

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Maestría
en Informática

Hfusion : a fusion tool based on acid
rain plus extensions

Facundo Domínguez Laumann

Supervisor y Orientador: Dr. Alberto Pardo

Montevideo, agosto de 2009

Hfusion: a fusion tool based on acid rain plus extensions
Domínguez Laumann, Facundo
ISSN 0797-6410
Tesis de Maestría en Informática
Reporte Técnico RT 09-16
PEDECIBA Area Informática
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, agosto de 2009

Abstract

When constructing programs, it is a usual practice to compose algorithms
that solve simpler problems to solve a more complex one. This principle
adapts so well to software development because it provides a structure to
understand, design, reuse and test programs.

In functional languages, algorithms are usually connected through the
use of intermediate data structures, which carry the data from one algorithm
to another one. The data structures impose a load on the algorithms to
allocate, traverse and deallocate them. To alleviate this inefficiency, auto-
matic program transformations have been studied, which produce equivalent
programs that make less use of intermediate data structures.

We present a set of automatic program transformation techniques based
on algebraic laws known as Acid Rain. These techniques allow to remove
intermediate data structures in programs containing primitive recursive func-
tions, mutually recursive functions and functions with multiple recursive ar-
guments.

We also provide an experimental implementation of our techniques which
allows their application on user supplied programs.

Keywords: Deforestation, Acid Rain, Fusion, Hylomorphism, Paramor-
phism, Functional Programming Languages, Generic Programming.

2

Acknowledgements

This work would not have reached its current form if it had not been for
the careful examination of Alberto Pardo. He kindly provided me with the
appropriate references many times, when I believed to have invented the
wheel; and he asked me to bring to light things that I would have rather
swept under the carpet!

Many thansk to reviewers Jose Nuno Oliveira, Javier Baliosian and Gus-
tavo Betarte who provided valuable comments to prepare the final version.

This work also owes to Lućıa Lafourcade, my life companion, who believed
that I was going to make it when I felt hopelessly hung half-way in a slope.

The research presented herein was partly supported by a one-year scholar-
ship from PEDECIBA (Programa de Desarrollo de Ciencias Básicas – Univer-
sidad de la República), and was partly done in the context of the project De-
forestación en presencia de efectos , funded by PDT – DINACYT (Programa
de Desarrollo Tecnológico – Dirección Nacional de Ciencia y Tecnoloǵıa).

4

Contents

1 Introduction 7

2 Fundamentals 11
2.1 Functors . 12
2.2 Hylomorphisms . 14
2.3 Algebras and coalgebras . 16
2.4 Functors derived from types 17
2.5 Acid Rain laws . 18
2.6 Natural transformations . 21

3 Basic algorithms 23
3.1 Hylomorphism derivation . 24
3.2 Analyzing data production and consumption schemes 25

3.2.1 Recognizing inF . 26
3.2.2 Recognizing outF . 30
3.2.3 Derivation of τ . 34
3.2.4 Derivation of σ . 36

3.3 Inlining hylomorphisms . 41
3.4 Summary . 43

4 Paramorphism fusion 45
4.1 Paramorphisms . 46
4.2 Generalized paramorphisms 52
4.3 Fusion in practice . 58
4.4 Summary . 59

5 Partial deforestation 61
5.1 A disguised paramorphism . 61
5.2 Partial deforestation without paras 62
5.3 Multiple occurrences of a constructor 64

6 Mutually recursive functions 69
6.1 Derivation of mutual hylomorphisms 71
6.2 Derivation of τ . 73

5

6

6.3 Derivation of σ . 74
6.4 Regular Functors . 76
6.5 Varying the amount of components 77

7 Recursion over multiple arguments 81
7.1 Derivation of σ . 84
7.2 Folds as Unfolds . 86
7.3 Flexibility through mutual hylos 88
7.4 Duplication of computations 91
7.5 A normal form for recursive definitions 92

8 Measuring fusion 95
8.1 Deforesting all the data structures 95
8.2 A normalizer for lambda calculus 96
8.3 Fusion of list comprehensions 98
8.4 Fusion of primitive recursive functions 100
8.5 Summary . 101

9 Future work and conclusions 103
9.1 Definitions returning multiple results 103
9.2 Monadic computations . 104
9.3 Tupling . 104
9.4 Composition discovering . 105
9.5 Relationship with shortcut fusion 106
9.6 Limitations of hylo fusion . 107

9.6.1 Definitions with nested calls 108
9.6.2 Definitions with accumulators 108
9.6.3 Fusing inside recursive definitions 109
9.6.4 Handling compositions of reverse 109

9.7 Conclusions . 110

Bibliography 113

A Counterexamples 119
A.1 Derivation of τ . 119
A.2 Derivation of σ . 122

B HFusion internals 125
B.1 Law application . 129
B.2 HFusion stages . 133

Chapter 1

Introduction

Most often, programming languages allow to express programs in a modular
and succinct way through the composition of subroutines or functions which
perform more specific tasks. Functional languages are not an exception in
this regard, but for them, compositions can be significantly more expensive
to execute, sometimes. Consider the following Haskell1 function:

f p n = sum (filter p [1 . . n])

This program sums all the numbers between 1 and n that satisfy a given
predicate p. To build it, we have used standard functions that work over lists.
Function sum sums the numbers in a list, whereas function filter p builds
a list by selecting from the input list the elements that satisfy predicate p.
The expression [m . . n] builds a list with the integers from m to n.

The individual parts are simple enough so that the whole program can be
understood from them without much effort. But when composing the parts,
we rely on intermediate lists that transfer the data from one stage to the
next. We first build a list with the integers from 1 to n and then we build a
new list with the numbers satisfying p. These intermediate lists imply more
work for allocating, examining and deallocating their nodes, and therefore
are not desirable from the runtime standpoint. It could be possible to write
a program which computes the same but does not construct the intermediate
lists:

f p n = g p n 0 1

g p n acc m =
if m > n then acc

else if p m then g p n (m + acc) (m + 1)
else g p n acc (m + 1)

In this version we certainly avoid the construction of the intermediate lists,
but it takes longer to write and it is harder to understand. The intelligibility

1We will manipulate throughout our work Haskell programs [Bir98, Jon03].

7

8 Introduction

quickly decreases when attempting to eliminate more intermediate structures
in larger programs.

To solve this dilemma between intelligibility and efficiency, automatic pro-
gram transformation techniques have been formulated, so that the program-
mer could write and read the modular version of a program while the compiler
derives the efficient one (see e.g. [Wad88, Chi92, dMS99, JL98, GLPJ93], and
some others with a more algebraic approach [BdM97, SF93, TM95, HIT96b,
HIT96a]).

Because other tree-like structures can be used to pass intermediate data
between program components, such transformations are known as deforesta-
tion [Wad88]. As program components are replaced by monolithic functions
performing all of their tasks, the transformation is also called fusion.

In this thesis we present the essentials for fusing programs using one of the
algebraic approaches. This is a reformulation and reelaboration of previous
work based on describing programs in terms of a recursive scheme called hylo-
morphism (sometimes referred to simply as hylo), and applying certain laws
known as acid rain [TM95, OHIT97, Sch00]. As first step we implemented
those techniques [Dom04, DP06a], and now we extend the algorithms in order
to broaden the application of fusion to more cases.

Our main contributions are:

• A more concise formulation of the essential algorithms presented in
[OHIT97, Sch00], which simplifies understanding and extension.

• An extension of the set of techniques available to pre-process definitions
before applying the algorithms mentioned above.

• An extension of the previous algorithms to handle definitions which
recurse over multiple arguments.

• An extension to handle mutually recursive definitions.

• An extension to handle primitive recursive definitions. This was pre-
sented in [DP06b].

• A set of techniques to broaden applicability of fusion laws in the light
of the aforementioned extensions. Specifically,

– we enable partial fusion when it is not possible to completely elim-
inate an intermediate data structure;

– we propose a technique for eliminating data structures defined by
the so-called regular functors; and

– we identify a practical way to rewrite definitions to enable fusion
of compositions like sum ◦filter p when sum uses an accumulator.

9

• We provide an experimental implementation of a fusion tool named
HFusion, available at

http://www.fing.edu.uy/inco/proyectos/fusion/tool

• We identify techniques used in our approach which could be put at the
service of a somewhat related approach called shortcut deforestation
[GLPJ93, Gil96, TM95].

The thesis is organized as follows. In Chapter 2 we present the basics
of the theory which justifies correctness of hylo fusion transformations. In
Chapter 3 we present the basic algorithms to perform hylo fusion. These are
revised versions of the algorithms in [OHIT97, Sch00] together with some
complementary algorithms which may be needed prior to fusion. In Chap-
ter 4 extensions of our laws are presented for handling primitive recursive
functions. In Chapter 5 we show several rewriting techniques that enable
fusion when only part of the intermediate data structures can be eliminated.
Chapter 6 is devoted to the extensions needed for handling mutually recursive
definitions, and how mutual recursion can be used to deforest intermediate
structures that have regular functors. In Chapter 7 we present the extension
needed for handling definitions which recurse over multiple arguments, and
we show some rewriting techniques that help getting more fusions from our
extensions. In Chapter 8 we present the changes in performance in some
sample programs after applying our transformations. Finally Chapter 9 re-
lates our work to shortcut fusion, points at future work and draws some
conclusions.

In Appendix A we provide counterexamples justifying some restrictions
we impose in the input to our algorithms. In Appendix B we present our
internal representation of hylomorphisms together with some remarks on how
the algorithms are applied in the HFusion system.

10 Introduction

Chapter 2

Fundamentals

This chapter presents the essential concepts we will be handling through
the rest of the work (see e.g. [BdM97] for more details). They are used
for the sole purpose of presenting our techniques; the resulting transformed
programs which are returned by HFusion do not reference any of them.

Consider the following program, which sums the squares of all the leaves
in a tree.

data BTree = Leaf Int | Join BTree BTree

sumsqr :: BTree → Int
sumsqr = sumBT ◦ sqrLeaves

sumBT :: BTree → Int
sumBT (Leaf i) = i
sumBT (Join l r) = sumBT l + sumBT r

sqrLeaves :: BTree → BTree
sqrLeaves (Leaf i) = Leaf (sqr i)
sqrLeaves (Join l r) = Join (sqrLeaves l) (sqrLeaves r)

sqr x = x ∗ x

Consider now the following term:

Join (Join (Leaf 1) (Leaf 9)) (Leaf 16)

If we apply sumBT to it, we get the term

(+) ((+) (id 1) (id 9)) (id 16)

which is precisely the result of replacing each occurrence of the constructor
Join with (+), and each occurrence of constructor Leaf with id .

Fusing the composition sumsqr = sumBT ◦ sqrLeaves is achieved by
performing the previous substitution to the constructors occurring in the
right hand side of sqrLeaves equations.

11

12 Fundamentals

sumsqr :: BTree → Int
sumsqr (Leaf i) = id (sqr i)
sumsqr (Join l r) = (+) (sumsqr l) (sumsqr r)

In order to formally describe these manipulations, we will represent the
definitions of sumBT and sqrLeaves in terms of a program scheme known as
hylomorphism. The laws we use to fuse programs are of the form f ◦ g = h,
telling that a composition of hylomorphisms f and g can be eliminated by
replacing it with an equivalent hylomorphism h, which is built from the
components of f and g . After applying the law, the resulting hylomorphism
h can be converted back into a recursive definition in a language like Haskell.

The following sections will introduce the concepts we need to express
hylomorphisms as well as the fusion laws.

2.1 Functors

To write our definitions as hylomorphisms we need to structure them. That
structure will be described by functors.

Definition 2.1 (Functor) A functor F is an operator which applies to types
and functions, and which satisfies the following properties:

• F f : F a → F b, for all f : a→ b

• F id = id

• F (f ◦ g) = F f ◦ F g

A functor F is specified by its action on types and functions, both written
as F . For instance, we could specify the following functor:

F a = Either Int (a × a)
F f = either Left (λ(l , r)→ Right (f l , f r))

where the Haskell type of pairs (a, a) is denoted as a × a, and the type
constructor Either and the function either are given by the following standard
Haskell definitions:

data Either a b = Left a | Right b

either :: (a → c)→ (b → c)→ Either a b → c
either f g (Left a) = f a
either f g (Right b) = g b

The functor definition can be generalized to functors with more than one
argument.

2.1 Functors 13

Definition 2.2 (Bifunctor) A bifunctor F is a binary operator which ap-
plies to pairs of types and functions, and which satisfies the following prop-
erties:

• F (f, g) : F (a, c) → F (b, d), for all f : a→ b and g : c→ d

• F (id , id) = id

• F (f ◦ g , h ◦ k) = F (f , h) ◦ F (g , k)

In general, functors are specified in compact notation as compositions of
elementary functors. Throughout this text, all types will be interpreted as
complete partial orders with minimum (known as pointed CPOs [AJ94]).

• The identity functor: I a = a, I f = f

• The constant functor c: c a = c, c f = id

• The product bifunctor:

(a × b) = {(x , y) | x ∈ a, y ∈ b}
(f × g) (x , y) = (f x , g y)

• The n-ary product:

(a1 × · · · × an) = {(x1, . . . , xn) | xi ∈ ai }
(f1 × · · · × fn) (x1, . . . , xn) = (f1 x1, . . . , fn xn)

• The disjoint sum bifunctor:

a + b = ({1} × a) ∪ ({2} × b) ∪ {⊥}
(f + g) (1, x) = (1, f x)
(f + g) (2, y) = (2, g y)
(f + g) ⊥ = ⊥

• The n-ary sum:

(a1 + · · ·+ an) = ({1} × a1) ∪ · · · ∪ ({n } × an) ∪ {⊥}
(f1 + · · ·+ fn) (i , xi) = (i , fi xi)
(f1 + · · ·+ fn) ⊥ = ⊥

14 Fundamentals

We assume from now on that application has greater precedence than both
product and sum, and product has greater precedence than sum. When
defining functors, we will also use the unit type 1 = {(),⊥}.

Our sample functor can then be re-expressed more succinctly as

F a = Int + a × a
F f = id + f × f

where we have replaced the Either type constructor by the sum functor.
We can still do better to shorten the definition of F .

• Product of functors

(F ×G) a = F a ×G a
(F ×G) f = F f ×G f

• Sum of functors

(F + G) a = F a + G a
(F + G) f = F f + G f

Now we can express our sample functor as F = Int + I × I . To see this, we
evaluate F over a type and a function, and then unfold the product and sum
of functors, which yields the same definition we had before:

F a = (Int + I × I) a = Int a + I a × I a = Int + a × a

F f = (Int + I × I) f = Int f + I f × I f = id + f × f

We will call recursive positions of a functor those positions where functor
I occurs.

2.2 Hylomorphisms

Now, we are able to write our recursive functions as hylomorphisms.

Definition 2.3 (Hylomorphism) Given a functor F , and functions ψ ::
a → F a and φ :: F b → b, a hylomorphism is the least fixed point of the
equation

h = φ ◦ F h ◦ ψ

which is denoted as Jφ, ψKF :: a → b.

A hylomorphism has three components:

2.2 Hylomorphisms 15

• a function ψ which takes the initial input and computes the arguments
for the recursive calls;

• a functor F , which is used to perform the recursive calls on the output
of ψ; and

• a function φ which takes the result of the recursive calls and any other
value returned by ψ to build the final result.

So, a hylomorphism divides the recursion into the computations that are
done before and after the recursive calls.

The representation of sqrLeaves and sumBT as hylomorphisms follows:

F = Int + I × I

sqrLeaves = Jφ, ψKF

where ψ :: BTree → F BTree
ψ (Leaf i) = (1, sqr i)
ψ (Join l r) = (2, (l , r))
φ :: F BTree → BTree
φ (1, i) = Leaf i
φ (2, (l , r)) = Join l r

sumBT = Jφ′, ψ′KF

where ψ′ :: BTree → F BTree
ψ′ (Leaf i) = (1, i)
ψ′ (Join l r) = (2, (l , r))
φ′ :: F Int → Int
φ′ (1, i) = i
φ′ (2, (l , r)) = l + r

We have functions ψ and ψ′ which prepare the arguments for the recursive
calls. Then, funtor F specifies over which positions of the tuples returned by
ψ and ψ′ the recursive calls should be applied. Finally, we have functions φ
and φ′ that operate with the results of the calls.

In Section 2.5 we will present a law that tells us that

sumBT ◦ sqrLeaves = Jφ′, ψKF

Note that the components φ and ψ, which are the ones which involve the
constructors of the intermediate data structure are not part of the resulting
hylo. Therein lays the cause of deforestation.

When we inline Jφ′, ψKF (i.e. the inverse process of obtaining the hylo-
morphism), we get the following recursive definition.

sumsqr :: BTree → Int
sumsqr (Leaf i) = sqr i
sumsqr (Join l r) = sumsqr l + sumsqr r

16 Fundamentals

2.3 Algebras and coalgebras

We have shown in the previous section how a functor may be used to factorize
a recursive definition into a hylomorphism. The factorization introduces new
components φ, φ′, ψ and ψ′, which are sometimes substituted one for another
when applying a fusion law. In this section we will state the terminology and
some notation for working with those components.

The components applied to the result of the recursive calls are called
algebras.

Definition 2.4 (F -algebra) Given a functor F and a type a, an F -algebra
is any function with type F a → a. The type a is said to be the carrier set
of the F -algebra.

Note that in the previous section both φ and φ′ are F -algebras with carrier
sets BTree and Int respectively.

The following operator will be useful for expressing algebras.

Definition 2.5 (Case analysis) Case analysis for functions fi : ai → t is
defined as

f1O · · ·Ofn :: a1 + · · ·+ an → t
(f1O · · ·Ofn) (i , x) = fi x

Case analysis comes with a useful property we will use later:

(f1 ◦ g1)O · · ·O(fn ◦ gn) = (f1O · · ·Ofn) ◦ (g1 + · · ·+ gn)

For example, the algebra φ of sqrLeaves can be expressed in terms of
the case analysis as φ = LeafOJoin, and φ′ of sumBT can be expressed as
φ′ = idO(+). There is a slight type mismatch in these case analysis, since
O expects uncurried functions as arguments; however constructor Join and
function (+) are curried. With the aim to simplify notation as much as pos-
sible we will carry on with this kind of mismatch. We will also write algebras
like []O(:), where the list constructor [] does not receive any argument at
all, understanding this occurrence of [] or any other similar constructor as
having type 1→ [a], that is, a function taking () and constructing the empty
list [].

The algebras expressed in terms of case analysis enumerate the operations
they perform to produce values in the carrier set. For example, the algebra
LeafOJoin states that it performs a Leaf operation on an integer to create
a BTree, and a Join operation on two BTrees to produce a new Btree. The
algebra idO(+) states that it performs operation id or (+) to create integers.
When a fusion law replaces an algebra by another one, it relies on the involved

2.4 Functors derived from types 17

functor to guarantee that the operations in the original algebra are replaced
by operators with the same arity from the other.

Given an F -algebra of the form

φ1O · · ·Oφn

where φi vi1 . . . vini
= ti

we will call recursive variables those variables vi corresponding to recur-
sive positions in functor F . Thus, for example, in the algebra idO(+) from
sumBT , the arguments to (+) are recursive. This terminology matches the
idea that those arguments hold the result of recursive calls.

We also need a concept for describing the functions that prepare the
arguments of the recursive calls (ψ and ψ′ in the case of sqrLeaves and
sumBT).

Definition 2.6 (F -coalgebra) Given a functor F and a type a, an F -
coalgebra is any function with type a → F a. The type a is said to be the
carrier set of the F -coalgebra.

Note that ψ and ψ′ are both F -coalgebras with carrier set BTree.
The F -coalgebras we will manipulate are of the form

λv0 → case t0 of p1 → (1, (t11, . . . , t1n1)); . . . ; pm → (m, (tm1, . . . , tmnm))

We will call tij a recursive term if it corresponds to a recursive position
of functor F . This terminology matches the idea that a recursive tij is the
argument of a recursive call.

2.4 Functors derived from types

Functors are related with data types. In fact, a functor may be derived
from a data type definition by extracting the arity of its constructors. For
instance, the functor F = Int + I × I can be obtained by placing in a sum
the signatures of the BTree constructors.

data BTree = Leaf Int | Join BTree BTree

Observe that occurrences of the identity functor I correspond to inductive
arguments of the data type constructor.

In a similar way, for the type of lists,

data [a] = [] | a : [a]

we can derive a functor1 F = 1 + a × I .

1Formally, when the type has a parameter a, the functor should be written as Fa, since
the functor is parametric on it. However, we will avoid doing that for the sake of legibility.

18 Fundamentals

Being F the functor derived from a data type T , we also call µF to the
data type T . This is because the data type can be understood as the least
fixed point of the type equation x ∼= F x.

Having a functor F , we will call inF the algebra C1O · · ·OCn :: F µF →
µF , being C1, . . . ,Cn the constructors of data type µF . We also call outF ::
µF → F µF the inverse of inF . Being F = Int + I × I , we have that inF

can be expressed as inF = LeafOJoin and outF can be defined as:

outF (Leaf i) = (1, i)
outF (Join l r) = (2, (l , r))

The algebra inF and the coalgebra outF allow to specialize hylomorphisms
to get the well known recursive operators fold (L−MF) [BdM97] and unfold
(bd(−)ecF) [GJ98].

LφMF = Jφ, outF KF

bd(ψ)ecF = JinF , ψKF

These operators are also known as catamorphisms and anamorphisms respec-
tively [MFP91].

2.5 Acid Rain laws

We have gathered now all the background we need to introduce the fusion
laws that HFusion uses [TM95, OHIT97].

Theorem 2.7 (Acid rain)

fold-unfold: Jφ, outF KF ◦ JinF , ψKF = Jφ, ψKF

fold-hylo: LφMF is strict τ :: ∀a. (F a→ a)→ (G a→ a)

LφMF ◦ Jτ(inF), ψKG = Jτ(φ), ψKG

hylo-unfold: σ :: ∀a. (a→ F a)→ (a→ G a)

Jφ, σ(outF)KG ◦ bd(ψ)ecF = Jφ, σ(ψ)KG

Each of the laws allows to replace a composition by an equivalent hy-
lomorphism, and depends in doing so on the capacity of finding the uses of
outF at the left of the composition, and the uses of inF at the right of it. The
hylomorphism that is used to replace the composition never contains inF nor
outF , which constitutes the elimination of the intermediate data structure.

The fold-unfold law is the one we applied in the example of sumsqr . Fold-
hylo fusion requires identifying uses of inF inside a term described by τ , while

2.5 Acid Rain laws 19

hylo-unfold fusion requires identifying uses of outF inside a term described
by σ.

Functions τ and σ are called transformers of algebras and coalgebras,
respectively [Fok92].

A drawback of acid rain laws is that they are known to work over Haskell
programs without the seq operator [Jon03]. If seq occurs in the input pro-
grams, the laws may need to be weakened [JV04], since their proof depends
on free theorems [TM95]. So we assume from now on that none of our input
programs contain the seq operator.

Example 2.8 (fold-hylo fusion) Consider the following program, which
counts the amount of elements in a list satisfying a given predicate.

lf :: (a → Bool)→ [a]→ Int
lf p = length ◦ filter p

We will write the definitions used in this program as hylomorphisms.

filter :: (a → Bool)→ [a]→ [a]
filter p = J[]Oφ2, ψKG

where G = 1 + a × I × I
φ2 (a, v1, v2) = if p a then a : v1 else v2

ψ [] = (1, ())
ψ (a : ls) = (2, (a, ls , ls))

length :: [a]→ Int
length = L0O(λ(, v)→ 1 + v)MF

where F = 1 + a × I

Now, we rewrite the algebra of filter as τ(inF).

filter p = Jτ(inF), ψKG

where τ :: ∀a. (F a → a)→ (G a → a)
τ(α) = τ1(α)Oτ2(α)
τ1(α1Oα2) = α1

τ2(α1Oα2) (a, v1, v2) = if p a then α2 (a, v1)
else v2

Applying fold-hylo fusion we get

lf :: (a → Bool)→ [a]→ Int
lf p = Jτ(0O(λ(, v)→ 1 + v)), ψKG

Inlining the above we get:

lf :: (a → Bool)→ [a]→ Int
lf p [] = 0
lf p (a : ls) = if p a then 1 + lf ls else lf ls

�

20 Fundamentals

Example 2.9 (hylo-unfold fusion) Let us now consider the following def-
initions.

odds :: [a]→ [a]
odds (a : : as) = a : odds as
odds (a : []) = [a]
odds [] = []

upto :: Int → Int → List Int
upto n m = if m > n then []

else m : upto n (m + 1)

and suppose we want to fuse the composition odds (upto n 1) which computes
the odd numbers between 1 and n.

First, we factorize the definitions as hylomorphisms:

odds = J[]O(:)O(:[]), ψKG

where G = 1 + a × I + a
ψ (a : : as) = (2, (a, as))
ψ (a : []) = (3, a)
ψ [] = (1, ())

upto n = bd(ψ′)ecF
where F = 1 + Int × I

ψ′ m = if m > n then (1, ())
else (2, (m,m + 1))

Now we write ψ as σ(outF).

odds = J[]O(:)O(:[]), σ(outF)KG

where σ :: (a → F a)→ (a → G a)
σ(β) l =

case β l of
(1, ())→ (1, ())
(2, (i , is))→ case β is of

(1, ())→ (3, i)
(2, (, is ′))→ (2, (i , is ′))

Applying hylo-unfold fusion to odds (upto n 1) we get:

odds upto n = J[]O(:)O(:[]), σ(ψ′)KG

Inlining the above hylomorphism yields

odds upto :: Int → Int → [Int]
odds upto n m =

if m > n then []
else if m + 1> n then [m]

else m : odds upto n (m + 1 + 1)

�

2.6 Natural transformations 21

2.6 Natural transformations

Sometimes, we will need to restructure a hylomorphism before we can apply
a fusion law to it. Natural transformations will serve to that purpose.

Definition 2.10 (Natural transformation) A natural transformation η
between two functors F and G , denoted as η : F ⇒ G , is a polymorphic
function η :: F a → G a.

The concept of natural transformation is more general than the one of poly-
morphic function, but in our context it is enough to see both concepts as the
same.

Every natural transformation comes with a free theorem [Wad89] derived
from its polymorphic type. For all f :: a → b:

η ◦ F f = G f ◦ η

The trivial natural transformation is id : I ⇒ I . Another natural trans-
formation is

swap :: a × Int → Int × a
swap (a, i) = (i , a)

which can be expressed as swap : I × Int ⇒ Int × I .

Natural transformations can be composed to form other natural transfor-
mations. Given natural transformations η : F ⇒ G and η′ : F ′ ⇒ G ′:

• η × η′ : F × F ′ ⇒ G ×G ′

• η + η′ : F + F ′ ⇒ G + G ′

• If G = F ′, η ◦ η′ : F ⇒ G ′

The following is an interesting property relating natural transformations
and hylomorphisms.

Proposition 2.11 (hylo-shift)

η : F ⇒ G

Jφ ◦ η, ψKF = Jφ, η ◦ ψKG

This property allows to move terms from the algebra to the coalgebra of a
hylomorphism.

22 Fundamentals

Example 2.12 (Applying hylo-shift) If we consider again the hylomor-
phism for sqrLeaves ,

sqrLeaves = bd(ψ)ecF
where F = Int + I × I

ψ :: BTree → F BTree
ψ (Leaf i) = (1, sqr i)
ψ (Join l r) = (2, (l , r))

we can rewrite is as

sqrLeaves = bd((sqr + id) ◦ outF)ecF
where sqr + id :: F ⇒ F

where we can see the function sqr :: Int → Int as a natural transformation
sqr : Int ⇒ Int between the constant functor Int and itself. In fact, every
non-polymorphic function can be seen as a natural transformation by using
constant functors.

We can then apply hylo-shift to get sqrLeaves = LinF ◦ (sqr + id)MF .
This restructure is useful in case we want to fuse compositions of the form
sqrLeaves ◦ Jτ(inF), ψKG or sqrLeaves ◦ bd(ψ)ecF , because it makes it possible to
see sqrLeaves as a fold. �

Chapter 3

Basic algorithms

In this chapter we present the most elemental algorithms that are built into
the HFusion tool. In the following chapters we will extend both the theory
and the algorithms to incorporate more elaborated cases. Many of these
algorithms have been already implemented as part of the HYLO system
[OHIT97, Sch00], but there are a few that have been developed by us.

From an external viewpoint, the tool takes a list of Haskell definitions,
fuses some of them and outputs the result as another list of Haskell defini-
tions. In the following we discuss the different stages of that process.

1. Build internal representation for recursive definitions. First,
the Haskell definitions are written as hylomorphisms. Here we will use
the algorithm presented in Section 3.1.

2. Classify hylomorphisms according to the cases of the acid rain
laws. It is necessary to determine if the hylomorphisms satisfy any of
the hypotheses of the acid rain laws. In this stage we will be answering
questions like: Is a hylomorphism a fold? Is it an unfold? Is the alge-
bra in τ(inF) form? Is the coalgebra in σ(outF) form? Is it possible
to transform the hylomorphism to make it fit any of the hypotheses?
The algorithms for answering these questions will be presented in Sec-
tion 3.2.

3. Apply fusion laws. In this stage we take compositions of hylomor-
phisms and apply the fusion laws to them. The tool expects to be
supplied with the compositions that a user wants to have fused. If
the tool were to be integrated into a compiler, it would be necessary
a procedure that searches compositions in a program and feeds them
automatically to this stage. Implementation of such a procedure has
been moved to future work.

4. Inlining. The fusion laws return hylomorphisms that we want to write
in a way a compiler could understand. Therefore, in this stage the

23

24 Basic algorithms

program ::= v=t
..
.

v=t

b ::= v (variables)
| (b, . . . , b) (tuples of variables)

p ::= v (variables)
| (p, . . . , p) (tuples of patterns)
| c p . . . p (constructor application)
| l (literals)

t ::= v (variables)
| l (literals)
| (t, . . . , t) (tuples)
| λb→ t (lambda expressions)
| let v=t in t (let expressions)
| case t of (case expressions)

p→ t
...

p→ t
| v t . . . t (function application)
| c t . . . t (constructor application)
| t t (term application)
| ⊥ (undefined term)

Figure 3.1: Core language grammar

resulting hylomorphisms are inlined obtaining recursive Haskell defini-
tions.

3.1 Hylomorphism derivation

Before manipulating function definitions, we give a description of the gram-
mar for our core language (Figure 3.1). Our core language is a subset of
Haskell, but big enough to express all definitions of interest. Types are not
specified as they are not needed for our algorithms, though all of them de-
pend on the input programs being well typed. In the grammar, function
and constructor applications are separated from general term applications
for practical reasons. All applications appear in curried form, but we will
treat curried and uncurried forms indistinctly throughout the algorithms and
examples.

In Figure 3.2 we present the derivation algorithm for hylomorphisms,
which has been proposed by Onoue et al. [OHIT97]. The algorithm accepts
definitions in the following form:

f = λv1 . . . vm → case t0 of p1 → t1; . . . ; pn → tn

It is required that f be well typed and recursive over one argument only.
Without loss of generality we will assume that the recursive argument is the
last one (vm); this means that the rest of the arguments v1, . . . , vm−1 remain
constant throughout the recursive calls.

The algorithm will then return a term of the form:

f = λv1 . . . vm−1 → Jφ1O · · ·Oφn , ψK·

3.2 Analyzing data production and consumption schemes 25

H(f , λv1 . . . vm → case t0 of p1 → t1; . . . ; pn → tn) =
λv1 . . . vm−1 → Jφ1O · · ·Oφn , ψKF
where
ψ = λvm → case t0 of

p1 → (1, (v11, . . . , v1l1 , t
′
11, . . . , t

′
1s1

))

...
pn → (n, (vn1, . . . , vnln , t

′
n1, . . . , t

′
nsn

))

φi = λ(vi1, . . . , vili , u1, . . . , usi)→ t ′′i
F = F1 + · · ·+ Fn

Fi = Γ(vi1)× · · · × Γ(vili)× I1 × · · · × Isi -- Γ(v) returns the type of v
({vi1, . . . , vili }, {(u1, ti1), . . . , (usi , tisi)}, t ′′i) = D (pi , ti)
D (pi , v) = ({v }, ∅, v) if v ∈ vars(pi) ∪ {vm}

(∅, ∅, v) otherwise
D (pi , (t1, . . . , tn)) = (c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n , (t

′
1, . . . , t

′
n))

where (ci , c
′
i , t
′
i) = D (pi , ti)

D (pi ,Cj (t1, . . . , tn)) = (c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n ,Cj (t ′1, . . . , tn))
where (ci , c

′
i , t
′
i) = D (pi , ti)

D (pi , g t1 . . . tm)) = (∅, {(u, tm)}, u) if g = f and vi = ti for all i < m
(c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n , g t ′1 . . . t ′n) otherwise

where (ci , c
′
i , t
′
i) = D (pi , ti)

u is a fresh variable
D (pi , let v = t0 in t1) = (c0 ∪ c1, c′0 ∪ c′1, let v = t ′0 in t ′1)

where (ci , c
′
i , t
′
i) = D (pi , ti)

D (pi , λv → t) = (c, c′, λv → t ′)
where (c, c′, t ′) = D (pi , t)
D (pi , case t0 in p1 → t1; . . . ; pn → tn) =

(c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ cn , case t0 of p1 → t ′1; . . . ; pn → t ′n)
where (ci , c

′
i , t
′
i) = D (pi , ti)

Figure 3.2: Hylomorphism derivation algorithm

Each component φi is constructed from a term ti . In ti the recursive calls are
replaced by fresh variables representing the result of these recursive calls. Al-
gorithm D is the one abstracting the recursive calls. The coalgebra contains
the case over t0. For each case alternative, the coalgebra returns the argu-
ments of the recursive calls and the bounded variables in the corresponding
pattern pi , as long as they are referenced by the term ti .

There is a technical detail we are not caring of in the algorithm. We are
assuming that none of the input variables v1 . . . vm−1 is captured by the terms
ti . This means that no case pattern, let declaration and lambda abstraction
introduces them again. Otherwise, algorithm D would need to do more care-
ful checks to verify that the assumed constant arguments effectively remain
constant throughout the recursive calls.

3.2 Analyzing data production and consump-

tion schemes

Applying the acid rain laws requires analysis of the algebra and coalgebra of
the hylomorphisms. That is, when having a composition

26 Basic algorithms

Jφ, ψKF ◦ Jφ′, ψ′KG

we want to determine the shape of ψ and φ′ in order to know which acid rain
law can be applied.

In this section we will be answering the following questions:

• φ′ = inG?

• ψ = outF ?

• φ′ = τ(inF)?

• ψ = σ(outG)?

The analysis of data production and data consumption schemes may im-
ply restructuring the hylomorphisms so that the algebra or the coalgebra can
be shaped in a convenient way. The essence of restructuring is finding a de-
composition of an algebra φ′ into φ′′ ◦ η, where η is a natural transformation
η : F ⇒ G . Then, we can apply the hylo-shift property (Proposition 2.11)
to get that

Jφ′, ψ′KF = Jφ′′, η ◦ ψKG

where φ′′ is hopefully simpler than φ′ to continue the analysis.
In a dual way, we could decompose a coalgebra ψ as η ◦ ψ′′, where η is

again a natural transformation η : G ⇒ F . Then, by hylo-shift we get that

Jφ, ψKF = Jφ ◦ η, ψ′′KG

where ψ′′ is possibly easier to analyze than ψ.

3.2.1 Recognizing inF

We will say that an algebra φ′ : G a→ a is inG if it is of the form C1O · · ·OCn
where C1, . . . , Cn are all the constructors of type a.

Of course, there are many terms that can be equivalent to an algebra
in that form. However, for practical reasons we will stick to this syntactic
criterion, and will not consider the other equivalent algebras as being inG .
In essence, this has been the approach taken by Schwartz[Sch00]. Onoue et
al.[OHIT97] propose applying φ′ and inG to a given set of values in order
to verify that the results they deliver match. However, they do not provide
any details on how such a method would ensure equivalence of the algebras,
or whether it may improve recognition in practice with respect to using the
syntactic approach.

When an algebra is not in inG form, there are some restructures that can
be tried in order to get a hylomorphism with a complying algebra. In what

3.2 Analyzing data production and consumption schemes 27

follows, we present a survey of the restructuring techniques that the HFusion
tool applies for that purpose. The first one is a synthesis of the restructuring
proposed by Onoue et al. [OHIT97] and Schwartz [Sch00], the rest of the
restructures were developed by us.

Moving arguments

Given an algebra φ = φ1O · · ·Oφn where each φi is of the form

φi = λ(vi1, . . . , viki
)→ Ci (ti1, . . . , tili)

we can restructure each φi as Ci ◦ ηi where

ηi = λ(vi1, . . . , viki
)→ (ti1, . . . , tili)

Thus, we can restructure algebra φ as:

φ = (C1 ◦ η1)O · · ·O(Cn ◦ ηn) = (C1O · · ·OCn) ◦ (η1 + · · ·+ ηn)

If each ηi is a natural transformation, then so is (η1 + · · ·+ ηn) and therefore
can be moved to the coalgebra. To guarantee that, the restriction is imposed
that each term tij must be a variable or it must be a term that does not make
reference to recursive variables.

Example 3.1 (Restructure of mirror) Consider the following definition.

mirror :: BTree → BTree
mirror (Join l r) = Join (mirror r) (mirror l)
mirror (Leaf i) = Leaf i

If we derive a hylomorphism from it, we get:

mirror = LφMF

where F = Int + I × I
φ :: F BTree → BTree
φ = LeafO(λ(v1, v2)→ Join v2 v1)

We can decompose the algebra as follows

φ = (LeafOJoin) ◦ (id + swap)

where swap (v1, v2) = (v2, v1). Since (id + swap) : F ⇒ F is a natural
transformation, we can restructure the hylomorphism as

LφMF = LinF ◦ (id + swap)MF = bd((id + swap) ◦ outF)ecF

�

28 Basic algorithms

Example 3.2 (Restructure of map) Consider now the following defini-
tion.

map : (a → b)→ [a]→ [b]
map f (a : as) = f a : map as
map f [] = []

as hylomorphism

map f = Jφ, outF KF

where F = 1 + a × I
φ :: F [a]→ [a]
φ = []O(λ(a, v)→ f a : v)
outF = λl → case l of

[]→ (1, ())
(i : is)→ (2, (i , is))

The algebra can be decomposed as

φ = []O(:) ◦ (id + (λ(a, v)→ (f a, v)))

where (id + (λ(a, v) → (fa, v))) : F ⇒ G is a natural transformation, with
G = 1 + b × I . Restructuring and applying hylo-shift :

Jφ, outF KF = bd((id + (λ(a, v)→ (f a, v))) ◦ outF)ecG

�

Adding missing constructors

Let us suppose we have a functor F = F1 + · · ·+ Fk + · · ·+ Fn , a data type
µF with constructors C1, . . . ,Ck , . . . ,Cn , a functor F ′ = F1 + · · · + Fk , and
the algebra

φ = (C1O · · ·OCk) :: F ′ µF → µF

where there are constructors of data type µF which do not appear in φ. We
can restructure the algebra as

φ = (C1O · · ·OCkO · · ·OCn) ◦ g

where g is defined as

g :: F ′ a → F a
g = (λvs → (1, vs))O · · ·O(λvs → (k , vs))

Here g plays the role of a conversion function from type F ′ a to type F a
which is a superset of the former. The conversion can be thought of as
an application of constructor subtyping [BFaF99]. Note that g is a natural
transformation g : F ′ ⇒ F .

3.2 Analyzing data production and consumption schemes 29

Example 3.3 (Restructure of repeat) Consider the following definition.

repeat : a → [a]
repeat a = a : repeat a

It can be represented as the hylomorphism

repeat = J(:), ψKF

where F = a × I
ψ = λa → (a, a)

whose algebra we can decompose as

φ = ((:)O[]) ◦ (λvs → (1, vs))

being (λvs→ (1, vs)) : a× I ⇒ a× I + 1 a natural transformation. Restruc-
turing we get

Jφ, ψKF = JinG , (λvs → (1, vs)) ◦ ψKG

where G = a × I + 1
inG = (:)O[]

�

Moving cases

Given a term φi as follows

φi = λ(v1, . . . , vk)→ case t0 of
p1 → t1

...
pm → tm

we can decompose it as

φi = (g1O · · ·Ogm) ◦ η
where η = λ(v1, . . . , vk)→ case t0 of

p1 → (1, bv(p1, t1))
...

pm → (m, bv(pm , tm))
gi = λbv(pi , ti)→ ti

where bv(pi , ti) are the variables of ti bound in pattern pi or v1, . . . , vk .
If φi is an algebra component, then η is a natural transformation if t0

does not reference recursive variables.
With this manipulation we can restructure an algebra φ1O · · ·Oφn as:

φ1O · · ·Oφn = (φ′1O · · ·Oφ′n) ◦ (η1 + · · ·+ ηn)

where:

30 Basic algorithms

• ηi contains a case structure if φi contains one. The corresponding term
φ′i is then of the form gi1O · · ·Ogimi

.

• ηi = id if φi does not contain a case; then φi = φ′i .

If φi has nested case structures then φ′i may be factored again.

Example 3.4 (reestructure of upto) Consider the following definition

upto : Int → Int → [Int]
upto n m = case m > n of

True → []
False → m : upto n (m + 1)

Note that we are interpreting an if structure as a case for the sake of this
restructure. We get the following hylomorphism for upto:

upto n = Jφ, λm → (m,m + 1)KF

where F = Int × I
φ :: Int × [Int]→ [Int]
φ = λ(m, v)→ case m > n of

True → []
False → m : v

The algebra can be decomposed as

φ = ([]O(:)) ◦ η
where G = 1 + Int × I

η :: F a → G a
η = λ(m, v)→ case m > n of

True → (1, ())
False → (2, (m, v))

Restructuring and applying hylo-shift we get

Jφ, λm → (m,m + 1)KF = JinG ◦ η, λm → (m,m + 1)KF

= bd(η ◦ (λm → (m,m + 1)))ecG

�

3.2.2 Recognizing outF

Having a coalgebra ψ we would like to be able to determine if it is outF .
Consider the following scheme for coalgebra ψ:

ψ = λl → case t0 of
p1 → (1, (t11, . . . , t1k1))

3.2 Analyzing data production and consumption schemes 31

...
pn → (n, (tn1, . . . , tnkn))

Similar to inF , we define a syntactic form for ψ to consider it outF .

1. Each pattern pi must be a constructor application over variables only.

2. The variables in pi must occur in the corresponding output tuple, in
the same order they appear in pi . No other value shall be returned.

3. There is one and only one pattern for each constructor of the input
type.

As in the case of inF , there are many terms equivalent to outF not fitting
our scheme. We will regard those terms as needing restructures, and if the
restructuring does not work then we will give up. This is the same approach
adopted in [Sch00]. Next, we present our coalgebra restructures. All of
them are implemented in HFusion. The first of them is a synthesis of the
restructuring proposed by Onoue et al.[OHIT97]. The second one has been
developed by us.

Moving terms

Given a coalgebra

ψ = λl → case t0 of
p1 → (1, (t11, . . . , t1k1))

...
pn → (n, (tn1, . . . , tnkn))

we can restructure it as follows

ψ = (η1 + · · ·+ ηn) ◦ ψ′
where ψ′ = λl → case t0 of

p1 → bv(p1)
...

pn → bv(pn)
ηi = λbv(pi)→ (i , (ti1, . . . , tik i))

where bv(pi) are the variables of pi . To guarantee that (η1 + · · · + ηn) is a
natural transformation, we will ask tij to be either

• a variable whose occurrences in terms are all recursive; or

• a variable whose occurrences in terms are all non-recursive; or

32 Basic algorithms

• a non-recursive term which does not contain variables occurring in re-
cursive terms.

Example 3.5 (Restructure of filter) Consider the following definition.

filter : (a → Bool)→ [a]→ [a]
filter p (a : as) = if p a

then a : filter p as
else filter p as

filter p [] = []

As a hylomorphism

filter p = J[]Oφ2, ψKF

where F = 1 + a × I × I
φ2 = λ(a, v1 , v2)→ if p a then a : v1

else v2
ψ = λl → case l of

(a : ls)→ (2, (a, ls , ls))
[]→ (1, ())

The coalgebra can be decomposed like this:

ψ = (id + η2) ◦ outG
where G = 1 + a × I
η2 = λ(a, ls)→ (a, ls , ls)
outG = λl → case l of

[]→ (1, ())
i : is → (2, (i , is))

Applying hylo-shift we get

filter p = L([]Oφ2) ◦ (id + η2)MG

This is a case where η2 makes two copies of an input value. The restruc-
ture can be done because ls always occurs as a recursive term and a is a
variable never appearing in a recursive term. �

Adding constructors

Given a coalgebra

ψ = λl → case t0 of
C1 (p11, . . . , p1r1)→ (1, t1)
...
Cn (pn1, . . . , pnrn)→ (n, tn)

3.2 Analyzing data production and consumption schemes 33

where there is a constructor Cn+1 of the input type which does not occur in
the case patterns, we can decompose it as follows.

ψ = (η1O · · ·OηnO⊥) ◦ ψ′
where ψ′ = λl → case t0 of

C1 (p11, . . . , p1r1) → (1, t1)
...
Cn (pn1, . . . , pnrn) → (n, tn)
Cn+1 (u1, . . . , urn+1)→ (n + 1, (u1, . . . , urn+1))

ηi = λvs → (i , vs)

where ⊥ is the minimum element of the disjoint n-ary sum. We added to
ψ′ a new alternative for the constructor Cn+1, so that now we could have a
better chance to get outF . We have that η = (η1O · · ·OηnO⊥) is a natural
transformation

η : F1 + · · ·+ Fn + Fn+1 ⇒ F1 + · · ·+ Fn

Each functor Fi describes the signature of constructor Ci .

Example 3.6 Consider the following definition

mapStream :: (a → b)→ [a]→ [b]
mapStream f (a : as) = f a : mapStream f as

Now, writing it as a hylomorphism we get

mapStream f = Jφ, ψKF

where F = a × I
φ = λ(a, v)→ f a : v
ψ = λl → case l of

a : as → (a, as)

We can decompose the coalgebra ψ as follows.

ψ = (idO⊥) ◦ outG
where G = a × I + 1

outG = λl → case l of
a : as → (1, (a, as))
[]→ (2, ())

where we have that idO⊥ : G ⇒ F , and F a has to be seen as an unary sum.
Finally, the restructure looks like the following after the application of

hylo-shift :

mapSteam f = Lφ ◦ (idO⊥)MG

�

34 Basic algorithms

T (F , φ :: G a → a) :: (F a → a)→ (G a → a)
T (F1 + · · ·+ Fm , φ1O · · ·Oφn) =

λ(α1O · · ·Oαm)→ T ′(φ1)O · · ·OT ′(φn)
where T ′(λbvs → t) = λbvs → A(t)

A(v) = v if v is a recursive variable
A(Cj t1 . . . tk) = αj (Fj A (t1, . . . , tk))
A(t) = Lα1O · · ·OαmMF t every other case

Figure 3.3: Derivation algorithm for τ

3.2.3 Derivation of τ

Given an algebra φ we would like to be able to determine if it can be written
as τ(inF), being τ a term with type τ :: ∀a.(F a → a)→ (G a → a). In this
section we describe an algorithm that derives τ from φ.

The algorithm requires that the G-algebra φ that is given as input must
be of the form φ1O · · ·Oφn , such that each φi is a term (λ(v1, . . . , vki)→ ti),
where ti is in the following normal form:

1. it is a recursive variable; or

2. it is a constructor application Cj (t ′1, . . . , t
′
m) where each t ′j in a recursive

position of constructor Cj is in normal form. Those t ′j that are not in
recursive positions can be any term not referencing recursive variables.
We say that a term t ′j is in a recursive position if functor F (not G)
tells that t ′j is in a recursive position of constructor Cj ; or

3. it is any term not referencing recursive variables.

When there are case structures embedded in φ we still can get the normal
form by restructuring the algebra with the techniques used for recognizing
inF .

We present the derivation algorithm for τ in Figure 3.3. The objective
of algorithm A is to abstract constructors, substituting them by the corre-
sponding operations of the F -algebra α = α1O · · ·Oαm . This algorithm is
applied recursively only to the recursive arguments, which are indicated by
functor F . The functor F is also an input to the derivation algorithm. Its
expression can be obtained from a coalgebra in outF form. Such a coalgebra
will be available sooner or later, as we will be deriving τ only if we want to
fuse the hylomorphism with algebra φ with a fold.

Given a G-algebra φ, the output of the algorithm is such that

• T (F , φ) :: ∀a.(F a → a)→ (G a → a)

3.2 Analyzing data production and consumption schemes 35

• T (F , φ) (inF) = φ

This is in essence the algorithm given by Onoue et al.[OHIT97]. We have
required the input to be more constrained and removed a case we considered
erroneous from the original algorithm. See Section A.1 in the appendices for
counterexamples showing the effects of ignoring these additional restrictions
we considered.

Example 3.7 (Derivation of τ) Consider the following definition

appendll :: a → [[a]]→ [[a]]
appendll a [] = []
appendll a (xs : xss) = (a : xs) : appendll xss

As a hylomorphism it looks like

appendll a = Lφ1Oφ2MF

where F = 1 + [a]× I
φ1 = λ()→ []
φ2 = λ(xs , xss)→ (a : xs) : xss

Applying algorithm T (F , φ1Oφ2) we get the transformer

τ :: (F b → b)→ F b → b
τ (α1Oα2) = φ1Oφ2

where φ1 = λ()→ A([])
φ2 = λ(xs , xss)→ A((a : xs) : xss)

which is the same as

τ :: (F b → b)→ F b → b
τ (α1Oα2) = φ1Oφ2

where φ1 = λ()→ α1 ()
φ2 = λ(xs , xss)→ α2 (a : xs ,A(xss))

Note that we have not abstracted away one of the occurrences of (:) in φ2.
This is because it occurs in a non-recursive position according to functor F ,
and therefore algorithm A is applied recursively only to the argument xss .

Finally, we get

τ :: (F b → b)→ G b → b
τ (α1Oα2) = φ1Oφ2

where φ1 = λ()→ α1 ()
φ2 = λ(xs , xss)→ α2 (a : xs , xss)

�

36 Basic algorithms

3.2.4 Derivation of σ

To conclude with the algebra and coalgebra analysis, we will focus now on
deciding whether a coalgebra ψ = σ(outF), where σ :: ∀a.(a → F a)→ (a →
G a). We will answer that question with an algorithm that takes a coalgebra
ψ and returns (probably) its decomposition as σ(outF).

The input coalgebra must be of the form

λv0 → case v0 of p1 → (1, (t11, . . . , t1m)); . . . ; pn → (n, (tn1, . . . , tnm))

That is, the case analysis must be evaluated over the input variable. There
are also the following restrictions:

• Recursive terms must be variables, and non-recursive terms must not
reference those variables.

• The patterns pi must satisfy the following normal form:

1. the pattern is a variable; or

2. the pattern is of the form Ci (p ′1, . . . , p
′
ki

) and pattern p ′j appearing
in a recursive position of Ci is in normal form. A pattern p ′j in
a non-recursive position can have any shape as far as it does not
reference variables appearing in recursive terms. A pattern p ′j is
said to appear in a recursive position if the functor F (not G) tells
so, being F the functor characterizing the input data type of the
coalgebra.

In a dual way to the derivation algorithm for τ , the derivation algorithm
for σ abstracts constructors from the coalgebra patterns. For the sake of
showing this duality, we will extend patterns in the core language with a
convenient notation for our manipulations. The new pattern alternative is:

p :: = t ·p

with the following semantics: To match a value v against a pattern (t ·p),
evaluate (t v) and match the result against p. This idea is known as view
patterns and has been first proposed by Wadler [Wad87]. It has been added
recently as an extension to the GHC compiler (version 6.10.11).

In Figure 3.4 we present our derivation algorithm for σ. Algorithm B,
which abstracts constructors inside patterns, here plays the same role as
algorithm A played in the derivation algorithm for τ .

Example 3.8 (Derivation of σ) Consider the following definition

1http://www.haskell.org/ghc/docs/latest/html/users_guide/syntax-extns.html#view-patterns

3.2 Analyzing data production and consumption schemes 37

S(F , ψ :: a → G a) :: ∀a.(a → F a)→ (a → G a)
S(F1 + · · ·+ Fm , λv → case v of p1 → t1; . . . ; pn → tn) =
λβ → λv → case v of B (p1)→ t1; . . . ;B(pn)→ tn

where B(v) = v if v is a recursive variable
B(Cj p1 . . . pk) = β·(j ,Fj B (p1, . . . , pk))
B(p) = bd(β)ecG ·p all other cases

Figure 3.4: Derivation algorithm for σ

odds :: [b]→ [b]
odds [] = []
odds (b : []) = [b]
odds (b : : l) = b : odds l

Deriving a hylomorphism from this definition we get

odds = Jφ, ψKG

where G = 1 + b + b × I
ψ = λv → case v of

[] → (1, ())
b : [] → (2, b)
b : : l → (3, (b, l))

φ (1, ()) = []
φ (2, b) = [b]
φ (3, (b, r)) = b : r

Applying the S algorithm over ψ we get:

σ :: (b → F b)→ b → G b
σ = λβ → λv → case v of

β·(1, ()) → (1, ())
β·(2, (b, β·(1, ()))) → (2, b)
β·(2, (b, β·(2, (, l))))→ (3, (b, l))

where F = 1 + b × I

such that ψ = σ(outF).
Now, let us fuse odds with map.

oddsmap :: (a → b)→ [a]→ [b]
oddsmap f = odds ◦map f

map :: (a → b)→ [a]→ [b]
map f = bd(ψ′)ecF

38 Basic algorithms

where ψ′ [] = (1, ())
ψ′ (x : xs) = (2, (f x , xs))

The result is oddsmap f = Jφ, σ(ψ′)KG . �

We intended to base our implementation in the algorithm provided by
Onoue et al. [OHIT97]. It turned out, later, that the algorithm as it is
in their paper changes the semantics of the coalgebra in a radical way. In
Haskell, a pattern is a tree-like structure whose nodes are matched in preorder
against a value. We have been careful to preserve that order in our proposal.
In contrast, in [OHIT97] checks are reorganized so they are performed in
breath-first order, changing the behavior of the functions in the presence of
partially defined arguments.

To guarantee the correctness of the output, we have also introduced a
restriction on the form of the recursive terms in the coalgebra, which was
not present in Onoue et al.’s proposal. See Section A.2 in the appendices for
a counterexample showing the effects of ignoring this restriction.

Inlining σ(ψ′)

If we want to see oddsmap as a Haskell definition, we need to go through
a rather laborious process. We focus now on getting an almost-Haskell def-
inition for σ(ψ′). The rest of the inlining process is discussed in the next
section.

First, we remove our uses of the t ·p patterns. For that, we first remove
nested patterns from σ(ψ′):

σ :: (b → F b)→ b → G b
σ(ψ′) v =

case v of
ψ′·(1, ())→ (1, ())
→ case v of
ψ′·(2, (b, u0))→

case u0 of
ψ′·(1, ())→ (2, b)

→ case v of
ψ′·(2, (b, u0))→ case u0 of

ψ′·(2, (, l))→ (3, (b, l))
→ case v of

ψ′·(2, (b, u0))→ case u0 of
ψ′·(2, (, l))→ (3, (b, l))

Now, we remove the uses of the t ·p patterns:

σ :: (b → F b)→ b → G b
σ(ψ′) v =

3.2 Analyzing data production and consumption schemes 39

case ψ′ v of
(1, ())→ (1, ())
→ case ψ′ v of
(2, (b, u0))→

case ψ′ u0 of
(1, ())→ (2, b)

→ case ψ′ v of
(2, (b, u0))→ case ψ′ u0 of

(2, (, l))→ (3, (b, l))
→ case ψ′ v of

(2, (b, u0))→ case ψ′ u0 of
(2, (, l))→ (3, (b, l))

We could then somewhat shrink the term to this:

σ :: (b → F b)→ b → G b
σ(ψ′) v =

case ψ′ v of
(1, ()) → (1, ())
(2, (b, u0))→ case ψ′ u0 of

(1, ()) → (2, b)
(2, (, l))→ (3, (b, l))

To get the above term we had to apply some simplifications listed below.
To express the simplifications we will write as t [v1, . . . , vn / v ′1, . . . , v

′
n] the

simultaneous substitution of variables v ′i by vi in term t . We will also use
term contexts C with a placeholder, where C [t] denotes the term resulting
from filling the placeholder with term t .

1. case β u of
...
(i , (v1, . . . , vn))→ C [case β u of

. . . ; (i , (v ′1, . . . , v
′
n))→ e; . . .]

...
= case β u of

. . . ; (i , (vi , . . . , vn))→ C [e[vi , . . . , vn / v ′1, . . . , v
′
n]]; . . .

2. case β u of
...
(i , (v1, . . . , vn))→ C [case β u of

... -- alternatives do not match i

40 Basic algorithms

→ e]
... = case β u of

. . . ; (i , (vi , . . . , vn))→ C [e]; . . .

3. case β u of
... -- at least one alternative forces beta evaluation of

-- the case term alternatives do not match i
→ C [case β u of

... -- all these alternatives do not match i
(i , (v1, . . . , vn))→ e
...]

...
=

case β u of
...
(i , (vi , . . . , vn))→ C [e]
→ C [case β u of

. . . ; (i , (v1, . . . , vn))→ e; . . .]

4. case β u of
... -- all of the alternatives of the inner case appear

-- among these alternatives
→ C [case β u of . . . ; → e]

=
case β u of . . . ; → C [e]

Now, we will β-reduce the coalgebra applications we have in σ.

σ :: (b → F b)→ b → G b
σ(ψ′) v =

case (case v of
[] → (1, ())
x : xs → (2, (f x , xs))

) of
(1, ())→ (1, ())
(2, (b, u0))→ case (case u0 of

[] → (1, ())
x : xs → (2, (f x , xs))

3.3 Inlining hylomorphisms 41

) of
(1, ())→ (2, b)
(2, (, l))→ (3, (b, l))

If we apply the case-of-case transformation we can remove the nested cases.

σ :: (b → F b)→ b → G b
σ(ψ′) v =

case v of
[] → case (1, ()) of

(1, ())→ (1, ())
(2, (b, u0))→ case u0 of

[] → case (1, ()) of
(1, ()) → (2, b)
(2, (, l))→ (3, (b, l))

x ′ : xs ′ → case (2, (f x ′, xs ′)) of
(1, ()) → (2, b)
(2, (, l))→ (3, (b, l))

(x : xs)→ case (2, (f x , xs)) of
(1, ()) → (1, ())
(2, (b, u0))→ case u0 of

[] → case (1, ()) of
(1, ()) → (2, b)
(2, (, l))→ (3, (b, l))

x ′ : xs ′ → case (2, (f x ′, xs ′)) of
(1, ()) → (2, b)
(2, (, l))→ (3, (b, l))

Reducing the cases over terms of the form (i , (. . .)), we finally obtain:

σ :: (b → F b)→ b → G b
σ(ψ′) v =

case v of
[] → (1, ())
(x : xs)→ case xs of

[] → (2, f x)
x ′ : xs ′ → (3, (f x , xs ′))

All of the steps performed above can be reasonably automated. From
here the rest of the inlining process is more straightforward as we will see in
the next section.

3.3 Inlining hylomorphisms

Inlining is the inverse process of deriving a hylomorphism. We have as input
a hylomorphism in the form

42 Basic algorithms

f v1 . . . vm−1 = Jφ1O · · ·Oφn , ψKF1+···+Fn

where ψ vm = case t0 of
p1 → (0, t1)

...
pn → (n, tn)

and we want to get the equivalent recursive definition. For the sake of present-
ing the algorithm, we assume that there are no nested cases in the coalgebra.
You can also find inlining discussed in [Sch00].

From the definition of hylomorphism, we can obtain the following recur-
sive function:

f v1 . . . vm−1 = (φ1O · · ·Oφn) ◦ (F1 + · · ·+ Fn) (f v1 . . . vm−1) ◦ ψ

where we can move the algebra and the functor components into the alter-
natives of the coalgebra ψ:

f v1 . . . vm = case t0 of
p1 → φ1 (F1 (f v1 . . . vm−1) t1)

...
pn → φn (Fn (f v1 . . . vm−1) tn)

Simplifying through β-reductions the case alternatives, we obtain the recur-
sive definition we want, which may be again in the input form required by
the derivation algorithm for hylomorphisms.

Example 3.9 (Inlining of oddsmap) Consider the definition of oddsmap
from the previous section, where we have replace the nested cases in the
coalgebra by a case with nested constructors in the patterns.

oddsmap :: (a → b)→ [a]→ [b]
oddsmap f = Jconst []O(:[])Ouncurry (:), σ(ψ′)K1+b+b×I

where σ(ψ′) v = case v of
[] → (1, ())
(x : []) → (2, f x)
(x : x ′ : xs ′)→ (3, (f x , xs ′))

const c = c
uncurry f (a, b) = f a b

After inlining we obtain:

oddsmap f v =
case v of

[] → const [] ((1 (oddsmap f)) ())

3.4 Summary 43

(x : []) → (:[]) ((b (oddsmap f)) (f x))

(x : x ′ : xs ′)→ uncurry (:) (((b × I) (oddsmap f)) (f x , xs ′))

Which can be simplified to obtain the following Haskell definition:

oddsmap :: (a → b)→ [a]→ [b]
oddsmap f [] = []
oddsmap f (x : []) = [f x]
oddsmap f (x : : xs ′) = f x : oddsmap f xs ′

�

3.4 Summary

In this chapter we presented the stages of HFusion processing and the algo-
rithms used in them. Those stages are hylomorphism derivation, classifica-
tion and restructuring, application of fusion laws and inlining.

We are using the algorithm of Onoue et al. [OHIT97] for deriving hylo-
morphisms. The hylomorphism restructuring algorithms proposed in [Sch00]
and [OHIT97] were reformulated, and a few more restructurings were added.

We presented the algorithm needed for deriving an algebra transformer τ
from a given algebra. The algorithm was slightly reformulated with respect to
the version in [OHIT97] by changing a bit the restrictions on the input and by
eliminating one of its cases. Counterexamples justifying these modifications
can be found in Section A.1 in the appendices.

We also presented the algorithm for deriving a coalgebra transformer σ
from a given coalgebra. The algorithm proposed in [OHIT97] was completely
rewritten, being view patterns the fundamental feature driving the rewriting.
In our version, the algorithm is more compact, simpler, and it really looks like
the dual version of the derivation algorithm for τ . This will make extending
the algorithms easier to describe in the next chapters.

Finally, we have shown how hylomorphism are inlined as an inverse pro-
cess of their derivation. It is an algorithm that can also be found in [Sch00].

44 Basic algorithms

Chapter 4

Paramorphism fusion

Paramorphisms [Mee92] correspond to primitive recursive functions. There-
fore, like folds, they capture functions that are defined by structural recur-
sion. Fusion laws for paramorphisms are important for deforesting programs
because in general the acid rain laws based on fold, unfolds and hylos can
not handle this kind of functions appropriately. As an example, consider the
following program.

repf x y p = replace x y ◦ filter p

replace :: Eq a ⇒ a → a → [a]→ [a]
replace x y [] = []
replace x y (a : as) = if a == x then y : as else a : replace x y as

The fused program should be:

repf x y p [] = []
repf x y (a : as) = if p a

then if a == x
then y : filter p as
else a : repf x y p as

else repf x y p as

However, we can not get this function with the fusion laws presented so far,
since replace and filter are of the form:

replace x y = J[]Oφ2, ψKF

where F = 1 + a × [a]× I
ψ [] = (1, ())
ψ (a : as) = (2, (a, as , as))
φ2 (a, as , vs) = if a == x then y : as

else x : vs

filter p = L[]Oφ′2MF ′

45

46 Paramorphism fusion

where F ′ = 1 + a × I
φ′2 (a, vs) = if p a then a : vs

else vs

In fact, as replace can not be restructured as a fold, and filter can not be
restructured as an unfold, we can not apply any of the acid rain laws (The-
orem 2.7).

In this chapter we review the definition of paramorphisms, and we intro-
duce a new program scheme called generalized paramorphism, which gener-
alizes paramorphism much in the same way hylomorphism generalizes fold.
We present corresponding acid rain laws for paramorphisms and generalized
paramorphisms, which enable us to handle cases like that of replace x y ◦
filter p.

We also show examples where applying our paramorphism laws may
worsen the performance of the original programs. This is a first red flag
indicating that fused programs may not always be better. Fortunately, these
cases can be ruled out with a relatively simple syntactical analysis over the
involved definitions prior to fusion.

This chapter is a revised version of [DP06b].

4.1 Paramorphisms

In this section we review the definition of paramorphism and some of its stan-
dard laws. We also introduce new acid rain laws that relate paramorphisms
with folds.

Given a function φ :: F (a× µF)→ a, the paramorphism 〈|φ|〉F :: µF → a
is the least function that satisfies the equation f ◦ inF = φ ◦ F 〈f, id〉, where
〈f, g〉 x = (f x, g x) is known as the split operator.

The following diagram makes the types explicit:

µF
〈|φ|〉F - a

FµF

inF
6

F 〈〈|φ|〉F , id〉
- F (a× µF)

φ
6

The difference between paramorphisms and folds is in the amount of infor-
mation available in each recursive step. In addition to the values returned by
the recursive calls (as in fold), function φ has also available their arguments.
As we will see later on in this section, this subtle difference with folds makes
paramorphisms inappropriate for fusion in some cases.

Example 4.1 Consider the following definition.

4.1 Paramorphisms 47

dropWhile :: (a → Bool)→ [a]→ [a]
dropWhile p [] = []
dropWhile p (a : as) = if p a then dropWhile p as else a : as

The function dropWhile can be defined as:

dropWhile = 〈|[]Oφ2|〉F
where F = 1 + a × I

φ2 = λ(a, (ys , as))→ if p a then ys else a : as

�

The following equations express the well-known relationship between pa-
ramorphisms and folds.

〈|φ|〉F = π1 ◦ L〈φ, inF ◦ Fπ2〉MF (4.1)

LφMF = 〈|φ ◦ F π1|〉F (4.2)

Equation (4.1) is usually taken as the definition of paramorphism. It states
that a paramorphism can be implemented as a fold that produces a pair,
whose second component contains a (recursively generated) copy of the input.
Equation (4.2) shows that a fold is a paramorphism that ignores the copy of
the arguments to the recursive calls.

The following is the fusion law for paramorphism [Mee92].

f strict ∧ f ◦ φ = φ′ ◦ F (f × id) ⇒ f ◦ 〈|φ|〉F = 〈|φ′|〉F (4.3)

The rest of this section is devoted to the analysis of acid rain laws for
paramorphisms. We are not aware that they have been presented before.
These laws will serve us as basis for designing the acid rain laws for general-
ized paramorphisms in Section 4.2.

The first law we consider refers to the composition of a fold with a
paramorphism.

Proposition 4.2 (fold-para fusion) For strict φ,

τ :: ∀a. (F a→ a)→ (G (a× µG)→ a) ⇒ LφMF ◦ 〈|τ(inF)|〉G = 〈|τ(φ)|〉G

Proof Since LφMF is an homomorphism between the algebras inF and φ, by
the free theorem associated with the polymorphic type of τ it follows that

LφMF ◦ τ(inF) = τ(φ) ◦G (LφMF × id)

Therefore, by applying (4.3) we obtain the desired result. The strictness
condition required to LφMF in (4.3) follows from the assumption that φ is
strict. �

48 Paramorphism fusion

The next fusion law refers to the composition between a paramorphism
and a fold. It is particularly interesting and important as it exhibits a case
in which the paramorphism internalizes the generation of values of the inte-
mediate data structure that wants to be eliminated. The following lemma
will be used in the proof of the law.

Lemma 4.3 For F -algebras φ :: Fa → a and ψ :: F (b × a) → (b × a), and
strict f :: a→ b,

〈f, id〉 ◦ φ = ψ ◦ F 〈f, id〉 ⇒ f ◦ LφMF = 〈|π1 ◦ ψ ◦ F (id × LφMF)|〉F

Proof Let us call p the paramorphism and c the fold. By definition of
paramorphism and fold we have that

p ◦ inF = π1 ◦ ψ ◦ F 〈p, c〉 and c ◦ inF = φ ◦ F c

The two functions are defined simultaneously in an asymmetric way. That
is, p depends on c while c does not depend on p. Definitions following this
pattern are called a zygomorphism [Mal90]. From the definition of p and c,
it can be derived that [Fok92]:

〈p, c〉 = L〈π1 ◦ ψ, φ ◦ Fπ2〉MF

In the context of Cpo this equation is proved by fixed point induction. If we
call pc the split 〈p, c〉, then the statement of the lemma can be rewritten as:

〈f, id〉 ◦ φ = ψ ◦ F 〈f, id〉 ⇒ f ◦ π2 ◦ pc = π1 ◦ pc

which can then be proved by fixed point induction. �

Proposition 4.4 (para-fold fusion) For strict φ,

τ :: ∀a. (F a→ a)→ (G a→ a)

⇒
〈|φ|〉F ◦ Lτ(inF)MG = 〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Lτ(inF)MG)|〉G

Proof From the definition of paramorphism we can derive that 〈〈|φ|〉F , id〉 is
an homomorphism between the F -algebras inF and 〈φ, inF ◦ Fπ2〉:

〈〈|φ|〉F , id〉 ◦ inF = 〈φ, inF ◦ Fπ2〉 ◦ F 〈〈|φ|〉F , id〉

Then, by the free theorem associated with the polymorphic type of τ
it follows that 〈〈|φ|〉F , id〉 is also an homomorphism between the G-algebras
τ(inF) and τ(〈φ, inF ◦ Fπ2〉):

〈〈|φ|〉F , id〉 ◦ τ(inF) = τ(〈φ, inF ◦ Fπ2〉) ◦G〈〈|φ|〉F , id〉

4.1 Paramorphisms 49

Finally, by Lemma 4.3 the desired result follows. Strictness of 〈|φ|〉F , nec-
essary for the application of Lemma 4.3, is a consequence of the assumption
that φ is strict. �

Example 4.5 This example shows a simple case in which the fold is copied
into the body of the resulting paramorphism, producing multiple generations
of data structures.

tf p = tails ◦ filter p

tails :: [a]→ [[a]]
tails [] = []
tails (a : as) = as : tails as

Function tails is a paramorphism while filter is a fold:

tails = 〈|[]Oφ2|〉F
where F = 1 + a × I

φ2 = λ(a, (ys , as))→ as : ys

filter p = L[]Oφ′2MF

where φ′2 (a, vs) = if p a then a : vs else vs

The algebra of filter can be expressed as τ(inF), where τ is a polymorphic
function given by:

τ :: (F b → b)→ F b → b
τ(α) = τ1(α)Oτ2(α)
τ1(α1Oα2) () = α1

τ2(α1Oα2) (a, b) = if p a then α2 (a, b) else b

Therefore, if we apply para-fold fusion we obtain the following:

tf p = 〈|π1 ◦ τ(〈[]Oφ2, inF ◦ F π2〉) ◦ F (id × filter p)|〉F

Inlining,

tf p [] = []
tf p (a : as) = if p a then filter p as : tf p as else tf p as

We applied fusion with the aim to eliminate the intermediate list that was
generated by filter, but as result we obtained a function that filters the suc-
cessive tails of the input list separately. This means that fusion transformed
the composition of two functions with linear time behaviour to a function
which is quadratic! In other words, in this case the effect of the medicine
was worse than the illness itself. �

50 Paramorphism fusion

Example 4.6 This example shows another case of the situation presented
in the previous example (we simply show the result of applying fusion and
skip the details). Consider the function that counts the number of words of
a text after having filtered it with a predicate p.

wcf p = wc ◦ filter p

wc :: String → Int
wc [] = 0
wc (c : cs) = case cs of

[]→ if isSpace c then 0 else 1
d : ys → if ¬ (isSpace c) ∧ (isSpace d)

then 1 + wc cs
else wc cs

Function wc is a paramorphism. It is inspired in one of the word counting
algorithms described in [Gib06]. This function adds one each time the end
of a word is detected, and for this it uses the current character c and the
next one d (except at the end). By para-fold fusion we obtain as result a
paramorphism with the following recursive definition:

wcf p [] = 0
wcf p (c : cs) = if p c

then case filter p cs of
[]→ if isSpace c then 0 else 1
d : ys → if (¬ (isSpace c)) ∧ (isSpace d)

then 1 + wcf p cs
else wcf p cs

else wcf p cs

In the original definition of wcf, the inspection of the tail was performed
on a text that was already filtered. Now, on the contrary, an on-line filtering
of the tail is necessary each time before inspection. In this case the time
behaviour of the resulting program is linear as the original ones. However, it
may happen that the predicate p is applied twice to some of the elements of
the input string: once in the context of filter and another one in the condition
of the if-then-else. Also, note that the list nodes originally produced by filter
are still produced when evaluating the case on filter p cs. So, in spite of our
efforts, we could not eliminate the intermediate list. �

There exist of course applications of para-fold fusion that yield satisfac-
tory results. This is illustrated by the following example.

Example 4.7 Consider the function replace given at the beginning of this
chapter. This function is a paramorphism because it returns the tail of the
input list as part of the result when the sought value is met.

4.1 Paramorphisms 51

replace x y = 〈|[]Oφ2|〉F
where F = 1 + a × I

φ2 (a, (zs , as)) = if a == x then y : as else a : zs

We can obtain the fused version of repf x y p presented at the beginning
of this chapter by applying para-fold fusion.

In this case, filter needs to be applied to the sublist that remains after the
replaced element (in case that element was found), as that sublist is returned
as part of the result. �

Example 4.8 Consider the composition of the function that inserts a value
in a binary search tree with the map function for binary trees.

data Tree a = Empty | Node a (Tree a) (Tree a)

insmap x f = insert x ◦mapT f

insert x Empty = Node x Empty Empty
insert x (Node a t1 t2) = if x < a then Node a (insert x t1) t2

else Node a t1 (insert x t2)

mapT f Empty = Empty
mapT f (Node a t1 t2) = Node (f a) (mapT f t1) (mapT f t2)

The application of para-fold fusion yields a satisfactory result in this case:

insmap x f Empty = Node x Empty Empty
insmap x f (Node a t1 t2) =

if x < f a then Node (f a) (insmap x f t1) (mapT f t2)
else Node (f a) (mapT f t1) (insmap x f t2)

�

Note 4.9 The previous examples have shown the existence of some cases
where para-fold fusion may worsen performance. These are fusions of the
form 〈|φ|〉F ◦ f in which occurrences of f in the result produce the generation
of duplicated computations. This means that, in the presence of paramor-
phisms, fusion cannot be applied without restrictions. It is necessary thus to
include some code analysis that helps us to avoid the application of fusion
in those cases we know performance will decrease. At the moment HFusion
does not perform this kind of analysis, but we plan to do so in the future.

We give an intuitive characterization of the different cases of 〈|φ|〉F ◦ f in
terms of the notion of “computation”. The analysis focuses on function φ of
the paramorphism:

• If during the computation of φ both the values returned by the recursive
calls and their arguments are necessary, then fusion should be avoided.
This is the case of tails ◦ filter p and wc ◦ filter p.

52 Paramorphism fusion

• If the values returned by the recursive calls or their arguments (but not
both) appear during the computation of φ, then fusion can be safely
performed. This is the case of replace x y ◦ filter p and insert x ◦
mapT f .

For instance,

insert x = 〈|φ1Oφ2|〉F
where F = 1 + a × I × I

φ1 () = Node x Empty Empty
φ2 (a, (r1 , t1), (r2 , t2)) = if x < a then Node a r1 t2

else Node a t1 r2

If a computation uses t1, then it does not use r1, and vice-versa. The
same holds for t2 and r2. This is the reason that makes fusion in
Example 4.8 adequate. �

4.2 Generalized paramorphisms

This section presents a new program scheme that generalizes paramorphisms
in the same sense hylomorphisms generalize folds. This generalization of
paramorphism will permit us to capture a wider class of recursive functions
that use the arguments of the recursive calls to compute the final result. We
will state fusion laws associated with generalized paramorphisms, but now
in combination with folds, unfolds and hylomorphisms.

To see how this generalization is obtained, let us recall the diagram that
a paramorphism satisfies, writing outF instead of inF :

µF
f

- a

FµF

outF
?

F 〈f, id〉
- F (a× µF)

φ
6

The arguments to the recursive calls are obtained by applying the coal-
gebra corresponding to the destructors of the data type. The generalization
we introduce is obtained by considering an arbitrary coalgebra instead.

Given φ :: F (b × a) → b and a coalgebra ψ :: a → F a, the generalized
paramorphism {|φ, ψ|}F :: a→ b is the least function that makes the following
diagram commute:

a
f

- b

F a

ψ
?

F 〈f, id〉
- F (b× a)

φ
6

4.2 Generalized paramorphisms 53

The notion of generalized paramorphism is in some sense related with
that of parametrically recursive coalgebra [CUV06].

Example 4.10 Consider the functor F = 1 + a × I that captures the sig-
nature of lists. For φ1 :: 1→ b and φ2 :: a× (c× b)→ c, the paramorphism
f = {|φ1Oφ2, ψ|}F :: b→ c is the least function such that

f b = case ψ b of
(1, ()) → φ1

(2, (a, b′))→ φ2(a, (f b′, b′))

�

The following equation expresses the fact that paramorphisms are a par-
ticular instance of generalized paramorphisms:

〈|φ|〉F = {|φ, outF |}F (4.4)

Generalized paramorphisms are as expressive as hylomorphisms. The follow-
ing equation shows that every hylomorphism can be written as a generalized
paramorphism. It states a relationship similar to the one between folds and
paramorphisms (equation 4.2).

Jφ, ψKF = {|φ ◦ F π1, ψ|}F (4.5)

The relationship in the other direction is the following. For each ψ :: a→ F a,
let us define the functor G x = F (x× a). Then,

{|φ, ψ|}F = Jφ, F ∆ ◦ ψKG (4.6)

where ∆ = 〈id , id〉.
The following two fusion laws resemble laws for hylomorphisms. Observe

that in (4.8) the colagebra homomorphism is internalized as part of the code
of the resulting generalized paramorphism.

Proposition 4.11 (gpara fusion)

f strict ∧ f ◦ φ = φ′ ◦ F (f × id) ⇒ f ◦ {|φ, ψ|}F = {|φ′, ψ|}F (4.7)

ψ ◦ f = F f ◦ ψ′ ⇒ {|φ, ψ|}F ◦ f = {|φ ◦ F (id × f), ψ′|}F (4.8)

Proof Both laws can be proved by fixed point induction. We show the proof
of (4.8) as it illustrates how f becomes part of the result. Let us define
γ(g) = φ ◦ F 〈g, id〉 ◦ ψ and γ′(g) = φ ◦ F (id × f) ◦ F 〈g, id〉 ◦ ψ′. The proof
proceeds with predicate g ◦ f = g′. The base case ⊥ ◦ f = ⊥ is immediate.
Now, assume that g ◦ f = g′. Then, γ(g) ◦ f = φ ◦ F 〈g, id〉 ◦ ψ ◦ f =

54 Paramorphism fusion

φ◦F 〈g, id〉◦Ff ◦ψ′ = φ◦F 〈g◦f, f〉◦ψ′ = φ◦F (id×f)◦〈g′, id〉◦ψ′ = γ′(g′).
Therefore, by fixed point induction it follows that fix(γ) ◦ f = fix(γ′). �

Taking into account the close similarity between generalized paramor-
phisms and hylomorphisms, one may think of the existence of a factorization
property similar to that of hylomorphism, which states that every generalized
paramorphism can be split up into the composition of a paramorphism with
an unfold, i.e. {|φ, ψ|}F = 〈|φ|〉F ◦ bd(ψ)ecF . However, this law does not hold.
The reason for the failure is originated in the fact that paramorphisms, in
contrast to folds, use the arguments to the recursive calls to compute their
results. The following law shows that the result of fusing the composition of
a paramorphism with an unfold is a generalized paramorphism which inter-
nalizes the computation of the unfold as part of its code.

Proposition 4.12 (para-unfold fusion)

〈|φ|〉F ◦ bd(ψ)ecF = {|φ ◦ F (id × bd(ψ)ecF), ψ|}F

Proof

〈|φ|〉F ◦ bd(ψ)ecF
= { (4.4) }
{|φ, outF |}F ◦ bd(ψ)ecF

= { (outF ◦ bd(ψ)ecF = F bd(ψ)ecF ◦ ψ) and (4.8) }
{|φ ◦ F (id × bd(ψ)ecF), ψ|}F

�

Example 4.13 Consider the following composition:

tdown = tails ◦ down

down :: Int → [Int]
down 0 = []
down n = n : down (n − 1)

Function tails is a paramorphism while down is an unfold. By applying para-
unfold fusion we obtain:

tdown 0 = []
tdown n = down (n − 1) : tdown (n − 1)

This is again a situation in which the composition of two linear time functions
gives a quadratic function as result. This is due to tails. �

The following law is a direct consequence of para-fold fusion (Proposi-
tion 4.4).

4.2 Generalized paramorphisms 55

Proposition 4.14 (para-hylo fusion) For strict φ,

τ :: ∀a. (F a→ a)→ (G a→ a)⇒

〈|φ|〉F ◦ Jτ(inF), ψKG = {|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Jτ(inF), ψKG), ψ|}G

Proof

〈|φ|〉F ◦ Jτ(inF), ψKG
= { hylo factorization }
〈|φ|〉F ◦ Lτ(inF)MG ◦ bd(ψ)ecG

= { para-fold fusion (Prop. 4.4) }
〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Lτ(inF)MG)|〉G ◦ bd(ψ)ecG

= { para-unfold fusion (Prop. 4.12) }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Lτ(inF)MG) ◦G(id × bd(ψ)ecG), ψ|}G

= { functor G and hylo factorization }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G(id × Jτ(inF), ψKG), ψ|}G

�

The two previous fusion laws show compositions that yield generalized
paramorphisms as result. The laws that follow are acid rain laws with gen-
eralized paramorphism as arguments.

Proposition 4.15 (fold-gpara fusion) Let ψ : b→ G b. For strict φ,

τ :: ∀a. (F a→ a)→ (G (a× b)→ a) ⇒
LφMF ◦ {|τ(inF), ψ|}G = {|τ(φ), ψ|}G

Proof Similar proof to fold-para fusion (Prop. 4.2), but using (4.7) instead.�

The generalization of paramorphism opens the possibility of an acid rain
law with unfold.

Proposition 4.16 (gpara-unfold fusion)

σ :: (a→ F a)→ (a→ G a) ⇒
{|φ, σ(outF)|}G ◦ bd(ψ)ecF = {|φ ◦G(id × bd(ψ)ecF), σ(ψ)|}G

Proof Same proof to fold-para fusion (Prop. 4.2), but using (4.8) and the
free theorem for σ. �

56 Paramorphism fusion

Example 4.17 Consider the following composition:

dm p f = drop2While p ◦map f
drop2While :: (a → Bool)→ [a]→ [a]
drop2While p [] = []
drop2While p [a] = if p a then [] else [a]
drop2While p (a : a ′ : as) = if p a then drop2While p as else a : a ′ : as

Function drop2While can be defined as a generalized paramorphism.

drop2While p = {|[]Oφ2Oφ3, ψ|}G
where G = 1 + a + a × a × I

φ2 a = if p a then [] else [a]
φ3 (a, a ′, (ys, as)) = if p a then ys else a : a ′ : as
ψ [] = (1, ())
ψ [a] = (2, a)
ψ (a : a ′ : as) = (3, (a, a ′, as))

The coalgebra ψ does not correspond to outF , for F = 1 + a × I the base
functor of lists. It can, however, be written as ψ = σ(outF), where σ is given
by:

σ :: (b → F b)→ (b → G b)
σ(β) b = case β b of

(1, ()) → (1, ())
(2, (a, b ′))→ case β b ′ of

(1, ()) → (2, a)
(2, (a ′, b ′′))→ (3, (a, a ′, b ′′))

On the other hand, map, which is usually presentd as a fold over lists,
can be expressed as an unfold as well (see Example 3.2):

map f = bd(ψ)ecF
where ψ [] = (1, ())

ψ (x : xs) = (2, (f x , xs))

Therefore, we can apply gpara-unfold fusion, obtaining

dm p f = {|[]Oφ2O(φ3 ◦ (id × id × (id ×map f))), σ(ψ)|}G

Inlining,

dm p f [] = []
dm p f (a : as) = let fa = f a

4.2 Generalized paramorphisms 57

in case as of
[] → if p fa then [] else [fa]
(a ′, xs)→ if p fa then dm p f xs

else fa : f a ′ : map f xs

Fusion in this case is completely satisfactory. �

And now we show a law that relates paramorphisms with generalized
paramorphisms.

Proposition 4.18 (para-gpara fusion) Let ψ : b→ G b. For strict φ,

τ :: ∀a. (F a→ a)→ (G (a× b)→ a)⇒
〈|φ|〉F ◦ {|τ(inF), ψ|}G = {|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× {|τ(inF), ψ|}G, π2〉, ψ|}G

Proof

〈|φ|〉F ◦ {|τ(inF), ψ|}G
= { (4.6), H x = G(x× b) }
〈|φ|〉F ◦ Jτ(inF), G∆ ◦ ψKH

= { Prop. 4.14 and def. of H }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G((id× {|τ(inF), ψ|}G)× id), G∆ ◦ ψ|}H

= { product manipulation }
{|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× {|τ(inF), ψ|}G, π2〉, ψ|}G

�

Corollary 4.19 (para-para fusion) For strict φ,

τ :: ∀a. (F a→ a)→ (G (a× µG)→ a)⇒

〈|φ|〉F ◦ 〈|τ(inF)|〉G = 〈|π1 ◦ τ(〈φ, inF ◦ Fπ2〉) ◦G〈id× 〈|τ(inF)|〉G, π2〉|〉G

Example 4.20 Using para-para fusion we can transform

dWt p = dropWhile p ◦ tails

dropWhile :: (a → Bool)→ [a]→ [a]
dropWhile p [] = []
dropWhile p (a : as) = if p a then dropWhile p as else a : as

into

dWt p [] = []
dWt p (a : as) = if p as then dWt p as else as : tails as

�

58 Paramorphism fusion

Note 4.21 The characterization of good and bad cases of fusion that we can
add with the introduction of generalized paramorphism is very the same as
the one presented in Note 4.9. Now we must analyze function φ in compo-
sitions of the form {|φ, ψ|}F ◦ f and 〈|φ|〉F ◦ f in order to conclude whether
fusion is desirable or not. Performing such an analysis we can conclude, for
instance, that tails ◦ down is a bad case while drop2While p ◦ map f and
dropWhile p ◦ tails are good ones. �

4.3 Fusion in practice

Our interest in studying generalized paramorphisms has arisen in the context
of the development of HFusion. During the implementation of the kernel of
the tool we started experimenting with some examples that were fusable
by our implementation (modulo some simple modifications to the internal
representation of hylomorphisms), but were impossible to be fused with the
original representation and laws. We wanted then to give an explanation
of these modifications at the abstract level, and it was during that process
that the notion of generalized paramorphism came up as the appropriate
abstraction that reflects the class of special cases we were playing with. With
these modifications, the tool essentially interprets every recursive function as
a generalized paramorphism. The laws presented in this chapter allow reusing
the different derivation algorithms we have seen in Chapter 3.

The equivalence in the expressive power between hylomorphism and gen-
eralized paramorphism (witnessed by equations (4.5) and (4.6)) permits us to
assure that we are not losing fusion cases with the introduction of generalized
paramorphism. On the contrary, we gain new cases captured by para-hylo
fusion, like the one shown in Example 4.7.

Note that, in general, paramorphisms deforest very little when compared
with the traditional hylo deforestation. For instance, in the case of insert x ◦
mapT f , fusion deforests just a single path from the root to the leaves. This
is due to the fact that a paramorphism not only traverses its input, but also
keeps it for computing the outcome. So in that case only a small amount
of the intermediate data structure was eliminated. Nonetheless, fusion with
paramorphisms may be useful for bringing other functions together. For
example, after fusing map g ◦ replace x y ◦ filter q the composition map g ◦
filter q will appear in the body of the resulting function, representing a
residual case where fusion can be applied again. See Section 8.4 for a practical
test of the fact that paramorphism fusion may improve programs.

4.4 Summary 59

4.4 Summary

In this chapter we have shown how fusion of primitive recursive functions
can be achieved by extending the acid rain laws.

We have started by presenting the laws for paramorphisms, which en-
able fusion of some cases we could not handle without them. Later, we
proposed generalized paramorphisms, a convenient representation to handle
paramorphism-like hylos, which allow to reuse the algorithms for deriving
transformers τ and σ. Then, we proceeded to show our extensions of acid
rain laws for generalized paramorphisms.

We have discussed how fusion can worsen a program like tails ◦ map f ,
and we have seen how we can reasonably rule out those cases with a simple
and decidable criterion.

Finally, we have made a case for paramorphisms fusion as a means for
bringing function calls together, which constitutes an opportunity for apply-
ing fusion again.

60 Paramorphism fusion

Chapter 5

Partial deforestation

When one looks at fusion with paramorphism, it’s outstanding that only part
of the intermediate data structure is deforested. This partial deforestation is
not exclusive of paramorphisms but also of some other definitions.

In the first part of this chapter we will show how some fusion cases with
paramorphisms can be fused with the normal fusion laws by rewriting the
involved definitions. In the second part, we will present some examples of
fusions that result in partial deforestation and that cannot be obtained using
any of the laws we have seen so far unless we rewrite the definitions with new
techniques to be described.

5.1 A disguised paramorphism

Consider the following definitions

data Tree a = Empty | Node a (Tree a) (Tree a)

mirror :: Tree a → Tree a
mirror Empty = Empty
mirror (Node a l r) = Node a (mirror r) (mirror l)

mapl :: (a → a)→ Tree a → Tree a
mapl f Empty = Empty
mapl f (Node a l r) = Node (f a) (mapl f l) r

Let’s suppose that we want to fuse mapl f ◦ mirror . If we write the above
definitions as hylomorphisms we get:

mirror = bd(ψ)ecF
where F = 1 + a × I × I

ψ Empty = (1, ())
ψ (Node a l r) = (2, (a, r , l))

mapl f = LφMF ′

61

62 Partial deforestation

where F ′ = 1 + a × I × Tree a
φ = EmptyO(λ(a, v1 , r)→ Node (f a) v1 r)

Note that both hylomorphisms traverse a structure of type Tree a, none-
theless, their functors do not match. But they do if we rewrite mirror like
this:

mirror = bd(ψ)ecF
where F = 1 + a × I × Tree a

ψ Empty = (1, ())
ψ (Node a l r) = (2, (a, r ,mirror l))

Note that we have disguised one of the recursive calls. By doing so, we are
making explicit that we won’t deforest the produced intermediate structure
over that branch. Now F = F ′, and the fold-unfold law (Theorem 2.7) yields
Jφ, ψKF , which expands to:

maplmirror :: (a → a)→ Tree a → Tree a
maplmirror f Empty = Empty
maplmirror f (Node a l r) = Node (f a) (maplmirror f r) (mirror l)

Alternatively, we could reach fusion with Proposition 4.12 (para-unfold law)
if we rewrite mapl as a paramorphism.

mapl f = 〈|φ|〉F ′
where F ′ = 1 + a × I × I

φ = EmptyO(λ(a, (v1 ,), (, r))→ Node (f a) v1 r)

Then the result of the fusion would be {|φ ◦ F ′ (mirror × id), ψ|}F ′ , which
expands to exactly the same definition of maplmirror .

Looking at the outcome of fusion, it is easy to see why the call mirror l
is not eliminated. It is because that branch is not traversed by mapl f , it is
copied from the input as is. Therefore, a partial deforestation is unavoidable.
In the following section we will turn to an example which does not allow fusion
through paramorphisms.

5.2 Partial deforestation without paras

Consider the following definition

leaves :: Tree a → [a]
leaves Empty = []
leaves (Node a Empty Empty) = [a]
leaves (Node a l r) = leaves l ++ leaves r

5.2 Partial deforestation without paras 63

Let’s say we want to fuse leaves ◦mapl f . We will use the following hylomor-
phism definitions.

leaves = J[]O(:[])O(++), ψ′KG

where G = 1 + a + I × I
ψ′ Empty = (1, ())
ψ′ (Node a Empty Empty) = (2, a)
ψ′ (Node a l r) = (3, (l , r))

mapl f = bd(ψ)ecF ′
where F ′ = 1 + a × I × Tree a

ψ Empty = (1, ())
ψ (Node a l r) = (2, (f a, l , r))

To apply fusion we have to derive σ from coalgebra ψ′ because of the nested
pattern Node a Empty Empty , obtaining

leaves = J[]O(:[])O(++), σ(outF)KG

where G = 1 + a + I × I
F = 1 + a × I × I
σ(β) = λt → case t of

β·(1, ()) → (1, ())
β·(2, (a, β·(1, ()), β·(1, ())))→ (2, a)
β·(2, (a, t1 , t2)) → (3, (t1 , t2))

However, we cannot fuse the composition using the hylo-unfold law because
the functor F of leaves is different from the functor F ′ of mapl f . And using
the paramorphism representation of mapl f does not help reaching fusion
either.

The only alternative we have is disguising recursive calls in leaves to get

leaves = J[]O(:[])Oφ3, σ(outF)KG

where G = 1 + a + I × a
F = 1 + a × I × a
σ(β) = λt → case t of

β·(1, ()) → (1, ())
β·(2, (a, β·(1, ()),Empty))→ (2, a)
β·(2, (a, t1 , t2)) → (3, (t1 , t2))

φ3 = λ(v1 , t2)→ v1 ++ leaves t2

Now, the hylo-unfold fusion yields J[]O(:[])Oφ3, σ(ψ)KG which inlines to

leavesmapl :: (a → a)→ Tree a → [a]
leavesmapl f Empty = []
leavesmapl f (Node a Empty Empty) = [f a]
leavesmapl f (Node a l r) = leavesmapl f l ++ leaves r

64 Partial deforestation

This example showed that partial deforestation is not constrained to the
realm of paramorphisms, and that an extra technique to disguise the recursive
calls is necessary. It is not difficult to come up with an algorithm that deduces
which calls need to be disguised by comparing the functors of leaves and
mapl f . In essence, the functors will differ only in some positions: where one
functor shows I the other may show a constant functor (Tree a in the case
of mapl f). A difference like that identifies one or more recursive calls that
need to be disguised. HFusion is employing such an algorithm.

5.3 Multiple occurrences of a constructor

In this section we will see another example of partial deforestation which
cannot be fused with the laws for paramorphisms presented in Chapter 4.

Consider the definitions of drop2While and replace presented in Chap-
ter 4, and suppose that we want to fuse drop2While p ◦ replace e. The
following are the hylo representations:

drop2While p = {|[]Oφ2Oφ3, ψ|}G

where G = 1 + a + a × a × I
φ2 = λa → if p a then [] else [a]
φ3 = λ(a, a ′, (ys , as))→ if p a then ys else a : a ′ : as
ψ′ = λas → case as of

[] → (1, ())
a : [] → (2, a)
a : a ′ : as → (3, (a, a ′, as))

replace e = J[]O(:)O(:), ψKF ′

where F ′ = 1 + a × [a] + a × I
ψ [] = (1, ())
ψ (a, as) = if a == e then (2, (e, as))

else (3, (a, as))

Note that replace e is not an unfold because of the duplicated occurrence of
constructor (:). On the other hand drop2While p is not a fold because of the
nested constructors in the coalgebra patterns. Therefore, we can not apply
any of the acid rain laws. However, let’s imagine for a minute that we extend
the type of lists with an extra constructor (.) :: a → [a] → [a] and rewrite
the hylos as follows:

drop2While p = {|[]Oφ2Oφ3Oφ4Oφ5Oφ6Oφ7, ψ|}G
where G = 1 + a + a + a × a × I + a × a × I + a × a × I + a × a × I

φ2 = λa → if p a then [] else [a]
φ3 = λa → if p a then [] else [a]
φ4 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as
φ5 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as

5.3 Multiple occurrences of a constructor 65

φ6 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as
φ7 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as
ψ′ = λas → case as of

[] → (1, ())
a . [] → (2, a)
a : [] → (3, a)
a : a ′ . as → (4, (a, a ′, as))
a : a ′ : as → (5, (a, a ′, as))
a . a ′ : as → (6, (a, a ′, as))
a . a ′ . as → (7, (a, a ′, as))

replace e = J[]O(.)O(:), ψKF ′

By introducing a new constructor (.) we can see replace e as an unfold. We
also extended the definition of drop2While to handle (.) in the same way as
(:) by duplicating cases. Now, if we derive σ from ψ we get:

drop2While p = {|[]Oφ2Oφ3Oφ4Oφ5Oφ6Oφ7, σ(outF)|}G
where F = 1 + a × I + a × I

σ(β) = λas → case as of
β·(1, ()) → (1, ())
β·(2, (a, β·(1, ()))) → (2, a)
β·(3, (a, β·(1, ()))) → (3, a)
β·(2, (a, β·(2, (a ′, as))))→ (4, (a, a ′, as))
β·(2, (a, β·(3, (a ′, as))))→ (5, (a, a ′, as))
β·(3, (a, β·(2, (a ′, as))))→ (6, (a, a ′, as))
β·(3, (a, β·(3, (a ′, as))))→ (7, (a, a ′, as))

Unfortunately this σ is of no use because the functor F is different from the
functor F ′ of replace e. However, now we can resort to the disguising calls
trick:

drop2While p = {|[]Oφ2Oφ3Oφ4Oφ5Oφ6Oφ7, σ(outF)|}G
where F = 1 + a × [a] + a × I

G = 1 + a + a + a × a × [a] + a × a × [a]
+ a × a × [a] + a × a × I

φ4 = λ(a, a ′, as)→ if p a then drop2While p as else a : a ′ : as
φ5 = λ(a, a ′, as)→ if p a then drop2While p as else a : a ′ : as
φ6 = λ(a, a ′, as)→ if p a then drop2While p as else a : a ′ : as
φ7 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as
σ(β) = λas → case as of

β·(1, ()) → (1, ())
β·(2, (a, [])) → (2, a)
β·(3, (a, β·(1, ()))) → (3, a)
β·(2, (a, a ′ . as)) → (4, (a, a ′, as))
β·(2, (a, a ′ : as)))) → (5, (a, a ′, as))
β·(3, (a, β·(2, (a ′, as))))→ (6, (a, a ′, as))
β·(3, (a, β·(3, (a ′, as))))→ (7, (a, a ′, as))

66 Partial deforestation

Doing so, now we have that F = F ′, and therefore we can proceed with the
fusion of drop2While p ◦ replace e, yielding

{|[]Oφ2Oφ3Oφ4Oφ5Oφ6Oφ7, σ(ψ)|}G

We could still cut some cases from the last version of drop2While p in
order to make it more readable.

drop2While p = {|[]Oφ2Oφ3Oφ4, σ(outF)|}G
where G = 1 + a + a + a × a × [a] + a × a × I

φ2 = λa → if p a then [] else [a]
φ3 = λ(a, a ′, as)→ if p a then drop2While p as else a : a ′ : as
φ4 = λ(a, a ′, (ys, as))→ if p a then ys else a : a ′ : as
σ(β) = λas → case as of

β·(1, ()) → (1, ())
β·(2, (a, [])) → (2, a)
β·(3, (a, β·(1, ()))) → (2, a)
β·(2, (a, a ′ : as)) → (3, (a, a ′, as))
β·(2, (a, a ′ . as)))) → (3, (a, a ′, as))
β·(3, (a, β·(2, (a ′, as))))→ (3, (a, a ′, as))
β·(3, (a, β·(3, (a ′, as))))→ (4, (a, a ′, as))

We could dispense also of the coalgebra alternative that uses our artificial
constructor (.). That is because only inF produces that constructor, and
the positions where the constructor is matched will never hold the result of
calling inF .

σ(β) = λas → case as of
β·(1, ()) → (1, ())
β·(2, (a, [])) → (2, a)
β·(3, (a, β·(1, ()))) → (2, a)
β·(2, (a, a ′ : as)) → (3, (a, a ′, as))
β·(3, (a, β·(2, (a ′, as))))→ (3, (a, a ′, as))
β·(3, (a, β·(3, (a ′, as))))→ (4, (a, a ′, as))

Inlining {|[]Oφ2Oφ3Oφ4, σ(ψ)|}G we get

d2WRep p e [] = []
d2WRep p e (a : as) = if a == e then

case as of
[] → if p e then []

else [e]
a ′ : ass → if p e then drop2While p ass

else e : a ′ : ass
else case as of

[] → if p a then []
else [a]

5.3 Multiple occurrences of a constructor 67

a ′ : ass → if a ′ == e then
if p a then drop2While p ass

else a : e : ass
else if p a then d2WRep p e ass

else a : a ′ : replace e ass

Note that the auxiliary constructor (.) is no longer used in the final result.
As it was abstracted from the coalgebra, when we dispense of inF it disapears
completely.

These steps can be automated, first by searching in the almost inF whose
constructors are duplicated, and then by introducing a new constructor for
each repetition. If the functors for all the repetitions of a constructor were
the same, it may be possible to restructure the hylomorphism to get an un-
fold without adding artificial constructors. Note, however, that this is not
our situation, because the functors are a × [a] and a × I for the respective
occurences of constructor (:) in algebra []O(:)O(:). Therefore, the other hy-
lomorphism needs to be extended to handle the new constructors. This is
obtained by duplicating the cases of the coalgebra together with the algebra
components (φi). Not all the cases may be duplicated, but only those where
the copied constructor occurs in a recursive position of a pattern. For the
sake of clarity, in our example we have duplicated cases for every occurrence
of (:) in a pattern, and later removed the occurrences of (.) in non-recursive
positions.

68 Partial deforestation

Chapter 6

Mutually recursive functions

So far, we have been dealing with recursive definitions that call themselves to
define the recursion. We will show in this chapter a broader class of recursive
functions, the theory and the algorithms to fuse them. A substantial part
of the theoretic treatment of those functions is based on previous work by
Iwasaki et al. [IHT98].

Consider the following definitions:

data Rose a = Branch a (Forest a)
data Forest a = NilF | ConsF (Rose a) (Forest a)
sumRose :: Rose Int → Int
sumRose (Branch a fr) = a + sumForest fr
sumForest :: Forest Int → Int
sumForest NilF = 0
sumForest (ConsF r fr) = sumRose r + sumForest fr
mapRose :: (a → b)→ Rose a → Rose b
mapRose f (Branch a fr) = Branch (f a) (mapForest f fr)
mapForest :: (a → b)→ Forest a → Forest b
mapForest f NilF = NilF
mapForest f (ConsF r fr) = ConsF (mapRose f r) (mapForest f fr)

Normal hylomorphisms cannot express in their functors the recursive calls
to these mutually recursive definitions. For instance, function sumRose does
not call itself, but calls function sumForest which calls sumRose. This kind
of somewhat more indirect recursion motivates a generalization.

We will work also with functors which take pairs and may return pairs.

• Projection functors:

Π1 (X ,Y) = X
Π1 (f , g) = f

Π2 (X ,Y) = Y
Π2 (f , g) = g

69

70 Mutually recursive functions

• Our original elemental functors×, + and · overloaded to work over pairs
of types and functions. For instance, (A,B)×(C ,D) = (A×C ,B×D)

• An split operator overloaded for functors taking pairs:

〈F ,G〉 (X ,Y) = (F (X ,Y),G (X ,Y))
〈F ,G〉 (f , g) = (F (f , g),G (f , g))

It follows the generalization of hylomorphisms to express mutual recur-
sion.

Definition 6.1 (Mutual hylomorphism) Let F be a functor from pairs
to pairs of types and functions. Let φ : F (C,D)→ (C,D) be an F -algebra
and ψ : (A,B)→ F (A,B) an F -coalgebra. A mutual hylomorphism Jφ, ψKF

is a pair of functions (f : A→ C, g : B → D) which is the least fixpoint of

(f, g) = φ ◦ F (f, g) ◦ ψ
Unlike hylomorphisms, mutual hylomorphisms do not use to appear directly
applied to input values in functional programs. Instead, it is far more com-
mon to see their components f and g independently applied.

Now we can write sumRose as a mutual hylo:

(sumRose, sumForest) = J(φ1, φ2), outF KF

where F = 〈F1,F2〉
F1 = Int × Π2 F2 = 1 + Π1 × Π2

φ1 :: F1 (Int , Int)→ Int
φ1 (a, fr) = a + fr
φ2 :: F2 (Int , Int)→ Int
φ2 (1, ()) = 0
φ2 (2, (r , fr)) = r + fr

Note that the hylo functor is expressed as a split of functors. Each component
describes the structure for each of the recursive definitions: sumRose and
sumForest . The coalgebra outF corresponds to a pair of coalgebras, each of
them belonging to the respective recursive definition.

The Acid Rain laws for mutual hylos are expressed in the same way as
for normal hylos, now using functors from pairs to pairs.

Theorem 6.2 (Acid rain for mutual hylos)

fold-unfold: Jφ, outF KF ◦ JinF , ψKF = Jφ, ψKF

fold-hylo: LφMF is strict τ :: (F (a, b)→ (a, b))→ (G (a, b)→ (a, b))

LφMF ◦ Jτ(inF), ψKG = Jτ(φ), ψKG

hylo-unfold: σ :: ((a, b)→ F (a, b))→ ((a, b)→ G (a, b))

Jφ, σ(outF)KG ◦ bd(ψ)ecF = Jφ, σ(ψ)KG

6.1 Derivation of mutual hylomorphisms 71

The proof is a generalization to the mutual hylo context of the proof of the
normal acid rain laws [TM95, Wad89].

To illustrate application of acid rain in this context, suppose we want to
fuse sumMapRoseForest = (sumRose, sumForest) ◦ mapRoseForest f . If we
write mapRoseForest as a mutual hylomorphism, we obtain:

mapRoseForest f = bd((ψ1, ψ2))ecF
where ψ1 :: Rose a → F1 (Rose a,Forest a)

ψ1 (Branch a (Forest fr)) = (f a, fr)
ψ2 :: Forest a → F2 (Rose a,Forest a)
ψ2 NilF = (1, ())
ψ2 (ConsF r fr) = (2, (r , fr))

Now, we can apply the fold-unfold law to get J(φ1, φ2), (ψ1, ψ2)KF . Inlining
we get:

sumMapRose :: (a → Int)→ Rose a → Int
sumMapRose f (Branch a fr) = f a + sumMapForest f fr
sumMapForest :: (a → Int)→ Forest Int → Int
sumMapForest f NilF = 0
sumMapForest f (ConsF r fr) = sumMapRose f r + sumMapForest f fr

6.1 Derivation of mutual hylomorphisms

Let f and g be mutualy recursive functions with definitions in the following
form.

f = λv1 . . . vm → bf

g = λv1 . . . vm → bg

We will assume that both f and g make recursion over a single argument,
and that they have the same amount of constant arguments. Without loss
of generality, it can be assumed that both f and g are recursive over the last
argument and that their constant arguments appear in the same order.

The mutual hylomorphism is derived as follows:

(sumRose, sumForest) = λv1 . . . vm → J(φf , φg), (ψf , ψg)K〈Ff ,Fg 〉

where (φf , ψf ,Ff) = H(f , g , λv1 . . . vm → bf)
(φg , ψg ,Fg) = H(f , g , λv1 . . . vm → bg)

We present in Figure 6.1 the auxiliary algorithm H which does the hard
work.

72 Mutually recursive functions

H(f , g, λv1 . . . vm → case t0 of p1 → t1; . . . ; pn → tn) = (φ1O · · ·Oφn , ψ,F)
where
ψ = λvm → case t0 of

p1 → (1, (v11, . . . , v1l1 , t
′
11, . . . , t

′
1s1

))

...
pn → (n, (vn1, . . . , vnln , t

′
n1, . . . , t

′
nsn

))

φi = λ(vi1, . . . , vili , u1, . . . , usi)→ t ′′i
F = F1 + · · ·+ Fn

Fi = Γ(vi1)× · · · × Γ(vili)× P1 × · · · × Psi -- Γ(v) returns the type of v
({vi1, . . . , vili }, {(P1, u1, ti1), . . . , (Psi , usi , tisi)}, t ′′i) = D(pi , ti)
D(pi , v) = ({v }, ∅, v) if v ∈ vars(pi) ∪ {vm}

(∅, ∅, v) otherwise
D(pi , (t1, . . . , tn)) = (c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n , (t

′
1, . . . , t

′
n))

where (ci , c
′
i , t
′
i) = D(pi , ti)

D(pi ,Cj (t1, . . . , tn)) = (c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n ,Cj (t ′1, . . . , tn))
where (ci , c

′
i , t
′
i) = D(pi , ti)

D(pi , h t1 . . . tm)) = (∅, {(Π1, u, tm)}, u) if h = f and vi = ti for all i < m
(∅, {(Π2, u, tm)}, u) if h = g and vi = ti for all i < m
(c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ c′n , h t ′1 . . . t ′n) otherwise

where (ci , c
′
i , t
′
i) = D(pi , ti)

u is a fresh variable
D(pi , let v = t0 in t1) = (c0 ∪ c1, c′0 ∪ c′1, let v = t ′0 in t ′1)

where (ci , c
′
i , t
′
i) = D(pi , ti)

D(pi , λv → t) = (c, c′, λv → t ′)
where (c, c′, t ′) = D(pi , t)

D(pi , case t0 in p1 → t1; . . . ; pn → tn) =
(c1 ∪ · · · ∪ cn , c′1 ∪ · · · ∪ cn , case t0 of p1 → t ′1; . . . ; pn → t ′n)

where (ci , c
′
i , t
′
i) = D(pi , ti)

Figure 6.1: Mutual hylomorphism derivation algorithm

The algorithm is similar to that for hylomorphism derivation. The ma-
jor changes are in the auxiliary algorithm D. Algorithm D tells where the
recursive calls are, and which are their arguments. As we are working now
with mutual hylomorphisms we must tell for each recursive call whether f or
g was called. That is said through the projections Π1 and Π2, respectively.
The same provisions regarding variable capture we made for the derivation
algorithm for normal hylomorphisms apply now for mutual hylos.

The result of applying the algorithm over sumRose is:

(sumRose, sumForest) = J(φ1, φ2), (ψ1, ψ2)KF

where F = 〈Int × Π2,1 + Π1 × Π2〉
φ1 (a, u0) = a + u0

φ2 (1, ()) = 0
φ2 (2, (u1, u2)) = u1 + u2

ψ1 v = case v of Branch a f → (a, f)
ψ2 v = case v of

NilF → (1, ())
ConsF r fr → (2, (r , fr)

6.2 Derivation of τ 73

T (h,F , φ :: Gh ah → ah) : (F (a1, a2)→ (a1, a2))→ Gh ah → ah

T (h, 〈F1,F2〉, (φ1O · · ·Oφn) :: Gh ah → ah) =
λ(α1O · · ·Oαm1 , β1O · · ·Oβm2)→ T ′(φ1)O · · ·OT ′(φn)

where Fi1 + · · ·+ Fimi = Fi

T ′(λbvs → t) = λbvs → Ah t
Ah (v) = v (if v is a recursive variable according to G)
A1(Cj t1 . . . tk) = αj (F1j (A1,A2) (t1, . . . , tk))
A2(Cj t1 . . . tk) = βj (F2j (A1,A2) (t1, . . . , tk))
Ah (t) = Πh L(α1O · · ·Oαm1 , β1O · · ·Oβm2)M〈F1,F2〉 t (all other cases)

Figure 6.2: Algorithm for deriving τ

6.2 Derivation of τ

Having a mutual hylomorphism J(φ1, φ2), ψK〈G1,G2〉 we might want to derive
an equivalent one of the form Jτ(inF), ψK〈G1,G2〉. Indeed, we will be deriving
a hylo of the form J(λα→ (τ1 α, τ2 α)) inF , ψK〈G1,G2〉 that we will often write
as J(τ1(inF), τ2(inF)), ψK〈G1,G2〉.

This is how we obtain τ :

τ :: (F (a, b)→ (a, b))→ 〈G1,G2〉 (a, b)→ (a, b)
τ(α) = (T (1,F , φ1 :: G1 (a, b)→ a)(α), T (2,F , φ2 :: G2 (a, b)→ b)(α))

Algorithm T is presented in Figure 6.2. The functor F must be known a
priori. It will come most likely from the mutual fold in a composition of the
form Lφ′MF ◦ J(φ1, φ2), ψK〈G1,G2〉.

As with the mutual hylomorphism derivation algorithm, we made small
tweaks to the derivation algorithm of τ for the normal case. The auxiliary
algorithm A must keep track of which type contains the constructor whose
arguments are traversed. In a mutual hylomorphism, the algebra of either f
and g may contain nested applications of constructors of mixed types.

Example 6.3 (Deriving τ) Consider the following definitions

addChildRose :: a → Rose a → Rose a
addChildRose a (Branch b fr) =

Branch b (ConsF (Branch a NilF)
(addChildForest a fr))

addChildForest :: a → Rose a → Rose a
addChildForest a NilF = NilF
addChildForest a (ConsF r fr) =

ConsF (addChildRose a r) (addChildForest a fr)

We express it as a mutual hylomorphism:

addChild a = J(φ1, φ2), outF KF

where F = 〈F1,F2〉

74 Mutually recursive functions

F1 = a × Π2

F2 = 1 + Π1 × Π2

φ1 (b, u0) = Branch b (ConsF (Branch a NilF) u0)
φ2 (1, ()) = NilF
φ2 (2, (u1, u2)) = ConsF u1 u2

If we apply the derivation algorithm for τ to addChild we get

addChild a = J(τ1(inF), τ2(inF)), outF KF

where τ1 :: (F (a, b)→ (a, b))→ F1 (a, b)→ a
τ1(α1, β1Oβ2) (b, u0) = α1 b (β2 (α1 a β1) u0)
τ2 :: (F (a, b)→ (a, b))→ F2 (a, b)→ b
τ2(α1, β1Oβ2) (1, ()) = β1 ()
τ2(α1, β1Oβ2) (2, (u1, u2)) = β2 u1 u2

If we wanted to fuse sumRose ◦ addChild a, we would get the mutual hylo
J(τ1(φ1), τ2(φ2)), outF KF , being φ1 and φ2 the respective algebra components
of (sumRose, sumForest). The inlined result is

sumAddChildRose a (Branch b fr) =
b + (a + 0) + sumAddChildForest a fr

sumAddChildForest a NilF = 0
sumAddChildForest a (ConsF r fr) =

sumAddChildRose a r + sumAddChildForest a fr

�

6.3 Derivation of σ

Having a mutual hylomorphism Jφ, (ψ1, ψ2)K〈G1,G2〉 we can derive an equiva-
lent one of the form Jφ, σ(outF)K〈G1,G2〉. The transformer σ is calculated as
follows

σ : ((a, b)→ F (a, b))→ (a, b)→ 〈G1,G2〉 (a, b)
σ(β) = (S(1,F , ψ1 :: a → G1 (a, b))(β),S(2,F , ψ2 :: b → G2 (a, b))(β))

where algorithm S is presented in Figure 6.3. Again, the functor F must
be known a priori, and it is expected to come from the mutual unfold in a
composition of the form Jφ, (ψ1, ψ2)K〈G1,G2〉 ◦ bd(φ′)ecF .

Algorithm S is the dual of the τ derivation algorithm. Therefore, the
kind of generalization we did with respect to the σ derivation algorithm for
the non-mutual case is very similar. Essentially, Bh keeps track through its
subindex of which are the types of the constructors being abstracted in the
pattern.

6.3 Derivation of σ 75

S(h, 〈F1,F2〉, λv → case v of p1 → t1; . . . ; pn → tn) =
λ(β1, β2)→ λv → case v of Bh (p1)→ t1; . . . ;Bh(pn)→ tn

where Fi1 + · · ·+ Fimi = Fi

Bh(v) = v if v is a recursive variable
Bh(Cj p1 . . . pk) = βh ·(j ,Fhj (B1,B2) (p1, . . . , pk))
Bh(p) = Πh bd(β)ec〈F1,F2〉·p all other cases

Figure 6.3: Algorithm for deriving σ

Example 6.4 (Derivation of σ) Consider the following definitions:

removeLeavesRose :: Rose a → Rose a
removeLeavesRose (Branch a fr) = Branch a (removeLeavesForest fr)

removeLeavesForest :: Forest a → Forest a
removeLeavesForest NilF = NilF
removeLeavesForest (ConsF (Branch NilF) fr) =

removeLeavesForest fr
removeLeavesForest (ConsF r fr) =

ConsF (removeLeavesRose r)
(removeLeavesForest fr)

As a mutual hylomorphism they look like:

removeLeaves = Jφ, (ψ1, ψ2)K〈G1,G2〉
where G1 = a ×Π2

G2 = 1 + Π2 + Π1 ×Π2

φ = (Branch,NilFOidOConsF)
ψ1 (Branch a fr) = (a, fr)
ψ2 NilF = (1, ())
ψ2 (ConsF (Branch NilF) fr) = (2, fr)
ψ2 (ConsF r fr) = (3, (r , fr))

If we derive σ using the algorithm above we get

removeLeaves = Jφ, (σ1(outF), σ2(outF))K〈G1,G2〉
where F = 〈a × Π2,1 + Π1 × Π2〉

σ1 :: ((a, b)→ F (a, b))→ (a, b)→ G1 (a, b)
σ1(β1, β2) v = case v of β1·(1, (a, fr))→ (1, (a, fr))
σ2 :: ((a, b)→ F (a, b))→ (a, b)→ G2 (a, b)
σ2(β1, β2) v = case v of
β2·(1, ()) → (1, ())
β2·(2, (β1·(1, (, β2·(1, ())), fr)))→ (2, fr)
β2·(2, (r , fr)) → (3, (r , fr))

�

76 Mutually recursive functions

6.4 Regular Functors

We will show in this section that mutual hylomorphims can be used to express
functions for which it is not possible to derive a hylomorphism with the
standard algorithms. In fact, the standard algorithms are able to derive only
hylomorphisms with a polynomial functor. Some functions, however, employ
a functor of a broader class.

We need the preliminary definition of type functor. A common example
of type functor is List , which maps a type a into the type [a] of lists of
elements of type a.

Definition 6.5 Given a bifunctor F , we define the functor τ(F), called a
type functor, as follows:

τ(F)(x) = µ(Fx) {- Fx is the partial application of F -}
τ(F)(f) = LinF ◦ F (f, id)MF

for every function f : a → b.

Now we can define List = τ(1 + Π1 × Π2), whose action on functions is just
expressed by the function map:

map f = Lin1+b×I ◦ (id + f × id)M1+a×I

Consider the following definitions:

data Rose a = Fork a (List (Rose a))
mapRose :: (a → b)→ Rose a → Rose b
mapRose g (Fork a ls) = Fork (g a) (map (mapRose g) ls)

Now that we have the definition of List as a functor we can write this function
as a hylomorphism

mapRose g = JinF ◦ (id + g × id), outF KF

where F = a × List

Unfortunately, F is not a polynomial functor since it contains the functor
List which is not polynomial. This implies that we can not derive this hy-
lomorphism with the standard algorithms. Functors of this kind are called
regular functors.

Definition 6.6 A regular functor is a functor built from polynomial and
type functors.

We have found, however, that the fusion laws for mutual hylomorphisms
can be used to fuse hylomorphisms involving regular (yet non-polynomial)

6.5 Varying the amount of components 77

functors. The trick is writing the problematic functions as a set of mutually
recursive functions. For example,

mapRose :: (a → b)→ Rose a → Rose b
mapRose g (Fork a ls) = Fork (g a) (mapmapRose g ls)

mapmapRose :: (a → b)→ List (Rose a)→ List (Rose b)
mapmapRose g Nil = Nil
mapmapRose g (Cons a as) = Cons (mapRose g a)

(mapmapRose g as)

Now, we can derive a mutual hylomorphism:

mapRose g = JinF ◦ (id + g × id , id), outF KF

where F = 〈a × Π2,1 + Π1 × Π2〉

Doing so we have a better chance to apply the fusion laws for mutual hylos
when a function like mapRose appears in a composition.

We have introduced a new definition mapmapRose satisfying the equality
mapmapRose g = map (mapRose g). It was obtained by fixing the first
argument of map to mapRose g .

The procedure can be generalized for a function f of the form:

f l1 . . . lm r = C1[h (f l1 . . . lm)]
h g r = C2[g][h g]

where l1 . . . lm are the constant parameters of f , C1 and C2 are term contexts,
r is the recursive argument, and h is some arbitrary function to be processed
by fixing its first argument to f l1 . . . lm and adding f constant parameters
as constant parameters of the resulting function. In our previous example
map played the role of h. Note that f is not applied to the recursive argument
r in the right hand side of its definition, though r may be referenced in the
contexts C1 and C2.

For each function h appearing in a call of the form h (f l1 . . . lm) a new
definition hf is derived.

f l1 . . . lm r = C1[hf l1 . . . lm]
hf l1 . . . lm r = C2[f l1 . . . lm][hf l1 . . . lm]

The procedure is applied iteratively to generated definitions until no more
definitions are produced.

6.5 Varying the amount of components

Acid Rain laws for mutual hylos generalize very naturally to recursive defi-
nitions that involve more than two definitions. Some mismatches arise, how-
ever, when one wants to fuse two mutual hylos that have a different amount
of components.

78 Mutually recursive functions

Consider, for example, the following definitions:

mapF [] = []
mapF (a : as) = f a : mapG as

mapG [] = []
mapG (a : as) = g a : mapH as

mapH [] = []
mapH (a : as) = h a : mapF as

even [] = []
even (a : as) = odd as

odd [] = []
odd (a : as) = a : even as

The functions above can be written as mutual hylomorphisms with three and
two components respectively.

(mapF ,mapG ,mapH) = JinF , (ψ1, ψ2, ψ3)KF

where F = 〈1 + b × Π2,1 + b × Π3,1 + b × Π1〉
ψ1 [] = (1, ())
ψ1 (a : as) = (2, (f a, as))
ψ2 [] = (1, ())
ψ2 (a : as) = (2, (g a, as))
ψ3 [] = (1, ())
ψ3 (a : as) = (2, (h a, as))

(even, odd) = J(φ1, φ2), outGKG

where G = 〈1 + b × Π2,1 + b × Π1〉
φ1 (1, ()) = []
φ1 (2, (a, as)) = as
φ2 (1, ()) = []
φ2 (2, (a, as)) = a : as

We are prevented from fusing mapF ◦ even because they belong to mutual
hylos with different amount of components, and no generalization of Acid
Rain will help us here.

Nevertheless, the difference in the amount of components can resolved by
copying some hylo components as follows:

F ′ = 〈1 + b × Π2,1 + b × Π3,1 + b × Π4

,1 + b × Π5,1 + b × Π6,1 + b × Π1〉
(mapF ,mapG ,mapH ,mapF ,mapG ,mapH) =

JinF ′ , (ψ1, ψ2, ψ3, ψ1, ψ2, ψ3)KF ′

(even, odd , even, odd , even, odd) = J(φ1, φ2, φ1, φ2, φ1, φ2), outF ′KF ′

6.5 Varying the amount of components 79

pairComponents i j 〈F1, , . . .Fm 〉 〈G1, , . . .Gn 〉 = unzip3 ((i , j ,F ′) : fs)
where (F ′, fs,) = match Fi Gj [(i , j , 1)]

match Πi Πj p =
let (F ′, fs, p′) = match Fi Gj (p ++ [(i , j , 1 + length p)])
in if ∃k .(i , j , k) ∈ p then (Πk , { }, p)

else (Π1+length p, fs ∪ {(i , j ,F ′)}, p′)
match A A p = (A, { }, p)
match (Fi1 ⊕ Fi2) (Gj1 ⊕Gj2) P | ⊕ ∈ {+,×} =

let (F ′, fs, p′) = match Fi1 Gj1 p
(F ′′, fs′, p′′) = match Fi2 Gj2 p′

in (F ′ ⊕ F ′′, fs ++ fs′, p′′)

Figure 6.4: Matching algorithm for mutual hylos

Now, we could proceed to apply an Acid Rain law for two mutual hylos of
six components.

The above transformation changing the amount of components can be
performed based on the functors of those hylomorphisms. The algorithm
pairComponents presented in Figure 6.4 can be used to obtain the following
lists:

pairComponents 1 1 F G = ([1, 2, 3, 1, 2, 3]
, [1, 2, 1, 2, 1, 2]

, [1 + b × Π2,1 + b × Π3

,1 + b × Π4,1 + b × Π5

,1 + b × Π6,1 + b × Π1])

These lists describe which components of the original hylos must be copied to
produce the resulting hylos with six components. The first list contains the
indexes identifying the mapF coalgebra components, and the numbers in the
second list contains the indexes identifiying the even algebra components.
The functors in the third list are the six components of the common functor.

In the algorithm pairComponents , the function unzip3 converts lists of
triplets into a triplet of lists. Note that the algorithm expects functors to
match in non-recursive positions, and in the amount of sums and products.
If they don’t, then other techniques will be needed to complement this one.

Whe have shown here a technique that enables application of Acid Rain
for the fold-unfold case. However, very similar strategies can be used for the
other cases. For instance, a composition involving hylos like the following

J(φ1, φ2, φ3), (inF1 , inF2 , inF3)K〈F1,F2,F3〉
J(τ1(inF ′1

, inF ′2
), τ2(inF ′1

, inF ′2
)), (ψ1, ψ2)K〈G1,G2〉

could be smoothed calling pairComponents over functors 〈F1,F2,F3〉 and
〈F ′1,F ′2〉, and copying the hylo components accordingly.

80 Mutually recursive functions

As normal hylos can be considered mutual hylos with only one component,
this technique can be also used to fuse normal hylos with mutual hylos with
an arbitrary amount of components.

Chapter 7

Recursion over multiple
arguments

Consider now that a composition involves a function which is recursive over
more than one argument. Such is the case of zip, zipWith or equality for
any recursive data type. If a function like those takes as input the result of
another recursive function, then we cannot eliminate the intermediate data
structure with the current laws. It is not a problem of their representation
as hylomorphisms. For example, consider the function zip:

zip :: [a]→ [b]→ [a × b]
zip (x : xs) (y : ys) = (x , y) : zip xs ys
zip = []

We can derive the following hylomorphism for the uncurried version of it:

zip :: [a]× [b]→ [a × b]
zip = JinF , ψKF

where F = 1 + a × b × I
ψ :: [a]× [b]→ F ([a]× [b])
ψ (x : xs , y : ys) = (2, ((x , y), (xs , ys)))
ψ (,) = (1, ())

The problem is that the acid rain laws expect the hylomorphism to take
as input the recursive structure to eliminate, whereas in a composition like

zip ◦ (map f × id)

the intermediate structure comes as a component of the input pair.
This problem has been studied in [HIT97], where a special operator is

proposed to express coalgebras that take pairs of values. Then, an extension
of Acid Rain is stated to cope with the new operator. We won’t adopt that
approach here, since we find unnecessary to introduce such operator. Instead,
we suggest the following law:

81

82 Recursion over multiple arguments

Lemma 7.1 Acid rain for recursion over two arguments

σ :: ∀a.(a→ F a)→ a× b→ G (a× b)
Jφ, σ(outF)KG ◦ (bd(ψ)ecF × id) = Jφ, σ(ψ)KG

As you can see, the coalgebra transformer σ is not much different from the
one in the usual hylo-unfold law. The only small and crucial tweak is that
the outF coalgebra is abstracted for the type of the first component of the
pair taken by σ(outF).

It turns out that the law can be generalized to:

Lemma 7.2

σ :: ∀a. (a→ F a)→ H a→ G (H a)

Jφ, σ(outF)KG ◦ H bd(ψ)ecF = Jφ, σ(ψ)KG

This means that we can apply the law whatever the amount of recursive
arguments we have, and whichever is the argument where the composition
appears.

In the proof of Lemma 7.2 we make use of the following property known
as hylo fusion [FM91, Mal90].

ψ ◦ f = F f ◦ ψ′ ⇒ Jφ, ψKF ◦ f = Jφ, ψ′KF

We use, also, the characterization of unfolds as the unique homomorphism
from a given coalgebra ψ to coalgebra outF [GJ98]:

outF ◦ f = F f ◦ ψ ⇔ f = bd(ψ)ecF

Proof From the type of σ we can obtain the following free theorem [Wad89]:

ψ′ ◦ f = F f ◦ ψ ⇒ σ(ψ′) ◦ H f = G (H f) ◦ σ(ψ)

Now, by taking ψ′ = outF and f = bd(ψ)ecF we get:

outF ◦ bd(ψ)ecF = F bd(ψ)ecF ◦ ψ ⇒
σ(outF) ◦ H bd(ψ)ecF = G (H bd(ψ)ecF) ◦ σ(ψ)

The premise of this implication holds by the characterization of unfold, and
therefore we have that:

σ(outF) ◦ H bd(ψ)ecF = G (H bd(ψ)ecF) ◦ σ(ψ)

Finally, by applying hylo fusion, we obtain:

Jφ, σ(outF)KG ◦ H bd(ψ)ecF = Jφ, σ(ψ)KG

as desired. �

83

Example 7.3 To see this law in action we rewrite zip in terms of a coalgebra
transformer which only abstracts the patterns corresponding to the first input
list:

zip = bd(σ(outF))ecG
where G = 1 + (a × b)× I

F = 1 + a × I
σ :: ∀a.(a → F a)→ a × [b]→ G (a × [b])
σ(β) (x , y) = case (β x , y) of

((2, (x , xs)), y : ys)→ (2, ((x , y), (xs , ys)))
(,)→ (1, ())

and consider the composition zipmap f = zip ◦ (map f × id).

Being function map written as:

map :: (a → b)→ [a]→ [b]
map f = bd(ψ)ecF

where ψ [] = (1, ())
ψ (a : as) = (2, (f a, as))

the result of applying Law 7.2 is:

zipmap f = bd(σ(ψ))ecG

which has the equivalent inlined definition:

zipmap :: (a → c)→ [a]× [b]→ [c × b]
zipmap f (x : xs) (y : ys) = (f x , y) : zipmap f xs ys
zipmap f = []

�

In [HIT97], the focus was on how to apply fusion on all arguments of a
function simultaneously. In contrast, our solution is selective in the argument
we want to fuse. Nevertheless, in case the consumer is composed with a
product of several producers, like e.g. zip ◦ (map f ×map g), we can simply
proceed in various steps by splitting the product: zip ◦ (map f × id) ◦ (id ×
map g). Then, in our case, we first fuse zip ◦ (map f × id) as in Example 2,
and then we fuse the result with (id ×map g).

Certain functions that use additional parameters where they hold inter-
mediate results (usually called accumulators), can be represented also as
hylomorphisms over multiple arguments. That’s the case of functions like
take, drop and foldl [Bir98].

84 Recursion over multiple arguments

Example 7.4 The function foldl :

foldl :: (b → a → b)→ b → [a]→ [b]
foldl f e [] = e
foldl f e (x : xs) = foldl f (f e x) xs

can be written in uncurried form as hylomorphism:

foldl f = Jid , ψKG

where F = 1 + a × I

G = b + I
ψ :: (b × [a])→ G (b × [a])
ψ (e, l) = case l of

[] → (1, e)
x : xs → (2, (f e x , xs))

and we can rewrite ψ as σ(outF):

ψ = σ(outF)
where σ :: ∀a. (a → F a)→ (b × a)→ G (b × a)

σ(β) (e, l) = case β l of
(1, ()) → (1, e)
(2, (x , xs))→ (2, (f e x , xs))

where σ abstracts the constructors appearing in the patterns of the second
argument of ψ.

Note that we can not derive a σ of type

σ :: ∀b. (b → F b)→ (b × a)→ G (b × a)

which would be the one needed to fuse compositions on the parameter e.
The parameter e would be required to have a polymorphic type, but is used
in ψ as the first argument of function f which may not be polymorphic.
This means that in this case we cannot perform fusion on the accumulator
position. �

Because for functions like this we can fuse compositions in some of the re-
cursive arguments only, it is important to have a law allowing us to do so
without further ado about the other arguments. This is the subject of the
next section.

7.1 Derivation of σ

As part of HFusion we have implemented the treatment of fusion cases in-
volving definitions that make recursion over multiple arguments. The main

7.1 Derivation of σ 85

modification was in the derivation algorithm for σ. Though we can manip-
ulate functions that have any amount of recursive arguments, and perform
fusion on any of them, we will present a simplified version of the algorithm
for the sake of clarity. We will show how to derive a transformer σ which
enables fusion on the first argument for a definition having two recursive
arguments.

The input coalgebra is now expected to be in the form:

ψ :: (a × b)→ G (a × b)
ψ = λ(v1, v2)→ case (v1, v2) of

(p11, p12)→ (1, (t11, ..., t1k1))
...
(pm1, pm2)→ (m, (tm1, ..., tmkm))

Every term tij in a recursive position must be of the form (v , t), where v
is a variable being bound in a recursive position of a constructor in pattern
pi1, and the second component of those pairs might not reference any such
variable. Then, the patterns pi1 must conform to the same normal form
that we required for patterns in our original derivation algorithm for σ. The
precedent examples in this chapter satisfy the restrictions.

Note that the input variables of the coalgebra must be matched in the
same order they appear. That’s a condition that simplifies presentation of
the algorithm, but it certainly could be leveraged by implementing a slightly
more complex variant.

Here is the extended algorithm:

S ′(F , λv → case v of (p11, p12)→ t1; . . . ; (pm1, pm2)→ tn) =
λβ → λv → case v of (B(p11), p12)→ t1; . . . ; (B(pm1), pm2)→ tn

where algorithm B is the same presented in Section 3.2.4.
The extended algorithm will return a transformer σ of type σ : ∀a.(a →

F a) → (a × b → G (a × b)), such that ψ = σ(outF). Generalizations to a
larger amount of arguments can be directly obtained from this scheme.

To illustrate the restriction over the recursive terms, consider the follow-
ing definition:

zip ′ :: [a]→ [a]→ [a × a]
zip ′ (x : xs) (y : ys) = (x , y) : zip ′ ys xs
zip ′ = []

Note that it differs from zip in that it swaps the list tails in the recursive
call. If we write its uncurried version as a hylomorphism we have:

zip ′ = bd(ψ)ecG
where G = 1 + a × a × I

86 Recursion over multiple arguments

ψ :: [a]× [a]→ G ([a]× [a])
ψ (x : xs , y : ys) = (2, ((x , y), (ys , xs)))
ψ (,) = (1, ())

If we wanted now to derive σ :: ∀b. (b → F b) → (b × [a]) → G (b × [a]),
being F = 1 + a × I the functor of lists, it couldn’t be possible with our
algorithm. That is because in the recursive position of the coalgebra the
arguments are swapped. If we insist in applying the algorithm we obtain:

zip ′ = bd(σ(outF))ecF
where G = 1 + a × a × I

σ :: (b → F b)→ (b × [a])→ G (b × [a])
σ(β) (xss , yss) =

case (xss , yss) of
(β·(2, (x , xs)), y : ys)→ (2, ((x , y), (ys , xs)))
(,)→ (1, ())

In the above definition we can see that σ does not match the intended type.
Notice that variable ys is of type [a] if we look at the pattern where it is
bound; nonetheless, when used in a term it is expected to be of polymorphic
type b.

7.2 Folds as Unfolds

Let us suppose we have the composition zf p = zip (filter p xs) ys . This
composition is problematic because we have that zip is a hylomorphism of
the form Jφ, σ(outF)KF , while there is no way to restructure filter p so it
shows as an unfold. The best we can restructure filter p is as follows:

filter p = J[]O(:)Oid , ψKF

where F = 1 + a × I + I
ψ [] = (1, ())
ψ (x : xs) = if p x then (2, (x , xs))

else (3, xs)

However, we could achieve fusion in this case if we rewrite the definitions
in this form:

data [a] = [] | (:) a [a] | D [a]

zip :: [a]→ [b]→ [a × b]
zip (x : xs) (y : ys) = (x , y) : zip xs ys
zip (D xs) ys = zip xs ys
zip = []

filter : (a → Bool)→ [a]→ [a]

7.2 Folds as Unfolds 87

filter p [] = []
filter p (x : xs) = if p x

then x : filter p xs
else D (filter p xs)

We have introduced an artificial constructor D in the type of lists, and then
extended our definitions to make use of it.

We now can proceed to derive the corresponding hylomorphisms and the
transformer σ obtaining:

F = 1 + a × I + I

zip :: [a]× [b]→ [a × b]
zip = Jφ, σ(outF)KG

where G = 1 + a × b × I + I
σ(β) (xss , yss) =

case (β xss , yss) of
((2, (x , xs)), y : ys)→ (2, ((x , y), (xs , ys)))
((3, xs), ys) → (3, (xs , ys))
(,) → (1, ())

φ (1, ()) = []
φ (2, (x , xs)) = x : xs
φ (3, xs) = xs

filter p = JinF , ψKF

In the above definitions, notice how the occurrences of the constructor D
only appear inside inF and outF . Now we can perform fusion since with the
introduction of D filter is an unfold. As result of fusion we get Jφ, σ(ψ)KF ,
which does no longer hold D !

Inlining the result we get

zf p [] = []
zf p (x : xs) yss = if p x

then case yss of
(y : ys)→ (x : y) : zf p xs ys
→ []

else zf p xs yss

Inserting an artificial constructor like we have done here works well for
a couple of fortunate coincidences. First, the algebra components of the
original filter definition are either a constructor or the identity function. And
second, the patterns used by zip on the first argument (i.e. x : xs and) do
not contain nested constructor applications in recursive positions. Provided
that these two conditions hold for any pair of definitions, the trick can be
played again. In fact, we have implemented this technique in HFusion.

88 Recursion over multiple arguments

7.3 Flexibility through mutual hylos

Some definitions that recurse over multiple arguments may seem not fusable
at first, but they can be fused if they are conveniently rewritten using mutual
recursion.

Consider, for example, the case of zip ′ for which we could not derive a σ
transformer in Section 7.1. The problem can be overcome by rewriting the
original definition in terms of mutual recursion.

zip ′1 :: [a]→ [a]→ [a × a]
zip ′1 (x : xs) (y : ys) = (x , y) : zip ′2 ys xs
zip ′1 = []

zip ′2 :: [a]→ [a]→ [a × a]
zip ′2 (x : xs) (y : ys) = (x , y) : zip ′1 ys xs
zip ′2 = []

In this new definition zip ′1 and zip ′2 mirror the definitions of zip ′ while calling
to each other. Writing (zip ′1, zip ′2) as a mutual unfold, we obtain:

(zip ′1, zip ′2) = bd(ψ)ec〈G1,G2〉
where G1 = 1 + (a × a)× Π2

G2 = 1 + (a × a)× Π1

ψ :: ([a]× [a], [a]× [a])→ 〈G1,G2〉 ([a]× [a], [a]× [a])
ψ = (ψ1, ψ2)
ψ1 :: [a]× [a]→ G1 ([a]× [a], [a]× [a])
ψ1 (xss , yss) = case (xss , yss) of

(x : xs , y : ys)→ (2, ((x , y), (ys , xs)))
(,)→ (1, ())

ψ2 :: [a]× [a]→ G2 ([a]× [a], [a]× [a])
ψ2 (xss , yss) = case (xss , yss) of

(x : xs , y : ys)→ (2, ((x , y), (ys , xs)))
(,)→ (1, ())

Suppose we want to fuse zm ′ f = zip ′ ◦map f . In order to use the definition
of zip ′1, we rewrite the composition as (zm ′1, zm ′2) = (zip ′1, zip ′2) ◦ map ′ f
where we define map ′ f) as follows:

map ′ f = bd((ψ′, ψ′))ecF
where F = 〈1 + a × Π2,1 + a × Π1〉

ψ′ (x : xs) = (2, (f x , xs))
ψ′ [] = (1, ())

The mutual unfold map ′ f can be derived from map f with a technique like
that shown in Section 6.5.

Now, σ can be derived from the coalgebra of (zip ′1, zip ′2):

7.3 Flexibility through mutual hylos 89

(zip ′1, zip ′2) = bd(σ(outF))ec〈G1,G2〉
where σ(β) = (σ1(β), σ2(β))

σ1 :: ∀b1b2. ((b1, b2)→ F (b1, b2))→
(b1 × [a], [a]× b2)→ G1 (b1 × [a], [a]× b2)

σ1(β1, β2) (xss , yss) = case (xss , yss) of
(β1·(2, (x , xs)), y : ys)→ (2, ((x , y), (ys , xs)))
(,)→ (1, ())

σ2 :: ∀b1b2. ((b1, b2)→ F (b1, b2))→
(b1 × [a], [a]× b2)→ G2 (b1 × [a], [a]× b2)

σ2(β1, β2) (xss , yss) = case (xss , yss) of
(x : xs , β2·(2, (y , ys)))→ (2, ((x , y), (ys , xs)))
(,)→ (1, ())

By applying Acid Rain for the hylo-unfold case, we obtain:

bd(σ(ψ′, ψ′))ec〈G1,G2〉

Inlined, the result is:

zm ′1 :: (a → b)→ [a]→ [b]→ [b × b]
zm ′1 f (x : xs) (y : ys) = (f x , y) : zm ′2 f ys xs
zm ′1 f = []

zm ′2 :: (a → b)→ [b]→ [a]→ [b × b]
zm ′2 f (x : xs) (y : ys) = (x , f y) : zm ′1 f ys xs
zm ′2 f = []

We are working here with mutual hylomorphisms that recurse over multiple
arguments. The needed algorithms are a mix of the variations introduced to
the original algorithms both for mutual recursion and recursion over multi-
ple arguments, so they can be built from the pieces we have provided with
moderate effort.

Another problematic definition is

zip ′′ :: [a]→ [a]→ [a × a]
zip ′′ (x : xs) (y : ys) = (x , y) : zip ′′ xs xs
zip ′′ = []

Written as unfold we have:

zip ′′ = bd(ψ)ecF
where F = 1 + (a × a)× I

ψ (x : xs , y : ys) = (2, ((x , y), (xs , xs)))
ψ (,) = (1, ())

For similar reasons to the previous case, the coalgebra cannot be used as
input to derive a transformer σ. However, we can rewrite the definition as
follows:

90 Recursion over multiple arguments

zip ′′1 :: [a]→ [a]→ [a × a]
zip ′′1 (x : xs) (y : ys) = (x , y) : zip ′′2 xs xs
zip ′′1 = []

zip ′′2 :: [a]→ [a]→ [a × a]
zip ′′2 (x : xs) (y : ys) = (x , y) : zip ′′2 xs xs
zip ′′2 = []

If we wanted to fuse zm ′′ = (zip ′′1, zip ′′2) ◦ map ′ f , we could derive σ in a
mutual unfold:

(zip ′′1, zip ′′2) = bd(σout·)ec〈G1,G1〉
where G1 = 1 + (a × a)× Π2

σ(β) = (σ1(β), σ2(β))
σ1 :: ∀b1b2. ((b1, b2)→ F (b1, b2))→

(b1 × [a], b2 × b2)→ G1 (b1 × [a], b2 × b2)
σ1(β1, β2) (xss , yss) = case (xss , yss) of

(β1·(x , xs), y : ys)→ (2, ((x , y), (xs , xs)))
(,)→ (1, ())

σ2 :: ∀b1b2. ((b1, b2)→ F (b1, b2))→
(b1 × [a], b2 × b2)→ G1 (b1 × [a], b2 × b2)

σ2(β1, β2) (xss , yss) = case (xss , yss) of
(β2·(x , xs), β2·(y , ys))→ (2, ((x , y), (xs , xs)))
(,)→ (1, ())

As a result of applying Acid Rain for the hylo-unfold case, we obtain:

bd(σ(ψ′, ψ′))ec〈G1,G1〉

And inlining, we arrive to the following definition:

zm ′′1 :: (a → b)→ [a]→ [b]→ [b × b]
zm ′′1 f (x : xs) (y : ys) = (f x , y) : zm ′′2 f xs xs
zm ′′1 f = []

zm ′′2 :: (a → b)→ [a]→ [a]→ [b × b]
zm ′′2 f (x : xs) (y : ys) = (f x , f y) : zm ′′2 f xs xs
zm ′′2 f = []

Through these (rather contrived) examples, we argue that, by combining
mutual recursion and recursion over multiple arguments, it is possible to
have more flexible algorithms than the ones given for the separated schemes.
When deriving a coalgebra transformer, HFusion is able to derive mutually
recursive definitions to enable fusion as shown above.

7.4 Duplication of computations 91

7.4 Duplication of computations

When mixing mutual recursion and recursion over multiple arguments, we
have found some cases where computations are duplicated after fusion.

Looking at the definition of zm ′′2 from the previous section, we can see
that now f is being applied twice over the same element which may be ref-
erenced by both x and y in the right hand side of the first equation of zm ′′2.
This is an unfortunate duplication, in order to avoid it, we should modify
the definition of zip ′′2 to use only one parameter:

zip ′′1 :: [a]→ [a]→ [a × a]
zip ′′1 (x : xs) (y : ys) = (x , y) : zip ′′2 xs
zip ′′1 = []

zip ′′2 :: [a]→ [a × a]
zip ′′2 (x : xs) = (x , x) : zip ′′2 xs
zip ′′2 = []

Performing the fusion with this definition should yield:

zm ′′1 :: (a → b)→ [a]→ [b]→ [b × b]
zm ′′1 f (x : xs) (y : ys) = (f x , y) : zm ′′2 f xs
zm ′′1 f = []

zm ′′2 :: (a → b)→ [a]→ [b × b]
zm ′′2 f (x : xs) = let fx = f x in (fx , fx) : zm ′′2 f xs
zm ′′2 f = []

This does not duplicate the application of f .
Another case of duplicated computations is obtained by fusing

zff p p ′ xs ys = zf p xs (filter p ′ ys)

where zf is the definition we obtained in Section 7.2. That yields:

zff p p ′ [] yss = []
zff p p ′ xss@(x : xs) yss =

if p x
then case yss of

[]→ []
y : ys → if p ′ y

then (x , y) : zff p p ′ xs ys
else zff p p ′ xss ys

else zff p p ′ xs yss

Some terms may be evaluated more than once. Following the flow of evalu-
ation when p x evaluates to true and p ′ y evaluates to false, it can be seen

92 Recursion over multiple arguments

that p x may be evaluated again. There is a way to rewrite this definition
to avoid the duplication, which consists in using mutual recursion.

zff p p ′ [] yss = []
zff p p ′ (x : xs) yss = if p x then zff ′ p p ′ x xs yss

else zff p p ′ xs yss

zff ′ p p ′ x xs [] = []
zff ′ p p ′ x xs (y : ys) = if p ′ y then (x , y) : zff p p ′ xs ys

else zff ′ p p ′ x xs ys

This definition can be obtained by rewriting zip as shown below, and per-
forming then the fusion on each of its arguments.

zip :: [a]→ [b]→ [a × b]
zip (x : xs) yss = zip ′ x xs yss
zip = []

zip ′ x xs (y : ys) = (x , y) : zip xs ys

Rewriting definitions using mutual recursion to avoid duplicating compu-
tations lends to automation. This transformation has not been implemented
in HFusion yet.

7.5 A normal form for recursive definitions

Interestingly enough, the techniques and problems stated in the previous
sections hint for a normal form to which recursive program definitions should
be rewritten in order to have better chances to be fused. Though we have not
implemented such rewriting yet, it could be automated and may contribute
to simplify the implementation.

We describe the normal form through the following rules.

Rule 1 Using mutual recursion, definitions which recurse over multiple
arguments should be split into definitions that do not make pattern matching
over more than one argument at a time. That is, all equations should be in
the form:

f p1 . . . pn = . . .

where there is at most one index i such that pi is not a variable.
Definitions which make recursion over multiple arguments are to be con-

verted to the form above much in the same way as we did with zip in the
previous section.

7.5 A normal form for recursive definitions 93

Rule 2 Definitions which contain nested constructor applications in the
algebra should be rewritten using mutual recursion to eliminate the nesting
if any of the arguments of those constructors reference recursive variables.
That is, all equations should be in the form f p1 . . . pn = g , where g is in
the following normal form:

• it is the result of a recursive call; or

• it is a term in the form C t1 . . . tm where C is a constructor and each
ti is either a recursive call, or a term not referencing recursive calls; or

• it is a term in the form case t0 of p1 → t1; . . . ; pm → tm where t1, . . . , tm

are in this normal form, and t0 does not reference variables used as
arguments of recursive calls.

To illustrate this rule consider the following definition:

intersperse :: a → [a]→ [a]
intersperse e [] = []
intersperse e (x : xs) = x : e : intersperse e xs

This definition can be written as a fold, but not as an unfold because of the
nested application of constructor (:) in the second equation. However we can
rewrite this definition as

intersperse e [] = []
intersperse e (x : xs) = x : intersperse ′ e xs

intersperse ′ e xs = e : intersperse e xs

And now we can write this definition as an unfold

intersperse e = bd((ψ1, ψ2))ecF
where F = 〈1 + a × Π2, a × Π1〉

ψ1 [] = (1, ())
ψ1 (x : xs) = (2, (x , xs))
ψ2 xs = (1, (e, xs))

without missing the ability to write it as a fold

intersperse e = L(φ1, φ2)MF

where F = 〈1 + a × Π2,Π1〉
φ1 (1, ()) = []
φ1 (2, (x , xs)) = x : xs
φ2 (1, xs) = e : xs

94 Recursion over multiple arguments

Rule 3 Dually to the previous rule, definitions which would contain nested
constructor applications in the coalgebra patterns should be rewritten with
mutual recursion to eliminate the nesting if any of the arguments of those
constructors are referenced in the arguments of recursive calls. That is, all
equations should be in the form

f p1 . . . pn = g

where each pi is either a variable or a pattern in the form C p ′1 . . . p ′m
where each p ′i is a variable referenced in a recursive call or it is not a re-
cursive position of C . To illustrate this requirement, consider the following
definition:

odds :: [a]→ [a]
odds [] = []
odds [x] = [x]
odds (x : : xs) = x : odds xs

We cannot fuse odds◦filter p using the technique in Section 7.2 because of the
nesting of constructor (:) in the pattern of the second equation. However, we
can rewrite this definition as the mutual (even, odd) appearing in Section 6.5,
which is a mutual fold and can be fused with filter .

It remains to be examined in more detail whether all definitions that
can be fused with the current algorithms can be also expressed using this
normal form. The main benefit of fusing programs in this form is that the
hylo-unfold law becomes applicable in most of the cases. There won’t be any
composition Jφ, σ(outF)KF ◦ Jτ(inF), ψKF that could prevent Acid Rain to be
applied, provided that the involved hylos are properly restructured.

Chapter 8

Measuring fusion

In this chapter we will compare the performance of some sample programs
with the performance of their fused versions. Our aim is to provide evidence
that our transformations can improve programs.

We compiled all of our programs with the GHC compiler version 6.8.3,
feeding it with the -O option, except when explicitly stating otherwise. At
this stage, the GHC compiler implements a fusion technique known as short-
cut fusion, which is an approach which subsumes ours (see Section 9.5). But
this GHC implementation can only fuse compositions of list functions defined
in the standard libraries.

8.1 Deforesting all the data structures

We start with a program building and traversing binary trees.

data Tree a = Node a (Tree a) (Tree a) | Empty
main :: IO ()
main = print (sumTree $ mapTree (1+) $ genTree 23)
mapTree :: (a → b)→ Tree a → Tree b
mapTree f Empty = Empty
mapTree f (Node a l r) = Node (f a) (mapTree f l) (mapTree f r)
sumTree :: Tree Int → Int
sumTree Empty = 0
sumTree (Node i l r) = i + sumTree l + sumTree r
genTree :: Int → Tree Int
genTree 0 = Empty
genTree i = Node i (genTree (i − 1)) (genTree (i − 1))

And here’s the fused program

main :: IO ()
main = print (sumTree mapTree genTree (1+) 23)

95

96 Measuring fusion

sumTree mapTree genTree :: (Int → Int)→ Int → Int
sumTree mapTree genTree f 0 = 0
sumTree mapTree genTree f v2 =

f v2 + sumTree mapTree genTree f (v2 − 1) +
sumTree mapTree genTree f (v2 − 1)

• Original program. Total time: 9.87 seconds. Total bytes allocated:
1, 636, 009, 068. Maximum residency bytes: 40,960. GC time 62.8%.

• Fused program. Total time: 0.002 seconds. Total bytes allocated:
35,768. Maximum residency bytes: 45.056. GC time 0%.

The difference in performance is so abysmal that we also provide the measures
of the programs compiled without optimizations (that is without -O):

• Original program. Total time: 13.63 seconds. Total bytes allocated:
2, 903, 416, 884. Maximum residency bytes: 45,056. GC time 49.3%.

• Fused program. Total time: 4.03 seconds. Total bytes allocated:
572,992. Maximum residency bytes: 40.960. GC time 2.8%.

The results are so good because we are completely eliminating the need to
produce trees. Also, from the first test we can infer that the compiler is well
prepared to optimize the output of the fusion.

8.2 A normalizer for lambda calculus
This is a program that normalizes untyped lambda expressions. In contrast
with the previous program the intermediate data structures cannot be fully
eliminated due to a complex recursion pattern used by function eval .

import List (union)

main :: IO ()
main = print (eval 500000 (genexp (freshvars 0) "v" n))

-- Abstract syntax for lambda expressions
type Variable = String
data Exp = Eapp Exp Exp -- e e

| Elamb Variable Exp -- λv.e
| Evar Variable -- v

deriving Show

-- Substitution of of variables by terms
subst :: [(Variable,Exp)]→ Exp → Exp
subst ls e@(Evar var) = case lookup var ls of

Just e → e
Nothing → e

subst ls (Elamb v e) = Elamb v (subst (filter ((v 6≡) ◦ fst) ls) e)
subst ls (Eapp e0 e1) = Eapp (subst ls e0) (subst ls e1)

-- Alpha conversions
-- The first parameter indicates the variables in scope (bounded).

alphaConv :: [Variable]→ [(Variable,Variable)]→ Exp → Exp
alphaConv bs ls (Evar v) =

8.2 A normalizer for lambda calculus 97

if elem v bs
then case lookup v ls of

Just v ′ → Evar v ′

Nothing → Evar v
else Evar v

alphaConv bs ls (Elamb v e) =
case lookup v ls of

Just v ′ → Elamb v ′ (alphaConv (v : bs) ls e)
Nothing → Elamb v (alphaConv bs ls e)

alphaConv bs ls (Eapp e0 e1) = Eapp (alphaConv bs ls e0) (alphaConv bs ls e1)

-- Free variables of an expression
-- The first parameter indicates the variables in scope (bounded).

fv :: [Variable]→ Exp → [Variable]
fv bs (Evar v) | elem v bs = [v]

| otherwise = []
fv bs (Elamb v e) = fv (ins v bs) e

where ins a as | elem a as = as
| otherwise = a : as

fv bs (Eapp e0 e1) = union (fv bs e0) (fv bs e1)

-- a list of fresh variables, the parameter is the seed.
freshvars :: Int → [String]
freshvars i = ("u" ++ show i) : freshvars (i + 1)

-- normalizing function
eval :: Int → Exp → Exp
eval gen (Eapp e0 e1) =

case eval gen e0 of
Elamb v e0 ′ → eval gen $ subst [(v , e1)] $ alphaConv [] (zip (fv [] e1) (freshvars gen)) e0 ′

e0 ′ → Eapp e0 ′ (eval gen e1)
eval gen (Elamb v e) = Elamb v (eval gen e)
eval e = e

-- a generator of expressions
genexp :: [Variable]→ Variable → Int → Exp
genexp us v 0 = Evar v
genexp (u : us) v n = Eapp (Elamb u (genexp us u (n − 1))) (Evar v)

And here’s the fused program

main :: IO ()
main = print (eval ′ 500000 (genexp (freshvars 0) "v" n))

-- fused normalization function
eval ′ :: Int → Exp → Exp
eval ′ gen (Eapp e0 e1) =

case eval ′ gen e0 of
Elamb v e0 ′ → eval ′ gen (subst alphaConv [(v , e1)] [] (zip freshvars (fv [] e1) gen) e0 ′)
e0 ′ → Eapp e0 ′ (eval ′ gen e1)

eval ′ gen (Elamb v e) = Elamb v (eval ′ gen e)
eval ′ e = e

zip freshvars (a : as) i4 = (a, "u" ++ show i4) : zip freshvars as (i4 + 1)
zip freshvars v0 i4 = []

subst alphaConv ls bs25 ls45 v65@(Evar v66) =
if elem v66 bs25

then case lookup v66 ls45 of
Just v ′ →

case lookup v ′ ls of
Just e → e
Nothing → alphaConv bs25 ls45 v65

Nothing →
case lookup v66 ls of

Just e → e
Nothing → alphaConv bs25 ls45 v65

else case lookup v66 ls of
Just e → e
Nothing → alphaConv bs25 ls45 v65

98 Measuring fusion

subst alphaConv ls bs25 ls45 (Elamb v67 e32) =
case lookup v67 ls45 of

Just v ′ →
Elamb v ′ (subst alphaConv (filter ((v ′ 6≡) ◦ fst) ls) (v67 : bs25) ls45 e32)

Nothing →
Elamb v67 (subst alphaConv (filter ((v67 6≡) ◦ fst) ls) bs25 ls45 e32)

subst alphaConv ls bs25 ls45 (Eapp e33 e34) =
Eapp (subst alphaConv ls bs25 ls45 e33) (subst alphaConv ls bs25 ls45 e34)

• Original program. Total time: 21.45 seconds. Total bytes allocated:
385, 059, 788. Maximum residency bytes: 106,532,864. GC time 97%.

• Fused program. Total time: 19.52 seconds. Total bytes allocated:
383,369,032. Maximum residency bytes: 118,153,216. GC time 96.1%.

The improvement is more modest in this case. We should also mention that
the lambda expression generated with genexp has been carefully chosen to
exercise the part of the code that was fused. Having used other lambda
expressions the improvement would be as noticeable as the amount of time
that is dedicated to execution of the fused part of the program.

8.3 Fusion of list comprehensions

This is an example inspired in the one given by [CLS07]. We have made it
slightly more elaborated to match better HFusion power.

main = print (sum [k ∗m | k ← [1 . . 14000],m ← [1 . . k],mod k m == 0])

In order to fuse this program we desugar the list comprehension as follows:

main = print (sum ′ 0 (concat
(map (λk → map (k∗)

(filter (λm → mod k m == 0) (upto 1 k)))
(upto 1 14000))))

sum ′ acc [] = acc
sum ′ acc (x : xs) = sum ′ (acc + x) xs
upto m n = case m > n of

True → []
False → m : upto (m + 1) n

In an intermediate phase of the transformation, we obtain the following
program:

main = print (sumConcatMapUpto
(λk → mapFilterUpto (k∗) (λm → mod k m == 0) k 1)
14000 0 1))

8.3 Fusion of list comprehensions 99

sumConcatMapUpto f n acc m =
if m > n then acc

else sumAppendMapUpto f n acc (m + 1) (f m)
sumAppendMapUpto f n acc m (x : xs) =

sumAppendMapUpto f n (x + acc) m xs
sumAppendMapUpto f n acc m [] = sumConcatMapUpto f n acc m
mapFilterUpto f p n m =

if m > n then []
else if p m then f m : mapFilterUpto f p n (m + 1)

else mapFilterUpto f p n (m + 1)

To proceed with fusion, we transform the program by inlining the argument
f of sumConcatMapUpto and make a β-reduction:

main = print (sumConcatMapUpto 14000 0 1)
sumConcatMapUpto f n acc m =

if m > n then acc
else sumAppendMapUpto n acc (m + 1)

(mapFilterUpto (m∗) (λm ′ → mod m m ′ == 0) m 1)
sumAppendMapUpto n acc m (x : xs) =

sumAppendMapUpto n (x + acc) m xs
sumAppendMapUpto n acc m [] = sumConcatMapUpto n acc m

In order to obtain the final fused program, we fuse the remaining composition
sumAppendMapUpto n (m + 1) (mapFilterUpto . . .) in the definition of
sumConcatMapUpto.

main = print (sumConcatMapUpto 14000 0 1)
sumConcatMapUpto n acc m =

if m > n then acc
else g n (m + 1) (m∗) (λm ′ → mod m m ′ == 0) m acc 1

g n m f p n ′ acc m ′ =
if m ′ > n ′ then sumConcatMapUpto n acc m

else if p m ′

then g n m f p n ′ (acc + f m ′) (m ′ + 1)
else g n m f p n ′ acc (m ′ + 1)

• Original program. Total time: 24.5 seconds. Total bytes allocated:
7, 570, 377, 604. Maximum residency bytes: 172, 032. GC time 2.1%.

• Fused program. Total time: 15.3 seconds. Total bytes allocated:
4, 766, 983, 652. Maximum residency bytes: 40, 960. GC time 2.5%.

In this example we are performing better than the shortcut fusion imple-
mentation of GHC. That’s most likely for the fact that it is difficult to fuse
sum ′ [] ◦ f , where function f is the result of fusing some functions including
filter without a technique like the one presented in Section 7.2.

100 Measuring fusion

8.4 Fusion of primitive recursive functions

Now, let us consider a program involving the insertion in binary search trees,
which is a paramorphism.

main = print (countNodes (insert 30 (genTree 24)))
countNodes Empty = 0
countNodes (Node n t1 t2) = 1 + countNodes t1 + countNodes t2
insert :: Ord a ⇒ a → Tree a → Tree a
insert x Empty = Node x Empty Empty
insert x (Node a t1 t2) = case a < x of

True → Node a t1 (insert x t2)
False → Node a (insert x t1) t2

As an intermediate step, we fuse countNodes (insert 30 (genTree 24))) to
obtain:

main = print (countNodes insert genTree 30 24)
countNodes insert genTree x 0 =

1 + countNodes Empty + countNodes Empty
countNodes insert genTree x v0 =

if v0 < x
then 1 + countNodes (genTree (v0 − 1)) +

countNodes insert genTree x (v0 − 1)
else 1 + countNodes insert genTree x (v0 − 1) +

countNodes (genTree (v0 − 1))

In order to obtain the final fused program, we must fuse the composition
countNodes (genTree (v0 − 1)) in the body of countNodes insert genTree.

main = print (countNodes insert genTree 30 24)
countNodes insert genTree x 0 =

1 + countNodes Empty + countNodes Empty
countNodes insert genTree x v0 =

if v0 < x
then 1 + countNodes genTree (v0 − 1) +

countNodes insert genTree x (v0 − 1)
else 1 + countNodes insert genTree x (v0 − 1) +

countNodes genTree (v0 − 1)
countNodes genTree 0 = 0
countNodes genTree v0 =

1 + countNodes genTree (v0 − 1) + countNodes genTree (v0 − 1)

• Original program. Total time: 9.44 seconds. Total bytes allocated:
1, 627, 291, 224. Maximum residency bytes: 40, 960. GC time 62%.

8.5 Summary 101

• Fused program. Total time: 0.001 seconds. Total bytes allocated:
45, 064. Maximum residency bytes: 45, 056. GC time 0%.

Deforesting insert is not a great optimization since it only reconstructs a
single branch in a tree with a maximum depth of 24. But the paramorphism
fusion allows to completely deforest the rest of the program, since it brings
together the calls of countNodes and genTree which are replaced later by
countNodes genTree. This is a notable remark, since we are not aware of any
implementation of fusion which could handle these cases.

The performance of the fused program is very similar to the one achieved
for the example in section 8.1, when no intermediate data structures remain
either.

8.5 Summary

In the following table we present the time comparisons in seconds. The time
ratio is calculated as 100 ∗ F/O where O is the running time of the original
program and F is the running time of the fused program.

program O F 100*F/O
sumMapGenBTree 9.87 0.002 0.02%
normalizer 21.45 19.52 91%
list comprehension 28.11 13.55 48%
paramorphism 9,44 0.001 0.01%

When fusion eliminates all of the intermediate data structures the improve-
ments are dramatical. This numbers should be considered with caution since
our test programs do not perform any expensive computations like I/O. This
makes the relative weight of the intermediate data structures significant to
the performance.

In the following table we present the comparisons of total allocated bytes.
The byte ratio is calculated as 100 ∗ F/O where O is the count of bytes
allocated by the original program and F is the count of bytes allocated by
the fused program.

program O F 100*F/O
sumMapGenBTree 1,636,009,068 35,768 0.002%
normalizer 385,059,788 383,369,032 99.6%
list comprehension 7,510,826,324 4,726,050,264 62.9%
paramorphism 1,627,291,224 45,064 0.003%

Greater savings in allocated bytes seem to imply greater improvements in
running times. In practice, not all the critical computations in a program may
be possible to deforest, therefore, more modest results should be expected
when working with real programs.

102 Measuring fusion

Chapter 9

Future work and conclusions

In this work we have contributed to the automation of program transforma-
tions based on fusion techniques. More specifically, we have explored the
possibilities of acid rain style laws to remove intermediate data structures
for various kinds of recursive programs.

We devote this chapter to state some possibilities and limitations of our
implementation and our approach. In the last section, we summarize our
contributions and give some final remarks.

9.1 Definitions returning multiple results

Inspired by the law for fusing definitions recursing over multiple arguments
(Chapter 7), we immediately arrive at the dual case, which enables fusion
of definitions producing multiple results. As for Lemma 7.2, we can state a
more general law.

Lemma 9.1

τ :: ∀a. (F a→ a)→ G (H a)→ H a

H LφMF ◦ Jτ(inF), ψKG = Jτ(φ), ψKG

This would enable fusion of compositions like (map f × id) ◦ unzip. In fact,
the definition of unzip:

unzip :: [(a, b)]→ ([a], [b])
unzip [] = ([], [])
unzip ((a, b) : zs) = let (xs, ys) = unzip zs

in (a : xs, b : ys)

can be written as

unzip = Lτ(inF)MF

where τ(α1, α2) (1, ()) = (α1, [])
τ(α1, α2) (2, ((a, b), (xs, ys))) = (α2 a xs, b : ys)

103

104 Future work and conclusions

which can now be fused with map f × id , obtaining:

mapunzip :: (a → c)→ [(a, b)]→ ([c], [b])
mapunzip f [] = ([], [])
mapunzip f ((a, b) : zs) = let (xs, ys) = mapunzip f zs

in (f a : xs, b : ys)

There is at least one implementation of shortcut fusion capable of handling
these cases [Chi99]. The above law is also meaningful for other kinds of
fusions [MP08, PFS09].

9.2 Monadic computations

So far we have dealt with fusion of pure functions. However, most real
programs produce effects, which in the functional programming paradigm
is usually associated with monadic functions. Fusion in the presence of ef-
fects has been analyzed by [GJ08, MP08, Par05, Par01]. HFusion could be
extended to handle monadic functions.

9.3 Tupling

Tupling is a program transformation technique that optimizes programs us-
ing a different principle than fusion ([HITT96]). Tupling does not eliminate
intermediate data structures, but optimizes functions which perform multi-
ple traversals over a data structure. The result of tupling combines multiple
traversals in a single function that performs the traversals rather simultane-
ously and returns a tuple.

Here is a typical example which computes the leaves that are farthest
away from the root of a tree.

deepest (Leaf a) = [a]
deepest (Join l r) = if depthL > depthR then deepest l

else if depthL < depthR then deepest r
else deepest l ++ deepest r

where depthL = depth l
depthR = depth r

depth (Leaf a) = 0
depth (Join l r) = 1 + max (depth l) (depth r)

This would be the optimized program obtained after applying tupling:

deepest = fst ◦ dd

dd (Leaf a) = ([a], 0)

9.4 Composition discovering 105

dd (Join l r) = if dl > dr then (dpl , 1 + dl)
else if dl < dr then (dpr , 1 + dr)

else (dpl ++ dpr , 1 + dl)
where (dpl , dl) = dd l

(dpr , dr) = dd r

In general, tupling may cause an improvement in the efficiency of a program.
In the example, the original program is quadratic in the amount of nodes
of the tree, while the transformed version is almost linear (appending the
results may still make the program quadratic in the amount of leaves).

Most notably, the resulting function is inlined from a fold, which would
leave open the opportunity for fusion in a later pass.

Integrating tupling in a transformation system like HFusion would require
analyzing how it fits, among others, with mutual recursion, recursion over
multiple arguments, primitive recursion and accumulators.

9.4 Composition discovering

To date, HFusion is not capable of searching compositions automatically.
Finding all the compositions in a program may require special inlining rules
to make the compositions evident while avoiding to duplicate computation.

Consider as an example the following expression:

let l ′ = map f l
in zip l ′ l ′

If we inline l ′ to make the compositions evident computing the expression
will apply function f twice to each element in list l , even after performing
fusion.

zip (map f l) (map f l)

Therefore, care must be taken to inline only if applying fusion would still
improve the program. The result of fusion is zmm f f l l where:

zmm f g (x : xs) (y : ys) = (f x , g y) : zmm f g xs ys
zmm f g = []

If function f is expensive enough to compute, just applying fusion may not
be desirable. Note, however, that zmm f f l l is equivalent to [(fx , fx) | x ←
l , fx = f x], where the later expression does not recompute f . It might be
possible to analyze the output of fusion with other techniques to improve the
result.

Replacing a composition by a fusion is also convoluted if one wants to
achieve source to source transformations as the ones implemented in HFusion.

106 Future work and conclusions

The system can be used as a kind of refactorer which takes two definitions
and fuses them. However, when the functions being fused use local definitions
that are not globally available, it is not obvious where to place the definition
produced by the fusion. Sometimes there is not a place to put the fusion
result, as all the needed local definitions are never simultaneously in scope.

Another subtle problem of fusion is how to handle instances of type
classes. If a class method appears in a composition, it may not be possi-
ble to determine immediately which instance should be considered for the
fusion.

Despite these technicalities, it is planed to incorporate this feature to
HFusion in the near future.

9.5 Relationship with shortcut fusion

We will start by giving an overview of what shortcut fusion is about [TM95,
GLPJ93, Gil96]. In a sense, shortcut fusion can be thought of as a general-
ization of acid rain laws.

Let’s consider acid rain for the fold-hylo case:

τ :: ∀b.(F b → b)→ G b → b ⇒ LφMF ◦ Jτ(inF), ψKG = Jτ(φ), ψKG

Shortcut fusion generalizes this with its popular build-cata rule:

f :: ∀b.(F b → b)→ a → b ⇒ LφMF ◦ f inF = f φ

To get the fold-hylo law from this one, function f must be instantiated as
λα→ Jτ(α), ψKG .

From our perspective, the most important aspect of shortcut fusion is
that it does not require any special knowledge about the recursive scheme
used by function f . All it requires from f is that it meets the proper poly-
morphic type, much in the same way as we require the polymorphic type for
τ . The generalization implies that f can abstract away constructors in the
whole body of the definition, while τ only allows to abstract the constructors
occurring in the algebra of a hylomorphism.

We can establish the dual generalization for the hylo-unfold case:

σ :: ∀b.(b → F b)→ b → G b ⇒ Jφ, σ(outF)KG ◦ bd(ψ)ecF = Jφ, σ(ψ)KG

which in the shortcut fusion approach can be expressed in terms of the
destroy-unfold rule:

f :: ∀b.(b → F b)→ b → a ⇒ f outF ◦ bd(ψ)ecF = f ψ

by taking f = \ β → Jφ, σ(β)KG . This law is equally practical for similar
reasons to those used for the build-cata rule.

9.6 Limitations of hylo fusion 107

A shortcut fusion law for multiple arguments Now we could take
this generalization a step forward. Let us recall our law for fusing definitions
which recurse over multiple arguments.

σ :: ∀b.(b → F b)→ H b → G (H b) ⇒
Jφ, σ(outF)KG ◦ H bd(ψ)ecF = Jφ, σ(ψ)KG

What happens when we rewrite this rule in shortcut fusion style?

f :: ∀b.(b → F b)→ H b → a ⇒ f outF ◦ H bd(ψ)ecF = f ψ

We get a formulation of shortcut fusion for multiple arguments! This law
appears in [GJ08] though it is proposed for fusion of monadic programs, and
the dual appears in [MP08, PFS09].

In [Sve02] it is shown how shortcut fusion can deal with recursion over
multiple arguments by means of the destroy-unfold rule. It remains to be
analyzed the strengths and weaknesses of both approaches with respect to
each other.

Recognizing fold and unfolds As shortcut fusion involves recognizing
folds and unfolds to apply its rules, all the machinery we have presented to
restructure and rewrite hylomorphisms is potentially useful. For this sake,
we remark the following contents:

• Sections 3.2.1 and 3.2.2 contain the basic restructures that allow to put
definitions in fold or unfold form.

• Chapter 5 about partial deforestation shows how to recognize folds and
unfolds when the definitions traverse only part of the intermediate data
structures, or when they traverse different parts in different cases.

• Sections 7.2 and 7.5 contain techniques that rewrite definitions so that
functions that do not seem to be unfolds can be seen as such in some
situations.

9.6 Limitations of hylo fusion

When we started the implementation of HFusion, one of our strongest am-
bitions was surpassing the power of the shortcut fusion implementations we
knew about.

As we progressed on understanding the problems fusion may face, it
turned out that our approach has some shortcomings that shortcut fusion
doesn’t. In what follows, we present some composition examples we believe
unlikely to be worked out without resorting to other techniques than fusion
through acid rain.

108 Future work and conclusions

9.6.1 Definitions with nested calls

Let’s consider function flatten that returns a list containing the nodes of a
tree in pre-order.

flatten :: Tree a → [a]→ [a]
flatten Empty acc = acc
flatten (Node a l r) acc = a : flatten l (flatten r acc)

This function cannot be expressed as a hylomorphism returning a value of
type [a] because it contains nested recursive calls. However, fusion of map f ◦
flatten t could be written as

mapflatten f t xs = mflatten f t (map f xs)

mflatten :: (a → b)→ Tree a → [b]→ [b]
mflatten f Empty acc = acc
mflatten f (Node a l r) acc = f a : mflatten f l (mflatten f r acc)

We have no law to achieve such a result. However, shortcut fusion has a
better chance to do it since it does not need to mess with the recursion
scheme [MP09, Mar09].

9.6.2 Definitions with accumulators

Consider now functions reverse and sum.

reverse :: [a]→ [a]→ [a]
reverse acc [] = acc
reverse acc (x : xs) = reverse (x : acc) xs

sum :: [Int]→ Int
sum [] = 0
sum (x : xs) = x + sum xs

We have shown in Chapter 7 that we can fuse compositions like reverse xs ◦
map f , because reverse is a function that has an accumulator and therefore
can be expressed as a hylomorphism that recurses over multiple arguments,
leading to the result:

reversem :: (a → b)→ [b]→ [b]→ [b]
reversem f acc [] = acc
reversem f acc (x : xs) = reversem f (f x : acc) xs

However, having a composition sum ◦ reverse xs we achieve the following
result that does not deforest anything.

9.6 Limitations of hylo fusion 109

sreverse :: [Int]→ [Int]→ Int
sreverse f acc [] = sum acc
sreverse f acc (x : xs) = sreverse (x : acc) xs

The problem here, is that the constructor application that should be elim-
inated is in the accumulator argument of the recursive call, whereas with
acid rain we only can abstract constructors in the algebra. Recent work on
shortcut fusion has managed to handle these cases [MP09, Mar09], where the
result of the fusion is:

sreverse acc xs = srev (sum acc) xs

srev :: Int → [Int]→ Int
srev acc [] = acc
srev acc (x : xs) = srev (x + acc) xs

There are other approaches to fusion that handle this cases too [Voi04, Nis04].

9.6.3 Fusing inside recursive definitions

There are cases where shortcut fusion can be used to optimize recursive def-
initions, and even improve the order of the algorithm they perform. For ex-
ample, Chitil [Chi99] starts with the following quadratic definition of reverse:

reverse :: [a]→ [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]

and by fusion transforms (++[x]) ◦ reverse into the definition of fast reverse,
which is the linear, accumulative definition presented in Section 9.6.2.

We will not go into the details of how fusion proceeds in this case. It
suffices to say that it is very unlikely that we will ever come up with a
similar trick for hylo fusion, since acid rain does not change the amount of
recursive arguments of a definition.

Another example where this ability may be useful appeared in Section 8.2.
Perhaps shortcut fusion could fuse union (fv bs e0) (fv bs e1) in the defi-
nition of fv , and later fuse zip freshvars (fv [] e1) gen in the definition of
eval ′.

9.6.4 Handling compositions of reverse

Consider the composition reverse [] ◦ reverse [] where we are using the fast
reverse accumulative definition. Despite we know that the composition is
equivalent to the id function, it cannot be deforested using acid rain. And it
is dubious, also, that shortcut fusion would improve the composition since it
involves treatment of reverse as a higher order fold.

110 Future work and conclusions

This inability blocks fusion in a program like the following, which takes
the last n elements of a given list, preserving the order.

f n = reverse [] ◦ take n ◦ reverse []

HFusion could fuse the leftmost composition, however fusing later the other
composition is not less difficult than fusing reverse [] ◦ reverse [].

As another example, consider the following program, which takes a num-
ber and tells if it is a palindrome.

palindrome :: Int → Bool
palindrome n = n == revnum n

where revnum = eval 0 ◦ reverse [] ◦ digits []
digits :: [Int]→ Int → [Int]
digits acc 0 = acc
digits acc n = digits (r : acc) d

where (d , r) = divMod n 10
eval :: Int → [Int]→ Int
eval acc [] = acc
eval acc (x : xs) = eval (10 ∗ acc + x) xs

Suppose that we want to fuse reverse [] ◦ digits []. It turns out that this
composition cannot be deforested using acid rain. To explain why, note that
digits can be decomposed into more simple functions as:

digits :: Int → [Int]
digits = reverse [] ◦ revdig

revdig :: Int → [Int]
revdig 0 = []
revdig n = r : revdig d

where (d , r) = divMod n 10

So the composition reverse [] ◦ digits [] can be rewritten to reverse [] ◦
reverse [] ◦ revdig . We could fuse reverse [] ◦ revdig into digits [] again using
HFusion. However, there does not seem to be a way to fuse the leftmost
composition afterwards.

9.7 Conclusions

In this work we have explored the possibilities of hylo fusion for various kinds
of programs by extending the acid rain laws. In doing so, we have provided
algorithms and remarks from our experience implementing those extensions.

Our main contributions start in Chapter 3, where we present the restruc-
turing and transformer derivation algorithms for normal hylomorphisms that
HFusion uses. Many of these algorithms are not new [OHIT97, Sch00], but

9.7 Conclusions 111

they are expressed in a succinct way. For instance, the duality between deriv-
ing τ and σ was not easy to appreciate in previous work. Another advantage
of our presentation, is that it generalizes easily to work over mutual hylos
and hylos which recurse over multiple arguments. Certainly, one of the keys
to the effectiveness of our algorithm descriptions was using view patterns to
abstract constructors in patterns as shown in Section 3.2.4.

We have explored fusion of primitive recursive functions or paramor-
phisms. Most notably, the generalizations presented in Chapter 4 were the
result of explaining what had been implemented in HFusion as the result of
tinkering with the original algorithms and internals. Though primitive recur-
sive functions can be written in terms of a fold, in practice this is never done,
and therefore, compositions involving primitive recursive functions may not
be possible to deforest without the extension.

After considering primitive recursion, we still had not covered everything
HFusion was doing. Compositions of paramorphisms sometimes involve an
intermediate data structure that is not completely produced or consumed
by the functions being composed. It happens that other compositions not
involving paramorphisms present this singularity as well, therefore calling for
more techniques applicable when only a part of the intermediate data struc-
tures can be deforested. We have presented these techniques in Chapter 5.

It is debatable whether or not partial deforestation deforests enough to
be worth the trouble of performing it. The key argument to consider it, is
that it brings together function calls for fusion that may not be otherwise
possible to join. See Section 8.4 for an example of this point.

We have implemented an extension for fusing mutually recursive defini-
tions. Mutual hylos are worth themselves for the expressiveness they bring
to enable deforestation of a broader class of functions. But in addition, they
allow the treatment of hylomorphisms with regular functors (Section 6.4).
Another contribution we made is the algorithms for the theoretical frame-
work presented in [IHT98].

The last of our extensions is fusion for functions which recurse over mul-
tiple arguments (Chapter 7). This extension enable us to fuse functions like
zip, zipWith and equality for recursive data types, as well as functions with
accumulators (e.g. foldl , take, drop). This power may be similar to what
Svenningsson [Sve02] claimed about through the use of the destroy-unfold
rule of shortcut fusion.

Once mutual recursion and recursion over multiple arguments coexist in
a same implementation, some restructures of program definitions become
available to achieve fusion where the isolated approaches would not succeed
(Section 7.3). In the light of these restructures, we have formulated a normal
form for function definitions that could improve the result and likelihood of
fusion.

We provide, also, an experimental implementation of most of the tech-

112 Future work and conclusions

niques described in this work, which made it possible to test them on concrete
examples. The implementation is available at

http://www.fing.edu.uy/inco/proyectos/fusion/tool

The development of our implementation has been a fundamental tool to
identify and figure out the multiple extensions and manipulations we have
presented. We wouldn’t have earned so much intuition about automating
and explaining acid rain laws, should we not had been confronted with the
problem of coding the theoretical algorithms and analyzing every restriction
needed on the input to guarantee a proper behavior.

Bibliography

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic
in Computer Science, volume 3, pages 1–168. Clarendon Press,
1994.

[BdM97] R.S. Bird and O. de Moor. Algebra of Programming. Prentice
Hall, UK, 1997.

[BFaF99] Gilles Barthe, Maria JoÃ£o Frade, and Maria Jo ao Frade. Con-
structor subtyping. In Proceedings of ESOP’99, LNCS 1576, pages
109–127. Springer-Verlag, 1999.

[Bir98] R. Bird. Introduction to Functional Programming using Haskell
(2nd edition). Prentice-Hall, UK, 1998.

[Chi92] W.N. Chin. Safe fusion of functional expressions. In In Proc.
Conference on Lisp and Functional Programming, San Francisco,
California, pages 11–20, June 1992.

[Chi99] Olaf Chitil. Type-inference based short cut deforestation (nearly)
without inlining. In In IFL’99, Lochem, The Netherlands, Pro-
ceedings, page pages. Springer-Verlag, 1999.

[CLS07] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream
fusion: from lists to streams to nothing at all. Proceedings of
the ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2007, 42(9):315–326, 2007.

[CUV06] V. Capretta, T. Uustalu, and V. Vene. Recursive coalgebras from
comonads. Information and Computation, 204(4):437–468, 2006.

[dMS99] O. de Moor and G. Sittampalam. Generic program transforma-
tion. In Advanced Functional Programming, Lecture Notes in
Computer Science vol. 1608. Springer-Verlag, 1999.

113

114 Bibliography

[Dom04] Facundo Domı́nguez. Implementación de un sistema de fusión,
2004. Final year project. Facultad de Ingenieŕıa, Universidad de
la República, Uruguay.

[DP06a] Facundo Domı́nguez and Alberto Pardo. Automatización de leyes
de fusión de programas. In XXXII Conferencia Latinoamericana
de Informática (CLEI 2006), August 2006.

[DP06b] Facundo Domı́nguez and Alberto Pardo. Program fusion with
paramorphisms. In Mathematically Structured Functional Pro-
gramming (MSFP’06), Electronic Workshops in Computing.
British Computer Society, 2006.

[FM91] M. Fokkinga and E. Meijer. Program Calculation Properties of
Continuous Algebras. Technical Report CS-R9104, CWI, Amster-
dam, January 1991.

[Fok92] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis,
Universiteit Twente, The Netherlands, 1992.

[Gib06] J. Gibbons. Fission for Program Comprehension. In Intl. Conf.
on Mathematics of Program Construction (MPC 2006), LNCS ???
Springer-Verlag, 2006.

[Gil96] Andrew John Gill. Cheap Deforestation for Non-strict Functional
Languages. PhD thesis, Glasgow University, 1996.

[GJ98] J. Gibbons and G. Jones. The Under-Appreciated Unfold. In Proc.
3rd. ACM SIGPLAN International Conference on Functional Pro-
gramming. ACM, September 1998.

[GJ08] N. Ghani and P. Johann. Short Cut Fusion of Recursive Pro-
grams with Computational Effects. In Symposium on Trends in
Functional Programming (TFP 2008), 2008.

[GLPJ93] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A
short cut to deforestation. In Conference on Functional Program-
ming Languages and Computer Architecture, pages 223–232, June
1993.

[HIT96a] Z. Hu, H. Iwasaki, and M. Takeichi. Calculating Accumulations.
Technical Report METR 96-03, Faculty of Engineering, University
of Tokyo, March 1996.

[HIT96b] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving
structural hylomorphisms from recursive definitions. In Proceed-
ings 1st ACM SIGPLAN Int. Conf. on Functional Programming,

Bibliography 115

ICFP’96, Philadelphia, PA, USA, 24–26 May 1996, volume 31(6),
pages 73–82. ACM Press, New York, 1996.

[HIT97] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. An exten-
sion of the acid rain theorem. In T. Ida, A. Ohori, and M. Take-
ichi, editors, Proceedings 2nd Fuji Int. Workshop on Functional
and Logic Programming, Shonan Village Center, Japan, 1–4 Nov.
1996, pages 91–105. World Scientific, Singapore, 1997.

[HITT96] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko
Takano. Tupling calculation eliminates multiple data traversals.
In Proceedings 2nd ACM SIGPLAN Int. Conf. on Functional Pro-
gramming, ICFP’97, Amsterdam, The Netherlands, 9–11 June
1997, volume 32(8), pages 164–175. ACM Press, New York, 1996.

[IHT98] Hideya Iwasaki, Zhenjiang Hu, and Masato Takeichi. Towards ma-
nipulation of mutually recursive functions. In Fuji International
Symposium on Functional and Logic Programming, pages 61–79,
1998.

[JL98] Patricia Johann and John Launchbury. Warm fusion for the
masses: Detailing virtual data structure elimination in fully re-
cursive languages. In SDRR Project Phase II, Final Report, Com-
puter Science and Engineering Department,Oregon Gradute Insti-
tute, USA, 1998.

[Jon03] Simon Peyton Jones. Haskell 98 Language and Libraries. Cam-
bridge University Press, 2003.

[JV04] Patricia Johann and Janis Voigtländer. Free theorems in the
presence of seq. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 99–110, New York, NY, USA, 2004. ACM.

[Mal90] G. Malcolm. Algebraic Data Types and Program Transformation.
PhD thesis, Dept. of Computer Science, University of Groningen,
The Netherlands, 1990.

[Mar09] Mónica Mart́ınez. Fusión en presencia de acumuladores. Mas-
ter’s thesis, Pedeciba Informática, Universidad de la República,
Uruguay, 2009. Forthcoming.

[Mee92] Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of
Computing, 4(5):413–424, 1992.

116 Bibliography

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Program-
ming with Bananas, Lenses, Envelopes and Barbed Wire. In Pro-
ceedings of Functional Programming Languages and Computer Ar-
chitecture’91, LNCS 523. Springer-Verlag, August 1991.

[MP08] C. Manzino and A. Pardo. Short Cut Fusion of Monadic Pro-
grams. In Brazilian Symposium on Programming Languages
(SBLP 2008), 2008.

[MP09] Mónica Mart́ınez and Alberto Pardo. A Short Cut Fusion Ap-
proach to Accumulations. 2009. Submitted.

[Nis04] Susumu Nishimura. Fusion with stacks and accumulating param-
eters. In Proceedings of the 2004 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics–based Program Manipulation,
2004, Verona, Italy, August 24–25, pages 101–112, 2004.

[OHIT97] Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato
Takeichi. A calculational fusion system HYLO. In Proceedings
of the IFIP TC 2 WG 2.1 international workshop on Algorith-
mic languages and calculi, pages 76–106, London, UK, UK, 1997.
Chapman & Hall, Ltd.

[Par01] Alberto Pardo. Fusion of recursive programs with computational
effects. Theoretical Computer Science, 260:207, 2001.

[Par05] Alberto Pardo. Combining datatypes and effects. In Advanced
Functional Programming, volume 3622 (2005) of Lecture Notes in
Computer Science, pages 171–209. Springer Berlin / Heidelberg,
2005.

[PFS09] Alberto Pardo, João Paulo Fernandes, and João Saraiva. Shortcut
fusion rules for the derivation of circular and higher-order monadic
programs. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN
workshop on Partial evaluation and program manipulation, pages
81–90, New York, NY, USA, January 2009. ACM.

[Sch00] J. Schwartz. Eliminating intermediate lists in pH. Master’s thesis,
Massachusetts Institute of Technology, USA, May 2000.

[SF93] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Pro-
ceedings 6th ACM SIGPLAN/SIGARCH Int. Conf. on Functional
Programming Languages and Computer Architecture, FPCA’93,
Copenhagen, Denmark, 9–11 June 1993, pages 233–242. ACM
Press, New York, 1993.

Bibliography 117

[Sve02] Josef Svenningsson. Shortcut fusion for accumulating parameters
& zip-like functions. In ICFP ’02: Proceedings of the seventh ACM
SIGPLAN international conference on Functional programming,
pages 124–132, New York, NY, USA, October 2002. ACM.

[TM95] Akihiko Takano and Erik Meijer. Shortcut deforestation in cal-
culational form. In Conf. Record 7th ACM SIGPLAN/SIGARCH
Int. Conf. on Functional Programming Languages and Computer
Architecture, FPCA’95, La Jolla, San Diego, CA, USA, 25–28
June 1995, pages 306–313. ACM Press, New York, 1995.

[Voi04] Janis Voigtländer. Using circular programs to deforest in accu-
mulating parameters. Higher–Order and Symbolic Computation,
17:129–163, 2004. Previous version appeared in ASIA–PEPM
2002, Proceedings, pages 126–37, ACM Press, 2002.

[Wad87] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction. In POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages,
pages 307–313, New York, NY, USA, 1987. ACM.

[Wad88] P. Wadler. Deforestation: Transforming programs to eliminate
trees. In ESOP ’88. European Symposium on Programming,
Nancy, France, 1988 (Lecture Notes in Computer Science, vol.
300), pages 344–358. Berlin: Springer-Verlag, 1988.

[Wad89] Philip Wadler. Theorems for free! In Proceedings 4th Int. Conf. on
Funct. Prog. Languages and Computer Arch., FPCA’89, London,
UK, 11–13 Sept 1989, pages 347–359. ACM Press, New York,
1989.

118 Bibliography

Appendix A

Counterexamples

We have made some modifications to the derivation algorithm for τ proposed
in [OHIT97], since we found it didn’t work in some cases. We reworked a
derivation algorithm for σ because the original algorithm was incorrect in its
handling of the coalgebra pattern matching. We also restricted a little the
form of the terms which are accepted as input.

This appendix is devoted to present the counterexamples that point at the
pitfalls of the original proposal for the derivation algorithm for τ , together
with a counterexample showing why we have restricted the input to the
derivation algorithm for σ.

A.1 Derivation of τ

Here’s the normal form proposed for the terms inside algebra components φi

in the original algorithm:

1. the term is an input variable of φi ;

2. it is a constructor application of terms in normal form;

3. it is a hylomorphism application Jφ′1O · · ·Oφ′n , outF KF v ′ where each φ′i
appears in the same normal form than φi , and v is a recursive variable;

4. it is in the form f t1 . . . tn where f is a global function and the terms
t1, . . . , tn do not reference any recursive variable.

We will show that allowing terms in the form of the second or third clauses
may lead to erroneous derivations.

Counterexample A.1 (Second clause) Let’s consider the following defi-
nitions

mapl :: (a → a)→ Tree a → Tree a
mapl f Empty = Empty

119

120 Counterexamples

mapl f (Node a l r)) = Node (f a) (mapl f l) r
prunel :: (a → Bool)→ Tree a → Tree a
prunel p Empty = Empty
prunel p (Node a l r) =

case p a of
True → prunel p r
False → Node a (prunel p l) (prunel p r)

If we derive the corresponding hylomorphisms we get

mapl f = LEmptyO(λ(i , t1 , t2)→ Node (f i) l r)MF

where F = 1 + Int × I × Tree a
prunel p = LφMH

where H = 1 + a × I × I
φ (1, ()) = Empty
φ (2, (a, v1, v2)) = case p a of

True → v2

False → Node a v1 v2

If we want to fuse mapl f ◦ prunel p we need to restructure prunel .

prunel p = Jφ1O(idOφ3), η ◦ ψKG

where G = 1 + (I + a × I × I)
ψ Empty = (1, ())
ψ (Node a l r) = (2, (a, l , r))
η :: H ⇒ G
η = id + η2

η2 (a, v1, v2) = case p a of
True → (2, (1, v2))
False → (2, (2, (a, v1, v2)))

φ1 () = Empty
φ3 (a, v1, v2) = Node a v1 v2

Since the algebra of prunel after restructuring is not inF , we have to
derive τ by using the functor F of mapl . Note that in this case the terms
in the algebra of prunel satisfy the normal form of Onoue et al. [OHIT97]
but not ours. In fact, none of the clauses of our normal form are satisfied,
specifically the second clause is not satisfied by φ3. The argument v2 is
non-recursive according to F but it is a recursive variable according to G .

If we continue to derive τ according to the original algorithm we get

τ(α1Oα2) = α1OidO(λ(a, v1, v2)→ α2 (a, v1, v2))

Note that the expected type of τ is (F b → b)→ G b → b. However, the
real type of the derived τ is (H b → b)→ G b → b

A.1 Derivation of τ 121

At this point there is no fusion rule we could apply, but it is instructive
inspecting the outcome of proceeding with the fusion despite the typing error.

mpl f p = Jτ(EmptyO(λ(i , v1, v2)→ Node (f i) v1 v2)), η ◦ ψKG

Inlining the above we get:

mpl :: (a → a)→ (a → Bool)→ Tree a → Tree a
mpl f p Empty = Empty
mpl f p (Node a l r) =

case p a of
True → mpl f p t2
False → Node (f a) (mpl f p l) (mpl f p r)

Then, we can verify that

mpl (+1) (== 8) (Node 1 (Node 1 Empty Empty)
(Node 1 Empty Empty)) =

(Node 2 (Node 2 Empty Empty) (Node 2 Empty Empty))

while the original composition returns

mapl (+1) ◦ prunel (== 8) (Node 1 (Node 1 Empty Empty)
(Node 1 Empty Empty)) =

(Node 2 (Node 2 Empty Empty) (Node 1 Empty Empty))

Summarizing, the derivation algorithm for τ can fail if applied over al-
gebras whose terms are admitted by the second clause of the normal form
proposed by Onoue et al. [OHIT97]. �

Counterexample A.2 (Third clause) Consider the following definitions

concatr :: [[a]]→ [a]
concatr [] = []
concatr (a : as) = append a (concatr as)
append :: [a]→ [a]→ [a]
append l [] = l
append l (a : as) = a : append l as

The function append concatenates its arguments. The function concatr does
the same as the composition concat ◦ reverse, i.e. given a list of lists, first it
is reversed and then the inner lists are concatenated.

We write the above definitions as hylomorphisms.

concatr = J[]O(λ(a, v)→ append a v), outF ′KF ′

where F ′ = 1 + [a]× I

122 Counterexamples

append l = L(λ()→ l)O(λ(a, v)→ a : v)MF

where F = 1 + a × I

Let’s say we want to fuse map f ◦ concatr . We will have to derive τ from
the algebra of concatr . Our normal form does not accept this algebra, but
Onoue normal form does. According to the original algorithm the derived τ
is:

τ :: (F b → b)→ F ′ b → b
τ(α1Oα2) = α1Oφ2

where φ2 (a, v) = Lτ ′(α1Oα2)MF v
where τ ′(α1Oα2) = (λ()→ a)Oα2

Note how this τ is ill-typed again. The type of variable v to which
Lτ ′(α1Oα2)MF is applied should be the carrier type of outF (i.e. [a]). However,
the type of τ indicates that it should be of a polymorphic type b. Ignoring
this type error is not possible since the resulting fusion would not be well-
typed.

Summarizing, the derivation algorithm for τ may fail if applied over al-
gebras whose terms satisfy the third clause of the normal form of Onoue et
al. [OHIT97]. �

A.2 Derivation of σ

In the restrictions for the input of the derivation algorithm for σ, we re-
quire that the recursive terms of the coalgebra must be variables. Here’s a
counterexample justifying this restriction.

Counterexample A.3 (Recursive terms must be variables)
Consider the following definitions.

mapT :: (a → b)→ Tree a → Tree b
mapT f Empty = Empty
mapT f (Node a l r) = Node (f a) (mapT f l) (mapT f r)
addDepth :: Tree Int → Tree Int
addDepth Empty = Empty
addDepth (Node a l r) = Node a (addDepth (mapT (+1) l))

(addDepth (mapT (+1) r))

Function addDepth takes a value of type Tree Int , and sums to each tree
node its depth. We write the above definitions as hylomorphisms.

mapT f = LEmptyO(λ(i , l , r)→ Node (f i) l r)MF

where F = 1 + Int × I × I

A.2 Derivation of σ 123

addDepth = bd(ψ)ecG
where G = 1 + Int × I × I

ψ :: Tree Int → G (Tree Int)
ψ t = case t of

Empty → (1, ())
Node (a, l , r)→ (2, (a,mapT (+1) l ,mapT (+1) r))

Suppose we want to fuse addDepth ◦mapT f . Given that addDepth is not
a fold, and can not be restructured to one, we need to derive σ from ψ.
Applying the sigma derivation algorithm for σ yields the following ill-typed
term:

σ :: (F b → b)→ G b → b
σ(β) = case β t of

(1, ())→ (1, ())
(2, (a, l , r))→ (2, (a,mapT (+1) l ,mapT (+1) r))

This term is ill-typed because according to functor G , variable l should have
the polymorphic type b, but mapT (+1) is applied to l , and mapT (+1)
expects an argument of type Tree Int .

Summarizing, the derivation algorithm for σ can fail if recursive terms
are not required to be variables. �

124 Counterexamples

Appendix B

HFusion internals

In this chapter we present a brief description of the representation we use for
hylomorphisms as well as some practical considerations about our algorithms.

To improve readability we use −→vs to denote a tuple or list of variables,
the same notation being used for terms and patterns as well.

The functions processed by the tool are kept internally in a form which
combines generalized paramorphisms with mutual hylomorphisms. A mutual
generalized paramorphisms with m components

{|(φ1, . . . , φm), (ψ1, . . . , ψm)|}〈F1,...,Fm 〉

is represented as a list of tuples

type Hylo a ca = [(Algebra a,Functor ,Coalgebra ca)]
[(φ1,F1, ψ1), . . . , (φm ,Fm , ψm)] :: Hylo a ca

The type parameters a and ca allow to distinguish the different kinds of
algebras and coalgebras that the mutual generalized paramorphism can have
(i.e. inF , τ(φ), outF , σ(ψ)).

When first derived, a coalgebra ψi is in the form

λ−→vs → case −→ts0 of
−→ps1 → (1, (t11, . . . , t1l1))
. . .
−→psn → (n, (tn1, . . . , t1ln))

which we represent as:

data Boundvar = Bvar Variable
| Bvtuple [Boundvar]

type Coalgebra ca = ([Boundvar], [Term], ca)
type Psi = [([Pattern],CoalgebraTuple)]
type CoalgebraTuple = [(Variable,Term)]
ψi :: Coalgebra Psi

125

126 HFusion internals

ψi = (−→vs ,−→ts0, [(−→ps1, t1), . . . , (−→psn , tn)])
where ti = [(ui1, ti1), . . . , (uil1 , til1)]

The variables uij are not used by the coalgebra, but are used as identifiers
for the positions of the output tuples. By using those variables the functor
will tell if the positions are recursive or not.

Functors are represented with the following types

type Functor = [(Variable, Int ,CopyTree)]
type CopyTree = Rec Variable | NonRec Variable | CopyTuple [CopyTree]

For each position in each output tuple of a coalgebra the functor tells two
things:

• First, it tells if the position should be copied (for a paramorphism).
For instance, (u, 0,CopyTuple [NonRec u,Rec u]) tells that position u
should be copied as in λu → (u, u).

• Second, it tells over which copies recursive calls should be applied. In a
case like (u, 0,CopyTuple [NonRec u,Rec u]), the recursive call should
be applied over the second copy, marked by constructor Rec. The 0
value in the triple indicates which recursive call should be made in the
case of mutual recursion.

Natural transformations are represented through the following types

type Etai = [EtaOp]
data EtaOp = EOid

| EOgeneral [Boundvar] [Term]
| EOsust [Variable] [Term] [Boundvar]
| EOlet [Term] [Pattern] [Variable] [Term]

Each constructor in the type EtaOp builds a different kind of natural trans-
formation. These are the interpretations:

• EOid represents the identity.

• EOgeneral −→vs
−→
ts represents the lambda abstraction λ−→vs → −→ts .

• EOsust [v ′1, ..., v
′
m] [t1, ..., tm] −→vs represents the transformation λ−→vs →

−→vs [(t1, ..., tm) / (v ′1, ..., v
′
m)], where [/] denotes substitution.

• EOlet
−→
t0 −→ps −→vs

−→
ts represents the transformation

λ−→vs → case −→t0 of −→ps → −→ts

127

A value [e1, . . . , en]::Etai represents a composition of natural transformations
e1 ◦ · · · ◦ en .

The representation for algebras:

(λ−→vs1 → t1)O · · ·O(λ−→vsm → tm)

is of the form:

type Acomponent a = ([Boundvar],TermWrapper a)
type Algebra a = [Acomponent a]
data TermWrapper a = TWcase Term [Pattern] [TermWrapper]

| TWeta (TermWrapper a) Etai
| TWsimple a
| TWacomp (Acomponent a)
| TWbottom

[(−→vs1, t
′
1), . . . , (−→vsm , t

′
m)] :: Algebra a

where t ′i is a value of type TermWrapper a representing term ti . The type
parameter a serves to distinguish algebras of the form inF , τ(φ) and generic.
For the generic case, the type parameter a is instantiated as the type Term,
which represents terms in our core language.

The type TermWrapper a describes a term where certain subterms have
been tagged as belonging to natural transformations. We translate values
of type TermWrapper a into core language terms relative to a given tuple
of input variables. The notation �·� is used in this context to indicate
translation. Terms and meta expressions appear mixed in the definition
below.

�·� ::Acomponent a → Term
�(−→vs , t)�= λ−→vs →�t�−→vs (v1, . . . , vn)
�TWcase t0 [p1, . . . , pn] [t1, . . . , tn]�−→vs =

((λ(−→vs ,
−−−−→
bv(p1))→�t1�−→vs

−→vs)
+ · · ·+
(λ(−→vs ,

−−−−→
bv(pn))→�tn�−→vs

−→vs)
) ◦
(λ−→vs → case t0 of p1 → (1, (−→vs ,

−−−−→
bv(p1)))

...
pn → (n, (−→vs ,

−−−−→
bv(pn))))

�TWeta t η�−→vs = �t�−→vs ◦η
�TWsimple a�−→vs = λ−→vs →�a� -- to be specified later
�TWacomp acomp�−→vs = �acomp�
�TWbottom�−→vs = ⊥

The expression
−−−→
bv(pi) denotes a tuple with the variables bound by pattern

pi which may appear in term ti . We require that t0 does not contain any

128 HFusion internals

reference to recursive variables (i.e. results of recursive calls). Thus, we have
that the lambda abstraction containing the case is a natural transformation.

The main purpose of type TermWrapper a is to handle branching cases
in natural transformations. In every hylomorphism, there is one algebra
component (Acomponent a) for each coalgebra alternative. A value of type
TermWrapper a allows to branch off (via TWcase values) an alternative into
others.

Having presented these constructs, we will show next some sample func-
tions that can be expressed in terms of them. First, we will show function
map.

map f = Jφ, outF KF

where F = 1 + a × I
φ (1, ()) = []
φ (2, (x , xs)) = f x : xs

In our internal representation, this function can be expressed as

map :: Hylo Term Psi
map f = [([φ1, φ2], [(u1, 0,Rec u1)], ψ)]

where φ1 = ([],TWsimple [])
φ2 = ([x , u1], [TWeta (TWsimple (x : u1))

(EOsust [x] [f x] [x , u1])])
ψ = ([ls], [ls], [([[]], []), ([x : xs], [(u0, x), (u1, xs)])])

For the sake of readability, we are showing terms and meta-expressions mixed
within the same syntax.

Another example is the primitive recursive function dropWhile:

dropWhile p [] = []
dropWhile p (x : xs) = if p x then dropWhile p xs

else x : xs

which can be expressed as the following paramorphism

dropWhile p = 〈|φ|〉F
where F = 1 + a × I

φ (1, ()) = []
φ (2, (x , (xs, vs))) = if p x then vs

else x : xs

In our internal representation, it can be written as follows:

dropWhile :: Hylo Term Psi
dropWhile p = [([φ1, φ2],

[(u1, 0,CopyTuple [NonRec u1,Rec u1])], ψ)]
where φ1 = ([],TWsimple [])

φ2 = ([x , (xs, u1)],TWcase (p x)

B.1 Law application 129

[True,False]
[TWsimple u1,TWsimple (x : u1)])

ψ = ([ls], [ls], [([[]], []), ([x : xs], [(u0, x), (u1, xs)])])

Let us consider the zip function as an example of a definition which
recurses over multiple arguments.

zip :: ([a], [b])→ [(a, b)]
zip = JinF , ψKF

where F = 1 + (a× b)× I
ψ (a : as, b : bs) = (2, ((a, b), (as, bs)))
ψ (,) = (1, ())

In our internal representation it is expressed as:

zip :: Hylo Term Psi
zip = [([φ1, φ2], [(u1, 0,Rec u1)], ψ)]

where φ1 = ([z , u1],TWsimple [z : u1])
φ2 = ([],TWsimple [])
ψ = ([xss, yss], [xss, yss],

[([x : xs, y : ys], [(u0, (x , y)), (u1, (xs, ys))]), ([,], [])])

Now let us consider an example involving mutually recursive definitions.

(sumRose, sumForest) = Jφ1, φ2, outF KF

where F = 〈Int ×Π2,1 + Π1 ×Π2〉
φ1 (1, (a, fr)) = a + fr
φ2 (1, ()) = 0
φ2 (2, (r , fr)) = r + frsumRose :: Rose Int → Int

In the internal representation:

sumRose :: Hylo Term Psi
sumRose = [([([a, u1],TWsimple (a + u1))], [(u1, 1,Rec u1)], ψ1)

, ([([],TWsimple 0), ([u0, u1],TWsimple (u0 + u1))]
, [(u0, 0,Rec u0), (u1, 1,Rec u1)], ψ2)]

where ψ1 = ([t], [t], [([Branch a fr], [(u0, a), (u1, fr)])])
ψ2 = ([ls], [ls], [([[]], []), ([r : fr], [(u0, r), (u1, fr)])])

B.1 Law application

We start by showing the result of applying the fold-unfold law to the com-
position map f ◦map g :

130 HFusion internals

mm f g = LφMF

where F = 1 + a × I
φ (1, ()) = []
φ (2, (x , xs)) = f (g x) : mm f g xs

which in the internal representation is given by:

mm :: Hylo Term Psi
mm f g = [([φ1, φ2], [(u1, 0,Rec u1)], ψ)]

where φ1 = ([],TWacomp ([],TWsimple []))
φ2 = ([x , u1],TWeta (TWacomp

([x , u1],TWsimple (f x : u1))
(EOsust [x] [g x] [x , u1])))

ψ = ([ls], [ls], [([[]], []), ([x : xs], [(u0, x), (u1, xs)])])

In order to represent the result of applying the fold-hylo law, we need
other declarations, which allow to represent algebra transformers τ .

data Tau = Tauphi (TauTerm Term)
| Tautau (TauTerm Tau)

data TauTerm a = Taucons Constructor [TauTerm a]
([Boundvar],TermWrapper a)

| Tausimple Term
| Taupair Term (TauTerm a)
| Taucata (Term → Term) (TauTerm a)

We can represent algebras τ(φ) with values of type Algebra Tau, which will
allow us to express the result of the fold-hylo law. The following is the
translation of values of type TauTerm a into our core language:

• �Taucons c ts φi�=�φi��ts�
This term stands for an abstraction of the constructor c when the
transformer was derived. The term φi is the algebra component used
to substitute the constructor.

• �Tausimple t�= t

• �Taupair t τ�= (t ,�τ�)

• �Taucata f t�= f �t�
The function f constructs a Term application of some catamorphism
over the t argument. It is used while deriving τ to handle the case where
a term in the algebra does not contain references to recursive variables
but it is used in recursive positions of the abstracted constructors.

B.1 Law application 131

The following is the result of fusing map f ◦ dropWhile p.

dm f p = 〈|τ(φ1Oφ2)|〉F
where F = 1 + a × I

φ1 () = []
φ2 (x , xs) = f x : xs
τ(α1Oα2) (1, ()) = α1

τ(α1Oα2) (2, (x , (xs, vs))) = if p x then vs
else α2 (x , xs)

We can write this paramorphism in our internal representation as follows

dm f p :: Hylo Tau Psi
dm f p = [([φ1, φ2], [eid , eid],

[(u1, 0,CopyTuple [NonRec u1,Rec u1])], ψ)]
where eid = Eta [] []

φ1 = ([],TWsimple (Tauphi (Taucons "[]" [] ([],TWsimple [])
EOid)))

φ2 = ([x , (xs, u1)]
,TWcase (p x)

[True,False]
[TWsimple (Tauphi (Tausimple u1))
,TWsimple
(Tauphi (Taucons ":"

[Tausimple x ,Tausimple u1]
([x , u1],TWsimple (f x : u1))))])

ψ = ([ls], [ls], [([[]], []), ([x : xs], [(u0, x), (u1, xs)])])

Next, we present the data structures for representing coalgebras in the
form (ψ′1, . . . , ψ

′
m) = σ(ψ1, . . . , ψk) resulting from applying the hylo-unfold

law to compositions of the form {|φ, σ(inF)|}G ◦j bd((ψ1, . . . , ψn))ecF , where ◦j
is defined as follows:

(f1, . . . , fn) ◦j (g1, . . . , gn) = (h1, . . . , hn)
where hi (a1, . . . , am) = fi (a1, . . . , gi aj , . . . , am)

A coalgebra

ψ′i = λ−→vs → case −→t0 of
(−→p11, . . . , p1k)→ (1, (t11, . . . , t1l1))
. . .
(pn1, . . . , pnk)→ (n, (tn1, . . . , t1ln))

is represented as:

newtype Sigma =
Sigma ([[TupleTerm]], [[PatternS]]

132 HFusion internals

, [Maybe (Int
, [([Boundvar],TermWrapper Constructor)]
,WrappedCA, Int → Term → Term)

])
data PatternS = PcaseS Pattern

| PcaseSana Int Pattern
| PcaseR Int Constructor [PatternS]

data WrappedCA = WCApsi (Coalgebra Psi)
| WCAsigma (Coalgebra Sigma)

ψ′i :: Coalgebra Sigma
ψ′i = (−→vs ,−→t0 ,Sigma ([t1, . . . , tn], [[p′11, . . . , p

′
1k], . . . , [p′n1, . . . , p

′
nk]], lψ′i))

where ti = [(ui1, ti1), . . . , (uil1 , til1)]

The expression p ′ij denotes a value of type PatternS representing pattern
pij . The jth element in the list lψ′i is the coalgebra component of the mutual
unfold in the original composition which was fused over the jth recursive
argument of the ith component of σ(outF). Each coalgebra component in
lψ′i has attached the index identifying its position in the mutual unfold, the
corresponding algebra component of the mutual unfold, and a function f that
constructs a Term application of a given component of the mutual unfold to
a given Term.

The following is the translation of values of type PatternS to our core
language patterns. Each value of type PatternS is associated with a specific
recursive argument of a component of σ(outF).

• �PcaseS p�= p

• �PcaseSana i p�= bd(ψi)ecF ·p where ψi is the coalgebra component in
the mutual unfold in the original composition.

• �PcaseR i cj [p1, . . . , pn]�= ψi ·(j , (�p1�, . . . ,�pn�)) where ψi is
the same as above.

We show now the result of fusing zip ◦map f :

zm f = JinG , σ(ψ)KG

where G = 1 + (a × b)× I
σ(β) (β (2, (x , xs))) (y : ys) = (2, ((x , y), (xs, ys)))
σ(β) = (1, ())
ψ [] = (1, ())
ψ (x : xs) = (2, (f x , xs))

which in our internal representation looks like:

zm f :: Hylo Term Sigma
zm f = [([φ1, φ2], [(u1, 0,Rec u1)], ([l1, l2], [l1, l2],Sigma σ))]

134 HFusion internals

Figure B.1: HFusion stages

enough that this functor does not match the intermediate data type signa-
ture, because the fold or the unfold does not traverse all of the recursive
positions of the constructors. Deriving transformers τ and σ also requires a
similar knowledge.

It could happen that no law is applicable. This can happen if the hylomor-
phisms in the composition are the outcome of applying the fold-hylo or the
hylo-unfold cases (e.g. in the form LφMF ◦ Jτ(φ′), ψKG or Jφ, σ(ψ)KG ◦ bd(ψ′)ecF).
In such a case, the hylomorphisms are inlined and rederived. The inlining
performs certain simplifications of the hylomorphism structures that may
allow to apply again acid rain laws in some cases.

