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Abstract

This thesis presents a challenging telecommunication network design problem, in which the network
designer has to assure not only connectivity, but also some degree of performance guarantee and
survivability to the solution.
We introduce a topological and capacity design, with node-pair constraints of heterogeneous bounds.
These constraints take into account the throughput, the number of node-disjoint paths, and the max-
imum number of hops. Moreover, the capacity to place on each link is chosen from a pool of available
cable types, each with its maximum capacity and fixed cost, in other words the cost function is step-
wise with respect to capacity usage.

The solution space of the problem in study is composed by each one of the node-pair demands.
An in-depth combinatorial study was done, leading to the development of a new coding for genetic
algorithms. The last part of this study focuses on the testing of the proposed genetic algorithms as
a solver for the problem in study.

Keywords: topology, capacity, network design, node disjoint paths, hop limit, multi-path routing,
genetic algorithms



Resumen

En esta tesis presentamos un problema de diseño de redes de telecomunicación, en el cual se consid-
era junto a la conectividad, también cierta medida de garant́ıa de performance y tolerancia a falla.
El objetivo es diseñar topoloǵıa y capacitad, donde se requiere caminos de nodo disjuntos que no
excedan una cantidad máxima de saltos para llevar las demandas entre pares de nodos. Las restric-
ciones son de parámetros heterogéneos, y para cada arista se admite únicamente un conjunto de
cables a instalar. Estos últimos tienen capacitad máxima asociado y costo fijo de instalación, en
otras palabras, la función de costo respecto al uso de capacitad es una función de escalones.

Las soluciones de este problema son compuestas por caminos nodos disjuntos para cada una de
las demandas. Se realizó un estudio combinatorio sobre el espacio de solución y se diseñó una nueva
codificación en los algoritmos genéticos. La última parte de este trabajo se centra en la experi-
mentación del algoritmo genético propuesto para la resolución del problema de interés.

Palabras claves: topology, capacity, network design, node disjoint paths, hop limit, multi-path
routing, genetic algorithms
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El grupo de investigación operativa, donde se encuentra gran parte de mis profesores, colegas
y amigos. A través tanto de sus integrantes como de los eventos que ha organizado, he podido
entrar en contacto con otros investigadores en el mundo. Un especial agradecimiento a: Hector
Cancela, Graciela Ferreira, Antonio Mauttone, Alfredo Olivera, Franco Robledo, Carlos Testuri,
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Chapter 1

Introduction

Telecommunication is defined as the transmission of signals over distance for the purpose of com-
munication. In the history, some of the most remarkable and popular devices of telecommunication
include optical telegraphs like smoke signals in the ancient times, electrical telegraphs since 1700s,
telephone since 1870s, radiotelegraphy since 1890s, and Internet nowadays. Internet in particular
has its early form dating back to the 1970s as ARPANET, and in only a few decades, it evolved to
the “nervous system of commerce”.

Another of the most important invention of the last century is the electronic computer. From
its first prototypes to the modern personal computer and supercomputers, it took once again, only
a few decades. The fact is that nowadays computers and networks of computers have become
important and even essential in many different professions. There exist a huge and ever growing
number of examples in which traditional ways of communication like telephone, letters, multimedia
broadcast are being replaced by modern alternatives over a computer network. And many other
new possibilities have opened with it, like chat, teleconference, electronic auction, e-business, massive
multiplayer game, etc.

The extensive importance of computer networks in our society and its widespread growth brings
a number of problems in planning and administration, problems that optimisation can address. The
objective of this thesis is to address a WAN design problem including some of these real-life charac-
teristics (which augment the complexity and the difficulties of solving the problem). The approach
consists in designing a genetic algorithms (G.A.) based solution method and to study some of its
characteristics.

Among the existing global search techniques, we found evolutionary computation interesting, and
in particular we center the study on genetic algorithms, which have proved to yield good results in
many different NP -hard combinatorial problems. The drawback of the usage of heuristics or meta-
heuristics is that by definition they don’t guarantee the optimality of the final result. Although this
sounds terrible, in reality, there are many optimisation problems for which no exact solution method
is known other than the brute force approaches like exhaustive exploration, those approaches are
only practical for problems with small solution space. Furthermore, there are many other problems
for which, the search of a feasible solution is already a difficult sub-problem, without even consid-
ering optimisation over the entire solution space. Unfortunately, many problems with important
real life application fall in those categories, and for those problems in which we do not know any
efficient solution method, we can only sacrifice the optimality and trade it for solutions of good qual-
ity, as measured by empirical results or guaranteed with high probability for some theoretical results.

The rest of this thesis begins with Chapter 2 where we discuss some of the most usual goals in
WAN designing together with some well known problems and solutions. Then later on, in the same
chapter we define an ambitious problem that includes service quality and reliability. Afterwards in
Chapter 3 we introduce genetic algorithms as the chosen solver, together with GGEngine a genetic
algorithms library that we developed and which allows us to solve problems with a minimum effort
in implementation. In Chapter 4 the experiments and results are presented, and we conclude in
Chapter 5 with a summary and conclusions from the obtained results.
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Among the appendices we have Appendix A written as a standalone article, where we present in
detail the enumeration of node-disjoint paths with hop-limit, which is one of the principal components
in the coding for our genetic algorithms. Appendix B is a standalone technical report with an
overview and user manual of GGEngine v2.0 -the library we developed and used in this thesis-.
Then in Appendix C we present the format of the problem’s input file and in Appendix D details of
the basic cases in the test suite.
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Chapter 2

Wide Area Network design
problems

2.1 Introduction

Data communication or computer networks are naturally modelled as graphs, where routers and
hosts are represented by nodes, while cables interconnecting them are represented by edges (or arcs
for unidirectional communications).

Graph theory has its origins date back to 1736 when Leonhard Euler modelled the Königsberg
bridge problem with the Eulerian circuit. More than two hundred years later, in 1969, the first com-
puter network ARPANET gave birth to Internet, which has been growing rapidly. This interesting
area of application has been a significant boost in the growth of graph theory as an important area
in mathematics.

The size of a communication network brings problems to its design and management and Internet
has been growing to a planet wide size. A sign of its growth is the address shortage which appeared
in only three decades after the birth of Internet. To delay the problem, Internet Assigned Number
Authority (IANA) was forced to apply the current policies: Classless Inter-Domain Routing (CIDR),
and reclamation of prior allocated addresses[Tanenbaum 03]. According to a recent report [Hain 05],
the amount of free address in IPv4 can last a few years more (two to five depending on consumption),
and meanwhile IPv6 is being designed and deployed as its successor with a wider address space among
other improvements. Another clear sign is mentioned among others in a report of the AT&T Labs
[Coffman 01], which states that the monthly traffic on the backbone in U.S. grew from 1 terabytes
in 1990, to 20,000-30,000 terabytes in 2000.

Many of the problems in network design and management are transformed into classical combi-
natorial optimisation problems in graphs. Nowadays only a few of them can be solved in polynomial
time (belonging to class P ). But many others have not been solved in such an efficient way, for
example, those that belong to NP -complete, NP -hard or beyond are considered intractable for
medium or even small problem instances. The network design problem studied in this thesis belongs
to the NP -hard class, for this kind of problems instead of exact algorithms, many researchers pro-
pose heuristics which trade in the certainty of obtaining the optimal solution for a better response
time, and that’s also our approach. Before talking about our specific problem, we introduce some
related and simplified problem in the following sections, and show briefly how they can be treated.

2.1.1 Definitions, Notations and Conventions

We adopt a classical graph notation similar to the one employed in [Diestel 00, Weisstein 05].
By G(V,E) we denote an undirected graph which is a pair of sets V and E, such that V represents G(V,E)

a non empty set of vertices , and E represents the set of edges that are drawn between pairs of vertices. set V
set EWhen talking about digraph (directed graph) G(V,A) we use the term arcs to refer to ordered pair

set Aof nodes, and A is the set of arcs. In the context of communication network designing, vertices are
also called nodes or sites, while edges and arcs are being called full duplex links and unidirectional
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links respectively. Unless stated otherwise, we only work with graph without self loops and multiple
arcs, because in the context of communication network design, multiple arcs are usually represented
by a single arc with the aggregated properties; and loops (arc from a node to itself) are not a valid
design. The cardinal number of a set S is referred to by |S|. | |

A path is a sequence of nodes, as we use path to model the route followed by a stream of packets
in a network, so unless stated otherwise, path doesn’t contain cycles. A source-target (s-t) path is s-t path
one that begins with a given source node s and ends with a given target node t. Paths that don’t
share any intermediate nodes are called node-disjoint paths. Paths that don’t share any edges are
called edge-disjoint paths (in an undirected graph). A set of node-disjoint s−t paths with cardinality s-t K-path
K is referred by s-t K-path, or K-path in short . K-path

A non-empty graph is called connected if any two of its nodes are linked by a path. A graph
G(V,E) is called k-connected for k ∈ N , if |V | > k and G(V,E)/X is connected for every set X ∈ V k-connected
with |X| < k, in other words, there are at least k node-disjoint paths between each pair of nodes.

2.1.2 About Complexity

The following is a brief summary of some important classes of problems in the theory of complexity.
A decision problem Π is one whose solution is either positive (yes) or negative (no), formally

it consists of a set of problem instances IΠ, and a subset of positive instances YΠ ⊆ IΠ. The
NP class stands for those decision problems that can be solved in polynomial time by a non- NP
deterministic Turing machine, additionally any positive instance can be verified in polynomial time
in a deterministic Turing machine. The P class stands for those decision problems that can be solved P
in polynomial time by a deterministic machine. And it is well known that P ⊆ NP .

The NP -completeness was designed to be applied only to decision problems [Garey 79], and
when the problem of interest is not a decision but an optimisation problem, there are two common
guidelines. The first one is to recast it into a decision problem, and study the related decision
problem. There are many different ways of recasting, and in those cases where the optimisation
problem can be used to solve the decision problem, a relation in their complexity can be estab-
lished. A second alternative is to extend the definition of NP over optimisation problems like in
[Crescenzi 99, Crescenzi 00]. An optimisation problem consists of a set of problem instances IΠ, a
set of feasible solutions solΠ, an objective function mΠ and a goal which can be either max or min.
Then the NPO class is all those optimisation problems such that: NPO� Problem instances belonging to the set IΠ are recognisable in polynomial time.� For any instance x ∈ IΠ, solΠ(x) denotes the set of feasible solutions of x, those solutions are

short1 and for every short solution2 y, it is decidable in polynomial time whether y ∈ solΠ(x).� Given an instance x ∈ IΠ and a feasible solution y ∈ solΠ(x), mΠ(x, y) denotes the value of
that solution, and it is computable in polynomial time.

Informally a problem is in NPO if its solutions can be checked and evaluated in polynomial time.
To solve an optimisation problem is to find (depending on the goal) a max or min feasible solution
according to the measure function. An optimisation problem belongs to the PO class when it is PO
solvable in polynomial time.

There are also some interesting classes of problems defined for counting problems. For instance,
#P is the class of functions f such that there exists a non-deterministic polynomial time Turing
machine M with the property that f(x) is the number of accepting computation paths of M on
input x (extracted from [Allender 99]). In other words, those are functions that their total number
of accepting paths can be counted with a non-deterministic Turing machine in polynomial time.
Clearly, any function in #P has its corresponding decision problem in NP .

Let C be a complexity class, a problem Π belongs to the C-hard class if any problem in C is -hard
reducible to it, in other words, Π is at least as hard as any problem in C. If a problem is in both
C-hard and C classes, then it is said to be in the C-complete class (the hardest among C, but not -complete
beyond). Refer to [Garey 79] for an introduction to the theory of complexity.

1A polynomial p exists such that for any y ∈ solΠ(x), |y| ≤ p(|x|)
2A “short solution” is any y, such that |y| ≤ p(|x|).
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2.1.3 Network Design Problems

In the remaining of this chapter, we present a few computer and communication network design or
redesign problems, each of them are classical example of specific design goals. Those are questions
like “how to do something in the best way”, or “how to do it with the lowest cost”, given certain
conditions or constraints. In Section 2.2 we present some problems in the category of Topological
Design; in Section 2.3 we present some others about Capacity Planning; so finally in Section 2.4 the
particular problem studied in this thesis is presented.

2.2 Topological Design

2.2.1 Hierarchy: Different kinds of data communication networks

A topology design specifies which hosts are connected to which other hosts. So the question here
is: ”between which hosts shall we install a cable to fulfil the given requirement?” While a capacity
design specifies the type or kind of cables to use between each pair of nodes in a topology. There
are many kinds of networks, and associated requirements, one possible categorisation is in WAN/-
MAN/LAN.

Local Area Network3 (LAN) usually is located in a single building, because they are based on
hardware with great capacity but supports only a limited distance, see Table 5. The most popular
technology used in LAN is Ethernet (10/100BaseT), FDDI sometimes is used as a LAN backbone
or to interconnect high traffic demand hosts. The goal in a LAN is the interconnection between
a number of hosts (varies from two to thousands), which may also include an entrance point to
Internet, some typical topologies are tree, ring, star, or hybrids of them; path diversity is not as
critical as the MAN or WAN counterparts.

Metropolitan Area Network4 (MAN) is a network that covers an area as large as a city, like an
Internet Service Provider (ISP), or a private enterprise with a citywide network. The goal in this
kind of network is to interconnect a number of LAN represented by their entrance points, and a few
out-going routers which communicates to other networks like neighbour ISP, or even the Internet.
The installation of cables here is more expensive, and path diversity is usually a requirement, be-
cause the number of involved host is much larger than the LAN counterpart. A single node in this
case may represent thousands of LAN hosts. Typical topologies in this case are ring or mesh as the
backbone (carrying aggregated traffic), and trees connecting it to groups of access points.

Wide Area Network5 (WAN) is a country or continent wide network, as an example: Network
Service Provider (NSP), banking networks, airline reservation network, etc. The goal is to intercon-
nect different networks across a countrywide area. In this case, the installation cost and bandwidth
of cables are extremely high (like burying long distance underground or submarine cables, satellite
communications, etc.). Topologies for WAN require higher path diversity, because its nodes are
transit nodes or collapsed MAN (representing a big number of customers). In this case, reliability
is not only desirable, but necessary.

Sometimes when designing MAN or LAN topology, the whole internet backbone is collapsed into a
single special node, so the designer can focus on the access network. Other times when designing
WAN topology, different MAN are collapsed into different nodes, so the designer can focus on the
WAN level requirement. But why the three levels are treated separately? It’s because nodes of a
certain level can only connect to nodes of other levels in a limited way, and network design problems
can be simplified by dividing the network into different levels.

3Also called local access network, sharing the same acronym.
4Also called inter-office/switching centre networks, interconnecting switching centres/local exchanges/central of-

fices, see [Balakrishnan 91].
5Also called long-distance/toll/inter-city network that connects city pairs through gateway/point-of-presence nodes,

see [Balakrishnan 91].
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Type of Link bandwidth (bit per second) Maximum length (meter)
10Base2 (Thin Coaxial) 10 000 000 < 18
10Base5 (Thick Coaxial) 10 000 000 < 500
10BaseT 10 000 000 < 100
100BaseT 100 000 000 < 100
FDDI 100 000 000 < 2000
Optic Fibre 1 000 000 000 < 1000

Table 2.1: Some popular LAN cabling

2.2.2 To achieve Connectivity

An interconnected communication network can be modelled as a connected graph. The problem of
connected network design has many applications in telecommunication and transportation network.
The following two problems have their applications in real life LAN designs.

MST: Minimum Spanning-Tree problem.

Given:� an undirected graph, denoted as G(V,E)� a non-negative real function representing the cost of each edge denoted as C : E → R+

Decision variables:� edges from E to integrate a sub-graph

Objective:� find the lowest cost sub-graph in G

Constraint:� each node in V is connected

MST

If the cost function is positive, then the result is always a tree. There exist a number of poly-
nomial time algorithms for MST like those of Prim, Kruskal, Boruôvka, or Chazelle. To the best
of our knowledge, the best algorithm for this problem nowadays is the one proposed by Bernard
Chazelle[Chazelle 00], it’s a deterministic polynomial time algorithm with O(|E|α(|E|, |V |)) ≈ O(|E|)
where α is the classical inverse6 of Ackermann’s function, which grows with a nearly constant order.
Moreover it can also solve MST with arbitrary edge costs [Chazelle 00]. An application of MST
is to determine the lowest cost cabling for an access network, in which all hosts are already fixed:
workstations in an office, clients of an ISP in a city, etc.

6It’s not really the strict inverse of Ackermann’s function, but a function that grows so slowly as Ackermann’s
function grows quickly.
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SPG: Steiner tree Problem in Graph

Given:� an undirected graph G(V,E)� a non-negative real function C(e) representing the cost of each edge C : E → R+� a subset of nodes called terminal nodes, denoted as VT such that VT ⊂ V

Decision variables:� nodes from V and edges from E to integrate a sub-graph

Objective:� find the lowest cost sub-graph in G

Constraint:� each node in VT is connected.

SPG

For SPG, no polynomial algorithm is known nowadays. The fact that SPG is NPO-complete
([Garey 79, Karp 72] implies that the decision version is NP -complete7) makes it impossible to be
solved efficiently in a modern computer, unless the classes P is equal to NP (a still open one million
dollar question [Clay Math. Inst. 05]).

Comparing MST and SPG, we can see that the only difference is in the set of nodes to be con-
nected, keeping some of them as Steiner nodes (optional nodes) can transform an easy problem into
a difficult one. The SPG received much attention since its formulation, and there are polynomial
time exact algorithm for some special variants like: Hwang’s algorithm for full Steiner trees in an
Euclidean plane (a linear order time algorithm) [Hwang 86]; There are also some approximation

algorithm like the one from [Robins 00] which achieved a performance ratio of 1 + ln(3)
2 ≈ 1.55.

But for large problems heuristics are used, examples are GRASP [Martins 98], Genetic Algorithms
[Esbensen 95], Tabu Search [Ribeiro 00], etc.

But what happened to the solution space at the moment when we added those Steiner nodes?
An optimal solution is just a minimum spanning tree in a set of optimal nodes S, as the construction
of a MST is not hard, the difficulty of this problem is in the selection of an optimal set of Steiner
nodes. Note that being a solution, it must contain all the terminal nodes VT , let’s analyse the
required comparisons when an exhaustive scheme is used:

Let n = |V |− |VT |, if the exact number of Steiner nodes in the optimal solution is i and we know
it, than we only have to check

(

n
i

)

possible combinations of Steiner nodes. But as i is unknown, we

have to compare Sn =
∑i=n

i=0

(

n
i

)

solutions to get an optimal one.
Adding one extra Steiner node to a given SPG changes its solution space8 from Sn to Sn+1 =

2Sn = 2n+1. The day when someone finds out how to identify non-optimal Steiner nodes efficiently,
the SPG can be solved with the same efficiency by discarding nodes one by one, as each removal
reduces the solution space to a half. On the other hand, notice that in SPG the solution space grows
exponentially with the parameter n, this kind of huge solution space is very common in combinatorial
optimisation problems.

Both problems are particular cases of our design problem, this is discussed in detail in Section
2.4.5.

7For SPG, both the optimisation and search problem can be reduced to the decision problem with a polynomial
algorithm.

8In Section A.3.1, we present a structure called binomial-tree, with one that has n nodes on the first level, Sn is
just the total number of nodes. Comparing it with a n + 1 one, the stated equation can be obtained easily.
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2.2.3 To achieve Reliability/Survivability

There are many different hardware and software components involved in a computer network, and
many of them are susceptible to failures. A cable between two computers can be affected by an
electromagnetic interference; any program may contain bugs, etc. It’s impossible to construct a
flawless network with our current technology, but we still can coexist and tolerate a certain level
of errors. Like the way how each entity in the different layers of the OSI model has to implement
redundancy and retransmission, a network designer must add redundancy to his/her design so an
eventual failure in one or multiple components does not bring unacceptable side effects. This re-
quirement is called survivability9, the ability to maintain a certain degree10 of network service in
the event of a component failure.

In the scenery of topological design, redundancy is implemented as additional links added to offer
route diversity. But each such link increases the total cost, so we can not add them indiscriminately.
Notice that graphs with path diversity factor equals to two or greater have ring or mesh topology,
while the minimally connected graphs have tree topology. Adding links to a tree may not lead to
the global optima in the former problem, but is a valid heuristic.

Problems in this category may contain a node-disjoint or a link disjoint path requirement. The
former is a stronger condition, because its solutions are always solutions of its counterpart, but not
inversely. As a result, optimal solutions in node-disjoint formulations have higher cost than the
link disjoint counterpart. If there are K link disjoint routes between two nodes, then such a design
can survive (K − 1) link failures; if there are K node-disjoint routes between two nodes (notation:
K-path), then such design can survive not only (K − 1) link failures, but also (K − 1) node failures
(without counting the source and target nodes).

There are many classical optimisation problems in this theme, refer to [Grötschel 95] for a com-
plete survey of researches previous to 1995. Another particular case of our network design problem
is the following:

GSP-NC: Generalised Steiner Problem with Node Connectivity constraints

Given:� an undirected graph G(V,E)� a non-negative real function C(e) representing the cost of each edge C : E → R+� a subset of nodes called terminal nodes, denoted as VT such that VT ⊂ V� for each pair of nodes in VT , a natural number specifying the number of node-disjoint
paths required between them

Decision variables:� nodes from V and edges from E to integrate a sub-graph

Objective:� find the lowest cost sub-graph in G

Constraint:� between each pair of nodes in VT the required number of node-disjoint paths is present

GSP-NC

Note that the resulting sub-graph need not be connected. GSP-NC is a more general version

9Something is reliable if it works most of the time; something is survivable if it works even when some component
is broken.

10If a node is down, then traffic directed to it may unavoidably interrupted, but disconnection in its neighbours can
be avoided with redundancy.

9



of SPG, as the latter is an instance in which all node-pair connectivity requirement is set to one.
This problem is known to be NPO-hard, as it generalises SPG, which is a NPO-complete problem.
Belonging to the NPO-complete class means that at least one instance of it, is very hard, but we
can see that there also exist some easy instances. If in VT there are only two terminal nodes, it
is the problem of finding the set of shortest node-disjoint paths in a graph, which is solvable in
polynomial time with algorithms by [Bhandari 99] (an explanation of those algorithms can also be
found at Appendix C of [Pióro 04]).

Another similar problem is the GSP-EC, in which the node-disjoint requirement is replaced by
an edge-disjoint requirement. Both GSP problems were introduced by Krarup, and are known as
NPO-hard [Robledo 00, Westbrook 95]. In [Agrawal 95] an approximation algorithm for solving
the GSP-EC problem within 2⌈log2(r + 1)⌉ of the optimal cost is presented, where r is the biggest
connectivity requirement. In [Nesmachnow 04] a parallel genetic algorithm is proposed for GSP-EC
together with a survey of the problem. One of the application of this problem is in the design of
MAN/WAN topology with fixed access nodes and optional transit nodes.

2.2.4 Adding Performance Constraints into a Topological Design

Another aim of telecommunication network designing is to achieve good quality of service, which
means not only high throughput, but also low delay. The following is a brief summary, then we
discuss it further in Section 2.3.5, as this goal is strongly related to capacity planning. The theme
of this subsection is network topological design problem with performance requirements.

The more capacity assigned to the links (and nodes) of a particular route, the lower will be the
response time we get for packets travelling in it. Adding capacity improves the performance, but it
also increases the cost of the design, an alternative is to shorten the length of routes. Long routes
(paths) in a topology not only worsen the performance, but also increase the probability of failure
as they involve more components. In a topological design, hop limit in paths or diameter length in
graphs help to reduce delay. The traditional approach for network design divides the problem into
stages, where topological design is only one of them. When the performance is an objective, some
performance constraint must be added into the topological design stage. If the routes between nodes
are unknown, the usual option is diameter limit. But if those routes are also a decision variable,
then hop-limit is a more suitable choice, because it guarantees the bound in path length while graph
diameter limit doesn’t11.

11For shortest path routing, graph diameter does bound the path length, but many other routing algorithms like
in load based routing, longer paths may exist.
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WMP: Weighted Multi-demand Problem

Given:� an undirected graph G(V,E)� a non-negative function C(e) representing the cost of each edge e ∈ E, C : E → R+� a set of demands D, which contains (si, ti,Ki,Hi) as elements. Where si, ti ∈ V are
the i-th source and target nodes. Ki,Hi ≤ |V | are two natural numbers representing
the node-disjoint diversification factor and the hop limit for this pair of nodes.

Decision variables:� nodes from V and edges from E to integrate a sub-graph

Objective:� find the lowest cost sub-graph in G

Constraint:� between each pair of s − t nodes in D the required number of node-disjoint paths is
present and the hop-limit constraints are respected.

WMP

The WMP is shown to be in NPO-complete in [Bley 97] (originally in [Itai 82]), even in the
simplified version with single s − t pair (WSP) the problem remains in NPO-complete. Together WSP
with this problem arises the question: “is there any feasible solution for a given problem instance?”,
such a feasibility problem belongs to the NP -complete class for both WSP and WMP. It means that
it is hard even to know if the set of feasible solutions is empty or not for some instance of WMP.
However, if all hop-limits are less than or equal to four, the feasibility problem can be solved in
polynomial time, by dividing it into different single s− t feasibility problems.

The WSP can be solved in polynomial time for the following special cases:� K = 1. Modified Dijkstra with hop-limit [Bley 97, Pióro 04].� G is a complete graph, C(e) verifies the triangle inequality. It implies H ≤ 2 which is trivial.� C(e) verifies the triangle inequality and H ≤ 4 [Bley 97, Itai 82].� H = |V | − 1. The case without hop-limit can be solved with an algorithm for “shortest set
of disjoint paths” explained in [Pióro 04], in a few words we can describe it as an iterative
algorithm that in each step transforms the graph and applies a modified variant of Dijkstra’s
algorithm which admits negative weights.

In [Bley 97] an exact algorithm and two heuristics are proposed for WMP. The exact algorithm
begins with all the edges of the given graph, and then drops links in a branch and bound fashion.
The first heuristic begins with an initial feasible solution (given by an augmentation heuristic), and
then drops redundant links. And the last constructive heuristic is composed by three phases, solving
the connectivity, feasibility, and then finally dropping redundant links.

In [Kumar 93]12 a Genetic Algorithm based network design problem with diameter constraint
appeared. Later in [Huang 97] a 3-connected graph design with diameter limit, for complete graph
was solved also with a Genetic Algorithms based approach.

In [Cahn 98] a survey of more network design problems and associated solution techniques are
presented, including problems with limit in the maximum or average number of hop combined with
routing algorithms. The heuristic techniques they proposed for these two problems are culling (not
suitable when the probability of generating a feasible solution is low) and augmentation.

12Some details are missing, like the correction mechanism in case when a non-feasible individual appears.
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2.3 Capacity Planning

2.3.1 About Routing

There is a close relationship between capacity planning and the routing protocol in use, a network
designed to work optimally with one routing algorithm may not work as well for others. The
difference in using one routing algorithm or another is essentially in the selection of path to satisfy a
particular pair wise demand, which plays a very important role in the capacity planning stage. For
this reason network designers must take into account how the underlying routing protocol works in
order to plan the capacity consistently.

In general, a routing algorithm takes a topology as input, and decides which route to use for
interconnecting each pair of sites. In operation, a protocol is designed so that each router knows to
which other it should forward a packet, for it to arrive to the destination. Most routing protocols are
adaptive, upon a change in the topology they update the routing table in each node to work around
it, something that a static protocol does not provide. Some of them even consider the workload in
the routing, to avoid overwhelming an already congested route. It is not necessary to use the same
routing protocol in the whole network, for example, Internet can be viewed as a interconnection
of many Autonomous Systems and those AS are managed by different entities using their chosen AS
Interior Gateway Protocol (like OSPF, RIP, IS-IS). Border Gateway Protocol version 4 is used to IGP

BGPestablishes the interconnection between AS nowadays [Rekhter 06, Meyer 06].
The behaviour of some routing algorithm can be predicted easily, like the case of shortest path

algorithm. For more complicated routing, a network simulator like NS2 can be used to evaluate and
predict the behaviour of a draft network, even during the capacity design stage.

2.3.2 Multi-Path Routing in the future

For a network to survive component failures, it is necessary to add backup components to increase
its reliability, but backup components also increase the total cost of a network, whereas single path
routing networks can only use one of the multiple paths at a time. Moreover, the performance of
one fully loaded path is much worse than two half-loaded paths because of the effect of congestion.
Therefore, in network designs with multiple paths, it is more effective to use them all at once with
the help of multi-path routing. Nowadays Internet uses only single path routing protocols, because
key concepts of multi-path routing are still in development and still not standardised. An example
is that TCP consider a connection is congested when packets arrive out of order, so sending packets
of the same TCP connection through different paths may lead to a false alarm. Most protocols
in Internet were designed for single path routing, therefore the implementation of the multi-path
alternative has to work around many difficulties. A work around for the previous example is to
send packets of a same TCP connection through a same path, and add a mechanism to assign paths
to TCP connections. Even when multi-path routing is not yet popular, it can be implemented in
an AS nowadays, in [Lee 04] is a survey of some alternatives applicable to MPLS through traffic
engineering(for information about MPLS-TE check [Awduche 99]). Because multi-path routing is a MPLS-TE
more efficient and consistent way of using survivable network designs, it would not be a surprise if
it replaces single path routing in the future.

2.3.3 Throughput as an input of the problem

Throughput is the amount of data transferred in the network from a specific node to another, divided throughput
by the time taken to transfer it, usually expressed in bits or Bytes per second (bps or Bps). For
network designing, it is an aggregation of data transferable form one node to another, divided by
time unit.

When planning capacity for a network, the required pair wise throughput is an important input.
However, how can a network engineer know the minimum throughput required for a pair of nodes?
If there is already a physical network, this can be done by adding traffic monitors in routers to
give an insight into the current resource usage, and then, make projections to predict the growth.
Very often, the resource usage of a network is not constant, it usually present a certain pattern in
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a day-of-week or time-of-day basis with peaks and troughs. Depending on the deviation, sometimes
the average is also a good representative. However, to maintain a good throughput even during the
peak utilisation, the peak value should be used as the requirement. But when designing a network
in which the peak hour is different for different pairs (for example, when the physical distance covers
different time zone or when users of very different behaviours are present), consider the peak usage
of all of them simultaneously may lead to an underused and expensive network, therefore further
optimisation is possible there. For capacity planning problems, the throughput is considered an
input data given by some expert, so the problem’s focus is to define what capacities to place in
which links so the requirements are satisfied.

2.3.4 Capacity Planning Problem

Capacity is the maximum possible data transfer rate of a communication channel under ideal con- capacity
ditions. It can be associated with a link or a node, but in all the problems presented in this thesis
it is associated with links exclusively13.
Remember the minimum spanning tree problem (MST), which is solvable in polynomial time. There
is another very similar problem that includes capacity design, namely capacitated minimum spanning
tree problem (CMST).

CMST: Capacitated Minimum Spanning-tree Problem.

Given:� an undirected graph, denoted as G(V,E)� a central server node s ∈ V� a cost or length associated to each edge L : E → R+� a maximum capacity associated to each edge C : E → Z+� a demand di ≥ 0 associated to each node in V/{s}, to be sent to the server node

Decision variables:� edges from E to integrate a tree

Objective:� find a tree in G with the shortest total length

Constraint:� each node in V is connected� the capacity in each edge can carry the aggregated traffic in all paths passing through
it

CMST

CMST is shown to be NPO-complete in [Papadimitriou 78]14, and integer demand in nodes can
be transformed to an equivalent problem with unit demand (and zero cost between some links). The
associated decision problem remains NP -complete even when the capacity is uniform in general,
see ND5 from Section A.2.1 in [Garey 79]. A classic heuristic for this problem is Esau-Williams’
algorithm [Cahn 98] from 1966, it is a O(|V |2log(|V |)) algorithm. Another relevant work is [Jothi 04]
whose authors present a summary of previous approaches to this problem, together with a modifi-
cation to Esau-Williams’ algorithm with a claim of 1.6% average improvement in solution quality

13Because for a directed problem, node related capacity can be dealt with by splitting each node into incoming
and outgoing nodes, and place a capacitated arc (directed link) between them. Moreover undirected problem can be
transformed into directed problem with additional constraints to re-establish the undirected nature.

14More precisely, the decision problem is shown to be NP -complete, and as feasibility can be verified in polynomial
time, the optimization is NPO-complete.
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(and up to 17% in some experiments) without increasing the worst case run-time.

Let’s consider a more general version of CMST, in which the capacity can be chosen among a
range of possibilities, and the cost varies along with the capacity (say cost is positive and linear
with capacity). We can call this problem CPMST, which stands for Capacity Planning in Minimum CPMST
Spanning Tree. It is more interesting because it features the dimensioning of capacity in edges.

But what happens when we added capacity planning into the problem? Well, the cost in each
edge is no longer fixed, and it now depends on the structure of the tree. This fact invalidates the
usage of all the mentioned algorithms for MST to solve this problem. Notice that, if the topology
(a tree) is fixed, it only requires O(|V |) operations15 to determine the minimum capacity. We can
say that the difficulty of this capacity dimensioning problem is not so related to the capacity, but
to the variable cost.

For network design in general, [Gerla 77] presents a survey of capacity design techniques of the
70’s, those are traditional approaches. The scheme is to divide the network design problem into
different stages, namely topological design, capacity design, and routing. Moreover, the capacity
and routing problem can be merged into the so called capacity and flow assignment problem, in which
both the capacity and the routes to use are design variables. The capacity planning stage takes a fixed
topology as input and includes some constraints, for example performance constraints. To model
performance, the abovementioned work managed to apply queuing theory by introducing a number
of assumptions to simplify the problem, like specific packet arrival distribution, the independence
assumption, etc. Additional insight can be found in queuing network literatures or in the article
[Kleinrock 02].

2.3.5 Performance in Capacity Planning

We will concentrate on one important measure of the performance of a computer network, namely
the delay for information to travel from one node to another. Node to node delay in a network is
affected by:� propagation delay (property of cable or type of link to use);� number of hops (depends on the route to be used);� utilization or congestion in components (related strongly to the capacity of the components

involved);� retransmissions due to packet losses in components (reliability of cable or type of link).

We can include performance guarantees into a network design by choosing low propagation and
high reliability links, short paths in routing, or by adjusting the capacity of different components
to reduce congestion. As a result, we can say that performance is closely related to the selection of
types of links to use, namely capacity planning.

Before optimising the design with performance constraints, we have to model performance some-
how. One alternative is the usage of queuing theory [Gerla 77, Kleinrock 02, Robertazzi 00] which
requires some assumptions to simplify the analysis and make the problem treatable. Another alter-
native is to incorporate a network simulator to simulate traffic and evaluate performance, moreover,
simulators can overcome some of those simplifications for example by using empirical data. During
the initial steps of this study, we evaluated the usage of the network simulator NS2 as an oracle
or black box for performance evaluation, because it was one of the possible directions of the thesis.
But later on, we developed a coding of K-paths, in which the hop-limit constraint can be included.
As a result, we decided to use hop-limit as a performance guarantee in our problem.

There are a number of ways to limit the number of hops in the routes to use, for example, by
limiting the diameter of the graph (a topology related constraint, suitable for shortest path routing),

15First mark and list all the leaves with |V | operations, then for each leaf set the capacity of the edge leading to
it (according to the demand) and increase the demand of the father node, also mark and add the father node to the
end of the leaves list (if it isn’t already marked). Each node will enter and be processed in the list only once, totalling
O(|V |) operations.
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Figure 2.1: Picture showing how the different types of delay contribute to the total delay in a packet
switching network.

by limiting the average hop length of the paths (no guarantee for the worst case), or by using explicit
limits for each path. Both of the two last cases depend on the routing algorithm in use, and path-wise
limit is a more general constraint.

2.4 Our Problem: TC-DHK

2.4.1 Introduction

Previously we introduced some important goals and problems in network communication design. Our
problem of interest arises in a communication network design with pair wise connectivity, throughput,
reliability and performance requirements. To settle down these requirements, we consider as a
reliability requirement the existence of node-pair node-disjoint paths, which is a way to survive
link and node failures. To plan the capacity for a network, we have to understand the available
underlying routing protocol, or chose the most suitable one to use. Adaptive routing protocols are
popular because in the event of a component failure, they re-establish the routes trying to maintain
the connectivity. Moreover, if the designer knows exactly which paths are optimal between each
pair of sites, then a more suitable alternative is a fixed multi-path routing protocol, as it uses all the
optimal routes, operating in a more efficient way. Therefore, we chose multi-path routing protocol.
About performance, a simple way to exclude routes with high response time is by using hop-limit.
Furthermore, this restriction also bounds the number of components in a path, together with its
probability of failure. We consider discrete capacity and cost for possible cables to use in a link,
while this feature is more difficult to deal with than continuous capacity and cost, it is a more
realistic assumption.
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TC-DHK: Topology and Capacity design with throughput demand, hop-limit
and path diversity constraints

Given:� a directed graph, denoted as G(V,A)� a set of demands D, which contains (si, ti,Ki,Hi, fi). Where si, ti ∈ V are the i-th
source and target nodes. Ki,Hi < |V | are two natural numbers representing the node-
disjoint diversification factor and the hop limit for this pair of nodes. And a positive
real number fi as the required throughput for each of the Ki paths.� an array of available types of cables T , which contains for each type t the pair (mt, ξt),
where mt is the capacity of the t-th type and ξt is its cost.� a binary matrix U|A|×|T | with ones in the position (a, t) if the t-th type is available for
the a-th arca; and zeros otherwise.

Decision variables:� nodes from V and arcs from A to integrate a sub-graph Gsol� a type of cable to use for each selected arc in Gsol� paths to use for each node-pair in D

Objective:� find the lowest cost sub-graph in G

Constraints:� each pair of node in D is connected with the required number of node-disjoint paths
with no more than the specified number of hops.� the type of cable used in each arc in Gsol has enough capacity to carry the aggregated
flow of all paths using it, and is indicated as a valid option by U .

aFormally, A is a set and the a-th arc in A makes no sense. We consider an implicit order among elements
of A and take the a-th arc according to that ordering.

TC-DHK

2.4.2 Problem Formulation 1

With a mathematical formulation, we can specify the problem in an unambiguous way. Using the
same notation as in [Pióro 04], let us consider the following Multi-commodity formulation of our
network design problem: Given a set of possible paths for each demand, referred by Pd:

indices
v = 1, 2, . . . , |V | nodes
a = 1, 2, . . . , |A| arcs (directed links)
t = 1, 2, . . . , |T | types of cables to be placed in arcs
d = 1, 2, . . . , |D| demands
pd = 1, 2, . . . , |Pd| index of candidate paths to fulfil demand d

constants
δapd

= 1, if arc a belongs to the path pd fulfilling demand d; 0, otherwise
αvpd

= 1, if node v belongs to the path pd fulfilling demand d; 0, otherwise
sd source node for demand d
td target node for demand d
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fd volume of demand d
kd diversity factor (or local node connectivity between sd and td) for demand d
ξat cost of the t-th type of cable on arc a
mat capacity of the t-th type of cable on arc a
Hd maximum number of hops for demand d

variables
xpd

flow fulfilling demand d allocated on the path pd (continuous non-negative)
upd

binary variable indicating whether the path pd is chosen for demand d
uat binary variable indicating whether the cable of type t is installed on arc a

objective
minimize F =

∑

a

∑

t ξatuat

constraints
∑

pd
xpd

= kdfd d=1, 2, . . . , |D| (satisfy demands)

xpd
= upd

fd p=1, 2, . . . , |Pd|; d=1, 2, . . . , |D| (diversity constraints)
∑

d

∑

p δapd
xpd
≤

∑

t matuat a=1, 2, . . . , |A| (sufficient capacities)
∑

t uat ≤ 1 a=1, 2, . . . , |A| (at-most-one)
∑

v upd
αvpd

≤ Hd + 1 d=1, 2, . . . , |D|; p=1, 2, . . . , |Pd| (hop-limit)

∑

pd
αvpd

upd
≤ 1







d = 1, 2, . . . , |D|;
v = 1, 2, . . . , |V |;
v 6= sd; v 6= td

(node-disjoint)

2.4.3 Problem Formulation 2

We can simplify and rewrite the previous formulation as follows: Given HPd a set of hop limited
s− t K-paths for each demand d ∈ D:

indices
v = 1, 2, . . . , |V | nodes
a = 1, 2, . . . , |A| arcs (directed links)
t = 1, 2, . . . , |T | types of cables to be placed in arcs
d = 1, 2, . . . , |D| demands
p′d = 1, 2, . . . , |HPd| index of candidate s− t K-path to fulfil demand d

constants
δap′

d
=1, if arc a belongs to the Kd-path p′d fulfilling demand d; 0, otherwise

αvp′
d

=1, if node v belongs to the Kd-path p′d fulfilling demand d; 0, otherwise

sd source node for demand d
td target node for demand d
kd diversity factor (node connectivity between sd and td) for demand d, it is implicit in the set HPd

fd volume of demand d
ξat cost of the t-th type of cable on arc a
mat capacity of the t-th type of cable on arc a
Hd maximum number of hops for demand d, it is implicit in the set HPd

variables
up′

d
binary variable indicating whether the Kd-path p′d is chosen for demand d

uat binary variable indicating whether the cable of type t is installed on arc a

objective
minimize F =

∑

a

∑

t ξatuat

constraints
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∑

d

∑

p′
d
δap′

d
up′

d
fd ≤

∑

t matuat a=1, 2, . . . , |A| (sufficient capacities)
∑

p′
d
up′

d
= 1 d=1, 2, . . . , |D| (one set of paths)

∑

t uat ≤ 1 a=1, 2, . . . , |A| (at-most-one)

Let us analyse the complexity of the last formulation: It has (
∑

d |
HPd|) + |A||T | variables, and

2|A| constraints. When G(V,A) is a complete graph, it has (
∑

d |
HPd|)+(|V |2−|V |)|T | variables and

2(|V |2− |V |) constraints, where |HPd| is the number of hop limited K-path to be considered for the
d-th demand. The complexity increases with |HPd|, and when considering all the possible K-paths

it can be as big as
∑l=V

l=kd

(

V
l

)

l!
kd!f(l, kd,Hd), where f(l, kd,Hd) is an integer function with

(

l
kd

)

as its

upper bound (a detailed study is presented in Section A.4.1). This variable space is astronomical for
most solution methods, but formulated this way the hop limitation and path diversity are respected
implicitly, moreover it has only O(|A|) constraints. In Chapter 3 we propose an approach to this
problem using Genetic Algorithms, which are reported in different literatures to be able to search
for good solutions even for problems with huge decision space size.

The feasibility of a proposed solution can be checked and evaluated in polynomial time and any
instances of this problem are recognisable also in polynomial time, so it is in NPO. Moreover,
it is in NPO-hard for being more general than some NPO-complete problems; therefore, it is a
NPO-complete problem.

Observation: A possible intermediate formulation is to consider a set of s−t K-paths for demand
d instead of HPd, and leave the hop-limit condition as a constraint. That is a worse alternative as
it has more constraints and |HPd| is also bigger.

Observation: There exists an analogue problem where instead of arcs there are links. This variant
is also NPO-complete by a similar argument, and it is a general version of WMP and GSP-NC.

2.4.4 Related Work

In the previous section we showed a number of problems strongly related to TC-DHK, our network
design problem, in particular WMP resembles ours most. WMP in [Bley 97] is just TC-DHK without
the throughput constraint and capacity design (refer to page 11 for WMP related works and a list
of easy simplified cases).

More recently, [Botton 07] presented a work with a similar problem in which the only difference
with TC-DHK is that they have an edge-disjoint instead of node-disjoint constraint, and a linear
cost for capacity usage. They use an exact approach, working with an extended formulation. The
reported computational time is very small comparing to our problem, and it is remarkable how the
difficulty of the problem may change as some constraints are removed or relaxed.

The study of complexity in the different particular cases, gives an insight into the complexity
of our network design problem, as it is a general version of a number of NPO-complete problems,
the NPO-hardiness is a direct result. For instance WMP and WSP are proven to be NP -complete
in [Itai 82], both are particular cases of TC-DHK. Therefore, to conclude that we have a NPO-
complete problem, we only have to prove that it is in NPO, but the latter is trivial16.

16Problem instances are recognisable, feasibility check is verifiable, and solutions values are computable all in
polynomial time.
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2.4.5 Particular Cases

In the following, we explain how some problems in the previous section are particular cases of the
one studied in this thesis (or the analogue edge version problem).

MST: given G(V,E) and C : E → R+. The edge version problem can be obtained
as follows.� Maintain the same graph G(V,E);� for each pair of nodes (si, ti) ∈ {V, V }, create (si, ti, ki = 1,Hi = |V | −

1, fi = 1) and insert it into D;� for each e ∈ E, create (me = |V |, ξe = C(e)) and place it in the e-th
position of T ;� set U = I the identity matrix.

SPG: given G(V,E), VT ⊂ V and C : E → R+. The edge version problem can
be obtained as follows.� Maintain the same graph G(V,E);� for each pair of nodes (si, ti) ∈ {VT , VT }, create (si, ti, ki = 1,Hi = |V | −

1, fi = 1) and insert it into D;� for each e ∈ E, create (me = |V |, ξe = C(e)) and place it in the e-th
position of T ;� set U = I the identity matrix.

GSP-NC: given G(V,E), VT ⊂ V , C : E → R+, and R|VT |×|VT | the connectivity
requirement matrix. An edge version problem can be obtained as follows.� Maintain the same graph G(V,E);� for each pair of nodes (si, ti) ∈ {VT , VT }, create (si, ti, ki = R(si, ti),Hi =

|V | − 1, fi = 1) and insert it into D;� for each e ∈ E, create (me = |V |, ξe = C(e)) and place it in the e-th
position of T ;� set U = I the identity matrix.

WMP: given G(V,E), C : E → R+, and D′ = {si, ti, ki,Hi} the requirement set.
An edge version problem can be obtained as follows.� Maintain the same graph G(V,E);� for each pair of demand in (si, ti, ki,Hi) ∈ D, create (si, ti, ki,Hi, fi = 1)

and insert it into D;� for each e ∈ E, create (me = |V |, ξe = C(e)) and place it in the e-th
position of T ;� set U = I the identity matrix.
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Chapter 3

Solving with Genetic Algorithms

3.1 Introduction

Genetic Algorithms is a meta-heuristic invented in the 1960’s for solving optimisation problems, GA
inspired on the natural selection mechanism described in Darwin’s theory of evolution. With some
degree of abstraction it tries to simulate the process of evolution, in which all existing life forms are
descendants by generation of pre-existing forms or species, which undergo modifications.

When species are placed in an environment, those individuals or varieties that fit better in it have
a greater chance to survive and produce offspring, in this way, individuals in the following generation
carry fitter characteristics. Time after time, offspring appear with peculiarities not present in their
progenitors, such an event is called mutation and it is a key component for the introduction of new
varieties. In brief, natural selection acts by preservation and accumulation of beneficial variations
of species in a given environment[Darwin 59].

GA has its origins back to the 1960’s, and most notably when John Holland proposed explicitly
a set of genetic operators together with the theory of schemes. Meanwhile, other evolutionary
related strategies were also being developed like evolutionary strategy (Ingo Rechenberg, 1965) and
evolutionary programming (L.J. Fogel, A.J. Owens and M.J. Walsh, 1966). For more details in the
history of GA, refer for example to [Marczyk 04].

The following is the list of components common to every GA, they can be implemented in many
different ways yielding different GA.� The coding consists of the encoding/decoding operations; to encode is to transform a solution

into a genotype, with its internal structure divided into genes. As genetic operators work with
genes of a genotype, the coding together with its genetic operators play an important role in
GA. Good coding may lead GA to solve a problem efficiently, while a bad one may mislead the
search and result in a total failure. Decode is the reverse operation of encode, when applied
to a genotype, it yields the original phenotype or solution of the problem.

a solution

(phenotype) g e n o t y p e

encode

decode

Examples of coding are: encode natural numbers as an array of bits; encode graph as array of
bits representing the presence or absence of a certain component; encode a Hamilton cycle as
a special permutation1 of natural numbers representing cycles, etc.� A fitness function defines a virtual environment, it is used to evaluate phenotypes and
determine their suitability in the environment. It is closely related to the objective function

1To represent a cycle, the use of permutation will lead to repeated representation, but by removing an fixed element
and imposing that two positions have a given order we will end up with a permutation-like coding for cycles.
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of the underlying optimisation problem, and usually is defined as a real non-negative function
(fit solutions get high values).

f : {phenotype} → R+� The selection strategy specifies the way how the mating pool is conformed, by choosing
individuals from the previous generation. It uses the fitness function to evaluate individuals
and applies a certain strategy so that individuals with good fitness are more likely to survive
then otherwise.

selection

Examples of selection strategies are: roulette selection, ranking selection, tournament, etc.� The crossover operator is the genetic operator that combines a number of progenitors to
form offspring. By using genes that are present in different “good” parents, it tries to produce
better or fitter offspring. Some example are: one-point crossover, N-point crossover, uniform
crossover, etc. An issue about coding and genetic operators is the feasibility constraint, very
often, combining feasible genotypes yields unfeasible ones. Three possible alternatives are
available. The first one is to choose a coding that never decodes to an unfeasible solution;
although this sounds simple it is not always possible, as the structure of some problems are
very complex2. A second alternative is to implement correction or repair mechanism for
unfeasibility. The third one is to allow the existence of unfeasible individuals, then mark them
as unsuitable solutions with a penalty in the fitness function. Each of these alternatives has
its advantages and disadvantages, depending on the problem in question, one may be more
suitable than the others.

crossover� The mutation operator is the genetic operator that introduces variation to the individuals
of a population, and it is a key source of new genetic material in a GA. Without mutation, the
simulated evolution may converge to a very limited set of genes, which is very undesirable as
it leaves the rest of the solution space unexplored. To improve the efficiency of GA as a solver,
it must explore the solution space as much as possible. On the other hand, a high mutation
rate may lead to the destruction of good genes, and degrades the GA to some sort of random
search. As a result, the mutation rate is an important parameter in GA; moreover, to fix it
correctly, the number of genes per genotype should be taken into consideration, because the
probability of a genotype surviving mutation depends directly on its length and the mutation
rate.

mutation

Genetic Algorithms are stochastic search strategies that work with a population of solutions,
and evolve it generation by generation with the help of genetic operators. To find good solutions
for an optimisation problem, first, a set of solutions is encoded into a set of genotypes, and it forms
the generation zero. Random generation or heuristics may yield this initial set of solutions. Then

2There are problems in which checking the feasibility of a single solution is easy, but to know if there is any solution
is very hard (belonging to NP -hard).
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iteratively, the algorithm filters out and replaces members with low fitness. The surviving individuals
form a mating pool, in which the crossover and mutation operations are applied to obtain the next
generation.

generation N

generation N+1

3.2 Designing GA for our problem

In Section 2.4.2 the problem of interest is presented in detail, but before we proceed with the coding
and design, note that the problem was defined for digraphs, and from now on we work only with
digraphs. We are working with directed arc capacity and directed flow. However, it is possible to
define an analogue problem in which the link capacity is undirected or duplex3. We will explain
their difference and the required changes in the design when applying our solution method to this
analogue problem later in Section 3.3.5.

Studying the alternate formulation in Section 2.4.3 we can see that the main decision variables
are “the set of paths to use for each pair of s− t nodes”. Furthermore, once the set of paths to use
is chosen, the type of cable can also be fixed by applying a min-cost polynomial time algorithm.

3.2.1 Traditional coding

We are dealing with a very complex problem, for which we could not find any previous work using
genetic algorithms, therefore as a first step we analyse the traditional coding for other similar prob-
lems, to evaluate their suitability for our problem.

Graph structure coding: In our network design problem, one of the outputs is the structure
of the graph. Putting aside the goal of obtaining the explicit routes to use, it is a pure topology and
capacity design problem with a number of constraints. The traditional coding in GA for designing
graph structure or topology, is an array of arcs (and/or nodes). It consists of an array of bits repre-
senting the presence or absence of each component of the graph; it also can be an array of natural
numbers representing the absence or a particular choice (read hardware with different capacities

3In problems with undirected link capacity, the sum of flows in both directions of a link can not surpass an
undirected (duplex) capacity.
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and costs) for a particular arc (and/or node). As an example, in [Ahn 01] a GA based topology
reconfiguration is proposed, it uses multi-dimensional array to encode graph topology. This kind
of coding is very short and natural, but not quite suitable when there are unfeasible combinations.
Unfortunately, our problem has capacity, path diversity and hop-limit constraints. And in general,
the size of our problem’s feasible solution space can be very small compared to the whole set of all
combinations. Furthermore, even without the capacity constraints, to check the feasibility of path
diversity together with hop-limit constraints (feasibility problem of WMP) is a NP -hard problem
in general. In other words, to use this kind of coding will include unfeasible solutions and we don’t
even have an efficient way to determine feasibility, therefore, we conclude that graph structure alone
is not suitable for our problem.

Path coding: In our problem, if the routes for each s − t node-pair are explicit, the feasibility
check is trivial for both path diversity and hop-limit constraints. Some traditional coding to encode
path are list of nodes or arcs. In [Nesmachnow 04, Calegari 02] the authors studied different alter-
natives and proposed some coding based on list of paths for the general Steiner problem with edge
connectivity constraint (GSP-EC). To use this kind of coding, the genetic operators must include cor-
rection mechanism to avoid loops and maintain feasibility for the node-disjoint, hop-limit constraints.

All the previous codings have some serious problems when applied to our problem, so we devoted a
part of this work to develop a new coding as a work around.

3.2.2 The proposed coding: to encode H-limited K-paths

What we need is a coding that can somehow simplify the feasibility check, and maintain the fea-
sibility after the application of genetic operators without the overhead of complicated correction
mechanisms. In other words, we want to codify solutions in our solution space without adding
unfeasible solutions or bias (repeated representation) in the coding. It is to transform the solution
space (Ki-path with hop limit Hi between each pairs of nodes si and ti) using bijection to some
more simple structure. In this way, each solution in the encoded space is a feasible solution accord-
ing to the hop-limit, path diversity constraints and therefore no correction mechanism is required.
From the K-paths to use and the throughput of each s − t node-pair, the capacity constraint can
be checked in polynomial time O(|A|). Furthermore, if the K-paths of each s− t node-pair is fixed,
then the optimal topology and capacity for the graph can be determined easily, by building the
sub-graph which contains only the nodes and arcs presented in those K-paths; computing over each
arc the accumulated flow of the different K-paths that use it; and assigning as arc type the cheapest
type of cable that can carry this accumulated flow.

H-limited K-path coding: Two problems arise with this approach, in the first place, it still
contains unfeasible solutions: when the accumulated flow assigned to an arc, from different de-
mands, is larger than the largest available capacity, then it becomes an unfeasible solution. The
second problem, “is there an efficient way to encode all the possible s− t K-paths with hop-limit?”.
The former is very common in GA, it can be solved with penalty in the fitness function or with
correction in genetic operators. And in the particular case of TC-DHK, we can simply require that
the input problem has a large enough capacity on each one of the edges. As for the second issue,
we proved that it is not possible for general graphs, because to be able to enumerate hop limited
K-paths efficiently is to be able to solve the feasibility problem of WSP efficiently, which is proven to
be NP -complete in [Bley 97, Itai 82]. Even worse, a result from [Allender 99] states that the func-
tion that counts the total number of simple s-t paths in a generic directed path is a #P -complete
function, i.e., it is among the hardest counting function in the class #P . Unless NP = P , we will
not be able to enumerate hop limited K-path for generic graphs, and it seems that generic graph
is the primary source of the difficulty. By limiting the problem to complete graphs, we managed to
develop a coding, which is one of the main results of the present thesis.

The proposed encode/decode functions are Θ5 / Θ−1
5 from Appendix A, the latter is written as

a standalone document including all the developed structures, combinatorial analysis and interme-
diate steps for the design of the bijection between hop limited K-paths and range of naturals.
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With Θ5 we can map H-limited K-paths in a complete graph into natural numbers, the latter can
in turn be mapped into binary strings. But for the TC-DHK network design problem Section 2.4 we
have as solution not one but a set of |D| H-limited K-paths. At this point we have two immediate
alternatives, one is to take the Cartesian product of the |D| solution spaces and map solution in
this giant space into number or binary string; the other is to treat each H-limited K-path as a
component and represent the entire solution space as list of numbers. Through the remaining of this
work, the former is named type I while the later type II. type I/II

Together with the two codings, we have to design the paired genetic operators. After investing
so much effort into the development of the coding, one of the immediate result is that no correction
mechanism is required here to re-establish feasibility of the different constraints.

Coding type I: A giant number representing a set of |D| H-limited K-paths, that ends up be-
ing a string of bits. The simplicity of this representation is that it resembles the simple genetic
algorithms and we can use the traditional operators.� Selection: roulette selection (standard proportional selection);� Crossover: uniform crossover;� Mutation: uniform mutation.

After applying crossover and mutation, it is possible that the result falls outside the range of the so-
lution space, because the size of the solution space usually is not a power of two (not all combination
are feasible). To solve this problem, we detect and replace overruns with a random feasible solution
(uniform distribution). For size that surpasses barely a power of two, this may lead to almost half
of the representations being redundant and therefore require re-sampling, increasing in this way the
randomness of the genetic algorithm. It is a weakness common to all bit string representations.
A clarification for the last statement: in the worst scenery when almost half of the representations
require re-sampling, the number of re-sampling in practice is much lower than the redundant por-
tion suggests. In fact the local search aspect of the G.A. will greatly reduce this number. Small
mutation rate is another factor that helps to avoid re-sampling, because to trigger a re-sampling, it
is necessary to have a mutation to occur in some particular positions.

Coding type II: Although the idea to represent H-limited K-path as numbers is new, coding
using list of numbers is not. It is one of the traditional coding in the usage of genetic algorithms,
therefore we don’t have to invent new operators neither in this case.� Selection: roulette selection (standard proportional selection);� Crossover: uniform selection;� Mutation: uniform mutation.

We choose those operators in an attempt to be as close as possible to the “simple genetic algo-
rithms”, the only difference a priori is that we replaced the one point crossover with the uniform
crossover. The latter is reported as outperform the former in many different problems by different
authors, and it is very understandable. One of the reasons is that one point crossover is more disrup-
tive for long schemes in coding using list. Notice that the results from the crossover and mutation
operators in this coding are always feasible. The mutation operator when applied to a gene, will
always generate a result in the feasible range.

A question arises here: is one of the alternatives more suitable than the other? Comparisons can
be found in the next chapter, among other experiments.

Fitness function: The traditional definition of fitness, is a function Ffit : phenotype → R, which
gives high values to fit phenotypes. In a min-cost optimisation problem, a good candidate is the
cost function. But we face here a dilemma, should we maintain the traditional definition of high-
value-fit-phenotype or should we adapt our own library to admit the inverse relation, which is more
natural for min-cost optimisation? We chose the latter and therefore we define the fitness function of
our G.A. as the cost function of the problem, which takes a given graph (topology and capacity are
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obtained directly from the H-limited K-path of each of the |D| demands in O(|D||V |) operations)
and returns the total cost of all the chosen cables in all the presented arcs.

3.2.3 The particular implementation

We have two types of solution coding, type I represents solutions using binary strings (extremely
long strings), type II represents using list of big numbers.

During the experiment we used the basic GGEngine v1.0 and extended it with a number of
functionalities, some of the new additions didn’t yield better results for this problem, but for those
that did, we retained them as new features in the second version of GGEngine (the technical report
on GGEngine v2.0 can be found in Appendix B). The main difference between our proposal and a
traditional G.A. are the following:� customised mechanism of fitness scaling,� dynamic mutation rate,� usage of elitism.

All those improvements and their parameters are result of a series of undocumented trials, in the
search of mechanisms that can improve both the original performance in solution quality and run
time. Those experiments were performed with the small test cases, using different random seeds,
and we included only those mechanisms that dominated the others after running a fixed number of
generations.

Customised fitness scaling: Traditionally, the fitness function is defined as a measure that
matches fit individuals to high values. We have a minimisation problem and the fitness scaling
not only scale the function, but also inverse the direction of the objective. The fitness scaling
function in use resembles the classical linear scaling [Goldberg 89]

fscaled = a× f + b a, b are coefficients, f the raw fitness, fscaled the scaled fitness

If we consider the population of a given generation as samples in the solution space, then we have
their associated costs (fitness values) in a range [fmin, fmax]. The idea is to determine the coef-
ficients a, b to transform that range into a scaled range linearly. At the beginning of the G.A. to
promote genetic diversity we choose the scaled range to be very small ([99,100]), and then it expands
slowly generation after generation. Moreover, the stopping condition in use is by fixed number of
generation, and after half of the generations are passed, the expansion rate is increased, and it stops
after reaching a target range ([10,100]). The objective of the dynamic expansion rate is to reach the
target range a fraction of generations before the end.

Dynamic mutation rate and elitism: In the classic G.A., mutation rate is fixed. Mutation
is an important genetic operator in the introduction of variation, associated to the need of variation
is the premature convergence problem. If the population converges to a suboptimal solution (which
can be very far away from the optima in terms of objective value, and genetic information), then
the crossover operator is useless in the introduction of new information. It leaves the mutation to
be the only source of variation, which in turn depends strongly on the mutation rate. For small
mutation rates, although the probability of mutating is non-zero, it may take a lot of generations
before a better individual appears, but then it may surely converge in the next few generations. On
the other hand, high mutation rates are too disruptive, in fact they degrade G.A. to random search.
We can also observe this from the theorem of schemes[Goldberg 89], if the probability of disruption
is too high, the lower bound for the number of copies that match a given scheme reduces to zero.
So we propose to have dynamic mutation rates, when convergence is detected, we increase the mu-
tation rate, because if the proportion of best individuals exceeds a certain critical limit, without the
intervention of high mutation rate, the roulette selection will ensure complete convergence. We de-
cided to use the proportion of best individuals to control the mutation rate, we also included elitism
to conserve the best-so-far individuals of the evolution. After some trials, we found that the best
strategy for dynamic mutation is to make the changes smoothly, and maintain the mutation rate
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fixed at least a number of generations (five generations). We define a range in which the mutation
rate can vary and make small increases when the proportion of best surpass the limit of 10% of the
population, and small decreases otherwise. Changes in the mutation rate are maintained for at least
five generations.

Beside those additional mechanisms, we have a traditional G.A., where the coding represents a
set of H-limited K-path, in either type I or II. During the evaluation of fitness, the path is decoded
and an auxiliary graph is constructed to accumulate the flow assigned to each arc. Then capacity is
assigned to each arc, by taking the most economic arc type (we discard all the dominated capacity-
cost arc types in pre-processing, leaving this step trivial). The sum over all the assigned capacity is
the cost or raw fitness of the solution.

3.3 Implementation

3.3.1 Other genetic algorithm engines

The skeleton or core of genetic algorithms usually is invariant among different instances, and it
forms a big portion of reusable codes. To encourage the experimentation of genetic algorithm and
to reduce the effort of implementation when it is applied to solve a problem, there are a number of
genetic algorithms engines in the open source community, among the pioneers there is genesis (1990,
by John Grefenstette[Grefenstette 90]), based on them there are developments like dgenesis (1993,
by Erick Cantu-Paz[Cantus-Paz 94]), among many others. There are also other frameworks like the
MALLBA Project [Univ. de Málaga 07](nowadays, by the universities of Malaga, La Laguna and
Barcelona) which offers a list of solvers for the user to choose from, including G.A. as one of the
options.

3.3.2 GGEngine - Generic Genetic Engine

In 2002 we developed the first version of GGEngine (Generic Genetic Engine) [Ho 02] a C library,
with the aim to offer a light weight and flexible solver for researchers of our team. The objective is to
have a solver that can be extended later to support the different distributed and parallel computing
infrastructures available in our laboratory. This implementation offers a large list of popular codings
and genetic operators, reducing the required implementation when solving a problem. Moreover, if
both the generic operators and structures required for coding are already implemented, then extra
implementation required when applying G.A. to solve a problem is reduced to� a definition of the phenotype;� the encoding function: phenotype → genotype;� the decoding function: genotype → phenotype;� the fitness function: phenotype → R.

The following list presents a summary of the features in GGEngine v1.0:� genes coding: binary, integer, float, and user extensible;� chromosome type: list of genes (of any type);� selection operator: roulette (standard proportional selection), tournament, ranking, and user
defined selection;� crossover operator: one, two and n point crossover [Goldberg 89], uniform crossover [Syswerda 89],
biased crossover, and user defined crossover;� mutation operator: uniform mutation, bit representation specified uniform mutation, and user
defined mutation;
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� no recompilation required when changing coding or genetic operators (user defined components
requires stand alone compilation and then linking).

After the first release of GGEngine, we received reports from users (primary from colleagues in
our faculty) with suggestions to improve the performance and the addition of new features, like
fitness scaling, different implementations of fitness caching and modification to the implementation
of mutation operators (replacing multiple Bernoulli trials with binomial trials). In the ongoing
version, all these changes are applied, together with other features that we introduced during the
development of the present thesis, like the option of elitism, dynamic mutation rate, new random
generator. Being an ongoing development there are still features in the to-do list, like support for
parallelism, among others.

3.3.3 The GMP library

To implement the coding of H-limited K-path proposed in the previous sections, the standard
arithmetic operators in C will limit the representation to small graphs, therefore it is necessary the
usage of library that implements those operations for larger numbers. After a brief search, we came
across GMP (GNU Multiple Precision Library, http://gmplib.org/), a GNU C library that offers
implementation of arithmetic for big integer and reported to be one of the fastest implementations
(at least among free libraries). Moreover, it is included in many distribution of Linux, and supports
(optimised over) a large number of hardware platforms. The version used during the beginning of
the development was 4.1.4 and later updated to 4.2.1.

3.3.4 Pseudo Random Number Generator

The generation of random numbers or more strictly pseudo random numbers is an important com-
ponent of a genetic algorithms engine. In the current version of GGEngine, two separate random
generators are used. The first one is provided by the dependant library GMP, it uses a linear congru-
ent method to generate numbers, and long bit length numbers are formed by concatenating multiple
results.

The second internal generator is used for all non-GMP related data types. In our search of good
modern uniform generators, we came across the Mersenne Twister [Matsumoto 98]. And in the web
site [Matsumoto 06] of its author, we located an implementation (mt19937ar) which is used as our
internal generator. The Mersenne Twister is a 32 bits integer generator with a period of 219937 − 1,
it requires 624 words of memory and its speed is reported to be comparable to other generators.

For a valid statistical study, it is necessary to alter the sequence of random number in use. It can
be done by initialising the generator with different seeds, in our case two different seeds are needed
as there are two generators. The linear congruent algorithm generates numbers with a formula like
Xn+1 = (AXn + B) mod C, where A,B,C are constants and the first X0 is the seed. To generate
different sequence, one way is to choose seeds that are far apart from each other according to the
last formula. In the case of Mersenne Twister, seeds with small Hamming distance or similar bit
patterns may produce shifted sequences. Note that in the case of linear congruent method, any
pair of seeds produce shifted sequences. We used seven pairs of seeds in our study, their values are
presented in Table 3.3.4.

3.3.5 For the problem with duplex capacity

The design and implementation shown in this chapter was over the problem formulation in Section
2.4.3, which requires that:

∑

d

∑

pd
δapd

fdupd
≤

∑

t matuat a=1, 2, . . . , |A| (sufficient capacities)
In each arc, the aggregated flow from different demands must be smaller than the assigned capacity.
The capacity in question is directed, or arc related. A possible variant is to consider the duplex
channels, in which the capacity is undirected or link related. Then the aggregated flow should be
the sum over flows on both directions.

Our proposed solution method can be applied to this variant with a small modification in the
stage of capacity assignment during the calculation of fitness. For each link, the capacity to assign
is the most economic one that can hold the aggregated flow from both directions.
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Seeds used in experiments

Group MT seed GMP seed
A 00000000 0000000000000000000000000000000000000000000000000000000000000001
B ABC01F23 c8bbdd822a45386dc74be73c34e71e75bf791993f37f08cc282592ee498a4335
C F2E3DCA3 e84d98bba8c4b9956dbf54dc40daf4e480fe4c9e05642033d3b32848d236a25b
D 4EF5A126 f539876331a07f46599dbb2795c2641fbf4b51507ac9d255ac73c0db4c5ce0ba
E 622FE1C0 b86587be451a15ab2585eb8fb3dc79473677ca2af76254cf3f6ffbbfe686546a
F 93F4C6B1 d78a6ad6fdb350485079f225f7796f384255757e4d7b910cb83055265d03da8b
G 03F46B89 43e1635a78b12507e3212187d4b03d16bfbb0ff02f4b5f0899892fc988a29667

Table 3.1: “nr.dat” is an input file for GGEngine and it should contain the seeds as integers, but
the same data is displayed here in HEX as it’s much shorter.
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Chapter 4

Experimental results

4.1 Introduction

A number of questions are posed and scattered over the previous chapters, find here a brief summary
which serves as introduction to the chapter.

The main question is about the performance of the proposed G.A. using the coding Θ5 / Θ−1
5

from Appendix A to solve the problem of interest. Being G.A. the chosen solution method, we have
to face the problem of parameter fixing. One of the first steps is to study and determine relationships
between properties in the problem instance and parameters in the algorithm. We have to check a
number of parameters in G.A., in the short list we have: population size, mating pool size, crossover
rate, mutation rate, number of generations. We run experiments with relatively few generations for
most of the tests in this part of the study. We also have two variations of the proposed coding, is
one of them more suitable then the other? We planed a series of test to address these questions.

To be able to compare the different solution methods and/or parameter settings, first we have
to select or define the measures to use; we can find in Section 4.2.3 a survey and the selection of
measures. Another fundamental piece in any experiment is the test suite to use, therefore, we will
dedicate Section 4.2.1 to detail it and Section 4.2.2 presents the computational infrastructure used
for obtaining the numerical results.

Section 4.3 presents all the experiments and their results. It is divided into several subsections.
First of all, we concentrate on parameter fixing (Section 4.3.1), then we proceed to compare the two
alternative codings to evaluate their differences (Section 4.3.2). Afterwards the proposed method
is compared against random search (Section 4.3.4). Finally, we present the results of using pre-
processing as an alternative to improve the performance for the method, specially needed in the case
of medium and large instances (Section 4.3.5).

4.2 Experimental design

4.2.1 About the test cases: basic & composite cases

The suite of test cases consists of basic cases with known optimal solution and composite cases
which are compositions of basic cases. As source of basic cases, we considered the possibility of
converting known solutions of similar problems (add the missing inputs in a biased way to retain
known solution), design graphs with special structure (with known optima by construction), or
generation of random problems (have to run exhaustive search for optima). We implement only the
last one of them, even when it was the most cpu-time consuming among all the alternatives, because
it yields instances that are more natural -without extremely biased costs-. So the basic cases (A to
G, see the details in Appendix D) consist of complete graphs with a set of capacity-cost types, those
were assigned with uniform distribution between each pair of nodes. An additional (or fictional) link
with unlimited capacity is added to ensure feasibility, the cost for this exceptional link type is linear
with capacity usage, opposite to the other discrete link types. This fictional link is used to penalise
the solutions that excess the maximum capacity limit in some link, notice that for problems in which
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the maximum capacities in every link are enough to carry the total demand, this fictional link will
never participate and therefore will be redundant. In some undocumented experiments, we used
high discrete cost/capacity for the fictional link, but later, we realised that linear cost is a better
alternative, because the discrete one forms some very hard to escape local optima (an example is
shown in 4.1).
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Figure 4.1: Here we show an example in a sub-graph with 2 demand pairs, and an already saturated
dotted link. The top figure shows both demands using the dotted link, which is more expensive
then the bottom-most figure. On the left we use the discrete cost/capacity for the fictional link, in
which the removal of one demand does not decrease the cost. While on the right, we use a linear
cost/capacity, therefore the removal of one demand decreases the link cost. In this example we show
that the discrete model forms some local optima that are not present in the linear one.

The usage of exhaustive search in the construction of exact solutions limits the number of gener-
ated cases and their size, therefore we have to construct bigger instances by composition, in this way
we have bigger test cases with known solutions. All the basic cases can be found in Appendix D,
they are presented with the input file’s format, a summary of their properties can be found in Table 21

Composite cases are constructed by extending a basic (or composite) case of N1 nodes with
another basic case of N2 nodes, it will result in a complete graph of (N1 + N2 − 1) nodes. We want
the solutions of the resulting problem to be connected, that’s why we require that one node must
be shared by some demand pairs s− t of both problems. On the other hand, we want the size of the
composite problem to be as big as possible, it means that all the other nodes in the original problems
are transformed into disjoint nodes. When more then two cases participate in the composition, there
are three different ways to do it: by using different joint node each time, by using the same joint
node each time, or hybrid of the two former (see Fig. 4.2). There will not be any demand other than
the ones appearing in the basic components, and the available capacity type outside those basic
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components is limited to the high cost fictional capacity link. Moreover, we set the cost of those
links with fictional capacity in such a way that the usage of any of them will imply a total cost
higher than the known optima.

Although the optimal solutions for this style of composition are graphs with pivoting nodes,
which is a particular and undesirable structure for WAN, we decide to use them anyway, because
they offer a good challenge to the solver, and the complexity is not reduced1. The optima cost in
the composition is the sum of the optima costs in its components, and the total number of optima
solutions is the size of the Cartesian product over its components’ optima solutions sets. In Table 21
and Table 4.1 we show the huge size of the solution space of these composite problems.

na

na nb

na

na

fillings

fillings

fillings

fillings

na

na

fillings

fillings

nb

nb

Figure 4.2: The two variants of composition and their matrix representation (hybrid of them is also
possible when more than 3 components participate in the composition). The problem has matrices
for available edge types, and demand (source to destination throughput, path diversity, hop-limit),
the “fillings” for the demand related matrices are all zero, while for the available link type it is
limited to the fictional capacity type.

G.A. is strongly based on random number generation, when studying a random algorithm, it is
necessary the usage of different seeds for its pseudo-random generator, to increase the reliability and
reduce the luck factor. To evaluate the proposed G.A. we selected seven different seeds and replicated
each run seven times, once for each seed. Seven may be considered small for a strict statistical study,
but increasing it further means also increasing the total runtime for the experiment, so we decided
to keep it small for now. Find in Table 3.3.4 the seven different seeds used in the experiment.

1The size of the solution space is invariant with the costs, it means that if we lower the cost of some capacity type,
we will have exactly the same space to explore, although, the number of local optima or their depth may be changed.
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Properties of basic and composite cases

|V | |D| opt. cost # of opt. sol. solution space size
A 6 6 43 7 788050640
B 6 6 55 3 327688400
C 6 5 70 3 430941160
D 6 6 142 7 304538000
E 7 4 64 5 714918000
F 7 4 55 4 737256000
G 7 3 43 5 376856000

|V | |D| opt. cost # of opt. sol. solution space size
AA 11 12 86 49 8.8× 1039

BB 11 12 110 9 1.5× 1044

CC 11 10 140 9 2.8× 1050

DD 11 12 284 49 7.0× 1057

EE 13 8 128 15 9.0× 1046

FF 13 8 110 16 5.1× 1042

GG 13 6 86 25 5.0× 1049

AAA 16 18 129 343 4.2× 1078

BBB 16 18 165 27 4.6× 1093

CCC 16 15 210 27 2.1× 10111

DDD 16 18 426 343 1.3× 10125

EEE 19 12 192 125 3.7× 10105

FFF 19 12 165 64 4.7× 1090

GGG 19 9 129 125 2.6× 10115

Solution space size (the exact big number)

0987654321098765432109876543210987654321098765432109876543210987654321098765432109876543210987654321098765432109876543210987654321

AA 8754546039247372814499633886555719840000

BB 151367119745118756031542650295667101696000000

CC 282118125652299602994689292094821568034012528640000

DD 6985777610356914043526609879578500671439561004880625000000

EE 90092393227948966424606152962912914628485760000

FF 5069233489054691383351964201018890344960000

GG 50331527352743623454112583540875302722607500960000

AAA 4162900963024103653327489412934930508806490855625437665210623210546834580871625

BBB 4649625159816480508426994961900138345062131753769061600100659496385346643795064866403241609375

CCC 2064178774804957319195141767360837216098876835540226591402086658141839741058513615613367418238492587630377470875

DDD 127393731129787298055032212826788095449555479192233535025410378271228218613071106715480306887572266984148425363889676349609375

EEE 3657805613261051272547368673706919292985954940848553851533484832684443988545619975021448707178496000000000

FFF 4723677731092132487734950164083933543199578189736754428183557965760687188270880112246784000

GGG 26269863520287316617055704700597293808626321458521485005938880939440591911997539557671484649750683584041930719232000

Table 4.1: The solution space size is calculated by taking the product of the size for each individual demand.
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Hostname CPU type RAM capacity
crysnife AMD Duron 1.1GHz 512MB
homePC Intel Pentium IV 2.0GHz 256MB
lorien Intel Xeon 2.4GHz 1GB
smgPC Intel Pentium IV 3.06GHz (HT) 1GB
hydraNode AMD Opteron 880 2.4GHz (x8) 32GB

Table 4.2: Hardware features of test platforms.

4.2.2 Infrastructure for testing

During the development of the experiment, different computers become available to us, they have
different features. Some remarkable ones in order of appearance are crysknife, homePC, lorien,
smgPC, hydraNode, see Table 4.2.

The construction of basic case and their exact solutions were performed with crysnife, homePC
and lorien; while the general testing were done with all of them in different period of the testing.
We used different operating system in them, all of them are distributions of linux, ranging from
Redhat, Fedora-Core, Suse, to HP XC. To admit the coexistence of test results that come from
such a heterogeneous set of platforms, we decided not to take into account the traditional measure:
run-time. Instead of it, we searched for another more suitable measure to express delay or CPU
consumption. After making a profile of the code, we discovered that a huge portion of the time
is used in the evaluation of fitness, this allows us to replace easily the runtime by the number of
evaluations. We have to remark that the counting of function calls instead of runtime is not a new
idea, many other researchers have been using it in the past in different scenes. To give an idea of
the conversion of evaluation to the traditional time, it takes 40,000 sec to perform in hydraNode a
complete test suit consisting of all the cases AA-GG and AAA-GGG, with 500×60,000 evaluations
in each case. In other words, it takes in average 1 sec for 12,750 evaluations to be done in a single
processor of hydraNode. The drawback of this approach is that we had to disable fitness caching, to
gain a complete control over the number of evaluations to perform. This left-aside feature can save
more than 30% of the evaluations in some cases, which could be directly translated into a reduction
of runtime.

Another result obtained from the profiling is that the memory requirement is relatively low in all
those experiments; for composition of up to 3 basic cases, it requires only about 50MB of maximum
memory. Therefore, no swap memory was used during the experiment.

4.2.3 Measures

Before being able to evaluate the results, we have to choose or define some measures for the evaluation
of solution quality. Measures defined for a maximisation problems can be transformed and used for
minimisation ones easily, from now on we will use the minimisation version for all the measures in
discussion. As a first approach we can consider some simple measures like the average best, the best,
and the standard deviation from the results obtained for a same problem instance, using different
seeds in the pseudo-random generator. These three measures can tell how consistent is the solution
method, or in other words, how likely does it obtain similar results using different seeds. We cannot
tell if the method gives a good solution or not, without comparing these results against (the cost in)
a {best known solution}, which can be a known optima or a bound. Further refinement is possible
by using the {best known solution} of a problem instance to normalise the measure somehow.

While choosing measures to use, we observed many problems with some traditional measures,
those problems are related to how easy is to cheat and bias the results.

In the first place, the traditional way to compare the results against a {best known solution} is
defined as the gap, that is the distance between the result and a {best known solution}.

{gap} = {given solution} − {best known solution} gap

The gap alone is just a distance, and the smaller it is, the better is the result. But how small should
such distance be, to be acceptable? To answer that question, it is necessary to add something else

33



in the comparison. Many researchers compare it against the value of the {best known solution},
and get the definition of the gap in percentage as:

{gap%} = {given solution}−{best known solution}
{best known solution} gap%

Now the gap is normalised with the value of the {best known solution}, but is it a fair measure?
We found a serious problem related to this measure, that is, it is very easy to cheat. By adding or
subtracting a fixed cost to the problem, one can change the {gap}, as in the following example:

Given an experiment that yields a solution with cost 11, while the optimal cost is 10

11−10
10 = 0.10 = 10% in gap
(11+C)−(10+C)

(10+C) = 11−10
(10+C)

taking C = 10 we get 5%; or C = 90 to get 1%

If the experiment is TSP we can add the offset easily by taking a particular node,
and add C

2 to the cost of all its edges.

By simply adding an offset or fixed global cost, which can be done in a pre-processing or post-
processing procedure external to the solution method, the result can become very different. More-
over, this measure doesn’t take into account the hardness of the problem instance, if its worst
solution’s cost is close to the optimal cost, then it will always give good result no matter how bad
the solution method is. But then, the gap in percentage can be very good while the method in study
is bad. Even when the gap is widely used in many literatures, it is not a fair measure, therefore, we
continue our search for a more meaningful measure.

Another traditional measure is “solution quality”, the name induces the understanding of high
quality corresponds to good solutions, while bad solutions have low ones. And solutions with lower
cost have better quality than expensive ones, in a minimisation problem. Some authors define quality
in terms of percentage as:

{traditional quality} = {optimal solution}
{given solution} traditional

quality
When the given solution is optimal, the quality is 100%, and for more expensive solutions the value
of quality is lower than 100%. This measure is fine for evaluation of solution, but to evaluate meth-
ods, it doesn’t take into account the difficulty of the problem nor the work done by the solution
method. For instance, if we apply a bad method to solve a very easy problem in which the worst
possible solution has high quality, then the final result will always has good quality. On the other
hand, for difficult problems, like those that have a big difference between the optima and the second
best solution, this measure will be very unfavourable to good solution methods, unless they yield
the optima. Once again, the trick of adding a fix cost can also be applied to modify the results of an
experiment. For the same test suite and same solution method, subtracting or adding a fixed cost
to all solution can easily modify the result of the solution quality.

Once understood the problems with the previous measures, we considered a number of alterna-
tives in an attempt to find a suitable one for our experiments. If we know both the best and worst
possible solutions’ costs inside the solution space, we can define a measure for the quality of a given
solution as:

{quality} = {worst solution}−{given solution}
{worst solution}−{best solution} quality

In our network design problem, one may tend to consider the worst possible graph as the complete
graph with the highest possible capacities, but it is much more expensive than the worst from the
search space. As we want to study the solution quality of our algorithm in a specific search space,
we will consider the worst possible solution inside this search space. In which the capacity (and
therefore the cost) is set to the minimum necessary for each arc, for a given combination of hop
limited K-paths. We can express this measure in percentage, which allows us to study quality
without worrying about the magnitude or scale of different problems. Cheating by addition or
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subtraction of fixed cost is no longer possible. This measure will yield 100% for an optima solution,
and 0% for the worst solution.

But most of the times we do not know the best or worst solution of a problem, in particular,
we are working with composite cases where only the best solution is known by construction. So we
have to define another measure:

{approximated quality} = {worst known solution}−{given solution}
{worst known solution}−{best known solution}

It is easy to check that {approximated quality} ≤ {quality}, therefore it is a lower bound for the
real quality of the algorithm. From now on, we will call {approximated quality} as A.Q. in short. A.Q.

We noticed that one can still manipulate the results by adding an extremely expensive solution
somehow to the solution space, and then the measure will become meaningless like the formers. To
overcome this trick, we can replace the {worst known solution} in the A.Q.’s formula, by the result
of a trivial method -best solution from a random search with a certain number of evaluations-. More
precisely, we will use the same number of evaluation in the random search as in the proposed G.A.,
and as {best known solution} we will use the optimal solution’s cost. The usage of random search in
the comparison has the effect of sampling the solution space, it is an easy way to take into account
the hardiness of the problem. The A.Q. defined this way is very robust to cheatings, and it is one
of the primary measure applied in out the experiments. To study the cost of a given solution, we
define A.Q. respect to random search as:

{A.Q. above R.S.} = {random search solution}−{given solution}
{random search solution}−{known optimal solution}

A.Q. above
R.S.Notice that, for methods that perform worse than random search, the resulting A.Q. above R.S. will

be negative. Furthermore, the runtime in our experiment is measured by the number of objective
evaluations; therefore it is meaningful to make comparison against random search of a certain number
of evaluations. Otherwise, the comparison should be based on runtime or other measure of CPU
consumption. And finally, a definition problem may present when the cost of the solution obtained
with random search (of a certain number of evaluations), matches the optimal cost, but then it is a
problem easy enough for random search to solve, in other words, it does not qualify as a test case
for the evaluation of solution method.

4.3 Results

4.3.1 Parameter fixing

Before proceeding to experiment with G.A., first, we try to determine the set of parameter to use.
This step is important specially after applying modifications to the traditional G.A., the idea is to
run a small number of evaluations using different set of parameters and then choose the soundest of
them. As there are two encodings implemented, we have to fix the parameters for each one of them.
We consider the following short list of parameters to fix, because all the others are already fixed or
adjusted dynamically:� population size;� mating pool size;� crossover rate.

To fix the crossover rate, we performed some undocumented testing and the soundest value is
0.7, which means that 30% of the next generation is copied directly from the parents, while 70% of
it pass through the crossover operation.

At this point, only two parameters have to be fixed, those are population and mating pool size.
We chose three values for each one of them and experimented with all the nine combinations, with
the number of evaluations fixed to 5,000,000.
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coding type I

There are nine combinations of parameters, and fourteen test cases, therefore we have in total
9×14 = 126 experiments. Each experiment is run with seven different random seeds, and we register
the mean value of their resulting cost. We show in Fig. 4.3 and Fig. 4.4 the graph of comparison
for each experiment individually; then in Table 4.3, Table 4.4 and Table 4.5 the comparison of the
fourteen problems altogether. We summarise here some of the observations:� population size equals to 500 yields the worst result in 29/(3 × 14) = 70% of the cases (Ta-

ble 4.4). This is caused by the fixed number of evaluations, the number of generations decreases
as the size of the population increases.� mating pool size of 80% yields the worst result in 27/(3× 14) = 64% of the cases.� in G.A. the best solution to report should never appear for the first time in the last generation,
moreover, the moment when it first appeared (namely F.A. ) is a good indicator of the potential F.A.
of further improvement. Studying the mean F.A. of the fourteen problems Table 4.5, we can
observe that the potential of improvement is poor in general.� In Table 4.3 we show the number of times each combinations appeared as the best configuration
in a problem. One conclusion is that small populations with small mating pool performed2

always better than big population with big mating pool. This result is also consistent when
we study the Table 4.4.� we observed that the most consistent configuration for the mating pool size is when it is set
to 30% of the total population.

As a result, we fix the configuration to population size equals to 200, mating pool size equals to
60, for this series of composite problems (AA, ..., GGG).

2Performance in terms of achieved A.Q., for a small and fixed number of evaluations.
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Type I: Best configuration counting

population size
for fixed P.S.

200 300 500

mating pool size
30% 5 3 1 26
50% 2 2 0 9
80% 1 0 0 7

for fixed M.P.S. 26 14 2

Table 4.3: Each of the fourteen test cases (AA,..,GGG) yields nine combinations of parameters
(14 × 9 = 126 experiments in total). In this comparison, we account the best configuration among
the mean best cost of 7 different runs for each experiment. The central table shows the frequency
a certain combination being the best among the nine possible combinations, for a same test case;
the table on the right border compares mating pool size for fixed population size, therefore, each
entry is the best configuration among three possible options; the table on the bottom compares the
population size for fixed mutation rate.

Type I: Worst configuration counting

population size
for fixed P.S.

200 300 500

mating pool size
30% 0 0 0 6
50% 0 0 2 9
80% 1 4 7 27

for fixed M.P.S. 3 10 29

Table 4.4: The same as Fig. 4.3, but accounts the worst configuration.

Type I: First appearance of the last solution

Pop. size mean F.A. in # of generations total # of generations F.A. in percentage
200 13850.0 25000 55.40%
300 9262.7 16666 55.58%
500 4814.5 10000 48.14%

Table 4.5: F.A.=first appearance of the best solution. The mean is taken from all the experiments
with fixed population size.
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Type I: nn compositions
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Figure 4.3:
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Type I: nnn compositions
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coding type II

Following the same procedure as for type I, we performed 9 × 14 = 126 experiments using coding
type II. Each experiment is run with seven different random seeds, and we study the mean value of
their resulting cost. We show in Fig. 4.5 and Fig. 4.6 the graph of comparison for each experiment
individually; then in Table 4.6, Table 4.7 and Table 4.8 the comparison of the fourteen problems
altogether. We summarise here some of the observations:� population size equals to 500 yields the worst result in 30/(3 × 14) = 71% of the cases (Ta-

ble 4.7). A causal factor is the fixed number of evaluations, the number of generations decreases
as the size of the population increases.� Studying the mean F.A. of the fourteen problems in Table 4.8, together with the quality of the
results, we can conclude that bigger populations have higher potential in solution improvement,
but their solution quality improves slower than small populations.� the F.A. for type II as shown in Table 4.8 are significantly better than the same experiment
performed for type I in Table 4.5.� population size of 200 is the best configuration in 27/(3 × 14) = 64% of the cases, if we only
consider the population size (border table in Table 4.6). This fact alone may lead us to believe
that 200 is the most suitable configuration, however, small population size is shown to stall
easier than big populations3. So we chose the population size to be 300, because it is the
second best after 200 and the other alternative 500, is showing too many worst configuration
(Table 4.7).� we observed that the most consistent mating pool size for a population of 300 individuals is
to use 50% of the total population (Table 4.6).

As a result, we fix the configuration to population size equals to 300, mating pool size equals to
150, for this series of composite problems (AA, ..., GGG).

3A known theoretical result and confirmed in some of our undocumented experiments with larger populations.

40



Type II: Best configuration counting

population size
for fixed P.S.

200 300 500

mating pool size
30% 6 0 0 18
50% 1 2 0 13
80% 4 1 0 11

for fixed M.P.S. 27 12 3

Table 4.6: Each of the fourteen test cases (AA,..,GGG) yields nine combinations of parameters
(14 × 9 = 126 experiments in total). In this comparison, we account the best configuration among
the mean best cost of 7 different runs for each experiment. The central table shows the frequency
a certain combination being the best among the nine possible combinations, for a same test case;
the table on the right border compares mating pool size for fixed population size, therefore, each
entry is the best configuration among three possible options; the table on the bottom compares the
population size for fixed mutation rate.

Type II: Worst configuration counting

population size
for fixed P.S.

200 300 500

mating pool size
30% 0 2 2 14
50% 0 0 4 14
80% 0 0 6 14

for fixed M.P.S. 2 10 30

Table 4.7: The same as Fig. 4.6, but showing the worst case.

Type II: First appearance of the last solution

Pop. size mean F.A. in # of generations total # of generations F.A. in percentage
200 21661 25000 86.7%
300 14722 16666 88.3%
500 8939 10000 89.4%

Table 4.8: F.A.=first appearance of the best solution.
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Type II: nn compositions
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Type II: nnn compositions
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4.3.2 Comparing type I vs type II

Using the same set of collected data, we can perform a first series of comparison between the codings
of type I and type II. In this comparison, the number of evaluations was fixed to 5 million and we
chose for each problem the best result among the nine combinations of parameters (see Table 4.9
for there values). With best configuration, we refer to the entries that scored in the central table in
Table 4.3 and Table 4.7. We can observe a dominance of type II over type I in 100% of the cases.
The measure A.Q. above R.S. can tell that coding of type II outperformed type I in more than 50%
of quality in almost all the cases. We can also observe that for some cases, type I resulted in less
than 10% of A.Q. above R.S., it means that it was only barely better than random search. These
facts leaded us to discard type I and concentrate the study on type II.

Type II vs Type I

Case
mean best

Type I Type II

AA 6633.86 96.14

FF 14135.14 2145.86

BB 10111.14 592.86

EE 16631.57 5724.57

GG 14370.71 5333.29

CC 14693.14 1918.71

DD 58996.00 7727.14

AAA 39259.00 2869.71

FFF 93156.00 24129.57

BBB 62760.86 23089.57

EEE 112096.29 48011.00

CCC 90483.71 39427.71

GGG 100862.00 47253.29

DDD 311723.43 98272.14

Case
A.Q. above R.S.

Type I Type II

AA 08.5877% 99.8584%

FF 13.2161% 87.4026%

BB 20.6762% 96.1702%

EE 23.6723% 74.1163%

GG 28.3112% 73.6661%

CC 20.9884% 90.3430%

DD 14.5385% 89.1657%

AAA 10.1203% 93.7047%

FFF 13.1550% 77.6193%

BBB 04.8521% 65.1538%

EEE 06.0417% 59.8497%

CCC 09.7479% 60.7916%

GGG 10.2337% 58.0061%

DDD 10.5680% 71.8899%
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Table 4.9: Number of evaluations fixed at 5 million, the table (upper part) and the graph above
shown compare the mean best result from codings type I and type II. Lower table shows the A.Q.
above R.S. for both codings.

4.3.3 About random search

The following are results obtained from a random search4 of 5,000,000 to 180,000,000 evaluations
(of the objective function), we report the mean value of the best cost from seven different runs using
seven different seeds in the pseudo-random generator. As we are using the best solution obtained
from random search as a component in our A.Q.’s formula, we show some of their values as reference
for the reader in Table 4.10, Table 4.11 and Table 4.12.

For our test suite, random search didn’t yield good result, this fact can be observed in Fig. 4.7.
There we can see that the result from a random search of up to 180,000,000 evaluations is still some
order of magnitudes away from the optima cost. Although the probability of reaching the optima is
not zero, the improvement rate is just too low. Remember that the experiments have a huge solution
space size, and the sampling is done for an insignificantly tiny portion of it.

4An uniform sampling with replacement.
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Random search - 5,000,000 evaluations

best result cost worst result cost
name best mean σ mean σ
AA 7249 8854.57 920.04 43036.57 285.96
FF 16271 19386.57 1580.87 77558.14 1484.51
BB 12718 13691.00 546.66 52791.57 763.13
EE 21750 22651.14 753.29 84853.14 1262.03
GG 20012 20570.86 492.67 77197.71 1113.84
CC 18559 19661.00 613.46 63174.29 992.58
DD 68984 72918.29 1892.79 225678.57 4706.59
AAA 43665 45873.86 2028.20 114268.86 347.24
FFF 107242 108336.14 737.25 224801.43 2909.38
BBB 65953 73300.43 3179.27 154785.14 665.98
EEE 119292 126274.43 3664.07 256931.71 3759.94
CCC 100234 103162.71 1666.28 196899.14 2483.64
GGG 112346 115497.86 1815.31 229969.86 2251.71
DDD 348509 352399.71 3664.20 647006.14 6225.28

Table 4.10: Statistics of the best and worst solution appeared in the seven different runs of random
search with 5,000,000 evaluations of the objective function. Results ordered by size of the solution
space.

Random search - 30,000,000 evaluations

best result cost worst result cost
name best mean σ mean σ
AA 6589 7149.43 412.30 43406.00 291.58
FF 16274 18000.00 1066.51 79714.86 830.64
BB 12718 13045.29 450.69 53756.43 724.13
EE 19217 20901.00 1079.22 86654.29 405.58
GG 19180 19308.00 199.86 80434.00 1281.46
CC 17903 18234.43 247.98 64737.00 147.39
DD 61760 68795.43 3035.44 229097.43 3270.11
AAA 43665 44635.00 772.69 115022.14 364.93
FFF 102841 103559.00 781.51 226248.43 1781.25
BBB 65953 71860.00 2543.76 157756.00 626.59
EEE 119292 123010.71 2687.15 262437.86 2825.59
CCC 100234 100735.43 447.79 199794.14 2027.90
GGG 109165 111523.29 1652.32 234307.14 1622.24
DDD 341367 344171.14 2318.81 648819.71 4973.85

Table 4.11: Statistics of the best and worst solution appeared in a random search of 30,000,000
evaluations of the objective function. Results ordered by size of the solution space.
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Random search - 180,000,000 evaluations

best result cost worst result cost
name best mean σ mean σ
AA 6589 6963.29 275.41 44001.71 154.40
FF 16208 16463.00 599.29 80554.00 292.31
BB 11122 11798.43 427.81 54489.57 8.58
EE 19209 19212.14 4.97 87259.43 668.35
GG 16690 17044.86 561.08 81160.00 762.11
CC 15998 16084.86 137.33 65738.14 576.89
DD 61760 63802.29 3229.14 235817.71 3.61
AAA 39343 41812.14 1671.86 117089.29 218.02
FFF 99020 98216.29 1990.75 229763.71 1634.04
BBB 65953 69645.00 1970.30 159465.00 859.02
EEE 119292 121483.57 1075.37 265057.71 1934.07
CCC 94942 97356.43 1588.61 202823.00 1738.03
GGG 107906 108993.86 740.05 239361.43 2653.74
DDD 325056 334130.43 6365.35 655514.57 2328.96

Table 4.12: Statistics of the best and worst solution appeared in a random search of 180,000,000
evaluations of the objective function. Results ordered by size of the solution space.

Random search vs Optima
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Figure 4.7: Comparison in logarithmic scale showing how R.S. yields results 2 to 3 orders of mag-
nitude away from the known optima in our test cases, and the difference between R.S. of different
number of evaluations.
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4.3.4 Comparing against random search

Using the mean result of different runs with different random seeds, Fig. 4.8 shows the cost in
logarithmic scale of the results from random search and genetic algorithm using coding of type II.
We can observe that for the first half of the test suite -smaller instances-, G.A. of 90M evaluations
yields results within the same order of magnitude as the known optima, and it performed better in
all the cases comparing against random search, even for evaluation of 30M in gaII against random
search of 90M. To be better than random search is not an attractive news, to check how far does
G.A. reach in the segment between R.S.’s result and the optima cost, we study Fig. 4.9. There we
can observe that in 6/14 = 43% of the cases the approximated quality above random search was
above 95% for a G.A. with 90M evaluations. And in the worst case, it was only above 65% of A.Q.
above R.S. We can also see that the efficiency was lower for bigger problem instances.

These results are not good enough, as we can see that bigger instances in the test suite are two
to three orders of magnitudes away from the exact solution, and the number of generation required
is very big.

Type II vs Random search - log10(best cost)
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Figure 4.8: Comparison in logarithmic scale showing the improvement rate in random search of 30M
and 90M evaluations against genetic algorithms of 30M and 90M evaluations (type II coding).
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A.Q. above R.S. for type II
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Figure 4.9: A.Q. above R.S. showing the quality of solution compared to random search of same
number of evaluation. 0% is assigned to solution from random search, while 100% is assigned to
optimal cost.

Among the literature about evaluation of stochastic search methods, we found the study of
runtime distribution (RTD) as in [Hoos 04], it is a three dimensional graph in which the runtime, RTD
solution quality and probability are shown in the three axis. To construct a RTD graph, a large
number of test cases should be considered, for which the evolution of the solution quality over runtime
is recorded. Then for each pair of (s=solution quality,r=runtime), the probability is calculated by
checking the number of test cases that got a solution quality higher than s while the runtime is
equals to r.
We found RTD quite useful as it gives us some insight into the evolution of the solution quality as
increased among of time is invested in the solving. The 3D graph of RTD is a very compact way to
express many different aspect of the heuristic. In this part of the experiment, we used the same 14
composite problems and 7 random seeds, and trace the evolution of the best individual in different
generations.
Notice that the RTD in use is not exactly the one presented in [Hoos 04], but a modified version of
it. At the first place we used number of objective function evaluation as time measure. Secondly,
we replaced the traditional quality with A.Q. above R.S., and in particular we take the mean result
(from 7 different seed) of a random search with 180M evaluations as the basis of comparison for all
the data in RTD. The latter is more flexible than the dynamic A.Q. above R.S., and it allowed us
to change the grid size without recalculating the intermediate results from R.S., as the stored data
from R.S. were sparsely selected.
One consequence of these changes is that for small number of evaluations, the result from G.A.
will yield a negative A.Q. above R.S., and as we can observe in Fig. 4.13. When the number of
evaluation is close to zero (first curve next to the right border), the quality is below zero and lower
extreme has higher probability. But in the next curve -3M evaluations-, we get results higher than
40% of A.Q. with 100% probability (more clearly shown in Fig. 4.14), it means that the proposed
G.A. outperforms a R.S. of 180M evaluations, with less than 3M (to be more detailed, we found out
that our G.A. with 210,000 evaluations already outperforms R.S. of 180M, for this test suite).
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4.3.5 Enters pre-processing

Trying to improve the results, we continue our experiment by adding pre-processing. In particular,
we found one that works well, instead of generating the initial population randomly, we can try
to optimise demands individually and then include the combination of those solutions somehow in
the first generation. Fig. 4.10 shows the comparison in logarithmic scale of genetic algorithms with
and without pre-processing, it is clear that both the number of generations and the quality of the
solution improved with pre-processing in all the test cases. In this series, the demands are treated
individually in the pre-processing, if the solution space is smaller than one million, then exhaustive
search is applied; otherwise, a G.A. of 600,000 evaluations is applied. Then we choose one solution in
each demand to compose a special solution, which is included into the initial population (all others
are generated randomly). This pre-processing is an effective way to accelerate the search. We can
observe that the A.Q. above R.S. greatly improved even when using a smaller number of generations.
For 30 million evaluations, all cases yielded above 90% of A.Q., see Fig. 4.11. And for the first half
of the test suite -smaller instances-, the A.Q. reaches 99% in a consistent way.
One explanation for the lower A.Q. observed in bigger instances is because of the fixed number
of evaluations assigned to the pre-processing initialisation. For bigger instances, even when the
problem has a unique demand, the solution space is much larger than smaller instances. Therefore,
the limited and small number of evaluations yields a poor initial population in comparison when
it is applied to smaller instances. Remember that the problem with one single demand is already
NP -hard.
We observe from Fig. 4.11 that the improvement obtained by increasing the number of evaluations
is quite small for bigger instances. But on the other hand, the quality obtained by using only 30M
evaluations is already much better than G.A. without pre-processing.

With vs Without pre-processing - log10(best cost)
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Figure 4.10: Comparison in logarithmic scale showing the improvement rate of genetic algorithms
with and without pre-processing of 30M and 90M evaluations (type II coding).
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We also compared coding of type I and type II with pre-processing included (see Fig. 4.12), the
latter outperformed the former in most of the cases. Type I only performed better in 2/14=14%,
and in those cases the difference in solution quality are very small, on the other hand, type II yielded
solutions up to one or two orders of magnitude better than type I (take case CC in Fig. 4.12 as an
example).

With the usage of runtime distribution graph, we can compare more easily both solution methods,
we show them in the same scale Fig. 4.13, Fig. 4.14 and Fig. 4.15.
By studying Fig. 4.14, we can observe that there is a clear dominance of pre-processing with 3M
over the simple one with 120M evaluations (yellow line in the upper figure vs blue line in the lower
one), and even the 0-th generation from the former one gives with almost 30% probability a solution
with A.Q. above R.S. of 99.9% (black line in lower figure). And for the case with pre-processing,
the increase in A.Q. above R.S. become poor as the number of evaluations increases. But the fact
that it manages to outperform the simple version makes it a better alternative, especially when it
requires a much lower number of evaluations to do it.
Then, in Fig. 4.15 we can study the portion of the experiment and the achieved A.Q. above R.S.
as the number of evaluations increases. The most important information here is the evolution of
the portion of high quality results. For instance, we can compare the curve of 99.9% A.Q. above
R.S. (purple line in both graph), for the simple G.A. it evolves from 0% up to below 30% in 120M
evaluations. On the other hand, with pre-processing it begins just below 30% and almost reaches
99.9% in 90M evaluations. The lowermost (yellow) curves in both graphs from Fig. 4.15 correspond
to the portion of cases reaching exact solution, we can see that with pre-processing we got a higher
portion than without it.
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With vs Without pre-processing - A.Q.
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Figure 4.11: A.Q. above R.S. showing the improvement in quality of genetic algorithms with and
without pre-processing of 30M and 90M evaluations (type II coding).
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Runtime Distribution for type II
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Figure 4.13: Without pre-processing above, and with it below. A.Q. above R.S. is taking R.S. of
180M evaluations as basis of comparison. We included the coordinates of two points in the lower
graph in an attempt to aide its interpretation as there is an ambiguous visual effect.
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RTD - for fixed number of evaluations
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Figure 4.14: Without pre-processing above, and with it below.
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RTD - for fixed A.Q. above R.S.
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RTD for type II - number of evaluations fixed
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Chapter 5

Conclusion

5.1 When does a problem become hard?

What makes an optimisation problem hard to solve? Let’s consider the following factors that are
known to be hard for a G.A. and solvers in general:� huge solution space size together with tiny portion of optimal solutions� many local optima,� deep local optima.

Notice that one condition alone is not enough to make a problem hard, for example, a convex
(continues) function with a huge solution space which has one single deep local optima is not hard
to optimise with G.A. or most other local search heuristics. But all the three conditions above
altogether do make the problem complex, and G.A. require a large number of iterations (generations)
to overcome it, which directly translates into long run-time.

5.1.1 About the solution space

The solution space in the problem under study in this work is the Cartesian product of sets, where
each set is the solution space of one demand. Moreover, for a single demand, the size of its solution
space increases with its hop-limit and the number of nodes in the graph |V |.

The size of the solution space presents a hill’s shape when the diversity factor K (number of

node-disjoint paths) varies (check Fig. A.10); there exists a region K ∈ [1, |V |
R

], in which the volume
under the hill’s surface is many orders of magnitudes away from the one outside. Moreover, R takes
values from 2 to 3 for |V | ranging from 10 to 40, and R increases slowly as |V | increases. The latter
is caused by the increasing difference in orders of magnitudes between the peak of the hill and values
outside the region, as the number of nodes |V | increases. On the other hand, as the hop limit H
increases, the size of the solution space also increases, and with monotonicity.

We are working with the assumption that there exists a high cost capacity type for each link
as explained in the previous chapter, and under this assumption, the solution space is invariant to
the other configuration of capacity types. And for complete graphs, the solution space is a function
that depends only on the number of nodes, the number of demands di, and their associated diversity
factor Kdi

and hop limit Hdi
. In real life problems, the most likely scenery is to have many demand

pairs, but for each pair there will be a low diversity factor (K) ranging from two to four; with a
hop limit much lower than |V |/2; and cost of the different link types depending on the map distance
of the involved nodes (therefore complete graph is meaningful). In other words, those problem
instances are among the smallest that one can build with the same number of nodes and demands.

5.1.2 About local optima

Reviewing the results in the last chapter, we can see that G.A. with pre-processing tends to arrive
to a good local optima quickly, but after some improvements in the first series of generations, it
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stalls and becomes hard to improve (staying in the same result for a large number of generations).
This behaviour is caused by local optima, which in turn are related to the coding we designed.

The day when someone finds out how to codify (encode and decode) efficiently solutions of this
problem, in such a way that the cost function is monotone, then this optimisation problem will be
solved by just decoding the most economic solution. Or even when there is only one single local
optima (convex minimisation or concave maximisation), then we can apply local search to solve it.
Unfortunately, the coding we propose here hasn’t got those nice properties, and it has many local
sub-optima.
By studying the local optima in which the G.A. takes a lot of generations to escape from or in those
it fails to escape. We observed that deep local optima appear when a bad link (read sub-optima
link type with big capacity step) is shared by many demands. Different strategies were tried in the
fitness function, among them we find:� replacing step cost/capacity function with piecewise linear function;� replacing step cost/capacity function with piecewise concave function;� replacing step cost/capacity function with piecewise convex function.

For concave functions, the variation of cost is high for low capacity saturation, and low for high
saturation. In this way concave functions penalise the usage of low saturation over high one, as
opposite to convex functions, see Fig. 5.1. They offered no clear improvement over the usage of step
cost function, one of the reasons is that any optimal solution can have high and/or low capacity
usage, penalising them may mislead the G.A. For the case of piecewise linear substitute, it promotes
the usage of many different arcs which translates into expensive solutions in the original step cost,
to be effective, a more intelligent discretisation mechanism is required.

cost

capacity

cost

capacity

cost

capacity

cost

capacity

Figure 5.1: Step, piercewise linear, concave and convex function, check the variation of cost for
different capacity usage.

5.2 Summary of the thesis

In Chapter 2 we presented a list of interesting problem in the area of network design, and in Section
2.4.3 we defined our network design problem which contains some of the most interesting design
objectives, but then its complexity is very high. To the best of our knowledge, this problem as it
is presented here, has not been proposed previously, but there are a number of very similar prob-
lems treated by other authors (like in [Botton 07]) which confirms the interest of this problem in
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the community. Begin a problem too hard to solve with an exact approach (with nowadays knowl-
edge), we adopt a heuristic approach, and the chosen heuristic is genetic algorithms. The choice
of genetic algorithms is motivated by literature where we found good results for other hard combi-
natorial problems. The latter also motivated the development of our G.A. library, namely GGEngine.

During the development of a coding for the G.A. in Chapter 3, we discovered that to encode and
therefore enumerate the solution space is intractable for generic graphs. [Bley 97, Itai 82] proved
that SFP is NP -complete, and as the existence of an efficient K-path enumeration for generic graphs
may be used to solve SFP directly, we arrive to the conclusion that such enumeration can not be
done efficiently (in polynomial time) unless P = NP . Also from [Allender 99, Valiant 79] we learned
that the number of simple path (s-t path with s,t fixed) in a directed graph is #P -complete, in other
words, it is hard even to count the number of paths when we have only one single demand without
hop-limit and K = 1. All these theoretical limitations force us to limit the coding to complete graph,
which is an acceptable simplification for network design.

By studying the combinatorial structure of K-paths and H-limited K-paths, we managed to
develop a coding (Appendix A) which maps H-limited K-paths to natural numbers, in a bijection.
The aforementioned coding has the interesting properties of being always feasible (with respect to
the hop-limit and path diversity constraints), and represents the whole solution space without rep-
etitions. In this study we focus on the TC-DHK problem, but we remark that the developed coding
can also be applied in other problems with hop-limited K-paths as decision variables, one example
is TC-DHK with a linear cost per edge capacity usage. One of the by-products of the combinatorial
analysis is a number of tree structures with interesting properties. Later on, we found out that
permutation tree and binomial tree (Appendix A.3.1) are already known in the literature. But we
couldn’t find any reference to the structure we defined as the bounded binomial tree (Appendix
A.4.1), which leads us to believe strongly that it is an original contribution.

Before being able to compare the different solutions, we evaluated the different traditional mea-
sures, and ended up defining “A.Q. above R.S.”, which is more consistent and robust than the other
traditional alternatives. We also found the RTD graph to be a compact and useful tool in the
comparison of stochastic search algorithms.

We tested the proposed solution in Chapter 4, by first determining the most suitable values for
the different parameters to use. Some other authors consider the large number of parameters in G.A.
a disadvantage, and in this work we managed to adjust some of them dynamically, reducing in some
degree the number of parameters. We then proceeded to compare the two proposed codings, type
I and II, the result is that type II always gave better result in all the experiments. But the results
so far were not acceptable as the algorithm required a very large number of evaluations. As an
attempt to improve it, we experimented with the addition of a pre-processing step, and we managed
to develop one that achieves better results in a much lower number of evaluations. The latter is the
final solution method that we propose (G.A. type II with pre-processing), it outperforms the other
alternatives in quality and to requires a relatively small number of evaluations.

The usage of pre-processing has the effect of advancing the evolution in the first step, saving
a large number of generations; it is also a well known technique to accelerate the evolution. But
later on the improvement in each generation remains very low. This shows a limitation in G.A., to
improve further the solution quality, some mechanism to increase the diversification or even other
optimisation techniques should be considered.

Although this work has not ended with a best-ever solution method for the proposed problem,
we started here a first step that provides a basis of comparison so further research can be done for
this network design problem. At the same time, good upper bounds are useful in combination with
many other optimisation techniques, and the proposed G.A. with pre-processing and fitness caching
can give such bound. Being a generic version of other complex problems, any advance here has a
direct contribution to the other special cases. Moreover, further improvements can be done in the
proposed solution.
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Appendix A

Enumerating H-limited K-paths

A.1 Introduction

“Enumerate” is the verb to name things on a list one by one, mapping each element with an
identification, and it can be done easily when there is an order defined over those elements. At
first sight, there isn’t any natural or intuitive ordering for the case of node disjoint paths on a
complete graph, and here we present an algorithm to map this kind of elements to identifications
(together with its reverse mapping). Such a mapping is useful under many different situations, like:
the application of genetic algorithms when the decision variable of a certain problem is a set of
node disjoint paths1 ; or the generation of solutions for a brute force approach2; or just when the
exact size of the solution space is to be determined. Some algorithms solve this kind of mapping by
generating systematically solutions, in our approach, the mapping is done directly without need for
solution generation. Additionally, we present an extension of the result for node disjoint paths with
hop limit.

A.1.1 Some general definitions

By G(V,E) we denote an undirected graph which is a pair of sets V and E, where V represents a G(V,E)
non empty set of vertices and E represents the set of edges that are drawn between pairs of vertices. set V

set EIn this work will use vertices and nodes as synonymous, the same for edges and links. The cardinal
number of a set S is referred to by |S|. | |

A path is a sequence of nodes, without repetitions (no cycles or loops). An origin to destination
or source-target (s-t) path is one that begins with a given source node s and ends with a given s-t path
destination or target node t. Paths that don’t share any intermediate nodes are called node-disjoint
paths. Paths that don’t share any edges are called edge-disjoint paths (in an undirected graph).
In this work an s-t K-path, or K-path in short corresponds to a set composed of K node-disjoint K-path

s-t K-paths− t paths. Moreover, a hop limited K-path is denoted as H-limited K-path, where H is a natural

H-limited
K-path

number denoting the maximum number of hops. We represent a path as a list of node identifications,
and denote the concatenation operations for list with : (the colon mark3).

By encoding we refer to a transformation Θ : A → B which transforms each element of the set
encoding

A into a different element of the set B. Here, the set A is the set of K-paths for a given K and
given s − t node pair, and B is a subset of natural numbers N. The reverse operation is called
decoding Θ−1 : B → A, for each element in B it returns the corresponding element in A such that decoding
Θ−1(Θ(a)) = a, ∀a ∈ A. In the general case, it is possible to have |B| ≥ |A|, but for bijection it is
|A| = |B|.

1In this case, an encoding/decoding function is required to map a solution with a gene, and it’s easier to map
natural numbers to genes than mapping paths to genes.

2This is viable only for tiny solution spaces
3The colon mark is used as concatenation operator for list operation, and range operator in Matlab codes.

59



A.1.2 Conventions used in the article

In the present article, we are working always with complete graphs G(V,E), and we consider two
natural numbers H,K < |V |. It has been proved that there is no efficient way to find a H-limited
K-path in a generic simple graph, unless the complexity class P equals to NP [Bley 97, Itai 82].
Therefore, we consider the limitation of working with complete graphs acceptable.
We exclude loops and the direct path s to t (of one single hop) in the enumeration of K-path and
H-limited K-path. Later on, in Section A.4.4 we will lift the no direct s to t path restriction, but
during the rest of the article, this restriction will help to simplify the explanations.
We consider all the nodes in V labelled and arranged according to a total order, most of the times
we are interested in the set V ′ = V \{s, t} and without loss of generality we can label the nodes in
V ′ as {n1, n2, .., n|V |−2}, in this way, the i-th node is referred to the index i of such arrangement.
When naming the levels of a tree, we call level zero to the root level of a tree, so level one is the
following one.
Observe that to have a maximum of H hops in a path is to have a maximum of B = (H − 1) B
intermediate nodes (without counting origin and destination nodes).

A.2 Enumerating single paths (K = 1)

We are interested in mapping paths to natural numbers (and its reverse mapping), let’s start with
the simple case where K = 1, this section deals with single s-t paths. Without s and t, there will
be |V ′| = (|V | − 2) vertices. In a complete graph, there are many s− t paths, but there are only:� |V ′| paths with exactly one intermediate node, those paths have two hops,� |V ′|(|V ′| − 1) paths with exactly two intermediate nodes, those have three hops,� and exactly |V ′|!

(|V ′|−i)! paths for the case of i intermediate nodes, those have (i + 1) hops.

We can model this situation with a rooted tree of |V ′| levels, its nodes are labelled after those |V ′|
vertices. Each node in the i-th level represents a path with i intermediate vertices, leaving (|V ′|− i)
unvisited vertices, which are the possible labels for its children. To define its structure, let’s arrange
all the children under a common parent in an ascending order form left to right. Fig. A.1 shows an
example of a tree with (|V ′| = 3) three labels.

The idea is to assign a unique identification for each of those s− t paths, and an easy way to do
it, is in a breadth first fashion. The number next to each node in Fig. A.1 is its assigned identifier.

1 2 3

n1 n2 n3

n2 n3 n1 n3 n1 n2

n3 n2 n3 n1 n2 n1

4 5 6 7 8 9

10 11 12 13 14 15

Figure A.1: Breadth first enumeration for a single-path-graph with 3 nodes.

This tree has some interesting properties:� it has |V ′| levels,� all nodes in the same level branch in the same number of children,
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� every node branches into one less child than its parent, and so, level i has |V ′|!
(|V ′|−i)! nodes,� every path or sequence of vertices (without cycle or repetition) is mapped to a specific node.

A.2.1 Encoding/decoding paths with exactly H hops - Θ1/Θ
−1
1

Consider A1 as the set of s− t acyclic paths in G with exactly H hops, observe that each path has
B = (H−1) intermediate nodes, and each path can also be considered as a permutation of B nodes.

To construct such paths, from a set of |V ′| possible intermediate nodes, there are |A1| =
|V ′|!

(|V ′|−B)! A1

different ways. When we design the encoding, we are also designing the neighbourhood’s structure

for the solution space A1. We choose B1 as the range [1, |V ′|
(|V ′|−B)! ] of natural numbers, and distribute B1

paths with the same prefix among a same range. Our study reveals that we can map a path with
exactly H hops or in other words B intermediate nodes, into the B-th level of a permutation tree
with |V ′| nodes on the first level.
encode: Θ1 : A1 → B1 Θ1� {input: P [1 : B] an array with a permutation of B labels from V ′}� L = (1, .., |V ′|) a list; [l, u] = [1, |A1|]� for lev = 1 : B do

– {divide [l, u] into (|V ′| − lev + 1) partitions of the same size}4

– j = the position of P [lev] in L

– [l, u] = the j-th partition of [l, u]

– {remove L[j] from L}� {output: l (note that l equals to u at this point)}

decode: Θ−1
1 : B1 → A1 Θ−1

1� {inputs: id ∈ [1, |A1|] an identification, H the number of hops}� P = () an empty list; L = (1, .., |V ′|) a list; B = (H − 1); [l, u] = [1, |A1|]}� for lev = 1 : B do

– {the range [l, u] is divided into (|V ′| − lev + 1) partitions of the same size}

– {determine j such that the j-th partition is the one that contains id5

– P = (P : L[j]) concatenates L[j] at the end of P

– {remove L[j] from L}

– [l, u] = the j-th partition of [l, u]� {output: P}

A.2.2 Encoding/decoding paths without hop limit (H = |V ′|+1) - Θ2/Θ
−1
2

Consider the set of all s − t acyclic paths in G as A2. Observe that those paths can be classified A2

according to the total number of intermediate nodes they contain, thus |A2| =
∑n=|V ′|−1

n=1
|V ′|!

(|V ′|−n)! .

We choose B2 as the range [1, |A2|] of natural numbers. We choose to divide the full range of B2 B2

into sub-ranges and place paths with the same number of hops into a same sub-range, inside each
sub-range the coding Θ1 is used. Once again it can be explained with the help of a permutation
tree with |V ′| nodes on the first level, the proposed coding enumerates each node of the tree in a
breadth first fashion (level by level like in Fig. A.1).
encode: Θ2 : A2 → B2 Θ2

4Notice that each partition contains exactly (|V ′| − lev)! numbers; if |V ′|! is available initially, then this step can
be done with only 1 division to get the size of partition, 1 multiplication to set u and 1 subtraction to set l.

5Done by one single division
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� {input: P [1 : B] an array with a permutation of labels from V ′}� u = 0� for i = 1 : (B − 1) do

– {size = |V ′|!
(|V ′|−i)!}

6

– u = u + size, accumulates all the previous sub-range� id = u + Θ1(P ), reusing the encoding for paths with exactly H hops� {output: id}

decode: Θ−1
2 : B2 → A2 Θ−1

2� {input: id ∈ [1, |A2|]}� l = 1; h = 1;� while (id >= l) do

– {size = |V ′|!
(|V ′|−i+1)!}

7

– l = l + size

– h = h + 1� l = l − size� P = Θ−1
1 (id− l + 1, h), a path with exactly h hops� {output: P}

A.3 Enumerating K-paths (K ∈ [1, |V ′|], H = |V ′|+ 1):

The case where K = 1 was quite simple, because each arrangement or permutation determines a
unique path and the enumeration of all the possible arrangement can be done systematically, but
unfortunately this property doesn’t hold for K ≥ 2. Because for a given arrangement of N vertices,
if 1 < K < N , then many different K-paths can be constructed. Remember that we consider a
K-path as a set of K paths, or collection of K different paths where the order is ignored. Let’s
explain it with the following example, consider a complete graph with five vertices (K5):

The following 2-paths are the same for us (remember than we are omitting the source and the
target nodes):� < n3 > < n1, n2 > ← denotes the 2-path < s, n3, t >, < s, n1, n2, t >� < n1, n2 > < n3 > the same set, because the order is ignored

But the following are 6 different 2-path� < n1 > < n3, n2 >� < n1 > < n2, n3 > a different set, because the order inside its elements is different� < n2 > < n3, n1 > in particular, the same 3 vertices can generate (2× C3
2 ) 2-paths� < n2 > < n1, n3 > C3

2 ways to combine them, and each way generates 2 of them� < n3 > < n2, n1 >

6Done with one single multiplication.
7Done with one single multiplication.
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� < n3 > < n1, n2 >

The principal difficulty is to enumerate them with unique identifications (a bijection), to do it, we
have to find a way to group identical K-paths together and enumerate them systematically. To solve
this problem, we follow an idea like in the 1-path case, but using two kinds of trees. In the first place,
we have the binomial tree, which is used to identify, arrange and enumerate combinations. Then
in the second place, the permutation tree, which can be used to identify, arrange and enumerate
permutations. Before exploring the details of the enumeration, we present the two structures and
some of their properties.

A.3.1 Structures

The Binomial tree:

By “Binomial Tree of N nodes on the first level” we refer to a rooted tree with N nodes in the first
level labelled as {n1, n2, ..., nN}, and each node ni has (i− 1) branches, whose children are assigned
smaller labels {n1, n2, ..., n(i−1)}. In Fig. A.2 we show an example of binomial tree of 5 nodes on
the first level. By assigning an ordering to the labels, we can also order the binomial tree so each
node has its children labelled increasingly.

Properties of a Binomial Tree of N nodes on the first level:� it has N levels,� there are CN
l nodes in the l-th level,� paths from the root to any leaf contain nodes labelled in decreasing order,� there is a bijection between any subset of {n1, n2, ..., nN} and nodes in the binomial tree

(example: the node n1 in the branch root − n4 − n2 − n1 corresponds to the set {n4, n2, n1}
in Fig. A.2). Moreover, we can map subsets of the same cardinality to the same level of the
tree (example: subsets of cardinality 3 are mapped to the 3rd level of the tree in Fig. A.2).� a binomial tree with N nodes on the first level can be constructed using two copies of a binomial
tree with (N − 1) nodes, by adding an edge, see fig Fig. A.3.� the number of nodes in a binomial tree with (N + 1) nodes in the first level is exactly twice
the number of nodes in a binomial tree of parameter N .

By knowing the number of nodes in the first level, we can map a given set of labels to a node.
And by ordering the branches of each node according to their labels, we can assign a well determined
order to each node. Therefore, the number of nodes in a given level of the binomial tree that precedes
a particular one can be calculated easily.

After a more detailed literature reviewing, we found that the structure binomial tree has already
been defined previously, and its properties were also presented in the literature [Cormen 04].

The Permutation tree:

By “Permutation Tree of N nodes on the first level” we refer to a rooted tree with N nodes in the
first level labelled as {n1, n2, ..., nN}, and if we follow the nomenclature of a family tree, then we
can say that each node has as many children as siblings8 it has. Moreover, each label in the sibling
of a node does appear once and only once in its children. An example of a Permutation Tree of 4
nodes on the first level is shown in Fig. A.4.

Properties of a Permutation Tree of N nodes on the first level:� it has N levels,

8Nodes in the same level of hierarchy, originated from the same parent node. A node is not sibling of itself.
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Binomial Tree of 5 nodes on the first level

n1 n2 n3 n4 n5

n1 n1 n1 n1n2 n2 n2n3 n3 n4

n1 n1

n1

n1 n1 n1 n1

n1 n1 n1

n1

n2 n2 n2

n2

n3

Figure A.2: Each node represents a subset; each level represents all the possible combinations of a
given size or cardinality.

Construction of a binomial tree of (N + 1) nodes on the first level

Figure A.3: Two copies of a binomial tree with N nodes on the first level and an edge is all needed
for the construction of another one with (N + 1) nodes on the first level.
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Permutation Tree of 4 nodes on the first level

Figure A.4: Each leaf represents a permutation of N = 4.� all the nodes on the same level share the same number of branches,� all non-root nodes have one less branch than their parent,� the N -th (last) level or the level of leaves has exactly N ! leaves,� for 0 ≤ l ≤ N , the l-th level has exactly N !
(N−l)! .� all the possible permutations can be obtained by taking each one of the leaves and travelling

backwards to the root.

By assigning an ordering to the labels, we can also order the permutation tree so each node has its
children labelled increasingly. We found in [Kruse 84] another definition of permutation tree, one
that has a different node labelling, while having most of the properties listed here.

The Cycle tree:

As a by-product in the study of permutation tree, we developed a way to enumerate cycles. Notice
that each cycle of (N+1) labels can be written as (N+1) different shifted permutations, furthermore,
each shifted permutation can be represented by two permutations considering clockwise or counter
clockwise ordering, therefore the number of different cycles containing (N + 1) labels is N !

2 . With
“Cycle Tree of N nodes on the first level” we refer to a permutation tree with N nodes on the first
level, with an additional ordering constraint over two of the nodes. The ordering constraint removes
permutations, in which, a given node appears after another. For example, if we declare that n1 must
precede n2 when visiting from root to leaves, we have the cycle tree of 4 nodes on the first level as
shown in Fig. A.5.
By assigning an ordering to the labels, we can order the cycle tree so each node has its children
labelled increasingly.

Properties of Cycle Tree of N nodes on the first level:
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Cycle Tree of 4 nodes on the first level, with n1 < n2

Figure A.5: Each leaf represents a different cycle.� it has N levels,� the underlying tree structure is exactly the same as permutation tree,� when a node is removed, its sub-tree is also removed,� the ordering constraint n1 < n2 helps to remove half of the permutations of N labels. For
every accepted permutation, its reverse is rejected.� the last level has exactly N !

2 nodes,� the ordering constraint can be taken over any two arbitrary labels,� with (N + 1) labels, there are a total of N !
2 different cycles. We can leave one of the labels

apart, namely n0, and consider a cycle tree with N nodes on the first level. Each leaf matches
to a permutation of N labels, by concatenating n0 to its beginning we have a valid cycle with
(N + 1) labels.

A.3.2 The big picture:

The next set to consider is A3, its elements are sets of node-disjoint s-t paths of cardinality K (what A3

we defined as K-paths), but we exclude the direct (s-t) path for this section.
Two K-paths composed of different vertices are always different, and the set of vertices can have

cardinality from K to |V ′|. It means that the sets that map to nodes from the level K to |V ′| of a
binomial tree with |V ′| nodes on the first level are valid for the construction of K-path, moreover,
all K-path belong to one and only one node in the binomial tree.

Given a set with N vertices, we are interested in enumerating all the K-paths that can be
constructed with them. It’s the classical unordered partition problem, where a set of distinguishable
objects is to be divided into a fixed number (K) of non-empty partitions, and the way how they
are ordered doesn’t matter, but the order inside each one of them makes difference. If the set
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has N objects, there are f(N,K) = N !
K! × CN−1

K−1 different ways to divide them into K partitions f(N,K)

[Ŕıbnikov 85]. Together with the fact that there are C
|V ′|
N different ways to select N nodes from V ′,

where N is valid in the range [K, |V ′|] of integers, we conclude that |A3| =
∑lev=|V ′|

lev=K C
|V ′|
lev ×f(lev,K),

and we choose B3 = [1, |A3|] a range of natural numbers, in Fig. A.6 we show the |A3| when K B3

changes.
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Figure A.6: With |V | fixed to 20, this graph shows the number of K-paths for the different diversity
factor K (without considering the direct s-t path as valid).

We can interpret the expression of |A3| using the structures presented previously.� In |A3| =
∑lev=|V ′|

lev=K C
|V ′|
lev × f(lev,K): the factor C

|V ′|
lev can be expressed using a binomial tree

with |V ′| nodes on the first level, and its nodes enumerated in a breadth first fashion from
the K-th to |V ′|-th level. We call this tree the binomial tree of composition, each node in
the lev-th level is an abstraction of f(lev,K) different K-paths, representing all the possible
K-paths that can be constructed using that combination of nodes. Every K-path belongs to
exactly one node, and it can be identified by sorting the intermediate nodes that compose the
K-path.� In f(N,K) = N !

K! ×CN−1
K−1 : the factor N !

K! can be expressed with nodes of the (N −K)-th level

of a permutation tree with N nodes on the first level. Each node is an abstraction of a CN−1
K−1

different K-path, and represents a permutation of (N − K) labels. Note that instead of a
permutation of N nodes, the formula suggests that we leave aside exactly K nodes; this is
one of the key observations for achieving a bijective mapping. Given a K-path, first we sort it
according to the leading node of each path, then concatenate all of them but excluding the K
leading nodes, the resulting sequence is the corresponding permutation. Moreover, each node
carries an implicit information, a sequence of K leading nodes, those that are left aside from
the original N labels.� CN−1

K−1 : finally, this number represents the number of ways, in which a sequence of N labels
(with (N − 1) possible separating points) can be chopped into K parts (by assigning (K − 1)
separating marks). Each combination identifies a particular way of dividing the sequence into
a K-path. Once again we can use a binomial tree to express this factor, resulting in the nodes
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of the (K − 1)-th level of a binomial tree with (N − 1) nodes on the first level. We call this
tree the binomial tree of marks.

As we are not interested in the permutation of paths inside a K-path, we define the representa-
tive format of a K-path as: representative

< p1 : tail1 >< p2 : tail2 > ... < pK : tailK >
such that p1 < p2 < ... < pK

In other words, we arrange the K-path by the label of the first intermediate node of each path.
Later on, when the direct s-t path is admissible, the direct path is placed always in the last position
of the arrangement.

< p1 : tail1 >< p2 : tail2 > ... < pK−1 : tailK−1 ><>
such that p1 < p2 < ... < pK−1

A.3.3 Encoding/decoding K-paths without hop limit - Θ3/Θ
−1
3

In this case, elements of A3 are K-paths that don’t contain the direct s-t path, and B3 is the range
[1, |A3|] of natural numbers.

encode: Θ3 : A3 → B3 Θ3� {input: a K-path}

1. first, using the binomial tree of composition� S = a list with the labels of all intermediate vertices in the K-path sorted in decreasing
order� N = length of S� [l1, u1] = [1, C

|V ′|
N ]

– the node that we are searching for is in the N -th level of the tree, in that level there

are C
|V ′|
N nodes, each one corresponding to a different combination of vertex.� level = N� L = (N, .., |V ′|) a list� for i = 1 : N do

– divide [l1, u1] into as many partitions as the length of L (there is a bijection between

nodes in L and these partitions), such that the p-th partition has Cp+level−2
level−1 nodes

(see Fig. A.7)

– j = the position of the i-th element of S in L

– [l1, u1] = the j-th partition of [l1, u1]

– remove all the elements greater or equals to L(j) from L

– add L(1)− 1 to the beginning of L if possible* it adds the next smaller label to the beginning of the list, if there is any

– level = level − 1� [l1, u1] now contains a unique identification, and it identifies a node in the N -th level of
the binomial tree of composition.

2. to get a representative format� reorder the given K-path < p′1 : tail′1 >< p′2 : tail′2 > ... < p′K : tail′K > to get
< p1 : tail1 >< p2 : tail2 > ... < pK : tailK >, where p1 < p2 < ... < pK� P = (tail1 : tail2 : ... : tailK), a list formed by concatenating the tails of the paths

– “:” is the concatenation operator

– P is a permutation of (N −K) nodes without considering the first node of each path, it maps to a

specific node in the (N −K)-th level of a permutation tree with N nodes on the first level (which

contains N !
K!

nodes)
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� Marks = (length(p1 : tail1), length(p1 : tail1 : p2 : tail2), ..., length(p1 : tail1 : ... :
pK−1 : tailK−1))

– Marks is a list of (K − 1) numbers, those are the positions of the separation marks
for this K-path

– length(pi : taili) ≥ 1 for i ∈ [1,K − 1], because there is no direct s− t link

3. then we use the permutation tree� M = reverse of S, an increasing list� [l2, u2] = [1, N !
K! ], and i = 1� While i ≤ (N −K),

– divide [l2, u2] into (N − i + 1) partitions of same size

– j = the position of the i-th element of P in M

– [l2, u2] = the j-th partition of [l2, u2]

– remove the j-th element from M

– i = i + 1� [l2, u2] now contains a unique identification, it identifies a node in the (N −K)-th level
of the permutation tree.

4. we now use a binomial tree of marks to further refine the identification� L2 = ((K − 1),K, ..., (N − 1)), a list� [l3, u3] = [1, CN−1
K−1 ]� level = (K − 1); i = 1� While i ≤ (K − 1),

– divide [l3, u3] into length(L2) partitions, where the p-th partition has Cp+level−2
level−1

numbers

– j = the position of the i-th element of Marks in L2

– [l3, u3] = the j-th partition of [l3, u3]

– remove from L2 all element greater or equals to L2(j)

– add L2(1)− 1 to the beginning of L2 if possible* it adds the next smaller label to the beginning of the list, if there is any

– level = level − 1; i = i + 1� [l3, u3] now contains a unique identification, it identifies a node in the (K − 1)-th level of
the binomial tree of marks with (N − 1) nodes on the first level

5. The final result of this algorithm is
id = shift + (l1 − 1)× N !

K! × CN−1
K−1 + (l2 − 1)× CN−1

K−1 + l3
where

shift =
∑level=N−1

level=K C
|V ′|
level ×

level!
K! × Clevel−1

K−1

because in the binomial tree of composition� the first level to be considered is level = K� each level has C
|V ′|
level nodes, and each node contains exactly ( level!

K! × Clevel−1
K−1 ) identifica-

tions� {output: id}
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Figure A.7: The number of nodes in each level, that share the same node in the first level.

decode: Θ−1
3 : B3 → A3 Θ−1

3� {input: id ∈ [1, |A3|]}

1. first determine the number of vertices in the encoded K-path� partition [1,Max] into (|V ′|−K+1) partitions, each one corresponds to one level, therefore

the p-th partition has C
|V ′|
K−1+p ×

K−1+p!
K! × CK−2+p

K−1� j = the index of the partition to which id belongs� N = K + j − 1, this is the number of vertices in the K-path� [l, u] = the j-th partition’s range� marksize = CN−1
K−1 , number of nodes in the (K − 1)-th level of a binomial tree of marks

with (N − 1) nodes on the first level

2. then determine the nodes that compose the K-path� L = (N,N + 1, ..., |V ′|) a list of the largest (|V ′| −N + 1) labels� S = () an empty list� level = N ; i = 1� d = (id− l)/(N !
K! ×marksize); q = floor(d) + 1

– because each node in the N -th level of a binomial tree of composition contains N !
K! ×

marksize identifications

– floor(d) yields results in [0, C
|V ′|
N -1], and a shift is need to restore the range [1, C

|V ′|
N ]

for q� size = N !
K! ×marksize; [l, u] = [l + (q − 1)× size, l + q × size− 1]

– updating [l, u] with the range of the binomial tree’s node� [l1, u1] = [1, C
|V ′|
N ]� While i ≤ N ,

– divide [l1, u1] into as many partition as the length of L, such that the p-th partition

has Cp+level−2
level−1 nodes

– determine j such that the j-th partition is the one that contains q

– assign the j-th element in L to the i-th position in S

– [l1, u1] = the j-th partition of [l1, u1]
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– remove all elements greater or equals to L(j) from L

– add L(1)− 1 to the beginning of L if possible* it adds the next smaller label to the beginning of the list, if there is any

– level = level − 1; i = i + 1� S now contains N labels, those are vertices that compose the K-path

3. we have to determine how the N vertices are arranged to form the K-path� P = () an empty list� L = sort inc(S), sorted increasingly� level = 1� d = (id− l)/marksize; q = floor(d) + 1

– because each node in the (N − K)-th level of the permutation tree has marksize
identifications

– the q-th node in the (N −K)-th level is the one that contains id� size = marksize; [l, u] = [l + (q − 1)× size, l + q × size− 1]

– updating [l, u] with the range of the permutation tree� [l2, u2] = [1, N !
K! ]� While level ≤ (N −K),

– divide [l2, u2] into as many partition as length of L, all of the same size

– determine j such that the j-th partition is the one that contains q

– P = (P : L(j)), concatenate the j-th element in L to the tail of P

– [l2, u2] = the j-th partition of [l2, u2]

– remove the j-th element from L

– level = level + 1� P now contains a permutation of (N −K) labels

4. and finally, we determine the way how the N vertices are arranged and separated into K paths� H = S\P , a list with the nodes in S that don’t appear in P , there are K of them� H = sort inc(H), order them increasingly

– we want to reconstruct the representative in the form of < p1 : tail1 >< p2 : tail2 >
... < pK : tailK >

– we have already determined the heads (p1, p2, ..., pK) = H

– and the concatenation of the tails (tail1 : tail2 : ... : tailK) = P

– we still need to know the length of each path to fully re-construct the K-path, among
a total of marksize possibilities� Marks = (), an empty list� L2 = ((K − 1),K, ..., (N − 1)) a list� level = (K − 1); i = 1� While i ≤ (K − 1),

– divide [l, u] into as many partition as the length of L2, where the p-th partition has

Cp+level−2
level−1 nodes

– determine j such that the j-th partition contains id

– Marks = (L2(j) : Marks), concatenate the j-th element of L2 to the head of Marks

– [l, u] = the j-th partition of [l, u]

– remove from L2 all the element greater or equals to L2(j)

– add L2(1)− 1 to the beginning of L2 if possible

– level = level − 1; i = i + 1
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� Marks now contains (K − 1) numbers, those are the separating marks of the K-path, in
other words, its the following list:

(length(p1 : tail1), length(p1 : tail1 : p2 : tail2), ..., length(p1 : tail1 : ... : pK−1 :
tailK−1))

5. the K-path is completely determined� Path1 =<>; ...; PathK =<>, K empty paths� Marks = (Marks : N), add N to the end to simplify the loop� i = 1; j = 0; l = 1� While i ≤ K,

– Pathi(1) = H(i); j = j + 1

– aux = Marks(i)− j, the number of nodes to extract from P to form the tail of the
i-th path

– if aux > 0 then* tail = sublist(P, l, aux); l = l + aux* Pathi =< Pathi : tail >; j = j + aux� {output: a K-path}

A.4 Enumerating Hop-limited K-paths

To add a hop limit constraint to the enumeration of K-paths require some small modifications. If
H is the maximum number of hops, then paths with more than B = (H − 1) intermediate nodes are
no longer valid, furthermore, the total number of intermediate nodes in a H-limited K-path must
be in the range [K,min{|V ′|, B ×K}]. This implies that we have to consider a reduced number of
levels in the binomial tree of composition. The way of placing separation marks is also affected, but
before showing the details, we have to present a new structure and some results from combinatorial
analysis.

A.4.1 The Bounded Binomial tree

We call a “Bounded Binomial Tree of N nodes on the first level and bound B” to a binomial tree of
N nodes on the first level in which the distance of labels between the children and the parent are
bounded by B. In other words, for node ni, we are removing all the children (and their subtrees)
whose label is less than n(i−B). Check Fig. A.8 for an example with N = 5 and B = 2.

Properties of the Bounded Binomial tree of N nodes on the first level and bound B:� it has N levels,� each node has at most B branches, by construction,� paths from root to any node contain nodes labelled in decreasing order,� a bounded binomial tree with (N +1) nodes on the first level and bound B can be constructed
using two copies of a one with N nodes, by adding an edge like in Fig. A.3, and then removing
the first branch from the root, if there are more than B branches.� the number of nodes with label less than or equal to B in each level can be determined, it is
a key result and the subject of discussion in Section A.4.2. Furthermore, we can determine
the number of those nodes even when there is an additional constraint stating that they must
share a set of common ancestors, as a result of the recursive structure of the tree.� comparing with a binomial tree of same number of nodes on the first level, the number of node
in any level of a bounded one is always less than or at most equals to an unbounded one.� although we call it the bounded binomial tree with N nodes on the first level and bound B,
the first level has only B nodes, being N the largest label.
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Bounded Binomial Tree with 5 nodes on the first level and bound equals to 2

n1 n2 n3 n4 n5

n1 n1 n1 n1n2 n2 n2n3 n3 n4

n1 n1

n1

n1 n1 n1 n1

n1 n1 n1

n1

n2 n2 n2

n2

n3

Figure A.8: When a node is removed, all its sub-tree is also removed; each node has at most B=2
children, the two biggest. All nodes (and sub-trees) erased with red crosses do not belong to the
tree.

A.4.2 Combinatoric Analysis and Hop limited s− t K-Path Enumeration

Overview of K-path enumeration

A s-t K-path in a complete graph without direct (single hop) s to t path can be identified uniquely
by: � N the total number of intermediate nodes, which must belong to [K,|V ′|],� nodes’ composition identified as a set of N nodes, there are a total of C

|V ′|
N different composi-

tions,� the shape of the K-path without considering the labels of the nodes, there are a total of CN−1
K−1

different shapes9 of K-paths with N intermediate nodes.� and finally, the sequence in which the nodes appear in the K-path, a total of N !
K! .

Notice that the last two steps altogether can have a total of N !
K! ∗C

N−1
K−1 different cases. Which matches

the result of the classical unordered partition problem [Ŕıbnikov 85], where a set of distinguishable
objects (set of N nodes) is to be divided into a fixed number (K) of non-empty partitions (paths).
The way how the partitions are ordered doesn’t matter, but the order inside each one of them does.
To add hop limit, the necessary changes are:� N the total number of intermediate nodes, which can only belong to [K,(H − 1)K]� the possible shapes of the hop limited K-paths are different from the relaxed case

The first item is trivial, the only practical effect is that it truncates a summation. For the case of the
second item, a binomial coefficient is replaced by another formula somehow similar, such formula can

9Consider N objects placed on a line and (N − 1) possible positions where (K− 1) separation marks can be placed

to get K partitions. There are CN−1
K−1

different ways to separate them.
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be obtained by combinatorial analysis or by studying the bounded binomial tree. In the following,
we show the analysis of some combinatorial structures, the goal is to arrive to a formula that can
count all the possible shapes of a hop limited K-path, in the same way as binomial coefficient of the
binomial tree of marks do for general K-paths.
The objective of the following section is to present some known results of combinatorial analysis,
together with their relation to our problem. Then we present the in depth details for the particular
case of hop limited K-path. It is not possible to present all the notation and demonstration for all
the intermediate results, therefore we refer the readers to [Flajolet 06], which is the literature we
followed for this part of the study.

Integer composition

In literature of combinatorial analysis, like in [Flajolet 06], there is a known combinatorial structure
called integer composition . A composition of an integer number n is a sequence of integer numbers, integer com-

positionsuch that their sum is exactly n.

n = x1 + x2 + ... + xp and 1 ≤ xi for i ∈ [1, p].

Its specification is: SEQ{SEQ≥1{Z}}.
Its OGF is: 1

1−( 1
1−z

−1)
= 1−z

1−2z
.

Its [zn] coefficient is: 2n−1.

Integer composition with K summands

We can limit the number of summands to a fixed number (K > 0), so the given integer is partitioned
into exactly K summands:

n = x1 + x2 + ... + xK and 1 ≤ xi for i ∈ [1,K], K > 0.

Its specification is: SEQK{SEQ≥1{Z}}.
Its OGF is: ( z

1−z
)K .

Its [zn] coefficient is: Cn−1
K−1.

Notice that [zN ]( z
1−z

)K = CN−1
K−1 is exactly the total number of shapes (or ways to place separation

marks) for K-paths of N intermediate nodes.

Integer composition with K summands, each with size between [1..B]

We can impose that each summand can not exceed a given bound B, later we will take B = (H − 1)
where H is the number of hops. For example, summand of size one maps to path with one single
intermediate node, such path has two hops.

n = x1 + x2 + ... + xK and 1 ≤ xi ≤ B for i ∈ [1,K], K > 0.

Its specification is: SEQK{SEQ1..B{Z}}.

Its OGF is: (z + z2 + ... + zB)K = ( 1
1−z
− zB+1

1−z
− 1)K = ( z−zB+1

1−z
)K

Its [zn] coefficient is given below:

knowing that 1
(1−z)M+1 =

∑

n≥0

(

n+M
n

)

zn

1
(1−z)K =

∑

n≥0

(

n+K−1
n

)

zn, let’s call it bn bn

knowing that (1 + z)M =
∑

M≥n≥0

(

M
n

)

zn

(1− zB)K =
∑

K≥n≥0

(

K
n

)

(−zB)n =
∑

K≥n≥0

(

K
n

)

(−1)nz(B∗n)

(z − zB+1)K = zK(1− zB)K = zK
∑

K≥n≥0

(

K
n

)

(−1)nz(B∗n) =
∑

K≥n≥0

(

K
n

)

(−1)nz(B∗n+K)
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function r=nchoosekb(n,k,b)
r=coefnkb(n+1,k+1,b);
return ;

function r=coefnkb(n,k,b)
% meaningful only when k * b≥n and k ≤n
if (k * b<n) | (k >n) | (k <1) | (n <1) | (b <1),

r=0; return ;
end

r=0;
i=0;
for j=0:n,

if (j==b * i+k),
aux=( −1)ˆi;
aux=aux * nchoosek(k,i);
aux=aux * nchoosek(n −j+k −1,n −j);
r=r+aux;
i=i+1;

end
end

Figure A.9: Implementation in Matlab of nchoosekb()

change of variable j = (B ∗ n + K)⇒ n = j−K
B

, there are K + 1 sums in the last summation

(z − zB+1)K =
∑

j=Bi+K,K≥i≥0

(

K
j−K

B

)

(−1)
j−K

B zj , let’s call it aj , it evaluates to zero outside aj

the summation.

The original generating function’s coefficients can be obtained by applying convolution:
(z − zB+1)K 1

(1−z)K =
∑

n≥0(
∑

0≥j≥n ajbn−j)z
n

=
∑

n≥0(
∑

0≥j≥n,j=(B∗i+K),K≥i≥0

(

K
j−K

B

)

(−1)
j−K

B

(

n−j+K−1
n−j

)

)zn

As a result: [zn](z − zB+1)K 1
(1−z)K =

∑

0≥j≥n,j=(B∗i+K),K≥i≥0

(

K
j−K

B

)

(−1)
j−K

B

(

n−j+K−1
n−j

)

Summary: [zN ](z − zB+1)K 1
(1−z)K is all the following:� integer composition of K summands in the range of [1..B], such that they sum exactly N ,� ways to place (K − 1) separating marks on a line with (N − 1) possible positions, such that

every segment contains at most B elements,� number of nodes with labels less than or equals to B in the (K − 1)-th level of a bounded
binomial tree with (N − 1) nodes on the first level, and bound B.

We include a Matlab code in Fig. A.9, namely coefnkb(N,K,B) which implements the formula [zN ](z−
zB+1)K 1

(1−z)K , together with the function nchoosekb(N,K,B). The latter gives the number of nodes

with labels less than or equals to B in a bounded binomial tree with N nodes on the first level and
bound B, the relation between them is simply nchoosekb(N,K,B) = coefnkb(N +1,K +1, B). The
introduction of nchoosekb(N,K,B) is because of its role with bounded binomial tree, in analogy
with the role of CN

K = nchoosek(N,K) in binomial tree. Moreover, we also introduce a notation
BCN

K to symbolise nchoosekb(N,K,B). BCN
K

Note that the efficiency can be improved by calculating binomial coefficients using already calculated
ones, or even better to pre-calculate and store some of them, that is the approach followed in the
code of our genetic algorithms. In Fig. A.10 we show how the number of H-limited K-paths changes
with the parameters H and K when the number of nodes |V | is fixed.

A.4.3 Encoding/decoding H-limited K-Paths - Θ4/Θ
−1
4

Being a K-path with hop limit H, it has no more than (H − 1) ×K intermediate nodes. To have
a limit H on the number of hops, is to have a limit B = (H − 1) on the number of intermediate B
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Figure A.10: With |V | fixed to 20, this graph shows the number of H-limited K-paths for the
different combination of diversity factor K and hop limit H(without considering the direct s-t path
as valid).

nodes in each path. We find that the latter is more intuitive in part of the explanation, so we will
use both of them from now on. The idea is very similar to the algorithm presented in Section A.3.3,
with only two differences:� the composition or set of intermediate nodes has cardinality between [K,min{|V ′|, B ×K}],� the binomial tree of marks is replaced by a bounded binomial tree, and therefore its related

binomial coefficients CX
Y are replaced by BCX

Y which is the function nchoosekb(X,Y,B).

In practice, the function f(N,K) = N !
K!×CN−1

K−1 is replaced by f(N,K,B) = N !
K!×

B CN−1
K−1 . Therefore, f(N,K,B)

the size of the current set |A4| =
∑lev=min{|V ′|,B×K}

lev=K C
|V ′|
lev × f(lev,K,B), and once again we can A4

choose B4 = [1, |A4|] a range of natural numbers. B4

encode: Θ4 : A4 → B4 Θ4

1. identical to Θ3, calculate l1

2. identical to Θ3, reformat the H-limited K-path in a representative form

3. identical to Θ3, calculate l2

4. now we use a bounded binomial tree to further refine the identification� L2 = (N −B, ..,N − 1), a list� [l3, u3] = [1,B CN−1
K−1 ]� level = level = K − 1; i = 1� While i ≤ (K − 1),

– divide [l3, u3] into length(L2) partitions, where the p-th partition has BC
L2(p)
level−1

numbers
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– j = the position of the i-th element of Marks in L2

– [l3, u3] = the j-th partition of [l3, u3]

– L2 = (max{1,Marks(i)−B}, ...,Marks(i)− 1) replacing L2

– level = level − 1; i = i + 1� [l3, u3] now contains a unique identification, it identifies a node in the (K − 1)-th level of
the bounded binomial tree with (N − 1) nodes on the first level

5. The final result of this algorithm is
id = shift + (l1 − 1)× N !

K! ×
B CN−1

K−1 + (l2 − 1)×B CN−1
K−1 + l3

where
shift =

∑level=N−1
level=K C

|V ′|
level ×

level!
K! ×

B Clevel−1
K−1

decode: Θ−1
4 : B4 → A4 Θ−1

4

1. first determine the number of vertices in the encoded K-path� partition [1,Max] into (|V ′| − K + 1) partitions, each one corresponds to one level,

therefore the p-th partition has C
|V ′|
K−1+p ×

K−1+p!
K! ×B CK−2+p

K−1� j = the index of the partition to which id belongs� N = K + j − 1, this is the number of vertices in the K-path� [l, u] = the j-th partition’s range� marksize =B CN−1
K−1 , number of nodes in the (K − 1)-th level of a bounded

binomial tree of marks with (N − 1) nodes on the first level and bound B

2. identical to Θ−1
3 , reconstruct S the list of composition

3. identical to Θ−1
3 , reconstruct P the list of permutation (nodes that form the concatenation of

taili)

4. and finally, we determine the way how the N vertices are arranged and separated into K paths� Heads = S\P , a list with the nodes in S that don’t appear in P , there are K of them� Heads = sort inc(Heads), order them increasingly� Marks = (), an empty list� L2 = ((N −B), ..., (N − 1)) a list� level = (K − 1); i = 1� While i ≤ (K − 1),

– divide [l, u] into as many partition as the length of L2, where the p-th partition

has BC
L2(p)
level−1 nodes

– determine j such that the j-th partition contains id

– Marks = (L2(j) : Marks), concatenate the j-th element of L2 to the head of Marks

– [l, u] = the j-th partition of [l, u]

– L2 = (max{1,Marks(i)−B}, ...,Marks(i)− 1) replacing L2

– level = level − 1; i = i + 1� Marks now contains (K − 1) numbers, those are the separating marks of the H-limited
K-path, in other words, its the following list:

(length(p1 : tail1), length(p1 : tail1 : p2 : tail2), ..., length(p1 : tail1 : ... : pK−1 :
tailK−1))

5. identical to Θ−1
3 , reconstruct the H-limited K-path from the lists Heads, P and Marks
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A.4.4 Encoding/decoding H-limited K-Path admitting direct s-t path -
Θ5/Θ

−1
5

The only difference with the preceding case is that now the direct path is counted as a valid path.
Note that a K-path may contain at most one direct path, and we can divide the set A5 into two
sets. Where the first of them A5a contains all the K-paths with direct path, and a second one A5b

containing all the others. Moreover, the former is equivalent to a set of (K−1)-paths without direct

path, so we have |A5| = |A5a|+ |A5b| = (
∑lev=|V ′|

lev=K−1 C
|V ′|
lev f(lev,K − 1)) + (

∑lev=|V ′|
lev=K C

|V ′|
lev f(lev,K))

and we choose B5 = [1, |A5|] a range of natural numbers.

encode: Θ5 : A5 → B5� {input: KP a K-path in the representative form}� {determine if there is a direct path in KP and set the flag hasDirect}� if hasDirect == true then� id = Θ4(KP [1 : (K − 1)]) ← treated as a (K − 1)-path10� else� shift = |A5a|� id = shift + Θ4(KP )� end if� {output: id}

decode: Θ−1
5 : B5 → A5� {input: id ∈ [1, |A5|]}� set initially: shift = |A5a|� if id ≤ shift then� KP = Θ−1

4 (id,K − 1) ← treated as a (K − 1)− path� KP [K] = [] ← set an empty path at the end� else� KP = Θ−1
4 (id− shift,K)� end if� {output: KP the K-path}

A.5 Summary and Remarks

In this article we presented algorithms for mapping and reverse mapping between:� the set of K-paths and a range of natural numbers� the set of Hop-limited K-paths and a range of natural numbers

10Although Θ4 was defined for 0 < K ≤ (|V ′| − 1), we can extend it so it returns id = 1 when K == 0. In this
way, it is more consistent with the following coding. Analogously, Θ−1

3 should return an empty KP when K = 0.
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During the development of those mappings, we worked with a number of useful tree structures,
namely permutation, binomial, bounded binomial and cycle trees; we found that some of them were
already known in the literature, while the last two are new contributions from this thesis. We also
applied combinatorial analysis to relate the different kinds of K-paths to other combinatorial struc-
tures.

To apply the results of this article, it is important to keep in mind that the number of elements
in a set of K-path can be extremely large when V the number of vertices in the complete graph
grows. As a result, the implementation of our algorithms requires the usage of mathematic library
with large enough precision.

If the algorithm is to be used frequently, the intermediate results of the different binomial coef-
ficients and the hop-limited variation (BCN

K ) should be saved to increase the efficiency.
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Appendix B

GGEngine 2.0

B.1 Abstract:

The present report replaces [Ho 02], it serves as a short user’s guide and a summary of the develop-
ment of Generic Genetic Engine (GGEngine) 2.0, a second version of our genetic algorithms library
in C. In short, this library implements the skeleton of genetic algorithm (G.A.) which is an invari-
ant among different G.A., together with some of the most popular codings and genetic operators.
Users can use the offered components directly or extend them further with customised codings and
operators.

There exist many libraries of genetic algorithms, as an example there is [Grefenstette 90] which
is considered as a pioneer work in the community. The development of the GGEngine library be-
gun in 2002 with the goal of simplifying the application of genetic algorithms, and of reducing the
required work in implementation done by researchers.

GGEngine is one of the first steps in our goal to achieve a parallel generic genetic engine, with
support for the different parallel and distributed architectures available in our institute. The version
2.0 is an improved serial version, and it has already been used in a number of projects.
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B.2 Introduction

B.2.1 Motivation

Genetic Algorithms is a meta-heuristic for treating optimisation problems, which is dated back to
the 1960s. Based on the simulation of the process of evolution, in which only the most suitable vari-
ations of each species survive nature’s selection, and generation by generation the entire population
becomes more suitable to the environment.

The main goal of this library is the creation of a tool (an engine) that simplifies the application
of this technique to solve problems in general. The first version of GGEngine was developed in 2002,
in InCo (Instituto de Computación) from the Facultad de Ingenieŕıa, Universidad de la República, in
Uruguay. It has been used in a number of research projects and many additional features has been
implemented since the release of the first version, up to a point that justifies another distribution
together with an update in the documentation.

B.2.2 Genetic Algorithm

The basic structure common to all genetic algorithms (G.A.) is called the skeleton, which is the
invariant part of G.A. On the other hand, there are parts of the implementation that change from a
G.A. to another, we implement them as components. To apply G.A. to solve a certain problem, it
is necessary to model the problem correctly by choosing a suitable implementation for each of the
following components.

Coding for a certain problem:� An injective function to encode solutions (phenotypes) of a problem into individuals (geno-
types) of the population, each individual is composed by atomic components called genes.
This is complemented with an inverse function, so a genotype can be transformed back to the
solution to the problem.

a solution

(phenotype) g e n o t y p e

encode

decode� The fitness function returns for each solution (phenotype) a real number representing how
suitable or how fit it is for the problem. It is strongly related to the objective function.

fitness : {a solution} → R+

Genetic operators:� Selection: an operator that chooses in each generation, the most suitable individuals, so they
can have a chance to propagate to the next generation.

selection
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� Crossover: an operator that takes two or multiples individuals and generates offspring by
combining their genes. Traditional crossover operators involve two genotype parents, but in
general any number of genotypes can be used as parent.

crossover� Mutation: an operator that introduces variations by changing some of the genes of a given
individual. It plays an important role in the escape of local optima which are very common in
optimisation problems.

mutation

To simulate evolution, the algorithm begins with the first generation, which can be obtained
randomly or as a result of some other heuristic. Then it generates the next generation by first
applying the selection operator, and later the crossover and finally mutation. According to the
theorem of schemes [Goldberg 89], the population will converge (evolve) to good solutions of the
problem, given a large enough number of generations.

generation N

generation N+1

B.2.3 List of requirements

Be easy to use:
To reduce the effort required to apply G.A., the engine to implement must offer the most common
codings and operators ready to use, and beside that, it should allow an easy integration with user
defined codings or operators. Changes to configuration parameters, and types of genes or operators
to use should not require recompilation or re-linkage. The list of basic components ready to be
chosen is as follow. Codings: list of bits, integer, real; Crossover operator: one-point, two-points,
n-points, uniform, bias; Mutation: uniform; Selection: roulette, tournament, ranking.
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Parallelism as the next step:
Many interesting optimisation problems involve a huge among of data, or require intensive process-
ing. Although this is a serial G.A. engine, our plan is to extend it in the future with distributed
and parallel processing techniques. At the beginning of the project, the state of art of most popular
distributed programming libraries like PVM, MPI, etc had a more advanced development for C than
for C++, that’s why we chose C as programming language.

Things to improve from last version:
We had an issue in the first version of the library, it wasted too much time with random number
generation in the mutation and crossover operator, which is corrected in the current version by
replacing calls to Bernoulli distribution with a more suitable geometric one.
In the current version, we also added the capability of user correction mechanism call backs, in this
way if the result after applying crossover and mutation is not feasible for the problem, users can
implement their problem specific corrections. Among the additions in this version, we have elitism
and fitness scaling, which are reported in the literature to have a positive effect on the solution
quality.
Define interface for a new component to manage the storage and access of problem specific data
inputs, and another for user defined data structures. The latter encapsulates data structures to use
in the different user defined operators.

B.2.4 Layout of the report

In the next two section, we describe the engine’s design, beginning in Section B.3 with the architec-
ture, and each of the modules, following by the implementation details in Section B.4.

Later on, in Section B.5 we present a small series of basic tests, and finally in Section B.6 we
list the future steps and unfinished tasks.

Find in Section B.7 the API of the engine, Section B.8 format of the configuration file, and a
brief user’s manual in Section B.9.
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B.3 Architecture of GGEngine

B.3.1 Introduction

The main objective of this library is to offer an engine that can solve a large variety of problems,
and different problems can be modelled in many different ways. Therefore the engine must use
abstraction to stay independent of the representation. In practice, we apply a modular architecture,
and an interchangeable components design that allows the user to choose components like type of
genes, specific genetic operators, etc., from a pool of components.
The library is divided into three modules: “Population”, “Engine”, and “Utilities”.

B.3.2 Module: “Population”

Population is one of the basic structures in the engine, and in this module we encapsulate the
representation and manipulation of population related data structures. A population is a set of
individuals (genotypes), and each individual is represented as an arrangement of genes. The different
components in this module are: Population, Genotype, and Gene.� Population: implements a dictionary of genotypes and offers the related operations like inser-

tion, data access, etc.� Genotype: represents each genotype or chromosome1, it can be implemented as a list of bits,
list of integers, list of decimals, among others. We design genotype as an abstract collection
of genes.� Gene: represents a gene (a genetic characteristic), it can be implemented as a bit, an integer,
a decimal, among others.

B.3.3 Module: “Engine”

This module encapsulates the core of the engine, and is composed by the following components:
Operators, Coding, Engine.� Operators: there are three kinds of genetic operators, being Selection, Crossover and Mutation.

They can be implemented in many different ways, and being our interest to offer a number
of varieties, it is necessary to define an interface in such a way that abstract components can
be replaced transparent to the system. Therefore, we will use abstract genotype and gene in
their definition.

– Selection: the most popular selection operators are roulette (standard proportional selec-
tion), tournament, ranking, among others. By taking as input a given population and the
fitness evaluation of each of its members, this operator chooses a selected few as output.
In general, it is not a deterministic procedure, but a stochastic one. Beside the already
mentioned inputs, configuration parameters may also be required.

Population + Evaluation + Random Generator + Configuration → selected Population

– Crossover: the most popular crossover operators are one point, two points, n points
crossover[Goldberg 89]; uniform crossover[Syswerda 89]; biased crossover, among others.
In the traditional definition of this operator, a pair of genotypes is used as input, but to
simplify the engine’s design, we use an equivalent definition where the input and output
are populations. In this way the input is a parent population, and the operator generates
the offspring generation according to the configuration parameters. For non-deterministic
crossover operators, the random generator is an important input, therefore we add it as
another parameter in the interface.

Population + Random Generator + Configuration → children Population

1In biology, genotype is a group of chromosomes. Human beings have 46 chromosomes and each one is a sequence
of DNA. In G.A. we use both genotype and chromosome as synonymous.
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– Mutation: uniform mutation is the most popular mutation operator. Once again we use
the definition over a population instead of over individuals. Given a population, the
operator will apply some sort of mutation according to the configuration parameter and
with the help of the random number generator, it generates a mutated population.

Population + Random Generator + Configuration → mutated Population� Coding: this component encapsulates all the problem specific changes, it is divided into two
primary parts, these are Coding and Fitness. The first one represents the encode/decode
functions that map genotypes into and out-of phenotypes, in other words, they translate
problem solutions into genotypes. The second one of them, Fitness as its name says, contains
the fitness function, which gives a fitness value to each solution. These two components are
problem specific, and therefore are not available to choose from the pool of components.� Engine: encapsulates the skeleton of G.A., it manages populations and applies genetic opera-
tors as shown in the following scheme.

{generate randomly/read a first generation }
← generation G0

while {stopping condition }
← generation GN

{select the most suitable individuals with selection op. }
{apply crossover op. over the selected population }
{apply mutation op. over the children population }

← generation GN+1

end

B.3.4 Module: “Utilities”

All the other components are grouped into the Utility module, here we have: Configuration, Random,
DB-fitness.� Configuration: all the configuration parameters of the engine are stored into a dictionary

structure called Configuration. It manages the data access and configuration file reading.� Random: G.A. relies strongly on the generation of pseudo-random numbers, this component
is the core of pseudo-random number generator. In the first version, we used a simple linear
congruent algorithm, and in this version, we offer two generators. The first one is the Mersenne
Twister[Matsumoto 98], and on the second place, a linear congruent generator from the library
GMP.� DB-fitness: it is of our interest to study and develop mechanisms that improves the performance
of G.A., one possibility is the usage of cache in the evaluation of fitness. Therefore we created
this component with a defined interface, so the user can integrate a customised cache easily.
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B.4 Implementation

B.4.1 Introduction

In this section we discuss the implementation of the modules presented in the previous section.
Using the technique of function pointer together with a component based design, we show how a
generic genetic algorithms engine can be constructed.

B.4.2 Module: “Population”

As basic type of Gene, we admit Booleans, integer, decimals and user defined. Whenever it is neces-
sary to instantiate the gene type, we use function pointers instead of explicit function calls, in this
way the user can change gene type without recompilation.

As for Genotype, list of Genes is the unique implementation that we offer, as it is a very gen-
eral representation with which many problems can be modelled. Moreover, user defined structures
can be integrated thanks to the abstract interface.

We implemented the classical abstract data type list in the case of Population.

B.4.3 Module: “Engine”

Operators

The level of abstraction in the module “Population” allows the operators to manage the different
entities in an abstract way, in practice, one single procedure can be used together with all kind of
Gene or Genotype.

A large number of genetic operators are implemented, and more can be added using the inter-
face reserved for user defined operators. To active a particular operator, it is enough to active the
correspondent parameter in the configuration file. Once again, we benefit from the usage of function
pointer, to achieve this.

In the case of selection operator, three implementations are available: roulette (standard propor-
tional selection), tournament, and ranking. This is the only operator that uses the fitness function
and we can insert calls to the fitness cache right here, more details about fitness cache can be found
in Section B.4.4.

As for the crossover operator, the following bi-genotype crossovers are implemented: one point,
two points, uniform at one point, uniform at two points, and biased.

And for mutation, only two mutation operators are implemented. The first one is inversion,
which can only be applied in combination with Boolean Gene type. The other one is uniform muta-
tion, which is a general version applicable to all type of Gene. One of the changes from the previous
version is the replacement of multiple Bernoulli sampling, with a single geometric one, in this way
we reduced the CPU consumption. A pseudo-random number generator using uniform distribution
is used, then given U an uniform variable in [0, 1], we can obtain a geometric variable geometric(p)

as ⌈ log(U)
log(1−p)⌉, more details can be found in [Devroye 86].

After the application of crossover or mutation operators, it is possible to obtain unfeasible so-
lutions for some combination of coding and problems, in those cases, correction mechanisms may
be necessary. To include correction mechanisms, user defined procedures can be inserted after the
mutation operation.
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Coding

To model an optimisation problem, the user has to implement this component respecting the defined
interface (in Section B.7). This component contains the following.� phenotype definition� encode function: phenotype → genotype� decode function: genotype → phenotype� fitness function: fitness function: phenotype → R

If the genotype and genetic operators to use are already implemented, users only have to imple-
ment this component and compile/link it to the library to get a functional G.A.

Engine

Although this is the core component of the engine, its implementation is a simple loop as shown
in the scheme of the skeleton. It manages the population and calls the other abstract components
using the technique of function pointer.

One of the configuration parameters is the number of generations to run, which is the only
implemented stopping condition. When the engine reaches the desired number of generation, it saves
all the data and further runs can be performed from the saved point. Other stopping condition like
detection of external signal, or reaching a certain fitness value can be included easily, but were not
included in this version.

B.4.4 Module: “Utilities”

Configuration

This is a traditional data dictionary, with the traditional operations and configuration file reading.
The configuration file contains entries in the form of “Name = Value”, a two-level name mapping is
implemented, to allow an easy change of interface language. We also decided to allow comments to
be included into the configuration file, and to be as flexible as possible, we truncate lines whenever
the comment character # is detected.

Random

Two pseudo-random generators are available: the first one is based on the Mersenne Twister, in the
web site of its author we located an implementation mt19937a which we managed to integrate into
your library after some small changes. The Mersenne Twister is a 32 bit integer generator with a
period of 219937 − 1, it is reported to be competent in speed and memory usage [Matsumoto 98],
[Matsumoto 06].

The second generator is the one from the library of GMP, a library that implements an arbitrary
precision arithmetic. In this case, the generator uses a linear congruent algorithm in the form of
Xn+1 = (AXn + B) mod C, where A,B,C are constants with X0 the seed. We remind the user
that as for all pseudo-random generators the seeding is an important element, especially during a
statistical study or comparison of different run of a stochastic algorithm. Seeds should be chosen
wide apart in the case of linear congruent generator, one easy way to do it is by running the se-
quence, and take different Xn far away from each other as seeds of different stochastic algorithms.
The drawback of linear congruent generators is that the seed only shifts the sequence, and if it is
not chosen with care, one can end up with small shifts.
For the case of Mersenne Twister, seeds with small Hamming distance or which share similar bit
pattern will produce shifted sequences.
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DB-fitness

Different alternatives were implemented for this component: no-cache, and double-cache. The first
one is an empty interface that calls directly the underlying fitness function. The case of double-
cache uses two caches, the objective here is to have old cached elements to be removed. Each certain
number of generations, the active cache is switched into obsolete mode while the other is emptied
and set as active. Then each cache query will go firstly to the active and then the obsolete cache,
if it is a new entry, the fitness function is called after all. Whenever a result that doesn’t belong to
the active cache is obtained, it is stored into the active cache.

B.5 Basic testing and analysis of results

The following experiment is present as an upgraded repetition of the same experiment done in
[Ho 02]. A series of test was performed to test the functionality of the engine, the series consists of
trivial problems that test specific features of the solver. We first list the set of parameters in use
during the experiment, and then the list of chosen problems together with the result and its analysis.
This is not an exhaustive validation experiment, which would be out of the scope of this report.

Configuration A:� number of generations: 150� population size: 200� mating pool size: 100� genotype length: 10� crossover rate: 0.7� mutation rate: 0.01� selection operator: roulette� crossover operator: 1 point� mutation operator: uniform

Configuration B:� number of generations: 50� population size: 100� mating pool size: 50� genotype length: 10� crossover rate: 0.7� mutation rate: 0.01� selection operator: roulette� crossover operator: 1 point� mutation operator: uniform
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Problem 1:� Binary coding of natural numbers,� in a search for the maximum,� of the linear function f(x) = x� In GGEngine v1.0, configuration A reached the optima value of 1023, while B only reached
959. With the current version, both configurations reached the optima value in experiments
run with three different random seeds.

Problem 2:� Binary coding of natural numbers,� in a search for the maximum,� of the step function: f(x) =
{

40 if x ≤ 8
3 otherwise� In this problem the rate for the number of optimal solutions vs. size of the solution space is

3
1024 ; the function doesn’t help/lead the search to the optima solution (this is called in the
literature a “deceptive” problem). But once again, both configurations reached the optima
solution, with the three different seeds. The same happened in the previous version. This test
is an easy one as it allows us to do 30,000 and 5,000 evaluations to find a solution in a solution
space of size 1024. If the random number generation is not biased, then there should be no
problem.

Problem 3:� Binary coding of natural numbers,� in a search for the maximum,� of the step function: f(x) =
{

3.1 if x ≤ 8
3 otherwise� Similar to problem 2, this is another step function, but in this instance the function value’s

difference is very small. In the previous version of GGEngine, any of the configurations reached
the optima without increasing the mutation rate. In this version, we managed to reach the
optima for both configurations without increasing the mutation rate. Once again this is an
easy problem, the primary difficulty is that the difference between the best and worst solution
is very small, the engine should be able to detect the improvement before getting to the optima.

Problem 4:� Binary coding of natural numbers,� in a search for the maximum,� of the function: f(x) =

{

100− (x− 128)2 if 118 ≤ x ≤ 138
50 otherwise� the optima value is 100, for x = 128� 2

3 of the cases with configuration A reached the optima value of 100; 1
3 of configuration A

and all cases of the B one reached the value 99, which is a good approximation. In the pre-
vious version, the optima value was not reached, only the value 99 was done for configuration A.

Although these are only basic functional tests, we can observe an overall improvement comparing
to the previous version.

89



B.6 Plan for next version

The current version implements most of the features in the wish list of the test users. Some missing
features are:� more stopping condition to choose from;� a more complete documented test case to validate the functionality of the different types of

gene-operator combinations;� a more user friendly implementation of statistic report.

On the list of objective for the next version, one of the ideas is to apply parallel and distributed
computing technique to extend the engine, and offer support for the different platforms available in
our laboratory, like clusters, shared memory nodes, etc.

B.7 API

Files in each module:� “Population”

– “user gene def.h”

– “user gene.h .c”

– “gene.h .c”

– “genotype.h .c”

– “population.h .c”� “Engine”

– “selection.h .c”

– “crossover.h .c”

– “mutation.h .c”

– “user genotype def.h .c”

– “user genotype.h .c”

– “user phenotype.h .c”

– “user encoding.h .c”

– “user operator.h .c”

– “user globalstructure.h .c”

– “user problemdata.h .c”

– “engine.c”� “Utilities”

– “cte.h”

– “environment.h .c”

– “errors.h .c”

– “configuration.h .c”

– “nrand.h .c”

– “fitnessdb.h .c”

Files in each module:
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user gene def.h

typedef:

TYPE GENE USER DEF
A user defined Gene data type definition.

TYPE LIMIT USER DEF
A user defined structure with information about the domain or range of values valid in TYPE GENE USER DEF.

user gene.h

procedure interfaces:

code gene create udef(TYPE GENE*, const Configuration*)
Creates an empty gene, memory should be assigned to dynamic structures. The usage of this func-
tion is paired with gene free udef(), which frees the assigned memory. A control code as defined in
“errors.h” is returned.

code gene free udef(TYPE GENE*)
Frees the memory assigned to a gene.

code gene initiate udef(TYPE GENE*, const Limit*, Nrand*, const Configuration*)
Randomly initiates a gene, the values should be limited to the domain of the gene as indicated by
the structure Limit.

code gene initiateFromFile udef(TYPE GENE*, FILE*, const Configuration*)
Initiates a gene from a file.

code gene writeToFile udef(TYPE GENE*, FILE*, const Configuration*)
Writes a gene to a file, using the same format as in gene initiateFromFile udef.

int gene display udef(TYPE GENE*, char*)
Generates a ready-to-print string representation of the gene. Returns the length of the correspond-
ing string.

code gene clone udef(TYPE GENE*, const TYPE GENE*)
Copies the data from one gene to another, both source and target must already been created with
gene create udef previously.

code range read udef(Limit*, const Configuration*)
Creates and loads the data structure Limit, which defines the domain and valid range of values for
TYPE GENE. This procedure can obtain a filename from the configuration and read the required
data from a file.

code range free udef(Limit*, const int)
Frees the memory assigned to the data structure Limit.

91



gene.h

typedef:

TYPE GENE
Generic definition of Gene, implemented as an union of different genes.

Limit
Generic definition of domain or range for values in TYPE GENE.

code FUN range read(Limit*, const Configuration*)
Abstract definition of a function to fill the domain data structure with values taken from a file. The
file’s name is taken from the configuration.

code FUN range free(Limit*, const int)
Abstract definition of a function to free the assigned memory to the data structure Limit.

code FUN gene create(TYPE GENE*, const Configuration*)
Abstract definition of a function to create and assign memory to the data structure TYPE GENE.
The usage of this type of function should be paired with call to FUN gene free.

code FUN gene free(TYPE GENE*)
Abstract definition of function to free the assigned memory to the data structure TYPE GENE.
code FUN gene clone(TYPE GENE*, const TYPE GENE*)
Abstract definition of function that replicates a TYPE GENE to another. Both pointers must be
created previously.

code FUN gene initiate(TYPE GENE*, const Limit*, Nrand*, const Configuration*)
Abstract definition of function to initiate the data structure TYPE GENE with values inside the
domain Limit.

code FUN gene initiateFromFile(TYPE GENE*, FILE*, const Configuration*)
Abstract definition of function to initiate the data structure TYPE GENE with data taken from a
file.

code FUN gene writeToFile(TYPE GENE*, FILE*, const Configuration*)
Abstract definition of function to store the data structure TYPE GENE in a file, using the same
format as in FUN gene initiateFromFile.

int FUN gene display(TYPE GENE*, char*)
Abstract definition of function that formats and creates a string representation for TYPE GENE.
Returns the length of the string.

procedure interfaces:

code limit clone(Limit*, const Limit*)
Copies a data structure Limit to another one.
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genotype.h

typedef:

Genotype
Generic definition of genotype, implemented as an union between list of TYPE GENE and Geno-
type USER DEF.

GeneDomain
As genotype is a collection of TYPE GENE, GeneDomain is a collection of Limit. It encapsulates
the domain of each gene in the different position of the genotype.

code FUN range initiateDomain(GeneDomain*, Configuration*)
Abstract definition of function that initiates the data structure GeneDomain, for example by reading
a file.

code FUN range freeDomain(GeneDomain*)
Abstract definition of function that frees the assigned memory to the data structure GeneDomain.

code FUN range getAt(const GeneDomain*, Limit*, const int)
Abstract definition of function that returns a clone of the inner structure Limit at a given position
of GeneDomain.

code FUN range getReferenceAt(const GeneDomain*, Limit**, const int)
Abstract defintion of function that returns a reference to the inner data structure Limit at a given
position of GeneDomain.

code FUN range setAt(GeneDomain*, const Limit*, const int)
Abstract definition of function that changes the range at a certain position of GeneDomain, with a
new data structure of type Limit.

code FUN genotype create(Genotype*, const Configuration*)
Abstract definition of function that creates and allocates memory for data structure of type Geno-
type. Calls to this type of function should be paired with calls to the type FUN genotype free.

code FUN genotype free(Genotype*, const Configuration*)
Abstract definition of function that frees the assigned memory to data structure Genotype.

code FUN genotype clone(Genotype*, const Genotype*,const Configuration*)
Abstract definition of function that replicates the data structure Genotype, both pointers should be
created previously.

code FUN genotype initiate(Genotype*, const GeneDomain*,Nrand*, const Configuration*)
Abstract definition of function that initiates the data structure Genotype randomly.

code FUN genotype initiateFromFile(Genotype*, FILE*, const GeneDomain* gdom, Nrand* NR,
const Configuration*)
Abstract definition of function that initiates the data structure Genotype from a file.

code FUN genotype writeToFile(Genotype*, FILE*, const Configuration*)
Abstract definition of function that stores an instance of the data structure Genotype into a file,
using the same format as in FUN genotype initiateFromFile.

int FUN genotype sizeOf(const Genotype*)
Abstract definition of function that returns the length of a Genotype.
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code FUN genotype getAt(const Genotype*, TYPE GENE*, const int, const Configuration*)
Abstract definition of function that obtains a clone of the inner structure TYPE GENE from a given
position of a Genotype.

code FUN genotype getReferenceAt(const Genotype*, TYPE GENE**, const int)
Abstract definition of function that obtains a reference of the inner structure TYPE GENE from a
given position of a Genotype.

code FUN genotype setAt(Genotype*, const TYPE GENE*, const int, const Configuration*)
Abstract definition of function that replaces the TYPE GENE at a given position of Genotype.

int FUN genotype display(const Genotype*, char*, const Configuration*)
Abstract definition of function that creates a string representation of a Genotype, the length of the
string is returned.

population.h

typedef:

Population
Data structure that represents Population, implemented as a list of Genotype.

procedure interfaces:

code pop create(Population*, const int, const Configuration*)
Creates and assigns memory for a Population, takes the population’s capacity as an input. This
procedure should be used in pair with pop free.

code pop free(Population*, const Configuration*)
Frees the assigned memory from a population.

code pop initiate(Population*, const int, const GeneDomain*, Nrand*, const Configuration*)
A population of a given size is initiated randomly, with values inside the specific domain.

code pop initiateFromFile(Population*, const char*, const int, const GeneDomain*, Nrand*, const
Configuration*)
A population of a given size is initiated from a file, if the file doesn’t exist or doesn’t contain enough
individuals a random initialisation is used to complete the missing members.

code pop writeToFile(Population*, const char*, const Configuration*)
Saves the population into a file, using the same format as in pop initiateFromFile.

int pop sizeOf(const Population*)
Returns the current size of the population.

int pop capacityOf(const Population*)
Returns the total capacity of the population.

code pop getAt(const Population*, Genotype*, const int, const Configuration*)
Gets a clone of the Genotype at a certain position of the population.

code pop getReferenceAt(const Population*, Genotype**, const int)
Gets a reference to the Genotype at a certain position of the population.

code pop setAt(Population *, const Genotype *, const int, const Configuration*)
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Replaces the Genotype at a certain position of the population.

code pop pushGenotype(Population*, const Genotype*, const Configuration*)
Adds a Genotype at the last position of the population.

code pop popGenotype(Population*, Genotype*, const Configuration*)
Removes a Genotype at the last position of the population.

int pop display(const Population*, char*, const Configuration *)
Creates a string representation for the population, and returns the length of the string.

selection.h

typedef:

code FUN selection(Population*, const Population*, FitnessDB*, Nrand*, Configuration*)
Abstract definition of the selection operator. Takes a population and generates a chosen population
according to parameters in the Configuration and the fitness evaluation of the individuals. Like all
other functions, it returns a code as defined in “errors.h” .

crossover.h

typedef:

code FUN crossover(Population*, const Population*, const GeneDomain* range, Nrand*, const Con-
figuration*)
Abstract definition of crossover operator. Takes a parent population and generates an offspring
population according to the parameters in Configuration. Like all other functions, it returns a code
as defined in “errors.h” .

crossover.h

typedef:

code FUN mutation(Population*, const Population*, const GeneDomain*, Nrand*, const Config-
uration*)
Abstract definition of mutation operator. Takes a population and generates a mutated population
according to the parameters in Configuration. Once again, it returns a control code as defined in
“errors.h” .

user phenotype.h

typedef:

Phenotype
User defined data structure to represent a Phenotype or in other words, a solution of the problem to
optimise.
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procedure interfaces:

code phenotype create(Phenotype*, const Configuration*)
Create and assigns memory for the data structure Phenotype. The usage of this function should be
paired with phenotype free. A control code is returned as defined in “errors.h” .

code phenotype free(Phenotype*, const Configuration*)
Frees the memory assigned for the data structure Phenotype.

int phenotype display(const Phenotype*, char*, const Configuration*)
Creates a string representation of the Phenotype and returns the length of such string.

user genotype def.h

typedef:

Genotype USER DEF
User defined Genotype, only necessary if the list of implemented Genotypes is not suitable for the
problem.

GeneDomain USER DEF
When a new Genotype USER DEF is defined, the associated domain is defined here.

user genotype.h

procedure interfaces:

FUN range initiateDomain range initiateDomain udef
FUN range freeDomain range freeDomain udef
FUN range getAt range getAt udef
FUN range getReferenceAt range getReferenceAt udef
FUN range setAt range setAt udef
FUN genotype create genotype create udef
FUN genotype initiate genotype initiate udef
FUN genotype initiateFromFile genotype initiateFromFile udef
FUN genotype writeToFile genotype writeToFile udef
FUN genotype free genotype free udef
FUN genotype sizeOf genotype sizeOf udef
FUN genotype getAt genotype getAt udef
FUN genotype getReferenceAt genotype getReferenceAt udef
FUN genotype setAt genotype setAt udef
FUN genotype clone genotype clone udef
FUN genotype display genotype display udef

Refer to “genotype.h” for the definition of the abstract function types. This series of functions
should be implemented by the user only if the predefined Genotype is not suitable for the problem.
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user encoding.h

procedure interfaces:

code encode(Genotype*, const Phenotype*, const Configuration*)
Mapping function that transforms a Phenotype into a Genotype, its implementation is problem
specific and should be provided by the user.

code decode(Phenotype*, const Genotype*, const Configuration*)
Mapping function that transforms Genotype back into a Phenotype, its implementation is problem
specific and should be provided by the user.

float user fitness(const Phenotype*, const Configuration*,FitnessDB*)
Function that determines for each Phenotype a fitness value, this function is strongly related with
the objective function of the problem. And is provided by the user.

user operator.h

procedure interfaces:

FUN selection selection udef
FUN crossover crossover udef
FUN mutation mutation udef

The definition of these function types can be found in “selection.h”, “crossover.h”, and “muta-
tion.h” . These functions are here to extend the list of operators with user defined new operators,
they are not required when using already implemented operators.

user globalstructure.h

typedef

USER STRUCT
User defined structure, for general data storage. This data structure will be available in any part of
the library, including user defined operators, encoding/decoding functions, fitness evaluation, among
others.

procedure interfaces:

void ugs initiate(USER STRUCT *ugs, ProbData *data)
Creates and initiates the data structure USER STRUCT, allocating memory to inner structures.
The usage of this function is paired with ugs free.

void ugs free(USER STRUCT *ugs, Configuration* conf)
Frees the assigned memory from the data structure USER STRUCT.
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user problemdata.h

typedef

ProbData
User defined data structure to store problem related data. This component is designed to read
problem instance’s data from file and store them into ProbData.

procedure interfaces:

code prdata create(ProbData*)
Creates and assigns memory for the data structure ProbData, this function should be used in pair
with prdata free.

code prdata free(ProbData*)
Frees the allocated memory.

code prdata read(ProbData*, char*)
Read from a file and fills the data strucutre ProbData, the structure must be created with pr-
data create previously.

void prdata display(const ProbData*)
Displays on screen the data in ProbData.

environment.h

typedef

Environment
Data structure that contains the mapping of function pointer to particular implementation to use
in the engine.

procedure interfaces:

void environment initiate(Environment*, Configuration*)
Initiates the data structure Environment with the correct instances for each function pointers to use,
by reading the configuration. The function environment free should be called to free the assigned
memory before exit.

void environment free(Environment*, Configuration*)
Frees the memory assigned to the data structure Environment.

errors.h

typedef

enum {OK=0, ERROR=1} code
General purpose control code used by all function of the library.

procedure interfaces:

code initCode(code*)
Initiates the code with a default value (TRUE).
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code setError(code*)
Set the code to ERROR status.

code setOk(code*) Set the code to OK status.

code joinCode(const code, const code)
Applies the Boolean OR operation over the two codes and returns the result.

boolean isOk(const code)
Check if the code is in OK status.

configuration.h

typedef

Configuration
Data structure (a dictionary) that encapsulates the configuration parameter to value mapping.

procedure interfaces:

code conf create(Configuration*)
Creates and assigns memory for the data structure Configuration. Should be paired with conf free.

code conf free(Configuration*)
Frees the assigned memory from the data structure.

code conf read(Configuration*, char*, char*)
Reads from a file and fills the data structure, which must be already created with conf create.

int conf sizeOf(const Configuration*)
Returns the size of the dictionary Configuration.

code conf getInt(const Configuration*, const char*, int*)
Consults an integer valued parameter.

code conf setInt(Configuration*, const char*, int)
Changes the value of an integer valued parameter.

code conf getFloat(const Configuration*, const char*, float*)
Consults a float valued parameter.

code conf setFloat(Configuration*, const char*, float)
Changes the value of a float valued parameter.

code conf getStr(const Configuration*, const char*, char*)
Consults a string valued parameter.

code conf getProbData(const Configuration*, ProbData**)
Changes the value of a string valued parameter.

void conf display(const Configuration*)
Prints on screen the data of the data structure Configuration.
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nrand.h

typedef

Nrand
Data structure to store the status and parameters of the pseudo-random generator.

procedure interfaces:

code nrand initiate(Nrand *, unsigned long mt seed, mpz t a, const unsigned long c, const un-
signed long m2exp, mpz t gmp seed)
Creates and initiates the generator with the given random seed.

code nrand initiateFromFile(Nrand *, char *)
Creates and initiates the generator, then loads a random seed from a specific file.

void nrand free(Nrand *)
Frees the assigned memory from the data structure.

double nrand uni(Nrand *)
Returns a decimal according to a uniform distribution with parameter [0, 1].

float nrand floatRange(const double min, const double max, Nrand*)
Returns a decimal according to a uniform distribution with parameter [a, b].

int nrand intRange(const int min, const int max, Nrand*)
Returns an integer according to a uniform distribution with parameter [a, b].

boolean nrand flip(const double p, Nrand *)
Returns a Boolean according to a Bernoulli distribution with parameter p.

int nrand intGeo(const double p, Nrand *)
Returns an integer according to a geometric distribution with parameter p.

int nrand intGeoAlpha(const double alpha, Nrand *)
Returns an integer according to a geometric distribution with parameter p. This version is designed
for repeated calls with the same parameter, then the input alpha is 1

log(1−p)

void nrand MPZUni(Nrand *, const mpz t,mpz t)
Returns a big integer of type mpz t (a GMP data type) according to a uniform distribution with
parameter [0, 1]. The underlying generator in use is a linear congruent generator coming from the
library GMP.

fitnessdb.h

typedef

FitnessDB
Data structure to be used as the fitness database.

procedure interfaces:

code fitdb create(FitnessDB*, const Configuration*)
Creates an empty data structure FitnessDB and assigns memory if needed. This function should be
used in pair with fitdb free.
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code fitdb free(FitnessDB*)
Frees the memory assigned to the data structure.

float fitdb get(Genotype*, Phenotype*, FitnessDB*, const Configuration*)
Given a Genotype, tries to determine the corresponding fitness value by first searching in the cache,
and then if fails, it will decode and evaluate the phenotype using the fitness function. The resulting
phenotype is the decode function is called will then be returned too.

cte.h

List of default parameter values, which are used when the parameter is missing.

DEFAULT TYPE GENE INDEX BOOL
DEFAULT GENOTYPE LEN 10
DEFAULT POPULATION SIZE 100
DEFAULT CROSSOVER RATE 0.7
DEFAULT MUTATION RATE 0.01
DEFAULT GENERATIONS 150

DEFAULT GENEDOMAIN BOOL FILE “range bool.dat”
DEFAULT GENEDOMAIN INT FILE “range int.dat”
DEFAULT GENEDOMAIN FLOAT FILE “range float.dat”
DEFAULT GENEDOMAIN USER FILE “range user.dat”
RANDOM FILE “nr.dat”
CONFIGURATION FILE “config.dat”

DEFAULT GENE TRUE RATE 0.5
DEFAULT GENE INT MIN 0
DEFAULT GENE INT MAX 10
DEFAULT GENE FLOAT MIN 0.0
DEFAULT GENE FLOAT MAX 1.0

DEFAULT CROSSOVER WEIGHT 0.6
DEFAULT SELECTION SIZE SELECTION SIZE/2

Other parameters are defined in “cte.h”, advanced users who want to implement user defined oper-
ators should consult that file for the names of the different parameters stored in the Configuration.
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B.8 Format of the configuration file

The name of the configuration file is “config.dat”, parameters are stored in each line in the form of
“Parameter = Value”. Any number of space, tab or enter characters can be inserted in the line,
comments can also be inserted anywhere with the comment mark #. Whenever the comment mark
is detected, the remaining line is truncated.

Parameter Description Value range

TYPE GENE type of Gene 0 Boolean (default)
1 integer
2 float
3 user defined

TYPE GENOTYPE type of Genotype 0 predefined, list of Gene
1 user defined

SELECTION OPERATOR selection op. to use 0 roulette
1 tournament
2 ranking
3 user defined

CROSSOVER OPERATOR crossover op. to use 0 one point
1 two points
2 uniform one point
3 uniform two points
4 weighted one point
5 user defined

MUTATION OPERATOR mutation op. to use 0 uniform
1 inversion ( Boolean genes only)
2 use defined

GENERATIONS number of generations to run natural number
POPULATION SIZE size of the population natural number
SELECTION SIZE size of mating pool natural number not larger than population size
CROSSOVER RATE crossover rate decimal in [0, 1]
MUTATION RATE mutation rate decimal in [0, 1]
GENOTYPE LEN number of genes in each genotype natural number (for predefined genotype only)
TOURNAMENT SIZE size of the list of tournament natural number (for tournament selection only)
CROSSOVER WEIGHT the weight of weighted crossover decimal in [0, 1] (for weighted crossover only)
BOOLEAN GENE RANGE FILE name of domain file path and name (for Boolean gene only)
INTEGER GENE RANGE FILE name of domain file path and name (for integer gene only)
FLOAT GENE RANGE FILE name of domain file path and name (for decimal gene only)
USER GENE RANGE FILE name of domain file path and name (for user defined gene only)

Redundant parameters like those designed for operators that are not chosen, can be left in the
configuration file commented or uncommented. Any parameter-value pair will be read and stored
into the Configuration data structure, and it doesn’t matters if there are redundant pairs, as long
as the required are present. If a parameter is missing, default value for that parameter will be used
instead, the list of default values can be found in “cte.h” .
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B.9 User’s Manual

To solve a problem using GGEngine, first of all it is necessary to model the problem. In other words,
it requires a suitable coding, a fitness function and the different genetic operators. In this section,
we present a brief guideline together with some simple examples.

The first step: a type of Gene must be chosen and setup in the configuration file “config.dat”, the
associated parameter is TYPE GENE:� 0 Boolean gene� 1 integer gene� 2 decimal gene� 3 user defined gene

If 3 is chosen, then the user has to define some data structures and implement a list of procedures as
specified in the interface. Beginning with “user gene def.h” where TYPE GENE USER DEF and
TYPE LIMIT USER DEF are defined. The former is the data structure for the Gene while the
latter is a data structure associated with the domain of the gene.

Example I.1.a:
typedef char TYPE GENE USER DEF; // defined as a char here

typedef enum{e1=’A’, e2=’B’, e3=’C’} AUX;

typedef struct{
AUX domain; // defines a domain here
} TYPE LIMIT USER DEF;

Example II.1.a:
typedef struct LIST NODE{

char a;
chat b;
};

typedef struct
LIST NODE *dat;
} TYPE GENE USER DEF; // or some complicated structure

typedef struct{
int min number nodes;
int max number nodes;
AUX2 domain field; // can be as strange as the user needs
} TYPE LIMIT USER DEF;

Then in the file “user gene.c” each of the following procedure should be implemented according
to the interface. Sub-procedures can be added there too.� gene create udef� gene free udef� gene initiate udef� gene initiateFromFile udef
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� gene clone udef� gene writeToFile udef� gene display udef� range read udef� range free udef

Among the input parameters of those procedures, we have TYPE GENE and Limit:
typedef union{

...
TYPE GENE USER DEF TYPE GENE UDEF;
} TYPE GENE;

typedef union{
...
TYPE LIMIT USER DEF TYPE LIMIT UDEF;
} Limit;

Some of the procedures also have “Configuration * conf” and/or “Nrand * NR” as input, the
former is for configuration parameter access, some important parameters are:� PARAM GENEDOMAIN USER FILE� DEFAULT GENEDOMAiN USER FILE� and all other parameter in “cte.h” that has the prefix PARAM o DEFAULT

The user can access those data with conf getStr (and other get series procedures, check “config-
uration.h” in API for a complete list).

code c;
c=conf getStr(conf, PARAM GENEDOMAIN USER FILE, &filename);
c=conf getStr(conf, DEFAULT GENEDOMAIN USER FILE, &filename);

The returned control code is defined in “errors.h”, to indicate if the operation was successful, in
brief the function isOk(code) will extract the status of the code.
About the input parameter Nrand, it is used to access the random number generator (more details
can be found in “nrand.h” from the API), a brief list of useful procedures:� nrand uni� nrand intRange� nrand floatRange� nrand flip

These functions are useful for the implementation of gene initiate udef.

Example I.1.b (following the example I.1.a)
code gene create udef(TYPE GENE* g, const Configuration* conf){

// no dynamic memory needed in this case
code c; initCode(&c);
return c; //a long way to return OK
}

code gene free udef(TYPE GENE* g){
return OK; //nothing to free in this case
}

code gene initiate udef(TYPE GENE* g, const Limit* lim, Nrand* NR, const Configuration* conf){
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int n;
n=nrand intRange(0,2,NR); //o other sampling using information in lim
switch(n){

case 0:
g→TYPE GENE UDEF = e1;
break;

case 1:
g→TYPE GENE UDEF = e2;
break;

case 2:
g→TYPE GENE UDEF = e3;
break;

}
return OK; // or ERROR if something when wrong
}

code gene initiateFromFile udef(TYPE GENE* g, FILE* fp, const Configuration* conf){
code c; initCode(&c);
fscanf(fp, “%c\n”, &(g→TYPE GENE UDEF) ); // may verify integrity and change c here
return c;
}

code gene clone udef TYPE GENE* dest, const TYPE GENE* orig){
dest→TYPE GENE UDEF = orig→TYPE GENE UDEF;
return OK;
}

code gene writeToFile udef(TYPE GENE* g, FILE* fp, const Configuration* conf){
fprintf(fp, “%c\n”, g→ TYPE GENE UDEF);
return OK;
}

int gene display udef(TYPE GENE* g, char* result){
result[0]=g→ TYPE GENE UDEF; // knowing that this is a char
result[1]=’\0’;
return 1; // length of the string
}

code range read udef(Limit* lim, const Configuration* conf){
// in this case TYPE LIMIT USER DEF contains an enumeration
return OK; // no need to read file
}

code range free udef(Limit* lim, const int size){
return OK; // nothing to free
}

The second step: definition of Phenotype, Genotype together with the associated encode/decode
and fitness function.� In “user phenotype.h” define the data structure Phenotype, which represents the solutions to

the problem to solve. All the procedures in the same file should also be implemented.� If the predefined genotype is not suitable, define in “user genotype def.h” the data structures
Genotype USER DEF and GeneDomain USER DEF. And set TYPE GENOTYPE = 1 in
“config.dat”
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� Then implement in “user encoding.c” the following functions

– code decode(Phenotype*;const Genotype*,const Configuration*)

– code encode(Genotype*,const Phenotype*,const Configuration*)

– float user fitness(const Phenotype*,const Configuration*,FitnessDB*)

Example I.2.a
For the problem of maximising the identity function f(x) = x, with x a natural number. We will
use a ternary coding, that is to encode natural numbers in base three. Then with a genotype of
length l, we can represent the range [0, 3l − 1]. To implement this model, we can use the examples
I.1.a and I.1.b as the first steps, then as second step we do as follows.

In “user phenotype.h”:
typedef int Phenotype;

In “user phenotype.c”:
code phenotype create(Phenotype* p, const Configuration* conf){

return OK; // no dynamic memory in this case
}

code phenotype free(Phenotype* p, const Configuration* conf){
return OK; // nothing to free neither
}

int phenotype display(const Phenotype* p, char* str, const Configuration* conf){
return sprintf(str,“%i\n”,p);
}

Then in “user encoding.c”:
code decode(Phenotype* phen,const Genotype* geno, const Configuration* conf){

// note that at this point, the user should know the type of Gene in use
int i,l;
TYPE GENE *gen;
conf getInt(conf,PRARM GENOTYPE LEN,&l);
(*phen)=0;
for(i=0;i<l;i++){

GLOBAL env.genotype getReferenceAt(geno,&gen,i,conf); // reference to the original
switch(gen→TYPE GENE UDEF){

case e1: break;
case e2: (*phen)+=pow(3,i);break;
case e3: (*phen)+=2*pow(3,i);break;
}

}
return OK;
}

code encode(Genotype* geno,const Phenotype* phen, const Configuration* conf){
int i, l, value, remain;
TYPE GENE *gen;
conf getInt(conf,PRARM GENOTYPE LEN,&l);

value=(*phen);
for(i=l-1;i>=0;i–){

GLOBAL env.genotype getReferenceAt(geno,&gen,i,conf);
remain=pow(3,i);
switch(value/remain){
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case 0:
gen→TYPE GENE UDEF = e1;
break;

case 1:
gen→TYPE GENE UDEF = e2;
break;

case 2:
gen→TYPE GENE UDEF = e3;
break;

}
value-=remain;
}

return OK;
}

float user fitness(const Phenotype* phen, const Configuration* conf, FitnessDB *db){
return (float)(*phen);//f(x)=x
}

Fitness scaling is implemented as an option, details on how to active it can be found in “user operator.h
.c” .

The third step: And as the last step, genetic operators to apply and the stopping condition
have to be setup in the configuration file “config.dat” . See Section B.8 for the details. When all the
steps are completed, the engine is ready for execution, the result and some basic statistic is output
on screen. If further run with different random seeds is required, the user should change the seed in
the seed file “nr.dat”, only the first line is read in the latter.
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Appendix C

Problem’s input file format

The solver reads “graph.dat” as input, in this file all the necessary data of our network design problem
is obtained. The file is written with a tagged structure design, and is divided into four sections:� < G > n =? d =? fill cost =? < /G >� < T > i =? c =? s =? < /T >� < A > f =? t =? < T > i =? < /T > < /A >� < D > f =? t =? k =? s =? h =? < /D >

The first section is one single line with the < G > tag containing general information about the
graph, being the number of nodes, demands and the filling cost for the fictional link (with unlimited
capacity) for each edge.
The second section is a sequence of < T > tags, each one of them is a declaration of a type of
link option. Each entry contains the identification of the link, cost of instalation, and size of the
maximum capacity. Later on, link options will be referred to, by using the assigned identification.
The third section of the file contains a sequence of < A > tags, each one of them represents an
edge. It contains information about form which node to which other is the edge placed, and a list
of possible link options on a list of < T > tags, the latter only contains the identification of the link
type.
And finally in the last section, a sequence of < D > tags are placed with information about the
different demand pairs. In this case, each tag tells from which origin to which destination is the
demand required, together with the required throughput’s size for the h-limited k-path.
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Appendix D

Test suite: basic cases

# case A

#

# a complete graph with 6 nodes and 6 s-t pairs

# solution space size 788050640

# optimal cost=43

<G>n=6 d=6 fill_cost=161</G>

<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>

<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>

<A> f=1 t=2 <T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=3</T> <T>i=5</T> <T>i=7</T> <T>i=10</T></A>
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<A> f=1 t=4 <T>i=1</T><T>i=2</T> <T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=7</T> <T>i=10</T></A>

<A> f=1 t=6 <T>i=2</T><T>i=3</T> <T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=4 <T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T> <T>i=10</T></A>

<A> f=2 t=5 <T>i=4</T><T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=4 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T> <T>i=4</T><T>i=5</T> <T>i=8</T> <T>i=10</T></A>

<A> f=3 t=6 <T>i=1</T> <T>i=3</T> <T>i=5</T> <T>i=10</T></A>

<A> f=4 t=5 <T>i=5</T> <T>i=10</T></A>

<A> f=4 t=6 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=6</T> <T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T> <T>i=10</T></A>

<D> f=1 t=2 k=2 s=5 h=4</D>

<D> f=1 t=5 k=2 s=1 h=5</D>

<D> f=3 t=5 k=1 s=2 h=1</D># H=1 => K=1

<D> f=3 t=6 k=2 s=3 h=3</D>

<D> f=4 t=6 k=3 s=2 h=3</D>

<D> f=5 t=6 k=1 s=3 h=3</D>

##################################################################

# case B

#

# a complete graph with 6 nodes and 6 s-t pairs

# solution space size 327688400

# optimal cost=55

<G>n=6 d=6 fill_cost=161</G>

<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>
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<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>

<A> f=1 t=2 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=1</T> <T>i=3</T> <T>i=5</T><T>i=6</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=4 <T>i=1</T> <T>i=3</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 <T>i=3</T> <T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T> <T>i=10</T></A>

<A> f=1 t=6 <T>i=1</T> <T>i=3</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 <T>i=2</T><T>i=3</T> <T>i=5</T><T>i=6</T><T>i=7</T> <T>i=10</T></A>

<A> f=2 t=4 <T>i=1</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=5 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=4 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=7</T> <T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T> <T>i=5</T> <T>i=8</T> <T>i=10</T></A>

<A> f=3 t=6 <T>i=3</T><T>i=4</T><T>i=5</T> <T>i=10</T></A>

<A> f=4 t=5 <T>i=3</T><T>i=4</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=6 <T>i=1</T> <T>i=3</T><T>i=4</T><T>i=5</T><T>i=6</T> <T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<D> f=1 t=3 k=2 s=3 h=4</D>

<D> f=1 t=5 k=2 s=1 h=5</D>

<D> f=2 t=3 k=1 s=4 h=1</D># H=1 => K=1

<D> f=2 t=4 k=3 s=2 h=3</D>

<D> f=3 t=5 k=3 s=5 h=5</D>

<D> f=4 t=5 k=1 s=1 h=2</D>

##################################################################

# case C

#

# a complete graph with 6 nodes and 6 s-t pairs

# solution space size 430941160

# optimal cost=70

<G>n=6 d=5 fill_cost=161</G>
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<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>

<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>

<A> f=1 t=2 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T><T>i=6</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T> <T>i=10</T></A>

<A> f=1 t=4 <T>i=1</T> <T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 </T><T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=8</T> <T>i=10</T></A>

<A> f=1 t=6 <T>i=1</T> <T>i=5</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 </T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=4 </T> <T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T> <T>i=10</T></A>

<A> f=2 t=5 <T>i=1</T> <T>i=3</T> <T>i=5</T><T>i=6</T> <T>i=8</T> <T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T><T>i=8</T> <T>i=10</T></A>

<A> f=3 t=4 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=6 <T>i=1</T> <T>i=4</T> <T>i=6</T><T>i=7</T><T>i=8</T> <T>i=10</T></A>

<A> f=4 t=5 <T>i=1</T> <T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=6 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<D> f=1 t=2 k=3 s=1 h=3</D>

<D> f=1 t=3 k=2 s=3 h=5</D>

<D> f=1 t=4 k=3 s=3 h=5</D>

<D> f=2 t=5 k=4 s=5 h=4</D>

<D> f=2 t=6 k=1 s=2 h=4</D>

##################################################################

# case D
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#

# a complete graph with 6 nodes and 6 s-t pairs

# solution space size 304538000

# optimal cost=142

<G>n=6 d=6 fill_cost=601</G>

<T> i=11 c=2 s=1</T>

<T> i=12 c=4 s=2</T>

<T> i=13 c=6 s=3</T>

<T> i=14 c=8 s=4</T>

<T> i=15 c=10 s=5</T>

<T> i=16 c=12 s=6</T>

<T> i=17 c=14 s=7</T>

<T> i=18 c=16 s=8</T>

<T> i=19 c=18 s=9</T>

<T> i=20 c=20 s=10</T>

<A> f=1 t=2 <T>i=11</T> <T>i=13</T><T>i=14</T><T>i=15</T><T>i=16</T><T>i=17</T> <T>i=19</T><T>i=20</T></A>

<A> f=1 t=3 <T>i=11</T> <T>i=14</T> <T>i=17</T> <T>i=19</T><T>i=20</T></A>

<A> f=1 t=4 <T>i=12</T> <T>i=14</T> <T>i=16</T><T>i=17</T> <T>i=19</T><T>i=20</T></A>

<A> f=1 t=5 <T>i=11</T> <T>i=14</T> <T>i=18</T> <T>i=20</T></A>

<A> f=1 t=6 <T>i=15</T><T>i=16</T> <T>i=18</T> <T>i=20</T></A>

<A> f=2 t=3 <T>i=11</T> <T>i=15</T><T>i=16</T> <T>i=20</T></A>

<A> f=2 t=4 <T>i=12</T><T>i=13</T> <T>i=18</T><T>i=19</T><T>i=20</T></A>

<A> f=2 t=5 <T>i=11</T> <T>i=14</T><T>i=15</T> <T>i=20</T></A>

<A> f=2 t=6 <T>i=11</T><T>i=12</T> <T>i=19</T><T>i=20</T></A>

<A> f=3 t=4 <T>i=13</T><T>i=14</T> <T>i=16</T> <T>i=20</T></A>

<A> f=3 t=5 <T>i=11</T> <T>i=13</T> <T>i=16</T><T>i=17</T> <T>i=19</T><T>i=20</T></A>

<A> f=3 t=6 <T>i=11</T> <T>i=17</T> <T>i=19</T><T>i=20</T></A>

<A> f=4 t=5 <T>i=12</T> <T>i=14</T><T>i=15</T> <T>i=17</T><T>i=18</T><T>i=19</T><T>i=20</T></A>

<A> f=4 t=6 <T>i=12</T> <T>i=14</T><T>i=15</T> <T>i=19</T><T>i=20</T></A>

<A> f=5 t=6 <T>i=12</T><T>i=13</T> <T>i=15</T><T>i=16</T><T>i=17</T> <T>i=19</T><T>i=20</T></A>

<D> f=1 t=2 k=2 s=2 h=5</D>

<D> f=1 t=4 k=5 s=2 h=3</D>
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<D> f=1 t=6 k=2 s=1 h=2</D>

<D> f=2 t=6 k=2 s=1 h=5</D>

<D> f=3 t=5 k=4 s=3 h=4</D>

<D> f=4 t=5 k=2 s=5 h=4</D>

##################################################################

# case E

#

# a complete graph with 7 nodes and 4 s-t pairs

# solution space size 714918000

# optimal cost=64

<G>n=7 d=4 fill_cost=211</G>

<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>

<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>

<A> f=1 t=2 <T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=4 <T>i=2</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=6 <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=7 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=4 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=7 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>
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<A> f=3 t=4 <T>i=1</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=6 <T>i=1</T> <T>i=3</T> <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=7 <T>i=3</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=6 <T>i=2</T> <T>i=4</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=4 t=7 <T>i=1</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=7 <T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=6 t=7 <T>i=1</T> <T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

#if h=1 => k=1

<D> f=1 t=7 k=4 s=3 h=6</D>

<D> f=2 t=4 k=1 s=3 h=6</D>

<D> f=3 t=5 k=2 s=3 h=2</D>

<D> f=4 t=6 k=3 s=5 h=5</D>

##################################################################

# case F

#

# a complete graph with 7 nodes and 4 s-t pairs

# solution space size 737256000

# optimal cost=55

<G>n=7 d=4 fill_cost=211</G>

<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>

<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>
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<A> f=1 t=2 <T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=4 <T>i=2</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=6 <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=7 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 <T>i=2</T><T>i=3</T> <T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=4 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=7 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=4 <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=6 <T>i=1</T> <T>i=3</T> <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=7 <T>i=3</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=6 <T>i=2</T> <T>i=4</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=4 t=7 <T>i=1</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=7 <T>i=2</T> <T>i=4</T> <T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=6 t=7 <T>i=1</T> <T>i=3</T> <T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

#if h=1 => k=1

<D> f=1 t=7 k=3 s=3 h=6</D>

<D> f=2 t=4 k=3 s=4 h=3</D>

<D> f=2 t=5 k=1 s=1 h=2</D>

<D> f=4 t=6 k=2 s=5 h=5</D>

##################################################################

# case G

#

# a complete graph with 7 nodes and 3 s-t pairs

# solution space size 376856000

# optimal cost=43
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<G>n=7 d=3 fill_cost=211</G>

<T> i=1 c=1 s=1</T>

<T> i=2 c=2 s=2</T>

<T> i=3 c=3 s=3</T>

<T> i=4 c=4 s=4</T>

<T> i=5 c=5 s=5</T>

<T> i=6 c=6 s=6</T>

<T> i=7 c=7 s=7</T>

<T> i=8 c=8 s=8</T>

<T> i=9 c=9 s=9</T>

<T> i=10 c=10 s=10</T>

<A> f=1 t=2 <T>i=2</T> <T>i=4</T><T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=1 t=3 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=4 <T>i=2</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=5 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=6 <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=1 t=7 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=3 <T>i=1</T><T>i=2</T><T>i=3</T> <T>i=5</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=4 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=2 t=6 <T>i=1</T><T>i=2</T> <T>i=4</T> <T>i=9</T><T>i=10</T></A>

<A> f=2 t=7 <T>i=1</T><T>i=2</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=4 <T>i=1</T> <T>i=4</T><T>i=5</T><T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=3 t=5 <T>i=1</T><T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=6 <T>i=1</T> <T>i=3</T> <T>i=5</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=3 t=7 <T>i=3</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=5 <T>i=2</T><T>i=3</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=4 t=6 <T>i=2</T> <T>i=4</T> <T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=4 t=7 <T>i=1</T> <T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=6 <T>i=1</T> <T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T><T>i=8</T><T>i=9</T><T>i=10</T></A>

<A> f=5 t=7 <T>i=2</T><T>i=3</T><T>i=4</T> <T>i=6</T><T>i=7</T> <T>i=9</T><T>i=10</T></A>

<A> f=6 t=7 <T>i=1</T> <T>i=5</T><T>i=6</T> <T>i=8</T><T>i=9</T><T>i=10</T></A>

#if h=1 => k=1
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<D> f=1 t=7 k=3 s=3 h=6</D>

<D> f=2 t=4 k=3 s=2 h=6</D>

<D> f=4 t=6 k=2 s=5 h=6</D>

118



Appendix E

List of acronyms

API Application Programming Interface
A.Q. Approximated Quality
A.Q. above R.S. Approximated Quality above Random Search
AMD Advanced Micro Devices
ARPANET World’s first operational packet switching computer network, developed in the Advanced

Research Projects Agency
AS Autonomous System
BGP Border Gateway Protocol
bps bits per second
Bps Bytes per second
CIDR Classless Inter-Domain Routing
CMST Capacitated Minimum Spanning Tree problem
CPMST Capacity Planning Minimum Spanning Tree problem
CPU Central Processing Unit
DB DataBase
F.A. First Appearance
FDDI Fiber Distributed Data Interface
G.A. Genetic Algorithms
GB Giga-Bytes
GGEngine Generic Genetic Engine
GHz Giga-Hertz
GSP Generalised Steiner Problem
GSP-NC Generalised Steiner Problem with Node Connectivity constraints
GSP-EC Generalised Steiner Problem with Edge Connectivity constraints
HT Hyper-Threading
IANA Internet Assigned Numbers Authority
IGP Interior Gateway Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IS-IS Intermediate System to Intermediate System
ISP Internet Service Provider
LAN Local Area Network
MAN Metropolitan Area Network
MB Megabytes
Mb Megabits
MPI Message Passing Interface
MPLS MultiProtocol Label Switching
MPLS-TE MultiProtocol Label Switching Traffic Engineering
MST Minimum Spanning Tree problem
NP Non-deterministic Polynomial time
NPO Non-deterministic Polynomial optimisation
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NSP Network Service Provider
OGF Ordinary Generating Function
OSI Open Systems Interconnection
OSPF Open Shortest Path First protocol
P Polynomial time
PO Polynomial time optimisation
PVM Parallel Virtual Machine
RIP Routing Information Protocol
R.S. Random Search
SFP Single-demand Feasibility Problem
SPG Steiner tree Problem in Graph
TC-DHK Topology and Capacity design with throughput Demand, Hop-limit and path diversity

constraints
TCP Transmission Control Protocol
TSP Travelling Salesman Problem
WAN Wide Area Network
WMP Weighted Multi-demand Problem
WSP Weighted Single-demand Problem
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