consult the cited references.

We find in the literature other works related to our BNDP. In [14, 21, 33, 46] the authors
provide different approaches for the topological design of a backbone network. Most of these
works are not only focused in the topological design, but they also consider aspects such as net-
work dimensioning, routing mechanisms, etc. They are based on different optimization models
which include selection of network topology and other additional objectives. We can see these
ones as network planning processes where the goal is to find backbone topologies with lowest
possible overall network price, while keeping all requirements (such as availability, maximal
number of, maximal blocking probability, etc.) satisfied. The resolution techniques used in
these works include: Genetic Algorithms, Branch-and-Bound method mixed with the algo-
rithm of Ford-Fulkerson, Tabu Search, Greedy Heuristic combined with Tabu Search heuristic
as improver, Lagrangian Relaxation embedded in a sub-gradient optimization procedure, Dual-
Based lower bounding procedure incorporated in a Branch-and-Bound algorithm, Dual-Based
solution procedure, Hybrid approach of a genetic algorithm and local search algorithms as im-
prover, Tabu-Search heuristic with a post-optimization algorithm, and other specific heuristics.
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Other problem in this area can be found in [3, 15–18, 29–32, 44, 52, 59], where the authors
propose several models for designing low-cost network topologies with additional constraints
such as fault tolerence and performance restrictions, considering in addition in some of them
network components dimensioning.
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Chapter 2

A Model For A WAN Design

In this chapter, a model for the design of a WAN is introduced. The model tries to show the
most essential aspects which are considered when designing access and backbone networks.
In this model, some parameters are not considered: the operation probability of the lines and
equipments, the number of equipment ports, and the memory capacity of the equipments. The
objective is to design a WAN with the smallest possible installation cost, so that the constraints
are satisfied.
In what follows, the data of the model are presented as well as its formalization as a combinato-
rial optimization problem on weighted graphs; in this way is tried to find the optimal topology
that satisfies the imposed constraints to the access and backbone networks.

2.1 Data of the Model.

The information available for each type of equipment (switch & concentrator) and each type of
connection line, as well as the line laying, is the following:

• Ea is the set of types of connection lines available. Furthermore ∀e ∈ Ea the following
data are given:

– ce is the cost by kilometer of the line type e. Here the laying cost is not included.

– ve is the speed in kbits/s of the line type e.

• K is the set of types of concentrator equipments available. Furthermore ∀k ∈ K the
following data are given:

– ck is the installation cost of the concentrator type k.

– vk is the speed in kbits/s of the concentrator type k.

• W is the set of types of switch equipments available. Furthermore ∀w ∈W the following
data are given:

– cw is the installation cost of the switcher type w.

21
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Figure 2.1: WAN example.

– vw is the speed in kbits/s of the switcher type w.

• C = Fcost(L) = {cij = direct connection cost between the sites i, j;∀i ∈ S,∀j ∈
SC ∪ SD} this matrix gives us for a site of S and a site of SC ∪ SD, the cost of laying
a line among them. When the direct connection among both places is not possible, we
assume that cij =∞.

2.2 Graph Model for the Problem.

Here is presented, in terms of graph theory, a model for the design of a WAN, based on the
problem. Previously to the problem formal definition, some notations are introduced.

• E1 = {(i, j);∀i ∈ ST ,∀j ∈ SC ∪ SD/dij < ∞}, this is the set of feasible connections
between a terminal site and a concentrator or switch site.
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• E2 = {(i, j);∀i ∈ SC ,∀j ∈ SC ∪ SD/dij <∞}, this is the set of feasible connections
between a concentrator site and a switcher or another concentrator site.

• E3 = {(i, j);∀i ∈ SD,∀j ∈ SD/dij < ∞}, this is the set of feasible connections
between two switch sites.

• E = E1 ∪ E2 ∪ E3, this is the set of all feasible connections on the WAN.

• DST = {Dti , ti ∈ ST }, where Dti is the set of terminal nodes which demand connec-
tions with ti ∈ ST .

• VST = {vi,j}i,j∈ST , is the traffic demand matrix.

Definition 2.2.1 (WANDP-Wide Area Network Design Problem). LetG = (S,E) be the graph
of feasible connections on the WAN. The Wide Area Network Design Problem
WANDP (S,E,K,W,Ea, C,DST , VST ) consists in finding a subnetwork of G of minimum
cost which satisfies the following points:

1. The backbone network topology must be at least 2-node-connected.

2. The access & backbone networks must be able to support the demand of connection &
traffic required by the terminal sites.

2.3 Problem Decomposition

Given the complexity of the WANDP, to facilitate its solution, the topological design problem
is divided into 3 subproblems:

1. The Access Network Design Problem (ANDP),

2. The Backbone Network Design Problem (BNDP),

3. The Routing (or Flow Assignment) and Capacity Assignment Problem (RCAP).

In this section formal definitions of these problems based on the original parameters of the
WANDP are introduced. In addition some basic definitions and notations are presented.

Definition 2.3.1 (ANDP-Access Network Design Problem). Let GA = (S,E1 ∪ E2) be the
graph of feasible connections on the Access Network and C the matrix of connection costs
defined previously. The Access Network Design Problem ANDP (S,E1 ∪ E2, C) consists in
finding a subgraph ofGA of minimum cost such that ∀i ∈ ST there exists a path from i towards
some site j ∈ SD of the backbone network.

Notation 2.3.2. We denote by ΓANDP the space of feasible solutions ofANDP (S,E1∪E2, C)
that do not have any cycle, and with an only output towards the backbone network ∀t ∈ ST .
These have forest topology as we ilustrate in figure 2.2
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Figure 2.2: A feasible solution of ANDP.

Definition 2.3.3. Given the ANDP (S,E1 ∪ E2, C) and HA ∈ ΓANDP a feasible solution.
We define the set of fixed sites of the Backbone S(I)

D as the subset of sites of SD that belong to
the topological structure ofHA. In addition we define the set of Steiner nodes of the Backbone
as S̄(I)

D = SD \ S(I)

D .

Definition 2.3.4. Given the ANDP (S,E1 ∪ E2, C) and HA ∈ ΓANDP a feasible solution.
We define the matrix of requirement of data flow between pairs of sites of S(I)

D as:

F =

fij =
∑

t1∈ST ,t2∈Dt1

vt1t2 such that t1 ∈ H(i)
A and t2 ∈ H(j)

A


i,j∈S(I)

D

,

where H (sw)

A , with sw ∈ S(I)

D , is the sub-access-network ofHA that has to sw as output towards
to the Backbone Network.

Definition 2.3.5 (BNDP-Backbone Network Design Problem). Let GB = (SD, E3) be the
graph of feasible connections on the Backbone Network and C the matrix of connection costs
defined previously. Given the ANDP (S,E1 ∪ E2, C) and HA ∈ ΓANDP a feasible solution.
Let S(I)

D be the set of fixed sites of the Backbone and R = {rij}i,j∈S(I)
D

a matrix of require-

ment of connection between pairs of sites of S(I)

D ; the Backbone Network Design Problem
BNDP (SD, E3, C,R) consists in finding a subgraph HB of GB of minimum cost such that
HB satisfies the connection requirements presents in R.

In the next chapter we present the Access Network Design Problem ANDP with differ-
ent results related to the topological structure. We also introduce one of the strategies more
frequently used in the commercial design tools.
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Chapter 3

The Access Network Design Problem

In this chapter, the ANDP is analyzed with the objective of proposing a new approach for solv-
ing this problem. The organization of this chapter is the following. Section 3.1 presents dif-
ferent results related to the topological structure of the ANDP solutions. Section 3.2 presents
the clustering approach as one of the strategies more frequently used by the commercial tools
of design; we introduce results that show that this strategy does not give good results for a
great variety of network topologies, and moreover we establish conditions so that the cluster-
ing strategy gives a global optimal solution for the ANDP. In section 3.3, given an instance
of ANDP, we introduce methods to reduce the dimension of this, and therefore allows to find
goods feasible solutions in a smaller time. Section 3.4 introduces the relation between the cost
of the best solution given by the clustering strategy and the optimal cost. In addition another
structural relations are presented. In Section 3.5 we formulate the ANDP as a Steiner Problem
in Graphs (SPG).

3.1 Topological properties.

Here are presented results that characterize the topologies of the feasible solutions of an ANDP
instance. Moreover, for certain types of network classes we present results that characterize the
structure of the global optimal solution.
The following Proposition shows the topological form of the feasible solutions of ΓANDP for
a given ANDP instance.

Proposition 3.1.1. Given an ANDP with associated graph GA = (S,E1 ∪E2) and matrix of
connection costs C. If the subnetworkH = (ST ∪S̄, Ē) (with S̄ ⊆ SC∪SD and Ē ⊆ E1∪E2)
is an optimal solution of ΓANDP , it is composed by a set of disjoint treesH = {H1, . . . ,Hm}
that satisfy:

1. ∀Hl ∈ H, ∃j ∈ SD unique /j ∈ Hl,

2. ∀Hl ∈ H, ∃ a subset S(l)

T ⊂ ST , S
(l)

T 6= ∅/S
(l)

T ⊆ NODES(Hl),

3.
⋃m
l=1 S

(l)

T = ST .

27
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Proof. Trivial.

The following Propositions present results that characterize the structure of the global op-
timal solution.

Proposition 3.1.2. Let ANDP (S,E1 ∪ E2, C) be a problem where given sc ∈ SC , s̄ ∈
SC ∪ SD, and s ∈ ST ∪ SC such that {(s, sc), (sc, s̄)} ⊂ E1 ∪ E2 and ∃sw ∈ SD/c(s,sw) <
c(s,sc)+c(sc,s̄). Then, if TA ∈ ΓANDP is a globally optimal solution, it is fulfilled that g(sc) ≥ 3
in TA, ∀sc ∈ TA, sc ∈ SC .

Proof. Let us suppose that there exists TA ∈ ΓANDP global optimal solution such that ∃sc ∈
TA a concentrator site with g(sc) < 3 in TA. If g(sc) = 1 then sc is a pendant in TA, therefore
eliminating this, a feasible solution of smaller cost would be obtained. This is a contradiction,
hence g(sc) 6= 1. If g(sc) = 2, let s̄ ∈ SC ∪ SD be the site adjacent to sc in TA which is
its output site towards the backbone network. Let s ∈ ST ∪ SC be the other adjacent site
in TA. Considering the network H = (TA \ {sc}) ∪ {(s, sw)}, where sw ∈ SD satisfies
c(s,sw) < c(s,sc) + c(sc,s̄), it is fulfilled:

COST(H) = COST(TA)− c(s,sc) − c(sc,s̄) + c(s,sw) < COST(TA).

Furthermore, it is easy to see that H ∈ ΓANDP . Hence, this implies that H is a better feasible
solution compared with TA. This is a contradiction, implicating g(sc) ≥ 3 in TA, as required
and completing the proof.

Proposition 3.1.3. Given an ANDP (S,E1 ∪E2, C) such that for any three sites (s1, s2, s3),
with s1 ∈ ST ∪ SC , s2 ∈ SC , and s3 ∈ SC ∪ SD, the strict triangular inequality is satisfied,
i.e., c(si,sk) < c(si,sj) + c(sj ,sk), i, j, k ∈ (1 . . . 3). Then, if TA ∈ ΓANDP is a globally optimal
solution, it is fulfilled that g(sc) ≥ 3 in TA, ∀sc ∈ TA, sc ∈ SC .

Proof. As in the previous Proposition, let us suppose that there exists TA ∈ ΓANDP global
optimal solution such that ∃sc ∈ TA a concentrator site with g(sc) < 3 in TA. Clearly g(ss)
must be different to 1. Now, let us consider the case g(sc) = 2 in TA. Let s1, s2 be the
adjacent sites to sc in TA. By hypothesis c(s1,s2) < c(s1,sc) + c(sc,s2). Considering the network
T̄A = (TA \ {sc}) ∪ {(s1, s2)} we have a feasible solution and moreover:

COST(T̄A) = COST(TA)− c(s1,sc) − c(sc,s2) + c(s1,s2) < COST(TA),

this is a contradiction, therefore g(sc) ≥ 3 in TA, and hence completing the proof.
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3.2 The Clustering Approach applied to the ANDP.

The clustering strategies frequently are used for the solution of numerous problems of combi-
natorial optimization. Particularly this approach is applied in several telecommunication net-
work design problems. In the ANDP case, there exist commercial tools of design that use the
clustering strategy as base to find access network topologies. Here, we will see characteristics
and properties of solutions given by this methodology, furthermore we show ANDP examples
where this approach, in the best case, gives as result locally optimal solutions. Consequently,
it is important to know under what conditions these locally optimal solutions become globally
optimal solutions. We propose conditions under which it is guaranteed to produce the best
solution for an ANDP instance applying the clustering approach.
Firstly, a series of auxiliary definitions and notations are introduced.

Definition 3.2.1 (SPG-Steiner Problem in Graphs). Let G = (V,U) be a connected undirected
graph, where V is the set of nodes and U denotes the set of edges. Given a non-negative
cost function (also denominated weight function) C : U → < associated with its edges and a
subset X ⊆ V of terminal nodes, the Steiner problem SPG(V,U,C,X) consists in finding a
minimum weighted connected subgraph of G spanning all terminal nodes in X .

Notation 3.2.2. The solution of SPG(V,U,C,X) is a Steiner minimum tree with terminal
nodes in X . The non-terminal nodes of V are called Steiner nodes. We denote by TV,U,C(X)
the Steiner minimum tree obtained solving the Steiner problem SPG(V,U,C,X) formulated
above.

Definition 3.2.3. Given a connected undirected graph G = (V,E,C), where C is the matrix
of connection costs, the minimum spanning tree problem MSTP (V,E,C) consists in finding
a minimum weighted subtree of G spanning all nodes in V .

This problem can be seen as particular case of the SPG(V,E,C,X), in which X = V .
Accordingly, we will denote indifferently by MST(V,E,C) or TV,E,C(V ) the minimum span-
ning tree solving MSTP (V,E,C). It is easy to see that we can associate a feasible solution
of the SPG(V,E,C,X) with each subset Y ⊆ (V \X) of Steiner nodes such that the graph
G(X∪Y ) = (X ∪ Y,E(X ∪ Y )) is connected, given by a minimum spanning tree solving
problem MSTP (X ∪ Y,E(X ∪ Y ), C). Let S∗ be the set of Steiner nodes in the optimal
solution of SPG(V,E,C,X), the optimal solution TV,E,C(X) is a minimum spanning tree of
the graph induced in G by the set of nodes S∗ ∪X , i.e., the solution to the minimum spanning
tree problem MSTP (S∗ ∪X,E(S∗ ∪X), C).

The SPG definition will be used to model in alternative form the ANDP and also to model
the problem of to find an optimal access sub-network. The following definitions introduce the
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concept of covering areas associated to concentrator & switch sites; these are used to establish
the resulting components by the application of the clustering process.

Definition 3.2.4. Given a switch site sw ∈ SD, the switch covering area associated to sw is
defined by:

Asw = {sw} ∪ {s ∈ ST ∪ SC/cpmin(s, sw) = min{cpmin(s, v);∀v ∈ SD}} ,

where cpmin(u, v), with u, v ∈ S, is the cost of the shortest path from u to v in GA = (S,E1 ∪
E2).

Notation 3.2.5. We denote by SwT and SwC , respectively, the sets of sites of ST and SC present
in Asw .

Definition 3.2.6. A site s ∈ ST ∪ SC is denominated a border site with respect to two switch
sites, if it is to minimal distance to them in GA = (S,E1 ∪ E2). The border sites of this type
are assigned to a unique covering area associated to a switch site.

Definition 3.2.7. Given a concentrator site sc ∈ SC , the concentrator covering area associated
to sc is defined by:

Asc = {sc} ∪
{
s ∈ ST ∪ SC/c(s,sc) = min{c(s,sv); ∀sv ∈ SC ∪ SD}

}
.

Notation 3.2.8. We denote by ScT and ScC , respectively, the sets of sites of ST and SC present
in Asc .

Definition 3.2.9. A site s ∈ ST ∪ SC is denominated a border site with respect to two con-
centrator sites or between concentrator-switch sites, if it is to minimal distance to them in
GA = (S,E1 ∪ E2). The border sites of this type are assigned to a unique covering area as-
sociated to a concentrator site. Moreover could happen that there exist sc ∈ SC and sw ∈ SD
such that cpmin(s, sc) = cpmin(s, sw) and s ∈ Asc , s ∈ Asw .

Definition 3.2.10. Given a site s ∈ ST ∪ SC , we say that the site s is not in its covering area
when there exists sc ∈ SC , sc 6= s such that s ∈ Asw , s ∈ Asc and sc 6∈ Asw , with sw ∈ SD.

The following Proposition establishes an equivalence between models ANDP and SPG to
design an optimal access subnetwork restricted to a certain switch covering area.
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Proposition 3.2.11. Given a switch site sw ∈ SD, the design of an optimal access subnetwork
associated to Asw , that is to say ANDP (Asw , (E1 ∪ E2)|Asw , C), is equivalent to finding an
optimal solution of SPG(Asw , E(Asw), C, SwT ∪ {sw}).

Proof. Trivial.

Remark 3.2.12. The feasible solution ofANDP (S,E1∪E2, C) given by the union of optimal
solutions associated with SPG(Asw , E(Asw), C, SwT ∪ {sw}), ∀sw ∈ SD, that is to say T =⋃
∀sw∈SD TAsw ,E(Asw ),C(SwT ∪ {sw}), it is not guaranteed to be globally optimal.

Now, it is presented an ANDP example that illustrates the difference between the globally
optimal solution and the resulting optimal solution of to apply the SPG model to each one
of the switch covering areas. Figure 3.1 shows the set of feasible connections of the ANDP
instance chosen as example.

Figure 3.1: Feasible connections of an Access Network.

Figure 3.2 shows the switch covering areas associated to the sites sw1 and sw2 . The
SPG(Asw1

, E(Asw1
), C, Sw1

T ∪ {sw1}) and the SPG(Asw2
, E(Asw2

), C, Sw2
T ∪ {sw2}) give

the best solutions corresponding to the ANDP restricted to Asw1
and Asw2

respectively.

It is easy to see that the optimal solution of SPG(Asw2
, E(Asw2

), C, Sw2
T ∪ {sw2}) is the

same Asw2
. Figure 3.3 shows the optimal solution of SPG(Asw1

, E(Asw1
), C, Sw1

T ∪ {sw1})
and the global optimal solution of the ANDP.
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Switch covering areaAsw1
Switch covering areaAsw2

Figure 3.2: Switch covering areas of sw1 and sw2 respectively.

The cost of the feasible solution given by the union of the optimal access subnetworks has
cost 7, and the optimum cost is 6.

The following Proposition describes the different situations that can happen between two
concentrator covering areas of an ANDP.

Proposition 3.2.13. Given an ANDP (S,E1 ∪ E2, C) and sc1 , sc2 ∈ SC , then it is fulfilled
the following:

1. if sc2 ∈ Asc1 =⇒6 ∃sc3 ∈ SC , sc3 6= sc1 , sc2/sc2 ∈ Asc3 ,

2. Asc1 ∩Asc2 ⊆ {sc1 , sc2}.

Proof. Let us suppose that given sc1 , sc2 ∈ SC such that sc2 ∈ Asc1 ; there exists sc3 ∈
SC , sc3 6= sc1 , sc2 , where it satisfies sc2 ∈ Asc3 . This implies that sc2 is a border site that
belongs to two concentrator covering areas associated to two different concentrator sites. This
contradicts Definition 3.2.9, therefore (1) is demonstrated.
Now, by Definition 3.2.9 it is easy to see that 6 ∃st ∈ ST such that st ∈ Asc1 and st ∈ Asc2 .
Moreover could happen that sc1 ∈ Asc2 and sc2 ∈ Asc1 . Since by (1) we known that 6 ∃s ∈
SC , s 6= sc1 , sc2 , such that s ∈ Asc1 and s ∈ Asc2 ; hence we have thatAsc1∩Asc2 ⊆ {sc1 , sc2},
as required, completing the proof of (2).

Figure 3.4 shows the different situations presented in Proposition 3.2.13.

In order to illustrate cases of topologies where the utilization of covering areas do not pro-
vide of “good" feasible solutions, the following results are introduced.
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Optimal Solution of the ANDP Global Optimal Solution of the ANDP

SPG(Asw1
, E(Asw1

), C, S
w1
T
∪ {sw1})

Figure 3.3:

Proposition 3.2.14. In the worst case anANDP (S,E1∪E2, C) such that ∃sc ∈ Asw/Asc 6⊂
Asw , with sc ∈ SC and sw ∈ SD, has at the most nC +nT −1 sites inAsc that does not belong
to Asw .

Proof. Fixed the set of backbone sites SD, we will demonstrate by induction in the amount of
terminal and concentrator sites, that there exists an ANDP in the hypotheses of the Proposi-
tion 3.2.14 such that nC + nT − 1 is the number of sites of Asc that does not belong to Asw .
Case 1.nT + nC = 1. In this case nT = 0 and therefore the Proposition 3.2.14 is satisfied in
empty form.
Case 2.nT + nC > 1. As inductive hypothesis (denoted by I.H.) we have that ∀k/1 < k < h
there exists anANDP (S,E1∪E2, C) in the conditions of the Proposition, with k = nT +nC ,
such that the number of sites of Asc that does not belong to Asw is k − 1. As inductive thesis
(denoted by I.T.) the Proposition is satisfied when k = h.
By I.H. we known that there exists an ANDP with a set of terminal sites ST and a set of con-
centrator sites SC , with |ST ∪ SC | = nT + nC = h − 1, such that the number of sites of Asc
that does not belong to Asw is h − 2, for a certain concentrator site sc ∈ SC and a backbone
site sw ∈ SD that fulfill sc ∈ Asw and Asc 6⊂ Asw . We added a new site s̄ (indifferently of the
concentrator or terminal type) and new feasible connections that satisfy:

1. c(s̄,sc) < c(s̄,s), ∀s ∈ SC ∪ SD, s 6= sc,

2. At least one of the following conditions is satisfied:

• ∃sc2 ∈ SC , sc2 6= sc, ∃sw2 ∈ SD, sw2 6= sw such that:

c(s̄,sc2 ) + cpmin(sc2 , sw2) < c(s̄,sc) + c(sc,sw),

• ∃sw2 ∈ SD, sw2 6= sw such that c(s̄,sw2 ) < c(s̄,sc) + c(sc,sw),
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Figure 3.4: Relation between different concentrator covering areas.

3. If s̄ is a concentrator site then c(sc2 ,s̄)
+ c(s̄,sc) > c(sc2 ,sc)

, ∀sc2 ∈ SC , sc2 6= sc.

Other feasible connections can be considered depending of the type of site. Condition (1)
implies that s̄ ∈ Asc , condition (2) implies that ∃sw2 ∈ SD, sw2 6= sw, such that s̄ ∈ Asw2

,
i.e. s̄ 6∈ Asw , and the condition (3) guarantees that the concentrator sites of SC\{sc} continue
belonging toAsc considering the new connections towards s̄, in the case that s̄ is a concentrator
site. Let Fs̄ be the set of the new feasible connections added from s̄ to GA = (S,E1∪E2). We
will denote as C̄ the matrix of connection costs extended to E1∪E2∪Fs̄. Now, let us consider
ANDP (S ∪ {s̄}, E1 ∪ E2 ∪ Fs̄, C̄), it is easy to see that the number of sites in Asc that does
not belong to Asw considering the network ḠA = (S,E1 ∪ E2 ∪ Fs̄) is (h− 2) + 1 = h− 1.
This completes the proof of Proposition 3.2.14.

Figure 3.5 illustrates the situation presented in Proposition 3.2.14.

Corollary 3.2.15. In the worst case an ANDP (S,E1 ∪ E2, C) with nC ≥ 2 concentrator
sites, all the sites of ST ∪ SC are not in their covering areas.

Proof. We will demonstrate by induction in the amount of concentrator sites, that there exists
an ANDP in the conditions of the Corollary 3.2.15 where all the sites of ST ∪ SC are not in
their covering areas.
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Figure 3.5: Concentrator covering area associated to sck .

Case 1.nC = 2. In this case we must find an instance of ANDP with exactly two concentrator
sites such that all the sites of ST ∪ SC are not in their covering areas.
Let ANDP ({sw1 , sw2}∪{sc1 , sc2}∪ (S(1)

T ∪S
(2)

T ), E1∪E2, C) be an instance of the problem
where {sw1 , sw2} are switch sites, {sc1 , sc2} are concentrator sites, S(1)

T ∪ S
(2)

T are terminal
sites, and their feasible connections verify:

1. c(sc1 ,sw1 ) < Min
{
c(sc1 ,sw2 ), c(sc1 ,sc2 ) + c(sc2 ,sw2 )

}
,

2. c(sc2 ,sw2 ) < Min
{
c(sc2 ,sw1 ), c(sc2 ,sc1 ) + c(sc1 ,sw1 )

}
,

3. c(sc1 ,sc2 ) < Min
{
c(sc1 ,sw1 ), c(sc1 ,sw2 ), c(sc2 ,sw1 ), c(sc2 ,sw2 )

}
,

4. c(st,sc2 ) < Min
{
c(st,sw1 ), c(st,sw2 )

}
, ∀st ∈ S(1)

T ,

5. c(st,sc1 ) < Min
{
c(st,sw1 ), c(st,sw2 )

}
, ∀st ∈ S(2)

T ,

6. c(st,sw1 ) < Min
{
c(st,sw2 ), c(st,sc2 ) + c(sc2 ,sw2 )

}
, ∀st ∈ S(1)

T ,

7. c(st,sw2 ) < Min
{
c(st,sw1 ), c(st,sc1 ) + c(sc1 ,sw1 )

}
, ∀st ∈ S(2)

T .

We assume that these feasible connections exist only. Conditions (1) and (2) imply that sc1 ∈
Asw1

and sc2 ∈ Asw2
respectively. Condition (3) implies that sc1 ∈ Asc2 and sc2 ∈ Asc1 .

Conditions (4) and (5) imply that st ∈ Asc2 ∀st ∈ S
(1)

T , and st ∈ Asc1 ∀st ∈ S
(2)

T respectively.
Conditions (6) and (7) imply that st ∈ Asw1

∀st ∈ S(1)

T , and st ∈ Asw2
∀st ∈ S(2)

T . Therefore
by Definition 3.2.10, the concentrator sites sc1 , sc2 , and the terminal sites of S(1)

T ∪ S
(2)

T are not
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in their covering areas.
Case 2.nC > 2. As inductive hypothesis (denoted by I.H.) we assume that given nC/2 <
|SC | = nC < h there exists anANDP (S,E1∪E2, C) in the conditions of the Corollary, such
that all the sites of ST ∪ SC are not in their covering areas. As inductive thesis (denoted by
I.T.) the Corollary is fulfilled when nC = h.
By I.H. there exists anANDP (S,E1∪E2, C)/nC = h−1 and all the sites of ST ∪SC are not
in their covering areas. Let us consider a new concentrator site s̄c and new feasible connections
that satisfy:

1. We choose a concentrator site sci ∈ SC and added a new feasible connection between
sci and s̄c.

2. Let scj ∈ SC be the concentrator site that satisfies sci ∈ Ascj . We choose a switch site
swk ∈ SD and added a new connection between s̄c and swk so that:

(a) c(s̄c,sci )
> c(sci ,scj ),

(b) c(s̄c,sci )
< c(s̄c,swk ),

(c) c(s̄c,swk ) < c(s̄c,sci )
+ cpmin(sci , swi), where swi is the switch site that satisfies

sci ∈ Aswi .

3. c(st,s̄c) > c(st,s), ∀s ∈ SC ∪ SD.

We assume that only these feasible connections are added. Condition (2.b) implies that the new
concentrator site s̄c belongs to the concentrator covering area Asci . Condition (2.c) implies
that s̄c belongs to the switch covering area Aswk . Condition (2.a) implies that sci continues
belonging to the concentrator covering area Ascj . Also, condition (3) implies that all the
terminal sites of ST continue belonging to their concentrator covering areas. Let Fs̄c be the set
of the new feasible connections defined above. We will denote as C̄ the matrix of connection
costs extended to E1 ∪E2 ∪ Fs̄c . Considering the ANDP (S ∪ {s̄c}, E1 ∪E2 ∪ Fs̄c , C̄), it is
easy to see that all the sites of ST ∪ SC ∪ {s̄c} are not in their covering areas, and in addition
the total number of concentrator sites is nC +1 = (h−1)+1 = h, as required, and completing
the proof.

The following Lemma introduces conditions that must satisfy the solution constructed by
the application of clustering approach to each one of the switch sites, so that it fulfills being
a global optimal solution of the ANDP. This solution is the union of the optimal access sub-
networks given by the global optimal solutions of the Steiner problems
SPG(Asw , E(Asw), C, SwT ∪ {sw}), ∀sw ∈ SD.

Lemma 3.2.16. If T =
⋃
∀sw∈SD TAsw ,E(Asw ),C(SwT ∪ {sw}) is a global optimal solution of

ANDP (S,E1 ∪ E2, C), then the following statements are fulfilled.

1. ∀sc1 , sc2 ∈ T such that sc1 ∈ Asw , sc2 6∈ Asw (with sw ∈ SD), the sets Asc1 and Asc2
satisfy Asc1 ∩Asc2 = ∅; unless sc1 or sc2 will be a border site.
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Figure 3.6: Example of Corollary 3.2.15 with nC = 2.

2. ∀ triangle (s, sc1 , sc2) ∈ GA such that s, sc1 ∈ T , s, sc1 ∈ Asw , sc2 6∈ T , and sc2 6∈ Asw ,
where sw ∈ SD, the inequality c(s,sc1 ) ≤ c(s,sc2 ) + c(sc1 ,sc2 ) is satisfied.

3. ∀(s, sc) ∈ T /s 6∈ Asc , if ∃sc2 ∈ SC/s ∈ Asc2 then sc2 6∈ T .

Proof. We will demonstrate the three statements separately.
Statement 1. Let sc1 and sc2 be concentrator sites such that sc1 ∈ Asw and sc2 ∈ Asw , with
sw ∈ SD. Let us suppose that Asc1 ∩ Asc2 6= ∅. This implies that sc1 or sc2 or both are
in the intersection. Suppose that sc1 ∈ Asc2 . By definition of concentrator covering area
c(sc1 ,sc2 ) = min{c(sc1 ,sv); (sc1 , sv) ∈ E2}. Suppose, in addition, that sc1 is not a border site,
that is to say c(sc1 ,sc2 ) < c(sc1 ,sv), ∀sv ∈ SC ∪ SD, sv 6= sc2 . Let s̄ ∈ T (s̄ ∈ SC ∪ SD) be the
output site towards the backbone network, associated to sc1 . Let H̄ be a network defined by
H̄ = (T \ {(sc1 , s̄)}) ∪ {(sc1 , sc2)}. It is easy to see that H̄ is a feasible solution of ΓANDP ;
we will analyze its cost.

COST(H̄) = COST(T )− c(sc1 ,s̄)
+ c(sc1 ,sc2 )

c(sc1 ,sc2 )<c(sc1 ,s̄)

↑
< COST(T )

This is a contradiction, therefore sc1 6∈ Asc2 . By symmetry sc2 6∈ Asc1 , completing the proof
of Statement 1.

Statement 2. Let (s, sc1 , sc2) ∈ GA be a triangle such that s, sc1 ∈ T , s, sc1 ∈ Asw ,
sc2 6∈ T , and sc2 6∈ Asw . Let us suppose that c(s,sc1 ) > c(s,sc2 ) + c(sc1 ,sc2 ). Let H̄ be a network
defined by H̄ = (T \ {(s, sc1)}) ∪ {(s, sc2), (sc1 , sc2)}. It is easy to see that H̄ is a feasible
solution of ΓANDP ; and moreover its cost is given by:

COST(H̄) = COST(T )− c(s,sc1 ) + c(s,sc2 ) + c(sc1 ,sc2 ) < COST(T ),

this is a contradiction, hence c(s,sc1 ) ≤ c(s,sc2 ) + c(sc1 ,sc2 ) as required.
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Figure 3.7: Example of Corollary 3.2.15 with nC > 2.

Statement 3. Let us consider a connection (s, sc) ∈ T /s 6∈ Asc . Suppose, in addition, that
∃sc2 ∈ SC/s ∈ Asc2 and sc2 ∈ T . Let H̄ be a network defined by H̄ = (T \ {(s, sc)}) ∪
{(s, sc2)}. It is easy to see that H̄ is a feasible solution of ΓANDP ; we will see its cost.

COST(H̄) = COST(T )− c(s,sc) + c(s,sc2 )

c(s,sc2 )−c(s,sc)<0

↑
< COST(T ),

this is a contradiction, therefore 6 ∃sc2 ∈ SC/s ∈ Asc2 and sc2 ∈ T . This completes the proof
of Lemma 3.2.16

Definition 3.2.17. Given a switch site sw ∈ SD, the ratio of the covering area Asw is defined
by:

r(Asw) def=
{

max{cpmin(s, sw)/s ∈ Asw} if |Asw | > 1,
0 otherwise.

Definition 3.2.18. Given two switch sites sw1 , sw2 ∈ SD, the distance between their covering
areas Asw1

and Asw2
is defined by:

dr(Asw1
, Asw2

) def=


min{c(s1,s2)/s1 ∈ Asw1

, s2 ∈ Asw2
} if ∃ a connection

between both,
+∞ otherwise.
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The following Lemma introduces a sufficient condition so that the feasible solution con-
structed by the application of clustering approach to each one of the switch sites is globally
optimal. This condition establishes a relation between the ratio of covering area associated to
a switch site and its distance with other switch covering areas.

Lemma 3.2.19. Let ANDP (S,E1 ∪ E2, C) be such that ∀sw1 , sw2 ∈ SD, sw1 6= sw2 , it is
fulfilled that r(Asw1

) ≤ dr(Asw1
, Asw2

), then the feasible solution given by
T =

⋃
∀sw∈SD TAsw ,E(Asw ),C(SwT ∪ {sw}) is globally optimal.

Proof. The Lemma will be demonstrated by induction in nD = |SD|.
Case 1.nD = 1. In this case there exists an only switch site and furthermore we assume
that Asw = {sw} ∪ ST ∪ SC , (SwT = ST and SwC = SC). The ANDP is formulated as
ANDP (Asw , (E1 ∪ E2)|Asw , C).
By Proposition 3.2.11, considering the SPG(Asw , E(Asw), ST ∪ {sw}), both problems are
equivalent. Therefore, if T1 = TAsw ,E(Asw ),C(ST ∪ {sw}) is an optimal solution of the SPG,
also it is an optimal solution for the ANDP.
Case 2.nD > 1. As inductive hypothesis (denoted by I.H.) the Lemma is fulfilled ∀ANDP
such that 1 < nD = k < h, and as inductive thesis (denoted by I.T.) the Lemma is fulfilled
when nD = h.
Let ANDP (S,E1 ∪ E2, C) be in the hypothesis of the Lemma, such that nD = |SD| = h.
Let sw1 ∈ SD be a switch site such that |Asw1

| > 1 (we assume that at least one in this
condition there exists). Let us consider the sets S̄D = SD\{sw1} and S̄ = S\Asw1

, and the
problems ANDP (Asw1

, (E1 ∪ E2)|Asw1
, C) and ANDP (S̄, (E1 ∪ E2)|S̄ , C). It is easy to

see that ∀s̄w1 , s̄w2 ∈ S̄D, it is fulfilled that r(As̄w1
) ≤ dr(As̄w1

, As̄w2
) considering r(·) and

dr(·, ·) restricted to GS̄ = (S̄, (E1 ∪E2)|S̄). Then by H.I., (we know that |S̄D| = h− 1), T̄ =⋃
∀sw∈S̄D TAsw ,E(Asw ),C(SwT ∪ {sw}) is an optimal solution of the problem ANDP (S̄, (E1 ∪

E2)|S̄ , C). Moreover, by Proposition 3.2.11, T1 = TAsw1
,E(Asw1

),C(Sw1
T ∪ {sw1}) is an opti-

mal solution of the problem ANDP (Asw1
, (E1 ∪ E2)|Asw1

, C).
We will prove now that an optimal solution of ANDP (S̄, (E1 ∪ E2)|S̄ , C), union an optimal
solution of ANDP (Asw1

, (E1 ∪ E2)|Asw1
, C), form an optimal solution of ANDP (S,E1 ∪

E2, C). Let HS̄ and HAsw1
be optimal solutions of the problems ANDP (S̄, (E1 ∪ E2)|S̄ , C)

and ANDP (Asw1
, (E1 ∪ E2)|Asw1

, C) respectively. It is easy to see that HS̄ ∪ HAsw1
is

a feasible solution of the ANDP (S,E1 ∪ E2, C); we will prove that it is optimal. Let
copt be the cost of an optimal solution of the ANDP (S,E1 ∪ E2, C). Let us suppose that
COST(HS̄) + COST(HAsw1

) > copt. This is certain if and only if, all optimal solution of
ANDP (S,E1∪E2, C) has at least a connection in the setB = (E1∪E2)\((E1∪E2)|S̄

⋃
(E1∪

E2)|Asw1
). The set B can also be seen as B =

{
(si, sj) ∈ E1 ∪ E2/si ∈ Asw1

, sj ∈ S̄
}

. Let
Hopt be an optimal solution of the ANDP (S,E1 ∪ E2, C). Let BH be the set of connec-
tions defined by BH = {(si, sj) ∈ B/(si, sj) ∈ Hopt}. Let IH be the set of sites defined
by IH =

{
si ∈ Asw1

/(si, sj) ∈ BH ,with sj ∈ S̄
}

. Now let H̄ be a network obtained from

H such that H̄ = (Hopt\BH) ∪
(⋃
∀si∈IH p(si,sw1 )

)
, where p(si,sw1 ) is the shortest path be-

tween si and sw1 in GAsw1
= (Asw1

, (E1 ∪ E2)|Asw1
). Clearly H̄ is a feasible solution of the
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ANDP (S,E1 ∪ E2, C), next we will analyze its cost.

COST(H̄) = COST(Hopt)−
∑

∀(si,sj)∈BH

c(si,sj) +
∑
∀si∈IH

COST(p(si,sw1 ))

COST(p(si,sw1 ))≤r(Asw1
)

↑
≤ COST(Hopt)−

∑
∀(si,sj)∈BH

c(si,sj) + |IH | · r(Asw1
)

min{dr(Asw1
,As̄w );s̄w∈S̄D}≤c(si,sj)

↑
≤ COST(Hopt)− |BH | · dminr + |IH | · r(Asw1

)

|BH |=|IH |
↑
= COST(Hopt) + |IH | · (r(Asw1

)− dminr )

dminr ≥r(Asw1
)

↑
≤ COST(Hopt)

Proving that COST(H̄) ≤ COST(Hopt). This implies that in the hypothesis of the Lemma, there
exists an optimal solution of the ANDP (S,E1 ∪ E2, C) such that cannot have any connec-
tion in B. Then COST(HS̄) + COST(HAsw1

) = copt and therefore HS̄ ∪ HAsw1
is an optimal

solution of the ANDP (S,E1 ∪ E2, C). In particular T̄ ∪ T1 is an optimal solution of the
ANDP (S,E1 ∪ E2, C). Furthermore, we have that:

T̄ ∪ T1 =

 ⋃
∀sw∈S̄D

TAsw ,E(Asw ),C(SwT ∪ {sw})

⋃(
TAsw1

,E(Asw1
),C(Sw1

T ∪ {sw1})
)

=
⋃

∀sj∈SD

TAsj ,E(Asj ),C(SjT ∪ {sj}) = T ,

completing the induction and the proof of Lemma 3.2.19.

3.3 Reducing the dimension of the problem.

Given the complexity of the ANDP and ANDP(≤1) (by [4] and Theorem 3.3.2 respectively,
both of them belong to the NP-Hard class), it is very useful to provide techniques capable of
reducing the dimension of the original problem to an equivalent smaller problem. We introduce
a form of determining a subset XC ⊆ SC of concentrator sites, which satisfies that ∀sc ∈ XC ,
sc belongs to any global optimal solution of ΓANDP . Firstly, we present a general result where
the proposed method has exponential complexity, and later a result that proposes a method
of polynomial complexity in order to determine a subset with the previous characteristics and
consequently transforming the problem to a reduced problem with smaller amount of non-fixed
nodes (sites of SC that do not necessarily belong to an optimal solution).

Definition 3.3.1 (ANDP(≤k) where k is an integer/0 ≤ k ≤ nC ). Let GA = (S,E1 ∪ E2)
be the graph of feasible connections on the Access Network and C the matrix of connection
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costs. The Access Network Design Problem of kth level ANDP(≤k)(S,E1 ∪E2, C) consists in
finding a subgraph ofGA of minimum cost such that ∀i ∈ ST there exists a path from i towards
some site j ∈ SD of the backbone network and at the most have k concentrators connected in
line.

Theorem 3.3.2. The ANDP(≤1) belongs to the NP-Hard class.

Proof. Let ST = {t1, ..., tn} and SC = {s1, ...sm} denote the set of terminal and con-
centrator sites respectively. Let Z a fictitious node representing the backbone. We define
Ŝz = {z0, z1, ..., zm} with z0 = Z and zi = si i ∈ 1..m. Let C = {ci,j}i∈ST ,j∈Ŝz denotes a

matrix which gives us for a site of ST and a site of Ŝz , the cost of laying a line among them;
and Ĉ = {ĉi}i∈1..m denotes the costs of laying a line among a site of SC and the backbone.

The following Mathematical Programming Problem resolves the ANDP(≤1) exactly.

(PANDP(≤1))


mini,j

∑n
i=1

∑m
j=0 cij × xij +

∑m
j=1 ĉj × yj

s.t. :∑m
j=0 xij = 1, i ∈ 1..n∑n
i=1 xij ≤ Ĉ × yj , j ∈ 1..m

xij ∈ {0, 1}, yj ∈ {0, 1}

where Ĉ is a constant such that Ĉ � n.

It is easy to see that with Ĉ = 1, ĉj = 0 and yj = 1, ∀j ∈ {1..m} we obtain the Asym-
metric Assignment Problem which is NP-Hard [51]. Thus ANDP(≤1) belongs to the NP-Hard
class, completing the proof.

Proposition 3.3.3. Given an ANDP (S,E1 ∪ E2, C), the following sets are defined:{
X(1)

C
def= {sc ∈ SC/∃(sc, sw) ∈ E2,with sw ∈ SD, such that (i) is satisfied},

X(k)

C
def= X(k−1)

C

⋃
{sc ∈ (SC \ (X(k−1)

C ∪ S∗C)), such that (ii) is satisfied}, ∀k > 1,

where

c(sc,sw) <
∑

∀st∈ST /st∈N(sc)

(Φ(st, sc)− c(st,sc)), (i)

Φk(sc) <
∑

∀st∈ST /st∈N(sc)

(Φ(st, sc)− c(st,sc)), (ii)

S∗C
def=
{
sc ∈ SC/∃st ∈ ST /N(st) = {sc}

}
, Φ(st, sc)

def= min{c(st,s)/(st, s) ∈ E1, s 6= sc},
and Φk(sc)

def= min{c(sc,s)/(sc, s) ∈ E2, s ∈ SD ∪X(k−1)

C }. Then the set X(lmax)

C belongs to
all optimal solution of ΓANDP , with lmax the maximum length of a chain of concentrators in
GA = (S,E1 ∪ E2).
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Proof. The Proposition will be demonstrated by induction in k.
Case 1.k = 1. Let us consider the set X(1)

C defined above. Let sc ∈ X(1)

C be a concentrator
site. By definition ∃(sc, sw) ∈ E2, with sw ∈ SD, such that the inequality (i) is satisfied. Let
Hopt = (V,U) be an optimum solution of ΓANDP . Let us suppose that sc 6∈ Hopt. We define
the sets U1 = {(st, s) ∈ Hopt/st ∈ ST , st ∈ N(sc)} and U2 = {(st, sc) ∈ E1/st ∈ ST , st ∈
N(sc)}. Let H̄ = (V̄ , Ū) be a network defined by V̄ = V ∪ {sc} and Ū = (U \ U1) ∪ U2 ∪
{(sc, sw)}. It is easy to see that H̄ is a feasible solution of ΓANDP . Let us analyze the cost of
H̄ respect toHopt.

COST(H̄) = COST(Hopt)− COST(U1) + COST(U2) + c(sc,sw)

Since ∀(st, s) ∈ Hopt/st ∈ N(sc),Φ(st, sc) ≤ c(st,s) then,

COST(H̄) ≤ COST(Hopt)−
∑

∀st∈ST /st∈N(sc)

(Φ(st, sc)− c(st,sc)) + c(sc,sw).

Moreover, since (i) is satisfied, we have that COST(H̄) < COST(Hopt). This is a contradiction,
therefore sc ∈ Hopt, completing the proof of Case 1.
Case 2.k > 1. As inductive hypothesis (denoted by I.H.) X(j)

C belongs to all optimal solution
of ΓANDP ,∀j/1 ≤ j < k. As inductive thesis (denoted by I.T.) the set X(k)

C belongs to all
optimal solution of ΓANDP .
By I.H. we know that the set X(k−1)

C belongs to all optimal solution of ΓANDP . We must also
prove that S(k)

C = {sc ∈ (SC \(X(k−1)

C ∪S∗C)), such that (ii) is satisfied} belongs to all optimal
solution of ΓANDP . Once more, let Hopt = (V,U) be an optimal solution of ΓANDP and
sc ∈ S(k)

C a concentrator site. Again we suppose that sc 6∈ Hopt. Let H̄ = (V̄ , Ū) be a network
defined by V̄ = V ∪{sc} and Ū = (U \U1)∪U2∪{(sc, s̄)}, where s̄ ∈ SD∪X(k−1)

C /(sc, s̄) ∈
E2, and c(sc,s̄) = Φk(sc) (we assumed that S(k)

C 6= ∅). It is easy to see that H̄ is a feasible
solution of ΓANDP . The cost relation between H̄ andHopt is the following.

COST(H̄) = COST(Hopt)− COST(U1) + COST(U2) + c(sc,s̄)

Since ∀(st, s) ∈ Hopt/st ∈ N(sc),Φ(st, sc) ≤ c(st,s) then,

COST(H̄) ≤ COST(Hopt)−
∑

∀st∈ST /st∈N(sc)

(Φ(st, sc)− c(st,sc)) + c(sc,s̄).

We know that c(sc,s̄) = Φk(sc), and moreover (ii) is satisfied, obtaining so the inequality
COST(H̄) < COST(Hopt). This is a contradiction, hence sc ∈ Hopt, completing the proof of
Case 2. Furthermore, since at the most there exists a chain of lmax concentrator sites connected
in line, then X(k)

C = X(k+1)

C ∀k ≥ lmax, completing the proof of Proposition 3.4.6.

Proposition 3.3.4. Given an ANDP (S,E1 ∪E2, C), we redefine the sets
{
X(k)

C

}
k≥1

defined
in Proposition 3.4.6, changing the condition (ii) by:

(ii)b

{
∃ a set I(sc) ⊆ (Nk(sc) ∪NT (sc)) and s̄ ∈ (SD ∪ (X(k−1)

C \ I(sc)))
such that: c(sc,s̄) <

∑
∀s∈I(sc)

(Φ(s, sc)− c(s,sc)),
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where Nk(sc)
def= {s ∈ X(k−1)

C /s ∈ N(sc)}, NT (sc)
def= {st ∈ N(sc)/st ∈ ST } and Φ(s, sc)

def=
min{c(s,sv)/(s, sv) ∈ E1 ∪ E2, sv 6= sc}. With this new definition, X(lmax)

C also belongs to all
optimal solution of ΓANDP .

Proof. Again, we proceed by induction in k in order to demonstrate the Proposition.
Case 1.k = 1. It is the same that in the previous Proposition.
Case 2.k > 1. The inductive step is similar to the Proposition 3.4.6, with the difference
that here we must demonstrate that the set of concentrator sites defined by S̄(k)

C = {sc ∈
(SC \ (X(k−1)

C ∪ S∗C)), such that (ii)b is satisfied} belongs to all optimal solution of ΓANDP .
Once again we will consider Hopt = (V,U) as an optimal solution of ΓANDP and sc ∈ S̄(k)

C

a concentrator site. By definition, there exists a set I(sc) ⊆ (Nk(sc) ∪ NT (sc)) and s̄ ∈
(SD∪(X(k−1)

C \I(sc))) such that the inequality of (ii)b is fulfilled. Let us suppose that sc 6∈ Hopt.
Let us consider the sets defined by B1 = {(s, sv) ∈ Hopt/s ∈ I(sc)} and B2 = {(s, sc) ∈
E1 ∪ E2/s ∈ Isc}. Let H̄ = (V̄ , Ū) be a network defined by V̄ = V ∪ {sc} and Ū =
(U \ B1) ∪ B2 ∪ {(sc, s̄)} (we assume that S̄(k)

C 6= ∅). It is easy to see that H̄ is a feasible
solution of ΓANDP . The cost of H̄ is given by:

COST(H̄) = COST(Hopt)− COST(B1) + COST(B2) + c(sc,s̄)

Since ∀(s, sv) ∈ Hopt/s ∈ I(sc),Φ(s, sc) ≤ c(s,sv) then,

COST(H̄) ≤ COST(Hopt)−
∑
∀s∈I(sc)

(Φ(s, sc)− c(s,sc)) + c(sc,s̄).

Moreover, as the inequality in (ii)b is fulfilled, then COST(H̄) < COST(Hopt). This is a con-
tradiction, hence sc ∈ Hopt, completing the proof of Case 2. By the same argument of the
previous Proposition, X(lmax)

C belongs to all optimal solution of ΓANDP .

3.4 Relation between feasible solutions.

In this section some relations between the costs of feasible solutions are introduced. To begin
with, Theorem 3.4.1 introduces a relationship between the cost of the best solution given
by the clustering approach and the optimal cost. In addition, Proposition 3.4.2 gives us the
relationship between the cost of a feasible solution and the optimal cost.

Theorem 3.4.1. Given anANDP (S,E1∪E2, C) and the feasible solution of ΓANDP formed
by the optimal access subnetworks associated to the covering areas of the sites of SD, that is
to say T =

⋃
∀sw∈SD TAsw ,E(Asw ),C(SwT ∪ {sw}) . Let H ∈ ΓANDP be the feasible solution

derived from T , which is constructed, reconnecting with the smallest possible cost and main-
taining the feasibility, the sites of T that are not in their covering areas to their respective
areas. Then the following inequality is fulfilled:

COST(T )
COST(H)

≤ 1 +
(cmax − cB) · β
cmin · nT

,
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where B = {(s, sc) ∈ E1 ∪ E2/(s, sc) 6∈ T ; s, sc ∈ T ; s ∈ ST ∪ SC ; sc ∈ SC ; s ∈ Asc},
cmax = max{cij ; (i, j) ∈ E1∪E2}, cmin = min{cij ; (i, j) ∈ E1∪E2}, cB = min{cij ; (i, j) ∈
B}, and β = |B|.
Proof. The set B defined above, it is the set of feasible connections that are not in T , between
a site sc ∈ T (sc ∈ SC) and the sites of ST ∪ SC presents in T that belong to Asc .
If B = ∅ then T = H and therefore COST(T )

COST(H) = 1. Furthermore in this case, T is an optimum
solution of ΓANDP .
Let SB1

denote the set induced by B1 ⊆ B of sites that are not in their covering areas, i.e.,
SB1

= {s ∈ ST ∪ SC/∃sc ∈ SC , (s, sc) ∈ B1, s ∈ Asc}. In the case B 6= ∅, firstly we will
demonstrate the following inequality.

COST(T )− COST(H1) ≤ (cmax − cB1
) · β1, ∀B1 ⊆ B, (3.1)

where cB1
= min{cij ; (i, j) ∈ B1}, β1 = |B1|, and H1 ∈ ΓANDP is the feasible solution

derived from T , which is constructed reconnecting with the smallest possible cost and main-
taining the feasibility, the nodes of SB1

to their respective covering areas. The inequality will
be demonstrated by induction in β1.
Case 1.β1 = 0. In this case B1 = ∅ and therefore T = H1.
Case 2.β1 < h ≤ β. As inductive hypothesis (denoted by I.H.) the inequality 3.1 is satisfied
∀β1 < h ≤ β, and as inductive thesis (denoted by I.T.) the inequality 3.1 is satisfied when
β1 = h.
Let B1 be a subset of B such that β1 = h ≤ β. Let U denote the subset of B1 given by
U = {(sc1 , sc2) ∈ B1/sc1 ∈ Asc2 , sc2 ∈ Asc1}.
Given (s, sc) ∈ B1 we denote by B2 the subset B2 = B1\{(s, sc)}. Let H2 ∈ ΓANDP be the
feasible solution derived from T , which is constructed reconnecting with the smallest possible
cost and maintaining the feasibility, the nodes of SB2

to their respective covering areas. With
respect to H1, if (s, sc) ∈ U the connection change is made only for one of the concentrator
sites (s or sc), because otherwise, if a direct connection between both is installed in H1 and
their connections in T are eliminated, both would be without output towards the backbone net-
work. If (s, sc) 6∈ U the connection of s in T is eliminated, adding the connection (s, sc) to
H1. In both cases,H1 andH2 satisfy the following:

COST(T )− COST(H1) ≤ COST(T )− COST(H2) + (cmax − c(s,sc))

by I.H.
↑
≤

(cmax − cB2
) · β2 + (cmax − c(s,sc)) = (cmax − cB2

) · (β1 − 1) + (cmax − c(s,sc))

≤
(
cmax −min{cB2

, c(s,sc)}
)
· β1

cB1
=min{cB2

,c(s,sc)}
↑
= (cmax − cB1

) · β1,

completing the proof of the inequality 3.1.
If in the inequality 3.1 is chosen B1 = B , then:

COST(T )− COST(H) ≤ (cmax − cB) · β. (3.2)

The inequality 3.2 is divided by COST(H) obtaining the following:

COST(T )
COST(H)

− 1 ≤ (cmax − cB) · β
COST(H)

,
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furthermore, we know that COST(H) ≥ (cmin ·nT ) (the minimum cost in the best case). There-
fore, it is fulfilled,

COST(T )
COST(H)

− 1 ≤ (cmax − cB) · β
cmin · nT

,

as required, and completing the proof of Theorem 3.4.1.

Proposition 3.4.2. Given an ANDP (S,E1 ∪ E2, C) with feasible solutions space ΓANDP ;
letG1, Gopt ∈ ΓANDP be feasible solutions whereGopt is globally optimal. Then the following
inequality is fulfilled:

COST(G1)
COST(Gopt)

≤ cmax
cmin

·
(

1 +
nC
nT

)
,

where cmax = max{cij ; (i, j) ∈ E1∪E2}, cmin = min{cij ; (i, j) ∈ E1∪E2} and COST(G) =∑
∀(i,j)∈G cij .

Proof. In the worst case a solution of ΓANDP has all the sites of SC and all their connection
lines have maximum cost. Then the maximum cost in the worst case is (nT + nC) · cmax. In
the best case a solution of ΓANDP has all the sites of ST connected directly to the backbone
network with minimum cost. Then the minimum cost in the best case is (nT · cmin). Therefore
the costs of G1 and Gopt satisfy: COST(G1) ≤ (nT +nC) · cmax and COST(Gopt) ≥ (nT · cmin).
Now, let us consider the quotient between the costs of the solutions G1 and Gopt respectively;
then:

COST(G1)
COST(Gopt)

≤ (nT + nC) · cmax
(nT · cmin)

=
cmax
cmin

·
(

1 +
nC
nT

)
,

as required, completing the proof.

In some cases, we would like to know how much money we can save with a new level of
concentrators (a higher k according to the next notation). Theorem 3.4.4 helps us to answer
that question. Besides, in Proposition 3.4.6, we will prove that the bound given is tight respect
to k.After, Corollary 3.4.5 gives us an idea of how much we can save with regard to the optimal
solution.

Notation 3.4.3. Given an ANDP (S,E1 ∪ E2, C) and an integer k/0 ≤ k ≤ nC , the set of
feasible solutions of ΓANDP that at the most have k concentrators connected in line is denoted
by Γ(≤k)

ANDP . Furthermore, it is easy to see that Γ(≤k−1)
ANDP ⊆ Γ(≤k)

ANDP , ∀k/0 < k ≤ nC .

Theorem 3.4.4. Given an ANDP (S,E1 ∪ E2, C) and an integer k, 0 < k ≤ nC , such that:

1. ∀sc ∈ SC , ∃sw ∈ SD/c(sc,sw) < +∞,

2. ∅ 6= Γ(≤k−1)
ANDP ⊂ Γ(≤k)

ANDP .
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If ck−1
opt and ckopt are the costs of the best solutions of Γ(≤k−1)

ANDP and Γ(≤k)
ANDP respectively, then the

following inequality is fulfilled:

ck−1
opt

ckopt
≤ 1 +

⌊nC
k

⌋
·
(

1
k + nT

)
·
(
cmax
cmin

− 1
)
.

Proof. By hypothesis, we know that Γ(≤k−1)
ANDP ⊂ Γ(≤k)

ANDP , this implies ckopt ≤ ck−1
opt .

Case 1. If ckopt = ck−1
opt , then

ck−1
opt

ckopt
= 1 satisfies the inequality.

Case 2. If ckopt < ck−1
opt , firstly, the following inequality is demonstrated:

ck−1
opt − ckopt ≤ max{COST(Gk−1)− ckopt}, (3.3)

where the solution Gk−1 ∈ Γ(≤k−1)
ANDP is constructed from a solution of Γ(≤k)

ANDP with cost ckopt, by
means of the minimum amount of connection reassignments of its concentrator sites.
LetHk−1 ∈ Γ(≤k−1)

ANDP be an solution so that satisfies 3.3 strictly by means of equality cH−ckopt =
max{COST(Gk−1)− ckopt}, where cH = COST(Hk−1). Let us suppose that the inequality 3.3 is
not fulfilled, then we would have the following strict inequality: ck−1

opt − ckopt > cH − ckopt which
implies that ck−1

opt > cH , this is a contradiction. Therefore the inequality 3.3 is fulfilled.

An optimum solution of Γ(≤k)
ANDP , at the most has

⌊
nC
k

⌋
chains of concentrators connected in

line, each one of length k. Since ∀sc ∈ SC there exists at least a site sw ∈ SW so that
c(sc,sw) < +∞, then at the most with

⌊
nC
k

⌋
changes of connection on the concentrator sites, a

solution of Γ(≤k−1)
ANDP is obtained. Moreover for each connection change, we have a cost increase

equal to (cmax − cmin) in the worst case.
Therefore, from the exposed previously, the following inequality is obtained:

ck−1
opt − ckopt ≤

⌊nC
k

⌋
· (cmax − cmin). (3.4)

The right side of the inequality 3.4 is the cost difference when doing
⌊
nC
k

⌋
connection changes

in the concentrator sites, in the worst case. The inequality 3.4 is divided by ckopt obtaining the
following inequality:

ck−1
opt

ckopt
− 1 ≤

⌊nC
k

⌋
· (cmax − cmin)

ckopt
.

Moreover ckopt satisfies the inequality ckopt ≥ (k + nT ) · cmin; since in the best case a solution

of Γ(≤k)
ANDP \Γ

(≤k−1)
ANDP has an only chain of concentrators connected in line, of length k and cost

k · cmin, and all terminal sites are connected directly to the chain with cost (nT · cmin). This
implies that:

ck−1
opt

ckopt
≤ 1 +

⌊nC
k

⌋
· (cmax − cmin)

ckopt
≤ 1 +

⌊nC
k

⌋
· (cmax − cmin)

(k + nT ) · cmin
.

As a result is deduced then:
ck−1
opt

ckopt
≤ 1 +

⌊nC
k

⌋
·
(

1
k + nT

)
·
(
cmax
cmin

− 1
)
,

as required, and completing the proof.
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Corollary 3.4.5. Given an ANDP (S,E1 ∪ E2, C) in the hypothesis of the previous theorem
and an integer k, 0 ≤ k ≤ nC , such that copt < ckopt < +∞, where ckopt is the cost of the best

feasible solution in Γ(≤k)
ANDP and copt is the globally optimal cost. Then the following inequality

is fulfilled:

ckopt
copt
≤
(

1 +
⌊
nC
k + 1

⌋
·
(

1
nT + k + 1

)
·
(
cmax
cmin

− 1
))nΨ(k)

,

where Ψ and nΨ(k) are defined by:

Ψ(i) def=
{

1 if ci+1
opt < ciopt

0 otherwise
, nΨ(k)

def=
∑nC

i=k Ψ(i).

Proof. Firstly, the following inequality will be demonstrated by induction:

cjopt
copt
≤ BnΨ(j)

(j+1), ∀j/k ≤ j < nC , (3.5)

where B(j) =
(

1 +
⌊
nC
j

⌋
·
(

1
j+nT

)
·
(
cmax
cmin

− 1
))

.

Case 1.j = nC − 1. Since nC − 1 ≥ k then Γ(≤k)
ANDP ⊆ Γ(≤nC−1)

ANDP . Moreover, as we know that
c
nC−1
opt ≤ ckopt < +∞ then Γ(≤nC−1)

ANDP 6= ∅.

If cnC−1
opt = copt then

c
nC−1
opt

copt
= 1. Furthermore, as B(nC−1) > 0 and nΨ(nC−1) = Ψ(nC − 1) =

0, (cnC−1
opt = copt = c

nC
opt), then B

nΨ(nC−1)

(nC−1) = 1.

If cnC−1
opt > copt then Γ(≤nC−1)

ANDP ⊂ Γ(≤nC)
ANDP = ΓANDP . By Theorem 3.4.4, this implies that

c
nC−1
opt

c
nC
opt

≤ B(nC); moreover as nΨ(nC−1) = Ψ(nC−1) = 1, this implies that
c
nC−1
opt

c
nC
opt

≤ B
nΨ(nC )

(nC) ,

completing the proof of Case 1.
Case 2.j > h ≥ k. The inductive step is presented of the following way.
As inductive hypothesis (denoted by I.H.) the inequality 3.5 is satisfied ∀j > h ≥ k, and as
inductive thesis (denoted by I.T.) the inequality 3.5 is satisfied when j = h.
If chopt = ch+1

opt then nΨ(h) = nΨ(h+1). Therefore the following inequality is satisfied:

chopt
copt

=
ch+1
opt

copt

by I.H.
↑
≤ B

nΨ(h+1)

(h+2)

nΨ(h)=nΨ(h+1)

↑
= B

nΨ(h)

(h+2)

B(h+1)≥B(h+2)

↑
≤ B

nΨ(h)

(h+1),

proving that the I.T. is fulfilled when chopt = ch+1
opt .

Let us consider now the case chopt > ch+1
opt . Since chopt ≤ ckopt < +∞ then Γ(≤h)

ANDP 6= ∅.

The quotient
chopt
copt

can be seen as:
chopt
copt

=
chopt

ch+1
opt

· c
h+1
opt

copt
. By I.H. it is fulfilled the inequality

ch+1
opt

copt
≤

B
nΨ(h+1)

(h+2) . Moreover by theorem 3.4.4
chopt

ch+1
opt

≤ B(h+1). Therefore the following inequality is

satisfied:

chopt
copt
≤ B(h+1) ·B

nΨ(h+1)

(h+2)

B(h+1)≥B(h+2)

↑
≤ B

1+nΨ(h+1)

(h+1) .
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Furthermore nΨ(h) = Ψ(h) + nΨ(h+1) = 1 + nΨ(h+1), this implies that:

chopt
copt
≤ B1+nΨ(h+1)

(h+1) = B
nΨ(h)

(h+1),

as required, and completing the inductive step.
To complete the proof, in the inequality 3.5 is chosen j = k. This completes the proof of the
Corollary.

Proposition 3.4.6. The bound given by the theorem 3.4.4 is tight respect to k for certain
topologies. That is to say, fixed k there exists at least an ANDP in the hypotheses of the
theorem, such that the inequality is satisfied by means of strict equality.

Proof. Firstly, the case k = 1 will be presented. Let ANDP (S,E1 ∪ E2, C) be a problem in
the following conditions:

• SD = S1
D ∪ {sw1}, SC = {sc1}, ST = S1

T ∪ {st1 , st2};S1
D, S

1
T 6= ∅,

• the matrix C satisfies:

– only two connection costs exist, these are cmin and cmax = 2cmin,

– c(st,sw1 ) = cmin, ∀st ∈ S1
T ,

– c(st1 ,sw1 ) = c(st2 ,sw1 ) = cmax,

– c(st1 ,sc1 ) = c(st2 ,sc1 ) = c(sc1 ,sw1 ) = cmin,

– c(st,sw) = cmax, ∀sw ∈ S1
D, ∀st ∈ ST ,

– other feasible connections do not exist.

It is easy to see that the optimal costs of Γ(≤0)
ANDP and Γ1

ANDP respectively, satisfy:

c0
opt = (nT − 2) · cmin + 2cmax = cmin · (nT + 2),
c1
opt = (nT − 2) · cmin + 3cmin = cmin · (nT + 1).

Therefore, the quotient between both has the value:

c0
opt

c1
opt

=
cmin · (nT + 2)
cmin · (nT + 1)

=
(nT + 2)
(nT + 1)

.

Moreover, since
⌊
nC
k

⌋
= 1 and

(
cmax
cmin

− 1
)

= 1, the right side of the inequality has the value:

1 +
(

1
k + nT

)
= 1 +

(
1

1 + nT

)
=

(nT + 2)
(nT + 1)

.

Now, we will present the case k > 1. LetANDP (S,E1∪E2, C) be a problem in the following
conditions:
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• SD = {sw1} ∪ S1
D/|S1

D| > 1,

• SC = {sc1 , . . . , sck},

• ST =
⋃k
i=1 S

i
T /|SiT | > 1, SiT ∩ S

j

T = ∅, ∀i, j ∈ 1 . . . k, i 6= j,

• the matrix C satisfies:

– only two connection costs exist, these are cmin and cmax = 2cmin,

– c(sw1 ,sc1 ) = c(sci ,sci+1 ) = cmin, ∀i ∈ 1 . . . k − 1,

– c(st,sci )
= cmin, ∀st ∈ SiT , ∀i ∈ 1 . . . k,

– ∀sci ∈ SC , ∃sw ∈ S1
D/c(sci ,sw) = cmax,

– other feasible connections do not exist.

As in the previous example, it is easy to see that the optimal costs of Γ(≤k−1)
ANDP and Γ(≤k)

ANDP

respectively, satisfy:

ck−1
opt = ((k − 1) + nT − nkT ) · cmin + nkT · cmin + cmax = cmin · (nT + k + 1),
ckopt = cmin · (nT + k),

where nkT = |SkT |. The quotient between both has the value:

ck−1
opt

ckopt
=
cmin · (nT + k + 1)
cmin · (nT + k)

=
(nT + k + 1)

(nT + k)
.

Since
⌊
nC
k

⌋
=
⌊
k
k

⌋
= 1 and

(
cmax
cmin

− 1
)

= 1, the right side of the inequality has the value:

1 +
(

1
k + nT

)
= 1 +

(
1

k + nT

)
=

(nT + k + 1)
(nT + k)

.

3.5 The ANDP transformed to an instance of the SPG.

In this section we formulate the ANDP as a Steiner Problem in Graphs (SPG). Before start-
ing, some definitions are introduced. Lemma 3.5.3 and Lemma 3.5.4 shows the relationship
between both problems and both solutions respectively. After that, other properties are intro-
duced.

Definition 3.5.1. Given Ē3 = {(sw1 , sw2)/sw1 , sw2 ∈ SD} the set of all the connections
(feasible and non-feasible) between sites of SD, it is defined the set Ē = E1 ∪ E2 ∪ Ē3.
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Definition 3.5.2. The matrix of line laying costs restricted to E1 ∪ E2, is defined by:

A = {aij}/aij
def=
{
cij if i ∈ ST ∪ SC , j ∈ SC ∪ SD,
0 if i, j ∈ SD.

Lemma 3.5.3 (ANDP-SPG Relation). Let TA = TS,Ē,A(ST ∪ SD) be an optimal solution of
SPG(S, Ē, A, ST ∪ SD), where A is the matrix defined above. Then the sub-network TA\Ē3

is a global optimal solution of ANDP (S,E1 ∪ E2, C).

Proof. Let us suppose that HA = TA\Ē3 is not a globally optimal solution in ΓANDP . This
implies that there exists a feasible solution G ∈ ΓANDP so that COST(G) < COST(HA).
Let BG be the set the switch sites of G which have associate one access sub-network. Let
us consider the network N = (BG, Ē3(BG)). Let TN be a spanning tree solving problem
MSTP (BG, Ē3(BG), A|BG ). Clearly the network TN ∪ G is a feasible solution of
SPG(S, Ē, A, ST ∪ SD). Let us analyze its cost:

COST(TN ∪ G) = COST(G) < COST(HA) = COST(TA),

this contradicts the optimality of TA. Then, necessarily HA is a global optimal solution in
ΓANDP .

Lemma 3.5.4. Let Topt be an optimal solution of ANDP (S,E1 ∪E2, C). Considering the set

of switch sites BT
def= {sw ∈ SD/sw ∈ Topt}, the network Topt ∪ Hs is an optimal solution of

SPG(S, Ē, A, ST ∪ SD), whereHs is a spanning tree ofH = (BT , Ē3(BT )).

Proof. Again, by contradiction, let us suppose that Topt ∪ Hs is not a global optimal solu-
tion for the problem SPG(S, Ē, A, ST ∪ SD). Therefore there exists a feasible solution G of
SPG(S, Ē, A, ST ∪ SD), such that COST(G) < COST(Topt ∪ Hs). Considering the network
Ḡ = G \ Ē3, it is easy to see that Ḡ ∈ ΓANDP , and in addition:

COST(Ḡ) = COST(G) < COST(Topt ∪Hs) = COST(Topt),

which would imply that Ḡ is a better feasible solution than Topt in the space ΓANDP . This is
a contradiction, since by hypothesis Topt is a global optimum in ΓANDP ; completing therefore
the proof.

Definition 3.5.5. Given a real cε/0 < cε < cmin, we define the matrix Aε of the following
way:

Aε = {aij}/aij
def=
{
cij if i ∈ ST ∪ SC , j ∈ SC ∪ SD,
cε if i, j ∈ SD.
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Theorem 3.5.6 (ANDP-SPG Generalized Relation). Let TA = TS,Ē,Aε(ST∪SD) be an optimal
solution of SPG(S, Ē, Aε, ST ∪ SD), where Aε is the matrix defined above. Then the sub-
network TA\Ē3 is a global optimum of ANDP (S,E1 ∪ E2, C).

Proof. Let us suppose that TA\Ē3 is not globally optimal in ΓANDP . Then, there exists a
feasible solution G ∈ ΓANDP such that COST(G) < COST(TA\Ē3). Let TB be a spanning tree
solving problem MSTP (SD, Ē3, Aε). It is easy to see that the network TB ∪ G is a feasible
solution for the SPG(S, Ē, Aε, ST ∪ SD), and furthermore its cost is COST(G) + (nD − 1)cε.
On the other hand, considering the induced network TA(SD), and since in ḠB = (SD, Ē3)
all the connections have cost cε/0 < cε < cmin, easily we can infer that COST(TA(SD)) =
(nD−1)cε (because, if S∗C is an optimal set of concentrator sites, when computing the network
MST(SD ∪ S∗C ∪ ST , Ē|(SD∪S∗C∪ST ), A) applying Kruskal’s algorithm or Prim’s algorithm, the
(nD−1) first selected connections necessarily belong to ḠB). We can immediately deduce the
following relation;

COST(TA\Ē3)
Kruskal’s theorem

↑
= COST(TA)− (nD − 1)cε > COST(G),

implying the equation:

COST(TA) > COST(G) + (nD − 1)cε = COST(TB ∪ G),

contradicting therefore that TA is globally optimal for the SPG(S, Ē, Aε, ST ∪ SD). Hence,
the network TA\Ē3 must be a global optimal solution in ΓANDP , as required, and completing
the proof.

Definition 3.5.7. Given C = (SD, UC) a cycle formed by all the switch sites of SD, we define
the matrix Bε as follows:

Bε = {bij}/bij
def=


cij if i ∈ ST ∪ SC , j ∈ SC ∪ SD,
cε if (i, j) ∈ UC,
∞ if i, j ∈ SD, (i, j) 6∈ UC,

where cε satisfies 0 < cε < cmin.

Corollary 3.5.8. Let C = (SD, UC) be a cycle formed by all the switch sites of SD and Bε
the matrix defined above. Let TA = TS,(UC∪E1∪E2),Bε(ST ∪ SD) be an optimal solution of
SPG(S,UC ∪ E1 ∪ E2, Bε, ST ∪ SD). Then the sub-network TA \ UC is a global optimal
solution of ANDP (S,E1 ∪ E2, C).

Proof. Let us suppose that ∃G ∈ ΓANDP so that COST(G) < COST(TA\UC). We define the
network GB = G ∪ TA(SD). Easily we could verify that GB is a feasible solution for the
SPG(S,UC ∪E1 ∪E2, Bε, ST ∪SD). By the exposed in the previous theorem, we know that;

COST(TA\UC)
Kruskal’s theorem

↑
= COST(TA)− (nD − 1)cε > COST(G),
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being established the following relation:

COST(TA) > COST(G) + (nD − 1)cε = COST(GB).

But this contradicts the optimality of TA, therefore TA \ UC is a global optimum in the space
ΓANDP .

Proposition 3.5.9. Given anANDP (S,E1∪E2, C) and a sub-set of concentrator sites S̄C ⊆
SC . The network MST(SD ∪ S̄C ∪ ST , Ē|(SD∪S̄C∪ST ), A) \ Ē3 is the best feasible solution of
ΓANDP containing exactly the set of concentrators S̄C .

Proof. The problem is reduced to solve the MSTP (SD ∪ S̄C ∪ ST , Ē|(SD∪S̄C∪ST ), A).

Corollary 3.5.10. Given an ANDP (S,E1 ∪ E2, C), let us suppose that the set S∗C ⊆ SC is
a maximal subset of concentrator sites present in some optimal solution of ΓANDP . Then, the
topology of the network MST(SD ∪ S∗C ∪ ST , Ē|(SD∪S∗C∪ST ), A) \ Ē3 is globally optimal.

Proof. Let us suppose that TMST = MST(SD ∪ S∗C ∪ ST , Ē|(SD∪S∗C∪ST ), A) \ Ē3 is not glob-
ally optimal for the ANDP. Then, ∃T ∈ ΓANDP /COST(T ) < COST(TMST). Let us consider
the network ḠB = (SD, Ē3). Let H be a spanning tree on this network. Clearly, the network
H ∪ T is a feasible solution for the SPG(S, Ē, A, ST ∪ SD), and furthermore it is satisfied
COST(T ) = COST(H ∪ T ). Now, since TMST is a global optimum for the SPG, then the
following relation is fulfilled:

COST(T ) = COST(H ∪ T ) ≥ COST(TMST),

completing therefore the proof.

Definition 3.5.11. We define the subset associated to ST ∪SC of connections of minimum cost
towards the backbone network as:

Em =
{

(si, sw) ∈ E1 ∪ E2/sw ∈ SD, and ∀ ∈ s̄w ∈ (SD \ {sw}), c(si,sw) ≤ c(si,s̄w)

}
.

Definition 3.5.12. Given an ANDP (S,E1 ∪ E2, C), we define the shrunk Steiner problem
associated to the ANDP as SPG(S,D, C|D, ST ∪ {zw}), where:

• zw is a fictitious node representing all the backbone network,

• D = {(si, sc) ∈ E1 ∪ E2/si ∈ ST ∪ SC , sc ∈ SC} ∪ {(si, zw)/∃(si, sw) ∈ Em}.

Proposition 3.5.13. Let SPG(S,D, C|D, ST ∪{zw}) be the shrunk Steiner problem associated
to the ANDP (S,E1 ∪E2, C). Let T (opt) ∈ ΓANDP and G(opt) be optimal solutions for the in-
stances ANDP and SPG respectively. Then, their costs satisfy: COST(T (opt)) = COST(G(opt)).
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Proof. According to the definitions ofEm andD, it is evident that the inequality COST(T (opt)) ≤
COST(G(opt)) is fulfilled. Now, let us analyze the case of strict inequality COST(T (opt)) <
COST(G(opt)). It is easy to see that ∀(si, sw) ∈ T (opt), with si ∈ ST ∪ SC , sw ∈ SD, neces-
sarily (si, sw) ∈ Em. Let Ĝ be the network builded by means of the connection replacements:
Ĝ = Υ(T (opt)), where Υ(·) is the connection substitution operator which is defined by:

Υ(si,s)
def=
{

(si, s) if si ∈ ST ∪ SC , s ∈ SC ,
(si, zw) if s ∈ SD,

and given (si, s) ∈ T , Υ(T ) = Υ(si,s) ∪Υ(T \{(si,s)}).
Easily, we can see that the network Ĝ is a feasible solution for the shrunk SPG, and in addition:
COST(Ĝ) = COST(T (opt)). This implies COST(Ĝ) < COST(G(opt)), contradicting G(opt) being
globally optimal, and implying therefore the equality of costs: COST(T (opt)) = COST(G(opt)),
as required.

Definition 3.5.14. Given an ANDP (S,E1 ∪E2, C), we define the set of concentrator sites of
first level as: L(1)

C = {sc ∈ SC/ 6 ∃s̄c ∈ (SC \ {sc}), so that sc ∈ As̄c}.

Notation 3.5.15. Given an ANDP (S,E1 ∪ E2, C), we introduce the following notation:

• Ē2 = {(i, j) ∈ E2/i ∈ SC , j ∈ SD}, and Ū = E1 ∪ Ē2.

• C̄ = C|Ū = {c̄ij}/c̄ij =
{
cij if (i, j) ∈ Ū ,
∞ otherwise.

• F(ANDP)

T = {st ∈ ST / 6 ∃sc ∈ SC/st ∈ Asc}.

• Given T ∈ ΓANDP and sw ∈ SD, T(sw) denotes the tree access sub-network which has
the switch site sw as root.

Lemma 3.5.16. Given an ANDP (S,E1 ∪ E2, C), let us suppose that in all the sites of SC
concentrator machines were installed. Then,

COST(MST(S, Ē, A)) =
∑
∀sw∈SD

COST(MST(Asw , E(Asw), C|Asw )),

if and only if ∀sw ∈ SD/|Asw | > 1, it is fulfilled that Asc ⊂ Asw , ∀sc ∈ Asw .

Proof. Without loss of generality, we will assume that do not exist border sites with respect to
sites that do not belong to its switch covering area.
(⇒). By contradiction, let us suppose that there exist sw ∈ SD, sc ∈ SC , sc ∈ Asw , so that
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Asc 6⊂ Asw . This implies that ∃s ∈ (ST ∪ SC), s̄w ∈ SD/s ∈ As̄w , and s ∈ Asc . We will
denote:

TA =
⋃

∀sw∈SD

{
MST(Asw ,E(Asw ),C|Asw )

}
.

Let (s, s̄) ∈ TA be the connection such that s̄ ∈ (SC ∪ SD) is the adjacent site to s in the path
towards the backbone network. We build the following network:

NA = (TA \ {(s, s̄)}) ∪ {(s, sc)}.

Clearly NA is a tree spanning all the sites of S, and in addition:

COST(NA) = COST(TA)− c(s,s̄) + c(s,sc)

s∈Asc
↑
< COST(TA),

but this would imply that COST(NA) < COST(MST(S, Ē, A)), contradicting the optimality of
MST(S, Ē, A).
(⇐). Again, we proceed by contradiction. Let us suppose that:

COST(MST(S, Ē, A)) <
∑
∀sw∈SD

COST(MST(Asw , E(Asw), C|Asw )).

It is easy to see that necessarily ∃(s, s̄c) ∈ MST(S, Ē, A)/s ∈ Asw , and s̄c ∈ As̄w , where
s ∈ (ST ∪ SC), s̄c ∈ SC , sw, s̄w ∈ SD, sw 6= s̄w. We will analyze the following cases.
Case A: s ∈ (F(ANDP)

T ∪ L(1)

C ). Considering the network:

GA =
(
MST(S, Ē, A) \ {(s, s̄c)}

)
∪ {(s, sw)},

we have that GA is a tree spanning the sites of S, and besides:

COST(GA) = COST(MST(S, Ē, A))− c(s,s̄c) + c(s,sw)

6∃sc/s∈Asc
↑
< COST(MST(S, Ē, A)),

consequently MST(S, Ē, A) would not be globally optimal. This is a contradiction.
Case B: ∃sc ∈ SC/s ∈ Asc . By hypothesis we know that Asc ⊂ Asw . Let us build the
network:

GA =
(
MST(S, Ē, A) \ {(s, s̄c)}

)
∪ {(s, sc)}.

This network is a tree topology spanning S, and moreover:

COST(GA) = COST(MST(S, Ē, A))− c(s,s̄c) + c(s,sc)

s∈Asc
↑
< COST(MST(S, Ē, A)),

implying that MST(S, Ē, A) would not be globally optimal. But this is contradictory, com-
pleting therefore the proof.
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Proposition 3.5.17. Considering the restricted problemANDP (S,E1∪Ē2, C̄), let us suppose
that ∀st ∈ (ST \ F(ANDP)

T ), with st ∈ Asw , it is fulfilled the following inequality:

min
{
c(st,s̄c); ∀s̄c ∈ (SC \Asw)

}
> max

{
c(st,s);∀s ∈ Asw

}
.

Then the feasible solution T̄ =
⋃
∀sw∈SD TAsw ,Ū(Asw ),C̄(SwT ∪ {sw}) belonging to the space

ΓANDP and corresponding to the union of optimal solutions associated to the instances
SPG(Asw , Ū(Asw), C̄, SwT ∪ {sw}), ∀sw ∈ SD, is the best feasible solution of Γ(≤1)

ANDP .

Proof. Firstly, it is easy to demonstrate that for all best feasible solution of Γ(≤1)
ANDP , all terminal

site of F(ANDP)

T is directly connected to the switch site sw ∈ SD to which it belongs to its
covering area Asw . Moreover, if T (opt) is a feasible solution of minimum cost in the subspace
Γ(≤1)
ANDP , it is easy to see that for all concentrator site sc ∈ SC/sc ∈ T (opt) then sc ∈ T (opt)

(sw) ,
where sc ∈ Asw , sw ∈ SD.
Let us suppose that T̄ is not the best feasible solution in Γ(≤1)

ANDP . Then, for all T (opt) ∈
Γ(≤1)
ANDP (T (opt) best solution of Γ(≤1)

ANDP ) ∃st ∈ ST /st ∈ T (opt)

(s̄w) , with s̄w 6= sw, st ∈ Asw ,

st 6∈ As̄w . Let T̄ (opt) ∈ Γ(≤1)
ANDP be a solution of minimum cost. Let us denote: YT = {st ∈

ST /st ∈ Asw , st ∈ T̄
(opt)

(s̄w) , st 6∈ As̄w}. Let us consider a terminal site st ∈ YT , we know that

∃sw, s̄w ∈ SD such that st ∈ T̄ (opt)

(s̄w) , st 6∈ As̄w , and st ∈ Asw . Let p(st,sw) be the shortest
path between st and sw in ḠA = (S, Ū). If p(st,sw) has the form (st, sc, sw), with sc ∈ SC ,
necessarily sc ∈ Asw , otherwise we would have that st 6∈ Asw . Therefore, it is fulfilled that
p(st,sw) ⊂ Ū(Asw). Let us analyze the following cases.
Case 1: (st, s̄w) ∈ T̄ (opt). Since st ∈ Asw then cpmin(st, sw) ≤ c(st,s̄w). Now, we define the
solution:

H =
(
T̄ (opt) \ {(st, s̄w)}

)
∪ {p(st,sw)}.

The solutionH satisfiesH ∈ Γ(≤1)
ANDP , st ∈ H(sw), and besides:

COST(H) = COST(T̄ (opt))− c(st,s̄w) + cpmin(st, sw) ≤ COST(T̄ (opt)).

Case 2: (st, s̄v, s̄w) ∈ T̄ (opt). Where s̄v ∈ As̄w , s̄v ∈ SC . Let sv ∈ Asw be the site that fulfills
c(st,sv) = min

{
(st, s);∀s ∈ (T̄ (opt)

(sw) ∩Asw)
}

, (we assume that c(st, sw) < ∞, if st ∈ Asw ).
The following inequalities are satisfied:

c(st,sv) ≤ max
{
c(st,s);∀s ∈ Asw

} by hyp.
↑
< min

{
c(st,s̄c); ∀s̄c ∈ (SC \Asw)

}
≤ c(st,s̄v).

Again, we define a new solution given by:

H =
(
T̄ (opt) \ {(st, s̄v)}

)
∪ {(st, sv)}.

As in the previous case, this solution satisfies H ∈ Γ(≤1)
ANDP , st ∈ H(sw), and in addition the

inequality:

COST(H) = COST(T̄ (opt))− c(st,s̄v) + c(st,sv) < COST(T̄ (opt)).
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Repeating the reasoning seen in the above cases, for all terminal site st ∈ YT we obtain a
feasible solution H̄ ∈ Γ(≤1)

ANDP which fulfills that st ∈ H̄(sw), ∀st ∈ YT , and furthermore

COST(H̄) ≤ COST(T̄ (opt)). This implies the existence of an optimal solution of Γ(≤1)
ANDP where

all the sites of ST ∪ SC belonging to the solution are in their respective switch covering areas.
Hence T̄ defined above, is a feasible solution of minimum cost in Γ(≤1)

ANDP , as required, and
completing the proof.

Proposition 3.5.18. Given an ANDP (S,E1 ∪ E2, C) such that in GA = (S,E1 ∪ E2) for
any three sites (s1, s2, s3) with s1 ∈ ST ∪ SC , s2 ∈ SC , and s3 ∈ SC ∪ SD, the triangular
inequality is fulfilled, i.e., c(s1,s3) ≤ c(s1,s2) + c(s2,s3). Then the following points are satisfy:

1. c(s,sw) = cpmin(s, sw), ∀s ∈ ST ∪ SC ,

2. c(s,sw) ≤ c(s,s̄w), ∀s ∈ Asw , s̄w 6= sw, sw, s̄w ∈ SD.

Proof. Let us consider two sites of GA, s ∈ ST ∪ SC and sw ∈ SD. Let pmin(s,sw) be the
shortest path between s and sw in GA. We denote by `(p) the length of the path p. We will
demonstrate by induction in `(p) the statement (1).
Case 1: `(pmin) ≤ 2. If `(pmin) = 1 then pmin(s,sw) = (s, sw). If `(pmin) = 2 then there
exits sc ∈ SC such that pmin(s,sw) = (s, sc, sw). Considering the triangle formed by the sites
{s, sc, sw}, the following inequality is satisfies:

c(s,sw)

by4 ineq.
↑
≤ c(s,sc) + c(sc,sw)

by hyp.
↑
= cpmin(s, sw),

this implies that c(s,sw) = cpmin(s, sw).
Case 2: 2 < `(pmin) = k ≤ h. The inductive step is formulated of the following way.
As inductive hypothesis (denoted by I.H.) the statement (1) is satisfied when `(pmin) = k < h,
and as inductive thesis (denoted by I.T.) the statement (1) is satisfied when `(pmin) = h.
Let us suppose that the length of the shortest path between s and sw has the value 2 < `(pmin) =
h. Then, there exits a concentrator site sc such that sc ∈ pmin(s,sw). Let p̄min(sc,sw) be the
shortest path between sc and sw in GA, which is contained in pmin(s,sw), i.e., pmin(s,sw) =(
(s, sc)CONC(p̄min(sc,sw))

)
, where CONC is the concatenation operator. Since `(p̄min) = h−1

then by I.H. it is fulfilled that c(sc,sw) = cpmin(sc, sw), implying cpmin(s, sw) = c(s,sc) +
c(sc,sw). Moreover, by triangular inequality we know that c(s,sw) ≤ c(s,sc) + c(sc,sw), imply-
ing c(s,sw) ≤ cpmin(s, sw). Discarding the case c(s,sw) < cpmin(s, sw), we have c(s,sw) =
cpmin(s, sw), as required, and completing the induction on the statement (1).
In order to prove the statement (2), let us consider s ∈ ST ∪ SC , sw ∈ SD/s ∈ Asw , and
s̄w ∈ SD, s̄w 6= sw. By definition of switch covering area cpmin(s, sw) ≤ c(s,s̄w), and state-
ment (1) implies that c(s,sw) ≤ c(s,s̄w); concluding therefore the proof.
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Lemma 3.5.19. Let ANDP (S,E1 ∪ E2, C) be an instance where in GA = (S,E1 ∪ E2) for
any three sites (s1, s2, s3) with s1 ∈ ST ∪ SC , s2 ∈ SC , and s3 ∈ SC ∪ SD, the triangular
inequality is fulfilled, i.e., c(s1,s3) ≤ c(s1,s2) + c(s2,s3), and besides the following inequality is
satisfied:

min
{
c(sl,sq);∀sq ∈ (SC \Asw)

}
> max

{
c(sl,s); ∀s ∈ (Asw \ ST )

}
,

for all sl ∈ (Asw \ {sw}), and sw ∈ SD. Then, the feasible solution of ΓANDP given by
T =

⋃
∀sw∈SD TAsw ,E(Asw ),C(SwT ∪ {sw}) is globally optimal to less of reassignments of

border sites.

Proof. Firstly, we know that in any global optimal solution of ΓANDP , all terminal site st ∈
F(ANDP)

T is connected directly to the switch site sw/st ∈ Asw . Now, let us see what happens
with the sites of SC ∪ (ST \ F(ANDP)

T ). We will prove that ∀sc ∈ SC , if T (opt) (where T (opt)

is globally optimal in ΓANDP ) then sc ∈ T (opt)

(sw) , with sc ∈ Asw , to less of a connection
reassignment when sc is a border site.
Let T (opt) be a global optimal solution of ΓANDP . Let us suppose that ∃sc ∈ T (opt) such that
sc ∈ T (opt)

(s̄w) , with sc ∈ Asw , s̄w 6= sw, s̄w ∈ SD. Let us analyze the following cases.
Case A: (sc, s̄w) ∈ T (opt). Since sc ∈ Asw , by Proposition 3.5.18 we know that c(sc,sw) ≤
c(sc,s̄w). Let G be a solution defined by:

G =
(
T (opt) \ {(sc, s̄w)}

)
∪ {(sc, sw)},

this network satisfies G ∈ ΓANDP , sc ∈ G(sw), and in addition the inequality:

COST(G) = COST(T (opt))− c(sc,s̄w) + c(sc,sw) ≤ COST(T (opt)).

Case B: ∃s̄c ∈ T (opt)

(s̄w) /(sc, s̄c) ∈ T
(opt). Let p(sc,s̄w) be the path that communicates the site sc

with s̄w in T (opt). We will distinguish two different subcases.
Subcase B.1: If ∀sv ∈ SC/sv ∈ p(sc,s̄w) it is satisfied that sv ∈ Asw , let s̄v ∈ p(sc,s̄w) be the
adjacent site to s̄w in T (opt). Let us consider the network defined by:

G =
(
T (opt) \ {(s̄v, s̄w)}

)
∪ {(s̄v, sw)}.

The network thus defined fulfills that G ∈ ΓANDP , and sc ∈ G(sw) (particularly sv ∈ T (opt)

(s̄w) ,
∀sv ∈ p(sc,s̄w)). Moreover, since s̄v ∈ Asw by Proposition 3.5.18 we know that c(s̄v ,sw) ≤
c(s̄v ,s̄w). Therefore, the following inequality is fulfilled:

COST(G) = COST(T (opt))− c(s̄v ,s̄w) + c(s̄v ,sw) ≤ COST(T (opt)).

Subcase B.2: If ∃su ∈ p(sc,s̄w)/su 6∈ Asw ; let s̄u ∈ p(sc,s̄w) be the concentrator site closest to
sc in p(sc,s̄w) so that s̄u 6∈ Asw . Furthermore let us consider s̄r ∈ Asw the concentrator site
adjacent to s̄u in p(sc,s̄w) closest to sc (eventually s̄r = sc, and s̄u = s̄c). Again, we define a
new network given by:

G =
(
T (opt) \ {(s̄r, s̄u)}

)
∪ {(s̄r, sw)}.
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This network satisfies G ∈ ΓANDP and sc ∈ G(sw). Its cost fulfills:

COST(G) = COST(T (opt))− c(s̄r,s̄u) + c(s̄r,sw).

By hypothesis, since s̄r ∈ Asw , we know:

c(s̄r,s̄u) ≥ min
{
c(s̄r,sq); ∀sq ∈ (SC \Asw)

}
> max

{
c(s̄r,s); ∀s ∈ (Asw \ ST )

}
.

In addition max
{
c(s̄r,s);∀s ∈ (Asw \ ST )

}
≥ c(s̄r,sw). Therefore c(s̄r,s̄u) > c(s̄r,sw), and

implying that COST(G) < COST(T (opt)).
Once analyzed the previous points, we infer that if sc ∈ T (opt) then sc ∈ T (opt)

(sw) (with sc ∈ Asw )
unless sc is a border site, where in this case it is easy to see that there exits T̄ (opt) ∈ ΓANDP
such that it is globally optimal and obtained from T (opt), reconnecting the border concentrator
sites to their respective switch sites (from the switch covering area to which belongs).
Now, let us consider the terminal sites of (ST \ F(ANDP)

T ). We will demonstrate that ∀st ∈
(ST \ F(ANDP)

T )/st ∈ Asw , it is fulfilled that st ∈ T (opt)

(sw) , ∀T (opt) ∈ ΓANDP global optimal
solution.
Again, considering T (opt) as globally optimal, let us suppose that ∃st ∈ (ST \ F(ANDP)

T ) such
that st ∈ T (opt)

(sw) , st ∈ Asw , s̄w ∈ SD, and s̄w 6= sw. We will differentiate the following cases.
Case C: (st, s̄w) ∈ T (opt). Since st ∈ Asw , by Proposition 3.5.18 we know that c(st,sw) ≤
c(st,s̄w). Let G be a solution defined by:

G =
(
T (opt) \ {(st, s̄w)}

)
∪ {(st, sw)},

this network satisfies G ∈ ΓANDP , st ∈ G(sw), and furthermore:

COST(G) = COST(T (opt))− c(st,s̄w) + c(st,sw) ≤ COST(T (opt)).

Case D: ∃s̄c 6∈ Asw , s̄c ∈ SC/(st, s̄c) ∈ T (opt). Once again, let us define the following
network:

G =
(
T (opt) \ {(st, s̄c)}

)
∪ {(st, sw)}.

Clearly G ∈ ΓANDP and st ∈ G(sw). In addition, knowing that st ∈ Asw and using the
hypotheses is deduced the inequality:

c(st,s̄c) ≥ min
{
c(s̄t,sq); ∀sq ∈ (SC \Asw)

}
> max

{
c(s̄t,s); ∀s ∈ (Asw \ ST )

}
≥ c(st,sw).

Hence, we have the following relation:

COST(G) = COST(T (opt))− c(st,s̄c) + c(st,sw) < COST(T (opt)).

Now, considering the cases C and D, we also prove that if st ∈ T (opt) then st ∈ T (opt)

(sw)
(with st ∈ Asw ) unless st is a border site, where as we saw above, in this case there exits
T̄ (opt) ∈ ΓANDP globally optimal and builded from T (opt), reconnecting the border terminal
sites to their respective switch sites (from the switch covering area to which belongs).
Finally, according to the cases previously exposed, we conclude that under the hypotheses of
the Lemma there exits a global optimal solution where all the sites of ST ∪SD belong to access
sub-networks formed by trees that have as root to the switch site of the covering area to which
these belong. Therefore, T is globally optimal to less of reassignments of border sites.
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Notation 3.5.20. Let ANDP (S,E1 ∪ E2, C) be an ANDP instance. We denote by
Γ(SPG)

ANDP /Γ
(SPG)

ANDP ⊆ ΓANDP to the set of feasible solutions in ΓANDP given by the union of
the optimal solutions of
SPG(Asw , E(Asw), C, SwT ∪ {sw}), ∀sw ∈ SD.

Proposition 3.5.21. Let ANDP (S,E1 ∪ E2, C) be an instance where for any three sites
(s1, s2, s3) with s1 ∈ ST ∪SC , s2 ∈ SC , and s3 ∈ SC ∪SD, the triangular inequality is satis-
fied. If all global optimal solution of ΓANDP belongs to Γ(SPG)

ANDP , then given T (opt) ∈ Γ(SPG)

ANDP ,
it is fulfilled the following points.

1. ∀(su, sv) ∈ T (opt) (with su, sv ∈ Asw , sw ∈ SD):

(i) ∀s̄c ∈ (SC \Asw), c(su,sv) < c(su,s̄c) + c(s̄c,sv).

(ii) c(su,sv) < min
{
c(su,s̄);∀s̄ ∈ (T (opt) \Asw), s̄ ∈ SC ∪ SD)

}
, (considering the con-

nection (su, sv), we assume that sv is the site closest to sw in Topt).

2. ∀s̄c ∈ (SC \Asw) (with s̄c ∈ As̄w , sw, s̄w ∈ SD), and ∀XT ⊆ (T (opt) \ SD);∑
(su,s)∈T (opt)/su∈XT

c(su,s) <
∑

su∈XT

c(su,s̄c) + min
{
c(s̄c,s̄); ∀s̄ ∈ (T (opt)

(s̄w) \ S
w̄
T )
}
.

Proof. Firstly, we will demonstrate the statement (1.i). Let T (opt) ∈ Γ(SPG)

ANDP be a global
optimal solution. Let us suppose that ∃(su, sv) ∈ T (opt) and s̄c ∈ (SC \ Asw) such that:
c(su,sv) ≥ c(su,s̄c) + c(s̄c,sv). Since in GA the triangular inequality is satisfied, then c(su,sv) =
c(su,s̄c) + c(s̄c,sv). Let us define the following access network:

G =
(
T (opt) \ {(su, sv)}

)
∪ {(su, s̄c), (s̄c, sv)}.

This solution satisfies G 6∈ Γ(SPG)

ANDP (because s̄c 6∈ Asw ), G ∈ (ΓANDP \ Γ(SPG)

ANDP ) , and
moreover:

COST(G) = COST(T (opt))− c(su,sv) + c(su,s̄c) + c(s̄c,sv) = COST(T (opt)),

implying that G also would be a global optimal solution. This contradicts the hypothesis. Now,
let us see the statement (1.ii). Again, we suppose that ∃(su, sv) ∈ T (opt) so that: c(su,sv) ≥
min

{
c(su,s̄);∀s̄ ∈ (T (opt) \Asw), s̄ ∈ SC ∪ SD)

}
= c(su,s̄r), with s̄r ∈ (T (opt) \ Asw). Con-

sidering the network:
G =

(
T (opt) \ {(su, sv)}

)
∪ {(su, s̄r)},

it satisfies G 6∈ Γ(SPG)

ANDP (because s̄r 6∈ Asw ), G ∈ (ΓANDP \ Γ(SPG)

ANDP ), and in addition:

COST(G) = COST(T (opt))− c(su,sv) + c(su,s̄r) ≥ COST(T (opt)),
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therefore G also would be globally optimal. This is a contradiction. Hence we have proven the
statement (1).
Now, we will prove the statement (2). Let T (opt) ∈ Γ(SPG)

ANDP be an optimal solution, let us
consider s̄c ∈ (SC \Asw), s̄c ∈ As̄w/s̄w ∈ SD, and XT ⊆ (T (opt) \ SD).
Case A: XT = {su}. Let (su, s) ∈ T (opt)

(sw) be the line connection present in T (opt). Then, the
following inequality is fulfilled:

c(su,s)

by (1.i)
↑
< c(su,s̄c) + c(s̄c,s)

s̄c ∈ As̄w

↑
≤ c(su,s̄c) + min

{
c(s̄c,s̄);∀s̄ ∈ (T (opt)

(s̄w) \ S
w̄
T )
}
.

Case B: |Y | > 1. Let s̄m ∈ (T (opt)

(s̄w) \ S
w̄
T ) be the site that satisfies:

c(s̄c,s̄m) = min
{
c(s̄c,s̄);∀s̄ ∈ (T (opt)

(s̄w) \ S
w̄
T )
}
.

Let us suppose that: ∑
(su,s)∈T (opt)/su∈XT

c(su,s) ≥
∑

su∈XT

c(su,s̄c) + c(s̄c,s̄m).

Given the network:

H =
(
T (opt) \ {(su, s) ∈ T (opt)/su ∈ XT }

)
∪ {(su, s̄c)/su ∈ XT } ∪ {(s̄c, s̄m)},

it is easy to see that this network is a feasible solution of the ANDP and furthermore satisfies
H ∈

(
ΓANDP \ Γ(SPG)

ANDP

)
. Besides, analyzing its cost, we have:

COST(H) = COST(T (opt))−
∑

(su,s)∈T (opt)/su∈XT

c(su,s) +
∑

su∈XT

c(su,s̄c) + c(s̄c,s̄m)

≤ COST(T (opt)),

but this implies that H is also a global optimal solution. This is a contradiction, therefore the
statement (2) is fulfilled.

Theorem 3.5.22. Given an ANDP (S,E1 ∪ E2, C) instance and a fixed integer k > 1. Let
us suppose that there exists a subset of terminal sites XT = {st1 , . . . , str} ⊆ ST , so that
P = {p(1), . . . , p(r)} is a set of shortest paths from the sites of XT towards the backbone
network in GA, which satisfy `(p(i)) ≤ k (where `(·) is the length operator), ∀p(i) ∈ P . Let
XC ⊆ SC be the set of concentrator sites present in P . If the following conditions are satisfied:

1. ∀p(i) ∈ P/p(i) ∩ (P \ p(i)) = ∅, COST(p(i)) < cpmin(sti , s̄c), ∀s̄c ∈ (SC \ p(i)).

2. ∀sc ∈ XC/∃p(i), p(j) ∈ P, with sc ∈ (p(i) ∩ p(j)), it is fulfilled:

(a) COST(p(i)

(sc,sw)) < c(sc,s̄c), ∀s̄c ∈ (SC \ (p(i) ∪ p(j))),
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(b) COST(p(i)

(sti ,sc)
) < c(sti ,s̄c)

, ∀s̄c ∈ (SC \ p(i)) symmetrically for p(j)).

3. ST = XT ∪ {st ∈ (ST \XT )/∃sc ∈ XC ,with st ∈ Asc} ∪ F(ANDP)

T .

Then ∃T (k) ∈ Γ(≤k)
ANDP global optimal solution of ΓANDP .

Proof. Firstly, it is easy to see that all terminal site of F(ANDP)

T is directly connected to some
switch site for any global optimal solution. We denote the set of direct connections from the
sites of F(ANDP)

T towards the backbone network by:

F =
{

(st, sw) ∈ E1/st ∈ F(ANDP)

T , st ∈ Asw ,with sw ∈ SD
}
.

We denote X̄T = ST \ (XT ∪ F(ANDP)

T ). Let L be the set of connections given by:

L = {(st, sc) ∈ E1; where st ∈ X̄T , sc ∈ XC , and st ∈ Asc}.

By (3) all the nodes of X̄T are considered in L. Moreover, by definition of concentrator
covering area, COST(L) is equal to the minimum cost of connecting all the terminal sites of X̄T

to any site of SC ∪ SD, and therefore it is a lower bound for the sum of the direct connections
of the sites of X̄T in all global optimal solution of ΓANDP .
We divide the sets XT and P in the following subsets:

• X(1)

T = {sti ∈ XT /p
(i) ∩ (P \ p(i)) = ∅},

• X(2)

T = XT \X(1)

T ,

• P (1) = {p(i) ∈ P/sti ∈ X
(1)

T },

• P (2) = P \ P (1).

Now, we will see that P (1) ⊆ T (opt) where T (opt) is a global optimal solution of ΓANDP . Let
us suppose that P (1) 6⊆ T (opt), this implies that ∃stv ∈ XT such that if p̄(v) is the path from stv
towards the backbone network in T (opt) then p̄(v) 6= p(v). Let us analyze the following cases:
Case A: p(v) = (stv , sw)/sw ∈ SD. If p̄(v) = (stv , s̄w), necessarily c(stv ,sw) = c(stv ,s̄w) (stv
would be a border site). Considering T̄ (opt) = (T (opt) \ {(stv , s̄w)}) ∪ {(stv , sw)}, this is also
globally optimal. If ∃s̄c ∈ SC/s̄c ∈ p̄(v), let s̄ ∈ SC be the concentrator site closest to stv in
p̄(v). Considering T̄ (opt) = (T (opt) \ {(stv , s̄)}) ∪ {(stv , sw)}, clearly this is a feasible solution
of ΓANDP , and moreover applying (1) we have:

COST(T̄ (opt)) = COST(T (opt))− c(stv ,s̄)
+ c(stv ,sw) < COST(T (opt)),

contradicting that T (opt) is globally optimal.
Case B: ∃sc ∈ SC/sc ∈ p(v). If p̄(v) = (stv , s̄w), necessarily COST(p(v)) = c(stv ,s̄w) (stv
would be a border site). Again, T̄ (opt) = (T (opt) \ {(stv , s̄w)}) ∪ {p(v)} is a feasible solution
of ΓANDP and furthermore:

COST(T̄ (opt)) = COST(T (opt))− c(stv ,s̄)
+ COST(p(v))

stv is border site
↑
= COST(T (opt)),
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implying the optimality of T̄ (opt). Let us see the case when both paths are only different
by their last connection lines; (s̄, sw) ∈ p(v) and (s̄, s̄w) ∈ p̄(v). Considering T̄ (opt) =
(T (opt) \ {(s̄, s̄w)}) ∪ {(s̄, sw)}, we have that T̄ (opt) ∈ ΓANDP , and in addition:

COST(T̄ (opt)) = COST(T (opt))− c(s̄,s̄w) + c(s̄,sw)

p(v) is shortest
↑
≤ COST(T (opt)).

If the equality is fulfilled, then stv would be a border site and T̄ (opt) would be also globally
optimal. Otherwise, the strict inequality contradicts the optimality of T (opt).
Finally, let us suppose that p(v) and p̄(v) are different at least in one concentrator site. Let
s̄q ∈ p̄(v) be the concentrator site closest to stv in p̄(v) such that s̄q 6∈ p(v), and s ∈ p(v) its
preceding site. Let us consider the network:

T̄ (opt) =
(
T (opt) \ {(s, s̄q)}

)
∪ {p(v)}.

It is easy to see that T̄ (opt) ∈ ΓANDP , and besides the following relation is satisfied:

COST(T̄ (opt)) = COST(T (opt))− c(s,s̄q) + COST(p(v))

by (1)
↑
< COST(T (opt)).

This is a contradiction since T (opt) is globally optimal. Hence, of the cases previously analyzed
we infer that P (1) ⊆ T (opt) to less of reassignment of border sites.
Now, let us analyze the sites of X(2)

T . We will prove that COST(P (2)) is the minimum cost of
connecting the sites of X(2)

T to sites of SC ∪ SD acceding to the backbone network. Given
a maximal subset YT ⊆ X(2)

T /∀sti , stj ∈ YT , p
(i) ∩ p(j) 6= ∅. By induction in |YT |, we will

demonstrate that COST(P (2)

|YT ) is the minimum cost of connecting the terminal sites of YT to
sites of SC ∪ SD acceding to the backbone network.
Basic Step: |YT | = 2, YT = {sti , stj}. Let sc ∈ SC be the joint site in p(i) ∩ p(j) (we assume
that from sc, p(i) and p(j) are the same path). The following notation is introduced:

φ(sti ,stj ) = min
{
c(sti ,s̄c)

/s̄c ∈ (SC \ p(i))
}

+ min
{
c(stj ,s̄c)

/s̄c ∈ (SC \ p(j))
}
,

φ(sc) = min
{
c(sc,s̄c)/s̄c ∈ (SC \ (p(i) ∪ p(j)))

}
.

The minimum cost of connecting the terminal sites {sti , stj} to sites of SC ∪ SD acceding to
the backbone network is at the most:

min
{
φ(sti ,stj ),COST(p(i) ∪ p(j)),COST(p(i)

(sti ,sc)
) + COST(p(j)

(stj ,sc)
) + φ(sc)

}
by (2.b)
↑
> min

{
COST(p(i) ∪ p(j)),COST(p(i)

(sti ,sc)
) + COST(p(j)

(stj ,sc)
) + φ(sc)

}
by (2.a)
↑
> COST(p(i) ∪ p(j)),

completing therefore the demonstration of basic step.
Induction Step: |YT | > 2. Firstly, we denote by Cmin(YT ) to the minimum cost of connecting
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the terminal sites of YT to sites of SC ∪SD acceding to the backbone network. Let GY = P (2)

|YT
be the tree induced by YT and their shortest paths. Let sc ∈ SC be the joint site with greater
depth in GY . Let us choose a terminal site sti ∈ YT /p

(i)

(sti ,sc)
⊂ GY . Since by (2.b) we know

that:
COST(p(i)

(sti ,sc)
) < c(sti ,s̄c)

, ∀s̄c ∈ (SC \ p(i)),

considering ȲT = YT \ {sti}, we have the following relation:

Cmin(YT ) = Cmin(ȲT∪{sti})

by (2.a), (2.b)

↑
= Cmin(ȲT ) + COST(p(i)

(sti ,sc)
)

by I.H.
↑
=

= COST(P (2)

|ȲT
) + COST(p(i)

(sti ,sc)
)

by def.
↑
= COST(P (2)

|YT ),

as required, and completing the induction step.
Hence, dividing to the set XT in different disjoint components satisfying the above property,
then we have that Cmin(XT ) = COST(P (2)). Now, let us build the following network:

T (k) = (
⋃

∀p(i)∈P

{p(i)}) ∪ L ∪ F ,

clearly T (k) ∈ Γ(≤k)
ANDP , its cost is COST(F ∪ L) + COST(P (1)) + COST(P (2)), and by the

previously exposed this cost is minimal, therefore T (k) is globally optimal.

Notation 3.5.23. LetANDP (S,E1∪E2, C) be an ANDP instance. Given a feasible solution
T ∈ ΓANDP and a terminal site st ∈ ST . We introduce the following notation:

• pT (st) is the path from st towards the backbone network on T .

• pmin(st) is the shortest path from st towards the backbone network on GA.

• T(sc) denotes the sub-tree of T which has the concentrator site sc as root.

• pT (si,sj) is the path from si to sj on T .

• d̄T (si,sj) is the cost of the shortest path between the site si and sj restricted to the network
(GA \ EDGES(T )), and we denote as p̄T (si,sj) to this path.

Proposition 3.5.24. Given an ANDP (S,E1 ∪ E2, C) instance. Let us suppose that there
exists T ∈ Γ(≤k)

ANDP global optimal solution of ΓANDP . Then the following points are satisfied:

1. If COST(pT (st)) > COST(pmin(st)) or `(pmin(st)
) > k+ 1, ∃XT ⊆ ST , with st ∈ XT , and

at least one access sub-network TX ⊆ GA spanning XT so that DEPTH(TX) ≤ k+ 1 and
besides:

COST(TX) ≤ COST(
⋃

st∈XT

{pmin(st)}).
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2. ∀(sc, s) ∈ pT (st)/`(pT (st)
) ≤ k + 1, with st ∈ ST , and s ∈ SC ∪ SD, it is fulfilled:

c(sc,s) ≤ min
{

d̄T (sc,s̄c);∀s̄c ∈ (XC \ T(s))
}
,

where XC is the set of concentrator sites present in T .

Proof. Firstly, we will demonstrate (1). Let us suppose that ∃st ∈ ST such that COST(pT (st)) >
COST(pmin(st)) or `(pmin(st)

) > k+1. Let TX ⊆ T be the access sub-network with tree topology
spanning the terminal sites of XT /st ∈ XT . Clearly DEPTH(TX) ≤ k + 1. By contradiction,
we suppose that the following inequality is fulfilled:

COST(TX) > COST(
⋃

st∈XT

{pmin(st)}).

Let us consider the network: T̄ =
(
T \ EDGES(TX)

)
∪
(⋃

st∈XT {pmin(st)}
)

. It is easy to see
that T ∈ ΓANDP , let us see its cost:

COST(T̄ ) = COST(T )− COST(TX) + COST(
⋃

st∈XT

{pmin(st)}) < COST(T ),

this contradicts the optimality of T , completing the proof of (1).
To demonstrate (2), let us suppose that ∃st ∈ ST /`(pT (st)

) ≤ k+ 1 and ∃(sc, s) ∈ pT (st), with
s ∈ SC ∪ SD, such that: c(sc,s) > min

{
d̄T (sc,s̄c);∀s̄c ∈ (XC \ T(s))

}
. Let s̄ ∈ SC be the

concentrator site that minimize this distance. Let us build the network: T̄ = (T \ {(sc, s)}) ∪
{p̄T (sc,s̄)}. Clearly T̄ ∈ ΓANDP , and moreover:

COST(T̄ ) = COST(T )− c(sc,s) + d̄T (sc,s̄) < COST(T ).

This is a contradiction since T is globally optimal, proving thus the point (2), and completing
the proof.

Proposition 3.5.25. In the hypothesis of the previous Proposition, if in addition does not exist
a global optimal solution in Γ(≤k−1)

ANDP , then the following points are satisfied:

1. ∃pT (st,sw), with DEPTH(pT (st,sw)) = k + 1/∀(sc, s) ∈ pT (st,sw) it is fulfilled:

c(sc,s) ≥ min
{

d̄T (sc,s̄c);∀s̄c ∈ (XC \ T(s))/`(pT (st,sc)
,p̄T (sc,s̄c),pT (s̄c,s̄w)) ≤ k

}
.

2. Let KT ⊆ ST be the maximal subset so that ∀st ∈ KT , `(pT (st)
) = k + 1, and P =

{pT (st)/st ∈ KT }. ConsideringHA = (GA\EDGES(T ))∪P , for all access sub-network
GK ⊆ HA spanning KT and DEPTH(GK) ≤ k it is fulfilled:

COST(GK \ P) > COST(IK),

where IK =
{

(si, sj) ∈ pT (st),with st ∈ KT /si ∈ GK and sj 6∈ GK
}

.



The ANDP transformed to an instance of the SPG. 65

Proof. In order to prove (1), let us suppose that ∀pT (st)/DEPTH(pT (st)
) = k + 1, there exists a

connection (sc, s) ∈ pT (st) such that:

c(sc,s) ≥ min
{

d̄T (sc,s̄c);∀s̄c ∈ (XC \ T(s))/`(pT (st,sc)
,p̄T (sc,s̄c),pT (s̄c,s̄w)) > k

}
.

Let us denote by B the set of connections that fulfill the previous equation. If in B there exists
a connection fulfilling strictly the inequality, then we could build a feasible solution whose
cost is smaller to COST(T ), contradicting therefore the optimality of T . Otherwise, if in B all
the connections fulfill the equality, then considering the set of paths that induce to the equality
in the previous equation; P̄T =

{
p̄T (sc,s̄c)/c(sc,s) = d̄T (sc,s̄c),with (sc, s) ∈ B

}
, we build the

following network: GT = (T \ B) ∪ P̄T . It is easy to see that GT ∈ Γ(≤k−1)
ANDP . Now, let us

compare its cost:

COST(GT ) = COST(T )− COST(B) + COST(P̄T )

c(sc,s)=d̄T (sc,s̄c)

↑
= COST(T ),

but this implies that GT is also globally optimal, contradicting the hypothesis that in Γ(≤k−1)
ANDP

does not exist a global optimal solution. Hence, we have completed the proof of (1).
Now, we will prove the statement (2). In the hypotheses of (2), let us suppose that there
exists an access sub-network GK ⊆ HA spanning KT , DEPTH(GK) ≤ k and furthermore:
COST(GK \ P) ≤ COST(IK). We build the following network:

T̄ = (T \ IK) ∪
(
GK \ EDGES(P)

)
.

By construction, the network T̄ is a feasible solution of ΓANDP . Moreover, analyzing its
depth, we have: DEPTH(T̄ ) = max

{
DEPTH(GK),DEPTH(T \P)

}
≤ k, implying that particularly

T̄ ∈ Γ(≤k−1)
ANDP . Next, we will analyze its cost:

COST(T̄ ) = COST(T )− COST(IK) + COST(GK)− COST(P) ≤ COST(T ).

If the inequality is fulfilled strictly, we would have one better feasible solution that T̄ , and this
would imply the not-optimality of T . Therefore it would be a contradiction. If the equality is
fulfilled, then T̄ is also globally optimal and besides by the exposed above T̄ belongs to the
subspace Γ(≤k−1)

ANDP . But by hypothesis we know that in Γ(≤k−1)
ANDP does not exist optimal solutions.

Hence (2) is established, as required, and completing the proof.

Proposition 3.5.26. Given an ANDP (S,E1 ∪ E2, C) such that the following points are ful-
filled:

1. ∀st ∈ (ST \ F(ANDP)

T ), ∃sc ∈ L(1)

C /st ∈ Asc .

2. ∀st ∈ Asc , c(st,sw) < min
{
c(st,s̄c); ∀s̄c ∈

(
SC \ L(1)

C

)}
, where sc ∈ Asw , and sw ∈ SD.

Then all the global optimal solutions of ΓANDP belong to Γ(≤1)
ANDP .
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Proof. We will assume that the sites of L(1)

C are not border sites with respect to other concentra-

tor sites. Let us suppose that ∃T ∈
(

ΓANDP \ Γ(≤1)
ANDP

)
globally optimal. Let pM(st,sw) ⊂ T

be the longest path from a terminal site to a switch site. Under this supposition necessarily
`(pM(st,sw)) ≥ 3. Let sc ∈ SC be the concentrator site adjacent to st in pM. We will analyze
the following cases.
Case A: sc 6∈ L(1)

C . Let BT be the set of connections from terminal sites to sc present in T . Let
us consider the set of connections given by:

BD =
{

(s̄t, s̄w)/s̄w ∈ SD,∃s̄t ∈ BT ,with s̄t ∈ Asc1 , and sc1 ∈ As̄w
}
.

Let us build the network: T̄ = (T \ BT ) ∪ BD. It is easy to see that T̄ ∈ ΓANDP , we will
compare its cost:

COST(T̄ ) = COST(T )− COST(BT ) + COST(BD)

by (2)
↑
< COST(T ).

This contradicts the optimality of T .
Case B: sc ∈ L(1)

C . Let sc2 be the concentrator site adjacent to sc in pM. Since sc ∈ L(1)

C , by
definition we know that c(sc,sc2 ) > c(sc,s̄w), where sc ∈ As̄w . As above, we construct a new
network given by: T̄ = (T \ {(sc, sc2)}) ∪ {(sc, s̄w)}. Clearly T̄ ∈ ΓANDP , and moreover:

COST(T̄ ) = COST(T )− c(sc,sc2 ) + c(sc,s̄w)

by (2)
↑
< COST(T ),

implying that T is not a global optimal solution. Again, this is a contradiction. Therefore the
path pM is due to fulfill `(pM(st,sw)) < 3, as required, and finalizing the proof.

Definition 3.5.27. Given an ANDP (S,E1 ∪E2, C), we define the set of concentrator sites of
second level as: L(2)

C =
{
sc ∈ SC/∃sc1 ∈ L(1)

C , so that sc ∈ Asc1
}

.

Proposition 3.5.28. Given an ANDP (S,E1 ∪ E2, C) such that the following points are ful-
filled:

1. SC = L(1)

C ∪ L(2)

C .

2. ∀sc ∈ L(2)

C , such that sc ∈ Asc1 , and sc1 ∈ Asw , it is fulfilled:

c(sc,sw) ≤ min
{
c(sc,sc2 );∀sc2 ∈ L(2)

C

}
.

Then, there exists a global optimal solution in Γ(≤2)
ANDP .
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Proof. Let us suppose that all the optimal solutions are in
(

ΓANDP \ Γ(≤2)
ANDP

)
. Let T be

globally optimal. We define the maximal set of paths of T (from a terminal site towards a
switch site) that have length greater to 3:

Bp(T ) =
{
p ⊂ T /`(p) ≥ 4,∀pi, pj ∈ Bp(T ),NODES(pi) ∩ NODES(pj) ⊂ (SC ∪ SD)

}
.

We will demonstrate that under these hypotheses we can build a solution derived from T whose
cost is smaller or equal to COST(T ) and its depth is smaller to 4. Specifically by induction in
|Bp(T )|, we will prove that by means of connection reassignments, we can obtain a feasible
solution T̄ /COST(T̄ ) ≤ COST(T ) and DEPTH(T̄ ) ≤ 3.
Basic Step: |Bp(T )| = 1. Let pT (st,sw) be its unique path. Let us define the set of concentrator

sites given by: YC =
{
sc ∈ (SC ∩ pT (st,sw))/`(pT (sc,sw)) ≥ 3

}
. Let us consider the connection

between the concentrator sites that are to greater depth in pT , and let us denote it by (sci , scj ).
It is fulfilled:

pT (st,sw) = (st, sci)CONC(sci , scj )CONC(pT (scj ,sw)).

We will analyze the following cases. If sci ∈ L(1)

C , (with sci ∈ As̄w , s̄w ∈ SC), then building
the network:

G =
(
T \ {(sci , scj )}

)
∪ {(sci , s̄w)},

we obtain a new feasible solution that in addition fulfills:

COST(G) = COST(T )− c(sci ,scj ) + c(sci ,s̄w)

L(1)
C

def.
↑
< COST(T ).

If sci , scj ∈ L(2)

C , by definition of L(2)

C there exists a concentrator site s̄c ∈ L(1)

C so that sci ∈ As̄c ,
and s̄c ∈ Asr , with sr ∈ SD. Considering the network:

G =
(
T \ {(sci , scj )}

)
∪ {(sci , sr)},

it is easy to see that G ∈ ΓANDP , and besides:

COST(G) = COST(T )− c(sci ,scj ) + c(sci ,sr)

by (2)
↑
≤ COST(T ).

If sci ∈ L(2)

C and scj ∈ L(1)

C , by definition of L(1)

C we know that there exists a switch site
s̄ ∈ SD/scj ∈ As̄. Let sck ∈ YC be the site adjacent to scj in the path pT (scj ,sw). Let us
consider the following network:

G =
(
T \ {(scj , sck)}

)
∪ {(scj , s̄)},

clearly G ∈ ΓANDP , and moreover verifies:

COST(G) = COST(T )− c(scj ,sck ) + c(scj ,s̄)

L(1)
C

def.
↑
< COST(T ).
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Analyzing the cases exposed above, in any case, we can obtain a new feasible solution that
satisfies: COST(G) ≤ COST(T ) and DEPTH(G) ≤ DEPTH(T ) − 1 (eventually DEPTH(G) =
DEPTH(T )− 2). Applying the reasoning exposed previously to the sites of (YC \ {sc}), we will
obtain a feasible solution T̄ ∈ ΓANDP which satisfies: COST(T̄ ) ≤ COST(T ) and DEPTH(T̄ ) ≤
DEPTH(T ) − |YT | ≤ 2. Hence T̄ ∈ Γ(≤2)

ANDP , and furthermore it is globally optimal.
Induction Step: |Bp(T )| > 1. Let us choose a path p̄T (st,sw) ∈ Bp(T ), and let us consider the set
B̄p =

(
Bp(T ) \ {p̄T (st,sw)}

)
. Then, realizing the transformations exposed above, we can build

a feasible solution T1 ∈ ΓANDP such that only a subset of paths of B̄p have length greater
to 3 in T1, and besides: COST(T1) ≤ COST(T ) and DEPTH(T1) = max

{
`(p)/p ∈ Bp(T1)

}
.

Now, considering the network T1 and using the inductive hypothesis we know that there exists
a feasible solution T̄ ∈ ΓANDP obtained of T1 by means of changes in its connections and
satisfying:

COST(T̄ )

by I.H.
↑
≤ COST(T1)

by transformations

↑
≤ COST(T ),

and in addition fulfilling DEPTH(T̄ ) ≤ 3, finalizing therefore the inductive step and culminating
the proof.

Lemma 3.5.29. Let ANDP (S,E1 ∪ E2, C) be an ANDP instance such that for any three
sites {sci , scj , sck}/sci ∈ SC , scj , sck ∈ (SC \ L(1)

C ), and given a switch site sw ∈ SD it is
fulfilled:

c(sci ,scj ) + c(sci ,sck ) ≤ c(scj ,sck ) + min
{
c(sci ,scj ), c(sci ,sck )

}
,

assuming that among these, sci is the site that has minimum cost of direct connection towards
sw. Then, ∃T ∈ Γ(≤2)

ANDP globally optimal.

Proof. In order to proof the Lemma, we will suppose that any global optimal solution belongs
to
(

ΓANDP \ Γ(≤2)
ANDP

)
. Let T be a global optimal solution. Let us denote by pM(sc,sw) the

longest path from a switch site towards a concentrator site in T . Considering the set: YC ={
s̄c ∈ (SC ∩ pM(sc,sw))/`(pM(s̄c,sw)) ≥ 3

}
, we will demonstrate by induction in `(pM(sc,sw)),

that we can find a feasible solution Ḡ derived from T where all the concentrator sites of {sci ∈
pM(sc,sw)} belong to paths of depth smaller to 4 in Ḡ.
Basic Step: `(pM(sc,sw)) = 3. Let us see the situations that could happen. Let s̄c be the
concentrator site adjacent to sc in pM. If sc or s̄c belongs to L(1)

C clearly connecting them to
the switch sites corresponding to its covering areas, we obtain a feasible solution whose cost is
smaller or equal to COST(T ). Otherwise, if we have sc, s̄c ∈ (SC \L(1)

C ), let us consider sc1 the
concentrator site adjacent to s̄c in pM. Without loss of generality, we will assume that among
these three concentrator sites, sc1 is the site that has minimum cost of direct connection towards
sw. By hypothesis, we know that the triangle formed by the concentrators {sc, s̄c, sc1} satisfies:
c(sc1 ,sc)

+c(sc1 ,s̄c)
≤ c(sc,s̄c) +min

{
c(sc1 ,sc)

, c(sc1 ,s̄c)

}
. Then, building the following network:

G1 = (T \ {(sc, s̄c)})∪ {(sc, sc1)}, it is easy to see that G1 ∈ ΓANDP , COST(G1) ≤ COST(T ),
and furthermore the sites sc, s̄c, and sc1 belong to paths of depth smaller to 4 in G1.
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Induction Step: `(pM(sc,sw)) = h > 3. We will differentiate the following situations.
Case A: sc ∈ L(1)

C . The network G1 = (T \ {(sc, s̄c)})∪{(sc, s̄w)}, (with sc ∈ As̄w , s̄w ∈ SD)
is a feasible solution of ΓANDP satisfying COST(G1) ≤ COST(T ). Moreover as `(pM(s̄c,sw)) =
h − 1 ≥ 3 in G1, by inductive hypothesis there exists a feasible solution Ḡ derived from G1

where all the concentrator sites of {sci ∈ pM(s̄c,sw)} belong to paths of depth smaller to 4 in Ḡ.
Case B: sc ∈ (SC \ L(1)

C ), s̄c ∈ L(1)

C . The network G1 = (T \ {(s̄c, sc1)}) ∪ {(s̄c, s̄r)},
(with s̄c ∈ As̄r , s̄r ∈ SD) is a feasible solution fulfilling COST(G1) ≤ COST(T ). Now, if
`(pM(sc1 ,sw)) = h − 2 ≥ 3 in G1, by inductive hypothesis there exists a feasible solution Ḡ
derived from G1 where all the concentrator sites of {sci ∈ pM(sc1 ,sw)} belong to paths of depth
smaller to 4 in Ḡ.
Case C: sc ∈ (SC \ L(1)

C ), s̄c ∈ (SC \ L(1)

C ). As above G1 = (T \ {(sc, s̄c)}) ∪ {(sc, sc1)}
is a feasible solution and furthermore, since `(pM(s̄c,sw)) = h − 1 ≥ 3 in G1, by inductive
hypothesis there exits a feasible solution Ḡ constructed from G1 with all the concentrator sites
of {sci ∈ pM(s̄c,sw)} belonging to paths of depth smaller to 4 in Ḡ. Hence, by the exposed
previously, we have proven the inductive step.
Now, let us consider the maximal set of paths present in Ḡ which go from a concentrator site
(located in last level on its access sub-network) towards the backbone network and have length
greater to 3:

PḠ =
{
p(sc,sw) ⊂ Ḡ/`(p(sc,sw)) ≥ 3, and 6 ∃p̄ ∈ PḠ/p(sc,sw) ⊂ p̄

}
.

Then, repeating recurrently on PḠ the process described previously, we will be able to find a
feasible solution T̄ ∈ ΓANDP satisfying: COST(T̄ ) ≤ COST(T ), and DEPTH(T̄ ) ≤ 3, complet-
ing therefore the proof.

Theorem 3.5.30. Given an ANDP (S,E1 ∪ E2, C) so that the following points are fulfilled:

1. c(st,sw) < min
{
c(st,s̄c);∀s̄c ∈ (SC \Asw)

}
, ∀st ∈ Asw , sw ∈ SD.

2. dmin(sc) < c(sc,s̄c), ∀sc ∈ (Asw \ L(1)

C ), ∀s̄c ∈ As̄w , s̄w ∈ SD, where dmin(sc) is the cost
of the shortest path from sc to sw in G(sw) = (Asw , E(Asw)).

3. c(sci ,scj ) ≥ min
{
c(sci ,sw), c(scj ,sw)

}
, ∀sci , scj ∈

(
Asw ∩ (SC \ L(1)

C )
)
, with sw ∈ SD.

Then, there exists a global optimal solution in the subspace
(

Γ(≤2)
ANDP ∩ Γ(SPG)

ANDP

)
.

Proof. Firstly, we will prove the following property.
Property I: Under these hypothesis, all the optimal solutions belong to the space Γ(SPG)

ANDP .
In order to prove this, let us consider T ∈ ΓANDP globally optimal. Then, supposing that
T 6∈ Γ(SPG)

ANDP , necessarily there exists at least one connection (s, sc) ∈ T such that s ∈ ST∪SC ,
sc ∈ SC , sc ∈ Asw , s ∈ Asc , and s ∈ As̄w , where sw, s̄w ∈ SD. We will analyze the following
cases.
Case A: s ∈ ST . Clearly, by (1) the network T̄ = (T \ {s, sc)}) ∪ {(s, s̄w)}, it would be one
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better feasible solution than T .
Case B: s ∈ L(1)

C . Assuming that sc is the site closest to the backbone network in T , and
building the network like above, by definition of L(1)

C , T̄ is a better feasible solution than T .
Case C: s ∈

(
SC \ L(1)

C

)
. Again, we assume that sc is the site closest to the backbone network

in T . Let ps be the shortest path from s to s̄w in G(s̄w) = (As̄w , E(As̄w)). By (2) we know that
its cost fulfills dmin(s) < c(s,sc). This would imply that the network T̄ = (T \ {s, sc)}) ∪ {ps}
is a better feasible solution compared with T .
Hence, since anyone of the previous cases contradicts the optimality of T , we infer that any
global optimal solution of ΓANDP belongs to Γ(SPG)

ANDP .
Now, we must prove in addition that there exists Ḡ ∈ Γ(≤2)

ANDP derived from T which is globally
optimal, and besides that it belongs to the subspace Γ(SPG)

ANDP like T .
For each switch covering area Asw/|Asw | > 1, we define:

Bsw =
{
p(sc,sw) ⊂ T(sw)/`(p(sc,sw)) ≥ 3, sc ∈ SC , and 6 ∃p̄ ∈ Bsw/p(sc,sw) ⊂ p̄

}
.

It is the set of paths of T(sw) that have maximum length greater to 2 and go from a concentrator
site sc ∈ Asw towards sw.
Property II: Fixed sw ∈ SD/|Asw | > 1, and given p(sc,sw) ∈ Bsw , we will use induction in
`(p(sc,sw)) to prove that by means of reassignments of connections on T(sw) we can obtain a
new global feasible solution G1 ∈ Γ(SPG)

ANDP , where all the concentrator sites present in p(sc,sw)

belong to paths of length smaller to 4 in G1(sw).
Basic Step: `(p(sc,sw)) = 3. Let s̄c be the concentrator adjacent to sc in p. If sc or s̄c belongs
to L(1)

C clearly reconnecting them to sw we maintain the feasibility not being increased the
solution cost, and moreover the concentrator sites of p are on paths of length smaller to 4 in
the new solution. Otherwise, if sc and s̄c belong to (SC \ L(1)

C ), by (3) we know that c(sc,s̄c) ≥
min

{
c(sc,sw), c(s̄c,sw)

}
. Independently of which of both connections it has the smaller cost,

we can build a new optimal solution reconnecting the concentrator sites sc or s̄c (according to
the connection of minimum cost) to sw, maintaining the feasibility without increasing the cost.
Furthermore, by construction in the new solution the concentrators sites of p belong to paths of
length smaller to 4.
Inductive Step: `(p(sc,sw)) = k > 3. We will analyze the following cases.
Case 1: sc ∈ L(1)

C . Let us consider the networkH = (T \ {(sc, s̄c)})∪{(sc, sw)}. This is also
globally optimal and in addition the concentrator site sc is to depth 1 inH. Since p(s̄c,sw) ⊂ H
and `(p(s̄c,sw)) = k− 1 ≥ 3, by inductive hypothesis we know that there exists another solution
G1 ∈ Γ(SPG)

ANDP globally optimal and derived fromH so that all the concentrator sites pertaining
to p(s̄c,sw) are on paths of length smaller to 4 in G1(sw).
Case 2: sc ∈ (SC \ L(1)

C ), s̄c ∈ L(1)

C . Let s̄ be the next site adjacent to s̄c in p(s̄c,sw). We
build the network H = (T \ {(s̄c, s̄)}) ∪ {(s̄c, sw)}. If `(p(s̄,sw)) = k − 2 ≥ 3, knowing that
p(s̄,sw) ⊂ H and applying the inductive hypothesis, we obtain another global optimal solution
G1 ∈ Γ(SPG)

ANDP transformed from H where all the concentrator sites belonging to p(s̄,sw) are in
depth smaller to 3 in G1(sw). If `(p(s̄,sw)) < 3 the networkH in itself verifies the property.
Case 3: sc ∈ (SC \ L(1)

C ), s̄c ∈ (SC \ L(1)

C ). By hypothesis we know that these concentrators
fulfill: c(sc,s̄c) ≥ min

{
c(sc,sw), c(s̄c,sw)

}
. We will suppose, without loss of generality, that
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c(sc,s̄c) = c(s̄c,sw) (the analysis of the other possible situations would be similar). Again, let s̄
be the next site adjacent to s̄c in p(s̄c,sw) ⊂ T . We will see the following subcases.
Subcase 3.1: s̄ ∈ L(1)

C . Let us denote by ŝ the site adjacent to s̄ in p(s̄,sw) ⊂ H. We replace
the connection (s̄, ŝ) by the connection (s̄, sw) obtaining a solution H globally optimal. If H
fulfills: `(p(ŝ,sw)) = k − 3 ≥ 3, by inductive hypothesis there exists a global optimal solution
G1 ∈ Γ(SPG)

ANDP such that all the concentrator sites from p(ŝ,sw) are in depth smaller to 3 in G1(sw).
If `(p(ŝ,sw)) < 3 the networkH in itself fulfill the property.
Subcase 3.2: s̄ ∈ (SC \ L(1)

C ). By hypothesis c(s̄c,s̄) ≥ min
{
c(s̄c,sw), c(s̄,sw)

}
. Therefore

replacing the connection (sc, s̄) or (s̄, ŝ) (according to the case) by the connection line which
produces the minimum value we obtain another optimal solution H. In any case, the inductive
hypothesis implies the existence of a global optimal solution G1 ∈ Γ(SPG)

ANDP so that all the
concentrators present in p(sc,sw) are located with depth smaller to 3 in G1(sw). This completes
the proof of the Property (II) enunciated above.
To complete the proof, we apply recursively the Property (II) to all the paths of Bsw , and later
repeating the process for all the sites of (SD \ {sw}), we obtain a global optimal solution Ḡ ∈(

Γ(≤2)
ANDP ∩ Γ(SPG)

ANDP

)
derived of T according to different changes realized in the connection

lines.

Definition 3.5.31. Given an ANDP (S,E1 ∪ E2, C), we define the sets of terminal sites of
first level and second level respectively as:

• S(1)

T =
{
st ∈ ST /∃sc ∈ L(1)

C , so that st ∈ Asc
}

,

• S(2)

T =
{
st ∈ ST /∃sc ∈ L(2)

C , so that st ∈ Asc
}

.

Proposition 3.5.32. Let ANDP (S,E1∪E2, C) be an ANDP instance such that ST = S(1)

T ∪
S(2)

T and in addition the following points are fulfilled.

1. Given sc, s̄c ∈ L(2)

C , these satisfy `(pmin(sc))
≤ 2 and COST(pmin(sc)) ≤ c(sc,s̄c).

2. ∀st ∈ S(1)

T : max
{

Ψ(1)

(st)
,Ψ(2)

(st)

}
≤ min

{
c(st,sc);∀sc ∈ (SC \ L(1)

C )
}

,

3. ∀st ∈ S(2)

T : max
{

Ψ(2)

(st)
,Ψ(3)

(st)

}
≤ min

{
c(st,s̄c); ∀s̄c ∈ (SC \ (L(1)

C ∪ {sc2}))
}

, with
st ∈ Asc1 , sc1 ∈ Asc2 , and where:

• Ψ
(1)
(st)

= min
n
c(st,s̄c); ∀s̄c ∈ (L

(1)
C \ {s̄})

o
, with st ∈ As̄, s̄ ∈ L

(1)
C ,

• Ψ
(2)
(st)

= min
˘
c(st,sw); ∀sw ∈ SD

¯
,

• Ψ
(3)
(st)

min
n
c(st,s̄c); ∀s̄c ∈ L

(1)
C

o
.

Then, there exists a global optimal solution T ∈ Γ(≤2)
ANDP so that their concentrator sites are

including in (L(1)

C ∪ L(2)

C ).
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Proof. Firstly, we will prove that given a solution globally optimal T (opt) ∈ ΓANDP and a
terminal site st ∈ ST ; st is directly connected to some site of SD ∪ L(1)

C ∪ L(2)

C , to less of
reassignments of connections.
Case 1: st ∈ S(1)

T . Let us suppose that (st, ŝ) ∈ T (opt)/ŝ ∈ (SC \ (L(1)

C ∪ L(2)

C )). Let sc1 ∈ L(1)

C

and s̄ ∈ (L(1)

C \ {sc1}) be the concentrator sites that fulfill st ∈ Asc1 , and Ψ(1)

(st)
= c(st,s̄)

respectively. Let us consider in addition the switch site s̄w so that Ψ(2)

(st)
= c(st,s̄w). If s̄ ∈ T (opt)

and Ψ(1)

(st)
≤ Ψ(2)

(st)
then building the network:

G =
(
T (opt) \ {(st, ŝ)}

)
∪ {(st, s̄)},

we obtain a new feasible solution which satisfies:

COST(G) = COST(T (opt))− c(st,ŝ) + c(st,s̄)

by (2)

↑
≤ COST(T (opt)),

and therefore this would imply that G is globally optimal (eventually it would be one better
solution which contradicts the optimality of T (opt)).
Now, if Ψ(1)

(st)
> Ψ(2)

(st)
then the following network is also globally optimal:

H =
(
T (opt) \ {(st, ŝ)}

)
∪ {(st, s̄w)}.

The optimality ofH is guaranteed by the cost relation:

COST(H) = COST(T (opt))− c(st,ŝ) + c(st,s̄w)

by (2)

↑
≤ COST(T (opt)).

Case 2: st ∈ S(2)

T . Again, we will suppose that (st, ŝ) ∈ T (opt)/ŝ ∈ (SC \ (L(1)

C ∪ L(2)

C )).
Let s̄c1 ∈ L(1)

C be the concentrator site that fulfills Ψ(3)

(st)
= c(st,s̄c1 ). If s̄c1 ∈ T (opt) and

Ψ(3)

(st)
≤ Ψ(2)

(st)
then considering the network:

G =
(
T (opt) \ {(st, ŝ)}

)
∪ {(st, s̄c1)},

we have a new feasible solution, and moreover:

COST(G) = COST(T (opt))− c(st,ŝ) + c(st,s̄c1 )

by (3)

↑
≤ COST(T (opt)),

implying the optimality of G.
If Ψ(3)

(st)
> Ψ(2)

(st)
then the networkH builded as in the previous case, it would be furthermore a

global optimal solution.
We will demonstrate now that we can obtain a new solution T̄ (opt) ∈ Γ(≤2)

ANDP globally op-
timal and obtained from T (opt) applying appropriate changes of connection that maintain the
feasibility and optimality. Assuming that in T (opt) are only concentrator sites belonging to
(L(1)

C ∪L(2)

C ), let us suppose that there exists a least one path of length greater to 2 from a switch
site towards a concentrator site. Let p(sc,sw) ⊂ T (opt) be a path such that `(p(sc,sw)) ≥ 3. Let
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(sc, s̄c) ∈ p(sc,sw) be the last connection on this path. Let us suppose that sc, s̄c ∈ L(2)

C (for
another type of connection, we could clearly obtain a solution with smaller depth with respect
to the concentrator sites present in p(sc,sw)). Building the network:

T̄ =
(
T (opt) \ {(sc, s̄c)}

)
∪ {pmin(sc)},

and applying (1), we maintain the feasibility and moreover COST(T̄ ) ≤ COST(T (opt)). Hence,
T̄ would be also globally optimal. Then, repeating recurrently this process for all connection
between sites of L(2)

C present in the builded solution, we will be able to build a global optimal
solution T̄ (opt) belonging to the subspace Γ(≤2)

ANDP and whose concentrator sites are including
in (L(1)

C ∪ L(2)

C ), as required, and completing the proof.

In next chapter we present algorithms applied to the ANDP(≤k) with k ∈ {1, 2}. We obtain
a way of computing the global optimal solution cost of it using the Dynamic Programming
approach. Considering that the ANDP(≤1) is a NP-hard problem, we obtain lower bounds
to the global optimal solution cost by Dynamic Programming with State-Space Relaxation in
polynomial time.
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Chapter 4

Algorithms applied to the ANDP

This chapter presents the Dynamic Programming approach as alternative methodology to find
a global optimal solution cost for the ANDP(≤1) and ANDP(≤2). After we introduce the
Dynamic Programming with State-Space Relaxation as a method to obtain lower bounds for
the original problem.

4.1 Dynamic Programming

Proposition 4.1.1. Given an ANDP (S,E1 ∪ E2, A), the cost of a global optimal solution
of Γ(≤1)

ANDP is given by f(ST ,Z,AQ), with f(·,·,·) defined by the following expression of Dynamic
Programming,

fSC (ST , Z,AQ) =


min
st∈ST


COST(st, Z) + fSC (ST \ {st}, Z,AQ),

min
sc∈SC

{
COST(st, sc) + COST(sc, Z)+
fSC (ST \ {st}, Z,AQ∪{(sc,Z)})

}  if ST 6= ∅

0 otherwise.

where: COST(s, Z) = min
z∈SD

{COST(s, z)}, (s, Z) = argmin
z∈SD

{COST(s, z)} and

the matrix of connection costs AQ = {ai,j}(i,j)∈E1∪E2
is defined by

ai,j =
{

COST(i, j) if(i, j) 6∈ Q
0 otherwise.

Proposition 4.1.2. Given an ANDP (S,E1 ∪ E2, A), the cost of a global optimal solution
of Γ(≤2)

ANDP is given by f(ST ,Z,AQ), with f(·,·,·) defined by the following expression of Dynamic

75
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Programming,

fSC (ST , Z,AQ) =


min
st∈ST



COST(st, Z) + fSC (ST \ {st}, Z,AQ),

min
sc∈SC

{
COST(st, sc) + COST(sc, Z)+
fSC (ST \ {st}, Z,AQ∪{(sc,Z)})

}
,

min
(suc ,s

v
c )∈E2


COST(st, suc )+
COST(suc , s

v
c) + COST(svc , Z)+

fSC (ST \ {st}, Z,AQ∪{(s
u
c ,s

v
c ),(svc ,Z)})




if ST 6= ∅

0 otherwise.

where: COST(s, Z) = min
z∈SD

{COST(s, z)}, (s, Z) = argmin
z∈SD

{COST(s, z)} and

the matrix of connection costs AQ = {ai,j}(i,j)∈E1∪E2
is defined by

ai,j =
{

COST(i, j) if(i, j) 6∈ Q
0 otherwise.

4.2 Dynamic Programming with State-Space Relaxation

In order to find a lower bound of fSC (ST , Z,AQ), we use the Dynamic Programming with
State-Space Relaxation. It is a general relaxation procedure proposed by Christofides, Min-
gozzi and Toth for a number of routing problems [22, 48]. The motivation for this methodol-
ogy stems from the fact that very few combinatorial optimization problems can be solved by
Dynamic Programming alone due to the dimensionality of their state-space. To overcome this
difficulty, the number of states is reduced by mapping the state-space associated with a given
Dynamic Programming recursion to a smaller cardinality space. This mapping, denoted by g,
must associate to every transition from a state S1 to a state S2 in the original state-space, a
transition g(S1) to g(S2) in the new state-space. To be effective, the function g must give rise
to a transformed recursion over the relaxed state-space which can be computed in polynomial
time. Furthermore, this relaxation must generate a good lower bound for the original problem.

With the aim of illustrating this methodology, we present this approach in the context of
the minimization of the total schedule time for TSPTW (Travelling Salesman Problem with
Time Window), after we apply it to the Dynamic Programming recursion presented in Propo-
sition 4.1.2.

The objective of the TSPTW is to find an optimal tour where a single vehicle is required
to visit each of a given set of locations (customers) exactly once and then return to its starting
location. The vehicle must visit each location within a specified time window, defined by an
earliest service start time and latest service start time. If the vehicle arrives at a service location
before the earliest service start time, it is permitted to wait until the earliest service start time is
reached. The vehicle conducts its service for a known period of time and immediately departs
for the location of the next scheduled customer. Assume that the time constrained path starts
at fixed time value ao. Define F (S, i) as the shortest time it takes for a feasible path starting



Dynamic Programming with State-Space Relaxation 77

at node o, passing through every node of S ⊆ N exactly once, to end at node i ∈ S. Note
that optimization of the total arc cost would involve an additional dimension to account for
the arrival time at a node. The function F (S, i) can be computed by solving the following
recurrence equations:

F (S, j) = min
(i,j)∈E

{F (S − {j}, i) + tij |i ∈ S − {j}}∀S ⊆ N, j ∈ S. (4.1)

The recursion formula initialized by

F ({j}, j) =
{

max{aj , ao + toj} if (o, j) ∈ E
+∞ Otherwise.

The optimal solution to the TSPTW is given by:

min
j∈N
{F (N, j) + tjd}. (4.2)

Note that equation 4.1 is valid if aj ≤ F (S, j) ≤ bj . If however F (S, j) < aj , then
F (S, j) = aj ; if F (S, j) > bj , F (S, j) = ∞. Formulas 4.1- 4.2 define a shortest path
algorithm on a state graph whose nodes are the states (S, i) and whose arcs represent transitions
from one state to another. This algorithm is a forward dynamic programming algorithm where
at step s, s = 1, . . . , n+ 1, a path of length s is generated. The state (S, i) of cost F (S, i) are
defined as follows: S is an unordered set of visited nodes and i is the last visited node, i ∈ S.

Christofides, Mingozzi and Toth [22, 48] suggest several alternatives for the mapping g.
Here, we present the shortest r − path relaxation, i.e., g(S) = r =

∑
i∈S ri, where ri ≥ 1 is

an integer associated with node i ∈ N ; then g(S \ {i}) = g(S) − ri. Define R =
∑

i∈S ri.
Hence the transofrmed recursion equations are:

F (r, j) = min
(i,j)∈E

{F (r − rj , i) + tij |r − rj ≥ ri}, r ∈ {1, . . . , R}, j ∈ N. (4.3)

Recursion 4.3 hold if aj ≤ F (r, j) ≤ bj . Otherwise, if F (r, j) < aj , then F (r, j) = aj ; if
F (r, j) > bj , F (r, j) =∞. The recursion formula is initialized by

F ({j}, j) =
{

max{aj , ao + toj} if (o, j) ∈ E and q = qj
+∞ Otherwise, for q ∈ {1, . . . , Q}, j ∈ N .

The lower bound is given by:

min
j∈N
{F (R, j) + tjd}. (4.4)

The complexity of the bounding procedure is O(n2 × Q) for a n-node problem [22, 48].
Now, we present this approach in the context of find a “good" lower bound for the solution of
ANDP(≤2). The following Proposition gives a lower bound for the fSC (ST , Z,AQ) presented
in Proposition 4.1.2 (the optimum value of the ANDP(≤2)).
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Proposition 4.2.1. Given an ANDP (S,E1 ∪ E2, C), a lower bound for the value of
fSC (ST , Z,AQ) is derived from the following expression of Dynamic Programming with State-
Space Relaxation,

gSC (r, Z,AQ) =


min
sit∈ST



COST(sit, Z) + gSC (r − ri, Z,AQ),

min
sjc∈SC

{
COST(sit, s

j
c) + COST(sjc, Z)+

gSC (r − ri, Z,AQ∪{(s
j
c,Z)})|r − R̂− ri ≥ rj

}
,

min
(sjc,skc )∈E2

{
COST(sit, s

j
c) + COST(sjc, skc ) + COST(skc , Z)+

gSC (r − ri, Z,AQ∪{(s
j
c,s

k
c ),(skc ,Z)})|r − R̂− ri ≥ rj + rk

}


if r > R̂

0 otherwise.

where 1 ≤ ri ≤ R is an integer associated with the site i ∈ ST ∪ SC; R =
∑

i∈ST∪SC ri;
R̂ =

∑
j∈SC rj and the matrix of connection costs AQ = {ai,j}(i,j)∈E1∪E2

is defined by

ai,j =
{

COST(i, j) if(i, j) 6∈ Q
0 otherwise.

The lower bound is given by g(R,Z,A∅).

4.3 Computational Results

We present here the experimental results obtained with the recursions of above. The algo-
rithms were implemented in ANSI C. The experiments were made on a Intel(R) Core(TM)2
CPU T5200 @ 1.60GHz, with 1GB RAM running under Linux Ubuntu 9.10. The recursions
presented in Propositions 4.1.1 and 4.1.2 were applied to the ANDP(≤1) and the ANDP(≤2)

respectively, whereas the recursion presented in Proposition 4.2.1 was applied to ANDP(≤2).
They were tested using a large test set, by modifying the Steiner Problem in Graphs (SPG)
instances from SteinLib [43]. This library contains many problem classes of widely different
graph topologies. We extracted most of the problems in the classes: C, MC, X, PUC, I080,
I160, P6E, P6Z and WRP3. We customized the SPG problems, transforming them into ANDP
instances by means of the following changes. For each considered problem:

i) we selected the terminal node with greatest degree as the z node (modelling the backbone),

ii) the Steiner nodes model the concentrator sites, and the terminal nodes model the terminal
sites,

iii) all the edges between terminal sites were deleted (as they are not allowed in feasible
ANDP solutions).

Moreover, if the resulting topology was unconnected, the problem instance was discarted.
Let us notice that since in the ANDP the terminals can not be used as intermediate nodes
(which implies also that edges between pairs of terminals are not allowed), the cost of a SPG
optimum is a lower bound for the optimum of the corresponding ANDP. Therefore are for
ANDP (≤k) with k ∈ 1..2.
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Set Name |V | |E| |T | LBSPG c1
opt c2

opt LB_GAP (1)
SPG LB_GAP (2)

SPG

I080 i080-001 80 120 6 1787 ∞ 2187 22.38%
I080 i080-011 80 350 6 1479 ∞ 1499 1.35%
I080 i080-012 80 350 6 1484 ∞ 1497 0.88%
I080 i080-013 80 350 6 1381 ∞ 1383 0.14%
I080 i080-014 80 350 6 1397 ∞ 1505 7.73%
I080 i080-111 80 350 8 2051 ∞ 2159 5.27%
I080 i080-112 80 350 8 1885 2201 1887 16.76% 0.11%
I080 i080-113 80 350 8 1884 ∞ 1884 0%
I080 i080-114 80 350 8 1895 ∞ 2099 10.77%
I080 i080-115 80 350 8 1868 2174 1969 16.38% 5.41%
I080 i080-233 80 160 16 4354 ∞ 4564 4.82%
I160 i160-011 160 812 7 1677 ∞ 1875 11.81%
I160 i160-012 160 812 7 1750 ∞ 1891 8.06%
I160 i160-013 160 812 7 1661 ∞ 1862 12.1%
I160 i160-014 160 812 7 1778 ∞ 1991 11.98%
I160 i160-015 160 812 7 1768 2281 1864 29.02% 5.43%
PUC cc3-4p 64 288 8 2338 ∞ 2553 9.2%
PUC cc3-4u 64 288 8 23 ∞ 25 8.7%
Average 20.72% 7.01%

Table 4.1: Results obtained by applying Dinamic Programming to c1
opt and c2

opt.

Table 4.1 shows the results obtained by applying the recurrences presented in Proposi-
tions 4.1.1 and 4.1.2. In each one of them the first column contains the names of the original
SteinLib classes with the name of the customized instance. The entries from left to right are:

• the size of the selected instance in terms of number of nodes, edges and terminal sites
respectively,

• a lower bound for the optimal cost; the SPG optimum cost (LBSPG),

• c1
opt and c2

opt where ckopt is the cost of the best feasible solution found in Γ(≤k)
ANDP ,

• the gap of the cost for the best feasible solution of Γ(≤k)
ANDP (ckopt) with respect to the lower

bound LB(k)
SPG with k ∈ {1, 2} (LB_GAP (k)

SPG).

The LB_GAP (k)
SPG is computed as:

LB_GAP (k)
SPG = 100×

ckopt − LBSPG

LBSPG

We obtained feasible solutions only for i080-112, i080-115 and i160-015 with k = 1 be-
cause, as we can see, the cost is finite. The optimal values of the SPG instances (LBSPG) pro-
vided lower bounds for the optimal values of the ANDP (therefore to ANDP(≤k) with k ≥ 0),
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Name nT nC cmin cmax
c1opt
c2opt

1 +
⌊
nC
2

⌋
·
(

1
2+nT

)
·
(
cmax
cmin

− 1
)

i080-112 7 72 85 209 1.166401 5.997385619
i080-115 7 72 86 302 1.1004114 10.325581395
i160-015 6 153 86 300 1.223712 23.639534884

Table 4.2: Relation between optimal solutions of ANDP(≤1) and ANDP(≤2).

considering that in the ANDP generation process, all the connections between terminal nodes
were deleted, and further that ANDP’s feasible solutions space is more restrictive than of SPG.
The experimental results obtained for c1

opt have an average gaps with respect to the lower bound
of 20.72 percient. Increasing k to 2 (appliying the recursion presented in Proposition 4.1.2) we
obtained feasibles solution for all the testing networks; and the experimental results obtained
have an average gaps with respect to the lower bound of 7.01 percient.

Increasing k, by Theorem 3.4.4 we know that the following inequality is fullfilled:

ck−1
opt

ckopt
≤ 1 +

⌊nC
k

⌋
·
(

1
k + nT

)
·
(
cmax
cmin

− 1
)
.

Table 4.2 shows the results obtained applying the Theorem 3.4.4. Despite the bound was
not good in these cases (due the heterogeneity of costs of the lines), it can help us in some cases
to answer the following question: how much can we save with a higher k?.

Table 4.3 shows the results obtained by applying the recursion presented in Proposi-
tion 4.2.1. As before the first column contains the names of the original SteinLib classes with
the name of the customized instance. The entries from left to right are:

• the size of the selected instance in terms of number of nodes, edges and terminal sites
respectively,

• the cost of a global optimal solution of Γ(≤2)
ANDP (c2

opt),

• the execution time, in seconds, for c2
opt (tc2opt)

• a lower bound for the cost of a global optimal solution of Γ(≤2)
ANDP obtained by applying

Dynamic Programming with State-Space Relaxation (presented in Proposition 4.2.1)
(LB(2)

SSR),

• the execution time, in seconds, for LB(2)
SSR (t

LB
(2)
SSR

)

• the gap of the cost for a global optimal solution of Γ(≤2)
ANDP (c2

opt) with respect to the

lower bound LB(2)
SSR; LB_GAP (2)

SSR.

The LB_GAP (2)
SSR is computed as:
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Set Name |V | |E| |T | c2
opt tc2opt LB

(2)
SSR t

LB
(2)
SSR

LB_GAP (2)
SSR

I080 i080-001 80 120 6 2187 0 1698 0 28.8%
I080 i080-011 80 350 6 1499 6.04 1307 0.27 14.69%
I080 i080-012 80 350 6 1497 5.33 1486 0.16 0.74%
I080 i080-013 80 350 6 1383 8.20 1000 0.92 38.3%
I080 i080-014 80 350 6 1505 4.89 1211 0.25 24.28%
I080 i080-111 80 350 8 2159 3.09 1982 0.45 8.93%
I080 i080-112 80 350 8 1887 1812 1501 7.52 25.72%
I080 i080-113 80 350 8 1884 1809 1591 393.8 18.42%
I080 i080-114 80 350 8 2099 44.81 1988 6.65 5.58%
I080 i080-115 80 350 8 1969 479.8 1496 15.41 31.62%
I080 i080-233 80 160 16 4564 361.1 3997 6.75 14.19%
I160 i160-011 160 812 7 1875 45.67 1399 2.17 34.02%
I160 i160-012 160 812 7 1891 8.83 1502 1.13 25.9%
I160 i160-013 160 812 7 1862 6.58 1381 1.81 34..83%
I160 i160-014 160 812 7 1991 6.06 1783 0.86 11.67%
I160 i160-015 160 812 7 1864 70.28 1793 6.21 3.96%
PUC cc3-4p 64 288 8 2553 79.37 2177 2.54 17.27%
PUC cc3-4u 64 288 8 25 80.04 21 5.18 19.05%
Average 19.89%

Table 4.3: Lower bounds obtained to ANDP(≤2) by applying Dinamic Programming with
State-Space Relaxation.

LB_GAP (2)
SSR = 100×

c2
opt − LB

(2)
SSR

LB
(2)
SSR

In general, the gaps related to the lower bounds were low. The ri to each terminal site and
concentrator site were distinct integers chosen from {1, . . . |ST ∪ SC |}. This lower bound can
be increased by modifying the state-space through the application of subgradient optimization
to ri. As future work, it is possible to incorporate is method for a better choice of ri. For more
information refer to [22, 48].

We noticed that the execution times of computing global optimal solution costs were much
longer than using Dynamic Programming with State-Space Relaxation.

4.4 Conclusions

By modelling the access network design problem as a variant of the Steiner problem in graphs,
we were able to develop two algorithms. The implementation of our algorithms was tested on
a number of different problems with heterogeneous characteristics. In particular, we built a
set of ANDP instances transforming 18 SPG instances (extracted from SteinLib [43]) to our
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problem. The optimal values for the selected SPG instances are lower bound for the corre-
sponding ANDP. When computing the weighted average over all the classes, the average gaps
of the solutions obtained related to this bounds were lower than 21% a 7% to ANDP(≤1) and
ANDP(≤2) respectively. It is reasonable supposing that the gaps related to the global opti-
mum of the ANDP instances be even lower since the feasible solutions of the ANDP that are
also feasible solutions of the original SPG, but not reciprocally. In this sense, remember that
in any ANDP instance generated, all the edges between pairs of terminal nodes were deleted
(because in our ANDP such connections are not allowed) having the additional constraint that
the terminal nodes must have degree one in the solution.

Besides we were able to develop a Dynamic Programming with State-Space Relaxation
algorithm which can give a lower bound in polynomial time. The average gaps with respect to
the global optimal solution costs were lower than 20%.

We noticed that, as expected, the execution times of the proposed algorithms are strongly
dependant on the number of sites, edges and the terminal sites.

To sum up, as far as we are concerned, the results obtained with the recurrences above are
very good as we consider that computing the global optimal solution of an ANDP(≤2) is a
NP-hard problem.

In next chapter we present the Backbone Network Design Problem BNDP. We introduce
some topological results about the BNDP. We propose a recurrence to provide a lower bound
for the BNDP which is based on Dynamic Programming with State-Space Relaxation method-
ology.
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Chapter 5

The Backbone Network Design
Problem

In general, a typical WAN backbone network has a meshed topology, and its purpose is to al-
low efficient and reliable communication between the switch sites of the network that act as
connection points for the local access network. The Topological design of a backbone net-
work basically consists of finding a minimum cost topology which satisfies some additional
requirements, generally chosen to improve the survivability of the network (that is its capacity
to resists the failures of some of its components). One way to do this is to specify a con-
nectivity level, and to search for topologies which have at least this number of disjoint paths
(either edge disjoint or node disjoint) between pairs of switch sites. In the most general case,
the connectivity level can be fixed independently for each pair of switch sites (heterogeneous
connectivity requirements). This problem can be modelled as a Generalized Steiner Problem
with Node-Connectivity (denoted by GSP-NC) and it is a NP-Hard problem [42, 56, 61, 62].
Winter [60–62] demostrated that the GSP-NC can be solved in linear time if the network is
series-parallel, outplanar or a Halin graph (see 5.1.1). Topologies verifying edge-disjoint path
connectivity constraints assure that the network can survive to failures in the connection lines.
whereas node-disjoint path constraints assure that the network can survive to failures both in
switch sites as well as in the connection lines.

Theorem 5.1.2 presents an structural results about the WANDP assuming that the Back-
bone Network must be two-node-connected. In Proposition 5.1.4, we propose a recurrence to
provide a lower bound for the BNDP which is based on Dynamic Programming with State-
Space Relaxation methodology.

5.1 Structural Theorems

Before starting, we introduce the Halin graph definition.

Definition 5.1.1. Halin graph is a planar graph constructed from a plane embedding of a tree
with at least four vertices and with no vertices of degree 2, by connecting all the leaves of the
tree (the vertices of degree 1) with a cycle that passes around the tree in the natural cyclic
order defined by the embedding of the tree.

85
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Theorem 5.1.2. Given a WANDP where the connection matrix satisfies the following:

1. In GB = (SD, E3) it is fulfilled the triangular inequality for any three switch sites of
SD.

2. InGA = (S,E1∪E2) it is fulfilled the triangular inequality for any three sites s1, s2, s3 ∈
S, where s1 ∈ ST ∪ SC , s2 ∈ SC , and s3 ∈ SC ∪ SD.

3. ∆cβ ≤
cβmin
nD

, with cβmin = min{c(i,j)}i,j∈SD , cβmax = max{c(i,j)}i,j∈SD , and ∆cβ =
cβmax − c

β
min.

Assuming that the Backbone Network must be two-node-connected and connect all the sites of
SD; then there exits a Halin topologyH = (S∗, CB ∪ TA) global optimal solution of the WAN
topological design problem.

Proof. Let ΓB be the space of two-node-connected solutions that cover the set SD. Let us
denote Γ(3)

B the two-node-connected feasible solutions of the Backbone Network that cover
the set SD and where sites of degree 3 exist. Let us denote Γ(2)

B the feasible solutions of the
Backbone Network conformed by a cycle and that cover the set SD.
By Theorem A.0.8 and Corollary A.0.9, in the best case a feasible solution of Γ(3)

B has exactly
two nodes of degree 3 as minimum amount of nodes of degree 3, and in addition its topology
has the structure illustrated in Figure 5.1. It is easy to see that in this case the best possible cost
of the solution is c(3)

best = (nD+1)·cβmin, therefore COST(NB) ≥ (nD+1)·cβmin, ∀NB ∈ Γ(3)

B . Let
us consider Γ(2)

B ; in the worst case a feasible solution in this subspace has cost c(2)
worst = nD·cβmax,

and therefore COST(CB) ≤ nD · cβmax, ∀CB ∈ Γ(2)

B .
Let us suppose that does not exist a global optimal solution of ΓB with cycle topology. Now,
let C̄B and H̄B be the best feasible solutions of Γ(2)

B and Γ(3)

B respectively. Considering the
difference (COST(CB)− COST(HB)), we have the inequality:

0 < COST(C̄B)− COST(H̄B) ≤ nD · cβmax − (nD + 1) · cβmin =
nD · (cβmax − cβmin)− cβmin = nD ·∆cβ − cβmin.

Implying that ∆cβ >
cβmin
nD

, this is a contradiction. Hence, since by hypothesis ∆cβ ≤
cβmin
nD

,
then there exists a global optimal solution of ΓB with cycle topology, i.e., C̄B is globally opti-
mal.
Now, by statement (2) of the hypothesis and Proposition 3.1.3 we have that there exists a global
optimal solution T̄A ∈ ΓANDP which satisfies that for all concentrator site sc ∈ T̄A g(sc) ≥ 3
in T̄A. Let S∗C be the subset of sites of SC present in T̄A.
Let us consider the network Hwan = (SD ∪ S∗C ∪ ST , C̄B ∪ T̄A), it fulfills to be a global op-
timal solution for the WAN topological design problem, and clearly it has Halin topology, as
required, completing the proof.

Corollary 5.1.3. Given a WANDP which satisfies the following points:
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Figure 5.1: A feasible solution of Γ(3)

B

1. There exists a solution TA ∈ ΓANDP globally optimal of the ANDP such that g(sc) ≥ 3,
∀sc ∈ SC/sc ∈ TA.

2. In GB = (SD, E3) it is fulfilled the triangular inequality for any three switch sites of
SD.

3. ∆cβ ≤
cβmin
n̄D

,

with n̄D = |S(I)

D |, S
(I)

D ⊆ SD is the set of fixed sites of the Backbone Network induced by TA.
Assuming that the Backbone Network must be two-node-connected with respect to S(I)

D ; then
exists a Halin topology G = (S∗, CB ∪ TA) globally optimal solution of the WAN topological
design problem.

Proof. Let ΓBS be the set of feasible solutions conformed by the subnetworks of GB that
satisfy: NB ∈ ΓBS if for every pair of sites sw1 , sw2 ∈ S(I)

D , sw1 6= sw2 , there is at least
two node-disjoint paths which connect them in NB. Let us denote Γ(3)

BS the feasible solutions
of ΓBS where sites of degree 3 exist, and Γ(2)

BS the feasible solutions of ΓBS conformed by a
cycle.
Again, as the previous theorem, by Theorem A.0.8 and Corollary A.0.9, in the best case a
feasible solution of Γ(3)

BS has exactly two nodes of degree 3 and its topology is illustrated by
Figure 5.1. Moreover, in this case the minimum possible cost is c(3)

best = (n̄D+1)·cβmin, therefore
COST(GB) ≥ (n̄D + 1) · cβmin, ∀GB ∈ Γ(3)

BS . It is easy to see that the best feasible solution of
Γ(2)

BS , in the worst case has cost c(2)
opt_worst = n̄D · cβmax (it is a cycle only conformed by the sites

of S(I)

D ). Let us suppose that does not exist a solution CB ∈ Γ(2)

BS globally optimal. Let C̄B and
ḠB be the best feasible solutions of Γ(2)

BS and Γ(3)

BS respectively. The following inequality is
fulfilled:

0 < COST(C̄B)− COST(ḠB) ≤ n̄D · cβmax − (n̄D + 1) · cβmin = n̄D ·∆cβ − cβmin.

Hence, we have that ∆cβ >
cβmin
n̄D

. This is a contradiction, therefore C̄B is globally optimal.
Now, considering Gwan = (S(I)

D ∪ S∗C ∪ ST , C̄B ∪ TA), with S∗C the concentrator sites present in
TA, it satisfies to be globally optimal for the WAN topological design problem, and besides it
has Halin topology.
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Proposition 5.1.4. Let us suppose that in GB = (SD, E3) the triangular inequality is fulfilled

and in addition ∆cβ ≤
cβmin
nD

. Then, we can compute in polynomial time a lower bound for the
optimal cost of a backbone network with two-node-connected topology.

Proof. Assuming that the backbone network topology must be at least two-node-connected, by
Theorem A.0.8, we know that there exists at least one optimal two-node-connected solution
for the BNDP with cycle topology. Let us choose a switch site s0

w ∈ SD. Let ẑ0
w be a new

fictitious site which has the same feasible connections than s0
w ∈ SD. We define Ez as the

extended connections set, and Z as the matrix of connections cost extended to SD ∪ {ẑ0
w}.

Now, we will introduce a recurrence of dynamic programming to calculate the optimal cost of
a backbone network with cycle topology, i.e., the two-node-connected topology of minimum
cost. We define g(S̄D,siw) as the cost of the shortest path with origin s0

w ∈ S̄D ⊆ SD, passing
through all the sites of S̄D exactly once, and finalizing at site siw ∈ S̄D. This value can be
computed by the expression of Dynamic Programming.

g(S̄D,siw) = min
(siw,s

j
w)∈Ez

{
g

(S̄D,s
j
w)

+ Z
(sjw,siw)

; sjw ∈ (S̄D \ {siw})
}
,

g({siw},siw) = Z(s0w,s
i
w), ∀S̄D ⊆ SD/s0

w, s
i
w ∈ S̄D.

The optimum value is: OPT_VALUE = min
siw∈SD

{
g(SD,siw) + Z(siw,ẑ

0
w)

}
. Clearly the time-

complexity to compute this expression is exponential. Now, applying the State-Space Relax-
ation, specifically the shortest r-path relaxation, we obtain the following transformed recursion.

g(r,siw) = min
(siw,s

j
w)∈Ez

{
g

(r−ri,sjw)
+ Z

(sjw,siw)
; rj ≤ r − ri

}
,

g(r,siw) =
{
Z(s0w,s

i
w) if (s0

w, s
i
w) ∈ Ez and r = rj ,

∞ otherwise.

where r ∈ {1, . . . ,R}, and siw ∈ SD. In this relaxation, each switch site siw ∈ SD has
associate a different integer ri ≥ 1, and moreover R =

∑
siw∈SD ri. Therefore, the state-space

is mapping to a new space state which can be polynomially computed. Hence, the inequality:

min
siw∈SD

{
g(R,siw) + Z(siw,ẑ

0
w)

}
≤ OPT_VALUE,

is established, and furthermore the bounding associated algorithm can be computed in O(Rn2
D),

completing the proof.

Lemma 5.1.5. Given a BNDP (S,E3, C,R) such that Rij = 2,∀siw, sjw ∈ SD. There exists
a lower bound for the optimal cost of the backbone network, given by a Dynamic Programming
recursion with State-Space relaxation.
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Proof. Firstly, by Proposition A.0.7, we know that any two-node-connected topology is built
from a cycle adding successively a new path having both extremities in the current network
(usually denominated decomposition in H-paths, being H the network to which new paths are
added to him recurrently). Let Γ(opt)

BNDP ⊆ ΓBNDP be the sub-space of optimal solutions of the
BNDP. Particulary, it is easy to see that the decomposition in H-paths corresponding to an
optimal solution belonging to Γ(opt)

BNDP does not have any path only formed by one connection.
That is to say, given G ∈ Γ(opt)

BNDP and H(G) = {H0, Hp1, . . . ,Hpk} is its H-paths decomposi-
tion ( H(j) = H(j−1) ∪ Hpj , ∀j ∈ 0 . . . k), then, each H-path Hpj has at least some new site
not including in H(j). Otherwise, if a simple connection were added, G would not be globally
optimal. Now, in order to compute the optimum value corresponding to an optimal two-node-
connected topology, we will introduce a recurrence of dynamic programming.
Let S̄D ⊆ SD be a sub-set of switch sites. We define f(S̄D) as the minimum cost of a two-node-
connected sub-network spanning only the set S̄D. The expression that computes f(S̄D) is given
by:

f(S̄D) = min
{

cy(S̄D), f(S̄D\ŜD) + hp
(ŜD,siw,s

j
w)

; ∀ŜD ⊂ S̄D, siw, sjw ∈ (S̄D \ ŜD)
}
,

f(∅) =∞, f({siw}) =∞,

where the expressions cy(S̄D) and hp
(ŜD,siw,s

j
w)

are defined as:

• cy(S̄D) is the optimal cost of a cycle (with ring topology) only conformed by sites of S̄D.

• hp
(ŜD,siw,s

j
w)

is the minimum cost of a path with origin in siw, passing through every site

of ŜD exactly once, to end at site sjw.

Let s̄w ∈ S̄D be a switch site. Let us consider a new fictitious site z̄w which has the same fea-
sible connections than s̄w. It is easy to see that cy(S̄D) is equivalent to compute the expression
g(S̄D,z̄w) whose definition was introduced in Proposition 5.1.4. Furthermore, hp

(ŜD,siw,s
j
w)

is
equivalent to compute the expression g

(ŜD∪{sjw},sjw)
fixing as departure site the switch site siw.

Now, applying the r-path relaxation, we associate to each site of SD a different integer ri and
besides we define the value R =

∑
sw∈SD ri. Let us notice that any subset S̄D ⊆ SD is map-

ping to an integer r so that r =
∑

siw∈S̄D ri. Hence, the recursion of dynamic programming
with state-space relaxation is given by the equations:

f(r) = min
{

cy(r), f(r−r̄) + hp
(r̄,siw,s

j
w)

; ∀r̄ < r, ri, rj ≤ (r − r̄)
}
,

∀r ∈ {1, . . . ,R}, f(0) =∞, f(r) =∞ if ∃siw/r = ri.

The lower bound is: f(R) ≤ f(SD), and in addition we can compute it in polynomial time. In
fact, it is polynomially computed with time-complexity O(2R2n2

D).

In next chapter we conclude the thesis and introduce some future works.



90 The Backbone Network Design Problem



Part V

GENERAL CONCLUSIONS AND
PERSPECTIVES

91





Chapter 6

Conclusions

In this thesis we have studied the topological design of a WAN (Wide Area Network) consid-
ering only the construction costs, for instance, the costs of digging trenches and putting a fiber
cable into service [57]. The reason for this following approach is that construction costs have
the largest share in the overall cost of a WAN planning and design stage. Let us point out that
even a very small reduction in this cost may represent many million dollars of savings for, say,
telephone companies.

We tackled the problem of designing a WAN by breaking it down into two inter-related
sub-problems: the Access Network Design Problem (ANDP) and the Backbone Network De-
sign Problem (BNDP). We modeled the ANDP as a variant of the Steiner Problem in Graphs
(SPG), and the BNDP on the basis of the Generalized Steiner Problem with Node-Connectivity
Constraints (GSP-NP) [57]. We studied differents results related to the topological structure
of the ANDP solutions. In particular we presented results that characterize the topologies of
the feasible solutions of ANDP and BNDP instances. Moreover, for certain types of network
classes we present results that characterize the structure of the global optimal solution. We
presented the clustering approach as one of the strategies more frequently used by the com-
mercial design tools. We also formulated the ANDP as a Steiner Problem in Graphs (SPG).
Given the complexity of the ANDP we provided techniques capable of reducing the dimension
of the original problem to an equivalent smaller problem. We also presented some structural
properties about the BNDP.

We now provide a summary of the experimental results obtained for each one of the prob-
lems referred to above. For ANDP we designed an algorithm for the optimal solution to
ANDP (≤k) with k ∈ 1..2 using Dynamic Programming and another one that gives a lower
bound for the global optimal solution cost of ANDP (≤2) using Dinamic Programming with
State-Space Relaxation. The numerical experiments were done on a testing set containing 18
SPG instances extracted from the SteinLib repository and customized for ANDP. The optimal
values of the SPG instances provided lower bounds for the optimal values of ANDP (Con-
sidering that in the ANDP generation process all the connections with terminal nodes were
deleted, and further that ANDP’s feasible solutions space is more restrictive than of SPG).
Therefore are for ANDP (≤k) with k ∈ 1..2. Other lower bounds were obtained by applying
Dynamic Programming with State-Space Relaxation approach. The experimental results ob-
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tained were successful. The average gaps of the global optimal solution costs obtained with
respect to SGP bounds were lower than 21% a 7% to ANDP (≤1) and ANDP (≤2) respec-
tively whereas the gap of the optimum with respect to the lower bound obtained by applying
Dynamic Programming with State-Space Relaxation was lower than 20%.

To sum up, as far as we are concerned, the results obtained with the algorithms proposed
are very good as we consider that the computing the global optimal solution of the ANDP is a
NP-hard problem.

Furthermore, we establish conditions to the WANDP that ensure that there exists Halin
topology global optimal solution of the WAN topological design problem.

Future research, based on this line of work, could add new topological restrictions like
maximum number of incident links at concentrator nodes. It is also worth minimizing the
impact of failures on the access network, as there is no redundancy in its topology. It might be
relevant balancing the number of subscribers per switch.
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Appendix A

Additional Theorems

Definition A.0.6. (H-Path) Given a graph H, we call a path p an H - path if p is non-trivial
and meets H exactly in its ends. In particular, the edge of any H - path of length 1 is never an
edge of H.

Proposition A.0.7. A graph is two-connected if and only if it can be constructed from a cycle
by successively adding H-paths to graphs H already constructed. A proof can be found in [24].

Theorem A.0.8. For any set of nodes V with distance function d(·) on V × V , there exists a
minimum weight two-node-connected graph G = (V,E) satisfying the following conditions.

(a) Every node in G has degree 2 or 3.

(b) Deleting any edge or pair of edges in G leaves a bridge in one of the resulting connected
components of G [49].

Corollary A.0.9. Any two-node-connected graph G = (V,E) satisfying conditions (a) and
(b) of Theorem A.0.8, and which is not a cycle, contains the graph shown in Figure 5.1 as a
node-induced subgraph [49].
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