
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Doctorado
en Informática

Tree models : algorithms and information
theoretic properties

Alvaro Martín

Orientador: Dr. Gadiel Seroussi

Supervisor: Dr. Alfredo Viola
Tribunal: Dr. Sergio Verdú y Dr. Frans Willems (Revisores)
Dr. Eduardo Canale, Dr. Alberto Pardo, y Dr. Gregory Randall

2009

Tree models : algorithms and information theoretic properties
Martín, Alvaro
ISSN 0797-6410
Tesis de Doctorado en Informática
Reporte Técnico RT 09-20
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, setiembre de 2009

A mi hija Camila,
y a mi esposa y compañera Mercedes,

que me ha apoyado con inagotable paciencia
durante estos años.

Contents

Agradecimientos ix

Acknowledgements xi

Summary of notations and abbreviations xiii

1 Introduction 1
1.1 Information sources and universal coding . 1
1.2 Tree models . 7
1.3 Low complexity coding algorithms for tree sources 9
1.4 Type classes of tree models . 11
1.5 Enumerative coding . 12
1.6 Universal tree type classes and simulation of individual sequences 13
1.7 Summary of main contributions . 14
1.8 Basic definitions . 15

2 Tree sources and FSM closures 17
2.1 Finite-memory processes and tree models . 17
2.2 Generalized context trees . 20

2.2.1 Terminology and notation . 21
2.2.2 Source definition . 22
2.2.3 Normal generalized context trees . 24
2.2.4 Minimal generalized context tree models 25

2.3 FSM closures of generalized context trees . 26
2.3.1 Refinements . 26
2.3.2 Definition and properties of FSM closures 27

2.4 A linear-time algorithm for constructing FSM closures 30

3 Linear-time twice-universal coding of tree sources 37
3.1 The semi-predictive approach . 37
3.2 An efficient algorithm: complexity analysis 39

3.2.1 First encoding pass: finding the optimal tree 40

v

3.2.2 Second pass: sequential encoding . 43
3.2.3 Decoding . 44

4 Type classes of tree models 49
4.1 Preliminaries . 51
4.2 The size of a type class . 57
4.3 The expected size of a type class . 70
4.4 The number of type classes . 86
4.5 Type classes with respect to the FSM closure of T 95

5 Enumerative coding for tree sources 97
5.1 Preliminaries . 98
5.2 Non-uniform codes for symbol counts . 100
5.3 The expected size of T (T,Xn) revisited . 101
5.4 Encoding the type class . 103
5.5 Twice-universal Coding . 112

6 Universal tree type classes and simulation of individual sequences 119
6.1 Statistical similarity properties . 120
6.2 Simulation of individual sequences . 124

7 Conclusions and directions for further research 129

A Minimality conditions for generalized context tree models 133

B Proof of Theorem 2.9 137

C Linear-time decoding 141
C.1 Decoding using incremental FSM closure construction 141
C.2 Decoding using incremental suffix tree construction 145

D Proofs for Chapter 4 149
D.1 Proof of Lemma 4.13 . 149
D.2 Proof of Lemma 4.29 . 154
D.3 Proof of Lemma 4.22 . 155

E Type classes under general initial conditions 185

F Eulerian unlabeled paths enumeration algorithm 189

G Proofs for Chapter 5 191
G.1 Proof of Lemma 5.2 . 191
G.2 Proof of Lemma 5.8 . 195
G.3 Proof of Lemma 5.10 . 197
G.4 Proof of Lemma 5.13 . 197

H Probability of context tree estimation error 199
H.1 Proof of Lemma 5.17 . 199
H.2 Proof of Lemma 5.18 . 201

Bibliography 205

Agradecimientos

Mucha gente me ha acompañado durante mis estudios de doctorado. Siempre he encontrado
el apoyo imprescindible para poder terminar esta tesis en mis dos amores, mi hija Camila
y mi esposa Mercedes. A mis padres, Yvonne y Eduardo, les debo el gusto por la ciencia
que siempre me han transmitido. Nada de esto hubiera comenzado de no ser por ellos. Mi
hermana Ana, aśı como Teresa, Omar, Silvana, la Bisa, y los Raffo también han estado muy
presentes durante todo este tiempo.

Quiero agradecer muy especialmente a Gadiel Seroussi y a Marcelo Weinberger, quienes
me motivaron para embarcarme en este proyecto. Desde mi primera visita a los Laboratorios
Hewlett-Packard ellos han representado una gran fuente de conocimientos y de inspiración.
Sus consejos y nuestras discusiones han ido muchas veces más allá de lo estrictamente técnico
o cient́ıfico. Sin lugar a dudas les debo a ellos mucho de lo que he aprendido en estos últimos
años.

Mi supervisor, Tuba, también ha sido de invalorable ayuda para mi. Mi más sincero
agradecimiento por su fuerte apoyo y todos sus consejos.

Recuerdo mi visita a Palo Alto, California, como una experiencia realmente extraordinaria.
Muchas gracias a Erik Ordentlich, Tsachy Weissman, Vinay Deolalikar, Ronny Roth, Neri
Merhav, Giovanni Motta, y Krishnamurthy Viswanathan. También a Popi, Mathieu, Waled,
y Quan.

También quiero agradecer a Guillermo Sapiro, Alberto Bartesaghi, y Facundo Memoli por
haberme recibido maravillosamente en Minneapolis.

Siempre he sentido el apoyo de muchas personas del Instituto de Computación y del Área
informática del Pedeciba, aśı como de Gregory Randall, Nacho, Fefo, y Marcelo. Muchas
gracias a todos.

Finalmente, agradezco a muchos amigos y familiares, a quienes tantas veces dediqué tanto
menos tiempo del que hubiese querido.

Álvaro Mart́ın
Montevideo

Julio de 2009

ix

Acknowledgments

Many people have gone along with me during my studies. I have always found the indis-
pensable support to pursue this thesis in my two loves, my daughter Camila and my wife
Mercedes. I owe to my parents, Yvonne and Eduardo, the like for science that they have
always transmitted to me. None of this would have begun were it not for them. My sister
Ana, as well as Teresa, Omar, Silvana, la Bisa, and los Raffo have also been there for me all
this time.

Very special thanks go to Gadiel Seroussi and Marcelo Weinberger, who encouraged me
to engage in this project. Since my first visit to the Hewlett-Packard Laboratories they have
been a rich source of knowledge and inspiration. Their guidance and our discussions have
gone many times beyond scientific or technical advice. I definitely owe to them much of what
I have learned during the past years.

My supervisor, Tuba, has also been of invaluable help for me. My most sincere thanks for
his strong support and his advise.

I remember the time visiting HP Labs in Palo Alto as an extraordinary experience. Thanks
to Erik Ordentlich, Tsachy Weissman, Vinay Deolalikar, Ronny Roth, Neri Merhav, Giovanni
Motta, and Krishnamurthy Viswanathan. Also to Popi, Mathieu, Waled, and Quan.

I would also like to thank Guillermo Sapiro, Alberto Bartesaghi, and Facundo Memoli,
for the great time in Minneapolis.

I have always felt the support of many people from the Instituto de Computación and the
Informatics area of Pedeciba, as well as Gregory Randall, Nacho, Fefo, and Marcelo. Thanks
to all.

Finally, I thank many friends and family, with whom so many times I have spent much
less time than I would have wished to.

Álvaro Mart́ın
Montevideo

July, 2009

xi

Summary of notations and abbreviations

General

Z,Z≥0,Z>0 The integers, the nonnegative integers, and the positive integers, respec-
tively, 15

R The real numbers, 15

f(n) = o(g(n)) |f(n)| ≤ ε|g(n)| for all ε > 0 and n > n0(ε), 15

f(n) = O(g(n)) |f(n)| ≤ K|g(n)| for some K > 0 and n > n0, 15

f(n) = Ω(g(n)) g(n) = O(f(n)), 15

f(n) = Θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n)), 15

H(X) The entropy of a random variable X, 15

H(p) The entropy of a probability vector, or a probability distribution, p, 15

h(·) The binary entropy function, 15

H(X|Y) The conditional entropy of X given Y , 15

I(X;Y) The mutual information between X and Y , 16

D(P ||Q) The divergence between P and Q, 16

δu,v A function valued one if u = v and zero otherwise, 52

1i,j A matrix valued 1 in entry i, j, and zero everywhere else, 62

M∗i Sum over the i-th column of the matrix M , 52

Mi∗ Sum over the i-th row of the matrix M , 52

Strings

α Alphabet size, 17

xiii

A Alphabet of symbols, 17

A∗,A+,Am Set of finite strings, positive-length strings, and length-m strings over A,
respectively, 17

$ A distinguished symbol such that $ 6∈ A, 22

λ empty string, 17

xkj The substring xjxj+1 . . . xk, 17

xk The substring x1x2 . . . xk, 17

x The reverse string of x, 17

|x| The length of x, 17

head(x) The first symbol of x, 17

tail(x) The substring x2 . . . x|x|, 17

�,≺ The prefix and proper prefix relation, 17

Context (and generalized context) trees

u ∈ T u is a node of T , 21

word(T) The set of words of T , 21

I(T) The set of internal nodes of T , 51

depth(T) The depth of T (valued zero for a single node tree), 51

u
w−→ v An edge labeled w going from node u to node v, 21

deg(u) The number of outgoing edges of a node u, 21

chldT (u) The set of children of a node u, 21

parT (u) The parent of a node u, 21

GT = (VT , ET) The state transition support graph of T , 71

Tfull The completion of a GCT T to a full tree, 23

Tsuf The FSM closure of T obtained by adding, as nodes, all the suffixes of
nodes of T , 29

Tc The minimal canonical extension of T , 71

TN The normalized presentation of T , 25

N(T) The set of GCTs with the same normalized presentation as T , 25

κT The total (FSM) over-refinement of T , 95

κt The (FSM) over-refinement of t ∈ I(Tsuf)\I(Tc), 95

CT (x) The canonical decomposition of x with respect to T , 21

VT (x) The first component of CT (x) = 〈r, u, v〉, 22

ST The set of permanent states of T , 23

S$
T The set of transient states of T , 23

SA
T The set of all states of T , 23

σT (x) The tree-state function, 22

s0 · · · sn State sequence of a given string, 18

n
(a)
s (x) The number of occurrences of symbol a in context s in x, 37

ns(x) The number of times a symbol of x occurs in context s, 37

N(x) State transition matrix of xn, 51

Nc(xn) State transition matrix of xn with respect to Tc, 89

Probability assignments and coding

〈T, p〉 A (generalized) context tree model with (generalized) context tree T and
parameter p, 23

P〈T,pT 〉(x
n) Probability assigned to xn by the model 〈T, pT 〉, 51

P〈T,pT 〉 {·} Probability under P〈T,pT 〉(·) of an event that depends on a random se-
quence Xn ∈ An, 51

P̂T (xn) The maximum likelihood probability of xn under T , 99

E〈T,pT 〉
[
·
]

Expectation of a random variable with respect to P〈T,pT 〉(·), 51

H The entropy rate of a source, 2

Ĥ(x) The empirical entropy rate of x with respect to a given model structure, 6

BP The strings in the set B with positive P -probability, 18

L(T, xn) The code length assigned to xn under context tree T by a given code, 37

Type classes and universal type classes

T (T, xn) The type class of xn with respect to T , 51

T ∗(T, xn) The close-ended type class of xn with respect to T , 53

T -class A type class with respect to T , 51

T -class∗ A close-ended type class with respect to T , 53

NT The number of T -classes∗, 86

U(xn) The universal tree type class of xn, 119

M(xn) The universal Markov type class of xn, 119

Context tree estimation

K(T, xn) Cost function to be minimized, 112

KT Penalization function increasing with |ST |, 112

f(n) A function increasing with n in the definition of K(T, xn), 112

T̂ (xn) Context tree estimate for xn, 112

Specific notation for Chapter 3 and Appendix C

κ(xn, s) The code length assigned by the KT probability assignment to the sym-
bols of xn that occur in s, 38

n(T) The number of times a permanent state of T is selected, 38

LKT
T (xn) The code length assigned by the KT probability assignment conditioned

on the states of T , 37

C(T) The code length of the natural code for T , 37

ST(x) The compact suffix tree of x, 40

T (xn) The context tree that minimizes L(T, xn), 37

TF (xn) An FSM closure of T (xn), 44

T ′(xn) A GCT that is equivalent to T (xn) for the purpose of encoding xn, 40

T̂ ′(xn) The GCT obtained from T (xn) by deleting all the leaves, as well as nodes
whose outgoing degree after deleting the leaves is one, 44

T̂ ′F (xn) An FSM closure of T̂ ′(xn), 44

si The state selected by xi in TF (xn), 44

ŝi The state selected by xi in T̂ ′F (xn), 44

zi The string such that ŝizi is the longest prefix of xi in word(T̂ ′F (x)), 45

bi The symbol that immediately follows ŝizi in xi , 45

ui+1 The string such that xi+1ŝi = ŝi+1ui+1, 46

T̃ ′Fi(x
n) The FSM GCT constructed adding s0 · · · si to T̂ ′F (xn) and all necessary

suffixes, 141

s̃i The state selected by xi in T̃ ′Fi−1
(xn), 141

z̃i The string such that s̃iz̃i is the longest prefix of xi that is a word of
T̃ ′Fi−1

(xn), 141

b̃i The symbol that immediately follows s̃iz̃i in xi and s̃iz̃ixi−|s̃iz̃i| ∈ TF (xn)
(or λ), 141

ũi+1 The string such that xi+1s̃i = s̃i+1ũi+1 (or λ), 143

{Ti} The sequence of trees obtained by inserting xi in Ti−1 starting from
T0 = T (xn), 146

suf ′i The longest prefix of xi that is a word of Ti−1, 146

sufi The longest prefix of xi that is a substring of xi−1, 146

Specific notation for Chapter 4 and Appendix E

U Set of pseudo-states of a context tree, 58

`s Length of the forced state sequence of s, 57

µ1(s) · · ·µ`s(s) Forced pseudo-state sequence of s, 57

ν1(s) · · · ν`s(s) Forced state sequence of s, 57

ρ(u) Parent of u, 58

Λ(u) Descendants of u, 58

Λ̄(u) Proper descendants of u, 58

J(xn) Forced sequence parsing of xn, 62

t0 · · · tr The ordered members of J(xn), 62

~ Position of the last state that forces the transition sj→sj+1, 62

j∆ Position of sj in the forced state sequence ν1(s~) · · · ν`s~ (s~), 62

τ(u, a) The longest prefix of au in U , 62

τi Shorthand for τ(sti , xti+1), 64

d(u, av) A matrix that redirects an edge (u, av) to (u, τ(u, a)), 62

∆̃+(s) Forced pseudo-state transition matrix of s ∈ ST , 60

∆̃−(s) Forced state transition matrix of s ∈ ST , 60

Θ̃(s) Forced transition substitution matrix of s ∈ ST , 60

Θ(s) Forced transition net substitution matrix of s ∈ ST , 62

K(xn) Auxiliary matrix in the construction of F (xn), see Equation (4.10), 62

GK(xn) A graph with incidence matrix K(xn), 60

D(xn) Auxiliary matrix in the construction of F (xn), see Equation (4.11), 63

GD(xn) A graph with incidence matrix D(xn), 60

B(xn) Auxiliary matrix with context-dropping transitions for the construction
of F (xn), see Equation (4.12), 63

GB(xn) A graph with incidence matrix B(xn), 60

F (xn) Pseudo-state transition matrix of xn , see Equation (4.13), 63

F̂ (xn) Normalized pseudo-state transition matrix of xn, 67

GN (xn) The state transition graph of xn, 60

GF (xn) The pseudo-state transition graph of xn, 60

ω Tagging function for the edges of a graph, 64

βi A sequence of context-dropping transitions from τi to the parent of
µ1(sti+1), 67

ςi A context-dropping sequence βi−1 followed by the forced pseudo-state
sequence of sti , 67

G(F)

T = (V (F)

T , E(F)

T) The pseudo-state transition support graph of T , 82

ΞT (xn) Multinomial factor in the formula (4.15) for the size of T ∗(T, xn), 70

ΞαT (xn) Multinomial factor for symbol occurrence counts
∏
s

(ns

n
(a)
s ···n

(z)
s

)
where

A = {a · · · z}, 70

B′µ1b,ρ
A shorthand for B′µ1(w)b,ρ′(µ1(w)b), 74

Π(`w=1) A factor in the formula of Lemma 4.22 , see Equation (4.27), 74

Πδ A factor in the formula of Lemma 4.22, 74

Π(`w>1) A factor in the formula of Lemma 4.22 , see Equation (4.28), 74

Mb A shorthand for B′µ1b,ρ
+N ′∗wb, 78

pb A shorthand for N ′∗wb/Mb, (pb = 0 if Mb = 0), 79

Q A shorthand for Fµ1(w)∗ + δsn,µ1(w), 78

q A shorthand for q = N∗w/Q, (q = 0 if Q = 0), 79

T ′(T, xn) The type class of xn with respect to T where the initial conditions are
determined by transient states, 185

T ′∗(T, xn) The close-ended type class of xn with respect to T where the initial
conditions are determined by transient states, 186

i0(xn) The last index in the state sequence of xn where a transient state oc-
curs, 185

Specific notation for Chapter 5

nu,v Number of times a transition from context u to context v occurs in
xn, 104

x0
−∞ A semi-infinite string that precedes xn, 98

i(u) Indicator function valued one if x1 occurs in context u and zero other-
wise, 99

f(u) Indicator function valued one if u occurs at the end of xn and zero
otherwise, 99

δ A generic constant in {−1, 0, 1} to account for border adjustments, 99

K(T, xn) The collection of counts {n(a)
s }s∈ST , a∈A, 99

Kb(T, xn) The collection of counts {n(a)
s }s∈ST , a∈A\{b}, 100

Cw,a

(
n

(a)
w

)
A code for a count n(a)

w , 101

bZw,ac> The unary part of the Golomb encoding of bZw,ac, 101

bZw,ac⊥ The uniform part of the Golomb encoding of bZw,ac, 101

zw,a The estimation error of n(a)
w , n(a)

w − n
(a)
s
ns
nw, 100

Zw,a The absolute value of the estimation error of n(a)
w , |zw,a|, 100

sgw,a The sign of the estimation error of n(a)
w , one if zw,a > 0 and zero other-

wise, 100

C?u(nu) A code for a count nu, 106

bZuc> The unary part of the Golomb encoding of bZuc, 106

bZuc⊥ The uniform part of the Golomb encoding of bZuc, 106

zu The estimation error of nu, 106

Zu The absolute value of the estimation error of nu, |zu|, 106

sgu The sign of the estimation error of nu, one if zu > 0 and zero other-
wise, 106

T [m] Truncation of T to depth m, 103

T
[m]
c The minimal canonical extension of T [m], 103

S
[m]
c The set of states of T [m]

c , 104

S
[m]
c (r) The set of states of T [m]

c that are children of r, 106

σ
[m]
c (u) State selected by u in T

[m]
c , 104

U ′k+1 The set of nodes of T [k+1]
c that are not in the original context tree T [k+1]

and are not in T
[k]
c , 106

Uk+1 The set of parent nodes of elements of U ′k+1, 106

Ri The set of parent nodes of states of T [i]
c , 107

Abbreviations

BWT Burrows-Wheeler transform, 10

CPMF Conditional probability mass function, 18

CTW Context Tree Weighting, 9

FSM Finite state machine, 1

GCT Generalized context tree, 21

GCTM generalized context tree model, 23

KT Krichevsky-Trofimov, 37

LZ Lempel–Ziv, 13

NML Normalized Maximum Likelihood, 12

PPM Prediction by Partial Matching, 10

Chapter 1

Introduction

1.1 Information sources and universal coding

Consider an information source that produces messages to be transmitted over a communi-
cation system. As described in Shannon’s foundational paper [70], we can think of a discrete
information source as generating a message, symbol by symbol, each belonging to a finite
alphabet A; we model this sequence of messages by means of a stochastic process. We will
interchangeably use the terms source and model, to refer to the probabilistic modeling of an
information source. Depending on the characteristics of the system, we may choose different
classes of stochastic processes. In a memoryless source, each symbol is generated according
to a fixed probability law; the symbols are independent and identically distributed (i.i.d.).
When contiguous symbols are presumably related to each other, we may instead model the
information source by means of a Markov chain.

In a Markov (or finite-memory) source, there exists an integer constant m ≥ 0, such
that for every index i the probability of the i-th symbol xi is determined exclusively by the
preceding m symbols xi−m · · ·xi−1. The minimum such m is the order of the Markov source.
A more general setting associates the emission of symbols to state transitions of a Markov
chain. Thus, for a Markov chain with a finite set of states S, and a transition probability
matrix p, the source emits a symbol f(u, v) whenever the Markov chain goes in a one-step
transition from state u to state v, where f is a function f : S×S → A. When for every state
u, the symbols associated to positive probability state transitions departing from u are all
different, i.e., f(u, v) 6= f(u, v′) for all v 6= v′ such that pu,v > 0 and pu,v′ > 0, the source can
be implemented with a finite state machine (FSM). The latter is comprised of a finite set of
states S and a next-state function g : S × A → S. A source of this kind is termed an FSM
source and it is characterized by an underlying FSM, together with a probability distribution
for the initial state and a set of conditional probability distributions on A, one associated
to each state of the FSM, of emitting a symbol given the current state. Notice that Markov
sources are special cases of FSM sources. In general, the latter may yield infinite-memory
processes, in the sense that no fixed number of past symbols may suffice to determine the
current state of the Markov chain.

We point out that the terminology used for classes of sources is not always consistent in
the literature. The term Markov source in [70] refers to the general setting in which a function
f(u, v) associates a symbol to each possible transition. The term FSM source has been used
for example in [84] with a fixed initial state, while in [2], this is termed a unifilar Markov
source. In [2], however, the emission of symbols is associated to states rather than transitions,
and the initial state is selected according to a stationary distribution of the Markov chain.

2 1. Introduction

What we have termed a Markov source, is a unifilar finite-memory Markov source in [2].
We will get into a more detailed discussion of stochastic modeling of information sources in
Section 2.1 when we review finite-memory processes.

Now, suppose we want to encode the data generated by a source as a sequence of binary
symbols to be transmitted over a communication channel. A code, C : A → {0, 1}?, maps each
symbol of the source alphabet A to a codeword, which is a finite binary string. If no symbol
is assigned a codeword that is a prefix of another codeword, the code is a prefix code. A code
is uniquely decodable if any binary sequence that arises as the concatenation of codewords,
C(x1)C(x2) · · · C(xn), uniquely determines the original sequence of source symbols x1, x2 · · ·xn.
Of course, a prefix code is uniquely decodable, although there are uniquely decodable codes
that are not prefix codes.

The entropy of a source was introduced as a fundamental limit in source coding (or data
compression) by Shannon in his seminal paper [70]. Indeed, for a random variable X, which
takes values on a finite alphabet A = {a1 . . . ak}, with probabilities {p1 . . . pk}, the entropy
of X, H(X) = −

∑
pi log pi,1 gives a lower bound on the expected number of bits required to

describe an outcome of X. In other words, if each symbol ai is encoded with a binary string of
length li by a uniquely decodable code C, then the expected length of C for X,

∑
i pili, is lower

bounded by H(X). This follows essentially from Kraft’s inequality for prefix codes, extended
to uniquely decodable codes by McMillan [52], which constrains the codeword lengths to
satisfy

∑
2−li ≤ 1. Conversely, for any set of positive integers {li} that satisfy Kraft’s

inequality there exists a prefix code with these codeword lengths (see, e.g., [12, Chapter 5]),
which makes non-prefix codes of little interest among the class of uniquely decodable codes.

Notice that the minimum expected code length H(X) is attained exactly if we can define a
code with ideal codeword lengths li = − log pi. Although these lengths obviously satisfy Kraft’s
inequality, they may not be integer numbers. A Shannon code2 [70] assigns a codeword of
length d− log pie to each symbol ai, and achieves an expected code length that exceeds the
entropy of X by at most one bit. This code was applied in [70] to blocks Xn = X1 . . . Xn,
of n consecutive symbols emitted by a source (regarded as “macro-symbols” in an extended
alphabet An), to obtain a per-symbol expected code length that satisfies

H(Xn)
n

≤
E
[
LC(Xn)

]
n

<
H(Xn)
n

+
1
n
,

where E
[
·
]

denotes expectation with respect to the source and LC(Xn) denotes the length of
the codeword C(Xn). When {Xi} represents a discrete stationary random process, 1

nH(Xn)
has a limit H, termed the entropy rate of the process [70]. H represents a lower bound on
the expected per-symbol code length, which is at the same time asymptotically attainable,
for example by a Shannon code on length-n blocks of symbols. Moreover, by means of an
arithmetic coder [57], one can overcome the practical problems that arise from extending the
alphabet size as n grows large, and approach in practice the entropy rate limit.

1Exponentials and logarithms are taken with respect to base 2.
2The Shannon code is also known as a Shannon-Fano code, as Fano developed independently a different

construction for essentially the same code published in [26].

1.1. Information sources and universal coding 3

In general, a probability distribution P , suitable for modeling the data generation mech-
anism of the information source, is unknown a priori. When it is reasonable to assume that
P belongs to a certain known class P (for example the class of all Markov sources of a fixed
order m), we may seek a code that performs asymptotically well for all sources in the class
simultaneously. Here, the term code refers in fact to a sequence of codes, {Cn}, one for each
input length n, and we are interested in large n. In the sequel we will use the term code to
refer either to a specific mapping from a given finite alphabet to binary codewords, or to a
sequence of such mappings, {Cn}, Cn : An → {0, 1}∗.

For a sequence of n symbols xn ∈ An, the pointwise redundancy of a code is the difference
between the codeword length for xn and the ideal code length, − logP (xn), where P (xn) is
the probability assigned by the source to xn. Thus, the pointwise redundancy is given by

RP,Cn(xn) = LCn(xn) + logP (xn) .

The expectation of RP,Cn(Xn) with respect to P is the expected redundancy of the code for
the given source, and it is given by

R̄P,Cn = EP
[
RP,Cn(Xn)

]
= EP

[
LCn(Xn)

]
−H(Xn) .

Since the entropy H(Xn) represents a lower bound on the mean length of any uniquely
decodable code, the expected redundancy is non-negative. Given a code and a class P of
distributions, the worst-case expected redundancy is defined as

R̄Cn = sup
P∈P

R̄P,Cn ,

and the worst-case maximum redundancy is defined as

R∗Cn = sup
P∈P

max
xn∈An

RP,Cn(xn) .

We say that a code, {Cn}, is universal in the class P if the normalized expected redun-
dancy, 1

nR̄P,Cn , vanishes for each P ∈ P as n goes to infinity. Universality may be strong
or weak, depending on whether the convergence is uniform in the class, i.e., whether 1

nR̄Cn
vanishes, or not, respectively [18].3 If the normalized maximum pointwise redundancy, defined
as 1

n maxxn∈An RP,Cn(xn), converges to zero for each P ∈ P, the code is pointwise universal in
the class P. Again, the universality is strong if 1

nR
∗
Cn vanishes as n grows. Clearly, pointwise

universality implies universality (in expectation).
With the problem of optimally encoding a source under perfect knowledge of the prob-

ability distribution essentially solved, we can address universality by looking for universal
probability distributions Qn on length-n sequences,4 which are simultaneously close to all

3The notion of universality we have defined corresponds to minimax universality in [18], where also maximin

universality is defined. Later, however, it was shown that both concepts are equivalent [31, 64, 20].
4In rigor it is only required that the ideal code lengths {− logQn(xn)}, over all length-n sequences xn,

satisfy Kraft’s inequality. Thus, Qn does not need to sum up to unity.

4 1. Introduction

the distributions P in the class, in the sense of yielding a vanishing normalized divergence5,
defined [43] as

1
n
D(P ||Qn) =

1
n

EP
[
− logQn(X1 · · ·Xn) + logP (X1 · · ·Xn)

]
. (1.1)

Notice that (1.1) is the penalty in per-symbol expected ideal code length incurred when
assuming that the distribution is Qn when it is actually P . In other words, the divergence
D(P ||Qn) is the expected redundancy of an ideal code for Qn when the actual distribution is
P . Notice also that, although a code attaining ideal length for Qn only exists when Qn(xn) is a
power of two for all length-n sequences xn, the codeword lengths of a Shannon code for Qn are
within one bit of the ideal codeword lengths and, thus, the normalized expected redundancy
of this Shannon code vanishes if (1.1) does. A sequence of probability distributions {Qn}n>0 is
called a probability assignment. We will formalize this definition later on. Thus, the problem
of finding universal codes for classes of models is equivalent to that of finding universal
probability assignments for them.

The idea of universal coding was first introduced by Kolmogorov [39], and developed later
for several particular classes of processes (see e.g. [29, 30, 18, 19, 42]), showing that it is
possible in fact to construct universal codes for several classes of interest. A natural question
is, then, at what rate a universal code can approach the entropy rate H. For a parametric
class P, Rissanen’s lower bound [59, Theorem 1] “quantifies” the very intuitive idea that
the optimal rate depends on the richness of P. Specifically, consider a parametric class of
distributions P = {Pθ}θ∈Θk , where the parameter space Θk is a compact subset of Rk, where
R denotes the real numbers. It is shown in [59] that, under some mild conditions, for any
universal code for P, the normalized expected redundancy for a block of n symbols is lower-
bounded by a model cost term of k logn

2n bits plus lower order terms, for most values of the class
parameter θ. Previous works showed that the lower bound holds at least for one value of the
model parameter [41, 79]. Notice that the model cost term grows with the dimension k of the
parameter space. Thus, when it comes to modeling an information source, we are faced with a
trade off. If we choose a class that is too rich, we may incur an unnecessarily slow convergence
rate, while if the class is too simple, it may be impossible to accurately fit any probability
distribution in the class to the actual data. This observation is the main motivation for the
investigation of tree models, which offer economic parametrizations of Markov sources. In
some cases of practical interest, tree models allow for a significant reduction in the dimension
of the parameter space as compared to basic Markov sources.

In light of Rissanen’s lower bound, we will say that a code is universal with optimal
convergence rate for a parametric class P, if for each fixed source in the class, the normalized
expected redundancy vanishes as k logn

2n up to lower order terms, where k is the dimension
of the parameter space. Somewhat surprising is that when the class P is a countable union
of subclasses, i.e., P =

⋃
i Pi, and there exists a strongly universal code in each subclass Pi,

it is possible to construct a twice-universal code [65], whose worst-case expected redundancy

5The divergence is also called Kullback-Leibler distance, relative entropy, information divergence, and cross

entropy (see, e.g., [12]).

1.1. Information sources and universal coding 5

within each subclass Pi is asymptotically as small as that of the universal code for Pi that is
optimal in the sense of minimizing the worst-case expected redundancy.

For a parametric class Pi of distributions with a ki-dimensional parameter, under the
assumptions of Rissanen’s lower bound, the redundancy of any code is lower bounded by
ki logn

2n not only in a worst-case parameter scenario, but for most values of the parameter.
This applies in particular to an optimal code for Pi, and, thus, we will say that a code is
twice-universal in the union of parametric classes P =

⋃
i Pi, if for any source in Pi, for any i,

the normalized expected redundancy of the code vanishes as ki logn
2n up to lower order terms. A

typical example is the construction of twice-universal codes in the class P of Markov sources,
which is comprised of the union of all subclasses Pi, each composed of all Markov sources
of order i. A twice-universal code for P would be one that attains a normalized expected
redundancy with main term ki logn

2n when applied on sequences emitted by sources of order i,
where ki = |A|i(|A| − 1) is the dimension of the source parameter.

There are many strategies that we can apply to find a (twice-)universal probability assign-
ment within a given class. We mention here three classical approaches, which have important
representatives in the class we are interested in, namely, the class of tree models. Probably
one of the first ideas one could think of is a “plug-in” approach, where the parameter, or
even the parameter dimension in a twice-universal setting, is estimated based on the data
observed so far, and this estimation is used to assign a probability for the next symbol given
the past, as if it were the “true” parameter. The appeal of this idea is that it intrinsically
yields sequential codes, i.e., the probability assigned to a sequence xn, which determines the
code length for xn, is the product of the n conditional probabilities given the past assigned
sequentially to the symbols of the sequence. Thus, by using an arithmetic encoder, both the
coding and the decoding stages can proceed as the symbols become available, independently
of the data to come. A mixture approach is based on defining a probability distribution over
length-n sequences, for each n, that is a weighted average of all the distributions in a class
where we seek universality. The weighting is chosen so as to make the average close, in a
divergence sense, to all the distributions in the reference class simultaneously. Depending on
the weighting, it is sometimes possible to identify an expression for the conditional probabil-
ity of the next symbol given the past, which is easy to evaluate (see, e.g., [88], or the survey
in [53] and references therein). This yields, also in this case, a sequential coding algorithm.
In fact, there are remarkable examples where a code that results from a mixture approach
can be interpreted as a plug-in code (and viceversa). This is the case, for example, of the
Krichevsky-Trofimov probability assignment [42], and also of a plug-in code based on the
well known Laplace estimator. Finally, in situations where sequentiality is not of prevailing
interest, one may consider a two-pass approach. Here, the encoder scans the whole input
data in a first pass and determines a code, which is described to the decoder, and then used
to actually encode the sequence in a second pass. The encoded data consists therefore of two
parts: the second part encodes the input sequence itself, and the first part is a description
of the code used in the second part. In a two-pass universal code, the expectation of the
normalized length of the second part usually converges to the entropy rate of the source,
while the normalized length of the first part vanishes.

6 1. Introduction

As opposed to the classical stochastic approach for the study of data compression, in an
individual sequence setting, the input data is not regarded as generated by any probabilistic
source. The goal in this case is to define a code such that the code length for each input
sequence x is close to the shortest codeword assigned to x by any competing encoder (or simply
competitor) in a family M of limited resources (e.g., limited memory). If the family M is
parameterized by a k-dimensional parameter, where the dimension here expresses the amount
of resources, the term k logn

2n may be regarded as a determinist counterpart of Rissanen’s lower
bound. Although such a general lower bound for the individual sequence setting has not been
established in full generality, it can be justified to some extent by the results in [83] for encoders
implementable with finite state machines, and it is still regarded as the target benchmark for
the convergence rate in this setting.

An example of a class of competitors is the family Mm of finite-memory encoders of
order m, i.e., a competitor in this family is constrained to encode each symbol xi with a
codeword f(xi−m · · ·xi−1, xi) that, besides xi, depends at most on the lastm encoded symbols.
This family can be parameterized by a parameter of dimension km = (α − 1)mα. It is not
difficult to see that the smallest per-symbol code length achieved by an encoder in Mm,
for any given sequence x, is lower bounded by the m-th order empirical entropy rate of x,
Ĥ(x) = − 1

n log P̂ (x), where P̂ is the maximum-likelihood probability of x in the class of m-th
order Markov models. We say that a code is universal for individual sequences with respect to
Mm if it attains, for each x, a code length of Ĥ(x) + o(1) bits. Since P̂ minimizes − logP (x)
among all P in the class of Markov sources of order m, it follows that for a universal code
for individual sequences inMm, the normalized maximum pointwise redundancy in the class
of Markov sources of order m vanishes and, therefore, the code is pointwise universal in a
stochastic setting for this class. Moreover, if the excess over Ĥ(x) in the individual sequence
setting is of order km logn

2n , the code also has optimal convergence rate in the stochastic setting.

For the family of competitors comprised of the countable union M =
⋃
mMm, we say

that a code is twice-universal for individual sequences with respect toM if it is universal for
individual sequences with respect to Mm with a convergence rate of order km logn

2n simulta-
neously for every m. Again, a twice-universal code for individual sequences in this family is
also twice-universal in the class of Markov sources in a stochastic setting. These notions of
universality and twice-universality for individual sequences in the familiesMm andM extend
straightforwardly to similar families of competitors related to tree models that we will define
later on.

In the remaining sections of this chapter we outline the dissertation’s main topics, which
will be studied in depth in later chapters. We start in Section 1.2 by roughly describing
context trees and how they are used to define tree models, our main subject of investigation.
We also describe a generalization of the classical context trees, and connect them to FSMs
through what we shall define as the FSM closure of a generalized context tree. In Section 1.3
we briefly describe some known source codes for tree models, and, in particular, a specific
version of the so-called Context algorithm [58], which we will later study in detail from an
algorithmic complexity point of view. In Section 1.4 we describe the method of types [15] and
the particular characteristics that apply to tree models. This motivates the study of enumer-

1.2. Tree models 7

ative codes [11] for tree sources, which we outline in Section 1.5. Some of the tools developed
in the investigation of enumerative codes for tree sources will derive in a generalization of the
method of types following the same idea as in [67]. This is introduced in Section 1.6 together
with applications in simulation of individual sequences. Finally, in Section 1.7 we summarize
the main contributions of this thesis and in Section 1.8 we introduce some basic definitions.

1.2 Tree models

In many practical applications, an information source can be well approximated by a model
in which the conditional probability assigned to the next emitted symbol, given all the past,
depends on a finite (bounded) context, where by context we mean any contiguous sequence
of the most recently emitted past symbols. In other words, such an information source can
be well approximated by a Markov source of some finite order m. Such a model can be fully
parameterized for an alphabet of size α by the conditional probabilities of α − 1 symbols
in each state (m-vector of symbols) of the underlying Markov chain. Thus, in general, we
require a parameter space of dimension (α − 1)αm. It is often the case, however, that the
actual context length required to determine the probability distribution of the next symbol
varies depending on the context. For example, in many languages, the frequency of occurrence
of the letter following a ‘q’ can be accurately estimated even ignoring the context preceding
that ‘q’, whereas, in other situations, a longer context may greatly improve this estimation.
In such a case, the dimension of the parameter space, which, if we were to use a fixed context
length m would grow exponentially with m, can be dramatically reduced by lumping together
equivalent states that yield identical conditional distributions (e.g., contexts ending in ‘q’ in
our language example). The reduced models, first considered in [58], were termed tree models
in [84], since they can be represented with a simple tree structure. Tree models have also
been referred to as variable length Markov chains [8] in the statistics literature.

Roughly speaking, a tree model consists of a full α-ary context tree,6 where α is the size
of the source alphabet, and a set of conditional probability distributions on the alphabet,
one associated with each leaf of the tree (the states). Each edge of the tree is labeled with a
symbol from the source alphabet. The state selected by a string is determined by descending
from the root, matching the labels of the edges with the symbols in the string, starting from
the last symbol an advancing in reverse order, until a leaf is reached. Thus, in the context
tree T1 of Figure 1.1, all strings ending with symbol 0 select the same state, while for strings
ending with symbol 1, it may be necessary to examine one, or even two more past symbols of
the string in order to determine the state. A full parametrization of a binary Markov source
of order three, which we term a plain Markov model, corresponds to an underlying context
tree of depth three that is balanced, like T3 in Figure 1.1. Notice that in this example, the
number of states of T3 is twice the number of states of T1. Thus, since for a binary alphabet
the number of states is equal to the dimension of the parameter space, in situations where T1

is suitable for modeling an information source, the model cost term is reduced by a factor of

6 We say that an α-ary tree T is full if every internal node of T has exactly α children; T is full balanced if

it is full and all its leaves are at the same depth.

8 1. Introduction

1

1

10

0

0

10

1

1

10

0

0
T1 T2 1

1

0 1

0

0
T3

0 1

1

0 1

0

0 1

Figure 1.1: Context trees over A = {0, 1}

1/2 as compared to a plain Markov model.

Although the savings in model size can be important for tree models as compared to
plain Markov models, it may be possible to go even further in this direction if the structure
underlying the model is not constrained to be a full context tree (see, e.g., [89, 80, 73, 68]).
Indeed, we would ideally let the model class group the states of a Markov chain arbitrarily,
if such a general scheme were computationally feasible. In Chapter 2 we define an extension
of the class of tree models, named generalized context tree models. In this extended class the
state selection mechanism is governed by generalized context trees, which need not be full.
Generalized context trees will serve as a fundamental tool in the development of efficient en-
coding and decoding algorithms that we present in Chapter 3. Although our main motivation
for extending the class of tree models is algorithmic, as we will discuss later, we formalize
and discuss the class of generalized context tree models in detail on its own right, as this
richer class offers potentially significant improvements in model fitting capability relative to
the usual full-tree models.

As noted in [82], a context tree (and therefore also a generalized context tree) might
not define a next-state function, i.e., the occurrence of a symbol in a given state does not
necessarily determine the following state. For example, in the context tree T1 of Figure 1.1, the
state selected by a string ending with symbol 0, which “remembers” only one past symbol, does
not allow the determination of the following state if the next symbol is 1. As we shall see, this
results in algorithmic complexity issues in practical applications, and, furthermore, it causes
tree models to deviate from plain Markov models with respect to some important theoretical
properties, which consequently require, in some cases, a more intricate analysis. Tree models
that do define a next-state function were termed FSMX in [60]; their characterization was
explored in [69], where they are referred to as FSM trees, and in [88]. The FSM closure of a
context tree [48, 69, 88], is the smallest FSM tree containing the context tree. All the tree
models that are generated by a context tree T as the parameter is allowed to range over its
valid domain can also be generated as FSM models based on the FSM closure of T .

In Chapter 2 we extend the definition of FSM closure to generalized context trees. We
characterize this FSM closure and present an algorithm that builds it efficiently. Moreover,
this algorithm constructs a mapping from the states in the FSM closure to the states in the
generalized context tree, such that given the state selected by a string in the former, we get,
in constant time, the state selected in the latter.

The efficient mapping from the states in the FSM closure to the states in the generalized

1.3. Low complexity coding algorithms for tree sources 9

context tree will turn out to be very useful in a sequential coding algorithm. In such an
algorithm, each symbol may be encoded using a code that depends on the state selected in a
generalized context tree by the string seen so far, as well as statical information associated to
that state, which is updated as the symbols of the source are consumed. Thus, to encode a
string x, the encoder needs to determine the state selected by each prefix of x, in increasing
order of length. In principle, determining each state involves descending from the root of
the generalized context tree until a state is determined, which may become computationally
expensive for a large tree. However, if the encoder is equipped with an FSM closure of the
generalized context tree, it may efficiently determine the sequence of states selected by the
prefixes of x in the FSM closure by applying the next-state function in each step, and use the
constructed mapping to access the states actually selected in the original generalized context
tree. The application of this idea is outlined in the next section, and studied in detail in
Chapter 3. The context tree T2 of Figure 1.1 is the FSM closure of T1. Notice that the
number of states (leaves), and, hence, the dimension of the parameter space, is larger for a
tree model based on the FSM closure than for a tree model based on the original context tree
T1. Thus, in the mentioned coding application, accessing the states selected in the original
context tree, rather than in the FSM closure, is vital to avoid increasing the model cost term
of the code length.

1.3 Low complexity coding algorithms for tree sources

Coding of tree sources has been extensively studied in the framework of twice-universality,
be it in the stochastic setting, or in the individual sequence setting. In the latter case, the
competing encoders are constrained to encode each symbol based on the state selected by the
preceding symbols in a fixed but arbitrary context tree. The starting point of this research
is found in [58], where a plug-in type of algorithm named Context was introduced. The
model estimator of Context was improved in [82], obtaining a universal code with optimal
convergence rate in the subclass of FSM tree models, assuming a known bound on the depth
of the underlying context tree. This was further developed in [84], removing the assumption
of a bound on the depth of the context tree, as well as the condition of defining an FSM, thus
giving a universal code with optimal convergence rate in the whole class of tree models.

Context Tree Weighting (CTW) [88, 87] is a sequential coding algorithm based on the
mixture approach. The coding probability is obtained by mixing all the distributions over
length-n sequences defined by tree models. The first version of CTW in [88] assumed a
known bound on the depth of the underlying context tree of the source, an assumption that
was removed in [87].

The idea of applying two-pass codes in a twice-universal framework was outlined in [65]
for countable unions of parametric model classes, which includes the union of all tree models.
The best model structure in the whole class (e.g., a context tree) is estimated and described
to the decoder in a first pass, and then the data is encoded in a second pass with a universal
code for the above best model structure. In [61], this approach is termed “semi-predictive”
for the case in which the universal code used for the given model structure is sequential.

10 1. Introduction

It is shown for both CTW [88, 87] and the semi-predictive version of Context with an
appropriate probability assignment (see, e.g., [56, 90]), that for any tree model with a K-
dimensional parameter, the normalized excess code length given by these codes on sequences of
length n, over the empirical entropy rate of the tree model, is at most (K log n)/(2n)+O(K/n),
for any K. Thus, these codes are twice-universal for individual sequences, and therefore also
twice-universal in a stochastic sense.

Since much of the emphasis in the information-theoretic literature has been on sequential-
ity, the two-pass approach has not received much attention. On the other hand, probably due
to the existence of efficient implementations, other data compression algorithms that are also
based on context models but lack the above provable strong universality properties, are very
popular though not necessarily sequential. This is the case of the algorithms based on the
Burrows-Wheeler transform (BWT) [9] (see [23] and references therein). These algorithms
can be viewed as coding based on a context tree (see [24] for an information-theoretic analy-
sis), except that no attempt at context selection is made. Instead, the sequence is reordered in
such a way that symbols occurring in “similar” contexts appear in nearby locations. Coding
is often done by sub-optimal, simple methods in a second pass.

The popularity of BWT-based schemes suggests that, in many applications, sequentiality
is not a fundamental requirement. Thus, in such cases, a low-complexity implementation of
the semi-predictive approach is of interest. With this approach, a context tree, which stores
all relevant statistical information of the sequence, is “pruned” to minimize code length [56],
and described to the decoder in a first pass through the data. In a second pass, each symbol
is assigned a conditional probability sequentially, conditioned on the state selected in the
pruned context tree by the substring traversed so far. This assignment, in turn, is used for,
e.g., arithmetic coding.

It is shown in [3] that the semi-predictive approach can be implemented in linear encoding
time.7 The first pass is solved by combining the dynamic programming ideas of [56] with the
use of compact suffix trees [32] as in [45], which allows for efficiently collecting the relevant
statistical information of the given sequence. Indeed, the use of compact suffix trees is also
crucial for low complexity implementations of the BWT, and other context based algorithms
such as Prediction by Partial Matching (PPM) [10] in its multiple variants (see, e.g., [23, 44]).
The second pass of the semi-predictive approach, which involves sequential state transitioning
as the symbols of the sequence are encoded, is addressed in [3] by the use of the BWT.
Unfortunately, the BWT is not available during decoding to provide a constant transition
time per symbol.8

In Chapter 3 we use the FSM closure tool developed in Chapter 2 to implement the second
pass of the semi-predictive approach efficiently, thus, yielding a linear-time implementation of
encoding and decoding, without recourse to the BWT. Notice that since the model optimiza-
tion carried out in the first pass takes place only at the encoder, the semi-predictive approach
is especially attractive in situations where the computational requirements are asymmetric

7 Throughout, we will measure complexity by the number of register-level operations, defined as arithmetic

and logic operations, address computations, and memory references, on operands of size O(logn).
8 An alternative approach for efficient context transition, used for PPM in [23], is the use of suffix links.

For the semi-predictive Context algorithm, again, this approach cannot be used directly at the decoder.

1.4. Type classes of tree models 11

and a low complexity decoder is needed. For the implementation of the first pass, we make
use of compact suffix trees, which are generally not full. This is facilitated by generalized
context trees, which need not be full (so that states may be given by nodes other than the
leaves), and the edges may be compacted (i.e., labeled by strings of length greater than one).

1.4 Type classes of tree models

Despite the extended use of tree models in data compression and other applications in in-
formation theory, important theoretical questions about these models remained unanswered.
Some of these questions are addressed, for the first time, in this work. In Chapter 4, we
extend the method of types [15] to tree models. In this method, the set of sequences of a given
length n over a finite alphabet A is partitioned into type classes, where two sequences belong
to the same class if and only if every probability distribution in a certain class P assigns both
sequences the same probability.9 For a parametric family P, a type class comprises all the
sequences that yield a given value for a sufficient statistic for P.

In our case, P is the set of all tree models obtained from a fixed context tree as the
model parameter, i.e., the vector of conditional probability distributions associated to the
states, varies along its valid domain. A sufficient statistic in this case is the vector of state-
conditioned empirical distributions for the given context tree. As a consequence, the partition
of sequences into type classes depends exclusively on the underlying context tree, in the same
way that, for example, type classes of Markov models of order m depend only on m.

Applications of the method of types in hypothesis testing, channel coding, source coding,
rate-distortion theory, and other areas are surveyed in [13]. Beside memoryless models, type
classes and their applications have also been studied for other cases, such as Markov models
(e.g., [21, 14, 13, 35]) and FSM models (e.g. [83]).

For Markov and other FSM models, the size of the type class of a sequence of length n

is given exactly by Whittle’s formula [86], which was also derived, using different methods,
in [6] and [34]. The latter shows that the problem is equivalent to counting Eulerian circuits
in a graph, which can be done explicitly through the BEST Theorem [22] (named after de
Bruijn, van Aardenne-Ehrenfest, Smith and Tutte). The proofs rely strongly on the defining
property of FSMs, namely, a next-state function. As mentioned, however, context trees do
not always define a next-state function, so the results for FSMs do not extend, in general,
to trees. In this work we focus on basic properties of type classes for tree models, e.g., their
number and size.

In Chapter 4 we derive an exact formula for the size of the type class of xn with respect
to a given context tree. The formula resembles, and generalizes, Whittle’s formula, as the
problem is also reduced in our case to one of counting Eulerian circuits in a directed graph,
which is derived from the given context tree and the associated counts for xn. The lack
of a next-state function, and the loss of context occurring in the state transition sequences

9Type classes are defined in terms of empirical distributions for memoryless models in [15]. The more

general notion of type class used here is introduced in [13] when extensions of the method of types to wider

model families are considered.

12 1. Introduction

of context trees, however, are major challenges in the derivation. The exact combinatorial
formula obtained in the derivation is then analyzed to characterize the asymptotic behavior
of the expected size of the type class for a random sequence emitted by a tree source, which,
again, generalizes in a nontrivial fashion the corresponding behavior for FSMs.

We also study the number of type classes for sequences of length n induced by a given
context tree, and we estimate the number of classes tightly, up to a multiplicative constant.
This result also generalizes the corresponding result for FSMs, presented in [83] and attributed
to N. Alon.

1.5 Enumerative coding

The general idea of enumerative coding is to encode a sequence of symbols by describing, with
a uniform code,10 its index within a given set S according to a predefined order. Although it
had been applied for specific purposes before (e.g. [46, 66]), enumerative coding was presented
as a systematic method in [11]. Just to give a concrete example, taken from [11], consider a
sequence of length n emitted by a memoryless binary source with parameter p. We take S as
the set of all binary length-n sequences where the number of occurrences of the symbol 1 lies
in the interval [np−m,np+m]. It can be shown that for sufficiently large n, we can take m
so as to make the probability of S arbitrarily close to unity, and the normalized code length,
dlog |S|e

n , arbitrarily close to the entropy rate of the source. Thus, this examples illustrates
an enumerative coding scheme that permits encoding and decoding with a compression rate
asymptotically optimal and a negligible error probability (associated to the sequences that
do not belong to S).

The method of types is particulary suitable for the application of enumerative coding,
by means of a two-part code comprised of a preamble, which describes the type class to
which the sequence at hand belongs, followed by an enumerative code of the sequence within
its type class. Since all sequences in a type class are equiprobable, a uniform encoding of
the index minimizes the expected length of the second part. Thus, the problem of assigning
probabilities to sequences universally for the model of reference reduces to optimally assigning
probabilities to type classes, i.e., to minimizing the expected length of the first part of the
code. This is indeed the case for the Normalized Maximum Likelihood (NML) code [71, 62],
which can be interpreted as a description of the type class, generated by assigning to it a
probability proportional to its ML probability, followed by an identification of the sequences
within its type class.

Implementing the NML code, however, is difficult even for the simplest model classes.
Other universal methods, based, for example, on the Krichevskii-Trofimov sequential proba-
bility assignment [42], are computationally efficient, and also assign the same code length to
all the sequences of a given type class. They do not, however, provide a separate and identifi-
able description of the type class. In Chapter 5 we will be interested in enumerative codes for

10A uniform code for a finite set S is any code with minimum expected code length under the uniform

distribution over S. If |S| is a power of two, all elements of S are encoded with equally long bit streams of

length log |S|. Otherwise, the code has words of length dlog |S|e and blog |S|c.

1.6. Universal tree type classes and simulation of individual sequences 13

tree models that are universal with optimal convergence rate, and possess both qualities: they
provide a separate description of the type class of the encoded sequence, and this description
can be efficiently computed. By “efficient computation” we mean one whose encoding running
time is polynomial in the length of the input sequence, and with code construction time that
is also polynomial in the dimension of the parameter space of the model.11

For (non-curved) exponential families of probability distributions (see, e.g., [7]) satisfying
some mild regularity conditions, most type classes have, to first approximation, the same
ML probability [54, Appendix A]. This observation leads to universal enumerative codes with
optimal convergence rate, for which uniform coding is used both for the set of type classes
and for the set of sequences of each type class. In particular, for FSM models,12 which are
asymptotic exponential families [75, 76], such a code can be efficiently implemented.

In contrast to the FSM model case, a non-FSM tree model does not induce an exponential
family of distributions even in an asymptotic sense [76], and it is possible to find type classes
that have small probability for any choice of the model parameter. This suggests that while
a uniform code for the set of type classes may be suboptimal, savings in code length might
be recovered with a non-uniform code for the type classes.

In Chapter 5, we construct such a non-uniform code. This, together with the tools devel-
oped in Chapter 4, leads to an efficient universal enumerative code with optimal convergence
rate for tree models. Furthermore, in the twice-universal setting, in which a context tree is not
given and optimality is rather required for any possible tree model, we show that, by suitably
estimating a context tree from the data, the sequences in the aforementioned “atypical” type
classes for each given context tree would in fact estimate a different context tree. These type
classes can thus be discarded from the coding space, leading to a twice-universal enumerative
code in the class of tree models.

1.6 Universal tree type classes and simulation of individual

sequences

In [67], the set of length n sequences is partitioned into so-called universal type classes, where
two sequences belong to the same class if and only if their Lempel–Ziv (LZ) parsing [91] yields
the same parsing tree. This partition extends in a sense the conventional notion of type class,
as it is shown that any two sequences in the same class satisfy the following property.

P1 For any fixed integer j, the variational distance between the empirical distributions of
j-tuples corresponding to the two sequences is a vanishing function of n.

11Notice that, since the number of type classes in the cases of interest, and in particular for tree models, is

exponential in the dimension of the parameter space of the model, a construction of the NML code relying on

the computation of the ML probability of each type class would be very inefficient.
12Although FSM models are not strictly exponential families (they are curved exponential families), condi-

tioning on a fixed final state s does define an exponential family of probability distributions over the length-n

sequences with final state s (see, e.g., [72]). Since all sequences in a FSM type class share the same final state,

conditioning the probability of a type class on its final state, say s, amounts to dividing by the probability of

observing state s at time n. This does not affect the mentioned asymptotic property of the ML probability of

type classes.

14 1. Introduction

We show in Chapter 5 that, if we use an appropriate context tree estimator, some statistics
of the input sequence lie within relatively small well characterized ranges, which depend on
the type class of the sequence with respect to the estimated context tree. This is exploited
in Chapter 5, in a twice-universal enumerative code, to discard some type classes from the
coding space. In Chapter 6 we observe that, by the same property, any two sequences that
estimate the same context tree and belong to the same type class with respect to the estimated
context tree must have similar statistics. Thus, we define a universal tree type class as the
set of all sequences that estimate the same context tree and belong to the same type class
with respect to the estimated context tree. A similar notion of universal Markov type class
is defined in [47] using a plain Markov order estimator instead of a context tree estimator.
We will see that both universal Markov type classes and universal tree type classes satisfy P1
with a similar convergence rate of the statistics as n goes to infinity, but universal tree type
classes achieve a faster convergence rate as a function of the order.

Universal type classes (be it based on LZ, plain Markov order, or context trees) find
application in the problem of simulation of individual sequences presented in [67]. Given
a training sequence, x, the goal is to generate a simulated sequence, y, that is statistically
similar to x in the sense of satisfying P1. The uncertainty on the simulated output given
the training data should be as large as possible, so as to make the simulated sequence look
as “original” as possible. In Chapter 6 we also investigate this application and compare the
performance, in terms of uncertainty of the output given the input, of a simulator based on
universal tree type classes against other simulation schemes that also satisfy P1.

1.7 Summary of main contributions

In Chapter 2 we define generalized context trees and characterize their FSM closures in
Theorem 2.6. We present an efficient algorithm for the construction of the FSM closure
in Section 2.4 and we analyze its computational complexity in Theorem 2.9. Generalized
context trees are especially suitable for the application of compact suffix trees, which provide
a valuable tool for model optimization in two-pass algorithms. Indeed, in Chapter 3 we
exploit existing efficient algorithms for building compact suffix trees, the generalized context
tree formalism, and the algorithm for constructing FSM closures to present the first linear-
time algorithm for encoding/decoding with the semi-predictive version of Context.

In Chapter 4 we characterize type classes of tree models, thus extending the method of
types to tree sources. We give a formula for the exact size of a type class in Theorem 4.15 and
we derive the asymptotic behavior of the expected size of a type class in Theorem 4.18. The
asymptotic number of type classes induced by a context tree is characterized in Theorem 4.33.

In Chapter 5 we apply the method of types in the investigation of universal and twice-
universal enumerative codes in the class of tree sources, for which we apply the results of
Chapter 4. We show that, in general, a uniform encoding of the type classes may be subop-
timal. This motivates the definition in Section 5.2 and Section 5.4 of a family of codes for
encoding symbol and string occurrence counts in a given context. These codes, which are
interesting on their own, are used to implement a universal enumerative code with optimal

1.8. Basic definitions 15

convergence rate in the class of tree sources in Section 5.4, which in turn is used in Section 5.5
to derive a twice-universal enumerative code in the same class.

In Chapter 6 we define universal type classes, in the spirit of [67], based on tree mod-
els, and we explore their application to simulation of individual sequences. The simulation
scheme makes use of the algorithmic enumeration of the context tree type class developed in
Chapter 4.

Most of the results presented in the following chapters have been published in joint works
with Gadiel Seroussi and Marcelo Weinberger [48, 49, 50], and, in the case of some topics of
Chapter 6, also with Neri Merhav [47]. The parts of these publications where the author of
this thesis participated less actively were not included in the thesis and cited where needed.
There are also some portions of this thesis that have not been published elsewhere. This
includes all the derivations in Chapter 4, from which only the main results are stated in [49],
as well as Theorem 6.1 for which a plain Markov version was presented in [47]. Also the
results of Appendix E and the proofs of Lemma 5.2 and Lemma 5.8 are published here for
the first time.

1.8 Basic definitions

We denote by R the set or real numbers. The integers, the nonnegative integers, and the
positive integers are denoted Z, Z≥0, and Z>0, respectively.

We use the standard asymptotic O-notation. If f is asymptotically dominated by g, i.e.,
for every positive ε,

|f(n)| ≤ ε|g(n)| , for all n > n0(ε) ,

then we write f(n) = o(g(n)). We write f(n) = O(g(n)) if and only if there exists a positive
constant K such that

|f(n)| ≤ K|g(n)| , for all n > n0 .

We also write f(n) = Ω(g(n)) if and only if g(n) = O(f(n)). Finally, f(n) = Θ(g(n)) if and
only if f(n) = O(g(n)) and g(n) = O(f(n)).

Let X be a random variable that takes values on a finite alphabet A = {a1 . . . ak} with
probability distribution P , P (ai) = pi. We recall that the entropy of X, H(x), is the expec-
tation with respect to P of − logP (X), given by

H(X) = −
∑

pi log pi ,

with the convention that pi log pi = 0 if pi = 0 and all logarithms are to base two unless
specified otherwise. Since H(X) depends only on P , we sometimes write simply H(P), or
H(p), where p is the probability vector p = (p1 . . . pk). In particular when the alphabet has
two elements, p = (q, 1− q), H(p) takes the form

H(p) = h(q) = −q log q − (1− q) log(1− q) ,

where the function h : [0, 1]→ [0, 1] is called the binary entropy function.

16 1. Introduction

For random variables X and Y , the conditional entropy of X given Y , denoted H(X|Y),
is the average, with respect to the distribution of Y , of the entropy of the conditional distri-
bution of X given a specific value of Y .

For two probability distributions P,Q over the same alphabet A = {a1 . . . ak}, the diver-
gence between P and Q is

D(P ||Q) =
k∑
i=1

P (ai) log
P (ai)
Q(ai)

,

where p log p/q = 0 if p = 0 and p log p/q =∞ if q = 0 and p > 0.
The mutual information between X and Y is

I(X;Y) = H(X)−H(X|Y) .

The mutual information I(X;Y) is equal to the divergence between the joint probability
distribution of X,Y and the distribution given by the product of the marginal distributions
of X and Y .

This chapter contains material published in [48].

Chapter 2

Tree sources and FSM closures

We start this chapter with a review of finite-memory processes in Section 2.1, which also sets
some terminology and notation for the rest of this dissertation. In particular, we concen-
trate on FSM models and tree models, both of which are formalisms for generating random
processes. We generalize the class of tree models by introducing generalized context trees as
a new state selection mechanism, and we define the concept of FSM closure for these trees,
which is instrumental for the algorithms developed in Chapter 3.

2.1 Finite-memory processes and tree models

In this section, we review finite-memory processes and their parametrizations, particularly
tree models. An important aspect emphasized in this review is the distinction between a
process and its representations. We first introduce some notation. Let A be an alphabet of
α ≥ 2 symbols, and let λ denote the empty string. As is customary, we let A∗, A+, and
Am, denote, respectively, the set of finite strings, the set of positive-length strings, and the
set of strings of length m ≥ 0 over A. In the sequel, except when specifically stated, the
variables a, b, c, and d will always represent symbols from A, and r, s, t, u, v, w, x, y, and z

will represent strings in A∗. We use the notation ukj as shorthand for ujuj+1 . . . uk, ui ∈ A,
j ≤ i ≤ k, and extend it by defining ukj = λ when j > k. Also, we omit the subscript when
j = 1, i.e., uk = uk1. For u = uk, we let |u| = k denote the length of u, u = ukuk−1 . . . u1 its
reverse string, head(u) its first symbol, u1 (or λ if k = 0), and tail(u) = uk2 its longest proper
suffix. For strings u, v ∈ A∗, we denote by uv the concatenation of u and v. If u is a prefix
(resp. proper prefix) of v, we write u � v (resp. u ≺ v) Formally, we use the terms string and
sequence interchangeably, but favor the latter in cases where the sequence length is presumed
to be unbounded.

Following [63], we consider a (probability assignment) function P from A∗ into the real
interval [0, 1] satisfying the conditions

(Q1) P (λ) = 1,

(Q2) P (u) =
∑

a∈A P (ua), ∀u ∈ A∗.

We will refer to P as a string process, or simply a process (the term information source is used
in [63]). Notice that although the string process formalism is different from the usual setting
of discrete time, discrete space random processes, all notions of interest in the conventional
setting can be expressed very naturally with string processes. For example, assuming P (xn) 6=
0, the function P (a|xn) ∆= P (xna)/P (xn), a ∈ A, is a conditional probability mass function

18 2. Tree sources and FSM closures

(CPMF) by (Q2), and is naturally interpreted as the probability of the “next” symbol xn+1

being equal to a, conditioned on xn.1 The string process setting, on the other hand, is very
natural when discussing universal coding schemes, which can be regarded as carefully crafted
string processes [63].

One way of generating string processes is by use of a recursive model [63]. Specifically,
given a set of states S, consider a state function σ : A∗ → S and a set of CPMFs {p(·|s)}s∈S .
For an arbitrary sequence xn ∈ An, let the state sequence sn0 be given by si = σ(xi), 0 ≤ i ≤ n,
and define the function P by

P (λ) = 1; P (xn) =
n∏
i=1

p(xi|si−1), n ≥ 1 . (2.1)

Clearly, this assignment defines a string process. We say that the model, denoted 〈σ, p〉,
generates the process P .2 For any state s, and xn such that σ(xn) = s, we say that xn selects
s, and that s accepts xn. A state is called permanent if it accepts arbitrarily long sequences;
otherwise, the state is called transient. An important particular class of state functions
considered, e.g., in [2], is defined through finite state machines. For our purposes, an FSM
over A is given by a triple F = (S, f, s0), where S is a finite set of states, f : S ×A → S is a
next-state function, and s0 ∈ S is the initial state. The state sequence sn0 for xn is recursively
defined by si = f(si−1, xi). In classical probability theory, the state sequence corresponds
to a Markov chain (cf., e.g., [28]). Notice, however, that our definition of permanent state
is based solely on the state function, and is independent of the CPMFs associated with the
states. Thus, this definition differs from the notion of a recurrent state in the theory of
Markov chains, which depends on the CPMFs. It is possible to find CPMF assignments that
will make a permanent state non-recurrent (provided that some conditional probabilities are
set to zero). Our notion of permanent state corresponds to one for which there exists some
assignment of CPMFs that makes the state recurrent in the classical sense.3 Our transient
states, on the other hand, are always non-recurrent in the classical sense, independently of
the CPMFs. Notice that if s′ = f(s, a) and s is a permanent state then so must be s′ (as it
accepts strings of arbitrary length).

For a set of strings B ⊆ A∗, and a process P , we define BP = {u ∈ B |P (u) 6= 0 }. A
process P is a Markov (or finite-memory) source, if there exists a nonnegative integer m such
that, for all n ≥ m, a ∈ A, and xn ∈ AnP , P (a|xn) satisfies

P (a|xn) = P (a|xnn−m+1). (2.2)

The minimum integer m for which the finite-memory property holds for P is referred to as
the order of the process. Clearly, this property holds for m if P can be generated with a
recursive model such that, for all n ≥ m and xn ∈ An, xn selects the same state as xnn−m+1.

1 When P (xn) = 0, the numerator in the definition of P (a|xn) must also vanish by (Q2), and the function

is undefined.
2 This model is termed recursive in [63] since, in full generality, σ is any recursive function on A∗.
3 In fact, all but a set of measure zero of the assignments will make a permanent state recurrent. In this

sense, the structural model properties we will be interested in will be generally graph-theoretic or algebraic,

will be required to hold for “some choice” of CPMFs, but will actually hold for “most choices.”

2.1. Finite-memory processes and tree models 19

Conversely, every finite-memory process P of order m can be generated by a “basic”
FSM model, which corresponds to the notion of plain Markov model introduced in Chapter 1.
Specifically, we let S = ∪mj=0Aj , s0 = λ, and for a ∈ A and bj1 ∈ Aj , 0 ≤ j ≤ m, the next-state
function is given by f(b1b2 . . . bj , a) = b1b2 . . . bja for j < m, and f(b1b2 . . . bm, a) = b2 . . . bma.
To complete the FSM model it suffices to select p(a|b1b2 . . . bj) = P (a|bj1) for all bj1 ∈ A

j
P ,

0 ≤ j ≤ m (the choices when P (bj1) = 0 are inconsequential). On the other hand, not
all FSM models define finite-memory processes [2]. Notice that the states corresponding to
strings shorter than m symbols in the above FSM are transient, and their sole purpose is
to accommodate arbitrary CPMFs P (·|xn) for n < m (these CPMFs are not constrained
by (2.2)). As an alternative to transient states, a particular assignment for these strings is
often obtained by letting S = Am and assuming that s0 is a given fixed state. In any case,
for a given finite set S and arbitrary n, the computation in (2.1) involves a constant number
of factors p(xi|s) for transient states s (and each transient state occurs at most once). Thus,
the contribution of transient states to the ideal code length, − logP (xn), is O(1), and the
properties of the process of most interest to us are determined by the permanent states (each
carrying, in general, a parameter of dimension α−1). Transient states are just a “nuisance”
that requires formal treatment, but has no impact on the main results.

The finite-memory property depends only on the probability assigned to sufficiently long
sequences. To simplify the discussion, we will also constrain the choice of probabilities condi-
tioned on short sequences by further requiring, for each string v ∈ A∗, the following condition
on the process P :

if P (a|uv) is independent of u ∀u ∈ A+
P , then P (a|uv) = P (a|v), a ∈ A . (2.3)

The condition requires that probability assignments conditioned on short strings be consistent
with the memory properties of longer strings, ruling out situations, for example, in which the
order of the process is determined by the CPMFs of the transient states.4

For each particular finite-memory process of order m, other FSM model representations
may involve less than αm (permanent) states. A tree model (see, e.g., [58, 82, 84]) is another
type of recursive model (not necessarily an FSM model) that may involve less states than the
above “basic” FSM model. In a tree model, the state function is determined by a context
tree. A context tree is a full α-ary tree,5 where each edge is labeled with a symbol in A, and
each node with the string formed by concatenating the edge labels on the path from the root
(labeled by λ) to the node. An example of a context tree over a binary alphabet is shown
in Figure 2.1. The set of permanent states defined by a context tree is comprised of all the
leaves of the full tree, while the internal nodes comprise the set of transient states. For a
sufficiently long string xn, the permanent state selected by xn is the (unique) leaf in the tree
that is a prefix of xn. When xn is not long enough to determine a permanent state, then
xn selects the transient state labeled xn. Notice that the state selected by xn, permanent or

4 For example, consider a binary finite-memory process for which P (0|u) = p for all strings u ∈ A+, and

P (0|λ) = q. Clearly, whenever q 6= p, the condition (2.3) is not satisfied by this process and m = 1, whereas

m = 0 for q = p. Thus, the value of q, given by the CPMF corresponding to a transient state, determines the

order of the process, a situation avoided by requiring (2.3).
5A α-ary tree is full if and only if every internal node has exactly α children.

20 2. Tree sources and FSM closures

Figure 2.1: Binary context tree T

transient, is labeled xnxn−1 . . . xn−j , where the symbols are reversed relative to their order in
the corresponding suffix of xn. In general, any suffix of xn will be called a context in which
xn+1 occurs. To avoid ambiguity, we will use the notation p(a|s) to denote conditioning on
an abstract state s, and P (a|xnn−j) to denote conditioning on an arbitrary suffix of xn, which
may or may not correspond to a state.

The “basic” FSM model representation is equivalent to a tree model in which all the leaves
in the context tree have depth m. In a minimal tree model representation, the state σ(xn) for
xn ∈ AnP is determined by the smallest integer `(xn) such that P (·|uxnn−`(xn)+1) is independent
of u ∈ A∗, uxnn−`(xn)+1 ∈ A

∗
P . Sets of “sibling” leaves {b1b2 . . . bm−1b | b ∈ A } sharing the same

CPMF in the original model can be merged into one state (leaf), represented by the parent
node b1b2 . . . bm−1 (where (2.3) guarantees compatibility with the CPMF corresponding to the
shorter state). The merging is repeated recursively whenever possible, seeking the shortest
possible context that determines the CPMF, until any set of α sibling leaves contains at least
two leaves with different associated CPMFs. A precise characterization of minimality is given
in the more general setting of Section 2.2.

The minimal tree model might not be representable as an FSM model with the same
number of states. For example, as noted in [82], in the binary context tree of Figure 2.1, the
state following the emission of a 1 at state 0 in T could be either 100 or 101, and more past
symbols are required to make the next-state determination than provided by the length-one
context (which is nevertheless sufficient to determine the CPMF). The relation between these
two classes of models will be the subject of Section 2.3.

2.2 Generalized context trees

In practice, the use of variable-length contexts often yields significant savings in model size
compared to a plain Markov model. It is due to these savings that the theory and practice
of tree models based on full context trees have received much attention in the literature, and
efficient methods for model optimization have been developed (see, e.g., [58, 82, 84, 90]).
There might be other opportunities for model size reduction, however, that are difficult to
exploit using a full tree. Full tree models, for example, do not provide a mechanism for
merging a proper subset of sibling leaves sharing a common CPMF into a single state.6 In
this section we present a more general class of tree models that could exploit some of these

6 The compression algorithm of [45] leads in some cases to such merges, although the model is not formalized.

2.2. Generalized context trees 21

additional relations and provide a more economical parametrization of the process. Although
this feature makes the general class interesting in itself, our main motivation in discussing it
here is its use in auxiliary data structures in Chapter 3.

2.2.1 Terminology and notation

Consider a finite, rooted, ordered, and directed tree T (see, e.g., [37, 38] for tree terminology)
with the following properties:

(i) Each edge is labeled with a string from A+.

(ii) Each node has one incoming edge, except for the root of the tree, which has none. Each
node has at most α outgoing edges, which must be labeled with strings starting with
different symbols from A.

(iii) Each node is labeled with a finite string, obtained by concatenating the labels of the
edges on the path from the root to the node. The root is labeled with λ.

For simplicity, we do not distinguish between nodes and their labels, and, for w ∈ A∗, we
use the expression “w is a node of T” as shorthand for “T has a node labeled with w.”
Furthermore, we identify T with its set of nodes, and we write, for instance, u ∈ T when u

is a node of T . We denote the number of outgoing edges of a node u by deg(u), and if aw
is the label of an edge outgoing from u, we say that this edge is in the direction of a. If T
has an edge labeled w, going from node u to node v, we write u w−→ v, and say that v is a
child of u, and that u is the parent of v, denoted u = parT (v). The set of children of a node
u is denoted chldT (u). A node v is a descendant of u if u � v (u is then an ancestor of v).
An edge of T is said to be atomic if it is labeled with a single-letter string; otherwise it is
said to be composite. If u a−→ ua is an atomic edge, then ua is an atomic child of u. A tree
T is atomic if every edge of T is atomic. If T is atomic and every internal node u of T has
deg(u) = α, we say that T is full (this coincides with our previous definition of a conventional
full tree). A string w is a word of T if it is a prefix of a node of T . The set of words of T
will be denoted word(T). Thus, by our convention of identifying the symbol T with its set
of nodes, we have T ⊆ word(T), with equality holding if and only if T is atomic.

The combinatorial structure just described has been widely used, under various guises
and terminologies, as an underlying data structure for efficient string processing algorithms.
The structure (or variants sharing many of its properties) has been referred to as an A+

tree [32], a PATRICIA tree [55, 38, 74], a compact digital tree [74], etc. It has found nu-
merous applications, for instance, in string storing, searching and retrieval [38, 74], pattern
matching [85, 51, 32], and in the mentioned works [44, 23, 3] related to data compression, to
list just a few (we cite a few references that contain extensive bibliographies). To emphasize
the application of our interest, we will refer to T as a generalized context tree (GCT). An
example of a GCT over A = {a,b,c} is shown in Figure 2.2(A).

22 2. Tree sources and FSM closures

Figure 2.2: A GCT T over {a,b,c} and the corresponding Tfull (with added nodes in gray)

Figure 2.3: Canonical decomposition of ccbab = 〈c, cb, ab〉

2.2.2 Source definition

We next describe how a GCT defines the state function of a recursive model that generates
a string process. For a GCT T , and an arbitrary string y ∈ A∗, we define the canonical
decomposition of y with respect to T as the triplet CT (y) = 〈r, u, v〉 such that r, u, v ∈ A∗, r
is the longest prefix of y that is a node of T , ru is the longest prefix of y that is a word of T ,
and y = ruv. The decomposition is illustrated in Figure 2.3 with an example, taken over the
GCT T of Figure 2.2(A).

Notice that v is the suffix of y that “falls off” the tree. In general, any, or all, of r, u and
v may be null strings. A similar notion of canonical reference was defined in [32]. As we will
often make separate reference to it, we will denote the first component, r, of CT (y) by VT (y).

Let $ be a symbol such that $ 6∈ A. Given a sequence xn and a GCT T , we define the
tree-state function σT : A∗ → A∗ ∪ {w$ |w ∈ A∗ } as follows:

σT (xn) =

{
VT (xn) if VT (xnz) = VT (xn) ∀z ∈ A∗,
xn$ otherwise.

(2.4)

Since T is finite, the first case of (2.4) must hold for sufficiently large n, making σT (xn) a
node of T . For small values of n, the second case in (2.4) may hold. Thus, viewing σT as a
state function, its permanent states are given by all the nodes s of T for which there exist
arbitrarily long sequences yn ∈ A∗ satisfying VT (yn) = s, whereas its transient states are
arbitrary words of T other than leaves, with the symbol $ appended. By extension, we call
these nodes and words, respectively, permanent and transient states of T . A transient state
u$ accepts only the single string u, which is not long enough to “fall off” the tree or reach a

2.2. Generalized context trees 23

leaf. We denote the set of permanent states of T by ST , the set of transient states of T by
S$
T , and the set of all states of T by SA

T = ST ∪ S$
T .

As an example, for the GCT shown in Figure 2.2(A), we have ST = {a,b,c,ca,ccbb} and
S$
T = {λ$,c$,cc$,ccb$}. In this example, c ∈ ST but we still have σT (cc) = cc$, namely,

the second case in (2.4) holds. The extra symbol $ serves to distinguish states that would
otherwise correspond to the same string from A∗, e.g., c and c$ in the example. A natural
interpretation of this symbol, which will be more explicitly adopted in Chapter 3, is that of
a conceptual marker preceding the first actual symbol of xn.

The following lemma summarizes the above discussion, characterizing permanent and
transient states by giving formal meaning to situations in which a sequence “falls off the
tree.”

2.1. Lemma. A string s is a permanent state of a GCT T if and only if s ∈ T and either
deg(s) < α or s has a composite outgoing edge. A string w$ is a transient state of T if and
only if w ∈ word(T) and w is not a leaf of T .

When T is a full tree, the set of permanent states is identical to the set of leaves. For the full
binary GCT of Figure 2.1, for example, we have ST = {0, 100, 101, 11} and S$

T = {λ$, 1$, 10$}.
We call generalized context tree model (GCTM), and denote with 〈T, p〉 the recursive

model defined by the state set SA
T , the state function σT (·) of (2.4), and an associated set of

CPMFs {p(·|s)}, s ∈ SA
T . The probability assignment (2.1) generated by 〈T, p〉 clearly has

finite-memory, with order m upper-bounded by the length of the longest word of T . In order
to satisfy also (2.3), it suffices to require that if s$ is a transient state such that all permanent
states of the form VT (su), u ∈ A∗, share the same CPMF, then this CPMF is also associated
with s$.
Remark. Our definitions are quite general in letting arbitrary words define transient states
of the GCT, and allowing arbitrary CPMFs to be associated with these states, as long as (2.3)
is satisfied. A popular convention is to use for a transient state the CPMF associated with the
permanent state that would be selected had the sequence been preceded by as many copies of
a fixed symbol as needed [58]. In the context of source coding, another reasonable convention
is to assume that transient states are associated with uniform distributions.

Relation to full-tree models. The conventional full-tree models are a special case of
GCTMs. For any model 〈T, p〉, the GCT T can be completed to a full context tree Tfull, for
which there exists a probability assignment p′ such that 〈T, p〉 and 〈Tfull, p

′〉 generate the same
process, as follows. Let s be a permanent state of T , with associated CPMF p(·|s). Then,

a. if s is a leaf of T , then s is a state (leaf) of STfull
and p′(·|s) = p(·|s);

b. otherwise, for every a ∈ A such that s does not have an edge in the direction of a, sa
is a state of STfull

and p′(·|sa) = p(·|s);

c. for every composite edge aw emanating from s, with w = w`1, ` ≥ 1, all the strings
sawi1ci, 0 ≤ i < `, ci ∈ A \ {wi+1}, are states of STfull

, sharing the CPMF p(·|s).

d. S$
Tfull

= S$
T , and for any w$ ∈ S$

T we have p′(·|w$) = p(·|w$).

24 2. Tree sources and FSM closures

1

110

0

T1
1

1

1

0

0

T2
1

1

10

0

0

T3

Figure 2.4: Normalization of a GCT over a binary alphabet

It is possible, therefore, for ST to be significantly smaller than STfull
, providing a more

economical parametrization of the process. In other words, a minimal model in the full-tree
sub-class may still be reducible in the GCTM class. Part (B) of Figure 2.2 shows the under-
lying full tree Tfull corresponding to the GCT in Part (A) of the same figure. In the example,
we have |ST | = 5 and |STfull

| = 9. Later on in this section, we characterize minimal represen-
tations in the GCTM class. However, the current state of the art in modeling algorithms does
not allow us to efficiently optimize code length in this class. Thus, we cannot take advantage
of the additional flexibility. The GCT extension will be used in our case as an algorithmic tool
for dealing with suffix trees that may not be full, in order to achieve the complexity results
of Chapter 3. The code length optimized, however, will still correspond to the sub-class of
full-tree models.

2.2.3 Normal generalized context trees

We next present a partition of the set of GCTs into equivalence classes. This partition
simplifies the derivation of further results. Given a GCT T , we say that a node v ∈ T is a
pseudo-leaf if deg(v) ≤ 1 (the case deg(v) = 0 corresponds to a leaf). For example, the node
11 is a pseudo-leaf of T2 in Figure 2.4. We say that v is a phantom node of T if v 6∈ T , and
v = ua, where a ∈ A, u ∈ T , and for every b ∈ A \ {a}, ub ∈ T . By Lemma 2.1, u ∈ ST . In
Figure 2.4, v = 11 is a phantom node of T1. If we add ua as a node to T (by either adding
or splitting an edge), it becomes a pseudo-leaf and a permanent state accepting the same set
of strings previously accepted by u, which, again by Lemma 2.1, ceases to be a permanent
state. In Figure 2.4, T2 is obtained from T1 by adding the phantom node 11 as a node, which
becomes a pseudo-leaf in T2. Since the set of words of the GCT that are not leaves remains
unchanged, so does the set of transient states. Thus, the sets of states of the two GCTs are in
one-to-one correspondence. Moreover, for a GCTM 〈T, p〉, if we also associate with the added
node ua the CPMF p(·|u), then the new GCTM generates the same process as the original
one. Thus, a GCT T with a phantom node ua is indistinguishable, from the point of view of
the properties of interest to us, from T ∪ {ua}.

We call the operation of replacing a phantom node of a GCT with the actual node a
normalization step, and we call a GCT without phantom nodes normal. For α = 2, normal-
ization might be a two-step process, in that replacing a phantom node with the actual node
by splitting a composite edge labeled with a string of length two, creates another phantom

2.2. Generalized context trees 25

node, which in turn needs to be replaced by adding a leaf to the new node. This is illus-
trated in Figure 2.4, where the addition of the pseudo-leaf 11 in T2 creates the phantom node
110, which is added to finally obtain the normal GCT T3. Clearly, this situation does not
occur for α > 2. One can also take an “unnormalization” step by eliminating a pseudo-leaf
from a full set of sibling nodes. Again, in the binary case, this step could create another
“unnormalizable” pseudo-leaf. Notice that a full context tree is always normal.

The normalization/unnormalization operations define a partition of the set of all α-ary
GCTs into classes, where two GCTs belong to the same class if and only if one can be obtained
from the other through a finite sequence of normalization/unnormalization operations. Let
N(T) denote the class of T in this partition. Clearly, N(T) contains one and only one normal
GCT TN , which we call the normalized presentation of T . In Figure 2.4, {T1, T2, T3} is a class
and T3 is the normalized presentation of Ti for i = 1, 2, 3. The GCT TN can be obtained from
T by replacing each phantom node with an actual node (and, in the binary case, possibly
adding leaves as noted, so that no phantom nodes are left). Also, note that TN =

⋃
T ′∈N(T) T

′.

2.2.4 Minimal generalized context tree models

A GCTM 〈T, p〉 is said to be minimal if no other GCTM 〈T ′, p′〉 generates the same process
and has a smaller number of permanent states.7 To characterize minimality, we start with the
conventional sub-class of full-tree models, for which the characterization is simple and well
known (see, e.g., [84]). For completeness, we state and show a proof of this characterization
in Lemma 2.2 below. We say that a GCT T ′ is an extension of a GCT T if it contains all the
nodes of T .

2.2. Lemma. A full-tree model 〈T, p〉 with A∗ = A∗P is minimal if and only if there is no set
of α sibling leaves of T sharing the same CPMF. Moreover, if 〈T, p〉 is minimal, and 〈T ′, p′〉
generates the same process, where T ′ is also a full context tree, then T ′ is an extension of T .

Proof. The necessity of the minimality condition is straightforward, since sets of sibling leaves
with identical CPMFs can always be merged, reducing the number of states (constraint (2.3)
guarantees that transient CPMFs do not impede the merging). Assume the condition holds,
and 〈T ′, p′〉 generates the same process as 〈T, p〉, with T ′ full. Assume u is a node in T \ T ′.
Then, there is a leaf u′ ∈ T ′ such that u′ ≺ u, and there is a full set of sibling leaves of T
that descend from u′. But, since u′ ∈ ST ′ , A∗P = A∗, and both tree models generate the
same process, these leaves of T must be associated with the same CPMF that is associated
with u′ in T ′, contradicting the assumed condition. Thus, we must have T ⊆ T ′, which also
establishes the minimality of T . 2

The situation is far more complex for the GCTM class. Since the characterization of
minimal GCTMs is not needed for the results in the sections to follow, its discussion and
proof are deferred to Appendix A.

7 While we emphasize the permanent states because they determine the lasting statistics of the source, it

can be shown that a minimal GCTM is also minimal in its number of transient states.

26 2. Tree sources and FSM closures

2.3 FSM closures of generalized context trees

FSMs and GCTs are combinatorial mechanisms used for process generation, providing the
state function σ of a recursive model. For a GCT T , σ is given by the tree-state function
σT and s0 = λ$, whereas for FSMs, σ is recursively defined by the next-state function,
starting from an initial state s0. The class of FSM models properly includes finite-memory
processes (see, e.g., [2]). However, as shown by the example in Figure 2.1, a minimal tree
model representation of a finite-memory process might have fewer states than an FSM model
representation of the same process. In this section, we study the relation between these two
process-generating mechanisms and we define the FSM closure of a GCT. FSM closures of
full context trees have already been considered in [69, 88]; here, we target the broader family
of GCTs, and we present an efficient algorithm for constructing FSM closures in the broader
setting.

2.3.1 Refinements

We now study structural relations between recursive models that generate the same process,
and develop tools that will prove useful in investigating the FSM closure of a GCT. Let σ
and σ′ be state functions taking values in state sets S and S′, respectively. We say that σ′ is
a refinement of σ if there exists a refinement function g : S′ → S such that for all sequences
xn, if σ′(xn) = s′ and σ(xn) = s, then g(s′) = s. This notion of refinement was presented
in [27] for FSMs, and is used also in [81]. We will loosely identify state functions with the
mechanisms defining them and say, e.g., that an FSM F is a refinement of a GCT T .

We now focus on refinement relations between GCTs, using the partition, defined in
Section 2.2.3, of the set of all α-ary GCTs into equivalence classes of GCTs sharing a common
normalized presentation. Lemma 2.3 below is an obvious consequence of our discussion on
normalization.

2.3. Lemma. If N(T ∗) = N(T) then there exists a one-to-one refinement mapping between
T ∗ and T .

Next, we relate the notion of refinement more directly to the combinatorial structure of a
GCT.

2.4. Lemma. Let T and T ′ be GCTs. T ′ is a refinement of T if and only if T ′N is an extension
of T , where T ′N is the normalized presentation of T ′.

Proof. Assume first that T ⊆ T ′N . Consider a sequence of transformations in which we start
with T , and we add one node of T ′N \T at a time, until we obtain T ′N . Let T ∗ denote a generic
GCT obtained at an intermediate step of this process. Since T ′ ∈ N(T ′N), by transitivity of
the refinement and Lemma 2.3, it suffices to prove that every addition step in this process
produces a refinement T ∗r of T ∗.

The addition of a node v can be the result of either adding an outgoing edge to a node u
of T ∗ in a direction in which u did not have an edge, or splitting an outgoing composite edge

2.3. FSM closures of generalized context trees 27

of u, inserting v. Clearly, in either case, u ∈ ST ∗ , {v} = ST ∗r \ST ∗ , and ST ∗ \ST ∗r is either {u}
or empty. Thus, a refinement function g∗ is defined such that g∗(v) = u and g∗(z) = z for all
z ∈ ST ∗r \ {v}. As for the transient states, S$

T ∗r
= S$

T ∗ (thus defining an identity mapping),

unless v is a leaf of T ∗r , in which case S$
T ∗r

= S$
T ∗ ∪ {uw$: uw ≺ v, w ∈ A∗}. Clearly, in the

latter case, g∗(uw$) = u. Hence, T ′N is a refinement of T .
Assume now that T ′ is a refinement of T . Then, by transitivity of the refinement and

Lemma 2.3, there exists a refinement function g : T ′N → T . If T 6⊆ T ′N , there exists a node
w ∈ T \ T ′N . Clearly, w 6= λ, so we assume w = ua for some u ∈ A∗, a ∈ A. Since ua 6∈ T ′N ,
for some y ∈ A∗, we have σT ′N (yau) = u′ � u, and σT (yau) = g(u′) � ua. Write ua = u′bv,
b ∈ A. We claim that for all d ∈ A \ {b}, we must have u′d ∈ T ′N . Otherwise, if u′d /∈ T ′N , by
Lemma 2.1, we would have σT ′N (zdu′) = u′ for some z, and σT (zdu′) 6� ua, a contradiction to
our previous determination of g(u′). Now, since T ′N is normal, we must also have u′b ∈ T ′N ,
for otherwise u′b would be a phantom node of T ′N . Thus, we have a contradiction to the fact
that VT ′N (u′bv) = u′. Therefore, T ⊆ T ′N . 2

Remarks

(a) It follows from Lemma 2.4 that the notions of refinement and extension coincide for
normal GCTs, and, thus, for all full context trees. Lemma 2.4 also implies that the
sufficient condition given in Lemma 2.3 for the existence of a one-to-one refinement
mapping between two GCTs is also necessary.

(b) The notions of refinement and minimality were related in [81] for FSM models. An FSM
model is minimal if no FSM model with fewer states can generate the same process.
It is shown in [81, Lemma 1] that if 〈F , p〉 and 〈F ′, p′〉 generate the same process, and
F is minimal, then F ′ is a refinement of F . While an analogous result holds for full-
tree models (see Lemma 2.2), and for ternary normal GCTMs (see Theorem A.1 in
Appendix A), it is interesting to notice that this property does not hold, in general,
for GCTMs with α 6= 3, as shown by the examples, given in Appendix A, of multiple
minimal GCTMs of the same process.8

2.3.2 Definition and properties of FSM closures

We say that an FSM F is an FSM closure of a GCT T if it is a refinement of T with a minimal
number of permanent states. As in the definition of a minimal GCTM, we adopt the number
of permanent states in F as the relevant measure of minimality. However, it is shown in [48]
that, in fact, there exists an FSM closure of T that is also minimal in the stronger sense of
having a minimal (total) number of states.

We say that a GCT T has the FSM property if it defines a next-state function f : SA
T ×A →

8 The underlying GCTs of these multiple minimal GCTMs, however, may be proper refinements of the

FSM in a minimal FSM model (not derived from a GCT). This is the case in the example given in Appendix A

for α = 4, where it is easy to see that the process admits a minimal FSM model with two recurrent states (and

one transient state).

28 2. Tree sources and FSM closures

Figure 2.5: FSM closure TF of binary GCT T and corresponding finite state machine

SA
T such that, for any sequence xn+1, we have

σT (xn+1) = f(σT (xn), xn+1).

For brevity, when T has the FSM property we say that “T is FSM,” and we do not distinguish
between T and the corresponding FSM. Clearly, if T is FSM then it is also an FSM closure of
T . The FSM property facilitates the implementation of GCTMs, due to the recursive form of
the next-state function. However, as discussed in Section 2.1 and exemplified in Figure 2.1, a
GCT may not be FSM. In such cases, its FSM closure allows for an efficient implementation
of state transitions as it was exemplified in Section 1.2.

Figure 2.5(A) shows a GCT TF with the FSM property that is an FSM closure of the
GCT T of Figure 2.1. New nodes added to T are dark. Figure 2.5(B) shows the finite state
machine associated with TF . Transient states and their transitions are shown with dashed
lines. Although in this simple example one can derive TF from T fairly simply, this is not the
case in general. Indeed, the number of permanent states of an FSM closure is, in the worst
case, quadratic in the number of permanent states of the original GCT [48].

Next, we give a sufficient condition for a GCT to have the FSM property.

2.5. Lemma. Let T be a GCT. If for every permanent state s ∈ ST , the suffix tail(s) is a node
of T , then T is FSM and the next-state function f satisfies, for all a ∈ A, f(s, a) = VT (as).

Proof. We show that a next-state function f can be defined for T . Let s ∈ ST , and let ws
be a string accepted by s, w ∈ A∗. For any a ∈ A we have asw 6∈ word(T), for otherwise
asw is a prefix of a permanent state and, by the assumption of the lemma, we would have
sw ∈ word(T) implying that ws selects a transient state. Thus, wsa selects a permanent
state r = VT (asw). Clearly, r � as, for otherwise s ≺ tail(r) and, by the lemma assumption,
tail(r) ∈ T , implying that ws would not have selected s. Therefore, r = VT (as), and we can
define the state transition f(s, a) = VT (as).

For a transient state z = u$ of T , if au ∈ word(T) then we define f(z, a) = az. Oth-
erwise, au selects the permanent state VT (au), and we can define f(z, a) = VT (au). The

2.3. FSM closures of generalized context trees 29

next-state function is now defined for all states s ∈ SA
T , and, hence, T is FSM. 2

In order to unambiguously determine the state s selected by a string xj , given that the
previous state is s′ = σT (xj−1), and given the symbol xj , we must be able to guarantee, at
least, that s � xj . The condition of Lemma 2.5 implies that tail(s) must be a prefix of s′.
Hence, since s′ is in turn a prefix of xj−1, the occurrences of xj in state s′ indeed implies that
s � xj . On the other hand, if tail(s) is not a node of T , s′ may be a proper prefix of tail(s).
Notice however that if tail(s) is a phantom node of T , this can only happen if tail(s) is a
prefix of xj−1, and we can still determine that s � xj when xj occurs in s′. Thus, we can not
claim, in general, that the condition of Lemma 2.5 is also necessary, except if T is normal.
Theorem 2.6 below fully characterizes GCTs having the FSM property.

2.6. Theorem. A GCT T with normal presentation TN is FSM if and only if every suffix of
a node of TN is a node of TN .

Proof. By Lemma 2.3, we can assume without loss of generality that T is normal. If every
suffix of a node of T is a node of T , then T is FSM by Lemma 2.5. Suppose now that v is a
node of T but tail(v) is not. Then, there exists a node u, a symbol a, and a string w, such
that uaw = tail(v), and, since T is normal, there also exists a symbol b 6= a, and strings y, z,
such that VT (uawy) = VT (ubz) = u. Now, with c = head(v), the string cuawy = vy selects a
state s such that v � s, and the string cubz selects a state s′ that must be different from s.
Thus, the occurrence of the symbol c in state u does not uniquely determine the next state
in T . 2

Define Tsuf as the GCT obtained from a GCT T by adding, as nodes, all the suffixes of
nodes of T . Notice that the addition of a node may cause a composite edge to split. Thus,
Tsuf might contain nodes that are added to satisfy structural constraints of the tree, rather
than directly as suffixes of nodes of T . For example, if w is a node of T with an outgoing
edge uav, and the construction calls for adding the node wubv′, where a 6= b, then the edge
w

uav−→ wuav is split as w u−→ wu
av−→ wuav, and the new node wubv′ is added as a child of

wu. The GCTs in Figures 2.1 and 2.5(A) satisfy TF = Tsuf. The suffix 00 of state 100 of T
is not a node of T , and therefore T does not satisfy the sufficient condition of Lemma 2.5.

By Lemma 2.3 Tsuf is FSM, and since normalization does not increase the number of
permanent states, it follows from Theorem 2.6 that Tsuf is a refinement of T with the least
number of permanent states among all GCTs. It is conceivable, however, that an FSM
refinement that is not constrained to having an underlying GCT structure (namely, one that
does not correspond to a GCT with the FSM property), might have fewer permanent states.
It can be shown though this not to be the case [48].

2.7. Theorem. [48] Let T be a GCT. Then, Tsuf is an FSM closure of T .

Remarks

(a) It is shown in [48] that the permanent state sets of any two FSM closures of a GCT T

are in one-to-one correspondence, which extends to the state sequences followed by any

30 2. Tree sources and FSM closures

string. Thus, all FSM closures are essentially equivalent, differing possibly only in the
transient states, which are of little interest to us. Therefore, we will henceforth refer to
Tsuf as the FSM closure of T .

(b) If T is atomic, then T is FSM if and only if every substring of a node of TN is a node
of TN , since in such a tree every prefix of a node is a node.

(c) It is readily verified that if T is full, so is Tsuf.

(d) By Theorem 2.6, for any normal GCT TF that is an FSM refinement of T we have
T ⊆ Tsuf ⊆ TF . Thus, if Tsuf is normal, it is the only normal GCT which is an FSM
closure of T . This property holds in particular for full context trees.

2.4 A linear-time algorithm for constructing FSM closures

We present an algorithm that constructs the FSM closure Tsuf of an arbitrary GCT T , together
with the associated next-state function. We will prove that the algorithm runs in time that
is linear in the sum of the lengths of the strings that label edges of T and in the total number
of nodes in Tsuf.

The algorithm starts with a representation of T , and adds the necessary nodes and edges
to construct Tsuf. At any time during the computation, we denote by T ′ the intermediate
GCT in existence at the time. Thus, T ′ evolves from T to Tsuf. When referring to canonical
decompositions CT ′ , we mean the decomposition with respect to the instantaneous state of
T ′ at the time of the reference.

The algorithm is presented in the form of a main routine MakeFSM, and three subroutines,
whose functions are broadly described as follows:

• Verify(w): Receives a node w of T ′ as input, and verifies that the suffix tail(w) is in T ′,
adding it if necessary together with the FSM transition f(tail(w), head(w)) = w. The
entire (evolving) tree is traversed and verified through recursive calls to this subroutine.
Clearly, the condition verified by Verify is necessary and sufficient (if applied recursively
to all the nodes) for the constructed tree to be Tsuf.

• Insert(r,u,v): Receives a node r of T ′, and strings u, v. Inserts, if necessary, new
nodes ru and ruv, doing necessary edge splits and additions.

• PropagateTransitions(F,w): For a function F : A → Tsuf adds to the description
of the FSM associated with Tsuf a set of state transitions of the form f(w, a) = F (a),
originating from w, for all a ∈ A such that f(w, a) was not defined by Verify.

The routines maintain the following data arrays:

• Tail[w]: A pointer from the node in the tree containing w to the node containing
tail(w), which allows the algorithm to jump from w to its suffix in constant time. These
suffix links [32] are essential to the efficient implementation of the algorithm.

2.4. A linear-time algorithm for constructing FSM closures 31

• Traversed[w,a]: A flag indicating whether an attempt was made to traverse an edge
starting from node w in the direction of a. Initially set to false for all a ∈ A for nodes
w ∈ T as well as for new nodes as they are created.

• Transitions[w]: A function mapping A into T ′ ∪{⊥}, where ⊥ denotes an undefined
state. The function lists the FSM transitions from state w. The list of transitions is
initially set to ⊥ for all a ∈ A.

• Origin[w]: The original node in T that w descends from. Initially, Origin(w)=w.
This array connects the states of the constructed FSM closure to the original states of
T .

• Children[w]: The list of children of a node w. Maintained as part of the representation
of T ′.

The routines are listed in Figure 2.6. We initially omit implementation details, in order to
establish functional correctness. Some of the implementation details are essential for analyzing
the complexity of the algorithm, and will be provided when we pursue that analysis.

2.8. Proposition. MakeFSM constructs Tsuf, and the state transitions between permanent
states of the associated FSM.9

Proof. We say that Verify visits a node t of T ′ whenever the subroutine is invoked with t

as its argument. First, we observe that Verify visits each node at most once. Clearly, the
invocation from Step 1 of MakeFSM (see Figure 2.6) is not repeated. When Verify is recursively
invoked from its Step 16, the edge leading to the visited node is marked as “traversed,” and
the node is never visited again from that step. Invocations from steps 7 and 9 visit nodes that
have just been created in a call to Insert, and whose incoming edges are already marked
as traversed. Therefore, Verify never revisits a node. Notice also that when new nodes are
inserted in the tree (Step 4 of Verify), the string associated with the new node is shorter
than one that already existed in the tree. It follows from the finiteness of the initial tree T
that the total number of nodes inserted is finite, and, thus, the recursion sequence of Verify
is finite and MakeFSM terminates. On the other hand, notice that new nodes that are created
are either visited immediately (steps 7 and 9), or their incoming edges were marked as “not
traversed.” Hence, since the loop in Step 12 recursively traverses all edges outgoing from
the current node that had not been traversed (which is done in a conventional pre-order tree
traversal recursion), every node of the final tree T ′ is visited exactly once. We now claim that
when the algorithm terminates, T ′ = Tsuf. To prove the claim, observe that in Step 1, Verify
extracts the suffix x = tail(w) of its argument. In Step 2, the canonical decomposition of
x is computed, The first component, r, of this decomposition, corresponds to a prefix of x
that is already in the tree. Step 4 constructs the parts of x that were missing. Therefore, a
call to Verify(w) guarantees that tail(w) will be a node of the constructed tree. Since the
algorithm starts with T , and it only adds suffixes of nodes that were already in the tree, every

9 In addition, also the transitions involving transient states that are nodes of Tsuf are constructed.

32 2. Tree sources and FSM closures

MakeFSM

1. Verify(λ)

2. PropagateTransitions({ (a, λ) | a ∈ A}, λ)

Verify(w)

1. Set c = head(w), x = tail(w)
2. Compute 〈r, u, v〉 = CT ′(x)
3. If u 6= λ or v 6= λ

4. Insert(r,u,v)

5. If u 6= λ

6. If Traversed[r, head(u)]
7. Verify(ru)

8. Else If v 6= λ and Traversed[r, head(v)]
9. Verify(rv)

10. Set Tail[w] = pointer to node x

11. Set Transitions[x](c) = w

12. For a ∈ A
13. If not Traversed[w, a]

14. Set Traversed[w,a] = true
15. If w has an edge az in the direction of a

16. Verify(waz)

Insert(r, u, v)

1. If u == λ

2. Add r
v−→ rv to T ′

3. Set Origin(rv) = Origin(r)

4. Else

5. Split r
uy−→ ruy into r

u−→ ru
y−→ ruy

6. Set Origin(ru) = Origin(r)

7. Set Traversed[ru, head(y)] = Traversed[r, head(u)]
8. If v 6= λ

9. Add ru
v−→ ruv to T ′

10. Set Origin(ruv) = Origin(ru)

PropagateTransitions(F,w)

1. For a ∈ A
2. If Transitions[w](a) =⊥
3. Set Transitions[w](a) = F (a)
4. For v in Children[w]

5. PropagateTransitions(Transitions[w], v)

Figure 2.6: Algorithm for computing Tsuf

2.4. A linear-time algorithm for constructing FSM closures 33

node of T ′ is either a suffix of a node of T , or a node inserted to allow a bifurcation (e.g., if
001 and 01 are suffixes, a node must exist at 0, even if it is not a suffix). Finally, since all the
nodes of T ′ are visited, every suffix of a node of T is a node of T ′. Hence, upon termination
of MakeFSM, T ′ = Tsuf.

Transitions of the FSM associated with Tsuf, of the form f(x, c) = cx, are constructed in
Step 11 of Verify. Transitions of the form f(x, c) = u ≺ cx are added in the subroutine
PropagateTransitions. Overall, this process exhausts all transitions between permanent
states. In addition, also the transitions involving transient states that are nodes of Tsuf are
constructed. 2

A key supporting structure generated by the algorithm is the array Tail of suffix links,
constructed in Step 10. A comment is in place here about the apparent redundancy between
Step 1 and Step 10, both of which seem to “compute” the longest proper suffix, x, of w. In
Step 1, we read the symbols of x as a substring of w, a pointer to which we get as input to
Verify. In Step 10, after possibly having built it, we have access to a pointer to the node
labeled x in T ′. That pointer is then stored in the array Tail for use in later stages of the
algorithm. Note that w and x, as nodes, could be located in very different parts of T ′.

An example of the workings of the algorithm is presented in Figure 2.7. Figure 2.7(A)
(excluding the dashed arrow) shows a non-FSM GCT T over the alphabet A = {a,b,c}.
Figures 2.7(A), 2.7(B), and 2.7(C) present the tree T ′, and the suffix links created, after each
iteration of the loop in Step 12 of Verify(λ) (namely, one iteration for each child of λ in T).
Nodes added to T ′ in each iteration are light grayed, switching to dark in later iterations.
Nothing changes in the first iteration, except for the addition of the suffix link from node a,
which is verified in this iteration, to the root. In the second iteration, processing the branch
in the direction of b leads to the verification of nodes ba, baa and bac. The tails of the
latter two (aa and ac, respectively) were not previously in the tree, and are thus added by
Verify via calls to Insert. Since node a has already been verified, Traversed[a,a] is true
for all a ∈ A and Verify is recursively called for the inserted nodes. No further insertions are
required, and suffix links are defined for the new nodes as shown in Figure 2.7(B). Execution
for the branch in the direction of c proceeds in a similar way, though in this case, recursive
verification of some new nodes leads to further insertions. For instance Verify(cbacb) leads
to successive creations of nodes bacb, acb, cb and b, the latter two causing the split of
previously traversed edges. Notice how the search for the longest proper suffix of an inserted
node during its verification is helped by following the suffix link of its parent. For example,
during verification of bacb, we can start the search for acb directly at node ac by following
the suffix link from bac in Figure 2.7(B).

Complexity analysis. Most individual steps of the algorithm listed in Figure 2.6 can be
executed in constant time per node visited, assuming strings associated with edges in the input
tree T are efficiently represented, e.g., following the suffix tree methods surveyed in [32], the
string v in an edge u v−→ uv of T is defined by a pair of pointers to some memory buffer
where the actual symbols are held. Thus, for example, a substring of v can be defined and
“copied” somewhere else by manipulating the pointers in constant time. Notice that any new

34 2. Tree sources and FSM closures

Figure 2.7: FSM closure (C) and intermediate stages (A,B), with suffix links

edges inserted by the algorithm are labeled with substrings of previously existing labels, so
no additional memory buffer space is needed.

The exception to the statement above is Step 2 of Verify, namely, the computation of
CT ′(x). In principle, the step calls for a string comparison seeming to require symbol by
symbol access, and time proportional to |x|, which could lead, in the worst case, to total
execution time quadratic in the total length of strings in the tree. However, the suffix links
available at that point in the execution of the algorithm can be used to improve the efficiency
of this computation.

The shallowest layer of executions of the loop in Step 12 iterates over the children of
the root λ. It is readily verified, by observing Figure 2.6, that except for that layer, every
time Verify(w) is invoked, w is a node of the form w = auv, w’s parent is au 6= λ, and
au was previously verified and has a suffix link pointing to node u. Then, we can compute
CT ′(uv) starting from node u, reading individual symbols of v (which we access by reading
the appropriate part of w as a string), and traversing the tree until we find the first prefix of
uv that is not a word of T ′. When the node being verified is bv ∈ chldT ′(λ), we take u = λ,
and proceed in a similar fashion with v. In any case, the number of operations is proportional
to |v| rather than |x|.

Further savings are possible when the invocation Verify(ru) is made from Step 7. For
this case, we show that we can count on x′ = tail(ru) being a word of T ′, and we only need
to find its location in the tree to verify whether it is a node, or an edge must be split to
create one. To see this, recall that we get to Step 7 after a call to Insert which split an
edge r

uy−→ ruy. Also, since Traversed[r, head(u)] must be true, the node ruy must have been
visited either from Step 16 of Verify or from Step 7 or 9 immediately after creation. This
guarantees that tail(ruy) is a node of T ′ and so x′ = tail(ru) is a word of T ′. Now, to find
x′ in the tree, we can start from node r′ = tail(r), and traverse in the direction of string u,
advancing by full edges of the tree, and making comparisons only at the nodes to determine
the direction of the next edge. Each time an edge is traversed, we advance in u by the same

2.4. A linear-time algorithm for constructing FSM closures 35

number of symbols as the length of the edge, until we exhaust the symbols of u. In this case,
therefore, the cost of the computation is proportional to the number of nodes we encounter
in the path from r′ to r′u, rather than the number of symbols |u|. We will refer to this case
as the fast mode of Verify.

The following theorem bounds the running time of MakeFSM. Its proof is based on the
observations above, and an analysis of the various configurations arising during the recursive
sequence of invocations of routine Verify. The full proof is deferred to Appendix B.

2.9. Theorem. Let NE =
∑

e |e|, where the sum is taken over labels e of edges of T , and let
N ′ = |Tsuf|, the number of nodes in Tsuf. Then, MakeFSM runs in time O(NE +N ′).

This chapter contains material published in [48].

Chapter 3

Linear-time twice-universal coding of tree sources

In this chapter, we apply the results of Section 2.3 to the implementation, in linear encod-
ing/decoding time, of the semi-predictive approach to twice-universal coding in the class of
full-tree models. The GCT extension is used as an algorithmic tool in the implementation.
We start by reviewing the semi-predictive approach to twice-universal coding.

3.1 The semi-predictive approach

The basic idea of a two-pass approach to twice-universality for countable union of models is
given in [65]. The case in which the second pass implements a sequential code is referred to
as semi-predictive in [61], and the target class is specialized to full-tree models in [56]. Thus,
the twice-universal code presented in this subsection (both for individual sequences and in a
probabilistic setting) is known (see, e.g., [90]), and we re-derive it here for completeness.

For an individual sequence xn, the coding scheme searches, in a first pass through the
data, for the full context tree T (xn) that minimizes the code length

L(T, xn) = LKT
T (xn) + C(T) (3.1)

over all full context trees T of any size, where LKT
T (xn) denotes the code length assigned

by the Krichevsky-Trofimov (KT) sequential probability assignment [42] conditioned on the
states of T (with a uniform distribution assigned to symbols occurring in transient states),
and C(T) denotes the cost of encoding T using a natural code defined, e.g., in [56, 88].
With a natural code, a full tree is encoded with one bit per node, specifying whether the
node is a leaf or internal.1 As is well known for full α-ary trees (see, e.g., [37, p. 595]),
|ST | = ((α− 1)|T |+ 1) /α, or, equivalently,

C(T) = |T | = α|ST | − 1
α− 1

. (3.2)

To specify LKT
T (xn), let n(a)

s (xj) denote the number of occurrences of symbol a in context s
in xj , namely,

n(a)
s (xj) = |{ i : |s| ≤ i < j, xii−|s|+1 = s, xi+1 = a }| .

Here, s is an arbitrary string. When s is a permanent state of a full context tree T , n(a)
s (xj)

is the number of occurrences of a in state s. Define also ns(xj) =
∑

a∈A n
(a)
s (xj), the number

1For α > 2, the natural code is a redundant representation of the tree, as it can be seen that, asymptotically

in the number of nodes, an efficient representation requires only h(1/α) bits per node, with h(·) denoting binary

entropy. The natural code is used here for simplicity, as it does not affect universality or other asymptotic

properties of interest.

38 3. Linear-time twice-universal coding of tree sources

of times a symbol of xj occurs in (arbitrary) context s, i.e., the number of occurrences of
context s in xj−1 (or occurrences of state s, if s ∈ ST). Then, upon observing xj , the KT
probability assignment takes the form

pj+1(xj+1 = a|σT (xj) = s) =
2n(a)

s (xj) + 1
2ns(xj) + α

.

Furthermore, let

n(T) =
∑
s∈ST

ns(xn) .

Notice that when using the context tree T , n−n(T) is the number of symbols that are coded
in a transient state with a uniform distribution. Consequently,

LKT
T (xn) = (n− n(T)) logα+

∑
s∈ST

κ(xn, s), (3.3)

where κ(xn, s) denotes the code length assigned by the KT probability assignment to the
symbols of xn that occur in state s. By [42], we have

κ(xn, s)
4
= log

Γ
(
ns(xn) + α

2

)
Γ
(

1
2

)α
Γ
(
α
2

)∏
a∈A Γ

(
n

(a)
s (xn) + 1

2

) . (3.4)

In a second pass, after finding and describing the optimal context tree T (xn), the algorithm
uses the KT probability assignment to encode the data conditioned on T (xn). Clearly, upon
decoding T (xn), the decoder can decode the data in a single pass. Due to the properties of
the KT probability assignment [42] used at each state, with an arithmetic coder of sufficient
precision, this scheme is twice-universal in the sense that, for any sequence xn, and any
number M of states, it achieves a per-symbol code length

1
n
L(xn) =

1
n

min
T
L(T, xn) ≤ ĤM (xn) +

M(α− 1)
2

log n
n

+O

(
M

n

)
, (3.5)

where ĤM (xn) denotes the minimum, over all context trees with M (permanent) states, of
the empirical entropy rate of xn with respect to the context tree. Indeed, by [42], the code
length assigned by the KT probability assignment to the symbols of xn that occur in a state
s is,

κ(xn, s) ≤ nsĤ(xn|s) +
(α− 1)

2
log ns +O(1),

where Ĥ(xn|s) denotes the memoryless empirical entropy of the subsequence of xn formed
by the symbols that occur in state s. Thus, assuming that xn is sufficiently long to select at
least one permanent state of an arbitrary context tree T , so that n(T) > 0, we have

∑
s∈ST

κ(xn, s) ≤ n(T)
∑
s∈ST

ns
n(T)

Ĥ(xn|s) +
∑
s∈ST

(
(α− 1)

2
log ns +O(1)

)
,

3.2. An efficient algorithm: complexity analysis 39

Encode(xn)

1. //First pass:

2. Compute ST(xn−1$), compact suffix tree of xn−1$
3. Compute T ′(xn) s.t. T ′full(x

n) = T (xn) by pruning ST(xn−1$) and

making edges leading to leaves atomic

4. Encode T ′full(x
n)

5. //Second pass:

6. Compute T ′F (xn) = T ′suf(x
n)

7. Set s = λ

8. For i in 1..n
9. Encode xi using statistics located in array Origin[s] of T ′F (xn)
10. Set s = Transitions[s](xi) using T ′F (xn)

Figure 3.1: Coding algorithm

or, denoting by ĤT (xn) the empirical entropy rate defined by xn for a model with underlying
context tree T ,

∑
s∈ST

κ(xn, s) ≤ nĤT (xn) +
(α− 1)

2
|ST | log n+O(|ST |),

which is of course still valid even if n(T) = 0. Notice that the number n − n(T) of symbols
that are coded in transient states of T is no larger than the depth of T , which, in turn, is at
most the number, (|ST | − 1)/(α− 1), of internal nodes of T . Therefore, by (3.3),

LKT
T (xn) ≤ nĤT (xn) +

(α− 1)
2
|ST | log n+O(|ST |).

Since also C(T) = O(|ST |) by (3.2), we finally get, from (3.1),

L(T, xn) ≤ nĤT (xn) +
(α− 1)

2
|ST | log n+O(|ST |).

The inequality in (3.5) then follows since, in the first pass, the encoder selects the context
tree T = T (xn) that minimizes L(T, xn). This establishes the twice-universality in the indi-
vidual sequence setting. Twice-universality in a probabilistic setting also follows, by taking
expectation with respect to the true model in (3.5), and noticing that the expected empirical
entropy rate is upper-bounded by the entropy rate by the definition of empirical entropy rate.

3.2 An efficient algorithm: complexity analysis

We first present the linear-time algorithm for the encoding stage. The algorithm is detailed
below and summarized in Figure 3.1.

40 3. Linear-time twice-universal coding of tree sources

3.2.1 First encoding pass: finding the optimal tree

A procedure for finding the optimal full context tree T (xn) in linear time is described in [3].
The procedure described below is similar in that it is also based on the application (pioneered
in [44]) of suffix tree techniques, and on the tree pruning ideas of [56]. Nevertheless, our
procedure is given in terms of the GCT formalism.

First, notice that all the nodes in T (xn) correspond to strings that actually occurred as
substrings of xn, except for those leaves that are added to complete a full tree, for otherwise
C(T (xn)) could have been made shorter without affecting LKT

T (xn)(x
n). Let T ′(xn) denote the

GCT that is obtained from T (xn) by deleting all leaves that did not occur as substrings of xn,
as well as any node u such that deg(u) = 1 after deleting those leaves, except if u � xn. This
exception guarantees that all transient states emitting symbols of xn take the form u$, where
u ∈ T ′(xn).2 Moreover, even though internal nodes of T ′(xn) may now become permanent
states, the only permanent states that will emit symbols of xn are leaves. Thus, for the
purpose of coding xn, T ′(xn) is equivalent to T (xn). Clearly, we have T ′full(x

n) = T (xn).

Now, consider the compact suffix tree (see, e.g., [32]) ST(xn−1$) of xn−1$ where, as in-
troduced in Section 2.1, $ denotes a special symbol that is conceptually assumed to precede
x1. The leaves of ST(xn−1$) are given by all strings of the form xj$, 0 ≤ j < n, and v is
an internal node of ST(xn−1$) if and only if there exist two different symbols a, b ∈ A ∪ {$}
such that both av and bv are sub-strings of $xn−1 (thus, deg(v) > 1). The last symbol of the
string labeling the incoming edge of any leaf of ST(xn−1$) is $ (on the other hand, T (xn) is
an α-ary tree, and $ is just a symbol appended to its transient states). The use of this symbol
in ST(xn−1$) guarantees that the mentioned nodes u of T ′(xn) with deg(u) = 1 belong also
to ST(xn−1$). Thus, by the definition of ST(xn−1$) and T ′(xn), all internal nodes of T ′(xn)
are also internal nodes of ST(xn−1$). Moreover, the leaves of T ′(xn) are words of ST(xn−1$),
but notice that since the incoming edges corresponding to these leaves must be atomic (for
otherwise the description of T (xn) could be shortened without affecting LKT

T (xn)(x
n)), it may

be the case that a leaf of T ′(xn) is not a node of ST(xn−1$). Thus, one can obtain T ′(xn) by
“pruning” ST(xn−1$) and possibly shortening incoming edges of the resulting leaves to make
them atomic (Step 3 in Figure 3.1).

The algorithm that derives T ′(xn) by pruning ST(xn−1$) is based on the observation that,
by recursively assigning costs to sub-trees, an optimal context tree consists of optimal sub-
trees, and can be obtained by dynamic programming. This observation was first made in [56]
and is used also in [3]. It should be noticed, however, that the formulation in [56] is simplified
by the fact that the context tree to be pruned has bounded depth and is atomic. In our case,
to assign the costs consider a given GCT T ′ with all incoming edges of leaves atomic, and
a sequence xn such that for all j, 0 ≤ j < n, σT ′(xj) = σT ′full

(xj), and xj ∈ T ′ whenever
xj ∈ word(T ′) (as observed, only sequences emitted from leaves of T ′, and transient states,
are relevant to the discussion). Let u be a node of T ′, and let u′ be the prefix of u of length

2 We recall that, in full generality, transient states correspond to all the words of the GCT except for the

leaves, and not just to those words corresponding to nodes.

3.2. An efficient algorithm: complexity analysis 41

|u′| = |parT ′(u)|+ 1 (or u′ = λ if u = λ). We associate to u a natural code cost defined by

Cu(T ′) =

{
α(|u| − |u′|) + 1 + (α− deg(u)) if u is internal,
1 if u is a leaf.

(3.6)

The term α(|u| − |u′|) gives the number of nodes of T ′full in the set

{va : u′ � v ≺ u, a ∈ {λ} ∪ A} \ {u} ,

i.e., nodes that are descendants of u′ but not of u. These nodes are added to T ′full in place of
the possibly composite edge parT ′(u) −→ u to make T ′full a full tree. Notice that, since all
incoming edges of leaves are atomic in T ′, α(|u| − |u′|) is zero when u is a leaf. When u is
an internal node, the term (α− deg(u)) additionally gives the number of atomic children ua

of u in T ′full that are not words of T ′, i.e., the number of leaves added in T ′full as children of u
to make T ′full a full tree. Thus, the sum of Cu(T ′) over all nodes u of T ′ gives the number of
nodes in T ′full. Hence, by (3.2),

C(T ′full) =
∑
u∈T ′
Cu(T ′). (3.7)

We associate to the sub-tree rooted at u the cost KT ′(u) recursively defined by

KT ′(u) = Cu(T ′) +

{
δu logα+

∑
w∈chldT ′ (u)KT ′(w) if u is internal,

κ(xn, u) if u is a leaf,
(3.8)

where δu = 1 if u � x, and δu = 0 otherwise. Since all transient states selected by xj in
T ′ as j runs through 0 ≤ j < n are nodes of T ′, the sum of the term δu logα along all
internal nodes of T ′ accounts for all symbols coded in transient states. Thus, by (3.1), (3.3),
and (3.7) we have KT ′(λ) = L(T ′full, x

n). Thus, Equation (3.8) can be used as the basis of a
dynamic programming minimization procedure. Specifically, we associate to each node u of
the compact suffix tree ST(xn−1$) a cost defined by

K(u) = 1 + logα , if u is a leaf, (3.9)

and, for an internal node u,

K(u) = min

α(|u| − |u′|+ 1) + 1 +
∑

w∈chld
ST(xn−1$)

(u)

(K(w)− 1) , 1 + κ(xn, u)

 . (3.10)

Recall that in T ′(xn), the compacted version of the optimal context tree T (xn), all incoming
edges to leaves are atomic, for otherwise the description of T (xn) could be shortened without
affecting LKT

T (xn)(x
n). Hence, for a leaf u of ST(xn−1$) with u = vaw$, v = par

ST(xn−1$)
(u),

a ∈ A, and |w| > 0, the edge v aw−→ u must be shortened in the process of pruning ST(xn−1$)
to get T ′(xn), making u′ = va a leaf. Thus, (3.9) is consistent with (3.8) since Cu′(T ′) = 1,
and (3.4) yields κ(xn, u′) = κ(xn, u) = logα for only one symbol occurs in context u′ by the

42 3. Linear-time twice-universal coding of tree sources

definition of ST(xn−1$). For each internal node u of ST(xn−1$), we take in (3.10) the minimum
of the sum of the costs of the optimal sub-trees rooted at all its children, and the cost of making
u′ a leaf, where again we let u′ be the prefix of u of length |u′| = |par

ST(xn−1$)
(u)| + 1 (or

u′ = λ if u = λ). Notice that the term δu logα of (3.8) is incorporated into the summation
over all children in (3.10) since, due to the use of the special symbol $ in ST(xn−1$), we have
u$ ∈ chld

ST(xn−1$)
(u) in case u � x (therefore, u may have up to α + 1 children). Also

notice that the subtraction of 1 from K(w) in the summation accounts for the term −deg(u)
in (3.6).

A dynamic programming algorithm that minimizes K(λ), thus minimizing L(T ′full, x
n), is

now straightforward from (3.9) and (3.10). Equivalently, we can minimize K ′ = K−1, which
takes the simpler form

K ′(u) = logα , if u is a leaf, (3.11)

and, for an internal node u,

K ′(u) = min

α(|u| − |u′|+ 1) +
∑

w∈chld
ST(xn−1$)

(u)

K ′(w) , κ(xn, u)

 . (3.12)

Specifically, in a post-order traversal [37] of ST(xn−1$), we shorten incoming composite edges
of leaves of ST(xn−1$), and, for each internal node u, we evaluate (3.12) making u′ a leaf
in case the minimum is achieved by the second argument. The information required for the
pruning decisions at each node u consists of the children costs K ′(w), which have already been
computed at the time of visiting u, and by (3.4), the set of counts {n(a)

u (xn)}a∈A. Clearly,
these counts are obtained recursively as the sum of the corresponding counts over all children
of u, and can be collected in the same post-order traversal of ST(xn−1$). The recursion starts
from the leaves u$ of ST(xn−1$), for which the symbol a that follows $u in xn can be recorded
during the suffix tree construction and associated to the leaf.

Summarizing, the computational cost of finding T ′(xn), which for the purpose of coding
x is equivalent to T (xn), is given by the cost of the following operations:

(i) Building the (compact) suffix tree ST(xn−1$), and some associated data structures;

(ii) Pruning ST(xn−1$) in a post-order traversal, computing the costs K ′(u) for all nodes
u, and possible inserting new nodes as leaves of T ′(xn).

It is well known (see, e.g., [32]) that the computational cost of building ST(xn−1$) is O(n).
The adaptation of the generic suffix tree algorithms to building also some additional ad hoc
structures (e.g., associating an emitted symbol with each leaf of the tree) is straightforward
and does not affect the complexity. It is shown in [3, Theorem 2] that the computation
of each κ(xn, u) can be performed in registers of size O(log n) in a constant number of op-
erations, and that this precision is sufficient for preserving the validity of (3.5). Since, by
definition, ST(xn−1$) has n leaves, it has O(n) nodes when represented as a compact tree.
Thus, the whole pruning process takes O(n) operations, since the insertion of additional nodes
as possible leaves of T ′(xn) clearly does not affect the linearity.

3.2. An efficient algorithm: complexity analysis 43

3.2.2 Second pass: sequential encoding

After encoding T (xn) with a natural code (which can be specified recursively with a pre-
order traversal of the tree [37]), the encoder makes a second pass through the data that
involves, for each j, finding σT (xn)(xj) and arithmetic encoding xj+1 using the corresponding
KT probability assignment. As observed in [3, Corollary 1], even though |T (xn)| may be
significantly larger than |T ′(xn)| (since ST(xn−1$) is a compact tree), it is still O(n), for
otherwise T (xn) would not have emerged as the optimal context tree in (3.1) (think, e.g., of
the context tree {λ}, for which C({λ}) = 1 and LKT

{λ}(x
n) < n logα+ o(n)). Therefore, T (xn)

can be described in linear time. As for arithmetic coding once σT (xn)(xj) is determined, it is
shown in [82] that, again, performing a constant number of arithmetic operations per symbol
in registers of size O(log n) guarantees a precision that will not affect the validity of (3.5).
Thus, we focus on the determination of the state.

In [3], the BWT of $xn facilitates the transition between states in constant time. Alterna-
tively, notice that the algorithms that construct ST(xn−1$) in linear time can also maintain
pointers (so-called suffix links, see, e.g., [32]) between each leaf au$ of ST(xn−1$), and the leaf
u$, as suffixes are inserted in length order. If each leaf u$ is in turn linked to the correspond-
ing state σT (xn)(u), then each state transition can be done in constant time. Clearly, these
links can be created with an additional traversal of ST(xn−1$) in linear time. These methods,
however, require either the BWT of $xn, or the suffix tree ST(xn−1$), none of which are,
in principle, available to the decoder. Thus, we propose an alternative linear-time method,
based on the FSM closure of T ′(xn), that can be employed also at the decoding side.

Specifically, before starting the second pass, the encoder builds an FSM closure T ′F (xn)
of T ′(xn) (without loss of generality, T ′suf(x

n)), using the algorithm MakeFSM of Section 2.4.3

For every permanent state w of T ′F (xn), and every symbol c ∈ A, the encoder then has access
to the next-state transition f(w, c) via the mapping Transitions[w] constructed during the
execution of MakeFSM (see Section 2.4). This mapping also provides the state transitions
for all transient states that are associated with nodes. Since, by the definition of T ′(xn),
all the transient states that are actually visited with xn are indeed associated with nodes, it
follows that, starting from the root (which is used as the context of x1), the encoder can make
each transition between states of T ′F (xn) in constant time. In addition, the link Origin[w]

provides access to the state of T ′(xn) that is being refined by w, which accumulates the
relevant statistics for the KT probability assignment (loop starting at Step 8 in Figure 3.1).
These statistics are possibly shared with other states of T ′F (xn). The following corollary to
Theorem 2.9 establishes the linear time complexity of the proposed encoder.

3.1. Corollary. MakeFSM(T ′(xn)) runs in time O(n).

Proof. By Theorem 2.9, it suffices to prove that both the sum of the lengths of the strings
that label edges of T ′(xn) and the number of nodes of T ′F (xn) are O(n). The former is clearly

3 Notice that while only states associated with leaves actually occur in the sequence of permanent states of

T ′(xn) determined by xn, this is no longer the case with T ′F (xn), for which we take full advantage of the GCT

formalism.

44 3. Linear-time twice-universal coding of tree sources

upper-bounded by |T (xn)|, which was already observed to be O(n) at the beginning of Sec-
tion 3.2.2. As for T ′F (xn), let T ′′(xn) denote the GCT obtained by deleting from T ′(xn) those
nodes that are not in ST(xn−1$) (and the corresponding incoming edges). By the definition
of a (compact) suffix tree, u ∈ ST(xn−1$) if and only if either u is a suffix of xn−1$, or there
exist a, b ∈ A ∪ {$}, a 6= b, such that both ua and ub are sub-strings of xn−1$. Thus, every
suffix of a node of ST(xn−1$) is also a node of ST(xn−1$). Since T ′′(xn) ⊆ ST(xn−1$), and
T ′′F (xn) is formed by adding as nodes all the suffixes of the nodes of T ′′(xn), it follows that
the added nodes are in ST(xn−1$), and therefore we also have T ′′F (xn) ⊆ ST(xn−1$). Conse-
quently, |T ′′F (xn)| = O(n). Now, in addition to the nodes of T ′′F (xn), T ′F (xn) includes all the
suffixes of the nodes of T ′(xn) that are not in ST(xn−1$). As observed in the description of the
pruning step in Section 3.2.1, these nodes can only be leaves of T ′(xn), and all corresponding
incoming edges must have length one. Thus, these leaves take the form wa, where w ∈ T ′′(xn)
(and, hence, w ∈ T ′′F (xn)) and a ∈ A. Thus, the corresponding suffixes take the form va,
where v ∈ T ′′F (xn), so that the number of additional nodes of T ′F (xn) cannot be larger than
α|T ′′F (xn)| = O(n). 2

3.2.3 Decoding

If the decoder had access to T ′(xn) as it starts scanning the compressed bit-stream, the
decoding stage could proceed in rather the same way as the encoding. That is, the decoder
could build an FSM closure of T ′(xn), T ′F (xn), and proceed to decode the symbols of xn

sequentially, using the statistics in T ′(xn) and efficiently transiting between states by means
of the FSM T ′F (xn). However, only T (xn) has been described and, as shown in [48], its FSM
closure might, in principle, have a super-linear number of nodes. Of course, a modified encoder
can describe T ′(xn) (by simply specifying, for every node of T (xn), whether it is also a node
of T ′(xn)), without affecting the validity of (3.5). This modified code is still twice-universal,
and a linear-time implementation of the decoder follows trivially from reversing some of the
operations at the encoder. However, it is not necessary to penalize the code length to preserve
linear time complexity. Next, we present a decoder that has access to T (xn) only, but requires
a more elaborate analysis.

Assume T (xn) 6= {λ} (for otherwise T ′(xn) would also be known), and let T̂ ′(xn) denote
the GCT obtained from T (xn) by deleting all the leaves, as well as nodes whose outgoing
degree after deleting the leaves is one. Clearly, T̂ ′full(x

n) ⊆ T (xn), and |T̂ ′(xn)| ≤ |T ′| for any
T ′ such that T ′full = T (xn). Thus, T̂ ′(xn) ⊆ T ′(xn). The decoder starts by building an FSM
closure T̂ ′F (xn) of T̂ ′(xn), which, by the proof of Corollary 3.1, can be done in linear time
(again, we assume T̂ ′F (xn) = T̂ ′suf(x

n)). Then, the key idea is to relate, for every i, 0 ≤ i < n,

the state ŝi
4
= σT̂ ′F (xn)(xi) to the state selected in the FSM closure of T (xn), si

4
= σTF (xn)(xi)

(again, TF (xn) = Tsuf(xn)), which is the state needed by the decoder, and to show that
the linkage between the two states can be executed without compromising the overall linear
complexity. Figure 3.2 illustrates some of the decoding operations. Figure 3.2(A) shows
a context tree T (xn), and the leaves (grayed) and internal nodes (dark) deleted to obtain
T̂ ′(xn). The latter GCT is shown in Figure 3.2(B), which also illustrates the relation between

3.2. An efficient algorithm: complexity analysis 45

ba

a

c

a

c

a

cb

b

b c

a

ab b cc

a c
b

1+is

is

ba c
a

a

b

b

b

1+iz

iz

ib

1+ib

1

1i1 b

1 b b c
+

++

=+

i

i

s

z

ix

ii ss ˆˆ 1 ==+ λ
)('ˆ)('ˆ n

F
n xTxT =)()(n

F
n xTxT =

(A) (B)

Figure 3.2: Decoding tree

ŝi and si. In this particular case, both T (xn) and T̂ ′(xn) are FSM.
We start by establishing a key connection between T̂ ′F (xn) and TF (xn).

3.2. Lemma. The following relations hold for T̂ ′F (xn) and TF (xn).

(i) If u ∈ T̂ ′F (xn) then ua ∈ TF (xn) for all a ∈ A.

(ii) If u ∈ word(T̂ ′F (xn)) and ua 6∈ word(T̂ ′F (xn)) for some a ∈ A, then ua is a leaf of
TF (xn).

Proof. If u ∈ T̂ ′F (xn), by construction of the closure, there exists a string v such that
vu ∈ T̂ ′(xn) and therefore vua ∈ T (xn) for all a ∈ A, thus ua ∈ TF (xn) for all a ∈ A.

If u ∈ word(T̂ ′F (xn)) then there exists a string y such that uy ∈ T̂ ′F (xn) and therefore
uya ∈ TF (xn). Since T (xn) is full, so is TF (xn) and uya ∈ TF (xn) implies ua ∈ TF (xn).
Let v ∈ A∗ uav ∈ TF (xn). By construction of the closure there exists w ∈ A∗ such
that wuav ∈ T (xn). If v 6= λ, wua ∈ word(T̂ ′(xn)), wuav′ ∈ T̂ ′(xn) for some v′ and
uav′ ∈ T̂ ′F (xn), a contradiction. 2

The relation between ŝi and si is given by Lemma 3.3 below, for which we remove the
symbols $ from transient states, and define zi such that ŝizi is the longest prefix of xi in
word(T̂ ′F (x)). Furthermore, define bi

4
= xi−|ŝizi| in case |ŝizi| < i, or bi = λ otherwise (these

definitions are illustrated in Figure 3.2).

3.3. Lemma. For every i, 0 ≤ i < n, we have si = ŝizibi.

46 3. Linear-time twice-universal coding of tree sources

Proof. Since TF (xn) is a full tree, it suffices to show that ŝizibi ∈ word(TF (x)), and
that either bi = λ, or ŝizibic 6∈ word(TF (x)) for any c ∈ A. To prove the first claim,
observe that, by definition, ŝizi ∈ word(T̂ ′F (x)), so that there exists a string y such that
ŝiziy ∈ T̂ ′F (xn). The claim follows from Lemma 3.2 by which ŝiziya ∈ TF (xn) for every
a ∈ A, and since TF (xn) is full, ŝizib ∈ TF (xn) for every b ∈ A. As for the second claim,
assume that ŝizibic ∈ word(TF (x)) for some c ∈ A. Since TF (xn) is full, this assump-
tion implies that ŝizibic ∈ TF (xn) for all c ∈ A, so that there exists a string v for which
vŝizibic ∈ T (xn). Thus, vŝizibi ∈ word(T̂ ′(xn)), implying that vŝizibiw ∈ T̂ ′(xn) for some
string w, and furthermore that ŝizibiw ∈ T̂ ′F (xn). Since, by definition, ŝizi is the longest
prefix of xi that is a word of T̂ ′F (xn), we must then have bi = λ. 2

Next, we show that, in fact, it is not necessary to revisit the decoded sequence for all
the symbols in zi in order to determine si. Observe that, by the FSM property of T̂ ′F (xn),
ŝi+1 � xi+1ŝi. Removing again the symbols $ from transient states, define ui+1 to be the
string satisfying xi+1ŝi = ŝi+1ui+1.

3.4. Lemma. If ŝi+1ui+1head(zi) ∈ word(T̂ ′F (x)), then zi+1 = ui+1zi.

Proof. By the definition of zi and ui, there exist sequences t and v such that

xi+1 = xi+1ŝizibit = ŝi+1zi+1v = ŝi+1ui+1zibit . (3.13)

Furthermore, by the assumption of the lemma and the definition of zi+1, we have ui+1head(zi) �
zi+1; we show that we also have zi+1 � ui+1zi. Otherwise, by (3.13) and the definition of
zi+1, ŝi+1ui+1zibi would be a word of T̂ ′F (xn) with bi 6= λ, implying the existence of a string
y such that ŝi+1ui+1zibiy ∈ T̂ ′F (xn). Thus, since T̂ ′F (xn) is FSM, ŝizibiy is also a node of
T̂ ′F (xn) by (3.13), so that ŝizibi ∈ word(T̂ ′F (x)), in contradiction with the definition of zi.
Now, if zi = λ, the proof is complete. If zi 6= λ, then we have zi+1 = ui+1z

′
i, where z′i is a

non-empty prefix of zi; define z′′i by zi = z′iz
′′
i . The proof is complete if we show that z′′i = λ.

Since ŝi+1zi+1 ∈ word(T̂ ′F (x)) by the definition of zi+1, there exists a string w such that
ŝi+1ui+1z

′
iw is a node of T̂ ′F (xn) and, by the FSM property of T̂ ′F (xn), so is ŝiz′iw. Moreover,

w 6= λ, for otherwise ŝiz′i would be a node of T̂ ′F (xn), and thus ŝi would not be the state at time
i. If z′′i 6= λ, we have head(w) 6= head(z′′i), for otherwise ŝi+1zi+1head(z′′i) ∈ word(T̂ ′F (x)),
contradicting the definition of zi+1. It follows that ŝiz′ihead(w) and ŝiz

′
ihead(z′′i) are two

different words in T̂ ′F (xn), making ŝiz′i a node, a contradiction. 2

Given ŝi, |ui|, and |zi−1| (starting with z0 = λ), we can recursively determine |zi| by checking
decoded symbols and descending T̂ ′F (xn), starting from ŝi, in the direction xi−|ŝi|, xi−|ŝi|−1,
· · · , xi−|ŝi|−|ui|−1. If, at some point, the concatenated string is not a word of T̂ ′F (xn), by
definition, we have determined |zi|. Otherwise, ŝiuihead(zi−1) ∈ word(T̂ ′F (x)), and, by
Lemma 3.4, |zi| = |ui| + |zi−1|. Thus, the determination of |zi| requires at most |ui| + 1
comparisons. Since |ui| = |ŝi−1| − |ŝi|+ 1, we need at most n comparisons along xn.

Now, given ŝi, |zi|, head(zi), and bi, it is easy to determine σT (xn)(xi) (which contains
the decoding statistics) in constant time per input symbol by defining an additional data

3.2. An efficient algorithm: complexity analysis 47

structure. Specifically, for every internal node u of T (xn) that is also a node of T̂ ′F (xn),
consider the set Au of symbols for which u has an edge of T̂ ′(xn) in their direction, and let
u(a) denote the edge of T̂ ′F (xn) in the direction of a ∈ Au. For every j, 1 ≤ j < |u(a)|, let
vu,a(j) denote the node of T (xn) obtained by concatenating j symbols of u(a) to u. A data
structure Jump[u], linking u with each vu,a(j), can be built in O(|T (xn)|) total time for all
relevant nodes, e.g., by initially setting up the data structure for the nodes of T̂ ′(xn), and then
updating it as edges of T̂ ′(xn) are split by MakeFSM. In addition, for a node w of T̂ ′F (xn) that
is not a node of T (xn), the initialization of Origin[w] in MakeFSM can readily be modified
so that it points to its ancestor in T (xn), rather to an ancestor in T̂ ′(xn). Equipped with the
data structures Jump[u], and based on Lemmas 3.3 and 3.4, we can determine σT (xn)(xi) for
zi 6= λ as follows:

• If ŝi is an internal node of T (xn) and head(zi) ∈ Aŝi , then ŝizi is given by vŝi,head(zi)(|zi|)
(by definition, |zi| < |ŝi(head(zi))|), and σT (xn)(xi) = si = ŝizibi (Lemma 3.3).

• If ŝi is an internal node of T (xn) and head(zi) 6∈ Aŝi , then σT (xn)(xi) = ŝihead(zi).

• If ŝi is a leaf of T (xn), then σT (xn)(xi) = ŝi.

• If ŝi is not a node of T (xn), then Origin[ŝi] points to σT (xn)(xi).

When zi = λ, σT (xn)(xi) = ŝi if ŝi is a node of T (xn), and Origin[ŝi] points to σT (xn)(xi)
otherwise.

The implementation of the semi-predictive approach to Context algorithm outlined in this
section is denoted SPContextFSM. The following theorem summarizes our discussion.

3.5. Theorem. SPContextFSM encodes and decodes any sequence xn in time O(n).

Remarks

(a) The SPContextFSM decoder does not explicitly obtain T ′(xn), the pruned GCT given
by the set of nodes of T (xn) that actually occurred as substrings of xn. Since, after
decoding xn, the decoder can determine T ′(xn), a plausible approach to linear-time
decoding would be to obtain T ′F (xn) adaptively, starting from T̂ ′F (xn) and adding the
missing nodes as new words of T (xn) are decoded. Thus, T̂ ′F (xn) would grow on the fly
“as needed.” We show in Section C.1 of Appendix C that such a procedure can indeed
be implemented in linear time without recourse to additional complex data structures
(e.g., Jump[u]). However, the description of SPContextFSM is simpler.

(b) SPContextFSM is presented as an application of the concept of FSM closure, solving the
open problem of linear-time decoding. In Section C.2 of Appendix C, we present yet
another solution to this problem, this time without recourse to the FSM closure. This
approach will typically require more storage space than SPContextFSM at the decoder.
The idea in this case is to extend T (xn) on the fly with the suffix tree of the string
decoded so far. To this end, the suffix tree of xi−1$ is built in an “anti-sequential”
manner as in [23], i.e., the suffix tree of xj$ is available at each step j, 0 < j < i.

This chapter contains material published in [49].

Chapter 4

Type classes of tree models

In this chapter, we characterize type classes of tree models. We recall that two strings, xn

and yn, belong to the same type class with respect to a tree model 〈T, pT 〉, if and only if they
are assigned equal probabilities regardless of the model parameter, i.e., for every value of the
conditional probability mass functions pT (·|·) associated to the states of T (with appropriate
conventions for the initial states of the process). It is not difficult to see that this condition
holds if and only if xn and yn have the same symbol counts n(a)

s (see Section 3.1), for all states
s of T , and all symbols a ∈ A. Thus, in the case of tree models, as in other cases of interest,
the notion of type defined in probabilistic terms admits a combinatorial characterization.
Notice that this characterization depends on the underlying context tree T , but not on the
model parameter.

We investigate both the size of type classes and the number of type classes induced by a
context tree. To obtain the exact size of a type class, we follow a graph theoretic approach
similar to the derivation of Whittle’s formula for FSMs in [34], establishing a one-to-one
correspondence between the set of strings in a type class and the set of Eulerian circuits in a
certain graph derived from the context tree. For general context trees, however, the problem
turns out to be far more involved than the FSM case, due to the lack of a next-state function.

An important property of type classes for FSM models is that their size behaves asymp-
totically as exp(nĤF (xn)) for every sequence xn, where ĤF (xn) is the empirical entropy rate
of xn with respect to the given FSM, F , underlying the model. This property does not ex-
tend, in general, to tree models. For example, the empirical entropy rate of the sequence
xn = 001 001 · · · 001 with respect to the context tree T1 of Figure 4.1 is ĤT1(xn) = 2

3h(1
2)

where h is the binary entropy function. The factor h(1
2) in ĤT1(xn) arises from state 0, where

half of the occurring symbols are 0 and half are 1 (we write h(1
2) unevaluated to emphasize

this fact). On the other hand, in order to reach state si = 100, we must have si−2 = si−1 = 0.
Therefore, to preserve conditional counts, the state sequence must follow the fixed cycle
0→0→100→0→0→100→ · · · , and the type class of xn is just {xn}. Although this is an extreme
example, restrictions on state transitions such as the one in this example may, in general,
rule out many of the state sequences that could be obtained by picking the next symbol at
each state freely, according to the prescribed counts. Such freedom is already limited to some
extent in the FSM case, as expressed by the cofactor that multiplies the multinomial factors
in Whittle’s formula [86]. This cofactor, however, is polynomial in n, and thus negligible with
respect to the main factor of the formula. As shown in the example, the reduction may be
far more significant in the case of tree models, where the restrictions are more intricate.

In Section 4.2 we derive the mentioned exact formula for the size of the type class of
xn with respect to a given context tree, which generalizes Whittle’s formula. As mentioned,

50 4. Type classes of tree models

1

1

10

0

0
T1

A

B C

D

Figure 4.1: A context tree T1 over A = {0, 1}

the problem is also reduced in our case to one of counting Eulerian circuits in a directed
graph. Although the constructed graph contains some of the elements of the FSM closure,
it is different from it, and, in fact, it generally does not correspond to a conventional FSM
(in general, the type class of a sequence with respect to the FSM closure of a context tree is
smaller than the type class with respect to the context tree). The difficulty in the construction
stems precisely from the lack of a next-state function, and the loss of context occurring in the
state transition sequences of context trees.

In Section 4.3 we present an asymptotic upper bound for the expected logarithm of the
size of the type class of a string with respect to a tree model 〈T, pT 〉. Later, in Chapter 5,
we will use a coding argument to show that this bound is tight, in the sense that this upper
bound differs from a lower bound by O(1).

In Section 4.4, we study the number of type classes for sequences of length n induced by
a given context tree, and we estimate the number of classes tightly, up to a multiplicative
constant. In this case also, we generalize the known result for the FSM case, which is stated
in [83] and attributed to N. Alon.

Finally, in Section 4.5, we compare, for a tree model 〈T, pT 〉, the average size of the
type classes with respect to T and to its FSM closure Tsuf, and the number of type classes
induced by both context trees. We define the (FSM) over-refinement of T , κT , which depends
exclusively on the structure of the context tree T . When comparing the expected logarithm
of the size of the type classes in T and Tsuf of a random sequence, it turns out that the terms
of order logn differ by a factor of κT . We also show that there is, asymptotically, a factor of
nκT more type classes in Tsuf than in T .

The characterization of the type classes of tree models enables applications of these mod-
els in enumerative coding and universal simulation that we explore later in Chapter 5 and
Chapter 6, respectively.

4.1. Preliminaries 51

4.1 Preliminaries

We denote by I(T) the set of internal nodes of a tree T , and by depth(T) the depth of T ,
i.e., depth(T) = max{|u| : u ∈ T}. In this chapter, except when explicitly stated, we consider
a fixed context tree T . Thus, we omit the dependence on T from most of the notation we
introduce next. We will also assume that T is nontrivial, i.e., |T | > 1. Notice that for |T | = 1
the problem reduces to a memoryless setting, which is well understood [15]. For simplicity we
fix an initial state s0 of maximal length, i.e., a leaf of maximal depth in T . Thus, a sequence
xn determines a state sequence s0(xn), s1(xn), · · · , sn(xn), defined as si(xn) = σT (s0x

i).
Notice that, by imposing maximal length on s0, and regarding xn as preceded by s0, we
can guarantee that all states si(xn) in the sequence are permanent. We then refer to the
permanent states of T simply as the states of T . In Appendix E we extend the results of
this chapter to the more general setting in which the initial conditions are determined by
transient states of the context tree. In this case, the exact formula for the size of a type class
is slightly modified, although the asymptotic behavior of the expected size of a type class and
the number of type classes remain the same.

We omit the argument xn of si, and of other objects of the form f(xn), when clear from
the context. A state si is itself a string; we use the notation (si)kj when indexing its symbols.
For a tree model 〈T, pT 〉 the set of CPMFs associated to the states of T define a probability
assignment P〈T,pT 〉(·) via (2.1). Specifically,

P〈T,pT 〉(λ) = 1; P〈T,pT 〉(x
n) =

n∏
i=1

pT (xi|si−1), n ≥ 1 . (4.1)

For each n ≥ 0, the assignment (4.1) defines a probability distribution on An. To avoid
confusion, we reserve the notation P〈T,pT 〉 {·} to refer to the probability of an event that
depends on a random sequence Xn ∈ An drawn with probability P〈T,pT 〉(·), where n will be

clear from the context. For example we write P〈T,pT 〉
{
n

(a)
s > 0

}
to denote the probability∑

xn:n
(a)
s (xn)>0

P〈T,pT 〉(x
n). Throughout we use capital letters to denote a random sequence

emitted by a tree source, e.g. Xn, and lowercase letters to denote specific sequences, e.g.
xn. We denote by E〈T,pT 〉

[
·
]

the expectation of a random variable with respect to P〈T,pT 〉(·).
From (4.1), we see that the type class of xn with respect to T , denoted T (T, xn) or simply
T (xn) when T is clear from the context, takes the form

T (T, xn) =
{
yn ∈ An : n(a)

s (yn) = n(a)
s (xn) ∀s ∈ ST , a ∈ A

}
,

where, with a slight abuse on the notation of Chapter 3, here we let n(a)
s (xn) denote the

number of occurrences of a in state s in xn, regarding xn as preceded by s0 for the purpose of
selecting states. We refer to T (T, xn) as the T -class of xn, as a shorthand for the type class
of xn with respect to T .

The state transition matrix of xn, denoted N(xn), is an |ST |×|ST | matrix, with row and
column index set ST , and entries

Ns,t = |{i : 1 ≤ i ≤ n, si−1 = s, si = t}|, s, t ∈ ST ,

52 4. Type classes of tree models

namely, Ns,t is the number of transitions from s to t in the state sequence of xn. For a matrix
M we define Mi∗ =

∑
jMi,j and M∗j =

∑
iMi,j . Thus, Ns∗ is ns, the number of symbols in

xn that occur in state s, and N∗s is the total number of times s is transitioned into in the
state sequence of xn.

Since in the state sequence of any given string, xn, every state is entered as many times
as it is exited, with the only exception of the initial and final states, then N satisfies the flow
conservation equations, i.e.,

N∗s(xn) + δs,s0(xn) = Ns∗(xn) + δs,sn(xn) , for all s ∈ ST ,

where we use the Kronecker delta notation: δu,v = 1 when u = v, and zero otherwise. The
following lemma characterizes the support of N(xn).

4.1. Lemma. Let s, t be arbitrary states of T . There exists a string xn such that Ns,t(xn) > 0
if and only if s � tail(t) or tail(t) ≺ s.

Proof. Consider two consecutive states s = si−1(xn), t = si(xn) in the state sequence of
an arbitrary string xn. Then, we have t � xis0 = xixi−1s0, and, therefore, tail(t) � xi−1s0.
Since also s � xi−1s0, we must have s � tail(t) or tail(t) ≺ s. Thus, if Ns,t(xn) is nonzero,
then s and t must satisfy s � tail(t) or tail(t) ≺ s.

Suppose now that s � tail(t) and let xn be a string such that t ≺ xn. Then, we have sn = t

and, also, sn−1 = s, since s � tail(t) and tail(t) ≺ xn−1. Thus, we have Ns,t(xn) > 0. If, on
the other hand, tail(t) ≺ s, then we take xn such that head(t)s ≺ xn. Since tail(t) ≺ s, we
have t ≺ xn and, hence, sn = t. By the definition of xn we also have sn−1 = s and therefore
Ns,t(xn) > 0. 2

Objects NFS, (nFS)(a)
s , and TFS can be defined for arbitrary FSMs, in analogy to the

definitions of N , n(a)
s , and T for context trees above. In this case, the existence of a next-

state function implies directly that counting sequences in TFS(xn) is equivalent to counting
state sequences1 with the same initial state and transition counts as xn. This property is
essential in the various derivations of Whittle’s formula for FSMs [86, 6, 34, 35]. Later, we
will show that a correspondence between sequences in T (xn) and state transition counts exists
also for context trees. This connection can be stated in a simpler form if we do it for close-
ended type classes, where the close-ended type class of xn with respect to a context tree T ,
or simply the T -class∗ of xn, is defined as

T ∗(T, xn) = { yn ∈ T (T, xn) : sn(xn) = sn(yn)} .
1Special care must be taken when different symbols lead to the same state transition, which makes the

two counts differ in a binomial coefficient factor. For instance, suppose that a, b are two (and the only two)

different symbols such that an FSM in state s transitions to state t when either a or b occur. Given the state

sequence of xn, there are
((nFS)

(a)
s +(nFS)

(b)
s

(nFS)
(a)
s

)
ways of labeling the transitions s → t with (nFS)

(a)
s symbols a

and (nFS)
(b)
s symbols b, all of which give rise to strings in the same type class. Since both counts (nFS)

(a)
s and

(nFS)
(b)
s are known given the type class, this brings no difficulty in computing the size of the class. Notice that

in context trees, whether FSM or not, different symbols always lead to different states, and this case does not

arise.

4.1. Preliminaries 53

Notice that the above equality condition on the final states is always satisfied for sequences
in the same type class in FSMs, by the flow conservation equations and the existence of a
next-state function. Next, we argue that we incur no loss of generality if we confine our
attention to close-ended type classes. We start by showing the following relation between the
final states of any two sequences in the same T -class.

4.2. Lemma. Let T be a context tree and let xn, yn be sequences in the same T -class. If
sn−1(xn) and xn determine sn(xn), then we have sn(xn) = sn(yn). Otherwise, we must have
sn−1(xn) = sn−1(yn), and xn = yn.

Proof. We first show that if sn−1(xn) and xn determine sn(xn), i.e., if tail(sn(xn)) ∈ T , then
sn(yn) = sn(xn). Consider a state s = au, with a ∈ A, u ∈ A∗, such that u = tail(s) ∈ T . If
in the state sequence of an arbitrary string z we have si = s = au, then u � zi−1s0. Thus,
the symbol zi = a is emitted from a state si−1 of the form uv. Conversely, if symbol a is
emitted from a state si−1 of the form uv, then au � zis0, and therefore si = au = s. Hence,

N∗au(xn) =
∑
uv∈ST

n(a)
uv (xn) =

∑
uv∈ST

n(a)
uv (yn) = N∗au(yn) .

Also, by the flow conservation equations on the transition matrices, we have

N∗au(xn) = Nau∗(xn) + δau,sn(xn) − δau,s0
N∗au(yn) = Nau∗(yn) + δau,sn(yn) − δau,s0 .

Since the total number of symbol emitted from au in xn and yn is the same, Nau∗(xn) =
Nau∗(yn), and therefore δau,sn(xn) = δau,sn(yn), which proves the claim.

As a consequence of the claim above, if sn(xn) 6= sn(yn), we must have sn(xn) = auv with
a ∈ A, u ∈ ST , and v ∈ A+. Now, if in the state sequence of an arbitrary string z we have
si = auw for some w ∈ A+, then u � zi−1s0. Thus, the symbol zi = a is emitted from the
state u. Conversely, if symbol a is emitted from state si−1 = u, then au � zis0, and therefore
si must have the form auw with w ∈ A+. Hence,

n(a)
u (xn) =

∑
auw∈ST

N∗auw(xn)

=
∑

auw∈ST

Nauw∗(xn) + δauw,sn(xn) − δauw,s0 ,

and also,

n(a)
u (yn) =

∑
auw∈ST

Nauw∗(yn) + δauw,sn(yn) − δauw,s0 .

Since n(a)
u (yn) = n

(a)
u (xn), and the total number of symbols emitted from auw in xn and yn

is the same, we have, ∑
auw∈ST

δauw,sn(yn) =
∑

auw∈ST

δauw,sn(xn) = 1 .

54 4. Type classes of tree models

We conclude that the final state of yn has the form auw. Thus, sn−1(xn) = sn−1(yn) = u,
and also xn = yn = a, as claimed. 2

The following corollary to Lemma 4.2 connects T ∗(xn) with T (xn).

4.3. Corollary. For a context tree T and a sequence xn, we have T (xn) = T ∗(xn) if
sn−1(xn) and xn determine sn(xn), and T (xn) = {yn−1xn : yn−1 ∈ T ∗(xn−1)} otherwise.

Proof. If sn−1(xn) and xn determine sn(xn), then T (xn) = T ∗(xn) by Lemma 4.2 and
the definition of T ∗(xn). Suppose now that sn−1(xn) and xn do not determine sn(xn), and
consider the subsequence xn−1. For all states s and all symbols a, we have

n(a)
s (xn−1) = n(a)

s (xn)− δs,sn−1(xn)δa,xn .

Similarly, for an arbitrary string zn ∈ T (xn), we have

n(a)
s (zn−1) = n(a)

s (zn)− δs,sn−1(zn)δa,zn .

Since we must have sn−1(zn) = sn−1(xn) and zn = xn by Lemma 4.2, we conclude that
zn−1 ∈ T ∗(xn−1). Thus, the string zn belongs to the set {yn−1xn : yn−1 ∈ T ∗(xn−1)}.
Conversely, if we append the symbol xn to the end of a string yn−1 ∈ T ∗(xn−1), we get

n(a)
s (yn−1xn) = n(a)

s (yn−1) + δs,sn−1(yn−1)δa,xn , for all s ∈ ST , a ∈ A .

Since n(a)
s (yn−1) = n

(a)
s (xn−1) and sn−1(yn−1) = sn−1(xn−1) by the definition of T ∗(xn−1),

we conclude that n(a)
s (yn−1xn) = n

(a)
s (xn) for all states s and all symbols a, and, therefore,

yn−1xn ∈ T (xn). 2

Based on Corollary 4.3, we now show that if an enumeration scheme2 for T -classes∗ is
available, we can use it to implement an enumeration scheme for T -classes. Suppose we are
given an enumeration scheme for T -classes∗ of any length and let g∗(xn) be the index assigned
to xn within T ∗(xn) by this scheme. We can associate to each sequence xn an index within
T (xn), g(xn), as follows: if tail(sn(xn)) ∈ T , we take g(xn) = g∗(xn), otherwise, we take
g(xn) = g∗(xn−1). Notice that, by Corollary 4.3, in the former case we have T (xn) = T ∗(xn)
since sn is determined by sn−1(xn) and xn. In the latter case, sn is not determined by sn−1(xn)
and xn, and, again by Corollary 4.3, T (xn) is obtained from T ∗(xn−1) by appending the sym-
bol xn to the end of each sequence of T ∗(xn−1). Therefore, in this case, T (xn) and T ∗(xn−1)
are the same size. Thus, the scheme above assigns indexes in the range 0 · · · |T (xn)| − 1 and
covers all integers in this interval as xn varies in a type class. The following lemma shows
that the problem of enumerating sequences in T (xn) is solved by the above construction of
g(xn) as soon as we know how to enumerate sequences in T ∗(xn).

2By enumeration we mean any one-to-one mapping between sequences in T ∗(xn) and indexes in the range

0 · · · |T ∗(xn)|−1. We will be interested in algorithmic implementations of the mapping with time and memory

complexity that are polynomial in n (the size of T ∗(xn) is in general exponential in n).

4.1. Preliminaries 55

4.4. Lemma. Given the T -class of xn together with the index g(xn), we can recover xn by
computing a single evaluation of the inverse function of g∗ and, additionally, performing O(1)
operations on registers of length O(n).

Proof. We will give a sequence of O(1) operations required to determine the argument for
an invocation of the inverse function of g∗ and using this invocation to obtain xn.

If the (as yet unknown) final state of xn is determined by sn−1(xn) and xn, then sn(xn)
is of the form sn(xn) = au with a ∈ A and u ∈ T . For each state au of this form we can
determine wether sn(xn) = au by means of the flow conservation equations. Specifically, we
can compute the number of entries to state au as

∑
uv∈ST n

(a)
uv , and the number of exits from

au as
∑

b∈A n
(b)
au . If we find the final state to be of the form sn(xn) = au with a ∈ A and

u ∈ T , we then get xn by applying the inverse function of g∗ to the T -class∗ determined by
the given T -class and the found final state. Otherwise, the final state of xn is not determined
by sn−1(xn) and xn, and, therefore, it must be of the form sn(xn) = auv with a ∈ A, u ∈ ST ,
and v ∈ A+.

For each internal node au of T with u ∈ ST we can determine wether the final state sn(xn)
is of the form sn(xn) = auv by applying the flow conservation equations to the states in the
set

W = {auv : v ∈ A∗, auv ∈ ST } .

Specifically, we compare the number of entries to states in W with the number of exits from
states in W . The former can be computed as n(a)

u , and the latter as
∑

s∈W
∑

b∈A n
(b)
s . If we

find that
n(a)
u +

∑
s∈W

δw,s0 6=
∑
s∈W

∑
b∈A

n(b)
s ,

then sn(xn) belongs to W by the flow conservation equations. We can then determine
T ∗(xn−1) from T (xn) by decrementing n(a)

u by one, and letting u be the final state of xn−1.
After recovering xn−1 from its index within T ∗(xn−1) applying the inverse function of g∗, we
get xn by appending the symbol a to the end of xn−1. 2

In view of Corollary 4.3 and by Lemma 4.4, in the sequel we focus on the enumeration
of T ∗(xn) rather than T (xn). Lemma 4.5 below establishes a fundamental relation between
sequences in T ∗(xn) and state transition counts for arbitrary context trees. This result is
well known for FSMs and, as mentioned, it is essential in several derivations of Whittle’s
formula [86, 6, 34, 35].

4.5. Lemma. For sequences xn, yn ∈ An, and a context tree T , we have yn ∈ T ∗(xn) if and
only if N(yn) = N(xn).

Proof. Clearly, since a state transition si−1 → si uniquely determines the symbol xi =
head(si) that occurs in state si−1, the equality N(yn) = N(xn) implies that yn ∈ T (xn).
Moreover, by the flow conservation equations, the final state of a sequence is uniquely deter-
mined by the initial state s0 and the state transition matrix. Thus, if N(yn) = N(xn), then
we must have sn(yn) = sn(xn) and therefore yn ∈ T ∗(xn).

56 4. Type classes of tree models

Suppose now that yn ∈ T ∗(xn). By Lemma 4.1, we only need to show that Ns,t(yn) =
Ns,t(xn) for all s, t ∈ ST such that s � tail(t) or tail(t) ≺ s. Consider first the case tail(t) ≺ s,
i.e., t = au and s = uv with a ∈ A, u ∈ A∗, and v ∈ A+. Since the occurrence of symbol a
in state uv uniquely determines the next state au, we have,

Nuv,au(xn) = n(a)
uv (xn) = n(a)

uv (yn) = Nuv,au(yn) .

Consider now the case s � tail(t), i.e., s = u and t = auv with a ∈ A, and u, v ∈ A∗.
Since σT (uv) = u, state auv can only be reached via state u. Hence, Nu,auv(xn) = N∗auv(xn),
and by the flow conservation equations on the transition matrices, we have,

Nu,auv(xn) = Nauv∗(xn) + δauv,sn(xn) − δauv,s0 .

Now, since yn ∈ T ∗(xn), the total number of symbols emitted from auv in xn and yn is the
same, and also δauv,sn(xn) = δauv,sn(yn). Thus, we have

Nu,auv(xn) = Nauv∗(yn) + δauv,sn(yn) − δauv,s0 . (4.2)

By the flow conservation equations, the right hand side of (4.2) equals N∗auv(yn). Thus, we get
Nu,auv(xn) = N∗auv(yn), and the proof is completed by recalling that N∗auv(yn) = Nu,auv(yn),
since state auv can only be reached via state u. 2

Unfortunately, Lemma 4.5 does not allow an enumeration of T ∗(xn) by enumerating state
sequences with transition counts compatible with N(xn). Unlike in the FSM case, some such
state sequences may not correspond to any symbol sequence.

4.6. Example. Consider the context tree of Figure 4.1, where, for clarity, we use the labels
A,B,C,D in lieu of 0, 100, 101, 11, respectively. The sequence xn = 001101, with initial state
B, defines a state sequence BAABDAC (see Figure 4.2(N)), which, taking A,B,C,D as the
order for rows and columns, yields the transition matrix

N(xn) =

 1 1 1 0
1 0 0 1
0 0 0 0
1 0 0 0

 (4.3)

The state sequence BABDAAC is compatible with N(xn), but it does not correspond to
any symbol sequence, since the state sequence BA can only be followed by states A or C,
even though transitions from A to B may be valid (and required) elsewhere in the sequence.
The difficulty in determining the type class size for context trees lies in accounting for these
restrictions on state transition sequences, which stems from the possible loss of context in
some of the states.

To derive some of the main results in the remainder of this chapter, we rely on notions
from graph theory, which we define next, following, loosely, reference [5]. A (directed) graph
is a pair G = (V,E) where V is a finite set of vertices and E is a multi-set of edges, which
are pairs in V×V . Thus, we allow multiple parallel, distinguishable, directed edges between

4.2. The size of a type class 57

the same pair of nodes; when the multiplicity of every edge in G is at most one, we refer
to G as a 1-graph. We call u the source of e = (u, v), and v its destination. Both u and v

are called endpoints of e. The incidence matrix of G is a |V |×|V | matrix M , with rows and
columns indexed by elements of V , and where Mu,v is the multiplicity of (u, v) in E. A path
is a sequence of edges e1, e2 · · · em, where the destination of ei equals the source of ei+1. A
path is closed if it starts and ends at the same vertex and it is simple if ei 6= ej for i 6= j

(more than one of the distinguishable copies of an edge may occur in the path, but no copy
may occur more than once). A circuit is a closed simple path. A path is called Eulerian
when it is simple and it exhausts the multi-set of edges of the graph. An unlabeled path is an
equivalence class in the equivalence relation on paths induced by considering all the copies
of an edge as equivalent (indistinguishable). We denote an unlabeled path by a sequence of
vertices. An unlabeled path is called Eulerian if it is the equivalence class of an Eulerian
path.

4.2 The size of a type class

In the following definitions we present some basic components of the construction that leads
to a precise formula for |T ∗(xn)|. Consider a state s ∈ ST with |s| = r. By our assumption
of T being nontrivial we have r > 0. We define

`s = max { j : ∀i, 1 ≤ i ≤ j, ∃s′ ∈ ST s.t. s′ � (s)ri } . (4.4)

In other words, `s is the smallest integer such that the suffix (s)r`s+1 is an internal node of T .
Since (s)r1 = s ∈ ST , clearly `s ≥ 1. Let µi(s) = (s)r`s−i+1, i.e., we decompose s as

s = (s)`s−i1 µi(s), 1 ≤ i ≤ `s . (4.5)

For 1 ≤ i ≤ `s let νi(s) be the unique state in ST such that νi(s) � µi(s) (such a state exists
by the definition of `s). Clearly, ν1(s) · · · ν`s(s) = s is a forced state sequence that must be
followed to reach s. Moreover, ν1(s) · · · ν`s(s) is the longest forced state sequence that ends
at s, since by the definition of `s, we know that tail(µ1(s)) is an internal node of T . Indeed,
for 1 ≤ i ≤ `s we get, from (4.4),

tail(µi(s)) ∈ I(T) iff i = 1 . (4.6)

If a state s′ appears in the sequence ν1(s) · · · ν`s(s), its forced state sequence is a subse-
quence of ν1(s) · · · ν`s(s). More specifically, we show the relations of Lemma 4.7 below.

4.7. Lemma. Let s, s′ ∈ ST , 1 ≤ j ≤ `s, and 1 ≤ i ≤ `s′.

(i) If s′ � µj(s), then 1 ≤ i+ j − `s′ ≤ `s. In particular with i = 1 we get j ≥ `s′ .

(ii) If s′ = νj(s), then νi(s′) = νi+j−`s′ (s) .

(iii) If s′ = µj(s), then `s′ = j, and µi(s′) = µi(s) .

58 4. Type classes of tree models

Proof. The fact that i+ j− `s′ ≤ `s follows directly from the assumptions since i+ j− `s′ ≤
`s′ + `s− `s′ = `s. Thus, in order to show Part (i), we only need to prove that 1 ≤ i+ j − `s′ .
We have from (4.5) that s = (s)`s−j1 µj(s), which, when s′ � µj(s), yields

s = (s)`s−j1 s′z, for some z ∈ A∗ , (4.7)

where z = λ if s′ = µj(s).
We claim that for all h such that 1 ≤ h ≤ `s + `s′ − j, there exists a state v ∈ ST such

that v � (s)rh where r = |s|. If 1 ≤ h ≤ `s − j, we know from the definition of `s that there
exists a state v ∈ ST , such that v � (s)rh. On the other hand, for `s − j < h ≤ `s + `s′ − j,
we have 1 ≤ h − `s + j ≤ `s′ . Hence, there exists a state v ∈ ST , such that v � (s′)r

′
h−`s+j ,

where r′ = |s′|. Since h > `s − j, we also have by (4.7) that (s′)r
′
h−`s+j = (s)r

′
h . Thus,

v � (s)r
′
h � (s)rh. We conclude that for all 1 ≤ h ≤ `s + `s′ − j, there exists a state v ∈ ST ,

such that v � (s)rh as claimed. By the definition of `s, we then have, `s + `s′ − j ≤ `s. Thus,
j ≥ `s′ , and therefore i+ j − `s′ ≥ 1 as claimed in Part (i).

Now, the assumption s′ � µj(s) of Part (i) is fulfilled in both Part (iii) and Part (ii).
Thus, in any case, (4.7) is valid, and (4.5) applied to s′ gives,

s = (s)`s−j1 (s′)`s′−i1 µi(s′)z

= (s)`s−(i+j−`s′)
1 µi(s′)z ,

with z = λ in the case of Part (iii). By Part (i), we can also apply (4.5) to s with (i+ j− `s′)
in the role of i, to obtain

s = (s)`s−(i+j−`s′)
1 µi+j−`s′ (s) .

Hence, µi(s′)z = µi+j−`s′ (s). The proof of (ii) is completed by noting that the strings µi(s′),
and µi+j−`s′ (s), which are by definition sufficiently long to select a state in the context tree,
must select the same state. In the case of (iii), we have z = λ, which yields µi(s′) = µi+j−`s′ (s).
In particular for i = 1, we get from (4.6) that also 1 + j − `s′ = 1. Thus, `s′ = j, and
µi(s′) = µi(s) as claimed. 2

We define the set of pseudo-states of T as

U = {µi(s) : s ∈ ST , 1 ≤ i ≤ `s}.

Since µ`s(s) = s, we have ST ⊆ U . The sets of descendants and proper descendants of u ∈ A∗

are defined, respectively, as

Λ(u) = {u′ ∈ U : u � u′}, and Λ̄(u) = Λ(u) \ {u} .

For a string u = sz with s ∈ ST and z ∈ A+ (i.e., u 6∈ T), the parent of u, denoted ρ(u), is
defined as the longest string v ∈ U such that u is a proper descendant of v. In the application
of the definitions of parent and descendants the string u will be, in most cases, a pseudo-state
of T . These general definitions, however, will be occasionally more convenient.

4.2. The size of a type class 59

4.8. Example. In T1 of Figure 4.1, state s = 100 has `s = 3, µ1(s) = 0, µ2(s) = 00,
µ3(s) = 100 and ν1(s) = 0, ν2(s) = 0, ν3(s) = 100. State t = 101 has `t = 2, µ1(t) = 01,
µ2(t) = 101 and ν1(t) = 0, ν2(t) = 101. We have U = ST ∪ {00, 01}, and state 0 is the parent
of its proper descendants 00 and 01.

In much the same way that every sequence, xn, determines a state sequence, xn will also
determine a unique pseudo-state sequence over U . The pseudo-states in U \ ST will provide
enough of the context lost by their parents to make counting sequences in T ∗(xn) equiv-
alent to counting pseudo-state sequences that are consistent with a pseudo-state transition
matrix, F (xn).

In the pseudo-state sequence of xn, every state s will be reached via a sequence of tran-
sitions µ1(s) · · ·µ`s(s), which we call the forced pseudo-state sequence of s. The entry point
for this forced pseudo-state sequence, µ1(s), will provide the minimally necessary context
to reach s, guaranteeing that every transition in the forced pseudo-state sequence is valid
(i.e., corresponds to a symbol sequence) independently of previous transitions. Thus, it will
be possible to permute transitions when enumerating T ∗(xn), without generating invalid se-
quences (see Example 4.9 below). To maintain the mentioned minimally necessary context,
the pseudo-state sequence of xn may contain transitions that “drop” context. These transi-
tions will not be associated with any symbol of xn and, thus, the pseudo-state sequence may
be longer than n.

4.9. Example. The sequence xn = 001101 of Example 4.6, which gives the state sequence
BAABDAC, would yield a pseudo-state sequence

γ = B→01 λ→A→00→B→D→01→C ,

where λ represents a context-dropping transition. Notice that in γ the state B is preceded
by 00, which in turn is preceded by A. This pseudo-state sequence, A→00→B, is associated
to the emission of the string 01 starting from A, which causes the state sequence AAB.
Thus, no permutation of the pseudo-state transitions of γ generates the invalid sequence
BAB mentioned in Example 4.6. Other permutations of pseudo-state transitions, however,
give valid strings in the type class of xn. For example, the sequence yn = 100101 is obtained
by the following permutation of the pseudo-state transitions of γ

γ′ = B→D→01 λ→A→00→B→01→C .

Notice that the pseudo-state 01 provides the minimally necessary context to uniquely deter-
mine the next state C when symbol 1 occurs, as in the last transition of γ. On the other hand,
the occurrence of symbol 0 in state A or in any of its descendant pseudo-states, 00 and 01,
will lead to pseudo-state 00. Thus, in this case, the pseudo-state 01 bears an unnecessarily
long context, which is dropped in the transition labeled λ in γ and γ′.

For the sequence xn in the above example, the matrix F , with rows and columns indexed

60 4. Type classes of tree models

by U = {A,B,C,D, 00, 01} in this order, would be given by

F (xn) =

0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 1 0 0 0

 . (4.8)

The general construction of the matrix F (xn) is described in the sequel. The idea resembles
the construction of Tsuf, the FSM closure of T (see Section 2.3.2), where all the suffixes of
strings in ST are added to T . This maps all the transitions from problematic states to
new, deeper states, ensuring unambiguous next-state determination from every state with
every symbol. However, for some symbols, the deeper state in the FSM closure may provide
unneeded extra context. For example, the FSM closure of the context tree of Figure 4.1 would
add the states 00 and 01, which are necessary to allow next-state determination if a symbol 1
occurs in their context, but not when the symbol is 0. In general, this excessive context may
cause undercounting of T ∗(xn). Therefore, in general, F (xn) will not be the state transition
matrix of xn with respect to Tsuf.

We will interpret F (xn) as the incidence matrix of a pseudo-state transition graph, GF (xn) =
(U,Eµ). Thus, a pseudo-state sequence compatible with F (xn) can be regarded as an Eu-
lerian unlabeled path in GF (xn), and we will count sequences in T ∗(xn) by counting such
Eulerian unlabeled paths. Thus, we will think of each pair of consecutive pseudo-states in
an unlabeled path in GF (xn) as a “transition” in a pseudo-state sequence. We also say that
a graph with incidence matrix N(xn) is a state transition graph of xn, and we denote it by
GN (xn). Whittle’s formula for FSMs was re-derived in [34] by counting Eulerian unlabeled
path in GN (xn). As we observed in Example 4.6, however, for an arbitrary context tree, some
of the state sequences associated to Eulerian unlabeled path in GN (xn) may not correspond
to any sequence of symbols.

The construction of F (xn) is described next through a sequence of transformations applied
to matrices. We start from N(xn) and calculate the intermediate matrices K(xn), D(xn),
and B(xn), which we will define, to finally obtain F (xn). This construction may be regarded
as a sequence of transformations applied to graphs, starting from GN (xn) and ending with
the pseudo-state transition graph, GF (xn). Thus, we will interpret each of the matrices K,
D, and B as the incidence matrix of a graph, which we denote GK(xn), GD(xn), and GB(xn),
respectively. Under this graph interpretation, each of the transformations that we apply to
a matrix in the construction of F (xn) may be regarded as the redirection of some edges
and eventually the addition of new edges to the corresponding graph. These edges, in turn,
are interpreted as pseudo-state transitions when we follow a path. In particular, the state
sequence of xn, s0 · · · sn, forms an Eulerian unlabeled path in GN (xn), γ, and taking any path
in the equivalence class of γ, i.e., fixing the order in which the edges are traversed, we can
think of a redirection of an edge as a redirection of one of the transitions in the state sequence
of xn. We will adopt this kind of interpretation in some of the examples that illustrate the
construction of F (xn).

Let ∆̃+(s), ∆̃−(s) and Θ̃(s) be integer matrices of dimensions |U |×|U |, with rows and

4.2. The size of a type class 61

D

1

1

0

A

B C
4

5
2

3 6

D

1

1

0

A

B C
4

52

3

6

(N) (K)

D

1

1

0

A

B C
4

52

3

6

(D)

D

1

1

0

A

B C
4

52

3

6

(F)

1.5

Figure 4.2: (N) State sequence of xn = 001101 in GN (xn) super-unposed on the tree of Figure 4.1;

(K) the same transitions after addition of pseudo-states and redirection in GK(xn); (D) the same

transitions after redirection in GD(xn); (F) addition of transitions from GB(xn) to obtain GF (xn).
Transitions affected in each case are highlighted.

columns indexed by elements of U , and defined, for u, v ∈ U , by

∆̃+(s)u,v = |{ t : 1 ≤ t < `s, µt(s) = u, µt+1(s) = v }| ,
∆̃−(s)u,v = |{ t : 1 ≤ t < `s, νt(s) = u, νt+1(s) = v }| ,
Θ̃(s) = ∆̃+(s)− ∆̃−(s) .

Taking Θ̃(s) as a correction to be added to the incidence matrix of a graph, we can interpret
the correction as replacing edges of the form νi(s)→νi+1(s), which correspond to forced state
sequences, with edges of the form µi(s)→µi+1(s) between elements of U , which correspond
to forced pseudo-state sequences. Such substitution is expressed in Θ̃(s) by incrementing
the entry (µi(s), µi+1(s)), and decrementing the entry (νi(s), νi+1(s)) by means of ∆̃+(s) and
∆̃−(s), respectively.

To apply the outlined corrections, we first extend the state transition matrix N to a matrix

62 4. Type classes of tree models

N (µ) of dimensions |U |×|U |, by appending all-zero rows and all-zero columns. We define

Θ(s) = Θ̃(s)−
`s−1∑
t=1

Θ(νt(s)) , (4.9)

and
K(xn) = N (µ)(xn) +

∑
s∈ST

N
(µ)
∗s (xn)Θ(s) . (4.10)

The recursion in (4.9) is well defined, since νt(s) is strictly shorter than s. The term
−
∑`s−1

t=1 Θ(νt(s)) compensates for overcounts in (4.10), and ensures that every forced transi-
tion in the state sequence of xn is taken care of by one and only one state, namely, the last
state in the sequence that forces that transition. More precisely, we define the forced sequence
parsing of xn, J(xn), as the set of positions j in the state sequence of xn such that sj→sj+1

is not a forced transition of any subsequent state. Specifically, we let t0 < t1 < · · · < tr be
the indexes in

J = {ti} = {j : 0 ≤ j ≤ n, j ≤ h− `sh for all h > j, h ≤ n} .

For 0 ≤ j ≤ n we define ~ = min{h ∈ J : h ≥ j}. Notice that n ∈ J by definition, and
therefore ~ is well defined. As we shall prove later on, when j is not itself in J , ~ gives the
position of the last state that forces the transition sj→sj+1. The index j∆ = j − ~+ `s~ gives
the position of sj in the forced state sequence ν1(s~) · · · ν`s~ (s~).

4.10. Example. The state sequence BAABDAC of the string xn = 001101 of Example 4.6,
is illustrated in Figure 4.2(N). The transitions labeled 2 and 3 in Figure 4.2(N), namely,
s1 → s2 and s2 → s3, are forced transitions of the state s3 = B. Similarly, the transition
labeled 6 in Figure 4.2(N), namely, s5 → s6, is a forced transition of state s6 = C. Thus, we
have J = {0, 3, 4, 6}. For j = 1 we have ~ = 3 and j∆ = 1, while for j = 2 we also have ~ = 3
but j∆ = 2. In the graph GN (xn), the edges corresponding to the forced state sequences of s3

and s6 are replaced in GK(xn) by edges corresponding to the forced pseudo-state sequences
of s3 and s6, respectively, as shown in Figure 4.2(K).

Notice that the sources of possible illegal state sequences are transitions of the form
sj→sj+1, with sj+1 = asjv for some v ∈ A+, which may occur at indexes j 6∈ J . All edges
of the form (sj , sj+1) in GN corresponding to such transitions have been replaced in GK by
edges of the form sjw→asjw, with sjw = µi(s~), and asjw = µi+1(s~). In the replacing edge,
the source vertex has enough context to guarantee that the corresponding transition is valid.

In an unlabeled path over GK , every state with `s > 1 is accessed via its forced pseudo-
state sequence µ1(s) · · ·µ`s(s). However, edges corresponding to state transitions that do not
belong to a forced state sequence (and therefore lose context by the definition of `s), are not
redirected in GK . This is the case, for example, of transitions 1, 4, and 5 in Figure 4.2(N)
that remain the same in Figure 4.2(K). As a consequence, entry point pseudo-states of the
form µ1(s) with s ∈ ST do not have incoming edges in GK except, possibly, if µ1(s) ∈ ST
(see, e.g., pseudo-state 01 in Figure 4.2(K), where we have 01 = µ1(s) for s = C). The next
adjustment redirects these edges associated to context-losing transitions.

4.2. The size of a type class 63

For u ∈ ST , a ∈ A such that au is not an internal node of T , let τ(u, a) denote the longest
prefix of au in U . Let 1i,j denote a |U |×|U | matrix valued 1 in entry i, j, and zero everywhere
else. For av ∈ ST , we define the |U |×|U | matrix d(u, av) = 1u,τ(u,a)−1u,av if v�u, or zero
otherwise. The matrix d(u, av) effects the redirection of an edge associated to the transition
caused by a in state u to the new destination τ(u, a), which preserves as much context as
possible. Thus, we define

D(xn) = K(xn) +
∑

u,v∈ST

Ku,v(xn)d(u, v) . (4.11)

4.11. Example. Figure 4.2(D) shows the effect of applying (4.11) to the edges in the graph
GK of Figure 4.2(K). For u = B and a = 0 in the context tree of Figure 4.2, we have
τ(u, a) = 01. Thus, for u = B and v = A, d(u, v) takes the edge associated to Transition 1
in Figure 4.2(K) to the edge associated to Transition 1 in Figure 4.2(D). Similarly, for u = D
and v = A, d(u, v) takes the edge associated to Transition 5 in Figure 4.2(K) to the edge
associated to Transition 5 in Figure 4.2(D).

We can interpret the transformations given by (4.10) and (4.11), which take N to D, as
redirections of state transitions in the original state sequence of xn. This gives a sequence
of edges of GD(xn), denoted γD, which is not necessarily a path, since the destination of an
edge may not coincide with the source of the next edge. This is illustrated in Figure 4.2(D),
where the source of the edge associated to Transition 2 is different from the destination of
the edge associated to Transition 1. In fact, state A, which is the entry point for the forced
pseudo-state sequence of B, does not have any incoming edge. On the other hand, there are
two edges entering the pseudo-state 01, namely, the edges corresponding to Transition 1 and
Transition 5, but only Transition 6 exits the pseudo-state 01. This reflects the fact that as
we scan the string xn = 001101, there are two instants i in which the context3 10 is a suffix
of s0x

i, namely, i = 1 and i = 5. Thus, in either of these two times, the emission of symbol 1
would generate a valid transition to state C. However, state C is only accessed once, and,
hence, we can drop context in one of these two times in which pseudo-state 01 is entered.

We next define the matrix B(xn), which incorporates context-dropping transitions of the
form (u, ρ(u)), where we recall that ρ(u) is the parent of u. Specifically,

Bu,v(xn) =

∑

w∈Λ(u)

(
D∗w(xn)−Dw∗(xn)

)
, u ∈ U\ST , v = ρ(u),

0, otherwise.
(4.12)

Finally,
F (xn) = D(xn) +B(xn) . (4.13)

3Recall that states and pseudo-states are labeled with symbols in reverse order of appearance in xn.

64 4. Type classes of tree models

4.12. Example. In Figure 4.2(D) there are two incoming edges into pseudo-state 01 and
only one outgoing edge from 01. Thus, we have Bu,v = 1 for u = 01 and v = ρ(u) = A, which
is represented by the edge labeled 1.5 in Figure 4.2(F). Notice that the pseudo-state sequence
γ of Example 4.9 can be identified as a path in the graph GF represented in Figure 4.2(F) by
following the order 1, 1.5, 2 · · · 6. The pseudo-state sequence γ′ of Example 4.9 arises following
the edges in the order 4, 5, 1.5, 2, 3, 1, 6.

Lemma 4.13 below establishes a set of important properties of the matrix F , and the forced
sequence parsing J(xn) = {t0, t1 · · · tr}. To simplify notation, we denote τi = τ(sti , xti+1).

4.13. Lemma. For every sequence xn we have:

(i) For all 0 < h ≤ n, and all j such that h > j, and j > h− `sh, we have sj = νi(sh) where
i = `sh + j − h satisfies 1 ≤ i < `sh. We also have |sj | < |sh|, and `sh − `sj ≥ h− j.

(ii) For all 0 ≤ j ≤ n we have 1 ≤ j∆ ≤ `s~ , µj∆(s~) � xjs0 and therefore sj = νj∆(s~).

(iii) t0 = 0, tr = n and ti = ti+1 − `sti+1
for 0 ≤ i < r.

(iv) µ1(sti+1) ≺ xti+1sti for 0 ≤ i < r, and therefore τi ∈ Λ(µ1(sti+1)) for 0 ≤ i < r.

(v) N (µ) =
∑r−1

i=0 1sti ,sti+1 + ∆̃−(sti+1) .

(vi) K =
∑r−1

i=0 1sti ,sti+1 + ∆̃+(sti+1) .

(vii) D =
∑r−1

i=0 1sti ,τi + ∆̃+(sti+1) .

(viii) Bu,ρ(u) =
∑r−1

i=0

∑
w∈Λ(u) δw,τi − δw,µ1(sti+1) .

(ix) Fi,j ≥ 0 for all i, j and F∗i + δs0,i = Fi∗ + δsn,i .

(x)
∑

i,j Di,j =
∑

i,jKi,j = n, and for all u ∈ U , we have Fu∗ ≤ n and F∗u ≤ n.

(xi) If v ≺ u and Fu,v > 0, then v = ρ(u), Fu,v = Bu,v, and tail(u) ∈ T .

The proof of Lemma 4.13 is technical but rather straightforward, and it is deferred to
Appendix D.

Notice that Lemma 4.13(ix) validates our interpretation of F as the incidence matrix of
the pseudo-state transition graph GF (xn) and, moreover, this part of the lemma also states
that F satisfies the flow conservation equations. We next develop tools that will allow us
to count strings in T ∗(xn) by counting Eulerian unlabeled paths in GF (xn). To this end
we will establish a connection between symbol sequences and paths in graphs. Moreover, in
Section 4.4, we will relate the number of close-ended type classes induced by a context tree to
the number of different pseudo-state transition graphs GF (xn) that arise as xn varies in An.
Lemma 4.14 below gives the fundamental relations between sequences and paths that will
serve our purpose. To map Eulerian paths to sequences, we tag each edge e ∈ E of a graph
G = (U,E), by means of the tagging function ω : E → A∗, defined for e = (u, v) as ω(e) = λ

if v ≺ u, or ω(e) = head(v) otherwise. We extend ω to paths γ in G by concatenating the

4.2. The size of a type class 65

tags of the edges encountered as the path is traversed in order. Furthermore, since ω(e)
depends only on the source u and the destination v of e, we also extend ω to unlabeled
paths by defining ω(γ) as the result of applying ω to any path in the equivalence class of γ,
where we recall from the definition of unlabeled path that this equivalence class on paths is
induced by considering all the copies of an edge equivalent (indistinguishable). For instance,
in Example 4.9, transitions in GF not tagged with λ are tagged with consecutive symbols of
xn.

4.14. Lemma. Let G and G′ be graphs with the same set of vertices U , and edges (u, v) of
the following forms:

• u = µi(s), v = µi+1(s) for some s ∈ ST , 1 ≤ i < `s.

• u ∈ ST and v = τ(u, b) for some b ∈ A.

• v = ρ(u) and tail(u) ∈ T .

(i) Let ζ = u0, u1 · · ·uh be an unlabeled path in G starting from u0 = s0. Then uh is a
suffix of s0ω(ζ).

(ii) Let γ = u0, u1 · · ·um and γ′ = u′0, u
′
1 · · ·u′m′ be Eulerian unlabeled paths from s0 to

s ∈ ST in G and G′ respectively. If ω(γ) = ω(γ′), then m = m′, and ui = u′i for all
1 ≤ i ≤ m.

Proof.
We prove Part (i) by induction on h. For h = 0 the claim is clearly true. Assume its also

true for h − 1, and consider the last edge e = (uh−1, uh). If uh = ρ(uh−1), then ω(e) = λ.
Thus, uh, which is a suffix of uh−1, is also a suffix of s0ω(ζ). If uh−1 = µi(s) and uh = µi+1(s),
or if uh−1 ∈ ST and uh = τ(uh−1, b), then uh = bz for some b ∈ A, z � uh−1. Hence, ω(e) = b

and uh = zb is a suffix of s0ω(ζ).
For Part (ii) first we show that if ui = u′i for all i ≤ min{m,m′}, then we must have

m = m′. Suppose on the contrary that, with no loss of generality, m > m′. Then, since all
vertices coincide up to index m′, we have ω(u0 · · ·um′) = ω(u′0 · · ·u′m′) = ω(γ′). Thus, since
ω(γ) = ω(γ′), we must have ω(um′ · · ·um) = λ. But um′ = s ∈ ST by the assumptions, and
therefore no edge labeled with λ, of the form (u, ρ(u)), can follow from s. We conclude that
m = m′.

Now suppose the claim of Part (ii) is not true. Then, by the claim we have just proved,
ui and u′i must be different for some i ≤ min{m,m′}. Let j be the minimum such index,

j = min{i : ui 6= u′i} .

Since u0 = u′0 for both γ and γ′ start at s0, the index j satisfies 0 < j ≤ min{m,m′}. We
claim that one of the edges e = (uj−1, uj), e′ = (u′j−1, u

′
j) must be of the form (u, ρ(u)). If they

were both of type (u, τ(u, b)), or both of type (µi(s), µi+1(s)), then uj and u′j would coincide
for ω(γ) = ω(γ′). If one edge were of type (u, τ(u, b)), and the other of type (µi(s), µi+1(s))
with µi(s) = u, then uj and u′j would also coincide, since we must have τ(u, b) = µi+1(s) by

66 4. Type classes of tree models

definition of τ . Thus, one of the edges must be of the form (u, ρ(u)). Suppose, without loss
of generality, that uj = ρ(uj−1), and let

r′ = min{i : i ≥ j, u′i ∈ ST } .

Notice that r′ is well defined, for j ≤ m′ and u′m′ ∈ ST . We claim that the edges (u′i−1, u
′
i)

are of the form (µh(s), µh+1(s)) for i = j · · · r′, and we prove it by induction on i. For
i = j, we have u′j−1 = uj−1 and uj = ρ(uj−1). Thus, u′j−1 6∈ ST , and therefore the edge is
not of the form (u, τ(u, b)). Also by definition of j, we know that u′j 6= uj = ρ(uj−1), and
therefore the edge must have the form (µh(s), µh+1(s)). For i > j, assume that the edges
(u′k−1, u

′
k) are of the form (µh(s), µh+1(s)) for k = j · · · i − 1. By definition of r′, we know

that u′i−1 6∈ ST . Hence, the edge (u′i−1, u
′
i) is not of the form (u, τ(u, b)). If u′i = ρ(u′i−1),

then tail(u′i−1) ∈ T . By our inductive assumption, (u′i−2, u
′
i−1) has the form (µh(s), µh+1(s)),

and therefore u′i−2 = tail(u′i−1), which belongs to T . When i − 2 ≥ j, this contradicts the
definition of r′, and for i = j + 1 it contradicts the fact that uj = ρ(u′j−1). We conclude that
the edges (u′i−1, u

′
i) are of the form (µh(s), µh+1(s)) for i = j · · · r′ as claimed. As a result,

since r′ ≥ j, the string ω(u′0 · · ·u′r′) is not shorter than ω(u′0 · · ·u′j), which in turn is strictly
longer than ω(u0 · · ·uj) for uj = ρ(uj−1). Hence, the index

r = min{i : ω(u0 · · ·ui) = ω(u′0 · · ·u′r′)} ,

is strictly larger than j. We claim that |ur| < |u′r′ |. By our definition of the tagging function
ω, and our assumptions on the edges of G and G′, we have that for each edge (u, v), we have
|v| ≤ |u|+ 1, and the equality can only hold when |ω((u, v))| = 1. Hence, we have

|ui+1| − |ui| ≤ |ω(u0 · · ·ui+1)| − |ω(u0 · · ·ui)| ,

and summing from i = j to r − 1, we obtain

|ur| ≤ |uj |+ |ω(u0 · · ·ur)| − |ω(u0 · · ·uj)| .

Since uj = ρ(uj−1), we have ω(u0 · · ·uj) = ω(u0 · · ·uj−1), and therefore,

|ur| ≤ |uj |+ |ω(u0 · · ·ur)| − |ω(u0 · · ·uj−1)| .

By the definition of r, we have ω(u0 · · ·ur) = ω(u′0 · · ·u′r′), and by the definition of j, we have
ω(u0 · · ·uj−1) = ω(u′0 · · ·u′j−1). Hence,

|ur| ≤ |uj |+ |ω(u′0 · · ·u′r′)| − |ω(u′0 · · ·u′j−1)| . (4.14)

Since the edges (u′i−1, u
′
i) are of the form (µh(s), µh+1(s)) for i = j · · · r′, every such edge

contributes one symbol to ω(u′0 · · ·u′r′) and takes the source to a destination that is one
symbol longer. Therefore,

|ω(u′0 · · ·u′r′)| − |ω(u′0 · · ·u′j−1)| = |u′r′ | − |u′j−1| .

Thus, from (4.14), we get
|ur| ≤ |uj |+ |u′r′ | − |u′j−1| ,

4.2. The size of a type class 67

and since u′j−1 = uj−1 by definition of j, we get

|ur| ≤ |uj |+ |u′r′ | − |uj−1| .

Finally, since uj = ρ(uj−1), we have |uj | < |uj−1| and, therefore, we get |ur| < |u′r′ | as claimed.
As proved in Part (i), ur and u′r′ are both suffixes of ω(u0 · · ·ur) = ω(u′0 · · ·u′r′). Since

|ur| < |u′r′ |, we must have ur ≺ u′r′ , which is a contradiction since u′r′ ∈ ST . 2

Notice that by parts (vii) and (xi) of Lemma 4.13, any pseudo-state transition graph G = GF
satisfies the assumptions of Lemma 4.14, since the incidence matrix of GF is of the form
F (xn) by definition.

Part (i) of Lemma 4.14 lets us keep track of the states selected in T by ω(ζ) as we traverse
un unlabeled path ζ in GF . Indeed, since uh is a suffix of s0ω(ζ), s0ω(ζ) selects the unique
state s that is a prefix of uh. By means of this property, we will construct an Eulerian
unlabeled path ξ, such that ω(ξ) = xn. Furthermore, we will show that the application
of the tagging function ω to all Eulerian unlabeled paths from s0 to sn in GF (xn) yields
sequences with the same state transitions matrix, which are therefore in T ∗(xn). Moreover,
by Part (ii) of Lemma 4.14, every such Eulerian unlabeled path defines a unique sequence.
These properties, together with the BEST Theorem [22], will allow us to derive the main
result of this section, given in Theorem 4.15 below.

We need some definitions to state the theorem. Recalling that, by Lemma 4.13(iv), τi ∈
Λ(µ1(sti+1)), we define sequences βi of elements of U , such that βi is empty for τi = µ1(sti+1),
and otherwise βi = v0v1 · · · vm where v0 = τi, ρ(vm) = µ1(sti+1), and vj = ρ(vj−1) for
j = 1 · · ·m. Moreover, for 0 < i ≤ r, where tr = n is the largest element of J , we define
ςi = βi−1µ1(sti)µ2(sti) · · ·µ`sti (sti). Finally, we define the normalized |U | × |U | matrix F̂ as

F̂i,j = Fi,j/Fi∗ if Fi∗ > 0 and F̂i,j = 0 otherwise.

4.15. Theorem. Let xn be a sequence in An.

(i) ξ = s0ς1 · · · ςr is an Eulerian unlabeled path from s0 to sn in GF such that ω(ξ) = xn.

(ii) The function ω defines a one-to-one correspondence between the set of Eulerian unlabeled
paths from s0 to sn in GF and the sequences in T ∗(xn).

(iii) Let M denote the cofactor of entry (sn, s0) in I−F̂ . Then, M ≤ 1 and

|T ∗(xn)| = M

∏
i Fi∗!∏
i,j Fi,j !

. (4.15)

Proof. We start by Part (i). By Lemma 4.13(ii), if there exists indeed an unlabeled path
ξ in GF as defined in (i), we must have ω(ξ) = xn. We will prove that ξ is an Eulerian
unlabeled path in GF . Let v0 · · · vm = ξ, and let N(ξ) be the |U | × |U | matrix, indexed with
elements from U , defined as Nu,v(ξ) = |{j = 1 · · ·m : vj−1 = u, vj = v}| for all u, v ∈ U .
Notice that N(ξ) =

∑r−1
i=0 1sti ,τi + ∆̃+(sti+1) + B̃, where B̃ is the matrix of transitions of the

subsequences βi in ξ. Thus, by Lemma 4.13(vii), N(ξ) = D + B̃, and we must show that
B̃ = B in order to prove that N(ξ) = F . By definition of βi, B̃u,v > 0 implies v = ρ(u).

68 4. Type classes of tree models

Moreover, by construction, B̃u,v = |{i = 0 · · · r − 1 : τi ∈ Λ(u), µ1(sti+1) 6∈ Λ(u)}|. On the
other hand, by Lemma 4.13(viii),

Bu,v =
r−1∑
i=0

∑
w∈Λ(u)

δw,τi − δw,µ1(sti+1) .

Since τi ∈ Λ(µ1(sti+1)), the terms corresponding to indices i such that µ1(sti+1) ∈ Λ(u) are
zero, and therefore, Bu,v = |{i = 0 · · · r − 1 : τi ∈ Λ(u), µ1(sti+1) 6∈ Λ(u)}| = B̃u,v. We
conclude that N(ξ) = F , and consequently ξ is an Eulerian unlabeled path in GF .

We now turn to Part (ii). We first notice that, since F (xn) is defined exclusively as a
function of the matrix N(xn), and by Lemma 4.5 we have N(yn) = N(xn) for all yn ∈ T ∗(xn),
Part (i) implies that there exists an Eulerian unlabeled path γ such that ω(γ) = yn for all
yn ∈ T ∗(xn), since xn is arbitrary.

Now, let γ = u0, u1 · · ·um be an arbitrary Eulerian unlabeled path from u0 = s0 to
um = sn in GF (xn). We will show that yn = ω(γ) belongs to T ∗(xn), by showing that yn and
xn share the same state transition matrix. Since edges of the form (u, ρ(u)) do not contribute
with symbols to ω(γ) by the definitions of ω and ρ, we only need to take care of edges that
come from positive entries in D(xn). We recall from Lemma 4.13(vii) that,

D(xn) =
r−1∑
i=0

1sti ,τi + ∆̃+(sti+1) . (4.16)

Let γ̃ = e1 · · · em be an arbitrary Eulerian path in the equivalence class of the unlabeled
path γ, i.e., each edge eh is of the form eh = (uh−1, uh), we distinguish multiple copies of
an edge, and eh 6= ej for h 6= j. To each index i in the summation of (4.16), we associate a
subset Γi of the edges of γ̃ of the following form:

Γi = { (sti , τi) } ∪
{

(µi(sti+1), µi+1(sti+1)) : i = 1 · · · `sti+1
− 1

}
. (4.17)

We assign different copies of the multiple distinguishable edges of GF (xn) to different sets Γi,
so that these sets Γi are disjoint. Notice that we can do this disjoint assignment of edges of
γ̃ to the sets Γi by (4.16) and the definitions of Γi and ∆̃+.

Consider an arbitrary edge of γ̃, eh = (uh−1, uh). We define leh as the length of the
prefix of yn generated by the subpath e1 · · · eh of γ̃, i.e., leh = |ω(e1 · · · eh)|. Thus, we
have yleh = ω(e1 · · · eh). Notice that if eh = (uh−1, uh) belongs to one of the sets Γi, then
uh 6= ρ(uh−1) by (4.17) and, therefore, ω(e1 · · · eh) is one symbol longer than ω(e1 · · · eh−1).
As a consequence, we have

le 6= le′ , ∀ e, e′ ∈
⋃
i

Γi , e 6= e′ . (4.18)

Hence, we associate to each edge e in
⋃
i Γi a unique integer le, 0 < le ≤ n, which we

will interpret as an index in the state sequence of yn. Moreover, we claim that for each
i = 0 · · · r − 1, we can label the edges in Γi with integers, {0, 1, · · · `sti+1

− 1}, in such a way
that for the edge labeled 0, e ∈ Γi, the state transition sle−1(yn) → sle(y

n) has the form

4.2. The size of a type class 69

sti → sti+1, and for each j = 1 · · · `sti+1
− 1, the edge labeled j, e′ ∈ Γi, is such that the state

transition sle′−1(yn)→ sle′ (y
n) has the form νj(sti+1)→ νj+1(sti+1). We then get, from (4.17)

and the definition of ∆̃−, that

N (µ)(ω(γ̃)) =
r−1∑
i=0

(
1sti ,sti+1 + ∆̃−(sti+1)

)
. (4.19)

To prove the claim, consider an edge of γ̃, eh = (uh−1, uh) ∈ Γi, of the form uh−1 = sti ,
uh = τi. By Lemma 4.14, sti is a suffix of s0y

le−1, thus σT (yle−1) = sti . Also τi is a suffix of
s0y

le and, by definition of τ , we have sti+1 � τi. Hence, we have σT (yle) = sti+1. Therefore,
the state transition sle−1(yn) → sle(y

n) has the form sti → sti+1. Similarly, for an edge of
γ̃, eh = (uh−1, uh) ∈ Γi, of the form uh−1 = µi(sti+1), uh = µi+1(sti+1), we get σT (yle−1) =
νi(sti+1) and σT (yle) = νi+1(sti+1). Therefore, the state transition sle−1(yn) → sle(y

n) has
the form νi(sti+1)→ νi+1(sti+1). The claim is proved and (4.19) follows.

Now, since ω(γ) = ω(γ̃) by the definition of ω, we get, from (4.19),

N (µ)(ω(γ)) =
r−1∑
i=0

(
1sti ,sti+1 + ∆̃−(sti+1)

)
= N (µ)(xn) ,

where the last equality comes from Lemma 4.13(v). Hence, we get ω(γ) ∈ T ∗(xn), by
Lemma 4.5.

Up to this point we have shown that every sequence yn ∈ T ∗(xn) can be generated by
applying ω to some Eulerian unlabeled path, and that for every Eulerian unlabeled path, γ,
we have ω(γ) ∈ T ∗(xn). Finally, we notice that if γ and γ′ are different Eulerian unlabeled
paths from s0 to sn, then ω(γ) 6= ω(γ′) by Lemma 4.14. Hence, ω defines a one-to-one
correspondence between the set of Eulerian unlabeled paths from s0 to sn in GF , and the
strings in T ∗(xn).

As for Part (iii), we first notice that we can assume that there are no isolated vertices in
GF . If there existed a vertex u with no incoming nor outgoing edge, the matrix I − F̂ would
be valued (I − F̂)u,j = (I − F̂)j,u = δu,j , and we could eliminate row and column u while the
cofactor M remains unchanged.

Let G′F = (V,E∪{e′}) be the graph obtained from GF by adding an edge e′ = (sn, s0), and
let F ′ = F + 1sn,s0 be the incidence matrix of G′F . Let C be the number of distinct Eulerian
circuits in G′F , where two circuits are considered equal if one can be obtained from the other
by a cyclic permutation of the edges. By the BEST Theorem [22], C can be computed as

C = M ′
∏
i

(F ′i∗ − 1)! ,

where M ′ is any cofactor of the matrix L′ defined as L′u,v = δu,vF
′
u∗ − F ′u,v (all cofactors

of L′ are equal for all its columns and rows sum up to zero). The matrix L, defined as
Lu,v = δu,vFu∗ − Fu,v, differs only in row sn from L′. Thus, M ′ is also equal to the (sn, s0)th

70 4. Type classes of tree models

cofactor of L. Dividing each row i of L by Fi∗ we obtain I − F̂ , and the cofactor gets divided
by
∏
i 6=sn Fi∗. Thus,

C = (1/F ′sn∗)M
∏
i

F ′i∗! = M
∏
i

Fi∗! .

The number Q of Eulerian paths from s0 to sn in GF is equal to the number of Eulerian
circuits in G′F from s0 to s0 where e′ is the last edge, i.e. Q = C since cyclic permutations of
the edges are not relevant for calculating C. The proof of (4.15) is completed by noticing that∏
i,j Fi,j ! is the number of representatives in the equivalence class of an Eulerian unlabeled

path. The inequality M ≤ 1 follows from the trivial bound
∏
i Fi∗!

/∏
i,j Fi,j ! on the number

of unlabeled paths. 2

When T is FSM, all suffixes of a state s are nodes of T by Theorem 2.6. Hence, we have
∆̃+(s) = ∆̃−(s) ∀s ∈ ST , U = ST , and F = N . Thus, in this case, (4.15) reduces to Whittle’s
formula.

Theorem 4.15 shows that the one-to-one correspondence between Eulerian paths and se-
quences of Part (ii) can be implemented straightforwardly. Indeed, given xn, one can compute
J(xn) in linear time and then compute ξ such that ω(ξ) = xn, easily, as defined in Part (i).
Of course computing ω(γ) given an Eulerian unlabeled path γ can also be done in time pro-
portional to the length of γ, which by Lemma 4.13(x) is linear in n. Hence, enumerating
sequences in T ∗(xn) is equivalent to enumerating Eulerian unlabeled paths in GF . The lat-
ter, in turn, can be done efficiently (polynomial in n) by recursive application of the formula
in [22]. Thus, Theorem 4.15 yields an efficient algorithmic enumeration of T ∗(xn), and hence
also of T (xn). We include a more detailed description of an enumeration algorithm and show
its polynomial complexity in Appendix F. This enumeration has applications in universal
data compression and universal simulation, which we explore in Chapter 5 and Chapter 6,
respectively.

4.16. Example. A direct application of (4.15) with the matrix F of (4.8) yields |T ∗(xn)| = 2,
and indeed, by direct enumeration of Eulerian unlabeled paths in GF (see Figure 4.2(F)), we
obtain

T ∗(xn) = {001101, 100101} .

4.3 The expected size of a type class

In this section we study the asymptotic behavior of the expectation of log |T (Xn)| with respect
to a tree source. The analysis will be based on the formula (4.15) presented in Theorem 4.15.
We denote by ΞT (xn) the multinomial factor in (4.15) computed with respect to T , i.e.,

ΞT (xn) =
∏
i F (xn)i∗!∏
i,j F (xn)i,j !

. (4.20)

4.3. The expected size of a type class 71

For an FSM context tree T we have F = N and due to the existence of a next-state function
we have

∏
v Fs,v! =

∏
a∈A n

(a)
s !. Hence, ΞT (xn) simplifies to

ΞT (xn) = ΞαT (xn) ,

∏
s ns!∏

s,a n
(a)
s !

. (4.21)

In this case, an application of Stirling’s formula for factorials gives straightforwardly a well
known connection between log ΞT (xn) and the empirical entropy rate of xn with respect to T ,
as we will show later, for completeness, in the derivation of Lemma 4.27. A similar relation is
not apparent directly from (4.15) in general, as pseudo-state transition counts Fu,v depend on
symbol counts through a sequence of transformations of N . Hence, we will follow a different
approach.

Next, we introduce some definitions that we need to state the main result of this section.
These definitions will be also used extensively in the rest of this chapter and in Chapter 5.
We say that a state s of T is forgetful if as ∈ I(T) for all a ∈ A, namely, s loses context for
every possible transition. A context tree with no such state is called canonical. If a context
tree is not canonical, we can take a forgetful state s, and make a single refinement of s, where
by single refinement we mean the extension of T with a full complement of children of s.
Proceeding sequentially until no forgetful states remain, the context tree can be brought to
canonical form in a finite number of such refinement steps. We show in Lemma 4.17 below
that this extension, called the minimal canonical extension of T , is unique for each context
tree T and we denote it Tc.

4.17. Lemma. Let T ′ and T̃ be two refinements of T , each obtained by a finite sequence of
single refinement steps on forgetful states. If T ′ and T̃ are both canonical, then T ′ = T̃ .

Proof. Suppose T ′ 6= T̃ and, without loss of generality, suppose T ′\T̃ is not empty. Consider
a sequence of context trees T ′0, T

′
1 · · ·T ′r, where T ′0 = T , T ′r = T ′, and T ′i is obtained by a single

refinement of a forgetful state vi of T ′i−1. Let vj be the first node in the sequence v1 · · · vr
that is not refined in T̃ . By definition of vj we have T ′j−1 ⊂ T̃ . The node vj must be a leaf of
T̃ for otherwise its parent would appear before it in the sequence v1 · · · vr. Moreover, since vj
is forgetful in T ′j−1, and T ′j−1 ⊂ T̃ , vj is also a forgetful state of T̃ . Hence, T̃ is not canonical. 2

We now present the main result of this section, for which we introduce the state transition
support graph, GT , of a context tree T . We define GT = (VT , ET) as the 1-graph with VT = ST
and

ET = { (u, v) ∈ S2
T : u � tail(v) or tail(v)≺u } . (4.22)

The incidence matrix of GT is the support of the state transition matrix N(xn) by Lemma 4.1.

4.18. Theorem. Let 〈T, pT 〉 be a tree source with entropy rate H and all conditional proba-
bilities positive, and let Tc be the minimal canonical extension of T . Then,

E〈T,pT 〉
[

log |T (Xn)|
]
≤ nH− |ETc | − |VTc |

2
log n+O(1) . (4.23)

72 4. Type classes of tree models

When T is FSM, it is also canonical, i.e. T = Tc, and |ETc |−|VTc | = (α−1)|ST |, in agree-
ment with known results for FSMs, which we will show later in Lemma 4.27 for completeness.
If T is not FSM, however, the factor |ETc |−|VTc | is larger. This larger factor will be essen-
tial for showing the optimal convergence rate of the enumerative code that we will present
in Chapter 5. Moreover, in Chapter 5 we will derive a different proof of Theorem 4.18,
based on coding arguments, and illustrating the use of some of the tools developed in that
chapter. The results in Chapter 5 will also allow us to establish the asymptotic tightness of
the upper bound (4.23). The proof presented in this section ties more directly to the exact
formula (4.15), and to the combinatorial properties of the minimal canonical extension.

Before we start with the asymptotic expectation analysis of the formula (4.15), we explore
some connections between T -classes and Tc-classes∗, which we will use in the proof of Theo-
rem 4.18 and also in Section 4.4. In particular, we will show that an arbitrary context tree
T induces the same type classes as its minimal canonical extension Tc. Thus, we can define
an equivalence relation between context trees in which T and T ′ are equivalent if and only if
Tc = T ′c. Then, all context trees in the same equivalence class induce the same type classes,
which is expressed in the fact that the bound in (4.23) depends on parameters of Tc rather
than T .

Throughout we consider a fixed common initial state of maximal depth for T and Tc, as
well as for any context tree T ′ such that T ⊂ T ′ ⊂ Tc. Notice that all maximal depth states
are shared by T and Tc, since |s| < depth(T)−1 for any forgetful state s. We start by studying
the effect of refining a forgetful state of T on the type classes induced by T .

4.19. Lemma. Let s be a forgetful state of T , and let T ′ be the context tree obtained from T

by a single refinement of s. If two sequences belong to the same T -class∗, they belong to the
same T ′-class.

Proof. Consider arbitrary symbols a, b ∈ A. We will show that the transition matrix N of a
string xn with respect to T determines the symbol count n(a)

sb . Since s is forgetful, as is an
internal node of T and, therefore, asb ∈ T . Let asbu be a state of T with u ∈ A∗. Notice
that asbu is also a state of T ′ for asbu 6= s. Since tail(asbu) is not an internal node of T nor
of T ′, we have N∗asbu = Ns,asbu, and N ′∗asbu = N ′sb,asbu, where N ′ denotes the state transition
matrix with respect to T ′. Now, we must have N∗asbu = N ′∗asbu, since both N∗asbu and N ′∗asbu
are equal to the number of occurrences of the pattern asbu in the sequence xn, which is fixed.
Hence, we get N ′sb,asbu = Ns,asbu. Summing over all u ∈ A∗ such that asbu is a state of T , we

obtain n
(a)
sb .

If yn ∈ T ∗(T, xn), by Lemma 4.5, we know that N(yn) = N(xn), which, as we have proved,
implies that n(a)

sb (yn) = n
(a)
sb (xn) for all symbols a, b ∈ A. Since clearly also n(a)

t (yn) = n
(a)
t (xn)

for all states t 6= s and all symbols a, we conclude that yn ∈ T (T ′, xn). 2

The following corollary is an immediate consequence of Lemma 4.19 and the sequential
construction of Tc.

4.20. Corollary. If xn and yn are sequences in the same T -class and they share the same
final state with respect to Tc, then they belong to the same Tc-class∗.

4.3. The expected size of a type class 73

Finally, we derive the claimed relation between the type classes induced by T and Tc.

4.21. Corollary. Two sequences xn and yn belong to the same T -class if and only if they
belong to the same Tc-class.

Proof. We partition the sequences yn in T (T, xn) according to its final state with respect
to Tc, which we denote sn(Tc, y

n). Specifically, for s ∈ STc we define T (T, xn, s) = {yn ∈
T (T, xn) : sn(Tc, y

n) = s}. Thus,

T (T, xn) =
⋃

s∈STc

T (T, xn, s) . (4.24)

By Corollary 4.20, T (T, xn, s) is a subset of T (Tc, x
n, s). But since Tc is a refinement of T ,

also T (Tc, x
n, s) ⊂ T (T, xn, s). Hence, T (Tc, x

n, s) = T (T, xn, s), and (4.24) becomes

T (T, xn) =
⋃

s∈STc

T (Tc, x
n, s) = T (Tc, x

n) .

2

In view of Corollary 4.21, in the sequel we assume without loss of generality that the
context tree for which we analyze the formula (4.15) of Theorem 4.15 is canonical.

We will follow an incremental approach to obtain (4.23). For a given context tree T , we
consider a refinement sequence of context trees T1 · · ·Tm, where T1 is a single-node context
tree, Tm = T , and, for i > 1, Ti is obtained from Ti−1 by a single refinement of a state
w ∈ STi−1 with |w| ≥ depth(Ti−1) − 1. It is readily verified that such a refinement sequence
exists for any context tree T . We will decompose ΞT (xn), from (4.20), as

ΞT = ΞT1

m∏
i=2

ΞTi/ΞTi−1

and we will keep track of the the asymptotic contribution of each factor (ΞTi/ΞTi−1) to the
expected logarithm of ΞT . This decomposition is suitable for a clean separation of ΞαT (defined
in (4.21)), from which the entropy rate will arise in (4.23) by means of Stirling’s formula, from
factors that contribute terms of order log n. Our analysis will be based on the formula (4.15)
for the size of T ∗(xn). As we will show, the expected logarithms of |T ∗(xn)| and |T (xn)|
differ by O(1), which makes them equivalent for the purpose of proving the asymptotic result
of Theorem 4.18. Moreover, while the cofactor M in (4.15) is essential for the exact result of
Theorem 4.15, we will be able to neglect this cofactor in the asymptotic analysis. Thus, since
in (4.15) we have M ≤ 1, by Theorem 4.15, we get

log |T ∗(xn)| ≤ log ΞT (xn) (4.25)

and, therefore, our goal will be to upper-bound the expectation of log ΞT (Xn).
The base building block for the derivation of (4.23) in this section is the following lemma,

which will allow for the analysis of the factors ΞTi/ΞTi−1 in the mentioned incremental ap-
proach.

74 4. Type classes of tree models

4.22. Lemma. Let T ′ be a context tree obtained from T by a single refinement of a state w
with |w| ≥ depth(T)−1. Let s0 ∈ ST and s′0 ∈ ST ′ be initial states of maximal depth in T and
T ′ respectively such that s0 � s′0. Let n(a)

s , U , ρ(·), `s, N , B, and F , be the objects defined in
Section 4.1 and Section 4.2 for the context tree T , and let n′(a)

s , U ′, ρ′(·), `′s, N ′, B′, and F ′

be the corresponding objects4 for T ′, all with respect to the given sequence xn and the initial
states s0 and s′0 respectively. Define

Π =
ΞT ′
ΞT

=

∏
i F
′
i∗!
/∏

i,j F
′
i,j !∏

i Fi∗!
/∏

i,j Fi,j !
, (4.26)

Define also

Π(`w=1) =

∏
b∈AN

′
wb∗!

/∏
a,b∈A n

′(a)
wb !

Nw∗!
/∏

a∈A n
(a)
w !

, (4.27)

and, letting B′µ1b,ρ
be a shorthand for B′µ1(w)b,ρ′(µ1(w)b),

Π(`w>1) =

∏
b∈A

(B′µ1b,ρ
+N ′∗wb

N ′∗wb

)
(Fµ1(w)∗

N∗w

) ·Πδ , (4.28)

where

Πδ =

∏
i∈L max

{
1, F∗µi(w)δsn,µi(w)

}
∏
i∈L max

{
1, F ′∗µi(w)δsn,µi(w)

} (4.29)

for some subset L ⊆ {1, 2, · · · , `w − 1}, taking, with a slight abuse of notation, F ′∗µi(w) = 0 if
µi(w) 6∈ U ′.

Then, we have Fµ1(w)∗ ≥ N∗w, so that (4.28) is well-defined, and Π satisfies

Π =

{
Π(`w=1) , if `w = 1 ,
Π(`w=1)Π(`w>1) , if `w > 1 .

(4.30)

Moreover, in the case `w > 1, the summation Σ =
∑

b∈AB
′
µ1b,ρ

satisfies

Σ− δsn,µ1(w) = Fµ1(w)∗ −N∗w . (4.31)

Imagine that we sequentially construct an Eulerian unlabeled path in the pseudo-state
transition graph, GF (xn), by selecting in each step one edge departing from the current
pseudo-state, and following the selected edge so that its destination becomes the new current
pseudo-state. The multinomial factor ΞT gives the number of choices in this construction if we
assume that any such choice leads to a complete Eulerian unlabeled path inGF (the proportion
of valid choices is determined by the cofactor in (4.15) that we will neglect by (4.25)). Since
|w| ≥ depth(T)− 1, the refined state w, as well as its descendants in T ′, uniquely determine
a next state for every symbol of the alphabet. Moreover, also due to the fact that |w| ≥

4A count n′
(a)
s may differ by 1 from n

(a)
s if s0 6= s′0.

4.3. The expected size of a type class 75

depth(T) − 1, no pseudo-state descends from w in T and no pseudo-state descends from wb

in T ′, with b ∈ A. Thus, the source of each of these state transitions, which depart from
w or one of its descendants in T ′, is not replaced in the construction of F and F ′ by a
different pseudo-state with more context. Hence, in relation to the mapping between strings
and unlabeled paths in GF of Theorem 4.15, each symbol in the alphabet is associated in
state w with a transition to a different pseudo-state. The same is true for the descendants
of w in T ′, which yields the factor Π(`w=1) in (4.30). When `w > 1, w is always accessed
through its forced pseudo-state sequence µ1(w)→ µ2(w) · · ·w. The factor

(Fµ1(w)∗
N∗w

)
in (4.28)

represents the number of choices, when µ1(w) is the current pseudo-state in our construction
of an Eulerian unlabeled path, in selecting w out of any of the remaining states with a forced
pseudo-state sequence entry point equal to µ1(w), or equal to any ancestor of µ1(w) (which are
accessible from µ1(w) via context-dropping transitions). When w is refined in T ′, this choice
needs to be made at one of the higher context pseudo-states µ1(w)b for each refining state
wb. This is represented by the factors

(B′µ1b,ρ
+N ′∗wb

N ′∗wb

)
, which give, when µ1(w)b is the current

pseudo-state, the number of choices in selecting wb or taking a context-dropping transition
to feed any of the remaining states with entry point µ1(w), or an ancestor of it. The factor
Πδ accounts for adjustments in the application of the flow conservation equations due to the
possible difference between the initial and final state. Appendix D contains the full proof of
Lemma 4.22, which formalizes, in detail, this outline.

4.23. Example. Consider a context tree T with states ST = {0, 10, 11}, and let T ′ be the
context tree T1 in Figure 4.1. T ′ is obtained from T by a single refinement of w = 10. We have
`w = 2, µ1(w) = 0, and µ2(w) = 10. Let s0 = 10, s′0 = 100, and xn = 001 001 · · · 001. In T ,
which is FSM, we have ΞT = ΞαT =

(2n/3
n/3

)
, as state 0 occurs 2n/3 times, and it emits n/3 zeros,

and n/3 ones. In T ′, pseudo-states µ1(w)0 = 00 and µ1(w)1 = 01 are added, and the unlabeled
path γ′ that generates xn in GF ′ , repeats n/3 times the cycle 100→ 01→ 0→ 00→ 100 · · · .
Thus, for T ′, Ξ′T = 1, in agreement with the discussion at the beginning of the chapter.
Indeed, looking at γ′ we see that B′00,0 = 0, and therefore the binomial coefficient for b = 0
in (4.28) is equal to 1. Since N ′∗101 = 0, the binomial coefficient for b = 1 in (4.28) is also
equal to 1. On the other hand,

(Fµ1(w)∗
N∗w

)
equals

(
N0∗
N∗10

)
=
(2n/3
n/3

)
, which cancels the factor(N ′0∗

n′
(1)
0

)
of ΞαT

′. Notice that the empirical entropy rates of xn with respect to T and T ′ are

ĤT (xn) = ĤT ′(xn) = 2
3h(1

2), where the factor h(1
2) arises from state 0, where half of the

occurring symbols are 0 and half are 1. In T , which is FSM, ΞT = ΞαT ≈ exp(nĤT (xn)) as
it follows from applying Stirling’s formula5 to

(2n/3
n/3

)
. Although the subsequence of xn that

occurs in the refined state w = 10 of T has memoryless empirical entropy equal to zero, its
refinement introduces stronger state dependencies in T ′, as expressed by the factor

(Fµ1(w)∗
N∗w

)−1
.

In this example, these restrictions cancel the apparent degree of freedom in state 0.

It is readily verified that if T is FSM, all context trees in a refinement sequence for
T are FSM. In this case, if Ti is obtained from Ti−1 by refining a state w, we must have
`w = 1 in Ti−1, for otherwise the suffix tail(wb) of the state wb ∈ STi would not belong to

5See Lemma 4.25 below.

76 4. Type classes of tree models

Ti, and Ti would not be FSM. Hence, successively applying Lemma 4.22 along the refinement
sequence, the first line of (4.30) is always selected, and we end up with ΞT (xn) = ΞαT (xn) as
expected. When T is not FSM, however, additional factors arise from (4.28), as characterized
by Lemma 4.24 below.

4.24. Lemma. For any context tree T and all sequences xn,

ΞT (xn) = ΞαT (xn) ·
R∏
i=1

Πi , (4.32)

where each factor Πi has the form of (4.28) applied to consecutive context trees of a refinement
sequence for T , and R = (|ET | − |VT |) /(α− 1)− |ST |.

Proof. Let T1 · · ·Tm be a refinement sequence for T . We write ΞT = ΞT1

∏m
i=2 ΞTi/ΞTi−1 and

we apply Lemma 4.22 to each quotient ΞTi/ΞTi−1 . Since clearly ΞT1 = ΞαT1
, the factors Π(`w=1)

of (4.30) cancel along the product for nodes w that are internal in T . Hence, ΞT = ΞαT ·
∏R
i=1 Πi

where Πi has the form of (4.28), and R is the number of times a context tree Ti is obtained
from Ti−1 by refining a state w of Ti−1 with `w > 1. Let Ei = |ETi |. We have

|ET | − |VT | = E1 +
m∑
i=2

(Ei − Ei−1)− |ST | . (4.33)

Suppose Ti is obtained from Ti−1 by a single refinement of a state w. In order to determine
the difference between ETi and ETi−1 , we need to analyze edges departing from w in ETi−1

and its descendants in ETi , as well as edges of the form (s, w) in ETi−1 , or (s, wb) in ETi . Since
|w| ≥ depth(Ti−1)− 1, w uniquely determines a next state for every symbol. Thus, there are
α edges departing from w in ETi−1 and also α edges departing from each of the α children of
w in ETi . Hence, edges departing from w in Ti−1, and its descendants in Ti, contribute with
α2 − α = α(α − 1) to the term Ei − Ei−1. We now consider states s 6= w, for which there
exists an edge (s, w) in ETi−1 , or (s, wb) in ETi . From (4.22) we see that this amounts to
considering states s 6= w with s � tail(w), or tail(w) ≺ s. Indeed, s � tail(wb) implies that
either s � tail(w) or s = tail(w)b in which case tail(w) ≺ s. If on the other hand tail(wb) ≺ s,
then also tail(w) ≺ s. Suppose `w = 1 in Ti−1, and therefore tail(w) is an internal node of
Ti−1. In this case, all states s 6= w of Ti−1 that descend from tail(w), uniquely determine a
next state for the symbol head(w), both in Ti−1 and in Ti. Hence, edges departing from these
states make no contribution to Ei −Ei−1, and in this case we have Ei −Ei−1 = α(α− 1). If
on the other hand `w > 1, tail(w) is not an internal node of Ti−1. There exists a unique state
s of Ti−1 that satisfies s � tail(w), and it is of course different from w. The edge (s, w) of
ETi−1 is replaced by α edges {(s, wb) : b ∈ A} in ETi , yielding a contribution of α− 1 to the
term Ei − Ei−1. Hence, in this case, Ei − Ei−1 = α(α− 1) + α− 1. Therefore, from (4.33)

|ET | − |VT | = E1 + (m− 1)α(α− 1) +R(α− 1)− |ST | ,

and since E1 = α,

|ET | − |VT | = α(1 + (m− 1)(α− 1)) +R(α− 1)− |ST | .

4.3. The expected size of a type class 77

Now, by construction of a refinement sequence, m− 1 equals the number of internal nodes of
T , and since T is a full tree, |ST | = 1 + (m− 1)(α− 1). Thus,

|ET | − |VT | = (α− 1)|ST |+R(α− 1) .

2

The following lemma not only yields a connection between ΞαT (xn) and the empirical
entropy rate of xn with respect to T , but it also will help us to analyze the combinatorial
coefficients of the factors Πi of Lemma 4.24, which have the form of (4.28). Lemma 4.25
is derived with standard methods based on Stirling’s formula for factorials. The proof is
omitted.

4.25. Lemma. Let m = m1 +m2 + · · ·mk with k ≥ 1, and mi > 0 for all 1 ≤ i ≤ k, and let
p be the probability vector p = (m1

m , · · · mkm). Then,

mh(p)− k − 1
2

logm−O(1) ≤ log
(

m

m1 · · ·mk

)
≤ mh(p)− k − 1

2
logm− 1

2

k∑
i=1

log
mi

m
,

where we let
(

m
m1···mk

)
= 1 if k = 1, and we recall that h(p) denotes the binary entropy

function.

Lemma 4.25 applied to ΞαT (xn) gives

log ΞαT ≤
∑

s:Ns∗>0

Ns∗Ĥ(xn|s)− ks − 1
2

logNs∗ −
1
2

∑
a∈A

(1− δ
n

(a)
s ,0

) log
n

(a)
s

Ns∗
, (4.34)

where Ĥ(xn|s) denotes the memoryless empirical entropy of the subsequence of xn formed by
the symbols that occur in state s, and ks denotes the number of symbols a such that n(a)

s > 0.
In (4.34) and in the sequel, we follow the convention that if δu,v = 0 in an expression of
the form δu,vf(xn), then the whole expression is valued zero, regardless of f(xn). Thus, for

example, a term (1− δ
n

(a)
s ,0

) log n
(a)
s
Ns∗

in (4.34) equals zero if n(a)
s = 0. Now,

−ks − 1
2

logNs∗ = −ks − 1
2

(log n+ log
Ns∗
n

) ≤ −ks − 1
2

log n− 1
2

∑
a∈A

(1− δ
n

(a)
s ,0

) log
Ns∗
n

,

where the inequality follows from the fact that ks =
∑

a∈A(1 − δ
n

(a)
s ,0

). Thus, combining
with (4.34), we get

log ΞαT ≤
∑

s:Ns∗>0

Ns∗Ĥ(xn|s)− ks − 1
2

log n− 1
2

∑
a∈A

(1− δ
n

(a)
s ,0

) log
n

(a)
s

n
. (4.35)

Adding and subtracting 1
2(α− ks) log n, (4.35) becomes

log ΞαT ≤
∑

s:Ns∗>0

Ns∗Ĥ(xn|s)− α− 1
2

log n+
1
2

∑
a∈A

δ
n

(a)
s ,0

log n− 1
2

∑
a∈A

(1− δ
n

(a)
s ,0

) log
n

(a)
s

n
.

(4.36)

78 4. Type classes of tree models

For a state s with Ns∗ = 0, we have n
(a)
s = 0 for all a ∈ A. Thus,

∑
a∈A δn(a)

s ,0
log n >

(α− 1) log n, and we can further bound log ΞαT by summing over all states in ST , rather than
only those with Ns∗ > 0. We then obtain

log ΞαT ≤ nĤT (xn)− α− 1
2
|ST | log n+

1
2

∑
s,a

δ
n

(a)
s ,0

log n− 1
2

∑
s,a

(1− δ
n

(a)
s ,0

) log
n

(a)
s

n
, (4.37)

where we recall that ĤT (xn) is the empirical entropy rate of xn with respect to T .
When all conditional probabilities in states of T are positive, both summations of (4.37)

are shown to be constant bounded in expectation by Lemma 4.26 below. The lemma is
essentially proved, with a different notation, in the Appendix of [60].

4.26. Lemma. Let 〈T, pT 〉 be a tree source with entropy rate H and all conditional probabilities
positive, and let y ∈ A+ be an arbitrary finite string. Then, there exists a constant C such
that

E〈T,pT 〉
[
δny ,0 log n

]
< C ,

and
E〈T,pT 〉

[
−(1− δny ,0) log

ny
n

]
< C .

The following lemma is an immediate consequence of (4.37), Lemma 4.26, and the fact
that the expectation of the empirical entropy rate is upper-bounded by the entropy rate.

4.27. Lemma. Let 〈T, pT 〉 be a tree source with entropy rate H and all conditional probabilities
positive. Then,

E〈T,pT 〉
[

log ΞαT
]
≤ nH− α− 1

2
|ST | log n+O(1).

Lemma 4.27 allows us to start putting in place the components of the bound (4.23), which,
as we recall from (4.25) and its discussion, reduces essentially to bounding the expectation of
log ΞT (Xn). By Lemma 4.24, we have

log ΞT (xn) = log ΞαT (xn) +
R∑
i=1

log Πi , (4.38)

where Πi has the form of (4.28) applied to consecutive context trees of a refinement sequence
for T , and R = (|ET | − |VT |) /(α − 1) − |ST |. Taking expectations, Lemma 4.27 accounts
for the first term on the right hand side of (4.38), which gives rise to the entropy rate term
of (4.23) and contributes a factor of α−1

2 |ST | to the negative term of order log n in (4.23).
To take care of the summation in the second term on the right hand side of (4.38), we apply
Lemma 4.25 to the binomial coefficients of (4.28), obtaining Lemma 4.28 below. The lemma
shows that for each index i in the summation of (4.38), log Πi contributes a term −α−1

2 log n
plus terms that we will upper-bound in expectation by means of Lemma 4.26, which will
finally yield (4.23).

To state the lemma we define Mb as a shorthand notation for Mb = B′µ1b,ρ
+N ′∗wb, where

we recall that B′µ1b,ρ
= B′µ1(w)b,ρ′(µ1(w)b), and we also define Q = Fµ1(w)∗ + δsn,µ1(w).

4.3. The expected size of a type class 79

4.28. Lemma. Under the same assumptions of Lemma 4.22, we have

log Π(`w>1) ≤ −α− 1
2

log n+O(1)− δsn,µ1(w) log
Q−N∗w

n
−
`w−1∑
i=1

(1−δF ′∗µi(w)
,0) log

F ′∗µi(w)

n

+
∑
b

(
1
2
δN ′∗wb,0 log n+

1
2
δN ′∗wb,Mb

log n− 1
2

(1− δMb,0) log
Mb

n

−1
2

(1− δN ′∗wb,0) log
N ′∗wb
n
− 1

2
(1− δN ′∗wb,Mb

) log
Mb −N ′∗wb

n

)
. (4.39)

Proof.
Let pb = N ′∗wb/Mb if Mb > 0, and pb = 0 otherwise. For B′µ1b,ρ

> 0, and N ′∗wb > 0, we
have

log
(
Mb

N ′∗wb

)
≤Mbh(pb)−

1
2

logMb −
1
2

log
N ′∗wb
Mb

− 1
2

log
Mb −N ′∗wb

Mb
, (4.40)

which, replacing logMb by log Mb
n + log n becomes,

log
(
Mb

N ′∗wb

)
≤Mbh(pb)−

1
2

log
Mb

n
− 1

2
log n− 1

2
log

N ′∗wb
Mb

− 1
2

log
Mb −N ′∗wb

Mb
. (4.41)

If one or both of B′µ1b,ρ
and N ′∗wb are zero, then the left hand side of (4.41) vanishes, and

also h(pb) = 0. We add the terms 1
2δN ′∗wb,0 log n+ 1

2δN ′∗wb,Mb
log n to compensate the negative

term −1
2 log n and get (4.42) below, which is valid for any value of B′µ1b,ρ

and N ′∗wb.

log
(
Mb

N ′∗wb

)
≤ Mbh(pb)−

1
2

log n+
1
2
δN ′∗wb,0 log n+

1
2
δN ′∗wb,Mb

log n− 1
2

(1− δMb,0) log
Mb

n

− 1
2

(1− δN ′∗wb,0) log
N ′∗wb
Mb

− 1
2

(1− δN ′∗wb,Mb
) log

Mb −N ′∗wb
Mb

. (4.42)

By Lemma 4.13(x), we know that log n ≥ logMb +O(1). Hence, we write

− log
N ′∗wb
Mb

= − log
N ′∗wb
n
− log

n

Mb
,

where the last term, − log n
Mb

, is O(1). Similarly, the term Mb−N ′∗wb
Mb

is Mb−N ′∗wb
n + O(1).

Therefore, (4.42) becomes

log
(
Mb

N ′∗wb

)
≤ Mbh(pb)−

1
2

log n+O(1) (4.43)

+
1
2
δN ′∗wb,0 log n+

1
2
δN ′∗wb,Mb

log n− 1
2

(1− δMb,0) log
Mb

n

−1
2

(1− δN ′∗wb,0) log
N ′∗wb
n
− 1

2
(1− δN ′∗wb,Mb

) log
Mb −N ′∗wb

n
.

We now turn to the denominator
(Fµ1(w)∗

N∗w

)
of (4.28). We recall the shorthand notation Q

defined as Q = Fµ1(w)∗ + δsn,µ1(w). Then, the logarithm of
(Fµ1(w)∗

N∗w

)
is,

log
(
Fµ1(w)∗
N∗w

)
= log

(
Q

N∗w

)
+ δsn,µ1(w) log

Q−N∗w
Q

, N∗w < Q . (4.44)

80 4. Type classes of tree models

Defining q = N∗w/Q if Q > 0, and q = 0 otherwise, Lemma 4.25 yields, for 0 < N∗w < Q,

log
(
Fµ1(w)∗
N∗w

)
≥ Qh(q)− 1

2
logQ−O(1) + δsn,µ1(w) log

Q−N∗w
Q

. (4.45)

By Lemma 4.22, we know that N∗w ≤ Fµ1(w)∗ and, therefore, we have N∗w ≤ Q, by the
definition of Q. Since in the special case 0 < N∗w = Q the last term of (4.45) is zero if
δsn,µ1(w) = 0 and −∞ otherwise, (4.45) is in fact valid for 0 < N∗w ≤ Q.

If one or both of N∗w and Q is zero, then the left hand side of (4.45) vanishes, and also
h(q) = 0. The last term of (4.45) also vanishes in this case, since for Q = 0 we must have
δsn,µ1(w) = 0 by the definition of Q, and for N∗w = 0 with Q > 0 we have log Q−N∗w

Q = 0.
Thus, canceling the term −1

2 logQ when Q = 0 with a factor (1− δQ,0), we get the following
equation, which is valid for any value of N∗w and Q.

log
(
Fµ1(w)∗
N∗w

)
≥ Qh(q)− (1− δQ,0)

1
2

logQ−O(1) + δsn,µ1(w) log
Q−N∗w

Q
. (4.46)

Since Q = Fµ1(w)∗ + δsn,µ1(w) equals F∗µ1(w) by Lemma 4.13(ix), we know that log n ≥ logQ
by Part (x) of the same lemma. Therefore, for n > 0 we have

log
(
Fµ1(w)∗
N∗w

)
≥ Qh(q)− 1

2
log n−O(1) + δsn,µ1(w) log

Q−N∗w
n

. (4.47)

Notice that, since N∗w =
∑

bN
′
∗wb, we have Q =

∑
bMb by Lemma 4.25. Hence, for Q > 0,

we have q =
∑

b pb
Mb
Q , and we get, by Jensen’s inequality,

Qh(q) ≥
∑
b

Mbh(pb) , Q > 0 . (4.48)

If Q = 0, then Mb = 0 for all b ∈ A, and the inequality (4.48) still holds (with equality).
Therefore, summing (4.43) over all b ∈ A and subtracting (4.47) we get, from (4.28),

log Π(`w>1) ≤ −α− 1
2

log n+O(1) + log Πδ − δsn,µ1(w) log
Q−N∗w

n
(4.49)

+
∑
b

(
1
2
δN ′∗wb,0 log n+

1
2
δN ′∗wb,Mb

log n− 1
2

(1− δMb,0) log
Mb

n

−1
2

(1− δN ′∗wb,0) log
N ′∗wb
n
− 1

2
(1− δN ′∗wb,Mb

) log
Mb −N ′∗wb

n

)
.

As for Πδ, defined in (4.29), we have

log Πδ =
∑
i∈L

δsn,µi(w) log
F∗µi(w)

F ′∗µi(w)

, (4.50)

and by Lemma 4.13(x), we get

log Πδ ≤
∑
i∈L

δsn,µi(w) log
n

F ′∗µi(w)

. (4.51)

4.3. The expected size of a type class 81

Notice that sn = µi(w) implies that s′n = µi(w) 6= s′0, for |µi(w)| < |w|, and this in turn
implies that F ′∗µi(w) > 0, by Lemma 4.13(ix). Hence, we get

log Πδ ≤ −
`w−1∑
i=1

(1−δF ′∗µi(w)
,0) log

F ′∗µi(w)

n
, (4.52)

and substituting in (4.49) we get (4.39). 2

Remark. From (4.37) and (4.38), recalling that R = (|ET | − |VT |) /(α− 1)− |ST | in (4.38),
we obtain, by (4.39),

log |T ∗(xn)| ≤ log ΞT (xn) ≤ nĤT (xn)− |ET | − |VT |
2

log n+ f(T ∗(xn)) , (4.53)

where the first inequality comes from (4.25), and f(T ∗(xn)) is a summation of terms of
the form δz,z′ log n, coming from (4.39) and (4.37), with δz,z′ representing a zero/one valued
condition on certain counts of the matrix F . Equation (4.53) gives an upper bound on
log |T ∗(xn)| valid for every individual sequence. While this bound is tight to the main term
nĤT (xn) for FSM trees, we have already observed that, in general, log |T ∗(xn)| may be much
smaller than nĤT (xn) for some sequences. This gap between the right hand side of (4.53)
and log |T ∗(xn)| is explained by the difference between both sides of (4.48), respectively∑

bMbh(pb) and Qh(q), which come from taking logarithms and applying Lemma 4.25 to the
numerator and denominator of the quotient that defines Π(`w>1) in (4.28). As observed in
Example 4.23, the denominator in (4.28) may be large. Equation (4.39), and thus (4.53), could
be sharpened by including on the right hand side a term of the form

∑
bMbh(pb) − Qh(q),

which was neglected in Lemma 4.28. Although, as we shall see, a term of this form has
no effect on the main terms of the expectation of log |T ∗(xn)|, for individual sequences, the
magnitude of a negative term of the form −Qh(q) may be comparable to nĤT (xn), as we
saw in Example 4.23. Besides the intuition for Π(`w>1) given in our discussion following
Lemma 4.22 in terms of the pseudo-state transition graph, we currently have no obvious
interpretation of the difference

∑
bMbh(pb) − Qh(q) in terms of symbol occurrence counts

of xn in the states of T . It is not clear whether there exists a more elementary asymptotic
expression for the logarithm of the type class size for individual sequences, and we leave it as
an open question.

If for each term of (4.39) of the form δz,0 log n, and −(1 − δz,0) log z
n , there existed a

pattern string y such that z ≥ ny(xn), then we could apply Lemma 4.26 to upper-bound the
expectation of these terms by a constant, for tree models with all conditional probabilities
positive. We will show that this condition indeed holds for canonical context trees. We point
out that this is not necessarily true, in general, and here we make full use of Corollary 4.21,
by which we assume without loss of generality that the context tree for which we analyze the
formula (4.15) of Theorem 4.15 is canonical. Consider a forgetful state s of T , i.e., as ∈ I(T)
for all a ∈ A. Clearly, for all j < n such that sj = s, we have j 6∈ J(xn) for `sj+1 > 1.
Also, since as 6∈ U for all a ∈ A, we know that ∆̃+(t)s∗ = 0 for all states t. Hence, by
Lemma 4.13(vii), we have Ds∗ = 0. Since also Bs∗ = 0 by definition, for s ∈ ST , we conclude

82 4. Type classes of tree models

that Fs∗ = 0. Thus, by Lemma 4.13(ix), noting that s0 6= s for s0 is of maximal depth, we get
F∗s = δsn,s. As a consequence, if ρ(u) = s, then Bu,ρ(u)(xn) ≤ 1 for all strings xn. Therefore,
if a context tree is not canonical we may find situation in which, for example, Mb−N ′∗wb ≤ 1
for all strings xn.

For a canonical context tree T and pseudo-states u, v we show next that either Fu,v(xn) = 0
for all strings xn, or there exists a pattern string y such that Fu,v(xn) ≥ ny(xn). We define
the pseudo-state transition support graph, G(F)

T = (V (F)

T , E(F)

T), for an arbitrary context tree T ,
as follows: take V (F)

T = U , and E(F)

T comprised of all the edges (u, v) of the form

• u = µi(s), v = µi+1(s) for some s ∈ ST , 1 ≤ i < `s.

• u ∈ ST and v = τ(u, b) for some b ∈ A.

• v = ρ(u) and tail(u) ∈ T .

4.29. Lemma. If T is canonical, then for every (u, v) ∈ E(F)

T there exists a fixed string y such
that Fu,v(xn) ≥ ny(xn).

The proof is deferred to Appendix D. Notice that whenever Fu,v(xn) is positive, (u, v)
must be an edge of E(F)

T by parts (vii) and (xi) of Lemma 4.13. Thus, the incidence matrix of
the graph G(F)

T is the support matrix of F when T is canonical. Lemma 4.29, together with
Lemma 4.28, allows now for bounding the expected logarithm of the factors Πi in Lemma 4.24.

4.30. Lemma. Let 〈T̃ , pT̃ 〉 be a tree source with all conditional probabilities positive. Let T ′

and T be consecutive context trees in a refinement sequence for T̃ , such that T ′ is obtained
from T by a single refinement of a state w with `w > 1 in T . Then, if T and T ′ are canonical,
the factor Π(`w>1) in (4.28) satisfies

E〈T̃ ,pT̃ 〉
[

log Π(`w>1)
]
≤ −α− 1

2
log n+O(1) .

Proof.
The terms δN ′∗wb,0 log n and −(1−δN ′∗wb,0) log N ′∗wb

n in (4.39), have constant expectation by
Lemma 4.26. Also, since Mb ≥ N ′∗wb by the definition of Mb, the term −(1− δMb,0) log Mb

n is

bounded from above by −(1−δN ′∗wb,0) log N ′∗wb
n +δN ′∗wb,0 log n, where the second term accounts

for those cases in which N ′∗wb = 0 but Mb > 0. Hence, the term −(1− δMb,0) log Mb
n in (4.39)

has also constant bounded expectation.
Notice that µ1(w)b ∈ U ′ for all b ∈ A, as it belongs to the forced pseudo-state sequence

of the state wb. Also tail(µ1(w)b) ∈ T ′ since tail(µ1(w)) is an internal node of T by (4.6).
Hence, (µ1(w)b, ρ′(µ1(w)b)) ∈ E(F)

T ′ , and if T ′ is canonical, by Lemma 4.29, there exists a
pattern string zb such that

B′µ1b,ρ ≥ nzb(x
n) .

Then, recalling that Mb = B′µ1b,ρ
+N ′∗wb, we see that δN ′∗wb,Mb

= 1 implies B′µ1b,ρ
= 0, which

in turn implies δnzb ,0 = 1. Hence, the expectation of the term δN ′∗wb,Mb
log n in (4.39) is O(1),

4.3. The expected size of a type class 83

since it is bounded from above by δnzb ,0 log n. Also the term −(1 − δN ′∗wb,Mb
) log Mb−N ′∗wb

n ,
from (4.39), is bounded as

−(1− δN ′∗wb,Mb
) log

Mb −N ′∗wb
n

≤ −(1− δnzb ,0) log
nzb
n

+ δnzb ,0 log n ,

where the last term accounts for those cases in which nzb = 0 but B′µ1b,ρ
> 0. As a conse-

quence, the term −(1− δN ′∗wb,Mb
) log Mb−N ′∗wb

n is also constant bounded in expectation.
We now analyze the term −δsn,µ1(w) log Q−N∗w

n , from (4.39). When µ1(w) 6∈ U ′, µ1(w)
is not a state of T and therefore δsn,µ1(w) is constantly equal to zero. If on the other hand
µ1(w) ∈ U ′, we recall that Q = Fµ1(w)∗ + δsn,µ1(w) and, by Lemma 4.22, we have

Q−N∗w = Σ =
∑
b∈A

B′µ1b,ρ .

If sn = µ1(w), also s′n = µ1(w) for µ1(w) 6= w. Hence, F ′∗µ1(w) > 0 by Lemma 4.13(ix).
Since tail(µ1(w)) is an internal node of T by (4.6), and a fortiori it is an internal node of T ′,
∆̃′

+
(s)∗µ1(w) = 0 for all states s of T ′. Moreover, µ1(w) has a full complement of children,

{µ1(w)b : b ∈ A}, in U ′, and therefore there is no state s of T ′ such that τ ′(s, a) = µ1(w). As a
consequence, by Lemma 4.13(vii), we have D′∗µ1(w) = 0 and therefore F ′∗µ1(w) = B′∗µ1(w) = Σ.
We conclude that if sn = µ1(w), then Σ > 0. Thus, we have

−δsn,µ1(w) log
Q−N∗w

n
≤ −(1− δΣ,0) log

Σ
n
.

Fixing any symbol b ∈ A, and taking zb such that B′µ1b,ρ
≥ nzb(xn), we further bound

−(1− δΣ,0) log
Σ
n
≤ −(1− δnzb ,0) log

nzb
n

+ δnzb ,0 log n ,

where the second term accounts for those cases in which nzb = 0 but Σ > 0. Hence, the term
−δsn,µ1(w) log Q−N∗w

n in (4.39) has constant bounded expectation.
It remains to bound the expectation of the term of (4.39) given by

−
`w−1∑
i=1

(1−δF ′∗µi(w)
,0) log

F ′∗µi(w)

n
. (4.54)

Consider a pseudo-state v = µi(w) of T with i < `w. If v is not a pseudo-state of T ′, the

term (1 − δF ′∗µi(w)
,0) log

F ′∗µi(w)

n of (4.54) is constantly equal to zero. If v ∈ U ′, we claim

that there exists v′ ∈ U ′ such that (v′, v) ∈ E(F)

T ′ . Since v ∈ U ′, there exists a state t of T ′

such that v = µj(t) for some 1 ≤ j ≤ `t. Let u = tail(v). If u 6∈ T ′, then u = µj−1(t)
and (u, v) ∈ E(F)

T ′ . If otherwise u ∈ T ′, let s be a state of T ′ such that u � s, and let
a = head(v). Then, either τ ′(s, a) = v, in which case (s, v) ∈ E(F)

T ′ , or τ ′(s, a) ∈ Λ̄(v), in
which case there exists v′ such that v ≺ v′ � τ ′(s, a) and ρ′(v′) = v. Since tail(v′) � s, we
have (v′, v) ∈ E(F)

T ′ . The claim is proved, and therefore, by Lemma 4.29, there exists a pattern

string yi such that F ′∗µi(w) ≥ nyi(x
n). Hence, (1− δF ′∗µi(w)

,0) log
F ′∗µi(w)

n is bounded from above

84 4. Type classes of tree models

by (1 − δnyi ,0) log nyi
n + δnyi ,0 log n, where the second term accounts for those cases in which

nyi = 0 but F ′∗µi(w) > 0. 2

Lemmas 4.24, 4.27, and 4.30 yield the following bound on the expectation of log ΞT , valid
for a canonical context tree.

4.31. Lemma. Let 〈T, pT 〉 be a tree source with entropy rate H, such that T is canonical and
all conditional probabilities are positive. Then,

E〈T,pT 〉
[

log ΞT
]
≤ nH− |ET | − |VT |

2
log n+O(1) . (4.55)

Proof. By Lemma 4.24 and Lemma 4.27,

E〈T,pT 〉
[

log ΞT
]
≤ nH− α− 1

2
|ST | log n+O(1) +

R∑
i=1

E〈T,pT 〉
[

log Πi

]
,

where R = (|ET | − |VT |) /(α − 1) − |ST |, and each Πi has the form of (4.28) applied to
consecutive context trees of a refinement sequence for T . By Lemma 4.30, it then suffices
to show that all subtrees in a refinement sequence for T are canonical. Indeed, in this case,
E〈T,pT 〉

[
log Πi

]
≤ −α−1

2 log n+O(1) and therefore

E〈T,pT 〉
[

log ΞT
]
≤ nH− α− 1

2
|ST | log n−Rα− 1

2
log n+O(1) ,

from which (4.55) follows.
Suppose a context tree Ti of a refinement sequence for T is not canonical. Then, there

exists a state s of Ti such that as is an internal node of Ti for every symbol a. Thus, we have
depth(Ti) > |s|+ 1, and a fortiori, depth(Tj) > |s|+ 1 for all j > i. Hence, s is never refined
after step i of the refinement sequence. This implies that s is also a state of T , leading to a
contradiction since T is canonical. 2

The right hand side of (4.55) in Lemma 4.31 already gives an upper bound on
E〈T,pT 〉

[
log |T ∗(Xn)|

]
for T canonical, as M ≤ 1 in the formula (4.15) of Theorem 4.15.

We next show that imposing a fixed final state on the strings of T (xn), as in the definition
of T ∗(xn), does not significantly diminish the size of T (xn). Therefore, log |T (xn)| and
log |T ∗(xn)| have asymptotically the same expectation. The proof amounts to bounding
|T (xn)| by ΞT (xn) affected by a factor π(xn), whose logarithm is shown to be constant
bounded in expectation. Once again we apply Lemma 4.29 to bound the expectation of terms
of the form − log z

n .

4.32. Lemma. Let 〈T, pT 〉 be a tree source with entropy rate H, such that T is canonical and
all conditional probabilities are positive. Then,

E〈T,pT 〉
[

log |T (Xn)|
]
≤ nH− |ET | − |VT |

2
log n+O(1) . (4.56)

4.3. The expected size of a type class 85

Proof. We claim that |T (xn)| ≤ π(xn)ΞT (xn), with π(xn) = O
(∏

u
n

Fu∗+1

∏
u,v

n
Fu,v+1

)
,

where the indexes u and v take values in all pseudo-states such that Fu,v(yn) is positive for
some string yn. By Corollary 4.3, T (xn) = T ∗(xn) for all strings xn such hat sn−1(xn) and
xn determine sn(xn). Hence, |T (xn)| ≤ ΞT (xn) for all such strings, as M ≤ 1 in (4.15).
Otherwise, let xn be a string with final state sn(xn) = s, such that sn−1(xn) and xn do not
determine sn(xn). Again by Corollary 4.3 we have |T (xn)| = |T ∗(xn−1)| ≤ ΞT (xn−1). Now,
N(xn) − N(xn−1) = 1u,sn and, by (4.10), K(xn) − K(xn−1) = 1u,sn + Θ(sn). Also since
d(u, sn) = 0 by definition, we get from (4.11),

D(xn)−D(xn−1) = 1u,sn + Θ(sn) +
∑

t,w∈ST

Θ(sn)t,wd(t, w) .

Hence, given the final state s = sn(xn), the difference D(xn) − D(xn−1) is a constant in-
dependent of n and of xn. From the definition of B in (4.12), we see that the difference
B(xn)−B(xn−1) is determined by D(xn)−D(xn−1), and therefore it is also constant for the
given final state s. As a consequence, for each state s such that tail(s) 6∈ T (i.e., sn−1(xn)
and xn do not determine sn(xn) if sn(xn) = s), there exists a constant matrix ε, such that
F (xn−1) = F (xn)+ε for all strings xn with final state s. Then, denoting F = F (xn), we have

ΞT (xn−1)
ΞT (xn)

=
∏
i(Fi∗ + εi∗)!∏
i,j(Fi,j + εi,j)!

/ ∏
i Fi∗!∏
i,j Fi,j !

=
∏
i(Fi∗ + εi∗)!∏

i Fi∗!
·

∏
i,j Fi,j !∏

i,j(Fi,j + εi,j)!
.

Defining Φ+ = {i : εi∗ > 0}, Φ− = {i : εi∗ ≤ 0}, Ω+ = {(i, j) : εi,j > 0}, and Ω− = {(i, j) :
εi,j ≤ 0}, we can write

ΞT (xn−1)
ΞT (xn)

=
∏
i∈Φ+

∏εi∗
k=1(Fi∗ + k)∏

i∈Φ−
∏−εi∗−1
k=0 (Fi∗ − k)

·
∏

(i,j)∈Ω−
∏−εi,j−1
k=0 (Fi,j − k)∏

(i,j)∈Ω+

∏εi,j
k=1(Fi,j + k)

. (4.57)

For each i, there are −
∑

(i,j)∈Ω− εi,j factors of the form Fi,j − k in the numerator, and∑
(i,j)∈Ω+ εi,j factors of the form Fi,j + k in the denominator. Since εi∗ =

∑
(i,j)∈Ω− εi,j +∑

(i,j)∈Ω+ εi,j , the total number of factors in the numerator of (4.57) equals the total number
of factors in the denominator. We then have,

ΞT (xn−1)
ΞT (xn)

=
∏
i∈Φ+

∏εi∗
k=1(Fi∗ + k)/n∏

i∈Φ−
∏−εi∗−1
k=0 (Fi∗ − k)/n

·
∏

(i,j)∈Ω−
∏−εi,j−1
k=0 (Fi,j − k)/n∏

(i,j)∈Ω+

∏εi,j
k=1(Fi,j + k)/n

.

By Lemma 4.13(x), Ft∗ ≤ n for all t ∈ U , and of course also Ft∗ + εt∗ = Ft∗(xn−1) ≤ n.
Hence, all factors Fi∗ ± k and Fi,j ± k, are bounded from above by n, and therefore,

ΞT (xn−1)
ΞT (xn)

≤
∏
i∈Φ−

−εi∗−1∏
k=0

n

Fi∗ − k
·
∏

(i,j)∈Ω+

εi,j∏
k=1

n

Fi,j + k
,

86 4. Type classes of tree models

which we can further bound by

ΞT (xn−1)
ΞT (xn)

≤
∏
i∈Φ−

−εi∗
n

Fi∗ + εi∗ + 1
·
∏

(i,j)∈Ω+

εi,j
n

Fi,j + 1
.

The factor n
Fi∗+εi∗+1 is n

Fi∗+1
Fi∗+1

Fi∗+εi∗+1 , and the latter is bounded from above by n
Fi∗+1(−εi∗+1).

Hence, we get

ΞT (xn−1)/ΞT (xn) = O

∏
i∈Φ−

n

Fi∗ + 1

∏
(i,j)∈Ω+

n

Fi,j + 1

 .

The claim then follows since this is valid for all possible final states, and there are finitely
many of them.

Now, since T is canonical, Lemma 4.29 states that for each u, v such that Fu,v(yn) is posi-
tive for some string yn, there exists a string z such that Fu,v(xn) ≥ nz(xn). As a consequence,

log
n

Fu∗(xn) + 1
≤ log

n

Fu,v(xn) + 1
≤ log

n

nz(xn) + 1
,

which has constant bounded expectation by Lemma 4.26. 2

Lemma 4.32 and Corollary 4.21 yield Theorem 4.18.

4.4 The number of type classes

We study the number of type classes induced on An by a context tree T , i.e., the number of
T -classes. The main result of this section establishes a formula that is asymptotically tight
up to multiplication by a constant. We can equivalently address the problem of counting the
number of T -classes∗, denoted NT , since, by the definition of close-ended type class, every
T -class is subdivided in up to a constant number of T -classes∗, one for each possible final
state. The following theorem presents the main result of the section.

4.33. Theorem. Let T be a context tree, and let Tc be the minimal canonical extension of
T . Then, NT = Θ

(
n|ETc |−|VTc |

)
.

Once again, when T is FSM, T = Tc, and |ETc |−|VTc | = (α−1)|ST |, in agreement with
known results for FSMs [83].

We develop some needed tools, based on graph theory, which will be used in the proof
of Theorem 4.33. Again, we loosely follow [5]. Consider a graph G = (V,E). A chain is
an alternating sequence of vertices and edges v1, e1, v2, e2 · · · vm, em, vm+1 satisfying either
ei = (vi, vi+1) or ei = (vi+1, vi). We recall that we allow multiple parallel, distinguishable,
directed edges between the same pair of nodes. A chain is closed if v1 = vm+1 , it is simple if
ei 6= ej for i 6= j, and it is elementary if all vertices are different except possibly for v1 and vm+1

that may coincide. The number of edges in a chain is called the length of the chain. A cycle
is a closed simple chain. Notice that a path, as defined at the end of Section 4.1, corresponds

4.4. The number of type classes 87

to a chain where every edge is traversed in the forward direction, i.e., ei = (vi, vi+1) for
all i = 1 · · ·m. Similarly, a circuit is a cycle where every edge is traversed in the forward
direction.

We say that a graph is connected if any two vertices, u,w, can be joined with a chain
u = v1, e1, v2, e2 · · · vm, em, vm+1 = w. We say that graph is strongly connected if for any two
vertices, u,w, there exists a path from u to v and also a path from v to u. A graph is a tree
if it is connected and has no cycles.6 A spanning tree of G = (V,E) is a tree, G′ = (V,E′),
with the same set of vertices as G and with E′ ⊂ E. If a tree has a vertex, u, such that there
exists a path from v to u for all vertices v, then u is called a sink of the tree (a tree can have
at most one sink).

We associate to a chain in G, γ = v1, e1 · · · vm, em, vm+1, a vector ζ(γ) from Z|E| indexed
with elements from E defined as

ζ(γ)e = |{i = 1 · · ·m : e = (vi, vi+1)}| − |{i = 1 · · ·m : e = (vi+1, vi)}| .

The subspace of R|E| spanned by {ζ(γ) : γ is a cycle } is called the cycle space of G and
it is known to have dimension |E| − |V |+ 1 for strongly connected graphs [5]. A circuit basis
for the cycle space is a basis formed by vectors ζ(ci) where every ci is an elementary circuit.
We will make use of the following result from [5].

4.34. Proposition. [5] Every strongly connected graph has a circuit basis.

Let G = (V,E) be a 1-graph. We recall that Z, Z≥0, and Z>0 denote the integers, the
nonnegative integers, and the positive integers, respectively. An assignment of counters for
G is a vector in Z|E|≥0 , indexed by elements of E. The assignment η is said to be cyclic
if and only if it satisfies the flow conservation equations

∑
e=(u,v) ηe =

∑
e=(v,w) ηe for all

v ∈ V ; it is said to be connected if eliminating edges e with ηe = 0 from E results in
a strongly connected graph. Every state sequence s0(xn), s1(xn) · · · sn(xn), with sn = s0

determines a closed path in the state transition support graph GT . Therefore, in this case,
η(u,v) = N(xn)u,v ∀(u, v) ∈ ET is a cyclic assignment of counters for GT , where we recall
that N(xn) denotes the state transition matrix of xn. Furthermore, if all states are visited in
the state sequence, the assignment of counters is also connected. The key idea in the proof
of Theorem 4.33 is to establish a correspondence between cyclic connected assignment of
counters in a graph, and Tc-classes∗ with sn = s0 (the condition sn = s0 can then be removed
easily without affecting the asymptotics of the theorem). To establish the correspondence,
we need a few more definitions.

For a 1-graph G = (V,E), a weight function ψ assigns a nonnegative integer weight to
each edge of G. Notice that weight functions and assignment of counters are the same kind
of objects as both assign a nonnegative integer to each edge of a 1-graph. We make the
distinction, however, since they are intended for conceptually different purposes. We will
regard weight functions as fixed objects that depend only on the context tree T . On the other

6Since the direction of an edge is not relevant for the construction of chain or a cycle, these notions

of connected graph and tree coincide with the usual definitions for non directed graphs. Our derivations,

however, will still be based on directed graphs.

88 4. Type classes of tree models

hand, we will associate assignments of counters satisfying certain properties to Tc-classes∗,
and we will bound the number of such assignments. We extend a weight function ψ to paths
by defining the weight of a path as the sum of the weights of its edges. We also define the
weight of an assignment of counters η as ψ(η) =

∑
e∈E ψ(e)ηe.

The following lemma will be the main tool for the proof of Theorem 4.33.

4.35. Lemma. Let G = (V,E) be a strongly connected 1-graph and ψ a weight function for
G such that G has no circuits of weight zero and at least one circuit of weight one. Then,

(i) The number of cyclic connected assignments of counters of weight n for G is bounded
from below, for large n, by Cn|E|−|V | where C depends only on G and ψ.

(ii) A cyclic assignment of counters η, of weight n, is fully determined by the values ηe for
a set E∗ of |E| − |V | edges. In particular E∗ can be chosen to be any set of the form
E∗ = E\ ({a∗} ∪ T ∗) where a∗ is the only edge of weight one in a circuit of weight one,
and T ∗ is a spanning tree with sink at the source of a∗.

Proof. We first prove Part (i). Let C = {ζ(c1) · · · ζ(c|E|−|V |+1)} be a circuit basis for the
cycle space of G, and let c′ be a circuit of G of weight one. Notice that only one edge of c′

has weight one, and the rest, if any, have weight zero. Hence, c′ must be elementary, as there
are no circuits of weight zero in G. Since ζ(c′) belongs to the cycle space of G, there exists a
non trivial linear combination ζ(c′) =

∑|E|−|V |+1
i=1 αiζ(ci), αi ∈ R. Taking i such that αi 6= 0,

and replacing ζ(ci) by ζ(c′) in C, the spanned subspace of R|E| does not change. Hence, we
can assume without loss of generality that c1 is an elementary circuit of G of weight one.

Consider arbitrary vertices u, v ∈ V . Since G is strongly connected, there exists a circuit
γ that passes through u and v. As ζ(γ) belongs to the cycle space of G, there exists a
linear combination ζ(γ) =

∑|E|−|V |+1
i=1 αiζ(ci), with αi ∈ R. Thus, the set of edges of γ is a

subset of the union of the set of edges of all circuits ci. Hence, since u and v are arbitrary,
any linear combination

∑|E|−|V |+1
i=1 kiζ(ci) with ki ∈ Z>0, generates a cyclic assignments of

counters for G that is connected. Moreover, since C is a basis of the cycle space, different
linear combinations generate different cyclic connected assignments of counters for G. Thus,
there are at least as many cyclic connected assignments of counters of weight no grater than
n, as compositions of bn/maxψ(ci)c in |E| − |V |+ 1 positive summands. Each assignment η
obtained in this way can be completed to an assignment η′ of weight n adding copies of c1,
which is a fixed circuit of weight 1. Specifically, if η =

∑
i kiζ(ci), we take

η′ = (k1 + n− ψ(η))ζ(c1) +
∑
i>1

kiζ(ci) .

Now, since we have
∑

i ki = bn/maxψ(ci)c, k1 is determined by the remaining coefficients
k2 · · · k|E|−|V |+1, and this in turn completely determines η′. This way, different linear com-
binations with

∑
i ki = bn/maxψ(ci)c generate different connected assignments of coun-

ters of weight n. Thus, we have at least as many cyclic connected assignments of counters
of weight n, as compositions of m = bn/maxψ(ci)c in |E| − |V | + 1 positive summands.
The proof of Part (i) is completed by recalling that the number of such compositions is(
m−1
|E|−|V |

)
= Ω

(
m|E|−|V |

)
.

4.4. The number of type classes 89

We now turn to Part (ii). Let γ = e1e2 · · · er be an elementary circuit of weight 1 in G

with ψ(er) = 1, and ψ(ei) = 0 for i = 1 · · · r−1. Let T be a spanning tree of G with a sink at
the source of er, with a set of edges ET ⊃ {e1 · · · er−1}. Such T can be constructed in |V | − r
steps, starting with the set of edges {e1 · · · er−1} together with its r different adjacent vertices,
and adding an edge e in each step, in such a way that the destination of e is in T , but the
source is not yet in T . We will show that the values of ηe for e ∈ ET ∪ {er} can be computed
from the remaining values, which we regard as given. Let Vγ be the set of vertices of γ, and
for v ∈ V , let d(v) be the distance in T from v to Vγ , i.e., the length of the unique path in T
from v to a vertex of Vγ . For each v ∈ V \Vγ we will show how to compute ηev for the unique
edge ev, with source v, which belongs to ET . We take all the vertices v ∈ V \Vγ in decreasing
order of d(v). For each edge e = (u, v) with destination v, either e 6∈ ET , or d(u) = d(v) + 1.
In any case, the value ηe is known, as either it is given, or it has already been computed.
Since the value ηe is known for all edges e 6= ev with source v, we can compute ηev from the
flow conservation equation

∑
e=(u,v) ηe =

∑
e=(v,w) ηe. After finishing this process, we finally

get to know ηe for all edges e except for those in γ, the unique circuit of ET ∪ {er}. We can
now compute ηer as n −

∑
e∈E\{e1···er} ηeψ(e) and continue calculating ηe for e = e1 · · · er−1,

using the flow conservation equation. 2

Since Tc is a refinement of T , we have NT ≤ NTc . By Lemma 4.5, determining NTc

is in turn equivalent to counting the number of |STc |×|STc | matrices M for which there
exists a sequence xn with Nc(xn) = M , where Nc(xn) is the state transition matrix of xn

with respect to Tc. We will use Part (ii) of Lemma 4.35, applied to the state transition
support graph of Tc, G = GTc , to bound the number of such matrices M for which there
exists a sequence xn with Nc(xn) = M and sn(xn) = s0. We will then show that the
condition sn(xn) = s0 can be removed without affecting the asymptotic result. This will
prove the relation NT = O(n|ETc |−|VTc |), required by the claim in Theorem 4.33. The proof
will be constructive, yielding an algorithm that recovers Nc given a well characterized set of
|ETc |−|VTc | of its entries and the final state sn.

As for the relation n|ETc |−|VTc | = O(NT), also claimed in the theorem, recall that by
Corollary 4.21, T and Tc define the same type classes. Hence, each T -class∗ with final state s,
is partitioned into a constant number of Tc-classes∗, one for each possible final state su that
refines s in Tc. As a consequence, we have NTc = O(NT), and therefore it suffices to show that
n|ETc |−|VTc | = O(NTc) . However, this is more involved than simply applying Lemma 4.35 to
GTc , since some closed paths in GTc may not correspond to a valid state sequence (in analogy
to Example 4.6). Instead, in Lemma 4.36 below, we apply Lemma 4.35 to the pseudo-state
transition support graph of Tc, G = G(F)

Tc
, defined in Section 4.3, just before Lemma 4.29.

In the application of Lemma 4.35 we take ψ(e) = |ω(e)|, where ω is the tagging function of
Theorem 4.15, and we are interested in assignments of counters of weight n to G(F)

Tc
. The

connection between the set of cyclic connected assignments of counters in G(F)

Tc
and the set

of Tc-classes∗, is given by the tagging function ω, and Lemma 4.14. This line of reasoning is
formalized in the following lemma.

4.36. Lemma. Consider a canonical context tree T with pseudo-state transition support graph

90 4. Type classes of tree models

G(F)

T = (V (F)

T , E(F)

T). The number of T -classes∗ for sequences of length n with initial state s0,

and a final state sn, is bounded from below for large n by Cn|E
(F)
T |−|V

(F)
T | where C is a positive

constant that depends only on T .

Proof. We first show that G(F)

T is strongly connected. By Lemma 4.29, for each edge e = (u, v)
of G(F)

T there exists a pattern string ye, such that Fu,v(ym) > nye(ym). Hence, taking ym as
the concatenation of the patterns7 ye for all edges of G(F)

T , we know that Fu,v(yms0) > 0 for
all (u, v) ∈ E(F)

T . By Theorem 4.15, we have yms0 = ω(γ) where γ is an Eulerian path from s0

to s0 (i.e., a circuit) in GF (yms0). Now, if u ∈ U is a pseudo-state, by the definition of G(F)

T , u
is the endpoint of some edge in G(F)

T . Thus, since Fu,v(yms0) > 0 for all (u, v) ∈ E(F)

T , γ visits
all pseudo-states of U , and therefore GF (yms0) is strongly connected. Now, by parts (vii)
and (xi) of Lemma 4.13, if there exists an edge (u, v) in GF (yms0), i.e., Fu,v(yms0) > 0, then
(u, v) ∈ E(F)

T . Hence, G(F)

T is also strongly connected as claimed.
Let ψ be a weight function for G(F)

T defined as ψ(e) = |ω(e)|. By the definitions of G(F)

T

and ψ, there are no circuits of weight zero in G(F)

T . Also for b ∈ A and s = σT (bbb · · ·) there
is a circuit of weight 1 starting from s, for either τ(s, b) = s, or τ(s, b) = bs. In the former
case (s, e1, s) is a circuit of weight 1. In the latter case, (s, e1, bs, e2, s) is a circuit of weight
1, as tail(bs) = s ∈ T , and therefore (bs, ρ(bs) = s) is an edge of E(F)

T . We are then under the
assumptions of Lemma 4.35.

Let Φ be the set of connected assignments of counters of weight n for G(F)

T , such that∑
e=(u,v)∈E(F)

T

ηe + δs0,v =
∑

e=(v,w)∈E(F)
T

ηe + δsn,v , ∀ η ∈ Φ, v ∈ V (F)

T .

We claim that |Φ| bounds from below the number of close-ended type classes for sequences
of length n with initial state s0, and a final state sn. Let η ∈ Φ, and let GF ′ be a graph
with incidence matrix F ′u,v = η(u,v) for all u, v ∈ V (F)

T . Since η ∈ Φ, there exists an Eulerian
path γ from s0 to sn in GF ′ . The path γ defines, via the tagging function ω, a string of
length n, xn = ω(γ). By Lemma 4.14(i), the final state of xn is sn, and by Theorem 4.15,
there exists an Eulerian path γ′ from s0 to sn in GF (xn), such that xn = ω(γ′). Hence, we
have ω(γ) = ω(γ′), and by Lemma 4.14(ii), we get F (xn) = F ′. Thus, for every η ∈ Φ, there
exists a string xn with pseudo-state transition matrix F (xn) given by η. Since F (xn) is a
function of N(xn), then F (xn) 6= F (yn) implies N(xn) 6= N(yn), and this in turn implies that
T ∗(xn) 6= T ∗(yn) by Lemma 4.5. Hence, there are at least as many close-ended type classes
as assignments of counters in Φ.

Let γ′ be a fixed path from s0 to sn in G(F)

T . For each cyclic connected assignment of
counters η′ of weight n − ψ(γ′) for G(F)

T , the assignment of counters η = η′ + ζ(γ′) belongs

to Φ. Hence, by Lemma 4.35(i), we have |Φ| ≥ C(n− ψ(γ′))|E
(F)
T |−|V

(F)
T |, which concludes the

proof.
2

7Recall that nye(ym) is the number of occurrences of the reverse of ye in ym−1.

4.4. The number of type classes 91

To prove that n|ETc |−|VTc | = O(NT) as required for Theorem 4.33 we will show that, for
any context tree T , we have |E(F)

T | − |V
(F)

T | = |ET | − |VT |. The claim will then follow from
Lemma 4.36. To prove this we will need some auxiliary results.

For s ∈ ST we define A(s) as the set of edges in E(F)

T associated to forced pseudo-state
sequences of all states s′ for which s is the first state, ν1(s′), of the forced state sequence of
s′. Thus,

A(s) = {(µi(s′), µi+1(s′)) ∈ E(F)

T : s′ ∈ ST , 1 ≤ i < `s′ , ν1(s′) = s} . (4.58)

We also define B(s) as the set of edges in E(F)

T associated to context-dropping transitions of
the form (u, ρ(u)), where u and its parent, ρ(u), are entry points for the forced pseudo-state
sequences of states s′ and s′′ such that s is the first state in the forced state sequence of both
s′ and s′′, i.e., u = µ1(s′), ρ(u) = µ1(s′′), and ν1(s′) = ν1(s′′) = s. Formally,

B(s) = {(u, ρ(u)) ∈ E(F)

T : u ∈ Λ̄(s), tail(u) ∈ I(T)} , (4.59)

where we recall that Λ̄(s) is the set of proper descendants of s defined in Section 4.1. The
condition tail(u) ∈ I(T) guarantees, by (4.6), that there exist states s′ and s′′ such that
u = µ1(s′) and ρ(u) = µ1(s′′), and the condition u ∈ Λ̄(s) guarantees that ν1(s′) = ν1(s′′) = s.
Let A−(s) be the set of edges of A(s) where the order of the source and destination is inverted
A−(s) = {(v, u) : (u, v) ∈ A(s)} and let V(s) be the union of {s} with the set of endpoints of
the edges in B(s) ∪ A−(s). We denote by S1 the set of states s ∈ ST such that no forced state
sequence is imposed to reached s, i.e., S1 = {s ∈ ST : `s = 1}. We will show that for each
state s′ in ST \ S1, its forced pseudo-state sequence entry point, µ1(s′), is an endpoint of an
edge in B(s) for some s ∈ S1. Thus, we can construct a path from s′ to s = ν1(s′) following
edges from A−(s) and B(s). More specifically, we show the following lemma.

4.37. Lemma. For all s ∈ ST the 1-graph (V(s), B(s) ∪ A−(s)) is a tree with sink s. When
s ∈ ST \ S1, the set B(s) ∪ A−(s) is empty, and V(s) = {s}. Furthermore, {V(s) : s ∈ S1} is a

partition of the set of vertices V (F)

T .

Proof. When s 6∈ S1, we have tail(s) 6∈ I(T) and, therefore, tail(u) 6∈ I(T) for every
u ∈ Λ̄(s). Hence B(s) is empty for s 6∈ S1. Furthermore, if ν1(s′) = s, then s � µ1(s′) and,
hence, by (4.6), we have tail(s) ∈ I(T). Thus, A(s) is also empty for s 6∈ S1. This proves that
B(s) ∪A−(s) is empty for s in ST \ S1.

Next, we prove that for any state s, the 1-graph (V(s), B(s) ∪A−(s)) is a tree with sink s.

We first show that every node in V(s) is the source of at most one edge in B(s) ∪ A−(s). If
(u, ρ(u)) ∈ B(s), then tail(u) ∈ I(T). Thus, we have tail(u) 6∈ U and, therefore, (tail(u), u) is
not an edge of A(s). Hence, (u, ρ(u)) is the only edge departing from u. If (u, v) is an edge in
A−(s), then we have u = µi+1(s′) and v = µi(s′) for some state s′ and some 1 ≤ i < `s′ . Thus,
the destination v = tail(u) is uniquely determined by u and, hence, (u, v) is the only edge
departing from u in A−(s). Furthermore, since tail(u) = v and v ∈ U , we have tail(u) 6∈ I(T)
and, therefore, u is not the source of any edge in B(s).

92 4. Type classes of tree models

We now show that from every u ∈ V(s) there exists a path in (V(s), B(s) ∪ A−(s)) from u to
s. The claim is trivially true for u = s. Assume now that it is also true for all u′ ∈ V(s) such
that |u′| < |u|. If u ∈ Λ̄(s) and tail(u) ∈ I(T), then (u, ρ(u)) ∈ B(s) and, since |ρ(u)| < |u|,
we have a path to s. In other case, we have that (u, tail(u)) must be an edge of A−(s) and,
since |tail(u)| < |u|, we have a path to s.

The claim that (V(s), B(s) ∪A−(s)) is a tree with sink s follows from the fact that s has no
outgoing edge in (V(s), B(s) ∪ A−(s)). Indeed, s is not the source of any edge in B(s) (because
s 6∈ Λ̄(s)) and, when A(s) is not empty, we have already shown that s must belong to S1.
Thus, s is not the destination of any edge of the form (µi(s′), µi+1(s′)).

We next show that {V(s) : s ∈ S1} is a partition of the set of vertices V (F)

T . Notice that⋃
s∈S1

V(s) covers the set V (F)

T = U , since, by the definition of U , every u ∈ U must be the
destination of an edge of A(s) for some s, or it must belong to S1. If u is an endpoint of an
edge of both A(s) and A(t) for some s, t ∈ S1, we have that u = µi(s′) for some i, 1 ≤ i ≤ `s′

and s′ ∈ ST with ν1(s′) = s, and u = µj(t′) for some j, 1 ≤ j ≤ `t′ and t′ ∈ ST with ν1(t′) = t.
Then, we have µi(s′) = µj(t′) and, therefore, µi−k(s′) = µj−k(t′) for all k, k < i, k < j, since
for any state w and 1 ≤ m ≤ `w, we have µm−k(w) = tailk(µm(w)), where tailk(·) denotes
the composition of k applications of tail(·). Hence, by (4.6), we must have µ1(s′) = µ1(t′)
and, therefore, ν1(s′) = ν1(t′). Thus, we must have s = t. If u is an endpoint of an edge
of both B(s) and B(t), we have that s and t are both prefixes of u and they must be equal.
Finally, if u is an endpoint of an edge of both A(s) and B(t), we have that u = µi(s′) for some
i, 1 ≤ i ≤ `s′ and s′ ∈ ST with ν1(s′) = s. Also, by the definition of B(t), we know that
tail(u) ∈ I(T), and we must have i = 1 by (4.6). Thus, we get u = µ1(s′), and ν1(s′) = s.
Therefore, s is a prefix of u, and so is t by definition of B(t). Thus, we must have s = t. We
conclude that {V(s) : s ∈ S1} is a partition of V (F)

T as claimed. 2

We are now ready to prove the following result, which, together with Lemma 4.36, yields
the relation n|ETc |−|VTc | = O(NT), called for in Theorem 4.33.

4.38. Lemma. For an arbitrary context tree T , we have |E(F)

T | − |V
(F)

T | = |ET | − |VT | .

Proof. We partition the set E(F)

T into three subsets, A1, A2, A3, suitable for the application
of Lemma 4.37. This will help us connect the quantities |E(F)

T | and |V (F)

T |, and compute their
difference. Specifically, we define

A1 = {(µi(s), µi+1(s)) ∈ E(F)

T : s ∈ ST , 1 ≤ i < `s} ,
A2 = {(s, τ(s, b)) ∈ E(F)

T : s ∈ ST , b ∈ A, |τ(s, b)| ≤ |s|} ,
A3 = {(u, ρ(u)) ∈ E(F)

T : u ∈ V (F)

T } .

We observe that the sets A1, A2, A3 indeed partition the set E(F)

T . In particular, notice that if
|τ(s, b)| = |s|+1, then (s, τ(s, b)) is included in A1 but not in A2. Also notice that, as s varies
in the set of states, the union of disjoint sets

⋃
sB(s)∪A(s) covers the edges in A1∪A3 except

for edges of the form (u, ρ(u)) with tail(u) 6∈ I(T), which are excluded from B(s) in (4.59).
Thus, we define

B′(s) = {(u, ρ(u)) ∈ E(F)

T : u ∈ Λ̄(s), tail(u) ∈ ST } (4.60)

4.4. The number of type classes 93

and we notice that A1 ∪A3 is partitioned into
⋃
sA(s) ∪B(s) ∪B′(s). We then have,

|E(F)

T | = |A1|+ |A2|+ |A3|
= |A2|+

∑
s∈ST

|A(s)|+ |B(s)|+ |B′(s)| .

Since A(s) and B(s) are empty sets for s 6∈ S1 by Lemma 4.37, we have

|E(F)

T | = |A2|+
∑
s∈ST

|B′(s)|+
∑
s∈S1

|A(s)|+ |B(s)| .

Now, as (V(s), B(s) ∪ A−(s)) is a tree by Lemma 4.37, we have that |A(s)| + |B(s)| + 1 = |V(s)|.
Thus, we get

|E(F)

T | = |A2|+
∑
s∈ST

|B′(s)|+
∑
s∈S1

(
|V(s)| − 1

)
,

and since {V(s) : s ∈ S1} is a partition of V (F)

T by Lemma 4.37, we obtain

|E(F)

T | = |A2|+ |V (F)

T | − |S1|+
∑
s∈ST

|B′(s)| . (4.61)

Our next step connects the sets B′(s) with certain sets of edges of E(F)

T of the form
(s, τ(s, b)), which we will combine with A2 and, later on, relate to the state transition support
graph GT . We claim that |B′(s)| = |A

′
(s)|, where

A′(s) = {(s′, u) ∈ E(F)

T : s′ ∈ ST , u ∈ Λ̄(s), s′ = tail(u)} .

The source s′ of (s′, u) ∈ A′(s) is uniquely determined by the destination u. Also the destination
of (u, ρ(u)) ∈ B′(s) is uniquely determined by its source u. Hence, it is sufficient to show that

{u : (s′, u) ∈ A′(s)} = {u : (u, ρ(u)) ∈ B′(s)} .

If (u, ρ(u)) ∈ B′(s), then, by the definition of B′(s) in (4.60), we know that u ∈ Λ̄(s) and
tail(u) belongs to ST . Thus, we have (s′, u) ∈ A′(s) for s′ = tail(u). On the other hand, if
(s′, u) ∈ A′(s), then, by the definition of A′(s), we have that u ∈ Λ̄(s) and tail(u) = s′ ∈ ST .
Therefore, we have (u, ρ(u)) ∈ B′(s) by the definition of B′(s). We conclude that

∑
s∈ST |B

′
(s)|

equals
∑

s∈ST |A
′
(s)|, which in turn is equal to the number of edges in the set{

(s, τ(s, b)) ∈ E(F)

T : s ∈ ST , b ∈ A, |τ(s, b)| = |s|+ 1, τ(s, b) 6∈ ST
}
.

Hence, the sum |A2|+
∑

s∈ST |B
′
(s)| in (4.61) equals the cardinality of

A′2 =
{

(s, τ(s, b)) ∈ E(F)

T : s ∈ ST , b ∈ A, |τ(s, b)| ≤ |s| or τ(s, b) 6∈ ST
}

=
{

(s, τ(s, b)) ∈ E(F)

T : s ∈ ST , b ∈ A, s′ ≺ bs for some s′ ∈ ST
}
.

Thus, (4.61) becomes
|E(F)

T | = |A
′
2|+ |V

(F)

T | − |S1| . (4.62)

94 4. Type classes of tree models

We now relate the size of A′2, which is a subset of E(F)

T , to the size of a certain subset of
ET . This will let us establish the claimed relation, |E(F)

T | − |V
(F)

T | = |ET | − |VT |, by means
of (4.62). Specifically, let E1 be the subset of ET with destinations in S1, i.e.,

E1 = {(s, s′) ∈ ET : s′ ∈ S1} .

We show next that |A′2| = |E1|, by showing that the mapping that takes (s, τ(s, b)) ∈ A′2
to (s, s′), where s′ ∈ ST is the unique state that satisfies s′ ≺ bs, defines a one-to-one
correspondence between A′2 and E1. If (s, τ(s, b)) ∈ A′2 and s′ is a state with s′ ≺ bs, then
tail(s′) ≺ s and, by the definition of ET in (4.22), we have (s, s′) ∈ ET . Moreover, since
tail(s′) ≺ s we have that (s, s′) ∈ E1. Suppose now that (s, s′) ∈ E1. Since s′ ∈ S1, we have
tail(s′) ∈ I(T). Thus, by the definition of ET in (4.22), we know that tail(s′) ≺ s. Hence,
with b = head(s′), we have s′ ≺ bs, and thus (s, τ(s, b)) ∈ A′2. Moreover, in order to get
s′ ≺ bs, b must be taken equal to head(s′) and, hence, (s, τ(s, b)) is the unique element of A′2
that is mapped to (s, s′). Then, we have that

|A′2| = |E1| =
∑
s′∈S1

|{s : (s, s′) ∈ ET }| . (4.63)

When s′ 6∈ S1 and (s, s′) ∈ ET we have, by the definition of ET in (4.22), that s is the
unique state such that s � tail(s′). Thus, for fixed s′, we have |{(s, s′) ∈ ET }| = 1 and we
rewrite (4.63) as

|A′2| =
∑
s′∈ST

|{s : (s, s′) ∈ ET }| − (|ST | − |S1|)

= |ET |+ |S1| − |ST |
= |ET |+ |S1| − |VT | .

Substituting in (4.62) we get

|E(F)

T | = |V
(F)

T | − |S1|+ |ET |+ |S1| − |VT | , (4.64)

thus |E(F)

T | − |V
(F)

T | = |ET | − |VT | as claimed. 2

We have now all the elements to prove Theorem 4.33.
Proof of Theorem 4.33

Since NTc = O(NT), and |E(F)

Tc
| − |V (F)

Tc
| = |ETc | − |VTc | by Lemma 4.38, the fact that

n|ETc |−|VTc | = O(NT) follows from Lemma 4.36. We need to show that NT = O(n|ETc |−|VTc |).
Let ψ be a weight function for the state transition support graph of Tc, GTc , constantly equal
to 1. Clearly GTc is strongly connected, there are no circuits of weight zero, and, for any
b ∈ A, there is a circuit of weight 1 from the state bbb · · · b to itself. Thus, GTc satisfies the
assumptions of Lemma 4.35.

For each state s of Tc, let γs be a fixed path from s to s0 in GTc . Consider a string xn with
final state sn in Tc. Let η be an assignment of counters for GTc defined as η(u,v) = Nc(xn)u,v
for all u, v ∈ VTc . The assignment of counters η′ = η+ζ(γsn) is cyclic by construction. Hence,

4.5. Type classes with respect to the FSM closure of T 95

by Lemma 4.35(ii), η′ can be fully described by the values η′e for a set of |ETc | − |VTc | edges.
Given sn, γsn is fixed, and therefore this is equivalent to give the values ηe for the same set
of edges. This completely describes η′, and η can then be recovered from η′. Thus, η can be
fully described by giving the final state sn in Tc, which determines γsn , and the values ηe for
a set of |ETc |− |VTc | edges. Since each value ηe is not greater than n, and there are a constant
number of states in Tc, we have NTc = O

(
n|ETc |−|VTc |

)
. The proof is completed by recalling

that NT ≤ NTc since Tc is a refinement of T . 2

4.5 Type classes with respect to the FSM closure of T

In this section we compare T -classes with Tsuf-classes, where we recall from Section 2.3.2 that
Tsuf is the FSM closure of T . The difference |ETc |−|VTc |, appears as a factor in the term
of order log n of E〈T,pT 〉

[
|T (Xn)|

]
in Theorem 4.18, and in the exponent of the number of

type classes in Theorem 4.33. In the case of FSM context trees, and in particular in the
FSM closure of T , the difference |ETsuf

|−|VTsuf
| reduces to |STsuf

|(α−1). We next define the
(FSM) over-refinement of T , which connects |ETc |−|VTc | with |STsuf

|(α−1). In Chapter 5,
this connection will be exploited to show how an enumerative code for T can be obtained by
enumerating the sequences in the Tsuf-class of the input string, rather than in the T -class,
while still being universal with optimal convergence rate with respect to T . This will be an
alternative to the classical enumerative code with respect to type classes of the target model,
in this case represented by T , that we also explore in Chapter 5.

For a node t ∈ I(Tsuf)\I(Tc) we define the (FSM) over-refinement of t as κt = |{a ∈ A :
at 6∈ I(Tc)}|. The name given to κt stems from the fact that it counts symbols for which an
extension from t was not needed in order to determine a next-state transition in Tc, yet it
was added in the process of constructing the FSM closure Tsuf. The total over-refinement of
T is now defined as

κT =
∑

t∈I(Tsuf)\I(Tc)

(α− 1)(κt − 1) . (4.65)

The following lemma connects κT with |ETc | − |VTc | and |ETsuf
| − |VTsuf

| = |STsuf
|(α− 1).

4.39. Lemma. Let STsuf
denote the set of states of Tsuf. Then,

κT = −(|ETc |−|VTc |) + |STsuf
|(α−1) . (4.66)

Proof. Let s be a state of Tc and W the subtree of Tsuf rooted at s, W = {w ∈ A∗ : sw ∈
Tsuf}. For a ∈ A let Wa = {w ∈ A∗ : asw ∈ Tc}. Since Tsuf is FSM, clearly Wa ⊆ W . The
number Aa(s) of edges departing from s with symbol a in the graph GTc = (VTc , ETc) equals
the number of leaves in the full tree Wa, i.e.,

Aa(s) = (α− 1)|I(Wa)|+ 1 .

Thus, the total number of edges in ETc departing from s is

A(s) =
∑
a∈A

(α− 1)|I(Wa)|+ 1 = α+ (α− 1)
∑
a∈A
|I(Wa)| . (4.67)

96 4. Type classes of tree models

Now, by (4.67), we have,

∑
t∈I(W)

(α− 1)(κ(t)− 1) = (α− 1)

 ∑
t∈I(W)

κ(t)

− (α− 1)|I(W)| ,

and by the definition of κ(t), letting 1{t∈I(Wa)} = 1 if t ∈ I(Wa), and zero otherwise,

∑
t∈I(W)

(α− 1)(κ(t)− 1) = (α− 1)

 ∑
t∈I(W)

∑
a∈A

(
1− 1{t∈I(Wa)}

)− (α− 1)|I(W)| .

We separate terms in the summation as,
∑

t∈I(W)

∑
a∈A 1 = α|I(W)|, and, recalling that

Wa ⊆W ,
∑

t∈I(W)

∑
a∈A 1{t∈I(Wa)} =

∑
a∈A |I(Wa)|. Thus,∑

t∈I(W)

(α− 1)(κ(t)− 1) = (α− 1)α|I(W)| − (α− 1)
∑
a∈A
|I(Wa)| − (α− 1)|I(W)|

= (α− 1)2|I(W)| − (α− 1)
∑
a∈A
|I(Wa)| .

Denoting SW (s) the set of states of Tsuf that descend from s, i.e., the set of leaves of W , we
have ∑

t∈I(W)

(α− 1)(κ(t)− 1) = (α− 1)2 |SW (s)| − 1
α− 1

− (α− 1)
∑
a∈A
|I(Wa)|

= (α− 1)|SW (s)| −

(
α− 1 + (α− 1)

∑
a∈A
|I(Wa)|

)
,

and by (4.67) we get,∑
t∈I(W)

(α− 1)(κ(t)− 1) = (α− 1)|SW (s)| −A(s) + 1 .

Hence, the over-refinement of T is

κ(T) =
∑

t∈I(Tsuf)\I(Tc)

(α− 1)(κ(t)− 1)

=
∑
s∈STc

(α− 1)|SW (s)| −A(s) + 1

= |STsuf
|(α− 1)− (ETc − VTc) .

2

By Theorem 4.33, the exponent in the asymptotic growth of the number of type classes
in T and Tsuf is given by |ETc | − |VTc | and |STsuf

|(α − 1), respectively. Hence, we get the
following corollary to Lemma 4.39, which states that there is, asymptotically, a factor of nκT

more type classes in Tsuf than in T .

4.40. Corollary. Let T be a context tree and let Tsuf be its FSM closure. Then, we have

NTsuf
= Θ (nκTNT) .

This chapter contains material published in [50].

Chapter 5

Enumerative coding for tree sources

In this chapter we present an enumerative code [11] for tree sources, based on the method
of types, that can be efficiently computed1 and is universal with optimal convergence rate.
Such enumerative code is comprised of two parts, namely, a preamble that describes the type
class to which the input sequence belongs followed by an index that identifies the sequence
within its type class. Since all sequences in a type class are equiprobable, a uniform encoding
of the index minimizes the expected length of the second part. Hence, the enumeration of
type classes presented in Chapter 4 yields an efficient implementation of a uniform, and thus
optimal, code for the index of the sequence. We are then left with the problem of efficiently
implementing a code for the first part based on an optimal assignment of probabilities to type
classes.

As we first observed in Section 1.5, using a uniform code for the first part is optimal for
FSM models, but may be suboptimal in general for tree models. For example, consider the
context trees T1 and T2 of Figure 5.1. It follows from Theorem 4.33 that there are Θ(n5) type
classes in T1 and in T2, even though T1 has only four states. Furthermore, it can be shown that
each type class of T1 is partitioned into up to a constant number of type classes in T2. Hence,
a uniform coding for both the set of type classes and the set of sequences of each type class,
would yield essentially the same code length for both context trees, without taking advantage
of the smaller parameter space of T1. On the other hand, it is readily verified that the vector
of five counts, A =

(
n

(a)
s (xn)

)
s∈ST2

, for any choice of a ∈ {0, 1}, together with the final state

of xn in T2, suffice to completely describe T (T2, x
n) and also T (T1, x

n). Observe, however,
that a type class with significantly different conditional empirical distributions for states 00
and 01 of T2 will have small probability under a model based on T1 for any choice of the model
parameter, which suggests using a non-uniform encoding for describing type classes. More
precisely, given the empirical conditional distribution, p̂, in state 0 of T1, and the number
of occurrences, ns, of the pattern 00, we can estimate the component of A corresponding to
the number of occurrences, n(a)

s , of symbol a in context 00 as n̂(a)
s = nsp̂(a). If ns and p̂

have already been described to the decoder, we can then encode the difference n(a)
s − n̂(a)

s

by assigning high probability to small absolute differences, suggesting that a non-uniform
code may allow us to recover the code-length advantage of the smaller context tree T1. This
observation will be generalized to define a collection of non-uniform codes for encoding counts
of occurrences of certain patterns within the input sequence. We will then apply these non-
uniform codes to optimally encode a set of counts that uniquely determine the type class of

1We recall that by “efficient computation” we mean one whose encoding running time is polynomial in the

length of the input sequence, and with code construction time that is also polynomial in the dimension of the

parameter space of the model.

98 5. Enumerative coding for tree sources

1

1

10

0

0

10

1

1

10

0

0
T1 T2

Figure 5.1: Context tree over A = {0, 1}

a sequence with respect to an arbitrary context tree.
After introducing some notation and the formal setting in Section 5.1, in Section 5.2 we

introduce variable length codes for symbol counts, following the above observation. These
codes, which are based on Golomb codes [33] and are dubbed symbol count codes (SCCs), are
of both theoretical and practical interest. Indeed, in Section 5.3, we re-derive the asymptotic
bound of Theorem 4.18 on the expected size of the type class of a random sequence, which
we first obtained by analyzing the exact formula of Theorem 4.15. In this case, we make
use of the FSM closure and SCCs, as theoretical tools, to obtain the same bound based on
known results for FSMs. In Section 5.4 we generalize the construction of SCCs to codes for
pattern counts, termed string count codes (SCCs?), which yield an efficient description of the
type class and, combined with the aforementioned bound, lead to a universal enumerative
code with optimal convergence rate. The optimality of the convergence rate of this code
also yields, via a coding argument, a lower bound on the expected size of the type class of a
random sequence, which turns out to differ by O(1) from the upper bound in Theorem 4.18.
The SCCs? also yield an alternative construction of enumerative codes, taken with respect
to an extension of the original context tree T , and where the increment in the model cost
term is compensated exactly by the reduction in the expected size of the class, maintaining
an expected code length that is still optimal with respect to T . In particular, such a code can
be derived from the FSM closure of T using known techniques for enumerating sequences in
FSM type classes. Finally, in Section 5.5 we present two approaches for the twice-universal
setting, in which the context tree T is unknown. The first approach is a standard plug-in
scheme where the context tree is first estimated, and then the previously derived universal
enumerative code is applied as-is, using the estimated tree in lieu of the true one. In the
second approach, we take advantage of the observation that for any given context tree, there
will be sequences that are “atypical” for the context tree, and will not estimate it regardless of
the model parameter. The enumerative code is significantly simplified in the twice-universal
setting by excluding such sequences from the coding space for the estimated tree.

5.1 Preliminaries

Except when we switch to the twice-universal setting in Section 5.5, we consider a fixed tree
model 〈T, pT 〉, with pT unknown. Thus, we keep the same simplified notation of Chapter 4,
where sometimes the dependence on T is not made explicit. For the purpose of selecting

5.1. Preliminaries 99

states, we assume that xn is preceded by a fixed semi-infinite string x0
−∞. This convention,

is consistent with Chapter 4 by selecting x0
−∞ to have s0 as a suffix, where s0 is a state of

maximal depth of T . When we move on to the twice-universal setting, however, no context
tree is fixed a priori. In this case, x0

−∞ guarantees a well defined (permanent) state sequence
{si}0≤i≤n, si = σT (x0

−∞x
i), for each candidate tree T for the context tree estimation.

The occurrence counts of contexts, nu, and symbols in a given context, n(a)
u , is adapted

accordingly. Namely,

n(a)
u (xn) = |{ i : 0 ≤ i < n, xii−k+1 = u, xi+1 = a }| ,

and we recall that nu(xn) =
∑

a∈A n
(a)
u (xn). Again we omit the dependence on xn when clear

from the context. Notice that we also have nu =
∑

a∈A nua. Furthermore, denoting by i(u)
and f(u) the indicator functions of the predicates u = x0

−|u|+1 (x1 occurs in context u) and
u = xnn−|u|+1 (u occurs at the end of xn), we have

nau + f(au) = n(a)
u + i(au), for every a ∈ A .

To simplify expressions, we will use a generic constant δ to account for border adjustments
due to terms of the form i(u) and f(u). In coding situations these terms will be known to the
decoder, and in any case border effects will have no bearing on the asymptotic results.

For a context tree T , and a sequence xn, we denote by K(T, xn) the collection of counts
{n(a)

s }s∈ST , a∈A. The type class of xn with respect to T is then

T (T, xn) = { yn ∈ An : K(T, yn) = K(T, xn) } .

A context tree T and a sequence xn determine a probability assignment, P̂T , defined
by the empirical conditional probabilities P̂T (a|s) = n

(a)
s (xn)/ns(xn) (as before, we omit

the dependence of the distribution P̂T on xn when clear from the context); P̂T (xn) is the
maximum likelihood probability of xn under T .

We seek an enumerative code for T comprised of two parts: a description of K(T, xn), and
an index of xn within T (T, xn). By Theorem 4.18, the expected length of the second part of
the enumerative code is bounded by nH− 1

2(|ETc |−|VTc |) log n+O(1). As for the first part of
the code, it follows from the proof of the relation NT = O(n|ETc |−|VTc |) in Theorem 4.33, which
is based in the (constructive) proof of Part (ii) of Lemma 4.35, that |ETc | − |VTc | carefully
selected counts of the state transition matrix Nc, suffice to describe K(T, xn), modulo a
constant number of bits required to describe the completion of an assignment of counters
derived from Nc to make it cyclic. Notice that a uniform encoding of these counts requires2

(|ETc |−|VTc |) log n+O(1) bits, yielding a total expected length for a uniform enumerative code
of nH+ 1

2(|ETc |−|VTc |) log n+O(1) bits. Except when T is FSM, |ETc |−|VTc | is strictly larger
than (α − 1)|ST |, and a uniform encoding is generally suboptimal, as previously observed.
In the special case in which T is FSM, T is also canonical, and |ETc | − |VTc | = (α − 1)|ST |.

2To simplify discussions, we will sometimes ignore fractional parts of code lengths, referring, for example,

to log n bits instead of the more precise “at most dlogne bits.” This loose convention will be immaterial to

the main asymptotic results.

100 5. Enumerative coding for tree sources

Thus, in this case, a uniform encoding of appropriately selected (α − 1)|ST | counts results
in a universal enumerative code with optimal convergence rate, with a normalized expected
redundancy of (α−1)|ST | logn

2n +O(1/n) bits. Indeed, we show next that for b ∈ A, the collection
Kb(T, xn) of (α − 1)|ST | counts, {n(a)

s }s∈ST , a∈A\{b}, suffice to describe K(T, xn) if the final
state is also encoded. This known resul is re-derived here for completeness, based on the more
general result of Lemma 4.35.

5.1. Lemma. If a context tree T is FSM, then for any b ∈ A, Kb(T, xn) and the final state,
sn, of xn in T completely determine K(T, xn).

Proof. Consider a constant weight function ψ(e) = 1 for the state transition support graph
G = GT , and let s be the state s = bb . . . b. Let γt be a fixed path from t to s0 in G. Notice
that since T is FSM, the sequence of state transitions given by γt is always compatible with
a fixed string of symbols that takes T from state t to s0. Let η be the cyclic assignment of
counters obtained by letting η(u,v) be the number of state transitions from u to v in the state
sequence of xn concatenated with γsn . The self loop from s to itself is a circuit of weight one,
and the rest of the state transitions for symbol b (a unique transition for each state s′ 6= s)
form a spanning tree with a sink s. Thus, by Lemma 4.35, and recalling that γsn is fixed,
Kb(T, xn) determines η, and therefore it also determines K(T, xn). 2

5.2 Non-uniform codes for symbol counts

The discussion above motivates the introduction in this section of a class of non-uniform
codes, which we call symbol count codes (SCCs), for describing symbol counts n(a)

w in certain
contexts w. These codes will be used, together with the FSM closure, as a theoretical tool
in Section 5.3 for a new derivation of Theorem 4.18, which bounds the expected length of
the second part of an enumerative code (i.e., the logarithm of the type class size). With a
further generalization of SCCs, we then construct the actual non-uniform code for K(T, xn) in
Section 5.4. Together, both results will lead to an efficiently computable universal enumerative
code with optimal convergence rate for general tree models.

Consider a symbol a and a fixed context w such that s ≺ w for some state s of T . Define

zw,a = n(a)
w −

n
(a)
s

ns
nw , Zw,a = |zw,a| , and sgw,a =

{
1 zw,a > 0 ,

0 otherwise .

As customary, denote by bzc (resp. dze) the largest (resp. smallest) integer satisfying bzc ≤
z ≤ dze. Given sgw,a, bZw,ac, ns, n

(a)
s , and nw, it is possible to reconstruct n(a)

w as

n(a)
w =

 bZw,ac+
⌈
n

(a)
s
ns
nw

⌉
, sgw,a = 1 ,⌊

n
(a)
s
ns
nw

⌋
− bZw,ac , otherwise .

(5.1)

Hence, if ns, n
(a)
s , and nw are known by a decoder, encoding sgw,a and bZw,ac suffices to

describe n(a)
w . For nw > 0 we will encode bZw,ac using a Golomb code of parameter

⌈√
nw
⌉
.

5.3. The expected size of T (T,Xn) revisited 101

Specifically, we use a unary code3 for the integer division bZw,ac> = bZw,ac /
⌈√

nw
⌉
, using

bZw,ac> + 1 bits, and encode bZw,ac⊥ = bZw,ac mod
⌈√

nw
⌉

uniformly with log
⌈√

nw
⌉

bits.
When nw = 0, we have n

(a)
w = 0 for all a, and encoding n

(a)
w is not necessary; we define

bZw,ac> = 0 in this case, to simplify discussions on expectations.

The intuition behind this code, which we denote Cw,a

(
n

(a)
w

)
, is that we can think of

Zw,a as the absolute difference between the true value of n(a)
w and the estimate n

(a)
s
ns
nw that

the decoder could guess from the known counts ns, n
(a)
s and nw for a typical sequence of

a model based on T . The probability of the estimate n
(a)
s
ns
nw differing from the true value

decays exponentially fast, which leads to a constant expectation of bZw,ac>, as stated in the
following lemma.

5.2. Lemma. Let 〈T, pT 〉 be a tree source with all conditional probabilities different from zero.
Then, the expectation E〈T,pT 〉

[
bZw,ac>

]
is upper-bounded by a constant independent of n.

The proof of Lemma 5.2 is deferred to Appendix G. It follows using a large deviations
argument based on [40, Theorem 2].

By Lemma 5.2, the expected length of the unary part of the Golomb code used in SCCs
is upper-bounded by a constant. On the other hand, when nw > 0, a uniform encoding of
bZw,ac⊥ = bZw,ac mod

⌈√
nw
⌉

takes log
⌈√

nw
⌉

bits. The code length of this uniform part
can be upper-bounded by log

(√
nw + 1

)
≤ 1 + 1

2 log n.
The foregoing discussion yields the following corollary to Lemma 5.2.

5.3. Corollary. The expected length of the code Cw,a
(
n

(a)
w

)
is upper-bounded by 1

2 log n+
O(1).

Thus, under appropriate conditions, SCCs can code occurrence counts using, on average, half
the length of the naive encoding.

5.3 The expected size of T (T,Xn) revisited

In this section we study the asymptotic behavior of E〈T,pT 〉
[
|T (T,Xn)|

]
, thus estimating the

expected length of a uniform encoding of the index of xn within its type class. We re-derive
the result of Theorem 4.18 via a coding argument, as opposed to the analysis of the exact
formula (4.15) employed in the proof of the theorem in Chapter 4.

By applying the trivial bound |T (T, xn)| ≤
∏
s∈ST

ns!∏
a∈A n

(a)
s !

, Lemma 4.27 yields the fol-

lowing result.

5.4. Lemma. Let 〈T, pT 〉 be a tree source with entropy rate H and all conditional probabilities
nonzero. Then,

1
n

E〈T,pT 〉
[

log |T (T, xn)|
]
≤ H− |ST |(α−1)

log n
2n

+O

(
1
n

)
. (5.2)

3A unary code encodes a natural number m with a string of m consecutive zeros followed by a final symbol

1, which marks the end of the code word.

102 5. Enumerative coding for tree sources

When T is FSM, the bound in (5.2) for 1
nE〈T,pT 〉

[
log |T (T, xn)|

]
is tight, and as mentioned,

it leads readily, by means of Lemma 5.1, to the optimality of enumerative coding where type
classes are encoded uniformly. As it follows from Theorem 4.18, however, the coefficient
1
2 |ST |(α − 1) in the negative term of order logn

n in (5.2) is not the best one can obtain for
general tree models, and the larger coefficient |ETc | − |VTc | is indeed necessary to offset a
corresponding length increase in the type class description part.

We first show how an economic description of K(Tsuf, x
n), which determines the type

class of xn with respect to the FSM closure of T , can be obtained by means of SCCs from
a description of K(T, xn). This, together with the bound (5.2) applied to Tsuf, and a coding
argument, will lead to the desired tight bound. The description of K(T,Xn) itself will be
discussed in Section 5.4, and will require additional tools.

By Corollary 4.40, there are, asymptotically, a factor of nκT more Tsuf-classes than T -
classes, which suggests that roughly κT counts of log n bits each would suffice to describe
K(Tsuf, x

n) from K(T, xn). The next lemma confirms this intuition, and establishes the fact
that the counts can be encoded, on average, with a cost of at most 1

2 log n bits each.

5.5. Lemma. Given K(T, xn), the collection K(Tsuf, x
n) can be described with SCC encodings

of κT counts n(a)
w as discussed following (5.1), plus a constant number of bits used to describe

σF(xn), the final state of xn in Tsuf.

Proof. By Corollary 4.21, K(T, xn) determines K(Tc, x
n), and we can therefore assume that

the latter is given. Let ∆ = I(Tsuf)\I(Tc), where we recall that I(T) denotes the set of
internal nodes of T . We will describe n

(a)
tc for every child tc of t ∈ ∆ and every a ∈ A,

proceeding in ascending order of length of t. We claim that proceeding this way we are sure
that ntc is known (has been described) when describing n

(a)
tc , and, thus, the latter can be

encoded using SCCs. Indeed, if t = bu ∈ ∆, with b ∈ A and u ∈ Tc, then nbu = n
(b)
u + δ

is known. Otherwise, if t = bu but u 6∈ Tc, then u is an internal node of Tsuf shorter than
bu, and thus nbuc = n

(b)
uc + δ is known for every child buc of bu. Thus, the claimed order

of description is satisfied. Consider now a node tc ∈ ∆, c ∈ A. For every symbol a such
that at is an internal node of Tc, atc ∈ Tc and therefore n(a)

tc = natc + δ is known, and re-
quires no further description. We take now a symbol b such that bt is not an internal node
of Tc, and, for each child tc of t with c 6= b, we describe κt − 1 counts n(a)

tc , a 6= b such that
at is not an internal node of Tc. We can then compute n

(b)
tc = ntc −

∑
a6=b n

(a)
tc and then

n
(a)
tb = n

(a)
t −

∑
c6=b n

(a)
tc for every a ∈ A. Overall, we obtain K(Tsuf, x

n) from K(Tc, x
n) and

σF(xn) by providing (α − 1)(κt − 1) counts for each t ∈ ∆. Thus, recalling the definition of
κT from (4.65), we describe a total of κT counts, each of which can be encoded using SCCs. 2

In the following theorem, we apply the results of Lemma 5.5 and Corollary 5.3 in a
coding argument, obtaining the same upper bound on the expectation of |T (T,Xn)| previously
presented in Theorem 4.18.

5.6. Theorem. Let Xn be a random sequence emitted by a tree source 〈T, pT 〉 with entropy

5.4. Encoding the type class 103

rate H and all conditional probabilities different from zero. Then,

1
n

E〈T,pT 〉
[

log |T (T,Xn)|
]
≤ H− |ETc | − |VTc |

2n
log n+O(

1
n

) . (5.3)

Proof. A sequence in T (T, xn) can be encoded by describing the subset T (Tsuf, x
n) to which

the sequence belongs, and then, uniformly, its index within that subset. Hence, by Lemma 5.5,
and Corollary 5.3, we have

E〈T,pT 〉
[

log |T (T,Xn)|
]
≤ E〈T,pT 〉

[
log |T (Tsuf, X

n)|
]

+
1
2
κT log n+O(1) , (5.4)

the left-hand side of (5.4) being a lower bound on the expected length of any such description,
since the sequences in the type class are equiprobable. Normalizing, and applying Lemma 5.4
to Tsuf, we obtain

1
n

E〈T,pT 〉
[

log |T (Tsuf, X
n)|
]
≤ H−

|STsuf
|(α− 1)
2n

log n+O(
1
n

) ,

which, together with (5.4) and Lemma 4.39, yields

1
n

E〈T,pT 〉
[

log |T (T,Xn)|
]
≤ H− |ETc | − |VTc |

2n
log n+O(

1
n

) . (5.5)

2

5.4 Encoding the type class

In this section, we present an efficiently computable description of the type class T (T, xn)
(or, equivalently, the counts K(T, xn)), which, together with the enumeration of the type
class, will yield the sought universal enumerative code with optimal convergence rate for tree
sources. We assume, throughout, that the context tree is not trivial, i.e., |ST | > 1.

For FSM context trees, Kb(T, xn) essentially suffices to describeK(T, xn) by Lemma 5.1. In
general, however, Kb(T, xn) is insufficient, and, as discussed in Section 5.1, |ETc |−|VTc | counts
of log n bits each are needed to describe K(T, xn) uniformly, which results in a suboptimal
normalized expected “redundancy” of |ETc |−|VTc |

2n log n+O(1
n) bits over H. We will show that

starting from a uniform encoding of Kb(T, xn) with |ST |(α− 1) counts of log n bits each, we
can complete the description of K(T, xn) by encoding an additional |ETc |− |VTc |− |ST |(α−1)
counts requiring on average 1

2 log n+O(1) bits of description each. Together with the bound of
Theorem 5.6, this reduction in code length for the additional counts will result in an optimal
normalized expected redundancy of |ST |(α−1)

2n log n+O(1/n) bits over H.
Let h and d denote, respectively, the minimal and maximal depth of leaves in T . For

h ≤ m ≤ d, let T [m] denote the truncation of T to depth m, and let T [m]
c denote the minimal

canonical extension of T [m]. Notice that, by the definition of a forgetful state (Section 4.3),
no state of maximal depth of T [m] is refined in T

[m]
c , and therefore T [m]

c has the same depth
as T [m]. We denote by S

[m]
c the set of states of T [m]

c , and by σ
[m]
c (u) the state selected by

104 5. Enumerative coding for tree sources

u in T
[m]
c . Algorithm EncodeTypeClass, shown in Figure 5.2, lists the main steps in the

proposed encoding of K(T, xn). The algorithm starts by encoding, uniformly, the counts in
Kb(T, xn) with log n bits per count, and the final state of xn in Tc, using a constant number
of bits. It then iterates to describe, incrementally, each count set K(T [k+1]

c , xn) given a
previously described set K(T [k]

c , xn), for h+1 ≤ k < d. Notice that since T [h] is a full balanced
context tree, T [h+1] is FSM, and, hence, T [h+1]

c = T [h+1]. By Lemma 5.1, K(T [h+1], xn) is
completely determined by Kb(T, xn) and the given final state. Thus, a decoder can reconstruct
K(T [h+1]

c , xn) from the information provided in Step 1 of EncodeTypeClass, and can recover
K(T [d]

c , xn) from the information encoded in the loop of Steps 3–4. Since T [d]
c is a refinement

of T , this is sufficient to reconstruct K(T, xn).

EncodeTypeClass(T, xn)

1. Encode Kb(T, xn) and the final state of xn in Tc.

2. Set h = min{|s| : s ∈ ST } and d = max{|s| : s ∈ ST }.
3. For k = h+ 1 to d− 1
4. Encode K(T [k+1]

c , xn) given K(T [k]
c , xn).

Figure 5.2: Encoding of K(T, xn)

Clearly, the crucial step in EncodeTypeClass is the encoding of the refinement of counters
from T

[k]
c to T [k+1]

c in Step 4, which we address next. For u, v ∈ A∗, we denote by nu,v the
number of times a transition from context u to context v occurs in xn. In particular, when u
and v are states of a context tree, nu,v = Nu,v denotes the number of times state v is selected
immediately after state u. Notice that, for a state t, we have

nt =
∑
s∈ST

nt,s =
∑
s∈ST

ns,t + δ . (5.6)

Our implementation of Step 4 will amount to describing all state transition counts ns,t,
with s, t ∈ S

[k+1]
c . This set of counts is sufficient to determine K(T [k+1]

c , xn) as we have
n

(a)
s =

∑
au∈S[k+1]

c
ns,au. However, not all the counts in the set will be explicitly described,

since some will be derivable from K(T [k]
c , xn) and earlier portions of K(T [k+1]

c , xn). The crux
of the encoding is to find a minimum subset of transition counts, and the order in which they
are described, that suffice to determine all of them, and, at the same time, can be described
economically.

We will make extensive use of the conditions presented in the following lemma, which will
allow for a further simplification in the description of K(T [k+1]

c , xn). The proof of the lemma
is straightforward, and is omitted here.

5.7. Lemma. For k such that h+ 1 ≤ k ≤ d− 1, let t be a state of T [k+1]
c such that tail(t) 6∈

I(T [k+1]
c). Then, all transitions into t depart from a unique state s = σ

[k+1]
c (tail(t)). Thus,

from (5.6), ns,t = nt + δ, and encoding ns,t is equivalent to encoding nt.

5.4. Encoding the type class 105

1

1

10

0

0

10

10

10

10

Figure 5.3: State t = 1100 satisfies the conditions for the application of SCCs
?
, with s′ = 10

In our implementation of Step 4 of EncodeTypeClass, all explicit encodings will be for
counts ns,t chosen with t satisfying the conditions of Lemma 5.7, and the following additional
condition: there exists a state s′ of T such that s′ ≺ tail(t). In the example of Figure 5.3,
the state t = 1100 satisfies the required conditions. It turns out that the SCCs of Section 5.2,
which are defined for individual symbols, do not suffice to implement these encodings opti-
mally. (They did suffice in Section 5.3, when used to encode symbol counts for nodes that
refined the original context tree T ; here, however, we need to encode counts for nodes of
T .) Therefore, next, we generalize SCCs to string count codes (SCCs?), which, as their name
suggests, are defined on string counts rather than counts of individual symbols.

Consider a fixed string u = uq such that s′ ≺ uq−1 for some s′ ∈ ST . We define a code
for nu, and analyze its expected code length. Let l = max{ j : 1 ≤ j < q − 1, uj ∈ T }. Since
u1 ∈ T , l is well defined. Also, all proper prefixes ui of u, l < i < q, are sufficiently long for
ui to determine a state in T . For l < i < q, define the following short-hand notations:

si = σT (ui) , ni = nsi , nαi = n
(ui+1)
si , mi = n

ui
. (5.7)

The occurrence of context uq in xn under the above conditions implies the occurrence of the
state sequence {si}, l+1 ≤ i ≤ q−1, with symbol ui+1 occurring in state si (except possibly
in border situations, which we shall ignore). In the language of Chapter 4, this is part of a
forced state sequence. Indeed, in the case u ∈ ST , the definition of l resembles the definition
of `s of Chapter 4, applied to s = u. Here, however, the sequence {si}, l+1 ≤ i ≤ q−1, may
be strictly shorter than the forced state sequence of s, when ul is not an internal node but a
state of T . For example, in the context tree of Figure 5.3, the state s = 11010 has `s = 4, with
a forced state sequence 10 → 010 → 10 → 11010. However, for the context u = s = 01011,
we have l = 3, since u3 = 010 ∈ T .

106 5. Enumerative coding for tree sources

This forced state sequence knowledge is exploited in the following manner: given ml+1,
the number of times context ul+1 occurs within xn, we can estimate nu by ml+1

∏q−1
i=l+1

nαi
ni

.
Define (with a slight abuse of notation previously defined for SCCs),

zu = nu −ml+1

q−1∏
i=l+1

nαi
ni

, Zu = |zu| , and sgu =

{
1 zu > 0 ,

0 otherwise .
(5.8)

In the encoding of nu with SCCs?, denoted C?u(nu), we encode bZuc using a Golomb code of
parameter

⌈√
ml+1

⌉
, namely, a unary code for the integer quotient bZuc> = bZuc /

⌈√
ml+1

⌉
,

using bZuc> + 1 bits, concatenated with a uniform code for bZuc⊥ = bZuc mod
⌈√

ml+1

⌉
using log

(⌈√
ml+1

⌉)
bits. When ni = 0 for some l < i < q, or when ml+1 = 0, we also have

nu = 0, and no encoding is necessary; we define bZuc> = 0 in this case. The results below
are analogues of Lemma 5.2 and Corollary 5.3.

5.8. Lemma. Let 〈T, pT 〉 be a tree source with all conditional probabilities different from zero.
Then, the expectation E〈T,pT 〉

[
bZuc>

]
is upper-bounded by a constant independent of n.

5.9. Corollary. The expected code length of C?u(nu) is upper-bounded by 1
2 log n+O(1).

Corollary 5.9 follows straightforwardly from Lemma 5.8. The proof of the latter is given in
Appendix G.

Corollary 5.9 shows that SCCs? provide an efficient way to encode certain string occurrence
counts. Lemma 5.7 provides a way to recover transition counts ns,t from string counts nt,
and certain subsets of these transition counts are sufficient to reconstruct K(T [k+1]

c , xn). We
will next show that it is possible to select a minimal set of counts for strings t satisfying
Lemma 5.7, and the order in which they are described, to obtain a complete description of
K(T [k+1]

c , xn) using SCCs?. We distinguish between states of T [k+1]
c that are added to T [k]

c for
they belong to T [k+1], and states that arise in T [k+1]

c in order to take T [k+1] to canonical form.
Let U ′k+1 = (T [k+1]

c \T [k+1])\T [k]
c be the set of nodes of T [k+1]

c that are not in the original

context tree T [k+1] and are not in T
[k]
c . Let Uk+1 be the set of parent nodes of elements of

U ′k+1, Uk+1 = {z : za ∈ U ′k+1, a ∈ A}. The following lemma and corollary will allow us to

identify an appropriate set of counts to describe K(T [k+1]
c , xn).

5.10. Lemma. For h+ 1 ≤ k ≤ d− 1, we have Uk+1 ⊆ S
[k]
c .

5.11. Corollary. For h+ 1 ≤ k ≤ d− 1, T [k+1]
c refines states of T [k]

c by at most one level.

The proof of Lemma 5.10 is deferred to Appendix G. Corollary 5.11 then follows readily.
All the encodings in Step 4 of EncodeTypeClass will be done through the auxiliary proce-

dure P shown in Figure 5.4. The procedure relies on Corollary 5.11, as shown in the comments
in Figure 5.4. We denote by S[m]

c (r) the set of states of T [m]
c that are children of r, i.e., of the

form ra, a ∈ A. Given a node r and a symbol c, P(r, c) describes ns,t for every s ∈ S[k+1]
c (r),

and every state t ∈ S[k+1]
c such that c = head(t). We assume (and will later verify) that when

the procedure is called, these states t satisfy the conditions of Lemma 5.7, so that ns,t = nt+δ.

5.4. Encoding the type class 107

Procedure P(r, c)

Assumption: cr ∈ I(T [k+1]
c), so Lemma 5.7 holds when coding nt.

1. If r and cr are leaves of T
[k]
c but internal nodes of T

[k+1]
c

/∗ From Corollary 5.11, rd ∈ S[k+1]
c and crd ∈ S[k+1]

c ∀d ∈ A. ∗/
2. Use SCCs

?
to encode α−1 counts nt = ncrd, d ∈ Ab.

3. [Reconstruct ncrb = ncr −
∑

d 6=b ncrd

and ns,t = ncrd + δ for all d ∈ A, with s = rd, t = crd].

4. else, for each s ∈ S[k+1]
c (r)

5. If cs is an internal node of T
[k+1]
c

6. Let W ′ be the set of states W ′ = {csv ∈ T [k+1]
c \T [k]

c } .
7. Let W = {w : wa ∈W ′} be the parent nodes of W ′.

8. For each csu ∈W /∗ csu ∈ T [k]
c by Corollary 5.11. ∗/

9. Use SCCs
?
to encode α−1 counts nt = ncsud, d ∈ Ab .

10. [Reconstruct ncsub = ncsu −
∑

d 6=b ncsud

and ns,t = ncsud + δ for all d ∈ A, with t = csud .]

11. For each state t = csv 6∈W ′ of T
[k+1]
c

12. [Reconstruct ns,t = ncsv + δ, from K(T [k]
c , xn) .]

13. else /∗ cs is a leaf of T
[k+1]
c by the assumptions. ∗/

/∗ Either cs ∈ T [k]
c , or s ∈ T [k]

c . Otherwise, by Corollary 5.11,

their respective parents cr and r, would belong

to S
[k]
c and Step 1 would have not branched to 4. ∗/

14. [Reconstruct ns,t = ncs+δ, from K(T [k]
c , xn), for t = cs]

Figure 5.4: Encoding of state transition counts

In the procedure, b is a fixed but arbitrary symbol from A, and Ab = A\{b}. Decoding steps
are shown in brackets, to verify the losslessness of the code.

Notice the use of SCCs? in Steps 2 and 9. In Step 2, t = crd is a state of T [k+1]
c and, thus,

|cr| < k+1. Hence, r is a leaf of T [k]
c with |r| < k, which implies that there exists a state in T

that is a proper prefix of rd for all d ∈ A, which is a condition for SCCs? to be applicable. In
the case of Step 9, it can be shown that the required condition is guaranteed by Step 5, using
similar arguments. Furthermore, in the application of SCCs? in Steps 2 and 9, all states si
in the definition (5.7), have a length smaller than k + 1. Thus, ni, nαi , and ml+1 are known
from K(T [k]

c , xn).
We are now ready to present the full implementation of Step 4 of EncodeTypeClass, which

is shown as Procedure RefineTypeClass in Figure 5.5. Procedure RefineTypeClass selects
transition counts and an order of description that allows Procedure P (and, thus, SCCs?) to be
used, and, as we shall prove, such that the total number of counts that are actually encoded
is precisely |ETc | − |VTc | − |ST |(α− 1), as needed to achieve optimal expected redundancy.

We define Ri = {r ∈ A∗ : ra ∈ S
[i]
c for some a ∈ A}, namely, the set of parent nodes

of states of T [i]
c . Procedure RefineTypeClass iterates over nodes r ∈ Rk+1, and for each

s ∈ S[k+1]
c (r), it describes all potentially nonzero state transition counts ns,t with t ∈ S[k+1]

c .

108 5. Enumerative coding for tree sources

Procedure RefineTypeClass

1. For each r ∈ Rk+1 taken in ascending order of length |r|
2. If r ∈ Uk+1 /∗ This implies also r ∈ S[k]

c . ∗/
3. Take d ∈ A such that dr 6∈ I(T [k]

c) . /∗ Such d must exist;

otherwise, r would be a forgetful state of T
[k]
c . ∗/

4. Use P(r, c) to describe ns,csu for all s ∈ S[k+1]
c (r), c ∈ Ad.

5. [Let ns,ds = n
(d)
s = ns −

∑
c6=d n

(c)
s , for all s ∈ S[k+1]

c (r).]
6. else, If the children of r belong to T

[k]
c

7. For each s ∈ S[k+1]
c (r), and c ∈ A, such that cs 6∈ T [k+1]

c

8. Let s′ = σ
[k+1]
c (cs) .

9. [Take ns,s′ = n
(c)
s , known from K(T [k]

c , xn) .]
10. For each s ∈ S[k+1]

c (r), and c ∈ A, such that cs ∈ T [k+1]
c

11. Use P(r, c) to describe counts ns,csu .

12. else, for each s ∈ S[k+1]
c (r)

13. [For a ∈ Ab, s′ = σ
[k+1]
c (as), let ns,s′ = n

(a)
s .]

14. [For s′ = σ
[k+1]
c (bs), let ns,s′ = ns −

∑
a6=b n

(a)
s .]

Figure 5.5: Coding and decoding of K(T [k+1]
c , xn) from K(T [k]

c , xn)

The correctness of the procedure is established in the following lemma. The code length is
analyzed later in Lemma 5.13.

5.12. Lemma. Assuming that Kb(T, xn), K(T [k]
c , xn), and the final state of xn in Tc are

known, Procedure RefineTypeClass correctly encodes K(T [k+1]
c , xn).

Proof. The algorithm iterates over all nodes r ∈ Rk+1. Then, in each of the three cases
distinguished by the conditions of Steps 2, 6, 12, its computations (possibly involving the
use of Procedure P) allow the the decoder to recover the counts for all state transitions that
depart from every child of r that is a state of T [k+1]

c . What we need to show is that required
conditions at various points of the computation are satisfied, and, in particular, that the
assumptions of P are satisfied when the procedure is invoked. The losslessness of P itself was
established in Figure 5.4 and its discussion.

In Step 3 we ask for a symbol d such that dr 6∈ I(T [k]
c). The condition r ∈ Uk+1 satisfied

in Step 2, together with Lemma 5.10, implies that r is a state of T [k]
c . If dr ∈ I(T [k]

c) for
all d ∈ A, then r would be a forgetful state, contradicting the definition of T [k]

c . Hence, the
symbol d called for in Step 3 must exist.

In Steps 4 and 11, Procedure P is used to encode state transition counts departing from
a state s with a symbol c, requiring cs ∈ T [k+1]

c , so that the encoded counts are of the form
ns,csu for some string u. We claim that the condition cs ∈ T [k+1]

c is satisfied in Step 4. Indeed,
since r ∈ Uk+1 (as tested in Step 2), and, as argued above, r is a state of T [k]

c , its refinement
in T [k+1]

c must have been part of the process of taking T [k+1] to canonical form. Therefore, r
is forgetful in T [k+1], and, thus, cr is an internal node of T [k+1], which implies that cr is also

5.4. Encoding the type class 109

an internal node of T [k+1]
c . In Step 11, the condition cs ∈ T [k+1]

c is also satisfied since it is
imposed in Step 10.

In Step 5 we compute ns,ds as n(d)
s , implicitly assuming that ds is a state of T [k+1]

c . As
argued above for cr, dr must be an internal node of T [k+1]

c . However dr is not an internal
node of T [k]

c by definition in Step 3, thus by Corollary 5.11, dr is a leaf of T [k]
c and ds is a leaf

of T [k+1]
c .
The computations in Steps 5 and 14 require the knowledge of ns, the occurrence count

of a state s ∈ S[k+1]
c . We claim that when the algorithm takes an element r of Rk+1 in an

iteration of the loop in Step 1, the decoder knows ns for every s ∈ S[k+1]
c (r). Consider a state

s ∈ S[k+1]
c (r), and let v = tail(s). If v is an internal node of T [k+1]

c , v ∈ T [k]
c by Corollary 5.11,

and with a = head(s) we have ns = n
(a)
v + δ, which is known, given the final state in Tc. If

otherwise v is not an internal node of T [k+1]
c , all transitions into s come from a single state s′

of T [k+1]
c by Lemma 5.7, and we have ns = ns′,s + δ. In Lemma 5.7, s′ is determined by v as

the unique state s′ � v. Thus, s′ is shorter than s, and, so, ns′,s has already been computed
in a previous iteration of the loop in Step 1, as the elements of Rk+1 are taken in ascending
order of length. Thus, the claim is proven, showing the validity of the computations in Steps 5
and 14.

In Step 6 we branch on whether the children of r belong to T
[k]
c or not. In the latter

case, the algorithm skips to Step 12, and for every s ∈ S[k+1]
c (r) we have that s 6∈ T [k]

c , and
s 6∈ U ′k+1, since r 6∈ Uk+1 in Step 2. Hence, by definition of U ′k+1, all states s ∈ S

[k+1]
c (r)

belong to T [k+1]\T [k]
c , thus |s| = k+1 and as is sufficiently long to determine a state in T [k+1]

c

for every symbol a. This validates the definition of s′ in Steps 13 and 14, as well as the use
of Kb(T, xn) to determine n(a)

s in Step 13. 2

We next analyze the expected length of the code defined by EncodeTypeClass in Fig-
ure 5.2. Clearly, we require |ST |(α− 1) log n+O(1) bits to describe Kb(T, xn), and the final
state of xn in Tc, in the first step. We are interested now in the number of counts that are
actually encoded by Procedure P as the algorithm iterates through the loop in Steps 3–4 of
EncodeTypeClass. By carefully following the different cases managed by the algorithm, we
will show that the number of counts given to refine the counters from T

[k]
c to T [k+1]

c in Step 4
of EncodeTypeClass equals(

|E
T

[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)
− (α− 1) (|ST [k+1] | − |ST [k] |) , (5.9)

where we recall that G
T

[m]
c

=
(
V
T

[m]
c
, E

T
[m]
c

)
is the state transition support graph of T [m]

c .
Adding over all the iterations in the loop of EncodeTypeClass, Equation (5.9) gives rise to a
telescopic summation, which collapses to yield the following lemma.

5.13. Lemma. The number of counts encoded by EncodeTypeClass as the algorithm iterates
through the loop in Steps 3-4 is (|ETc | − |VTc |)− (α− 1)|ST |

The full proof of Lemma 5.13 is presented in Appendix G. A simplified outline for canonical
context trees follows, which nevertheless contains most of the main ideas.

110 5. Enumerative coding for tree sources

Assume that T is canonical. It is readily verified that then, all context trees T [h+1] . . . T [d]

are canonical, and all nodes added to T
[k]
c to form T

[k+1]
c do in fact belong to T and have

depth k + 1. For a state s of T [k]
c , consider the set of edges in E

T
[k]
c

and E
T

[k+1]
c

that depart

from s (or the children of s if it is refined in T
[k+1]
c). Consider also the set of descendants

from s in V
T

[k+1]
c

, i.e., {s} when s is not refined, or {sb : b ∈ A} otherwise. Suppose first that

s remains a state in T
[k+1]
c . The set of edges in E

T
[k]
c

that depart from s is only altered in

E
T

[k+1]
c

if csu ∈ S[k]
c is refined in T [k+1]

c for some u. In this case, there is an increment of α−1
in the number of edges from s to the children of csu in E

T
[k+1]
c

with respect to the single edge
from s to csu in E

T
[k]
c

. On the other hand the number of descendants from s in V
T

[k+1]
c

is not
altered with respect to V

T
[k]
c

as s is not refined. Thus, we have a contribution of α− 1 to the

difference
(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)

, which is exactly the number of counts
described by Procedure P in Step 9 (we rule out counts given in Step 2 of P since, by our
assumption of T being canonical, only nodes at depth k are refined going from T

[k]
c to T [k+1]

c ;
since r and rc have different lengths, the condition in Step 1 cannot hold).

Suppose now that s is refined with a full complement of children in T
[k+1]
c . This causes

an increment of α− 1 in the number of vertices in V
T

[k+1]
c

with respect to V
T

[k]
c

. On the other
hand, since T is canonical, s must be at level k and therefore there are α edges in E

T
[k]
c

departing from s, and also α edges in E
T

[k+1]
c

departing from each of the α children of s.

Thus, we have an increment of α2−α in the number of edges in E
T

[k+1]
c

with respect to E
T

[k]
c

,
and an increment of α−1 in the number of vertices in V

T
[k+1]
c

with respect to V
T

[k]
c

, yielding a

contribution of (α− 1)2 to the difference
(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)

. Since T

is canonical, and s is refined in T
[k+1]
c , the conditions in Steps 2 and 6 of RefineTypeClass

do not hold, and all transition counts departing from the children of s are reconstructed
in Steps 13 and 14. Thus, we do not need to describe counts in these cases, and since
we have a total of (|ST [k+1] | − |ST [k] |) /(α − 1) states in this situation, the negative term
−(α− 1) (|ST [k+1] | − |ST [k] |) in (5.9) arises.

The proof of Lemma 5.13 in Appendix G essentially follows the same idea. When
the context tree is not canonical, however, keeping track of the different contributions to(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)

and the number of counts that are encoded be-
comes more intricate, as forgetful states are refined during the process.

EnumCodeT(T, xn)

1. Encode K(T, xn) using EncodeTypeClass

2. Encode the index of xn within T (T, xn)

Figure 5.6: Universal enumerative code with optimal convergence rate for tree sources

All the components of a universal enumerative code with optimal convergence rate for
tree sources are now in place. We call the code EnumCodeT and the overall scheme is

5.4. Encoding the type class 111

summarized in Figure 5.6 in the form of Algorithm EnumCodeT. The enumeration of the type
class for Step 2 was the studied in Chapter 4. By Lemma 5.13 and the discussion preceding
Figure 5.2, Algorithm EncodeTypeClass for Step 1 gives an expected code length for the
description of the type class of

E〈T,pT 〉
[
L(T (Xn))

]
≤

≤ (α− 1)|ST | log n+
(

(|ETc | − |VTc |)− (α− 1)|ST |
)1

2
log n+O(1) (5.10)

=
1
2

(α− 1)|ST | log n+
1
2

(|ETc | − |VTc |) log n+O(1) , (5.11)

where the first term in (5.10) comes from the number of bits used to encode Kb(T, xn), and
the second term from SCCs?, which, by Lemma 5.13, are used (|ETc | − |VTc |) − (α − 1)|ST |
times taking, by Corollary 5.9, an average of at most 1

2 log n + O(1) bits each. Moreover, a
straightforward analysis of the computation shows that EncodeTypeClass can be executed
in time polynomial (at most quadratic) in |ST |. Normalizing, and applying Theorem 5.6 to
bound the expected code length of Step 2, we arrive at Theorem 5.14 below, which summarizes
the main result of the chapter.

5.14. Theorem. Let 〈T, pT 〉 be a tree source with entropy rate H and all conditional prob-
abilities different from zero. Then, EnumCodeT can be efficiently implemented, and its code
length, L(Xn), for a random sequence Xn emitted by T satisfies

E〈T,pT 〉
[L(Xn)

n

]
= H+

|ST |(α− 1) log n
2n

+O(
1
n

) .

The foregoing results yield the following corollary, which will be useful to derive an alter-
native enumerative coding strategy.

5.15. Corollary. The type class of xn relative to the FSM closure, Tsuf, of T , can be
described using, on average, 1

2(α− 1)
(
|ST |+ |STsuf

|
)

log n+O(1) bits.

Proof. By Lemma 5.5, given a description of K(T, xn), we can obtain one of K(Tsuf, x
n)

with a cost of 1
2κT log n + O(1) additional bits on average. Combining with the result of

Lemma 4.39, and accounting for the cost of the description of K(T, xn) from (5.11), yields
the claimed result. 2

The result of Corollary 5.15 suggests the following alternative enumerative coding strategy:
To encode xn, encode K(Tsuf, x

n) as described in the corollary, and then describe the index
of xn in an enumeration of T (Tsuf, x

n). Using the bound of Lemma 5.4, applied to Tsuf, for
the expected code length of this index, we obtain an expected total normalized code length
of H + 1

2(α − 1)|ST | logn
n + O(1/n) bits. Notice that although the enumeration is done on

T (Tsuf, x
n), the expected redundancy is still optimal with respect to T .

As a final remark in this section, we notice that the optimal convergence rate of Enum-
CodeT to the entropy rate, given by Theorem 5.14, shows that the upper bound of Theo-
rem 4.18 and Theorem 5.6 on the expected size of the type class of a random sequence, is
tight, as stated in the following corollary.

112 5. Enumerative coding for tree sources

5.16. Corollary. Let Xn be a random sequence emitted by a tree source 〈T, pT 〉 with entropy
rate H and all conditional probabilities different from zero. Then,

1
n

E〈T,pT 〉
[

log |T (T,Xn)|
]
≥ H− |ETc | − |VTc |

2n
log n−O(

1
n

) . (5.12)

Proof. By Theorem 7.5 and the Remark 7.1 in [16], we must have

E〈T,pT 〉
[L(Xn)

n

]
− H(Xn)

n
+O(

1
n

) ≥ |ST |(α− 1) log n
2n

, (5.13)

where L(xn) denotes the code length given by EnumCodeT to xn.
The code assigned by EnumCodeT to xn is comprised of two parts, a description of T (xn)

using EncodeTypeClass and a uniform description of the index of xn within T (xn). Thus,
we have

L(xn) = L(T (xn)) + log |T (xn)| ,

where L(T (xn)) denotes the length of the encoding of T (xn) given by EncodeTypeClass.
Hence, by (5.11), we get, from (5.13),

E〈T,pT 〉
[log |T (xn)|

n

]
− H(Xn)

n
+
|ETc | − |VTc |

2n
log n+O(

1
n

) ≥ 0 , (5.14)

The claim then follows, since the convergence of H(Xn)
n to the entropy rate, H, is O(1

n), which
follows from a Perron-Frobenius analysis. 2

5.5 Twice-universal Coding

In this section we switch to a twice-universal setting in which the actual context tree T is
unknown. Our first approach follows a conceptually simple, standard plug-in strategy in which
we estimate T̂ and then use EnumCodeT with T̂ as if it were the true context tree underlying
the model. Later, we will demonstrate an alternative approach in which the implementation
of EnumCodeT can be greatly simplified for the twice-universal setting. We consider a class
of penalized maximum likelihood context tree estimators. Specifically, given a sequence xn,
we assign to a context tree T a cost K(T, xn) = − log P̂T (xn)+KT f(n) where the penalization
coefficient KT is increasing with |ST |, and f(n) is increasing with n. We have

K(T, xn) = −
∑

s∈ST ,a∈A
n(a)
s log

n
(a)
s

ns
+KT f(n) .

The context tree estimate T̂ (xn) for xn is defined as the tree that minimizes the cost
function K(T, xn) over all possible context trees, that is,

T̂ (xn) = arg min
T
{K(T, xn)} . (5.15)

Efficient algorithms are known for finding the minimizing context tree T̂ (xn) for cost functions
of this kind [17]. In particular the cost function K(T, xn) obtained by taking KT = α−1

2 |ST |,

5.5. Twice-universal Coding 113

and f(n) = log n, arises as the asymptotic cost assigned to T in the minimization procedure
of algorithm Context, studied in Chapter3 (Equation (3.1)). For coding applications typically
f(n) = log n, although we may select a different function in simulation applications that we
investigate in Chapter 6, and for which we will use some of the tools developed in this section.

We present a twice-universal code for tree sources, Twice-EnumCodeT, in the form of an
algorithm, Twice-EnumCodeT, in Figure 5.7. Notice that since T̂ is not known in advance, the
leading string x0

−∞ may turn out to select a state that is not of maximal depth in T̂ . Thus,
Step 3 requires a pre-agreement of an initial state selection strategy between the encoder and
the decoder, say, for instance, the smallest lexicographically among maximal depth states of
T̂ . This initial state selection may not agree with x0

−∞, in which case the encoder needs to
adjust the initial setting of counts {n(a)

s }.

Twice-EnumCodeT(xn)

1. Compute the estimate T̂ (xn) of T.

2. Describe T̂ to the decoder.

3. Encode xn using EnumCodeT with respect to the context tree T̂.

Figure 5.7: Twice universal enumerative code for tree sources

Using a natural code [56] for describing the full tree T̂ (xn), Step 2 of Twice-EnumCodeT
requires one bit per node. To estimate the cost of Step 3, we must analyze the code length of
EnumCodeT when applied to T̂ (xn) rather than T . The analysis will rely on upper bounds
on the probabilities of over-estimation and under-estimation of T , which are stated in the two
lemmas below. Similar bounds are well known for several estimators. For completeness we
present proofs for the lemmas, adapted from [84], in Appendix H.

5.17. Lemma. Let 〈T, pT 〉 be a tree model and consider a penalization coefficient of the form
KT = β|ST |. Let On ⊂ An be the set of strings for which a state of T is refined by the
estimated context tree T̂ . Then, as soon as βf(n) > α log n+2, we have P〈T,pT 〉 {X

n ∈ On} ≤
|ST |nα

2+12β(1−α)f(n)+2α.

5.18. Lemma. Let 〈T, pT 〉 be a minimal tree model with all conditional probabilities different
from zero, and consider a penalization coefficient of the form KT = β|ST |, and f(n) = o(n).
Let Un ⊂ An be the set of sequences whose estimated context tree T̂ has a state that is refined
by T . Then P〈T,pT 〉 {X

n ∈ Un} ≤ R2−nD for positive constants R,D and n sufficiently large.

From Lemma 5.17 and Lemma 5.18 it follows that we can choose β and f(n) to make
the contribution of sequences with estimated context tree T̂ 6= T to the expected code length
negligible, as long as the code length is upper-bounded by a polynomial in n. We verify this
fact next. In Twice-EnumCodeT we describe K(T̂ , xn) by encoding the final state of xn with
respect to T̂c, encoding Kb(T̂ , xn) with |ST̂ |(α−1) counts of log n bits each, and finally giving
an additional set of |ET̂c |−|VT̂c |−|ST̂ |(α−1) counts described with SCCs?, which take O(

√
n)

114 5. Enumerative coding for tree sources

bits each. Thus, the complete description of K(T̂ , xn) takes O
((
|ET̂c | − |VT̂c |

)√
n
)

bits.
From the definition of a forgetful state, it is readily verified that |ET̂c | − |VT̂c | ≤ |ET̂ | − |VT̂ |,
and from the definition of |ET̂ | it is not difficult to see that |ET̂ | = O(|ST̂ |). Hence, the cost
of describing the type class of xn with respect to T̂ is O(|ST̂ |

√
n). Since the index of xn

within its class takes no more than n bits, we upper-bound the total code length of Twice-
EnumCodeT by O

(
|ST̂ |
√
n+ n

)
. To obtain the desired bound on the total code length, it

remains to bound |ST̂ | by a polynomial, which follows from the lemma below. The proof of
the lemma uses similar arguments as those used in Chapter 3, from [3], to bound the size of
the context tree estimated by the algorithm Context.

5.19. Lemma. Let T̂ be the estimated context tree for xn with a penalization coefficient of
the form KT = β|ST |. We have |ST̂ | = O(n/f(n)).

Proof. Since T̂ minimizes K(T, xn), comparing it with the single node context tree (i.e., a
zero-order model) we get,

− log P̂T̂ (xn) + β|ST̂ |f(n) ≤ nĤ(xn) + βf(n) ,

where Ĥ(xn) ≤ logα is the memoryless empirical entropy of xn. Since − log P̂T̂ (xn) ≥ 0 we
conclude that |ST̂ | = O(n/f(n)). 2

Lemma 5.19 and the preceding discussion yield the desired polynomial bound on the total
code length, leading to the following result.

5.20. Theorem. Let 〈T, pT 〉 be a tree source with entropy rate H and with all conditional
probabilities different from zero. Taking f(n) of order at least log n, and a penalization co-
efficient KT = β|ST | with β sufficiently large, the normalized expected code length of Twice-
EnumCodeT is

E〈T,pT 〉
[L(Xn)

n

]
= H+

|ST |(α− 1) log n
2n

+O(1/n) .

In the rest of the section we present an alternative code EnumCodeT ′, whose imple-
mentation is a simplification of EnumCodeT, applicable when the target context tree is an
estimate T̂ , as in Step 3 of Twice-EnumCodeT. Recall that a fundamental tool in Enum-
CodeT is the use of SCCs? codes, a generalization of SCCs. The latter rely on the quantities

∆(w, s, a) =
∣∣∣n(a)
w − n

(a)
s
ns
nw

∣∣∣n− 1
2

w , for properly defined strings s, w and symbol a, being small
with high probability. In other words, sequences with large values ∆(w, s, a) have small prob-
ability under any model parameter, and we would expect an estimate T̂ (xn) 6= T for such
sequences. The following lemma formalizes these claims.

5.21. Lemma. Let T̂ , T̂ (xn) be a context tree estimate for xn, and let s and w be strings
such that s ∈ ST̂ , s ≺ w, and ns > 0. Then, for any refinement T ′ of T̂ that contains w, we
have ∣∣∣∣∣n(a)

w −
n

(a)
s

ns
nw

∣∣∣∣∣ ≤√2(ln 2)(KT ′ −KT̂)nsf(n) .

5.5. Twice-universal Coding 115

Proof.
Since KT is increasing in the number of states of T , it is sufficient to consider the case

in which T ′ is the smallest refinement of T̂ (xn) that contains w, i.e., the tree that results
from refining T̂ (xn) by adding w′b for all proper prefixes w′ of w and all symbols b ∈ A. Let
W = {su : su ∈ ST ′}. Since T̂ (xn) minimizes the cost function K(T, xn), we have

−
∑

t∈ST̂ ,a∈A
n

(a)
t log

n
(a)
t

nt
+KT̂ f(n) ≤ −

∑
t∈ST ′ ,a∈A

n
(a)
t log

n
(a)
t

nt
+KT ′f(n) . (5.16)

Therefore,

−
∑

t∈ST̂ ,a∈A
n

(a)
t log

n
(a)
t

nt
+

∑
t∈ST ′ ,a∈A

n
(a)
t log

n
(a)
t

nt
≤ (KT ′ −KT̂)f(n) , (5.17)

which reduces to

−
∑
a∈A

n(a)
s log

n
(a)
s

ns
+

∑
su∈W,a∈A

n(a)
su log

n
(a)
su

nsu
≤ (KT ′ −KT̂)f(n) . (5.18)

Since ns > 0, we further obtain

−
∑
a∈A

n
(a)
s

ns
log

n
(a)
s

ns
+
∑
su∈W

nsu
ns

∑
a∈A

n
(a)
su

nsu
log

n
(a)
su

nsu
≤ (KT ′ −KT̂)

f(n)
ns

. (5.19)

Let p̂(·|s) be the probability mass function over A given by p̂(a|s) = n
(a)
s
ns

and analogously

for su ∈W , p̂(a|su) = n
(a)
su
nsu

. Consider also a PMF p̂(·) over W given by p̂(su) = nsu
ns

. Let X,Y
be random variables such that Y takes values in W with Y ∼ p̂(·), and X takes values in A
with conditional distribution P (X = a|Y = su) = p̂(a|su). Then, the marginal distribution
of X is X ∼ p̂(·|s), and the joint distribution of X and Y is

P (X = a, Y = su) = P (X = a|Y = su)P (Y = su) = p̂(a|su)p̂(su) =
n

(a)
su

nsu

nsu
ns

=
n

(a)
su

ns
.

From Equation (5.19),

I(X;Y) = H(X)−H(X|Y) ≤ (KT ′ −KT̂)
f(n)
ns

.

Let Q be a joint distribution given by the product of the marginal distributions of X,Y , i.e.,
Q(X = a, Y = su) = P (X = a)P (Y = su) = n

(a)
s
ns

nsu
ns

. Then, by Pinsker’s inequality [12,
Lemma 12.6.1], we have

1
2 ln 2

‖P −Q‖21 ≤ D(P ||Q) = I(X;Y) ≤ (KT ′ −KT̂)
f(n)
ns

. (5.20)

116 5. Enumerative coding for tree sources

Therefore, ∑
a∈A,su∈W

|P (a, su)−Q(a, su)|

2

≤ 2(ln 2)(KT ′ −KT̂)
f(n)
ns

, (5.21)

which takes the form

∑
a∈A,su∈W

∣∣∣∣∣n(a)
su

ns
− n

(a)
s

ns

nsu
ns

∣∣∣∣∣ ≤
√

2(ln 2)(KT ′ −KT̂)
f(n)
ns

. (5.22)

In particular, taking only the term corresponding to su = w in the summation on the left
hand side of (5.22), we conclude that∣∣∣∣∣n(a)

w −
n

(a)
s

ns
nw

∣∣∣∣∣ ≤√2(ln 2)(KT ′ −KT̂)nsf(n) . (5.23)

2

With a linear penalization coefficient of the form KT = β|ST |, we have KT ′ − KT̂ =
β(|ST ′ | − |ST̂ |) ≤ βα|w|, implying the following corollary.

5.22. Corollary. Let T̂ (xn) be a context tree estimate for xn with a penalization coefficient
KT = β|ST |, s ∈ ST̂ , s ≺ w, and ns > 0. Then,

|zw,a| =

∣∣∣∣∣n(a)
w −

n
(a)
s

ns
nw

∣∣∣∣∣ ≤√2(ln 2)βα|w|nsf(n) .

It follows from Corollary 5.22 that, when considering coding with respect to a context
tree T̂ estimated taking f(n) = log n, and using a linear penalization coefficient KT = β|ST |,
it may be advantageous to replace the use of SCCs with a uniform coding of zw,a in the range(
−
√

2βα|w|ns lnn,
√

2βα|w|ns lnn
)

. The code length obtained would be 1
2 log ns + o(log n),

which is of similar main order as the expected code length of SCCs (cf. Corollary 5.3). Notice,
however, that the upper bound here is pointwise, and not just in expectation. The same idea
can be generalized to SCCs? by means of Lemma 5.23 below, for which we recall the definitions
from (5.7).

5.23. Lemma. Let T̂ be a context tree estimate for xn with a penalization coefficient KT =
β|ST |, and let uq be a string such that an SCC? code is applicable in T̂ . Then,

|zu| =

∣∣∣∣∣nu −ml+1

q−1∏
i=l+1

nαi
ni

∣∣∣∣∣ ≤ q3/2
√

2(ln 2)βαnf(n) . (5.24)

Proof. We prove the result by repeatedly applying Corollary 5.22 as follows. Notice that
mi = n

(ui)

ui−1
. Then, by Corollary 5.22, we have

∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣ ≤ √2(ln 2)βα|u|nf(n) for
all l < i ≤ q (we extend the definition of mi for i = q as mq = nuq).

5.5. Twice-universal Coding 117

Applying Corollary 5.22 again and grouping terms, we further obtain
∣∣∣mi −

nαi−1

ni−1

nαi−2

ni−2
mi−2

∣∣∣ ≤(
1 +

nαi−1

ni−1

)√
2(ln 2)βα|u|nf(n). Starting from mi = mq = nuq , and repeatedly applying the

same arguments, we finally bound |zu| and the claim of the lemma follows readily. 2

Using a uniform encoding for the numbers zu taking f(n) = log n leads, by (5.24), to
an analogue of Corollary 5.9 in the twice-universal setting. As before, we note that the
bound here is pointwise, as opposed to in expectation as in Corollary 5.9. The results take
advantage of the idea suggested in Section 1.5, and the beginning of this chapter, namely,
that for some type classes of T̂ , no sequence in the class will estimate T̂ . Therefore, these
“atypical” classes can be excluded from the coding space. To implement this idea, we define
the code EnumCodeT ′ exactly as EnumCodeT, but replacing the use of SCCs?, C?u(nu), by a
uniform encoding of zu in the range

(
−|u|3/2

√
2βαn lnn, |u|3/2

√
2βαn lnn

)
. In EnumCodeT,

SCCs? are applied to strings u that are prefixes of states of the minimal canonical extension
of the context tree. Hence, |u| is bounded by the depth of T̂ (xn). For sequences that estimate
T̂ (xn) = T , |u| is bounded by the depth of T , and the uniform encoding of zu, by (5.24),
takes 1

2 log n + O(log log n) bits. Thus, when T̂ (xn) = T , the upper bounds of the expected
code lengths of EnumCodeT ′ and EnumCodeT differ by O(log log n) bits. As a result, using
essentially the same arguments as in Theorem 5.20, we can prove the following theorem for
Twice-EnumCodeT ′, the code obtained by substituting an implementation of EnumCodeT ′

for EnumCodeT in Twice-EnumCodeT.

5.24. Theorem. Let 〈T, pT 〉 be a tree source with entropy rate H and with all conditional
probabilities nonzero. Estimating T̂ (xn) with f(n) = log n and a penalization coefficient KT =
β|ST |, with β sufficiently large, the normalized expected code length of Twice-EnumCodeT ′ is

E〈T,pT 〉
[L(Xn)

n

]
= H+

|ST |(α− 1) log n
2n

+O

(
log logn

n

)
.

Remark. As with Twice-EnumCodeT, Twice-EnumCodeT ′ requires a pre-agreement of an
initial state selection strategy between the encoder and the decoder since, in principle, the
fixed leading string x0

−∞ may turn out to select a state that is not of maximal depth in T̂ .
In this case, a count n(a)

w may change to n′(a)
w after fixing the new initial conditions. Since

|n′(a)
w −n

(a)
w | ≤ |w|, it is not difficult to show that Corollary 5.22 is still valid for

∣∣∣n′(a)
w −

n′(a)
s
n′s

n′w

∣∣∣
with the addition of a correction term of order O(|w|2) on the right hand side, which does
not affect the validity of Theorem 5.24. Alternatively, the encoder may describe T (T̂ , xn) by
giving the original counts {n(a)

s } with respect to x0
−∞, together with additional information

that lets the decoder compute the modified counts. For example, the encoder may send
log |I(T̂)| + logα bits to describe the longest internal node of T̂ , u, such that u ≺ xn, and
the symbol x|u|+1. This, again, does not affect the validity of Theorem 5.24. Notice that this
alternative can be interpreted as describing the type class T ′(T̂ , xn), defined in Appendix E,
which takes into account transient states of T̂ . Thus, the second part of the encoding may be
slightly shortened in this case by describing the index of xn within the smaller set T ′(T̂ , xn),
as in Appendix E.

Chapter 6

Universal tree type classes and simulation of
individual sequences

Universal type classes were presented in [67] as a partition of the set of sequences An into
equivalence classes that can be seen as analogous to conventional type classes in situations
where the model structure (e.g., Markov order) is not known a priori. More precisely, in [67]
a universal (LZ) type class is defined as the set of all sequences of a given length that yield
the same LZ parsing tree [91]. It is shown in [67] that any two sequences in the same class
satisfy the following statistical similarity property.

P1 For any fixed positive integer j, the variational distance between the empirical distri-
butions of j-tuples corresponding to the two sequences is a vanishing function of n.

It is also required in [67] that the universal type class of a sequence xn be “as large as possible”,
in a sense to be discussed in the sequel.

In this chapter we present a partition of An that satisfies similar properties, but it exhibits
a better convergence rate of the statistics as n grows. Our approach is based on some of the
tools developed in Chapter 5. Specifically, in Section 5.5 we observed that if we know the
context tree estimate of xn, T̂ = T̂ (xn), then the number of occurrences of certain patterns
within xn can be estimated to order

√
f(n) given a well characterized set of symbol counts

that depend on T (T̂ , xn) (see Lemma 5.23). This observation, which led to an economic
description of T (T̂ , xn) in a twice-universal enumerative code for tree sources, suggests that
other sequences in T (T̂ , xn) that also estimate T̂ would have similar statistics as xn. Thus,
we define the universal tree type class of xn as

U(xn) = {yn ∈ T (T̂ (xn), xn) : T̂ (yn) = T̂ (xn)} ,

i.e., two sequences belong to the same universal tree type class if and only if they estimate
the same context tree, T̂ , and they belong to the same type class with respect to T̂ . A
similar notion of universal Markov type class, denoted M(xn), was defined in [47] where a
plain Markov order estimator substitutes for the context tree estimator. As we shall see,
the convergence of the statistics for an length-r pattern as n grows is similar for universal
Markov type classes and universal tree type classes, but the latter exhibit a better behavior
with respect to the convergence rate as a function of r.

In Section 6.1 we study the statistical similarity properties of universal tree type classes.
We show that Property P1 is satisfied for any two sequences in the same class, and, moreover,
we characterize precisely the convergence rate of the statistics. This naturally motivates the
application of universal tree type classes to simulation of individual sequences in the same

120 6. Universal tree type classes and simulation of individual sequences

setting as [67]. In this setting the goal is to emit a simulated sequence that is statistically
similar to a given training sequence, in a well mathematically defined sense, while, at the same
time, keeping as much uncertainty as possible on the output given the input sequence. In
Section 6.2 we formally state the problem of simulation of individual sequences and we present
a simulation scheme based on universal tree type classes. We compare the performance of this
simulation scheme, in terms of entropy of the output given the input, against other simulators
with similar statistics preservation properties.

When estimating context trees T̂ , we focus on penalized maximum-likelihood estimators
of the kind shown in (5.15) in Chapter 5, with a linear penalization coefficient KT = β|ST |.
Thus,

T̂ (xn) = arg min
T
{K(T, xn)} ; K(T, xn) = −

∑
s∈ST ,a∈A

n(a)
s log

n
(a)
s

ns
+ β|ST |f(n) , (6.1)

where, in the penalization function β|ST |f(n), β is a positive constant and f(n) is increasing
with n.

6.1 Statistical similarity properties

Theorem 6.1 below establishes the statistical similarity between two sequences in the same
universal tree type class. The theorem shows that sequences in the same universal tree type
class have similar statistics of any order. This property is analogous to the exact equiprob-
ability of sequences within conventional type classes. We recall from Section 5.1 that nw
denotes the number of times a symbol of xn occurs in context w, where we assume that xn is
preceded by a fixed semi-infinite string x0

−∞. Thus, nw is the number of occurrences of the
pattern w within xn, up to a difference bounded by |w| due to border conditions.

6.1. Theorem. Let yn ∈ U(xn) and let wr be any fixed string. Then,∣∣∣∣nw(xn)
n

− nw(yn)
n

∣∣∣∣ = O

(
r3/2

√
f(n)
n

)
. (6.2)

Proof. Let T̂ = T̂ (xn) = T̂ (yn). If w ∈ T̂ , then nw(xn) = nw(yn), and there is nothing to
prove. Otherwise let l = max{j : 1 ≤ j ≤ r, wj ∈ T̂}, and for l ≤ i ≤ r define

si = σT̂ (wi),

ni = nsi(x
n) = nsi(y

n),

nαi = n
(wi+1)
si (xn) = n

(wi+1)
si (yn), for i < r,

ui = wi,

mi = nui(x
n),

m′i = nui(y
n).

6.1. Statistical similarity properties 121

Let Ti be the smallest extension of T̂ such that ui ∈ Ti, and let Mi =
√

2(ln 2)(KTi −KT̂).
By the linearity of KT , KTi −KT̂ = β(|STi | − |ST̂ |) ≤ β(α− 1)i. Thus,

Mi ≤
√

2(ln 2)β(α− 1)i .

Notice that mi = n
(wi)
ui−1(xn) and, by Lemma 5.21, we have

nαi−1

ni−1
mi−1 −Mi−1

√
nf(n) ≤ mi ≤

nαi−1

ni−1
mi−1 +Mi−1

√
nf(n) . (6.3)

By recursively applying (6.3) to mi−1 in the role of mi on the right hand side of (6.3) we
obtain,

mi ≤
nαi−1

ni−1

(
nαi−2

ni−2
mi−2 +Mi−2

√
nf(n)

)
+Mi−1

√
nf(n) ,

which we further bound as,

mi ≤
nαi−1

ni−1

nαi−2

ni−2
mi−2 + (Mi−1 +Mi−2)

√
nf(n) .

In general, by repeatedly applying the same argument, we conclude that

mr ≤ ml+1

r−1∏
i=l+1

nαi
ni

+

 r−1∑
j=l+1

Mj

√nf(n) .

With the same derivation applied on the left hand side of (6.3), we get∣∣∣∣∣mr −ml+1

r−1∏
i=l+1

nαi
ni

∣∣∣∣∣ ≤
 r−1∑
j=l+1

Mj

√nf(n) , (6.4)

and, similarly, for yn we have∣∣∣∣∣m′r −m′l+1

r−1∏
i=l+1

nαi
ni

∣∣∣∣∣ ≤
 r−1∑
j=l+1

Mj

√nf(n) . (6.5)

Now, by the definition of l, we know that ul ∈ T̂ and thus we have

ml+1 =
∑

s∈ST̂ :ul�s
n

(wi+1)
s = m′l+1 . (6.6)

Hence, from (6.4), (6.5) and (6.6) we get

|mr −m′r| ≤ 2

 r−1∑
j=l+1

Mj

√nf(n) ,

and dividing by n we obtain∣∣∣∣nw(xn)
n

− nw(yn)
n

∣∣∣∣ ≤ 2

 r−1∑
j=l+1

Mj

√f(n)
n

. (6.7)

122 6. Universal tree type classes and simulation of individual sequences

The proof is completed by noting that

r−1∑
j=l+1

Mj ≤
√

2(ln 2)β(α− 1)
r−1∑
j=1

√
i = O(r3/2) . (6.8)

2

The asymptotic rate of convergence of the L1 distance of the empirical probability for a
fixed pattern in (6.2) is similar to that obtained for universal Markov type classes in [47],
which in turn improves on the O(1/ log n) rate shown for the LZ-based partition of [67]. The
dependence on the pattern length, r, however, is different. While the dependence is linear in
r in [67] and O(r3/2) in Theorem 6.1, all that we can prove for universal Markov type classes
is that the accumulated L1 distance over the exponentially many length r patterns grows
exponentially with r [47], but without a specific nontrivial bound for individual patterns.
This can be attributed to the gain in flexibility of context trees, which can grow unbalanced
to fit the data faster with different Markov orders for different patterns, as opposed to plain
Markov order estimators, which fit the same order to every pattern.

The constant β in the linear penalization coefficient in (6.1) only affects the constant in
the upper bound for

∣∣∣nw(xn)
n − nw(yn)

n

∣∣∣ in the proof of the theorem (equations (6.7) and (6.8)
above). On the other hand, the function f(n) determines the order of the convergence rate
of the statistics and, moreover, it also determines the size of the classes and the number of
classes. A slower growth of f(n) favors larger context trees, which yields a larger number of
different classes. Diminishing f(n) also yields smaller classes as we can foresee by observing
that the statistical similarity condition of Theorem 6.1 becomes tighter when f decreases,
thus reducing the universe of sequences that satisfy this condition.

We show in Lemma 6.2 below that all sequences in T (T̂ (xn), xn)\U(xn) estimate context
trees that are refinements of T̂ (xn).

6.2. Lemma. Assume that ties in (6.1) are consistently broken in favor of either smaller or
larger context trees. If yn ∈ T (T̂ (xn), xn)\U(xn), then T̂ (xn) ⊂ T̂ (yn).

Proof. Assume without loss of generality that ties are broken in favor of smaller context
trees in (6.1). Suppose that s is a state of T̂ (yn) that is refined in T̂ (xn). Let W = {sw ∈
T̂ (xn) : w ∈ A+}, and let SW be the set of leaves descending from s in T̂ (xn). Define the
context trees

T̂ ′(yn) = T̂ (yn) ∪W , T̂ ′(xn) = T̂ (xn)\W .

The context trees T̂ (xn) and T̂ ′(xn) differ only in that s is refined by a subtree W in T̂ (xn).
Hence, we have

− log P̂T̂ (xn)(x
n)+log P̂T̂ ′(xn)(x

n) = −
∑

su∈SW

∑
a∈A

n(a)
su (xn) log

n
(a)
su (xn)
nsu(xn)

+
∑
a∈A

n(a)
s (xn) log

n
(a)
s (xn)
ns(xn)

,

6.1. Statistical similarity properties 123

or, since yn ∈ T (T̂ (xn), xn), we can also write

− log P̂T̂ (xn)(x
n)+log P̂T̂ ′(xn)(x

n) = −
∑

su∈SW

∑
a∈A

n(a)
su (yn) log

n
(a)
su (yn)
nsu(yn)

+
∑
a∈A

n(a)
s (yn) log

n
(a)
s (yn)
ns(yn)

.

(6.9)
The context trees T̂ (yn) and T̂ ′(yn) also differ only in that s is refined by a subtree W in
T̂ ′(yn). Hence, we have

− log P̂T̂ ′(yn)(y
n)+log P̂T̂ (yn)(y

n) = −
∑

su∈SW

∑
a∈A

n(a)
su (yn) log

n
(a)
su (yn)
nsu(yn)

+
∑
a∈A

n(a)
s (yn) log

n
(a)
s (yn)
ns(yn)

,

and, by (6.9), we get

− log P̂T̂ ′(yn)(y
n) + log P̂T̂ (yn)(y

n) = − log P̂T̂ (xn)(x
n) + log P̂T̂ ′(xn)(x

n) . (6.10)

Since T̂ (xn) is the context tree estimate for xn, by (6.1) we have

− log P̂T̂ (xn)(x
n) + log P̂T̂ ′(xn)(x

n) ≤ β(|ST̂ ′(xn)| − |ST̂ (xn)|)f(n) . (6.11)

Moreover, since ties are broken in favor of smaller context trees, the inequality in (6.11) must
be strict and we further get

− log P̂T̂ (xn)(x
n) + log P̂T̂ ′(xn)(x

n) < β(|ST̂ ′(xn)| − |ST̂ (xn)|)f(n) ,

or, since T̂ (xn) \ T̂ ′(xn) = W = T̂ ′(yn) \ T̂ (yn), we also have

− log P̂T̂ (xn)(x
n) + log P̂T̂ ′(xn)(x

n) < β(|ST̂ (yn)| − |ST̂ ′(yn)|)f(n) .

Thus, by (6.10), we get

− log P̂T̂ ′(yn)(y
n) + log P̂T̂ (yn)(y

n) < β(|ST̂ ′(yn)| − |ST̂ (yn)|)f(n) ,

which contradicts T̂ (yn) being the context tree estimate for yn. 2

Lemma 6.2 confirms the intuition that diminishing f(n) yields smaller classes; consider
two penalization functions given by KT f(n) and KT f

′(n), with f > f ′, and suppose that
xn estimates the same context tree, T̂ , with both estimators. Let U(xn) and U ′(xn) denote
the classes of xn calculated with respect to the estimator induced by f and f ′, respectively.
Since a smaller penalization function favors larger context trees, some sequence of U(xn)
may estimate extensions of T̂ with the smaller penalization function f ′. Then, we must have
U(xn) ⊃ U ′(xn) since, by Lemma 6.2, there is no sequence in T (T̂ , xn) that estimates a
context tree smaller than T̂ , which could otherwise belong to U ′(xn)\U(xn).

124 6. Universal tree type classes and simulation of individual sequences

6.2 Simulation of individual sequences

The partition of An that we have presented has applications in the problem of simulation
of individual sequences [67]. A simulator, or a simulation scheme for individual sequences
is defined in [67] as a function, S, that maps sequences xn, for all n, to random sequences
Y n ∈ An. Thus, a simulation scheme takes an input, xn, and emits a random simulated
sequence, Y n, which we would like to be statistically similar to xn. Formally, the simulator
S is said to be faithful [67], if for each positive integer j, for each xn ∈ An, and for every
δ, ε > 0, we have

Prob{dj(xn, Y n) < ε} > 1− δ , for sufficiently large n , (6.12)

where dj(xn, Y n) denotes the variational distance (see, e.g., [12, Chapter 11]) between the
empirical distributions of j-tuples corresponding to xn and Y n. Observe that, as noticed
in [54] (in a stochastic setting), and also in [67], a faithful simulator can be obtained trivially
by taking yn equal to xn. However, we will be interested in simulation schemes that satisfy
the following additional condition.

P2 Given that (6.12) is satisfied, there is as much uncertainty as possible in the choice
of yn.

Property P2 is desirable, so as to make the simulated sequence look as “original” as possible.
In [67] this is addressed by maximizing the entropy of the output Y n, given the input xn

conditioned on the fact that (6.12) is satisfied.
Since P1, and thus (6.12), is satisfied by any pair of sequences in a universal tree type class

by Theorem 6.1, a faithful simulator can be obtained by picking yn at random from U(xn).
Since we are also interested in maximizing the uncertainty in the choice of yn, we maximize the
entropy of the output random sequence given xn by drawing yn with a uniform distribution
on U(xn). We summarize this simulation algorithm, called TreeSim, in Figure 6.1.

TreeSim

1. Based on a training sequence xn, estimate a context tree T̂ = T̂ (xn)
2. Draw uniformly at random from U(xn), i.e., from the subset of sequences of T (T̂ , xn)

for which the estimated context tree is also T̂

Figure 6.1: Simulation algorithm based on universal tree type classes

We next compare the performance of TreeSim against other simulation schemes. Let a
weakly faithful simulator be one that satisfies the following property: for any fixed k, the k-th
order empirical entropy rate of the training sequence xn and the output sequence yn satisfy
Ĥk(yn) < Ĥk(xn) + γk(n), where each γk(n) = o(1) (not necessarily uniformly in k). Notice
that this criterion does not impose any statistical similarity between the original sequence
and the simulated sequence. Also notice that any simulator that satisfies P1, like TreeSim by
Theorem 6.1, is a weakly faithful simulator. Let Mn(xn) be a partition of the sequence space

6.2. Simulation of individual sequences 125

An into Nn classes that yield a weakly faithful simulator and such that (logNn)/n = o(1).
The following theorem establishes the asymptotic optimality of the simulator induced by the
partitions {Mn}. As in the analogous result in [67], the theorem relies strongly on the sample
converse to the Source Coding Theorem [4, Theorem 3.1][36], from which it also inherits an
“exception set”.

6.3. Theorem. For any stationary ergodic measure, µ, and any weakly faithful simulator,

lim sup
n→∞

H(Y n|xn)− log |Mn(xn)|
n

≤ 0

for all x, except possibly in a set of vanishing µ-volume.

Proof. Consider the probability assignment Q(xn) = (Nn|Mn(xn)|)−1. By the sample con-
verse to the Source Coding Theorem [4, Theorem 3.1], lim inf − logQ(Xn)

n ≥ H a.s. where H is
the entropy rate of the given measure µ. Since logNn

n = o(1), we then have

lim inf
n→∞

log |Mn(xn)|
n

≥ H

in a set of µ-volume one.
Let Nn,k denote the number of Markov type classes of a fixed order k, and let Tn,k denote

a Markov type class of order k. For every sequence yn, the k-th order empirical probability
of yn is P̂n,k(yn) = 2−nĤk(yn). Thus, we have∑

yn

2−nĤk(yn) =
∑
Tn,k

∑
yn∈Tn,k

P̂n,k(yn) . (6.13)

Since P̂n,k(yn) is constant within each type class, we define P̂n,k(Tn,k) = |Tn,k|P̂n,k(yn), where
yn is any sequence in Tn,k. We then get, from (6.13),∑

yn

2−nĤk(yn) =
∑
Tn,k

P̂n,k(Tn,k) ≤ Nn,k . (6.14)

Now, for a given sequence xn, denote by Sn(xn) the set of sequences that have positive
probability of being emitted by a weakly faithful simulator S, on input xn, and let Nn,S(xn) =
|Sn(xn)|. Then, we have

Nn,k ≥
∑

yn∈Sn(xn)

2−nĤk(yn) ≥ Nn,S(xn)2−n(Ĥk(xn)+γk(n)) , (6.15)

where the first inequality follows from (6.14) and the second inequality follows from the
fact that S is weakly faithful. Therefore, since H(Y n|xn) has a maximum equal to logNn,S

achieved by the uniform distribution over Sn(xn), we get

1
n
H(Y n|xn) ≤ 1

n
logNn,S(xn) ≤ Ĥk(xn) + γk(n) +

logNn,k

n
,

126 6. Universal tree type classes and simulation of individual sequences

where the last inequality follows from (6.15). Since Nn,k grows polynomially with n and
γk(n) = o(1) for S weakly faithful, this implies that, for any fixed k,

lim sup
(

1
n
H(Y n|xn)− Ĥk(xn)

)
≤ 0 .

The theorem then follows from the fact that limk limn Ĥk(xn) = H a.s. [1]. 2

Theorem 6.3 states that in order for a partition-based weakly faithful simulator to achieve
an asymptotic optimal output entropy it is sufficient to prevent the number of equivalence
classes, Nn, from growing too fast with n. Both the original LZ-based universal type classes
of [67] and the universal Markov type classes of [47] satisfy this condition. We next show
that, with an appropriate choice of f(n), universal tree type classes also satisfy it and, thus,
TreeSim exhibits an asymptotic optimal output entropy when compared to all weakly faithful
simulators (including all faithful simulators).

6.4. Lemma. The number Nn of universal tree type classes over An satisfy (logNn)/n = o(1),
as long as logn

f(n) = o(1).

Proof. By using a natural code [56, 88], a full tree can be described with as many bits as
the number of nodes of the tree, which for a context tree with k states (leaves) is αk−1

α−1 ≤ 2k.
Thus, the number Tk of different context trees with k states is upper-bounded by 22k. Let wn
be the maximum number of states of an estimate T̂ (xn) among all sequences xn ∈ An. For
each context tree with k states there are at most nαk type classes, since we have α symbol
occurrence counts in each of the k states. Hence, we have

Nn ≤
wn∑
k=1

22knαk ≤ wn22wnnαwn .

Thus, we get
logNn

n
≤ logwn

n
+ 2

wn
n

+
αwn log n

n
,

which tends to zero as long as logn
f(n) = o(1), since wn = O(n/f(n)) by Lemma 5.19.

2

A comment is in order with respect to the implementation of this simulation algorithm.
While selecting a sequence at random from an LZ-based universal type class can be imple-
mented in a rather efficient manner [67], an enumeration of U(xn) that would efficiently solve
Step 2 of TreeSim seems a challenging problem. We may, however, circumvent the problem
by selecting a candidate string yn uniformly at random from T (T̂ (xn), xn) as described in
Chapter 4, checking whether T̂ (yn) = T̂ (xn), and repeating until a sequence from U(xn) is
drawn. This strategy succeeds in a constant expected number of steps (with high probability,
only one step) under any finite order Markov measure for xn, since a minimal context tree
representation of the Markov measure is recovered with probability one for a suitable con-
text tree estimator [17]. In the case of universal Markov type classes, it can be shown [47]

6.2. Simulation of individual sequences 127

that, with an appropriate Markov order estimator, k̂(xn), all but a negligible fraction of the
sequences in the Markov type class of order k̂(xn) of xn estimate the same Markov order as
xn. For universal tree type classes, the problem remains open.

Chapter 7

Conclusions and directions for further research

We studied information-theoretic properties of tree models, and algorithms related to them.
We first noticed that the statistics needed for the estimation of a context tree (e.g. in Context
data compression algorithm, or in the applications studied in chapters 5 and 6), can be
efficiently collected by constructing a compact suffix tree of the input sequence, which is
not full in general. This observation led to the GCTM extension, which we took advantage
of as an algorithmic tool. The GCTM formalism, however, also offers appealing parameter
economization features when compared to classical tree models. The development of practical
applications that exploit this potential reduction in the dimension of the model parameter
still presents significant computational complexity challenges. Specifically, the problem of
finding efficient algorithms for estimating an optimal GCT for a given sequence, remains an
open one, and a promising direction for further research.

The apparent algorithmic drawback of context trees stemming from the lack of a next-
state function, was overcome by means of the FSM closure formalism, which we discussed in
Chapter 2. We characterized the FSM closure of a GCT theoretically, and also investigated
efficient algorithms for constructing it. We exploited the construction in the implementation
of SPContextFSM, the first algorithm for linear-time encoding/decoding of the semi-predictive
version of Context, a twice-universal code in the class of tree models. In this application
we were able to combine tree models and FSM models enjoying from both the potential for
parameter space dimension reduction of tree sources but also from the computationally com-
plexity advantages of FSMs. Beyond providing an efficient mechanism for resolving context
transitions, the FSM closure turns out to be a valuable theoretical tool, providing a nexus
between tree models and FSM models, which are, in general, easier to analyze than tree mod-
els. For example, in Chapter 5 we were able to derive a bound on the expected logarithm of
the size of a context tree type class, based on a known analogous result for FSMs.

The general scheme that we used in the definition of SPContextFSM can be followed to
implement a wide range of two-pass encoders obtained by varying the sequential coding stage
and the model optimization function. For instance, one can replace the Krichevskii-Trofimov
estimator, which, in practice, may not be the best choice for large alphabets (see, e.g., [78]),
and adjust the pruning phase to optimize the resulting cost function. One may even try to
heuristically estimate a GCT during the pruning phase, which, although possibly not the best
in its class, could still improve the performance achieved by the best full context tree. In all
these cases, the construction of the FSM closure of the selected model would provide, as in
SPContextFSM, an efficient state transition mechanism. These ideas could be taken as the
basis for future experimental research.

Another direction for future work may be related to efficiency improvements on the model

130 7. Conclusions and directions for further research

optimization step that takes place at the encoder side of SPContextFSM. Even though the
construction of the compact suffix tree of a sequence requires linear time and memory usage,
the needs for memory may become prohibitive in practice for very large sequences. Besides
the obvious alternatives of splitting the input into chunks or limiting the model size, both of
which invalidate the universality claim for the original algorithm, one can explore alternative
suffix tree constructions methods that facilitate an efficient memory administration, e.g., [77].
In practice, for large sequences, these algorithms may outperform the classical linear-time
suffix tree construction techniques surveyed in [32], even though their time complexity is not
necessarily linear. Again, in any case, the FSM closure provides an efficient state transition
mechanism for the sequential encoding phase. We point out that the decoder side requires,
in general, less resources than the encoder, as the search for the optimal model is performed
only by the latter. This observation makes the semi-predictive approach especially attractive
in situations where the computational requirements are asymmetric and a low complexity
decoder is needed.

In Chapter 4, we solved the hitherto open problem of the characterization of type classes
of tree models. We studied both the size of the type class of a given string and the number
of type classes for sequences of length n induced by a given context tree. We derived an
exact formula for the size of the type class of a string, which generalizes Whittle’s formula for
FSMs, and we analyzed this formula to characterize the asymptotic behavior of the expected
size of the type class of a random sequence emitted by a tree source. As in the re-derivation
of Whittle’s formula in [34], we reduced the problem to counting Eulerian unlabeled paths
in a graph. For tree models however, the derivation is far more involved, due to the lack
of a next-state function. Moreover, it is interesting to note that the asymptotic behavior of
the size of the type class as exp(nĤ(xn)), which is valid for common models such as FSM,
Markov, and of course memoryless, does not extend to tree models. It is not clear whether a
similar elementary asymptotic expression for individual sequences exists for tree models, and
we leave it as an open question. Although we focused our study of type classes on full tree
models, the application of similar tools to other hierarchical aggregation of Markov models,
such as GCTs, seems plausible for future research.

By establishing a one-to-one correspondence between strings in a type class, and Eulerian
unlabeled paths in a graph, we automatically obtained an efficient enumeration algorithm
for the strings of a type class, which in turn yields applications in data compression and
simulation. These applications however, are not immediate. In the case of data compression,
a classical enumerative source code in which both type classes and sequences within each
type class are encoded uniformly turns out to be suboptimal for tree models, in opposition
to FSM models. Instead, we developed in Chapter 5 a non uniform encoding of type classes
that yields a universal enumerative code with optimal convergence rate in the class of tree
sources. The developed tools show an interesting trade-off between the cost of encoding the
type class with respect to a richer model, and the gain in code length that stems from the
reduction of the size of the type classes. By carefully encoding type classes, we saw that we
could refine the model structure used to partition the universe of sequences, while preserving
optimal code length with respect to the original model.

131

In the case of simulation, the enumeration algorithm presented in Chapter 4 allows for
the application of the scheme in [54], where the output sequence is selected uniformly at
random from the type class of a training sequence xn. Under the strong law preservation
properties required in [54], this simulation algorithm is optimal, in the sense of minimizing
the mutual information between the training data and the output sequence. We also defined
and investigated the universal tree type class of a sequence, which parallels conventional
type classes, in the same spirit as [67]. The partition of An into universal tree type classes
results in a simulation scheme for individual sequences analogous to the one presented in [67]
and also the one in [47]. This scheme is optimal in a well defined mathematical sense, and,
compared to universal Markov type classes [47], it exhibits an improvement with respect to
the convergence rate of the simulated sequence statistics as a function of the order. In [47], it
is shown that the same algorithm based on universal Markov type classes for the simulation
of individual sequences can be regarded as a twice-universal simulator in the class of Markov
sources, in the sense that it achieves asymptotically the same optimal performance (in the
sense of [54]) as a simulator that knows the true order of the source. An analogue result for
tree sources remains open and provides another direction for future investigation.

Appendix A

Minimality conditions for generalized context tree
models

Clearly, a model is minimal if and only if it remains so after normalization. Thus, to charac-
terize minimality, we can assume without loss of generality that T is normal. We say that a
pseudo-leaf v ∈ T is a pseudo-child of u ∈ T if v ∈ chldT (u), or v is a leaf of the form v′b,
where b ∈ A, v′ ∈ chldT (u), and α = 2. By the discussion on normalization in Section 2.2,
the case in which v 6∈ chldT (u) corresponds to the only case in which a node can be elimi-
nated from a normal GCT in an unnormalization step making its parent a pseudo-leaf. If v
or v′ are atomic children of u, then v is called an atomic pseudo-child of u. Let LT (u) denote
the set of atomic pseudo-children of u, and let

νT (u) = max { 1, |{ a ∈ A |ua 6∈ T }| } .

The following theorem characterizes minimal normal GCTMs.

A.1. Theorem. A normal GCTM 〈T, p〉 with A∗ = A∗P is minimal if and only if every node
u ∈ T satisfies the following conditions:

(i) Any subset of nodes in LT (u) that share a common CPMF is of size νT (u) or less.

(ii) If u is a permanent state, and v a pseudo-child of u, then p(·|u) 6= p(·| v).

In addition, for α = 3, if 〈T, p〉 is minimal and 〈T ′, p′〉 generates the same process with T ′

normal, then T ′ is an extension of T .

It can be shown that if T is not normal, the conditions of Theorem A.1 hold on TN if and
only if they hold on T ; therefore, the step of normalizing T can be avoided. The theorem
implies that the minimal normal GCTM is unique for α = 3. However, it might not be so
for α 6= 3. For example, let α = 4, denote A = {ai}4i=1, and consider the normal GCTs
T = {λ, a1, a2} and T ′ = {λ, a3, a4}. Clearly, if p(·| a1) = p(·| a2) = p′(·|λ) (as functions),
p′(·| a3) = p′(·| a4) = p(·|λ) 6= p′(·|λ), and p(·|λ$) = p′(·|λ$), 〈T, p〉 and 〈T ′, p′〉 generate
the same process and are both minimal. This example can be generalized to any α > 4 in
an obvious manner (but not to α < 4, since T and T ′ must be normal). For α = 2, let
A = {0, 1}, T = {λ, 01, 10}, T ′ = {λ, 00, 11}, p(·| 01) = p(·| 10) = p′(·|λ), and p′(·| 00) =
p′(·| 11) = p(·|λ) 6= p′(·|λ). Again, assuming that the two models use identical CPMFs for
the transient states λ$, 0$, and 1$, both 〈T, p〉 and 〈T ′, p′〉 are minimal GCT models that
generate the same process.

Proof. First, we show the necessity of the conditions. If u does not satisfy condition (i)
we can modify the model, without affecting the process, as follows. If u ∈ ST , add new

134 A. Minimality conditions for generalized context tree models

pseudo-leaves ua for all a ∈ A such that ua 6∈ T , and associate them with the CPMF of u.
By Lemma 2.1, u ceases to be a permanent state. By our assumption, there are ν ′ > νT (u)
atomic pseudo-children of u that share the same CPMF. These nodes can be eliminated so
that the strings they accepted are now accepted by u, which also inherits their common
CPMF (for α = 2, the elimination of an atomic pseudo-child v 6∈ chldT (u) also causes the
elimination of parT (v), which is not a permanent state as T is normal). Overall, the number
of permanent states in T decreases by at least ν ′ − νT (u) > 0. If u ∈ ST and does not satisfy
condition (ii), then it has a pseudo-child v with the same CPMF, which can be eliminated
without affecting the process, decreasing the number of permanent states of T (again, for
α = 2, the elimination of v may also imply the elimination of parT (v)). In both cases, not
satisfying the condition implies that T is not minimal. Notice that, since the CPMFs of the
transient states are assumed to satisfy the constraint (2.3), the above state eliminations are
not impeded by the transient CPMF p(·|u$).

Next, we prove the sufficiency of the conditions. Consider two normal GCTMs 〈T, p〉 and
〈T ′, p′〉 that generate the same process P , with A∗ = A∗P , and assume that 〈T, p〉 satisfies
conditions (i) and (ii). We first state two general properties that will be used in the proof.

(P1) If u ∈ A∗ is such that u 6∈ word(T ′), then VT (u) ∈ ST , VT ′(u) ∈ ST ′ , and p(·|VT (u)) =
p′(·|VT ′(u)) (as functions). Moreover, if u ∈ T , then u is a leaf of T .

(P2) If u ∈ T \ T ′, then either u is a pseudo-leaf of T , or α = 2 and there exists b ∈ A such
that ub is a leaf of T . In addition, denoting by v the claimed pseudo-child of parT (u)
(either u or ub), we have p(·| v) = p′(·|VT ′(u)) (as functions).

For u 6∈ T , (P1) is an obvious consequence of the existence of b ∈ A such that ub 6∈ word(T),
of Lemma 2.1, and of P (·|zu) being independent of z ∈ A∗ (as the two processes are identical
and all strings have nonzero probability); conditions (i) and (ii) on 〈T, p〉 are not required.
The case u ∈ T and the second part of (P1) follow from the fact that any nontrivial subtree of
T must contain permanent states with at least two different CPMFs, for otherwise the subtree
would contain a node all of whose children are leaves and that violates either condition (i) or
condition (ii).

To prove (P2), observe first that since u 6∈ T ′ the set Au = {a ∈ A : ua 6∈ word(T ′)}
contains at least α−1 symbols. Thus, since T is normal, if u ∈ ST then there exists a symbol
a′ ∈ Au such that ua′ 6∈ T , and therefore, by (P1), p(·|u) = p′(·|VT ′(u)). Now, consider the
strings ub ∈ word(T), b ∈ Au, and let uby ∈ chldT (u), y ∈ A∗. By (P1), uby must be
a leaf of T . If u is not a pseudo-leaf of T , then there exists at least one such leaf uby and,
moreover, uc must be a leaf of T for every c ∈ Au, for otherwise u ∈ ST and it would have the
same CPMF p′(·|VT ′(u)) as uby, violating condition (ii). This case can only occur for α = 2,
for otherwise the number of leaves sharing the same CPMF would be α − 1 > 1 = νT (u),
violating condition (i). The proof of (P2) is complete.

Now, to prove the sufficiency of conditions (i) and (ii), we will show that if a GCTM
〈T ′, p′〉 generates the same process as 〈T, p〉 and it also satisfies the conditions, then T and
T ′ are identical up to transformations of 〈T ′, p′〉 that do not affect neither |ST ′ | nor the
generated process. Without loss of generality, we can assume that T ′ is also normal. Clearly,

135

it suffices to prove that if u ∈ T ∩ T ′, then after such transformations, u is unaffected and
chldT (u) = chldT ′(u).

The claim is obvious for u 6∈ ST ∪ ST ′ , as u has a full complement of atomic children in
both GCTs. Next, we show that if u ∈ ST , then u ∈ ST ′ or, equivalently, that u ∈ ST \ ST ′
implies u 6∈ T ′. If the claim did not hold, we would have uc ∈ T ′ for all c ∈ A. Since T is
normal and u ∈ ST , there exist a, a′ ∈ A, a 6= a′, such that ua, ua′ 6∈ T . Thus, by (P2), T ′

has pseudo-children in the directions of a and a′ sharing the same CPMF. Since νT ′(u) = 1,
T ′ does not satisfy condition (i), a contradiction.

Consequently, it suffices to consider the case u ∈ ST ∩ ST ′ . Assume first α > 2. If
ua ∈ T \ T ′ for some a ∈ A, then, by (P2), ua is a pseudo-leaf of T and p′(·|u) = p(·|ua).
Therefore, if p(·|u) = p′(·|u), the sets of atomic children of u for T and T ′ coincide for
otherwise condition (ii) is violated. If p(·|u) 6= p′(·|u), we must have ua ∈ T ∪ T ′ for all
a ∈ A, for otherwise there exists b ∈ A such that uab 6∈ word(T ′) and uab 6∈ T , and a
contradiction to (P1) follows. Moreover, in order for both T and T ′ to satisfy condition (i),
the sets {ua ∈ T \T ′} and {ua ∈ T ′ \T} must have the same size. Therefore, by deleting from
T ′ all nodes in the latter set (which are pseudo-leaves) and adding the nodes in the former
set, the size of ST ′ remains unchanged, while the process 〈T ′, p′〉 is preserved by replacing
the distribution p′(·|u) with p(·|u) and associating p′(·|u) with the added pseudo-leaves (this
operation does not affect the transient states). After this transformation, again, the sets of
atomic children of T and T ′ coincide, and p(·|u) = p′(·|u).

For α = 2, the two sets of atomic children are empty by normality. We show that we can
also assume p(·|u) = p′(·|u). For all c ∈ A, there exists b ∈ A such that ucb 6∈ word(T ′). If
p(·|u) 6= p′(·|u), then ucb is a leaf of T , for otherwise a contradiction to (P1) would follow.
We can assume, without loss of generality, that c = b. Thus, letting A = {a, a′}, T has leaves
uaa and ua′a′, with CPMF p′(·|u). Similarly, T ′ has leaves uaa′ and ua′a, with CPMF p(·|u).
Therefore, we can replace the subtree of T ′ rooted at u with the corresponding subtree of
T (replacing also the associated CPMFs), without affecting the size of ST ′ or the generated
process.

To complete the sufficiency proof, it remains to show that, for any α, if uay ∈ chldT (u)
and uaz ∈ chldT ′(u) for some a ∈ A, y, z ∈ A+, and p(·|u) = p′(·|u), then y = z. Suppose
it is not. Then, either VT ′(uay) = u or VT (uaz) = u. Assume, without loss of generality,
that the former holds. Then, by (P2), u has a pseudo-child v with p(·| v) = p′(·|u) = p(·|u),
violating condition (ii).

Finally, assume that 〈T ′, p′〉 generates the same process as 〈T, p〉, with T ′ normal, 〈T, p〉
minimal, and α = 3. We prove that T ⊆ T ′. Since T ⊆ TN , we can assume, without loss
of generality, that T is normal. Suppose, to the contrary, that w ∈ T \ T ′. Clearly, there

exists v � w such that v ∈ T \ T ′ and parT (v) � VT ′(v)
4
= u. Let v = uax, with a ∈ A and

x ∈ A∗. By (P2), v is a pseudo-leaf of T and p(·| v) = p′(·|u). Since T ′ is normal, there
exists b ∈ A \ {a} such that ub 6∈ T ′. Moreover, for any a′ ∈ {a, b} we must have ua′ ∈ T ,
for otherwise VT (u) ∈ ST and ua′c 6∈ T ∪ word(T ′) for some c ∈ A, implying, by (P1),
p(·|VT (u)) = p′(·|u) = p(·| v), violating condition (ii) for T . Thus, u ∈ T and v = ua. Again
by (P2), ub is a pseudo-leaf of T with p′(·|u) = p(·|ub). It follows that {ua, ub} is a subset

136 A. Minimality conditions for generalized context tree models

of pseudo-leaves in LT (u) that share the same CPMF, violating condition (i) for T since
νT (u) = 1 as α = 3. 2

Appendix B

Proof of Theorem 2.9

We claim that the total number of comparisons made during computations of CT (x) is upper-
bounded by 2NE + N ′. By the discussion preceding the theorem, this fact establishes the
claimed upper bound, as the other operations take constant time per node of Tsuf.

Let T0 = T , and, for i > 0, let Ti be a snapshot of T ′ after the i-th computation of CT (x)
in Step 2 of Verify, and the corresponding call to Insert in Step 4, if such a call was made.
Let Ci be the total number of comparisons made in computations of CT (·) up to that point,
and C the total number after completion of the algorithm, when T ′ = Tsuf. Denote by T ∗i
the set of nodes of Ti excluding the root, by T−i the subset of those nodes that have not been
visited at the time of the snapshot, and by T−L,i the subset of nodes in T−i that are leaves of
Ti. We construct two sequences of functions fi : T ∗i → Z and gi : T ∗i → Z, i ≥ 0, such that

f0(uv) = 2|v|, uv ∈ T ∗0 , u = parT ∗0 (uv), u
v−→ uv,

g0 ≡ 0, and, for i > 0, and each node uav ∈ T ∗i , with u = parT ∗i (uav),

fi(uav) =

{
2|av| uav ∈ T−L,i or Traversed[u, a]=false,
0 otherwise,

and

gi(uav) =

{
|av| uav ∈ T−i \ T

−
L,i and Traversed[u, a]=true,

0 otherwise.

Notice that the condition for gi(uav) 6= 0 can only hold when uav was just created as a result
of an edge split in Step 5 of Insert. We prove, by induction on i, that the following condition
holds for all i ≥ 0 for which the relevant quantities are defined:

Ci ≤ |T ∗i |+ 2NE −
∑
t∈T ∗i

fi(t)−
∑
t∈T ∗i

gi(t). (B.1)

Condition (B.1) implies that at the end of the execution of the algorithm, after all nodes have
been visited, we have C ≤ N ′+ 2NE , as claimed. The inequality is clearly satisfied for i = 0.
Assume now it is satisfied for all i ≤ n− 1. We determine fn and gn after the next execution
of Step 2 and any necessary insertions, assuming Verify was called with argument w = cx,
and CT (x) = 〈r, u, v〉. Since cx is being visited, we have

fn(cx) = gn(cx) = 0. (B.2)

138 B. Proof of Theorem 2.9

If u 6= λ, let u = au′, a ∈ A. In this case, Insert was called, and an internal node was
created by splitting an edge r

uy−→ ruy into r u−→ ru
y−→ ruy. Hence, we have

fn(ru) =

{
2|u| Traversed[r, a] = false,
0 otherwise,

(B.3)

fn(ruy) =

{
2|y| Traversed[r, a] = false,
0 otherwise,

(B.4)

and

gn(ru) =

{
|u| Traversed[r, a] = true,
0 otherwise.

(B.5)

For node ruy, notice that if Traversed[r, a] = true, ruy had been visited either immedi-
ately after creation from Step 7 or 9, or after setting Traversed(r, a) = true from Step 16.
Therefore, we have

gn(ruy) = 0. (B.6)

Notice that from (B.3), (B.4), and the fact that edges resulting from a split inherit the
“traversed” status of the original edge, it follows that

fn(ru) + fn(ruy)− fn−1(ruy) = 0. (B.7)

If v 6= λ, a new leaf node ruv was created, and has not yet been visited, i.e. ruv ∈ T−L,i. Thus,
we have

fn(ruv) = 2|v|, (B.8)

and
gn(ruv) = 0. (B.9)

All other values of fn and gn are unchanged from their values at i = n − 1. We prove
that the condition in (B.1) holds for i = n. Assume first that the invocation of Verify at
which snapshot n was taken was made recursively from Step 7. It follows from the discussion
preceding the theorem that in this case, CT ′ was computed in fast mode, since we know that
x was a word of Tn−1. This also implies that v = λ, and ru was the only node possibly
created (if any). Let ĉx̂ be the argument of the call to Verify that caused the recursive
call in Step 7 with argument cx, and let 〈r̂, û, v̂〉 = CT ′(x̂), i.e., cx = r̂û. The search in fast
mode for x = tail(r̂û) in Tn begins at tail(r̂) and requires as many comparisons as nodes in
the path from tail(r̂) to the node immediately before exhausting the |û| remaining symbols.
Thus, the number of comparisons needed in the fast computation of CT ′(x) is upper bounded
by |û| − |u|+ 1 if u 6= λ, or |û| otherwise. Thus, we can write

Cn − Cn−1 ≤ |û| − |u|+ |T ∗n | − |T ∗n−1|. (B.10)

Also, we have fn−1(cx) = 0, since we call Verify from Step 7 only for nodes that are not
leaves, and whose incoming edge has Traversed = true. Therefore, combining with (B.2),
and (B.7), we get ∑

t∈T ∗n

fn(t)−
∑

t∈T ∗n−1

fn−1(t) = 0. (B.11)

139

As for the functions g, we have gn(cx) = 0 by (B.2), and, since coming from Step 7, cx is a
newly created internal node that did not exist at i = n− 1,

gn−1(cx) = |û|. (B.12)

By (B.5),
gn(ru) ≤ |u|. (B.13)

Also,
gn(ruy) = 0, (B.14)

and
gn−1(ruy) = 0 whenever ruy 6= cx. (B.15)

The last two equations follow from the fact that if the incoming edge of ruy has Traversed=
true, the node had already been visited at i = n− 1. The only exception is the coincidental
case where ruy = cx, the node being visited at i = n, in which case the node had not been
visited at i = n − 1 and the value from (B.12) takes precedence. Other values of gn remain
unchanged from gn−1, and, hence, it follows from (B.12)–(B.15) that

−
∑
t∈T ∗n

gn(t) +
∑

t∈T ∗n−1

gn−1(t) ≥ |û| − |u|. (B.16)

Now, from (B.10),(B.11),(B.16), and the induction hypothesis we obtain (B.1) for i = n, as
desired.

Assume now that the invocation of Verify at which snapshot n was taken was made
recursively from Step 9. As before, we let ĉx̂ be the argument of the call to Verify that
caused the recursive call in Step 9 with argument cx, and let 〈r̂, û, v̂〉 = CT ′(x̂). We have
û = λ, v̂ 6= λ, and cx = r̂v̂. The search for x = tail(r̂v̂) in Tn begins at tail(r̂) and requires
as many symbol to symbol comparisons as needed to either “fall off” the tree, or reach
x = tail(r̂v̂). Thus, the number of comparisons made in computing CT ′(x) is |v̂| − |v| + 1
when v 6= λ, or |v̂| otherwise. Hence,

Cn − Cn−1 ≤ |v̂| − |v|+ |T ∗n | − |T ∗n−1|. (B.17)

Since cx = r̂v̂ is a leaf added to Tn−1 just before calling Verify with argument cx, we have
fn−1(cx) = 2|v̂|. Therefore, combining with (B.2), (B.7), and (B.8), we get

−
∑
t∈T ∗n

fn(t) +
∑

t∈T ∗n−1

fn−1(t) = 2|v̂| − 2|v|. (B.18)

Also, gn(cx) = 0, and gn−1(cx) = 0 for cx is a leaf. By (B.5),

gn(ru) ≤ |u|, (B.19)

and by the same arguments as in the previous case,

gn(ruy) = 0, (B.20)

140 B. Proof of Theorem 2.9

and
gn−1(ruy) = 0. (B.21)

Since ruv is a leaf in case v 6= λ, gn(ruv) = 0, and, thus,

−
∑
t∈T ∗n

gn(t) +
∑

t∈T ∗n−1

gn−1(t) ≥ −|u|. (B.22)

From (B.18) and (B.22) we obtain

−
∑
t∈T ∗n

fn(t) +
∑

t∈T ∗n−1

fn−1(t)−
∑
t∈T ∗n

gn(t) +
∑

t∈T ∗n−1

gn−1(t) ≥ 2|v̂|− 2|v|− |u| ≥ |v̂|− |v|, (B.23)

where the rightmost inequality follows from |v̂| ≥ |u|+ |v|, which in turn follows from ruv =
x = tail(r̂)v̂ and tail(r̂) � r. Finally, combining with (B.17), and applying the induction
hypothesis, we obtain (B.1) for i = n also in this case.

It remains to consider the case where the invocation of Verify at which snapshot n was
taken was made from Step 16. Let ŵ = ĉx̂ be the argument of the call to Verify that caused
the recursive call in Step 16 with argument cx = ŵaz. The search for x = tail(ŵaz) in Tn
begins at tail(ŵ) and requires as many symbol to symbol comparisons as needed to either “fall
off” the tree, or reach x = tail(ŵaz). Thus, the number of comparisons made in computing
CT ′(x) is |az| − |v|+ 1 when v 6= λ, or |az| otherwise. Hence,

Cn − Cn−1 ≤ |az| − |v|+ |T ∗n | − |T ∗n−1|. (B.24)

Since at snapshot n − 1, Traversed[ŵ, a] = false, we have fn−1(cx) = 2|az|. Therefore,
combining with (B.2), (B.7), and (B.8), we get

−
∑
t∈T ∗n

fn(t) +
∑

t∈T ∗n−1

fn−1(t) = 2|az| − 2|v|. (B.25)

Also, gn(cx) = 0 by (B.2), and gn−1(cx) = 0 for Traversed[ŵ, a] = false. By (B.5),

gn(ru) ≤ |u|, (B.26)

and by the same arguments as in the previous cases,

gn(ruy) = 0, (B.27)

and
gn−1(ruy) = 0. (B.28)

Since ruv is a leaf in case v 6= λ, gn(ruv) = 0, and, thus,

−
∑
t∈T ∗n

gn(t) +
∑

t∈T ∗n−1

gn−1(t) ≥ −|u|. (B.29)

From (B.25) and (B.29) we obtain

−
∑
t∈T ∗n

fn(t)+
∑

t∈T ∗n−1

fn−1(t)−
∑
t∈T ∗n

gn(t)+
∑

t∈T ∗n−1

gn−1(t) ≥ 2|az|−2|v|−|u| ≥ |az|−|v|, (B.30)

where the rightmost inequality follows from |az| ≥ |u| + |v|, which in turn follows from
ruv = x = tail(ŵ)az and tail(ŵ) � r. Finally, combining with (B.24), and applying the
induction hypothesis, we obtain the desired result. 2

Appendix C

Linear-time decoding

In this appendix, we describe in full detail the two alternative decoding algorithms outlined
in Chapter 3. Both algorithms yield linear-time decoding.

C.1 Decoding using incremental FSM closure construction

We now present a decoding algorithm that does not require additional complex data structures
(as Jump[u] in Chapter 3). The implementation of the semi-predictive approach to Context
algorithm derived from this decoding algorithm is denoted SPContextFSMi. The decoder
starts by constructing T̂ ′(xn) and T̂ ′F (xn) as before. However, T̂ ′F (xn) is not used statically
as in the algorithm in Chapter 3. Instead, new permanent states of TF (xn) \ T̂ ′F (xn) are
added to T̂ ′F (xn) as they are found while symbols of xn are decoded. Formally, we recursively
define the sequence of FSM GCTs T̃ ′Fi(x

n), for 0 ≤ i ≤ n by T̃ ′F0
(xn) = T̂ ′F (xn); T̃ ′Fi(x

n) =
T̃ ′Fi−1

(xn) ∪ {si} for 0 < i ≤ n adding any necessary bifurcation and all nodes necessary to
satisfy the suffix property, namely, every suffix of a node of T̃ ′Fi(x

n) is a node of T̃ ′Fi(x
n).

Let s̃0
4
= λ; s̃i

4
= σT̃ ′Fi−1

(xn)(xi) for 0 < i ≤ n, and z̃i such that z̃0 = λ; s̃iz̃i is the longest

prefix of xi that is a word of T̃ ′Fi−1
(xn) for 0 < i ≤ n. Also define b̃i

4
= xi−|s̃iz̃i| in case

|s̃iz̃i| < i and s̃iz̃ixi−|s̃iz̃i| ∈ TF (xn), or b̃i = λ otherwise. The idea now is to use s̃i, z̃i, and
b̃i to determine si for every i, 0 ≤ i ≤ n. The connection is given by the following lemma for
which we remove the $ symbol from transient states.

C.1. Lemma. For every i, 0 ≤ i < n, we have si = s̃iz̃ib̃i.

Proof. If b̃i = λ, either s̃iz̃i is a leaf of TF (xn) or s̃iz̃i = xi and in any case s̃iz̃i = si. If b̃i 6= λ,
s̃iz̃i ≺ si by the definition of b̃i, and since si = ŝizibi by Lemma 3.3, we have s̃iz̃i ≺ ŝizibi.
Since T̃ ′Fi−1

(xn) is an extension of T̂ ′F (xn), also ŝizi � s̃iz̃i. Hence, we have ŝizi � s̃iz̃i ≺ ŝizibi,
and therefore s̃iz̃i = ŝizi. Thus, s̃iz̃ib̃i = ŝizibi and the claim follows from Lemma 3.3. 2

We now describe the decoding stage conceptually, and postpone implementation details
for a later discussion. After building T̃ ′F0

(xn) and setting s0 = λ, for each i, 0 < i ≤ n the
algorithm decodes xi using the statistics pointed by Origin[si−1] in T̃ ′Fi−1

(xn), determines
si, and constructs constructs T̃ ′Fi(x

n) from T̃ ′Fi−1
(xn) by adding si and the necessary suffixes.

In order for the decoder to use the same statistics as the encoder, the algorithm must
guarantee that Origin[uv]=Origin[uw] for all nodes uv and uw where u is a leaf of T (xn).
To this end, for any leaf u of T (xn) and uv ∈ T̃ ′Fi(x

n), Origin[uv] will point to the node
uw of T̃ ′Fi(x

n), where w is the shortest string such that uw ∈ T̃ ′Fj (x
n), and j is the minimum

142 C. Linear-time decoding

Evolve (T̃ ′Fi−1
(xn), s̃i, head(z̃i), |z̃i|, xi−|s̃iz̃i|)

1. Start from T̃ ′Fi
(xn) = T̃ ′Fi−1

(xn)
2. Set si = s̃i, and b̃i = λ

3. If z̃i 6= λ

4. Add s̃iz̃i to T̃ ′Fi
(xn), and set si = s̃iz̃i

5. Set Transitions[s̃iz̃i]=Transitions[s̃i]

6. Verify*(s̃iz̃i)

7. If |s̃iz̃i| < i and s̃iz̃i is an internal node of TF (xn)
8. Set b̃i = xi−|s̃iz̃i|
9. Add s̃iz̃ib̃i to T̃ ′Fi

(xn), and set si = s̃iz̃ib̃i
10. Set Transitions[s̃iz̃ib̃i]=Transitions[s̃iz̃i]

11. Verify*(s̃iz̃ib̃i)

Figure C.1: Computation of T̃ ′Fi
(xn)

index in the range 0 ≤ j ≤ i such that u ∈ word(T̃ ′Fj (x
n)). During the creation of T̃ ′Fi(x

n),
i > 0, we make use of the routine Verify*, equal to Verify from Chapter 2, except for the
variations (to Verify itself, and to the auxiliary routine Insert) that we describe next.

For a node uv created as a leaf child of u (steps 2 and 9 of Insert in Figure 2.6),
Origin[uv] is set to uv if u is an internal node of T (xn), or to Origin[u] otherwise. For
a node uv created splitting an edge u vx−→ uvx into u

v−→ uv
x−→ uvx (Step 5 of Insert),

Origin[uv] is set to uv if uv is an internal node of T (xn) or to Origin[uvx] otherwise. These
modifications implement the desired behavior for the pointers Origin[u], which guarantee a
correct determination of the decoding statistics.

When a new node u is inserted in T̃ ′Fi(x
n), it is also necessary to define new outgoing

FSM transitions for u, and update those FSM transitions of T̃ ′Fi−1
(xn) that must now lead to

u. To achieve this, Verify*(w) sets f(x′, c) = w in Transitions[x′], where c = head(w),
not only for node x′ = tail(w) (in Step 11 of Verify), but also to all its descendants x′y that
shared the same next-state for symbol c in T̃ ′Fi−1

(xn), i.e., f(x′y, c) = f(x′, c). In addition, if
node x′ is created as a new child of z, it sets f(x′, c′) = f(z, c′) in Transitions[x′] for all
c′ ∈ A, c′ 6= c.

Using Verify*, and assuming that s̃i and |z̃i| have been determined, the routine Evolve

of Figure C.1 evolves a tree from T̃ ′Fi−1
(xn) to T̃ ′Fi(x

n), and determines the symbol b̃i, and the
state si. The construction of T̃ ′Fi(x

n) starts from T̃ ′Fi−1
(xn). If z̃i 6= λ, a node s̃iz̃i is added to

T̃ ′Fi(x
n). As s̃iz̃i lies within a composite edge departing from s̃i in the direction of head(z̃i),

the arguments head(z̃i), and |z̃i| suffice to determine the insertion point. Notice that by
Lemma C.1 and the definition of z̃i, either s̃iz̃i = si, or s̃iz̃i is a bifurcation needed to insert
s̃iz̃ib̃i = si. Since T̃ ′Fi−1

(xn) has the suffix property, as̃iv 6∈ T̃ ′Fi−1
(xn) for any a ∈ A, v � z̃i,

with v ∈ A+, for otherwise s̃iv would be the state selected by xi in T̃ ′Fi−1
(xn) in place of s̃i.

Thus, the set of FSM transitions outgoing from s̃iz̃i, is initially copied from Transitions[s̃i].
Notice that this initial setting may be later modified by the invocation to Verify*(s̃iz̃i),
which possibly adds suffixes of s̃iz̃i defining their outgoing FSM transitions, and possibly

C.1. Decoding using incremental FSM closure construction 143

updating previously existing transitions. Now, since TF (xn) is a full tree, s̃iz̃ixi−|s̃iz̃i| ∈ TF (xn)
for |s̃iz̃i| < i if and only if s̃iz̃i is an internal node of TF (xn). Thus, b̃i 6= λ if and only if the
condition of Step 7 holds true. In case b̃i 6= λ, a node s̃iz̃ib̃i is created, which, by Lemma C.1,
is equal to si. Again, since T̃ ′Fi−1

(xn) has the suffix property, as̃iv 6∈ T̃ ′Fi−1
(xn) for any a ∈ A,

v � z̃ib̃i, with v ∈ A+, for otherwise s̃iv would be the state selected by xi in T̃ ′Fi−1
(xn) in

place of s̃i. Thus, the set of FSM transitions outgoing from s̃iz̃ib̃i, is initially copied from
Transitions[s̃iz̃i]. Finally, an invocation of Verify*(s̃iz̃ib̃i) adds suffixes of s̃iz̃ib̃i defining
their outgoing FSM transitions, and possibly updating previously existing transitions.

We now discuss some complexity issues before we show that the whole decoding stage can
be implemented in linear time. First, we point out that determining whether a node u of
T̃ ′Fi(x

n) is an internal node of TF (xn), as required by Step 7 of Evolve, can be implemented
efficiently with the help of an extra boolean flag Internal[u] associated to every node u of
T̃ ′Fi(x

n) with 0 ≤ i ≤ n. Start by assigning Internal[u]=true to all nodes u ∈ T̃ ′F0
(xn),

which, by Lemma 3.2, are internal nodes of TF (xn). Then, since T̂ ′F (xn) = T̃ ′F0
(xn) ⊆

T̃ ′Fi(x
n) ⊆ TF (xn), by Lemma 3.2 (ii), every node w added as a leaf to build T̃ ′Fi(x

n) for
0 ≤ i < n is not internal in TF (xn), and we set Internal[w]=false. On the other hand,
for those nodes w = uv that are created splitting an edge u

vy−→ uvy into u v−→ uv
y−→ uvy,

since uvy ∈ TF (xn) we set Internal[w]=true. A similar but simpler technique can be use
for determining whether a node is an internal node of T (xn) using the fact that all such nodes
are words of T̂ ′(xn). This allows an efficient setting of the pointers Origin[u] by Verify*.

In order to achieve linear-time decoding it is also necessary an efficient implementation
of the transition propagation in Verify*. This can be solved by choosing a representation
for Transitions[u] that groups all transitions that lead to the same destination (from all
states) in one single place. That is, all nodes x′y with transition f(x′y, c) = cx′ have a
pointer, Transition[x′y, c], to a cell that in turn points to cx′. This second level indirection
can be established in a single traversal of T̂ ′F (xn), upon its original construction. Clearly,
the initializations in steps 5 and 10 of Evolve can be performed in constant time. Now,
suppose that a node w = cx′ is added as a child of cr as part of the construction of T̃ ′Fi(x

n)
from T̃ ′Fi−1

(xn), and Verify*(w) calls for the insertion of x′. Setting f(x′y, c) = cx′ for all
descendants x′y of x′ that had Transition[x′y, c]=cr in T̃ ′Fi−1

(xn), as required by Verify*,
can be done by changing the value of the cell that points to cr, and creating a new cell for all
nodes u in the path r � u ≺ x′. We will show that the update of Transition[u, c] for these
nodes does not affect the overall linear complexity.

Notice that once si has been determined, and possibly added to T̃ ′Fi(x
n), clearly σT̃ ′Fi

(xn)(xi) =
si. Thus, given si, s̃i+1 can be computed in constant time following the next-state transition
Transition[si, xi+1] in T̃ ′Fi(x

n). Starting from s0 = λ, the algorithm successively computes
s̃i from si−1, and then si from s̃i, using Evolve, to proceed to the next input symbol. The
length of z̃i, an input to Evolve, can be efficiently determined in much the same way as the
algorithm in Chapter 3. We make use of Lemma C.2 below, for which we define ũi+1 as
ũi+1 = λ if |s̃i+1| > |s̃i|+ 1, 1 or the string satisfying xi+1s̃i = s̃i+1ũi+1 otherwise.

1Since s̃i+1 and s̃i are determined with respect to different GCTs, this condition can indeed hold.

144 C. Linear-time decoding

C.2. Lemma. If |s̃i+1| > |s̃i|+ 1 or s̃i+1ũi+1head(z̃i) ∈ word(T̃ ′Fi(x
n)), then either z̃i+1 = λ,

or s̃i+1z̃i+1 = xi+1s̃iz̃i.

Proof. First we show that s̃i+1z̃i+1 � xi+1s̃iz̃i. Otherwise, since both s̃i+1z̃i+1, and xi+1s̃iz̃i,
are prefixes of xi+1, xi+1s̃iz̃ixi−|s̃iz̃i| � s̃i+1z̃i+1. Thus, xi+1s̃iz̃ixi−|s̃iz̃i| is a word of T̃ ′Fi(x

n),
and therefore xi+1s̃iz̃ixi−|s̃iz̃i|y ∈ T̃ ′Fi(x

n) for some y. But since nodes in T̃ ′Fi(x
n) \ T̃ ′Fi−1

(xn)
can only be substrings of s̃iz̃ib̃i, and |xi+1s̃iz̃ixi−|s̃iz̃i|y| > |s̃iz̃ib̃i|, xi+1s̃iz̃ixi−|s̃iz̃i|y is also a
node of T̃ ′Fi−1

(xn). By the suffix property s̃iz̃ixi−|s̃iz̃i|y ∈ T̃ ′Fi−1
(xn), contradicting the defini-

tion of z̃i. We conclude that s̃i+1z̃i+1 � xi+1s̃iz̃i as claimed. Assume now that z̃i = λ. In this
case, s̃i+1z̃i+1 � xi+1s̃i, and therefore we rule out the condition |s̃i+1| > |s̃i| + 1. Thus, by
the assumptions of the lemma, we must have s̃i+1ũi+1 ∈ word(T̃ ′Fi(x

n)). Hence, by the defi-
nition of z̃i+1, s̃i+1ũi+1 � s̃i+1z̃i+1, and since s̃i+1ũi+1 = xi+1s̃i, xi+1s̃i � s̃i+1z̃i+1. But also
s̃i+1z̃i+1 � xi+1s̃i, thus, s̃i+1z̃i+1 = xi+1s̃i. If z̃i 6= λ, by the assumptions, and the prefix rela-
tion s̃i+1z̃i+1 � xi+1s̃iz̃i that we have shown, we can write s̃i+1z̃i+1 = xi+1s̃iz

′
i with z̃i = z′iz

′′
i

and z′i 6= λ. Suppose that z′′i 6= λ. Let w be the shortest string such that xi+1s̃iz
′
iw ∈ T̃ ′Fi(x

n).

Such string exists since xi+1s̃iz
′
i = s̃i+1z̃i+1 ∈ word

(
T̃ ′Fi(x

n)
)

. If w = λ, s̃i+1 is xi+1s̃iz
′
i.

Thus, z̃i+1 = λ, and the proof is complete. Suppose now that w 6= λ. We claim that there
exists a string u ∈ A+ such that s̃iz′iu ∈ word(T̃ ′Fi−1

(xn)) and head(u) 6= head(z′′i). Notice
that head(w) 6= head(z′′i), for otherwise z̃i+1 would be longer. If xi+1s̃iz

′
iw is not a substring

of s̃iz̃ib̃i, it also belongs to T̃ ′Fi−1
(xn) and by the suffix property so does s̃iz′iw. In this case

the string u = w satisfies the claim. If xi+1s̃iz
′
iw is a substring of s̃iz̃ib̃i, then for some string

v and w′b = w, vxi+1s̃iz
′
iw
′ ∈ word(T̃ ′Fi−1

(xn)). Therefore, there exists a string w′′ such that
vxi+1s̃iz

′
iw
′w′′ ∈ T̃ ′Fi−1

(xn) and by suffix property xi+1s̃iz
′
iw
′w′′ ∈ T̃ ′Fi−1

(xn). Again by the
suffix property, s̃iz′iw

′w′′ ∈ T̃ ′Fi−1
(xn), which implies that w′w′′ 6= λ for otherwise s̃iz′i would

be the state at time i . Since T̃ ′Fi(x
n) is an extension of T̃ ′Fi−1

(xn), xi+1s̃iz
′
iw
′w′′ does also

belong to T̃ ′Fi(x
n) implying that head(w′w′′) 6= head(z′′i). Thus, u = w′w′′ is a string satisfy-

ing the claim. We conclude that s̃iz′iu ∈ word(T̃ ′Fi−1
(xn)), u 6= λ and head(u) 6= head(z′′i).

Therefore, s̃iz′i is a bifurcation and the state at time i would be s̃iz′i. The contradiction arises
from supposing z′′i 6= λ, thus z′′i = λ, which concludes the proof. 2

The following lemma will allow us to bound the cost of invocations to Verify*.

C.3. Lemma. tail(s̃iz̃i) ∈ T̃ ′Fi−1
(xn).

Proof. The claim follows from the suffix property if z̃i = λ. If it is not, by definition
s̃iz̃i ∈ word(T̃ ′Fi−1

(xn)) and there exists w ∈ A+ such that s̃iz̃iw ∈ T̃ ′Fi−1
(xn). Consequently,

by the suffix property tail(s̃iz̃iw) ∈ T̃ ′Fi−1
(xn). By Lemma C.1, si = s̃iz̃ib̃i implying that

s̃iz̃ib̃i ∈ TF (xn) and tail(s̃iz̃ib̃i) ∈ TF (xn). si−1 = tail(s̃iz̃ib̃i)y for some y, and by definition of
T̃ ′Fi−1

(xn), tail(s̃iz̃ib̃i)y ∈ T̃ ′Fi−1
(xn). By definition of z̃i, head(w) 6= head(b̃iy). Thus, tail(s̃iz̃i)

is a bifurcation between tail(s̃iz̃ib̃i)y and tail(s̃iz̃iw). 2

By Lemma C.3, the invocation to Verify* in Step 6 of Evolve does not lead to recursive
calls. Also notice that if u ∈ T̃ ′Fi(x

n)\ T̃ ′Fi−1
(xn), then either u = s̃iz̃i, or u is a suffix of s̃iz̃ib̃i,

C.2. Decoding using incremental suffix tree construction 145

in which case u = u′b̃i is an atomic child of u′ ∈ T̃ ′Fi−1
(xn).

As we have observed previously, since the states s̃i, and s̃i+1 are determined with respect
to possibly different GCTs, it is plausible to find situations in which |s̃i+1| > |s̃i| + 1. The
following lemma shows, however, that s̃i+1 may gain at most one extra symbol of context
beyond |s̃i|+1. This will allow us to bound the total cost of determining si over all 0 ≤ i ≤ n.

C.4. Lemma. |s̃i+1| ≤ |s̃i|+ 2.

Proof. Suppose |s̃i+1| > |s̃i|+1. Clearly, tail(s̃i+1) 6∈ T̃ ′Fi−1
(xn), for otherwise |s̃i+1| ≤ |s̃i|+1.

Then, by the suffix property s̃i+1 ∈ T̃ ′Fi(x
n) \ T̃ ′Fi−1

(xn), and by Lemma C.3, s̃i+1 is a suffix
of s̃iz̃ib̃i, and s̃i+1 = u′b̃i is an atomic child of u′ ∈ T̃ ′Fi−1

(xn). Since, tail(u′) ∈ T̃ ′Fi−1
(xn) by

the suffix property, tail(u′) � s̃i, and therefore |s̃i| ≥ |u′| − 1 = |s̃i+1| − 2. 2

Finally we bound the overall complexity of the algorithm.

C.5. Theorem. SPContextFSMi encodes and decodes any sequence xn in time O(n).

Proof. We only need to show that the decoder runs in linear time. Due to Lemma C.2,
determining |z̃i| requires at most |ũi| + 1 comparisons, thus determining the insertion point
for si for all 0 < i ≤ n requires n +

∑n
i=1 |ũi|. By definition of ũi and Lemma C.4, |ũi| ≤

|s̃i−1| − |s̃i|+ 2 and therefore
∑n

i=1 |ũi| is O(n).
We next show that the cost of the invocation Verify*(s̃iz̃i) is also proportional to |ũi|+1.

First notice that by Lemma C.3 tail(s̃iz̃i) ∈ T̃ ′Fi−1
(xn), thus this invocation does not lead to

recursive calls. Moreover, we claim that searching for tail(s̃iz̃i) from tail(s̃i) can be done in a
node by node traversal and takes at most |ũi|+ 1 comparisons. To show the claim, we point
out that by Lemma C.2, when |z̃i| > |ũi| + 1, tail(s̃iz̃i) = s̃i−1z̃i−1 , and there are no nodes
between s̃i−1 and s̃i−1z̃i−1 except possibly for suffixes of s̃i−1z̃i−1b̃i−1 created in previous
steps. But by Lemma C.3, these suffixes are created as atomic children of preexisting nodes,
thus the number of these suffixes in the path of interest is at most one. Using exactly the
same argument, we show that the update of FSM transitions does also take at most |ũi|+ 1
nodes visited.

Finally, by Lemma C.3, Verify*(s̃iz̃ib̃i) only creates atomic children of preexisting nodes.
Thus, it takes a number of operations proportional to the number of nodes created, and the
claim then follows from the fact that all these nodes belong to T ′F (xn) and |T ′F (xn)| = O(n).

2

C.2 Decoding using incremental suffix tree construction

A linear-time decoder can also be implemented by extending T (xn) on the fly with the suffix
tree of the string decoded so far. A sequential suffix tree building algorithm is presented
in [23], and we describe a variation that works extending T (xn). This approach, which we

146 C. Linear-time decoding

denote SPContextSfx, does not use the FSM closure and typically requires more storage space
than SPContextFSM and SPContextFSMi.

The algorithm starts from a tree T0 = T (xn) and successively constructs Ti inserting the
reverse prefix xi in Ti−1. Common statistics can be accessed keeping in each inserted node
a pointer to the nearest ancestor that belongs to T (xn). The crucial step of this algorithm
from a complexity point of view is the search for suf ′i , the longest prefix of xi that is a word
of Ti−1, i.e. the insertion point for each new reverse prefix. For 0 < i ≤ n we define sufi
as the longest prefix of xi that is a substring of xi−1. It is not difficult to see that sufi is a
prefix of xisufi−1. Thus, we have,

sufi � xisufi−1, (C.1)

and also,
sufi � suf ′i . (C.2)

A key instrument to achieve linear time complexity is the use of short-cut links, which for
each node node u of Ti, and each symbol a, points to node auv where v is the shortest string
such that auv ∈ Ti, or it is undefined if such a node does not exist. The algorithm starts
by initializing short-cut links for all nodes in T0 and updates the structure as new nodes are
inserted. The algorithm starts the construction of Ti from node suf ′i−1 (we define suf ′0

4
= λ),

going into an upwards traversal. Namely, it traverses the tree upwards until it finds the first
ancestor of suf ′i−1 that has a short-cut link defined for symbol xi, or it reaches the root. Let
vi be the node found in the upwards traversal, and wi the node pointed to by its short-cut
link, or wi = λ if the root was reached and it has no short-cut defined for xi. We will exploit
the connection between the nodes wi, vi and the string sufi established by the following
proposition.

C.6. Proposition. If the node wi found in the upwards traversal at step i is not a node of
T (xn), then sufi = xivi.

Proof. Since by the assumptions wi ∈ Ti−1 \ T (xn), |wi| ≤ i − 1, and therefore |xivi| < i.
If wi = xivi, and there is no edge in the direction of xi−|xivi| from the node xivi, then
sufi = xivi and the proof is complete. If this is not the case, we define w′i = wi if wi 6= xivi,
and otherwise w′i is the shortest string that is a node of Ti−1, and xivixi−|xivi| � w′i. By
definition, vi � suf ′i−1, and therefore xivi � xi. Since wi 6∈ T (xn), xivi is a substring of
xi−1, and therefore xivi � sufi. Since also xivi ≺ w′i, and by the definition of w′i there are
no bifurcation nodes u, xivi ≺ u ≺ w′i, we must have either sufi ≺ w′i, or w′i � sufi. Since
w′i is a node of Ti−1 \ T (xn), there must exist 1 ≤ j, k < i, such that xj = w′iz, xk = w′iz

′,
and either head(z) 6= head(z′), or xj = xk = w′i. Then, the reverse prefixes xj−1, and xk−1

imply the existence of the node tail(w′i) in Ti−1, with a short-cut pointing to w′i for symbol
xi. Thus, in case w′i � sufi, tail(w′i) � sufi−1 by (C.1), and furthermore tail(w′i) � suf ′i−1

by (C.2). However, the upwards traversal stopped at vi although xivi ≺ w′i, which implies
that vi ≺ tail(w′i). We arrived to a contradiction from supposing that w′i � sufi, and we
must then have sufi ≺ w′i. Since sufi is a substring of xi−1, sufi � xj for some j < i. Thus,

C.2. Decoding using incremental suffix tree construction 147

sufiy ∈ Ti−1 for some y. Now, since xivi � sufi ≺ w′i, and there are no bifurcation nodes u,
xivi ≺ u ≺ w′i, we must have sufi = xivi (i.e., wi � sufiy if wi = w′i, or xivi does not have in
fact an edge in the direction of xi−|xivi| if wi = xivi). 2

Now, if the short-cut link found is of the form wi = xiviy
′
i for some y′i ∈ A+, then wi

does not belong to the full tree T (xn), and by Proposition C.6, suf ′i = sufi = xivi lies within
the composite edge that links wi with its parent. If wi = xivi, then suf ′i = wiy

′′
i for some

string y′′i that may not be empty when suf ′i ∈ T (xn). In this case the algorithm goes into
a downwards traversal descending from wi to the leaf of T (xn), suf ′i , following past symbols
that have already been decoded (a transient state is reached if xi−1 is exhausted). Once suf ′i
is determined, a new leaf representing xi is added and all nodes in the unsuccessful portion of
the upwards traversal are given short-cut links pointing to it for symbol xi. If suf ′i was within
a composite edge, short-cut links of nodes u � vi that previously pointed to wi = xiviy

′
i are

updated to point to xivi.
Some implementation considerations are needed to achieve linear-time decoding. During

a downwards traversals, an auxiliary data structure associated to node vi, jump[vi], is con-
structed. The structure jump[vi] maps a symbol a = xi and an index j to the j-th node
traversed downwards. Notice that if the preceding upwards traversal is not empty, there are
no nodes in the sub-path from vi = tail(wi) to tail(wiy′′i) of the upwards traversal, for oth-
erwise this node would have a short-cut link for symbol xi. Thus, jump[vi] is a mapping
between substrings y of a composite edge departing from vi into nodes xiviy. This structure
can be updated in constant time whenever a composite edge is split.

The goal of jump[vi] is to avoid revisiting nodes of T (xn) during downwards traversals.
Consider the downwards traversal at time i, and let y be the string such that viy = suf ′i−1.
We recall that in case a downwards traversal occurs, we must have wi = xivi. Let z = z0z1z2,
with z0, z1, z2 ∈ A∗, such that suf ′i = xiviz, and z1 has been previously downwards traversed.
This means that a reverse prefix xiviz0z1z

′ was inserted at some time j < i, and viz0z1z
′ was

also inserted at time j − 1. viz0z1z
′ can not be a prefix of viy since it has a short-cut link

for symbol xi contradicting the definition of vi. If viy is not a prefix of viz0z1z
′, then there

must be a bifurcation node that would also contain a short-cut link. We conclude that viy is
a prefix of viz0z1z

′, and jump(vi) can be used to avoid traversing z0z1.
In the following theorem we study the complexity of SPContextSfx.

C.7. Theorem. SPContextSfx encodes and decodes any sequence xn in time O(n).

Proof. We only need to show that the decoder runs in linear time. To find the complexity
of the decoder we must find the sum over all i of of the number of nodes visited in upwards
traversals, the number of nodes in the path wi to wiy′′i (downwards traversal), and the number
of nodes whose short-cut links are updated when suf ′i splits a composite edge. By the
preceding discussion, each node of T (xn) is visited at most once in a downwards traversal,
and, as argued in Chapter 3, |T (xn)| = O(n). As for upwards traversals, all nodes in the
unsuccessful portion of a traversal looking for a short-cut pointer for symbol a, are then given
a short-cut pointer for that symbol. Thus, every node is visited at most α times. Since, the

148 C. Linear-time decoding

whole (compact) suffix tree has O(n) nodes, and T (xn) has O(n) nodes, the overall cost of
upwards traversals is O(n).

When suf ′i splits a composite edge, a node suf ′i = sufi = xivi is created with no short-cut
link. Thus, if i < n, the next upwards traversal incudes at least the parent of the new node,
r = parTi(sufi), and therefore vi+1 � r. Now, either xi+1vi+1 = sufi+1 if xi+1vi+1 6∈ T (xn),
or sufi+1 � xi+1vi+1 otherwise. Thus, in any case, |sufi+1| ≤ |vi+1| + 1 ≤ |r| + 1. Hence,
the cost of updating short-cut links of nodes u � vi that pointed to wi = xiviy

′
i, to make

them point to to sufi, is bounded by |sufi| − |r| ≤ |sufi| − |sufi+1| + 1. Notice that al-
though this kind of short-cut link update occurs only when suf ′i splits a composite edge,
|sufi| − |sufi+1|+ 1 is non negative for all i by (C.1). We then bound the total cost of these
updates for 1 ≤ i < n, by the telescopic summation

∑n−1
i=1 |sufi| − |sufi+1| + 1 = O(n). For

i = n, the cost is trivially bound by n. 2

Appendix D

Proofs for Chapter 4

D.1 Proof of Lemma 4.13

For every sh in the state sequence of xn, we have sh � s0xh, and by (4.5) we get

µi(sh) � (s0x)|s0|+h−`sh+i for 0 ≤ h ≤ n, 1 ≤ i ≤ `sh . (D.1)

If also j is an integer such that h > j and j > h − `sh , the index i = `sh + j − h satisfies
0 < i < `sh as stated in Part (i). We then get from (D.1),

µi(sh) � (s0x)|s0|+j , for 0 ≤ h ≤ n, h > j, j > h− `sh ,
where i = `sh + j − h .

(D.2)

We claim that if h > 0, j must be positive. Otherwise, j′ = 0 also satisfies h > j′ and
j′ > h−`sh , and from (D.2) we get µi′(sh) � s0 with i′ = `sh−h. Then, since no pseudo-state
is a proper prefix of a state, we get µi′(sh) = s0. However, we have |µi′(sh)| < |sh| since
i′ < `sh , which is a contradiction. We conclude that

h− `sh ≥ 0 for 0 < h ≤ n . (D.3)

If j > 0, which is guaranteed when h > 0, (D.2) reduces to µi(sh) � xjs0. Hence, we have

sj = νi(sh) for 0 < h ≤ n, h > j, j > h− `sh ,
where i = `sh + j − h .

(D.4)

To conclude the proof of Part (i), it remains to show that |sj | < |sh|, and `sh−`sj ≥ h−j. The
former follows from the fact that i < `sh and the definition of νi(sh). The latter follows by
Lemma 4.7(i), from which we get i ≥ `sj . Thus, we have `sh + j−h ≥ `sj , or, `sh− `sj ≥ h− j
as claimed.

For Part (ii) it is sufficient to show that 1 ≤ j∆ ≤ `s~ , since in this case, (D.1) with j∆ in
the role of i, and ~ in the role of h yields

µj∆(s~) � (s0x)|s0|+~−`s~+j∆ , (D.5)

or, since ~− `s~ + j∆ = j by definition,

µj∆(s~) � xjs0 . (D.6)

Let 0 ≤ j ≤ n. Since ~ ≥ j by definition, it is clear that j∆ = j − ~ + `s~ ≤ `s~ . Let
m = max{m : m ≥ j, j > m − `sm}. We have m ≤ ~, for otherwise m > ~,m − `sm < j ≤ ~

150 D. Proofs for Chapter 4

and ~ would not belong to J . Suppose m < ~. Then, by definition of ~, we have m 6∈ J , and
therefore there exists m′ > m such that m > m′ − `sm′ . Since m′ is positive, (D.4) with m′

in the role of h, and m in the role of j, yields

sm = νi′(sm′) where i′ = `sm′ +m−m′ . (D.7)

By Lemma 4.7(i), with sm in the role of s′ and sm′ in the role of s, we obtain i′ ≥ `sm . Thus,
since m′−`sm′ = m− i′ by (D.7), we get m′−`sm′ ≤ m−`sm < j. We then have m′−`sm′ < j

but m′ > m, which is a contradiction since m is the maximum index satisfying m− `sm < j.
We conclude that m = ~. Thus j > ~− `s~ , and therefore j∆ = j−~+ `s~ ≥ 1. This concludes
the proof of Part (ii).

By definition of J , we know that n ∈ J , and by (D.3), we have 0 ∈ J . Thus, t0 = 0
and tr = n as claimed in the first part of (iii). To prove the remaining of Part (iii), and
Part (iv), we apply Part (ii) taking in particular j = ti + 1 for 0 ≤ i < r. In this case we
have ~ = ti+1. Then, we have j∆ = ti + 1 − ti+1 + `sti+1

, which is positive by Part (ii), and
therefore ti ≥ ti+1 − `sti+1

. But also ti ≤ ti+1 − `sti+1
, for otherwise ti would not belong to

J . Hence, we have ti = ti+1 − `sti+1
as claimed in (iii). Now, replacing ti = ti+1 − `sti+1

in

j∆ = ti + 1 − ti+1 + `sti+1
, we get j∆ = 1. Thus, we get µ1(sti+1) � xti+1s0 by Part (ii).

Since also we have xti+1sti � xti+1s0 and, by (4.6), xti+1sti 6� µ1(sti+1), we conclude that
µ1(sti+1) ≺ xti+1sti , which proves Part (iv).

For Part (v) we write N (µ) as

N (µ) =
n∑
i=1

1si−1,si .

Splitting the summation in intervals between indexes in J , and recalling that t0 = 0 and
tr = n, we get

N (µ) =
r∑
i=1

ti∑
j=ti−1+1

1sj−1,sj

=
r∑
i=1

1sti−1 ,sti−1+1 +
ti∑

j=ti−1+2

1sj−1,sj

 .

Since ti−1 = ti − `sti by Part (iii), this becomes

N (µ) =
r∑
i=1

1sti−1 ,sti−1+1 +
ti∑

j=ti−`sti+2

1sj−1,sj

 .

For each j in the inner summation of the last equation, we have ~ = ti. Thus, by Part (ii),
we have sj = νj∆(sti), and similarly sj−1 = ν(j−1)∆

(sti). We then get

N (µ) =
r∑
i=1

1sti−1 ,sti−1+1 +
ti∑

j=ti−`sti+2

1ν(j−1)∆
(sti),νj∆ (sti)

 .

D.1. Proof of Lemma 4.13 151

From the definition of j∆, we have (j − 1)∆ = j − 1− ti + `sti , and j∆ = j − ti + `sti . Thus,
with a change of index variable, the last equation becomes

N (µ) =
r∑
i=1

1sti−1 ,sti−1+1 +

`sti∑
j=2

1νj−1(sti),νj(sti)

 . (D.8)

By the definition of ∆̃− we get

N (µ) =
r−1∑
i=0

(
1sti ,sti+1 + ∆̃−(sti+1)

)
, (D.9)

as claimed in Part (v).
For Part (vi) we proceed in a similar way. We start from the definition of K and write

K = N (µ) +
n∑
i=1

Θ(si) .

Splitting the summation in intervals between indexes in J , and recalling that t0 = 0 and
tr = n, we get

K = N (µ) +
r∑
i=1

ti∑
j=ti−1+1

Θ(sj) .

For each j in the inner summation of the last equation, we have ~ = ti. Thus, by Part (ii),
we get sj = νj∆(sti). Since j∆ = j − ti + `sti , we obtain

K = N (µ) +
r∑
i=1

ti∑
j=ti−1+1

Θ(νj−ti+`sti (sti)) . (D.10)

By Part (iii), we have ti−1 = ti − `sti , which yields

K = N (µ) +
r∑
i=1

ti∑
j=ti−`sti+1

Θ(νj−ti+`sti (sti)) . (D.11)

Now, changing the index variable,

K = N (µ) +
r∑
i=1

`sti∑
j=1

Θ(νj(sti)) (D.12)

= N (µ) +
r∑
i=1

Θ(sti) +

`sti
−1∑

j=1

Θ(νj(sti))

 . (D.13)

We recall the definition of Θ(s) = Θ̃(s)−
∑`s−1

t=1 Θ(νt(s)), from which we get

K = N (µ) +
r∑
i=1

Θ̃(sti) . (D.14)

152 D. Proofs for Chapter 4

Now, by Part (v), we get

K =
r−1∑
i=0

(
1sti ,sti+1 + ∆̃−(sti+1)

)
+

r−1∑
i=0

Θ̃(sti+1) ,

and by the definition Θ̃(s) = ∆̃+(s)− ∆̃−(s), this yields

K =
r−1∑
i=0

1sti ,sti+1 + ∆̃+(sti+1) , (D.15)

as claimed in Part (vi).
If u, v ∈ ST , and ∆̃+

u,v(sti+1) > 0, we must have u = tail(v), and therefore τ(u,head(v)) =
v, which yields du,v = 0. Hence, applying the definition of D to (D.15), we get

D =
r−1∑
i=0

1sti ,sti+1 + d(sti , sti+1) + ∆̃+(sti+1) .

Also, since ti ∈ J , we have xti+1sti 6∈ T . Thus, we have 1sti ,sti+1+d(sti , sti+1) = 1sti ,τ(sti ,xti+1),
and we get Part (vii),

D =
r−1∑
i=0

1sti ,τi + ∆̃+(sti+1) . (D.16)

We prove Part (viii) next. From the last equation, we obtain

Dw∗ =
r−1∑
i=0

δsti ,w + ∆̃+
w∗(sti+1) .

Notice that, by the definition of ∆̃+(s), we have ∆̃+
w∗(s) + δw,s = ∆̃+

∗w(s) + δw,µ1(s). Thus, we
get

Dw∗ =
r−1∑
i=0

δsti ,w + ∆̃+
∗w(sti+1) + δw,µ1(sti+1) − δw,sti+1

.

The terms δsti ,w, and −δw,sti+1
cancel each other along the summation, except for δst0 ,w and

−δw,str . Recalling that t0 = 0 and tr = n by Part (iii), we get

Dw∗ = δs0,w − δsn,w +
r−1∑
i=0

∆̃+
∗w(sti+1) + δw,µ1(sti+1) . (D.17)

From (D.16) we also have

D∗w =
r−1∑
i=0

δw,τi + ∆̃+
∗w(sti+1) . (D.18)

Thus, subtracting (D.17) from (D.18) we get,

D∗w −Dw∗ = δsn,w − δs0,w +
r−1∑
i=0

δw,τi − δw,µ1(sti+1) . (D.19)

D.1. Proof of Lemma 4.13 153

Consider now a pseudo-state u ∈ U\ST , and let v = ρ(u). We recall, from the defini-
tion (4.12) of B, that Bu,v =

∑
w∈Λ(u)D∗w − Dw∗. Thus, since δs0,w = δsn,w = 0 for all

w ∈ Λ(u), summing (D.19) in w ∈ Λ(u) we get Bu,v =
∑

w∈Λ(u)

∑r−1
i=0 δw,τi − δw,µ1(sti+1) as

claimed in (viii).
For any u ∈ U we claim that

r−1∑
i=0

∑
w∈Λ(u)

δw,τi − δw,µ1(sti+1) ≥ 0 , with equality when u ∈ ST . (D.20)

For fixed i, δw,τi is non zero for at most one w ∈ Λ(u), and also δw,µ1(sti+1) is non zero for at
most one value of w. As τi ∈ Λ(µ1(sti+1)) by Part (iv), if δw,µ1(sti+1) = 1 for w, there exists
w′ ∈ Λ(w) ⊂ Λ(u) such that δw′,τi = 1. This shows the non-negativity of (D.20). On the other
hand, if δw,τi = 1 for some w ∈ Λ(u), w belongs simultaneously to Λ(u) and Λ(µ1(sti+1)) by
Part (iv). When u ∈ ST , no v ∈ U is a prefix of u, and we must have Λ(µ1(sti+1)) ⊂ Λ(u).
Hence, there exists w′ ∈ Λ(u) such that δw′,µ1(sti+1) = 1, which shows that (D.20) is zero
when u ∈ ST . We conclude from Part (viii) and (D.20) that for u ∈ U\ST and v = ρ(u), we
have Bu,v ≥ 0. From (D.16) we see that also D is non-negative and, therefore, Fi,j ≥ 0 for all
i, j. Also, for u ∈ U\ST , we have

Bu,v =
∑

w∈Λ(u)

D∗w −Dw∗

= D∗u −Du∗ +
∑

w∈Λ̄(u)

D∗w −Dw∗ (D.21)

= D∗u −Du∗ +
∑

w:ρ(w)=u

Bw,u .

Thus, since Bu,v = Bu∗ by the definition of B, we get F∗u = Fu∗. Similarly, for u ∈ ST we
get summing (D.19) for w ∈ Λ(u), and applying (D.20),∑

w∈Λ(u)

D∗w −Dw∗ = δsn,u − δs0,u .

Thus,

δsn,u − δs0,u = D∗u −Du∗ +
∑

w∈Λ̄(u)

D∗w −Dw∗

= D∗u −Du∗ +
∑

v:ρ(v)=u

Bv,u ,

and since Bu∗ = 0 for u ∈ ST , we get

δsn,u − δs0,u = F∗u − Fu∗ .

This concludes the proof of Part (ix).
Notice that, by the definitions of ∆̃+ and ∆̃−, we have

∑
i,j ∆̃+

i,j(s) =
∑

i,j ∆̃−i,j(s) for all
states s. Hence, the fact that

∑
i,j Di,j =

∑
i,jKi,j = n, claimed in Part (x), follows from

154 D. Proofs for Chapter 4

parts (v), (vi), and (vii). Now, for u ∈ ST , we have Bu∗ = 0 and, therefore, Fu∗ = Du∗ ≤ n.
Also, from (D.21), for u ∈ U\ST , we have

Bu,ρ(u) +Du∗ = D∗u +
∑

w∈Λ̄(u)

(D∗w −Dw∗) .

Since D is non-negative, we have Bu,ρ(u) + Du∗ ≤ D∗u +
∑

w∈Λ̄(u)D∗w. Hence, since Fu∗ =
Bu,ρ(u) +Du∗, we get Fu∗ ≤ n. To bound F∗u we notice that, by Part (ix), we have F∗u ≤ Fu∗
except when u = sn 6= s0, in which case F∗u = Fu∗ + 1. For u = sn, we have Fu∗ = Du∗ ≤ n

since Bu∗ = 0 for u ∈ ST . By Part (vii), recalling that t0 = 0, we see that Ds0∗ > 0.
Therefore, we have Du∗ < n for u 6= s0. Thus, we get F∗u ≤ n as claimed.

As for Part (xi), let v ≺ u and Fu,v > 0. From (D.16) it is clear that Du,v = 0. Hence,
we have Fu,v = Bu,v and v = ρ(u) by the definition (4.12) of B. Thus, we have Bu,v > 0,
which by Part (viii) implies that the summation

∑r−1
i=0

∑
w∈Λ(u) δw,τi − δw,µ1(sti+1) is positive.

Hence, there exists an index i, 0 ≤ i < r, such that τi = w ∈ Λ(u). Thus, we must have
u � xti+1sti , and therefore tail(u) � sti .

D.2 Proof of Lemma 4.29

For each t ∈ ST , we let bt denote an arbitrary but fixed symbol, such that btt is not an
internal node of T . Since T is canonical, such symbol does exist for all states t. Consider a
state s ∈ ST , and a symbol b ∈ A, such that bs is not an internal node of T . We claim that
there exists a string w, such that for every z, z′ ∈ A∗, we have for xn = zsbwz′ and j = |zs|
that sj = µj∆(s~). Take w of length k = depth(T), defined as wi = bs′i where

s′i =

{
σT (sb) i = 1 ,
σT (s′i−ibs′i−i) 1 < i ≤ k . (D.22)

When b′s′ is not an internal node of T , s′b′ is sufficiently long to select a state in T , thus (D.22)
is well defined. Notice that, with xn = zsbwz′ and j = |zs|, we have that sj+i = s′i for
1 ≤ i ≤ k. By (D.22) and the definition of bs, we have |sj+i| ≤ |sj+i−1| + 1 for 1 ≤ i ≤ k.
Hence, we get |sm| ≤ |sj |+m− j for j ≤ m ≤ j + k. Since k is the depth of T , we know that
`s′ ≤ k for all s′ ∈ ST . Therefore, recalling that ~ = j + `s~ − j∆, we get ~ < j + k. Hence,
taking m = ~ we get |s~| ≤ |sj |+ ~− j. Thus, we have

|sj | ≥ |s~|+ j − ~
= |s~| − (`s~ − j∆)
= |µj∆(s~)| ,

where the last equality follows from (4.5). By Lemma 4.13(ii), we have sj = νj∆(s~), which
is a prefix of µj∆(s~) and, therefore, we get sj = µj∆(s~) as claimed. The string w we have
constructed is a function of s and b, and we denote it ϕ(s, b).

Consider now an edge of the form e = (µi(s), µi+1(s)) where s is any state of T . Since T is
canonical, let b ∈ A be a symbol such that bs 6∈ I(T). Let w = ϕ(s, b) and let y′ = sbw. Every

D.3. Proof of Lemma 4.22 155

time y′ occurs in xn, i.e., xn = zsbwz′ for some z, z′ ∈ A∗, the state sj with j = |zs| satisfies
sj = s = µj∆(s~) . By Lemma 4.7(iii), we have µi(s) = µi(s~) and µi+1(s) = µi+1(s~). Thus,
the term with ti+1 = ~ in equation (D.23) below (from Lemma 4.13(vii)) makes a positive
contribution to Du,v with u = µi(s), v = µi+1(s). Moreover, if xn can also be decomposed as
xn = z̃sbwz̃′ for some z̃, z̃′ ∈ A∗, and m = |z̃s|, then sm = s = µm∆(s~m). Thus, either ~m 6= ~,
or m = j for also sj = s = µj∆(s~). Thus, every different occurrence of y′ in xn provokes a
new increment to Du,v. Hence, taking y = y′, we have Fu,v(xn) ≥ ny(xn).

D =
r−1∑
i=0

1sti ,τi + ∆̃+(sti+1) . (D.23)

Consider now a state u = s ∈ ST and a symbol b, such that v = τ(s, b) is well defined, i.e.,
bs is not an internal node of T . Let y′ = sbw where w = ϕ(s, b). Every time y′ occurs in xn,
i.e. xn = zsbwz′ for some z, z′ ∈ A∗, we have for j = |zs| that s = sj = µj∆(s~). If ~ = j, the
term 1sti ,τi with ti = ~ in (D.23) makes a positive contribution to Du,v. Otherwise, we have
~(j + 1) = ~ and therefore (j + 1)∆ = j∆+1. Thus, by Lemma 4.13(ii), we get µj∆+1(s~) � bsz.

Since µj∆(s~) = s, we must have µj∆+1(s~) = bs and consequently τ(s, b) = µj∆+1(s~). Hence,
the term ∆̃+(sti+1) with ti+1 = ~ adds to Du,v. Moreover, if xn can also be decomposed as
xn = z̃sbwz̃′ for some z̃, z̃′ ∈ A∗, and m = |z̃s|, then sm = s = µm∆(s~m). Thus, either ~m 6= ~,
or m = j for also sj = s = µj∆(s~). Hence, the term 1sti ,τi in case ~ = j is counted only once,
and also the term ∆̃+(sti+1) in case ~ 6= j is counted only once. Thus, every occurrence of y′

in xn makes a positive contribution to Du,v. Hence, taking y = y′, we have Fu,v(xn) ≥ ny(xn).
Let v = ρ(u) with tail(u) ∈ T , s ∈ ST such that tail(u) � s, and s′ ∈ ST such that s′ � v.

Let also b be a symbol such that bs′ 6∈ I(T), let w = ϕ(s′, b), and c = head(s′). Let y′ = scbw.
Every time y′ occurs in xn, i.e. xn = zscbwz′ for some z, z′ ∈ A∗, we have for j = |zs|+1 that
s′ = sj = µj∆(s~), and s = sj−1. Since tail(u) ∈ T and s′ ≺ u, we know that tail(s′) ∈ I(T).
Thus, we have tail(µj∆(s~)) ∈ I(T) and, therefore, j − ~ + `s~ = j∆ = 1 by (4.6). Hence, we
have j−1 = ~− `s~ , which belongs to J by Lemma 4.13(iii). We recall Equation (D.24) below
from Lemma 4.13(viii).

Bu,ρ(u) =
r−1∑
i=0

∑
w∈Λ(u)

δw,τi − δw,µ1(sti+1) . (D.24)

Since tail(u) � s, c = head(s′), and s′ � v ≺ u, then τ(s, c) ∈ Λ(u). Therefore, when
ti = j − 1, we know that δw,τi is positive for some w ∈ Λ(u). On the other hand, since
µ1(s~) = s′ and s′ ≺ u, we have δw,µ1(sti+1) = 0 for all w ∈ Λ(u) when ti+1 = ~. We conclude
that the term corresponding to index i such that ti = j − 1 of (D.24) adds to Bu,v and,
therefore, taking y = y′ we have Fu,v ≥ ny(xn).

D.3 Proof of Lemma 4.22

With a slight abuse of notation, we extend the dimension of the matrices K,D,B, F to
|U ∪U ′| × |U ∪U ′| by inserting all-zero rows and all-zero columns for pseudo-states in U ′\U .

156 D. Proofs for Chapter 4

We also extend K ′,D′,B′, F ′ for T ′ analogously. Notice that this extension does not alter the
value of the multinomial factors of (4.15). Let {si} and {s′i} be the state sequences defined
by xn in T and T ′ respectively. The length of a forced state sequence of a state s, defined
in (4.4), is denoted `s when computed with respect to T and `′s when computed with respect
to T ′. Similarly, a matrix ∆̃+(s) is denoted ∆̃′

+
(s), a pseudo-state µi(s) is denoted µ′i(s),

and a forced state νi(s) is denoted ν ′i(s) when computed with respect to T ′. The forced
state sequence parcing of xn with respect to T ′ is denoted J ′(xn). The function τ ′ and the
matrix function d′ are also T ′ versions of τ and d. Both d and d′ are extended to dimension
|U ∪ U ′| × |U ∪ U ′| by inserting all-zero rows and all-zero columns.

In order to compare matrices F ′ and F , we start by studying the difference ∆Kn ,
K ′(xn)−K(xn). Defining k′n = K ′(xn)−K ′(xn−1), and kn = K(xn)−K(xn−1), we can write
∆Kn for n > 0 as

∆Kn = ∆Kn−1 + ∆kn; ∆kn = k′n − kn . (D.25)

Notice that while determining ∆Kn involves comparing matrices computed with respect to
different context trees, namely, T and T ′, each term k′n and kn depends exclusively on a fixed
context tree, which simplifies our analysis. Based on (D.25), we will show that

∆Kn =

{
∆K(`w=1)

n , if `w = 1 ,
∆K(`w>1)

n , if `w > 1 ,
(D.26)

where

∆K(`w=1)
n =

n∑
i=1

[
δsi−1,w

(
1s′i−1,s

′
i
− 1si−1,si

)
+ δsi,w(1− δsi−1,w)

(
1s′i−1,s

′
i
− 1si−1,si

)]
,

(D.27)
and,

∆K(`w>1)
n =

n∑
i=1

A︷ ︸︸ ︷

δsi−1,w

(
1s′i−1,s

′
i
− 1si−1,si

)
(D.28)

+
∑
b∈A

δs′i,wb

(1− δ`si ,`′s′
i

)d′(s′i−`si , s
′
i−`si+1)︸ ︷︷ ︸

B

+
`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w)︸ ︷︷ ︸
C

 .

When `w = 1, (D.27) simply replaces transitions incoming to, or outgoing from w, by a
transition incoming to, or outgoing from one of its descendants in T ′. When `w > 1, w is
accessed always through its forced pseudo-state sequence. In this case, (D.28) “raises” the
sequence of pseudo-states µ1(w) · · ·µ`w(w) = w, replacing it by a sequence from µ1(w)b to
µ`w(w)b = wb. A term labeled B of (D.28), as we shall see, has the effect of redirecting
a transition of the form s → ν1(w), by one of the form s → µ1(w)b. This new transition
becomes part of the forced pseudo-state sequence of s′i, which is in this case longer than that
of si.

In the sequel, we extensively make use of the following claim.

D.3. Proof of Lemma 4.22 157

1. Claim. The forced pseudo-state sequences of the states of T and T ′ satisfy:

• For all b ∈ A, `′wb ≥ `w.

• If s ∈ ST ∩ ST ′, either s = aw with a ∈ A, or `s = `′s.

• If s ∈ ST has the form b|s| with b ∈ A, then `s = 1.

Proof. Let i be an integer in the range 1 ≤ i ≤ `w. By the definition of `w in (4.4), there
exists a state s′ ∈ ST , such that s′ � (w)|w|i . If i > 1, then s′ 6= w belongs also to ST ′ and
s′ ≺ (wb)|wb|i . If i = 1, wb itself is a prefix of (wb)|wb|i . Hence, by the definition (4.4) we must
have `′wb ≥ `w. Consider now a state s ∈ ST ∩ ST ′ that is not of the form s = aw, and let
i be an integer in the range 1 ≤ i ≤ `s. By the definition of `s in (4.4), there exists a state
s′ ∈ ST , such that s′ � (s)|s|i . If i = 1, s itself is a state of ST ′ which is a prefix of (s)|s|i . If
i > 1, (s)|s|i 6= w for s is not of the form s = aw, and |w| ≥ depth(T)− 1. Hence, s′ is also a
state of T ′, and we conclude that `′s ≥ `s. On the other hand, since T ′ is a refinement of T ,
if a state s′ ∈ ST ′ is a prefix of (s)|s|j for some j, then there exists also a state s′′ ∈ ST such

that s′′ � s′ ≺ (s)|s|j . Thus, also `s ≥ `′s and we must have `′s = `s. Finally, if s has the form
b|s| with b ∈ A, tail(s) ≺ s is an internal node of T , and therefore `s = 1 by (4.6). 2

By Lemma 4.13(vi), which we recall in (D.29) below, determining k′n and kn amounts to
determining the effect on J(xn−1) and J ′(xn−1) of appending the symbol xn to xn−1.

K =
r−1∑
i=0

1sti ,sti+1 + ∆̃+(sti+1) . (D.29)

From the definition of forced sequence parsing, it is clear that J(xn)\J(xn−1) = {n}, i.e.,
except for the last index n, the concatenation of a new symbol to xn−1 does not add new
indexes to J . On the contrary, some indexes of J(xn−1) may cease to belong to the forced
sequence parsing. Specifically,

J (−)
n , J(xn−1)\J(xn) = {ti ∈ J(xn−1) : ti > n− `sn} . (D.30)

Similarly, denoting J ′(xn) = {t′i} the forced sequence parsing of xn with respect to T ′, we
have

J ′
(−)
n , J ′(xn−1)\J ′(xn) = {t′i ∈ J ′(xn−1) : t′i > n− `′s′n} . (D.31)

It then follows from (D.29) that

kn = −A+ 1sn−1,snδ`sn ,1 −B + ∆̃+(sn) , (D.32)

where
A =

∑
ti∈J

(−)
n ,ti<n−1

1sti ,sti+1 , (D.33)

and
B =

∑
ti∈J

(−)
n ,ti>0

∆̃+(sti) , (D.34)

158 D. Proofs for Chapter 4

and also,
k′n = −A′ + 1s′n−1,s

′
n
δ`′
s′n
,1 −B′ + ∆̃′

+
(s′n) , (D.35)

where
A′ =

∑
t′i∈J ′

(−)
n ,t′i<n−1

1s′
t′
i
,s′
t′
i
+1
, (D.36)

and
B′ =

∑
t′i∈J ′

(−)
n ,t′i>0

∆̃′
+

(s′t′i) . (D.37)

We distinguish three cases to study (D.32) and (D.35), which lead straightforwardly
to (D.27) and (D.28). Namely, for n > 0,

(i) For sn = w, the state selected in T ′ has the form s′n = wb with b ∈ A, b = xn−|w|. We
claim that for `w = 1, ∆kn = 1s′n−1,s

′
n
− 1sn−1,sn and for `w > 1,

∆kn = (1− δ`sn ,`′s′n
)d′(s′h, s

′
h+1) +

`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w) , (D.38)

where h = n− `sn .

(ii) For sn−1 = w, we claim that

∆kn = 1s′n−1,s
′
n
− 1sn−1,sn−1 . (D.39)

(iii) For sn 6= w, sn−1 6= w, we claim that k′n = kn.

The following claim will help on the proof of (i), but also in the rest of the proof of this
Lemma.

2. Claim. If `′wb > `w for b ∈ A, then, with m = `′wb − `w, we have µ′m(wb) = tail(µ1(w))b ∈
ST ′ ∩ ST .

Proof. By Claim 1, the forced state sequence of wb in T ′ is not shorter than that of w in
T . Thus, for 0 ≤ i < `w we have µ′`′wb−i

(wb) = µ`w−i(w)b. In particular for i = `w − 1,
µ′`′wb−`w+1(wb) = µ1(w)b. Thus, µ′m+1(wb) = µ1(w)b. Now, if `′wb > `w, so that m > 0, we
know that µ′m(wb), which equals tail(µ1(w))b, is not an internal node of T ′, and therefore it
is not an internal node of T either. However, from (4.6), we also know that tail(µ1(w)) is an
internal node of T . Thus, µ′m(wb) must be a state of T . Moreover, since `′wb > 1 we know
that w is not of the form bm, and therefore tail(µ1(w))b 6= w, and µ′m(wb) is a state of both
T and T ′. Claim 2 is proved. 2

We now consider (i), and we start by comparing the state sequences {sj} and {s′j} in the
range n− `sn < j < n.

(i)-1. Claim. For n− `sn < j < n, we claim that s′j = sj, `′s′j = `sj , and ∆̃′
+

(s′j) = ∆̃+(sj).

D.3. Proof of Lemma 4.22 159

Proof. By Lemma 4.13(i) with h = n, we get that |sj | < |sn|. Thus sj 6= w and we must have
sj = s′j . Moreover, since |sj | < |w|, by Claim 1 the forced state sequence of sj with respect

to T and T ′ must coincide. Thus, `′s′j = `sj and ∆̃′
+

(s′j) = ∆̃+(sj). 2

We next relate the forced state sequence lengths `′s′n and `sn to the sets J ′(−)
n and J

(−)
n .

Recall that by Claim 1, `′s′n ≥ `sn .

(i)-2. Claim. We claim that J ′(−)
n ⊇ J

(−)
n with equality if and only if `′s′n = `sn. Moreover,

if m = `′s′n − `sn > 0, there is a unique index h = n− `sn in J ′(−)
n \J

(−)
n . The state s′h satisfies

s′h = sh = µ′m(s′n) = tail(µ1(sn))b, and the state sh+1 is equal to ν1(sn).

Proof. By Claim (i)-1, an index ti > n−`sn belongs to J(xn−1) if and only if it also belongs to
J ′(xn−1). Hence, recalling that `′s′n ≥ `sn , we get the inclusion relation J ′(−)

n ⊇ J
(−)
n directly

from the definitions of J ′(−)
n and J

(−)
n in (D.30) and (D.31). Furthermore, if t′i ∈ J ′

(−)
n \J

(−)
n ,

we must have t′i ≤ n − `sn . If `′s′n = `sn , this immediately gives J ′(−)
n = J

(−)
n . If `′s′n > `sn ,

consider the index h = n − `sn . By Lemma 4.13(iii), h ∈ J(xn) and a fortiori h ∈ J(xn−1).
Hence, by Claim (i)-1, also h ∈ J ′(xn−1) and therefore h ∈ J ′(−)

n \J
(−)
n . Since h > n − `′s′n ,

considering the forced sequence parsing of xn with respect to T ′, we have ~h′ = n and
h′∆ = h − n + `′s′n = −`sn + `′s′n = m. By Lemma 4.13(ii), s′h = ν ′m(s′n), and by Claim 2,
s′h = sh = µ′m(s′n) = tail(µ1(sn))b. Also since h+ 1 > n− `sn , considering the forced sequence
parsing of xn with respect to T , we have ~(h+ 1) = n and (h+ 1)∆ = h + 1 − n + `sn = 1.
Hence, by Lemma 4.13(ii), sh+1 = ν1(sn). It remains to show that h is the unique index
in J ′(−)

n \J
(−)
n . Recall that if t′i ∈ J ′(−)

n \J
(−)
n , we must have t′i ≤ n − `sn = h. Now, if

h > j > n− `′s′n , then j > n−m− `sn for m = `′s′n − `sn . Since by Lemma 4.7(iii), `′s′h
= m,

we have j > n− `′s′h − `sn = h− `′s′h . Thus, j 6∈ J ′(xn−1) and we conclude that h is the unique

index in J ′(−)
n \J

(−)
n . Claim (i)-2 is proved. 2

When `′s′n = `sn , the indexes ti and t′i in the summations of (D.33) and (D.36), and
the summations of (D.34) and (D.37), coincide by Claim (i)-2. Moreover, by Claim (i)-
1 these summations include exactly the same terms, i.e., A = A′, B = B′, and we get
from (D.35) and (D.32)

∆kn = 1s′n−1,s
′
n
δ`′
s′n
,1 − 1sn−1,snδ`sn ,1 + ∆̃′

+
(s′n)− ∆̃+(sn) , (D.40)

or equivalently,

∆kn =

{
1s′n−1,s

′
n
− 1sn−1,sn , `w = 1 ,∑`w

j=2 1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w) , `w > 1 ,
(D.41)

which is in agreement with (i).
When `′s′n > `sn , we conclude from Claim (i)-2 that A − A′ = −1s′h,s′h+1

(1 − δh,n−1), and

B − B′ = −∆̃′
+

(s′h) where h = n − `w is the unique index in J ′(−)
n \J

(−)
n , and the factor

160 D. Proofs for Chapter 4

(1 − δh,n−1) comes from the condition ti < n − 1 in the summation of (D.36). Also, since
`′s′n > `sn ≥ 1, we have δ`′

s′n
,1 = 0. We then get from (D.35) and (D.32)

∆kn = −1s′h,s′h+1
(1− δh,n−1)− ∆̃′

+
(s′h)− 1sn−1,snδ`sn ,1 + ∆̃′

+
(s′n)− ∆̃+(sn) . (D.42)

If `w = 1, ∆̃+(sn) is null. Also h = n− 1, and the first term of (D.42) is zero. Recalling
that by Claim (i)-2, s′h = µ′m(s′n) with m = `′s′n − 1, we have ∆̃′

+
(s′n) − ∆̃′

+
(s′h) = 1s′n−1,s

′
n
.

Thus, Equation (D.42) reduces to

∆kn = 1s′n−1,s
′
n
− 1sn−1,sn , (D.43)

as claimed in (i).
If `w > 1, the difference ∆̃′

+
(s′n)− ∆̃′

+
(s′h) is

∆̃′
+

(s′n)− ∆̃′
+

(s′h) =
`′wb∑

j=m+1

1µ′j−1(wb),µ′j(wb)
, (D.44)

or, separating the first term and applying the definition of τ to s′h and a = xn−`w+1,

∆̃′
+

(s′n)− ∆̃′
+

(s′h) = 1s′h,τ(s′h,a) +
`′wb∑

j=m+2

1µ′j−1(wb),µ′j(wb)
, (D.45)

which changing the summation index, and using that m = `′s′n − `sn , becomes

∆̃′
+

(s′n)− ∆̃′
+

(s′h) = 1s′h,τ(s′h,a) +
`w∑
j=2

1µ′j−1+m(wb),µ′j+m(wb) . (D.46)

Finally, we recall that µ′m(wb) = tail(µ1(w))b. Thus, µ′m+1(wb) = µ1(w)b, and in general
µ′m+j(wb) = µj(w)b for 1 ≤ j ≤ `w. Hence,

∆̃′
+

(s′n)− ∆̃′
+

(s′h) = 1s′h,τ(s′h,a) +
`w∑
j=2

1µj−1(w)b,µj(w)b . (D.47)

Substituting in (D.42), and recalling that for `w > 1 we have δh,n−1 = 0,

∆kn = −1s′h,s′h+1
+ 1s′h,τ(s′h,a) +

`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w) . (D.48)

Since d′(s′h, s
′
h+1) = 1s′h,τ(s′h,a) − 1s′h,s′h+1

, we get

∆kn = d′(s′h, s
′
h+1) +

`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w) , (D.49)

which concludes the proof of (i).

D.3. Proof of Lemma 4.22 161

We now consider (ii) where sn−1 = w, and therefore s′n−1 has the form s′n−1 = wb with
b ∈ A, b = xn−1−|w|. Suppose first that |sn| ≤ |w|, which implies that `sn = 1. Since

|sn| ≤ |w|, also |s′n| ≤ |wb|, and we have `′s′n = `sn = 1. Consequently both J ′(−)
n , and J

(−)
n

are empty. Hence, the terms A,B,A′,B′, ∆̃′
+

(s′n), and ∆̃+(sn) in (D.35) and (D.32) are null
and we get

∆kn = 1s′n−1,s
′
n
− 1sn−1,sn . (D.50)

If on the other hand, |sn| > |w|, since |w| ≥ depth(T) − 1, sn must have the form sn = aw

with a = xn. Also since sn 6= w, the state selected in T ′ coincides with sn, i.e., s′n = sn = aw.
Hence, tail(s′n) = w is an internal node of T ′, and we have `′s′n = 1. Thus, ∆̃′

+
(s′n) = 0 and

the set J ′(−)
n is empty, which causes the terms A′ and B′ to be null in (D.35). Hence,

k′n = 1s′n−1,s
′
n
. (D.51)

In T however, `sn > 1 for we have tail(sn) = w. Thus, sn−1 = µ`sn−1(sn), and by
Lemma 4.7(iii), we get `sn−1 = `sn − 1. Now, if ti belongs to J(xn−1), either ti = n − 1,
or, by definition of J , ti ≤ n−1− `sn−1 = n− `sn . Thus, since the latter condition excludes ti
from J

(−)
n by (D.30), J (−)

n = {n−1}. This, yields A = 0 in (D.32). As for B, notice that n−1
must be strictly positive for the initial state s0 is of maximal depth in T , but |sn−1| < |sn|.
Thus, from (D.34), we get B = ∆̃+(sn−1). Replacing in (D.32),

kn = −∆̃+(sn−1) + ∆̃+(sn) , (D.52)

which, since sn−1 = µ`sn−1(sn), reduces to 1sn−1,sn . This, together with (D.51), gives the
same expression as in (D.50) for ∆kn, and concludes the proof of the claim in (ii).

We now consider (iii), where sn−1 6= w and sn 6= w. Since sn−1 6= w, sn is not of the form
aw with a ∈ A. Thus, by Claim 1, `′s′n = `sn . Furthermore, by Lemma 4.13(i) with n in the
role of h, we have |sj | < |sn| for all j in the range n − `sn < j < n. Thus, sj = s′j and by

Claim 1 `′s′j = `sj , and therefore and ∆̃′
+

(s′j) = ∆̃+(sj). Then, for all n − `sn < j < n, we

have by the definition of forced sequence parsing that j ∈ J(xn−1) if and only if j ∈ J ′(xn−1).
Hence, the sets J ′(−)

n and J (−)
n are equal yielding exactly the same terms in (D.36) and (D.33),

and in (D.37) and (D.34). From (D.35) and (D.32), recalling that `′s′n = `sn and therefore

∆̃′
+

(s′n) = ∆̃+(sn), we get k′n = kn. This concludes the proof of (iii).
To derive (D.27) and (D.28) from (i), (ii), and (iii), we notice that ∆K0 = 0, and there-

fore ∆Kn =
∑n

i=1 ∆Ki − ∆Ki−1. Thus, by (D.25), ∆Kn =
∑n

i=1 ∆ki, from which (D.27)
and (D.28) follow, by (i), (ii), and (iii).

We now study ∆Dn , D′(xn)−D(xn), based on ∆Kn. From the definition of the matrix
D, we get

∆Dn = ∆Kn +
∑

u,v∈ST ′

(
K ′n
)
u,v
d′(u, v)−

∑
u,v∈ST

(Kn)u,v d(u, v) . (D.53)

Since |w| ≥ depth(T) − 1, no pseudo-state of T is a proper descendant of w, and for the
same reason, no pseudo-state of T ′ is a proper descendant of wb for any b ∈ A. Thus, we can

162 D. Proofs for Chapter 4

discard all terms with v = w in the first summation, as we know that d(u, v) = 0 in these
cases. Similarly, we can discard all terms with v = wb, b ∈ A, in the second summation,
getting

∆Dn = ∆Kn +
∑

u,v∈ST ′ ,w 6�v

(
K ′n
)
u,v
d′(u, v)−

∑
u,v∈ST ,v 6=w

(Kn)u,v d(u, v) . (D.54)

We can further simplify (D.54) by grouping in a single summation the terms where d′(u, v) =
d(u, v). By Claim 1, if s ∈ ST ∩ST ′ , then either s = aw with a ∈ A, in which case `s > `′s, or
`s = `′s. Thus, the set of pseudo-states that are new in T ′ with respect to T come from the
new states wb with b ∈ A,

U ′\U ⊂
⋃

b∈A,1≤i≤`′wb

µ′i(wb) . (D.55)

Now, if `′wb > `w for b ∈ A, then, with m = `′wb− `w, we have µ′m(wb) ∈ ST ′ ∩ST by Claim 2.
Thus, by Lemma 4.7(iii), with s′ = µ′m(wb), µ′i(wb) = µ′i(s

′) for all 1 ≤ i ≤ m. Furthermore,
since m < `′wb, |s′| < |wb|, and therefore s′ is not of the form aw. Hence, by Claim 1, `s′ = `′s′ .
Thus, µ′i(wb) = µ′i(s

′) = µi(s′) ∈ U for all 1 ≤ i ≤ m, and (D.55) becomes,

U ′\U ⊂
⋃

b∈A,`′wb−`w<i≤`
′
wb

µ′i(wb) . (D.56)

Notice that (D.56) is still valid when `′wb = `w. Changing the index variable,

U ′\U ⊂
⋃

b∈A,1≤i≤`w

µ′`′wb−`w+i(wb) , (D.57)

or,
U ′\U ⊂

⋃
b∈A,0≤i<`w

µ′`′wb−i
(wb) . (D.58)

Since µ′`′wb−i
(wb) = µ`w−i(w)b, we get,

U ′\U ⊂
⋃

b∈A,1≤i≤`w

µi(w)b . (D.59)

We now consider the pseudo-states of U that are no longer pseudo-states in T ′. This includes
the pseudo-states µ1(w) · · ·µ`w(w), which may not belong to U ′ as w 6∈ ST ′ , and also pseudo-
states µi(s) of states s ∈ ST ′ ∩ ST with `s > `′s. By Claim 1, only states of the form s = aw

have longer forced pseudo-state sequence in T than in T ′. In this case, we have w = µ`s−1(s)
and by Lemma 4.7(iii), µi(s) = µi(w) for all 1 ≤ i ≤ `w. Hence, since µ`w+1(s) = s ∈ U ′,

U\U ′ ⊂
⋃

1≤i≤`w

µi(w) . (D.60)

We next characterize the cases in which τ and τ ′ differ. We define the integer m as the
unique index 1 ≤ m < `w − 1 such that µm(w) ∈ ST , and µm+1(w) 6∈ U ′ if such index exists,
and m = 0 otherwise. Notice that, if t = µj(w) ∈ ST with 1 ≤ j < `w, then `t = j and
µi(w) = µi(t) for all i < j by Lemma 4.7 Part (iii). Since |µj(w)| < |w|, t is also a state of

D.3. Proof of Lemma 4.22 163

T ′ and its forced pseudo-state sequences coincide in both context trees by Claim 1. Hence
µi(w) = µ′i(t) ∈ U ′ for all i < j, and therefore there can exist at most one index 1 ≤ j < `w
such that µj(w) ∈ ST , and µj+1(w) 6∈ U ′.

3. Claim. Let s ∈ ST , and s′ ∈ ST ′, such that s � s′, and let also a be a symbol of A
such that as is not an internal node of T , and as′ is not an internal node of T ′. Then, if
τ ′(s′, a) 6= τ(s, a), one of the following holds:

• τ(s, a) = µ1(w), and τ ′(s′, a) = µ1(w)b where b = (as′)|µ1(w)|+1. In this case, µ1(w)b 6∈
U .

• m > 0, s = s′ = µm(w), and τ(s, a) = µm+1(w) = as.

Proof. Let u = τ(s, a), and u′ = τ ′(s′, a), with u 6= u′. We first show that u′ � as. Otherwise,
as u′ � as′ by the definition of τ , s and s′ must be different, and therefore s = w, and s′ = wc

with c ∈ A. Thus, u′ � awc but u′ 6� aw, and we must have u′ = awc, which is a contradiction
for |w| ≥ depth(T) − 1. We conclude that u′ � as. Hence, both u and u′ are prefixes of as,
and therefore they are also prefixes of as′. Since u 6= u′, either u ≺ u′ in which case we know
by the definition of τ that u′ ∈ U ′\U , or u′ ≺ u in which case u ∈ U\U ′. If u ≺ u′, u′ ∈ U ′\U ,
and u′ has the form u′ = µi(w)c by (D.59). In this case, µi(w) is the longest prefix of u′ in
U , and therefore u = µi(w). Since u′ � as, tail(u′) � s. Thus, tail(µi(w)c) � s, and we must
have i = 1 by (4.6). The symbol c must be equal to b = (as′)|µ1(w)|+1 for u′ = µ1(w)c � as′.
If on the other hand u′ ≺ u, u ∈ U\U ′, and u has the form u = µi(w) by (D.60). Since
µi(w)c ∈ U ′ for all c ∈ A, but τ ′(s′, a) ≺ µi(w), then µi(w)c 6� as′ for all c ∈ A. Hence,
since µi(w) � as � as′, we must have µi(w) = as, and therefore s = µi−1(w). Furthermore,
as |µi−1(w)| < |w|, s = s′. Since as′, which is equal to µi(w), is not an internal node of T ′

by the assumptions, i < `w. Thus, we have an index j = i − 1, such that 1 ≤ j < `w − 1,
µj(w) ∈ ST , and µj+1(w) 6∈ U ′, and therefore m = j. The claim is proved. 2

We define the set Zm ⊂ ST × ST as empty if m = 0, and {(µm(w), νm+1(w))} otherwise.
We also define Z1 = {(u, ν1(w)) ∈ ST × ST : u 6= w, tail(µ1(w)) ≺ u}, and take Z = Zm ∪ Z1.
Notice that, if τ ′(u, a) 6= τ(u, a) for some u ∈ ST ∩ ST ′ and a ∈ A such that au is not an
internal node of T , nor of T ′, then there exists a unique state v ∈ ST ∩ST ′ , such that v � au,
and by Claim 3 (u, v) ∈ Z. On the other hand, if u ∈ ST ∩ ST ′ and a ∈ A are such that au is
not an internal node of T , but au is an internal node of T ′, we must have au = w. Notice that
in this case, the pairs u,w and u,wb with b ∈ A are excluded from the summations in (D.54).
We then define W = {(u, v) ∈ ST × ST : u 6= w, v 6= w, (u, v) 6∈ Z}, and rewrite (D.54)
as (D.61) below,

∆Dn = ∆Kn +
∑

(u,v)∈W

(∆Kn)u,v d(u, v)

+ (1− δ`w,1)
∑

(u,v)∈Z

((
K ′n
)
u,v
d′(u, v)− (Kn)u,v d(u, v)

)
+

∑
b∈A,v∈ST ′

(
K ′n
)
wb,v

d′(wb, v)−
∑
v∈ST

(Kn)w,v d(w, v) , (D.61)

164 D. Proofs for Chapter 4

where the factor (1− δ`w,1) excludes the case ν1(w) = w, assuring that v 6= w in (u, v) ∈ Z.
We show next that the first summation in (D.61) is null. From (D.27) and (D.28), it is

clear that all nonzero elements (∆Kn)u,v with u, v ∈ ST and u 6= w, v 6= w, come from terms
of the form d′(s′i−`si , s

′
i−`si+1) or 1µj−1(w),µj(w). In the latter case, if µj−1(w), and µj(w) are

both states of T , then d(µj−1(w), µj(w)) = 0 by definition. On the other hand, when s′i = wb

and `′s′i
> `si , so that a term d′(s′i−`si , s

′
i−`si+1) arises in (D.28), we have by Claim (i)-2 that

tail(µ1(w)) ≺ si−`si = s′i−`si
and si−`si+1 = ν1(w). Thus, the pair (s′i−`si , s

′
i−`si+1) does not

belong to W , for either s′i−`si+1 = si−`si+1 = ν1(w) in which case the pair belongs to Z1, or
s′i−`si+1 6= si−`si+1, in which case s′i−`si+1 6∈ ST . We conclude that∑

(u,v)∈W

(∆Kn)u,v d(u, v) = 0 . (D.62)

We now analyze the summation in (u, v) ∈ Z of (D.61). Namely,

∆1 =
∑

(u,v)∈Z

(
K ′n
)
u,v
d′(u, v)−

∑
(u,v)∈Z

(Kn)u,v d(u, v) , (D.63)

where we are assuming `w > 1. We can also write (D.63) as

∆1 =
∑

(u,v)∈Z

(Kn)u,v
(
d′(u, v)− d(u, v)

)
+

∑
(u,v)∈Z

(∆Kn)u,v d
′(u, v) . (D.64)

Consider a pair of states (u, v) ∈ Z, such that (∆Kn)u,v 6= 0. If (u, v) ∈ Zm, µm+1(w) 6∈ U ′,
and since µm+1(w) 6= w for m + 1 < `w by the definition of m, µm+1(w) 6∈ ST . Thus,
|νm+1(w)| ≤ |µm(w)|, and therefore entry (∆Kn)u,v is not affected by terms labeled C
of (D.28). Similarly, if (u, v) ∈ Z1, tail(µ1(w)) ≺ u and therefore |v| = |ν1(w)| ≤ |u|. Thus,
entry (∆Kn)u,v is not affected by terms labeled C of (D.28) either in this case. Hence, since
terms labeled A do only affect entries (∆Kn)u′,v′ with u′ � w, we see that (∆Kn)u,v comes
from the negative part, −1s′i−`si ,s

′
i−`si+1

, of terms of (D.28) of the form d′(s′i−`si , s
′
i−`si+1) with

s′i = wb and `′s′i
> `si . Thus, for (u, v) ∈ Z,

(∆Kn)u,v = −
n∑
i=1

∑
b∈A

δs′i,wb(1− δ`si ,`′s′
i

)δu,s′i−`si
δv,s′i−`si+1

. (D.65)

Hence, the last summation of (D.64) is,

−
∑

(u,v)∈Z

n∑
i=1

∑
b∈A

δs′i,wb(1− δ`si ,`′s′
i

)δu,s′i−`si
δv,s′i−`si+1

d′(s′i−`si , s
′
i−`si+1) ,

or,

−
n∑
i=1

∑
b∈A

δs′i,wb(1− δ`si ,`′s′
i

)d′(s′i−`si , s
′
i−`si+1)

∑
(u,v)∈Z

δu,s′i−`si
δv,s′i−`si+1

. (D.66)

Now, by Claim (i)-2, when s′i = wb and `′s′i > `si , we have that tail(µ1(w))b = si−`si = s′i−`si
,

and si−`si+1 = ν1(w). If si−`si+1 6= s′i−`si+1, then si−`si+1 = w. Thus, ν1(w) = w and

D.3. Proof of Lemma 4.22 165

therefore `w = 1. Hence, in this case we have s′i−1 = tail(w)b = tail(s′i), and there-
fore d′(s′i−`si , s

′
i−`si+1) is null. If on the other hand s′i−`si+1 = si−`si+1 = ν1(w), then

(s′i−`si , s
′
i−`si+1) belongs to Z1, since also tail(µ1(w)) ≺ tail(µ1(w))b = s′i−`si

. We conclude
that for every i such that s′i = wb and `′s′i

> `si , either
∑

(u,v)∈Z δu,s′i−`si
δv,s′i−`si+1

= 1, or

d′(s′i−`si , s
′
i−`si+1) = 0. Thus, (D.66) gives for the last summation of (D.64),

−
n∑
i=1

∑
b∈A

δs′i,wb(1− δ`si ,`′s′
i

)d′(s′i−`si , s
′
i−`si+1) . (D.67)

As for the first summation of (D.64), we can write it as∑
(u,v)∈Z

(Kn)u,v
(
1u,τ ′(u,head(v)) − 1u,τ(u,head(v))

)
. (D.68)

Substituting (D.67) and (D.68) in (D.64), and this together with (D.62) back in (D.61), we
get

∆Dn = ∆Kn + (1−δ`w,1)

 ∑
(u,v)∈Z

(Kn)u,v
(
1u,τ ′(u,head(v))−1u,τ(u,head(v))

)
(D.69)

−
n∑
i=1

∑
b∈A

δs′i,wb(1−δ`si ,`′s′
i

)d′(s′i−`si , s
′
i−`si+1)

]
+

∑
b∈A,v∈ST ′

(
K ′n
)
wb,v

d′(wb, v)−
∑
v∈ST

(Kn)w,v d(w, v) .

When `w = 1, (D.69) with (D.27) yield

∆D(`w=1)
n =

n∑
i=1

δsi−1,w

(
1s′i−1,s

′
i
− 1si−1,si

)
(D.70)

+
n∑
i=1

δsi,w(1− δsi−1,w)
(
1s′i−1,s

′
i
− 1si−1,si

)
+

∑
b∈A,v∈ST ′

(
K ′n
)
wb,v

d′(wb, v)−
∑
v∈ST

(Kn)w,v d(w, v) ,

and when `w > 1, (D.69) with (D.28) yield

∆D(`w>1)
n =

n∑
i=1

δsi−1,w

(
1s′i−1,s

′
i
− 1si−1,si

)
(D.71)

+
n∑
i=1

∑
b∈A

δs′i,wb

`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w)

+
∑

(u,v)∈Z

(Kn)u,v
(
1u,τ ′(u,head(v)) − 1u,τ(u,head(v))

)
+

∑
b∈A,v∈ST ′

(
K ′n
)
wb,v

d′(wb, v)−
∑
v∈ST

(Kn)w,v d(w, v) .

166 D. Proofs for Chapter 4

We now show that the last two summations of (D.70) have the effect of “redirecting”
the destination of transitions (s′i−1, s

′
i) and (si−1, si) of the first summation to τ ′(wb, xi)

and τ(w, xi) respectively. Similarly, the last two summations of (D.71) have the effect of
“redirecting” the destination of transitions (s′i−1, s

′
i) and (si−1, si) of the first summation to

τ ′(wb, xi) and τ(w, xi) respectively. We make use of the following claim.

4. Claim. Let u be a state of an arbitrary context tree T̃ such that |u| ≥ depth(T̃) − 1. We
claim that K̃u∗ = Ñu∗ and for every state v of T̃ , K̃u,v = Ñu,v, where we are using the
notation K̃ and Ñ to emphasize that the matrices are calculated with respect to T̃ . If also
˜̀
u > 1, then F̃∗u = F̃tail(u),u = Ñ∗u.

Proof. Since |u| ≥ depth(T̃)− 1, u can only belong to the forced state sequence of a state of
the form s = au with a ∈ A. In this case we have µ`s−1(s) = ν`s−1(s) = u. Thus, for all states
t, v of T̃ , we have ∆̃−(t)u,v = ∆̃+(t)u,v, which are equal to one if t is of the form au, and zero
otherwise. The first part of the claim then follows from parts (v) and (vi) of Lemma 4.13,
which yield Ñ (µ)− K̃ =

∑r−1
i=0 ∆̃−(sti+1)− ∆̃+(sti+1). If ˜̀

u > 1, ∆̃+(u)∗u = ∆̃+(u)tail(u),u = 1.
Also ∆̃+(t)∗u = 0 for all states t that are not of the form au, and ∆̃+(t)∗u = ∆̃+(t)tail(u),u = 1
if t = au. Now, since |u| ≥ depth(T̃) − 1, for all j such that 1 ≤ j ≤ n and s̃j = u, either
j ∈ J̃ , or s̃j+1 = xj+1u, in which case j + 1 ∈ J̃ and j 6∈ J̃ . Hence,(

r−1∑
i=0

∆̃+(sti+1)

)
tail(u),u

=

(
r−1∑
i=0

∆̃+(sti+1)

)
∗u

= Ñ∗u . (D.72)

Since |u| ≥ depth(T̃) − 1, no pseudo-state of T̃ is a descendant of u, and therefore B̃∗u = 0.
The claim is proved if we show that D̃∗u = D̃tail(u),u = Ñ∗u. Thus, by Lemma 4.13(vii),

and (D.72), we only need to show that
(∑r−1

i=0 1sti ,τi
)
∗u

= 0. Now, if τi = u, then s̃ti+1 = u

for both τi and s̃ti+1 are prefixes of xti+1. But since ˜̀
u > 1, this implies that ti 6∈ J̃ , which is

a contradiction. 2

By Claim 4, we have

∑
v∈ST

(Kn)w,v d(w, v) =
n∑
i=1

δsi−1,wd(si−1, si) , (D.73)

and also ∑
b∈A,v∈ST ′

(
K ′n
)
wb,v

d′(wb, v) =
n∑
i=1

δsi−1,wd
′(s′i−1, s

′
i) . (D.74)

Thus, (D.70) becomes

∆D(`w=1)
n =

n∑
i=1

δsi−1,w

(
1s′i−1,τ

′(s′i−1,xi)
− 1si−1,τ(si−1,xi)

)
+

n∑
i=1

δsi,w(1− δsi−1,w)
(
1s′i−1,s

′
i
− 1si−1,si

)
, (D.75)

D.3. Proof of Lemma 4.22 167

and (D.71) becomes

∆D(`w>1)
n =

n∑
i=1

δsi−1,w

(
1s′i−1,τ

′(s′i−1,xi)
− 1si−1,τ(si−1,xi)

)
+

n∑
i=1

∑
b∈A

δs′i,wb

`w∑
j=2

1µj−1(w)b,µj(w)b − 1µj−1(w),µj(w)

+
∑

(u,v)∈Z

(Kn)u,v
(
1u,τ ′(u,head(v)) − 1u,τ(u,head(v))

)
. (D.76)

We now derive (4.27) by analyzing (D.75). Since `w = 1, by (D.60) and (D.59), all pseudo-
states u in U ∪U ′, such that w 6� u, belong simultaneously to U and U ′. Notice that the first
summation affects exclusively transitions departing from w in D and, from {wb : b ∈ A} in D′.
When (1− δsi−1,w) = 1, s′i−1 = si−1, and therefore each term of the second summation adds
and subtracts a transition from the same state. Thus, Du∗ = D′u∗ for all u such that w 6� u.
On the other hand, the second summation affects exclusively transitions arriving at w in D

and, at {wb : b ∈ A} in D′. Since `w = 1, by Claim 3 we see that τ ′(s′i−1, xi) and τ(si−1, xi)
coincide except when τ(si−1, xi) = w. Thus, the first summation does not change the total
number of incoming transition to pseudo-states that do not belong to {w} ∪ {wb : b ∈ A}.
Hence, also D∗u = D′∗u for all u such that w 6� u. As a consequence, since no pseudo-states
descend from w in T nor in T ′ for |w| ≥ depth(T) − 1, we have by the definition of B that
Bu,ρ(u) = B′u,ρ′(u) for all u in U\ST , or equivalently U ′\ST ′ . Now, consider a pseudo-state u
such that w 6� u. Only the second summation may affect transitions departing from u. Recall
that when (1− δsi−1,w) = 1, s′i−1 = si−1. Thus, outgoing transitions from u are only affected
by terms with index i such that si = w, (1− δsi−1,w) = 1, and u = s′i−1 = si−1. Each of these
terms subtracts 1u,w, and adds 1u,wb, where b = (s0x)i−|w|. Furthermore, since `w = 1, tail(w)
is an internal node of T , and therefore tail(w) ≺ u � xi−1s0. Thus, the symbol b is uniquely
determined by u as b = bu = u|w|. Hence, each term that affects outgoing transitions from

u subtracts 1u,w, and adds 1u,wbu . Therefore,
(

∆D(`w=1)
n

)
u,wbu

= −
(

∆D(`w=1)
n

)
u,w

. Now,

since w 6∈ U ′, D′u,w = 0, and therefore Du,w = −
(

∆D(`w=1)
n

)
u,w

. Analogously, since wbu 6∈ U ,

Du,wbu = 0, and therefore D′u,wbu =
(

∆D(`w=1)
n

)
u,wbu

. Hence, we have D′u,w = Du,wbu = 0,

Du,w = D′u,wbu , and Du,v = D′u,v for all v such that v 6∈ {w,wbu}. This, together with the
fact that Bu,ρ(u) = B′u,ρ′(u) when u belongs to U\ST , or equivalently U ′\ST ′ , gives

F ′u∗!
/∏

v F
′
u,v!

Fu∗! /
∏
v Fu,v!

= 1 , for all u such that w 6� u .

We now consider outgoing transitions from pseudo-states u in {w} ∪ {wb : b ∈ A}, which are
affected exclusively by the first summation. Notice that Bu∗ = B′u∗ = 0 for all such u. Since
wb 6∈ U for any b ∈ A, Fwb,u = 0 for all u ∈ U ∪ U ′, and therefore F ′wb,u =

(
∆D(`w=1)

n

)
wb,u

.

By (D.75), this is equal to
∑n

i=1 δs′i−1,wb
δu,τ ′(wb,xi). Thus, with a = head(u), F ′wb,u = n′

(a)
wb if

τ ′(wb, a) = u, and F ′wb,u = 0 otherwise (notice that τ ′(wb, a) is well defined for all symbols a,

168 D. Proofs for Chapter 4

as |wb| = depth(T ′)). Hence, since by the definition of τ , τ ′(wb, a) = τ ′(wb, c) if and only if
a = c, we conclude that

F ′wb∗!∏
v F
′
wb,v!

=
N ′wb∗!∏
a∈A n

′(a)
wb !

.

Similarly, since w 6∈ U ′, F ′w,u = 0 for all u ∈ U ∪ U ′, and therefore Fw,u = −
(

∆D(`w=1)
n

)
w,u

.

By (D.75), this is equal to −
∑n

i=1 δsi−1,wδu,τ(w,xi). Thus, with a = head(u), Fw,u = n
(a)
w if

τ(w, a) = u, and Fw,u = 0 otherwise (notice that τ(w, a) is well defined for all symbols a, as
|aw| ≥ depth(T)). Hence,

Fw∗!∏
v Fw,v!

=
Nw∗!∏
a∈A n

(a)
w !

,

which concludes the proof of (4.27).
We now study (D.76) to derive (4.28). Looking at the three summations of (D.76), we see

that Du,v and D′u,v may differ only for u ∈ {w} ∪ {wb : b ∈ A}, for u ∈ S1 , {u : (u, v) ∈ Z},
and for u ∈ Uw ∪ U ′w, where Uw = {µi(w) : 1 ≤ i < `w}, and U ′w = {µi(w)b : 1 ≤ i < `w, b ∈
A}. The set S1 has, by definition, null intersection with {w} ∪ {wb : b ∈ A}. We claim that
also {w} ∪ {wb : b ∈ A} has empty intersection with Uw ∪ U ′w.

5. Claim. The set {w} ∪ {wb : b ∈ A} has empty intersection with Uw ∪ U ′w.

Proof. Let u be an element of Uw ∪ U ′w. By definition, |u| ≤ w with equality only if
u = µ`w−1(w)b for some b ∈ A. Hence, if the intersection is not null, we must have
w = µ`w−1(w)b. But in this case w is of the form w = b|w|, and consequently `w = 1.
We conclude that the sets do not intersect, as claimed. 2

As a consequence of the last claim, only the first summation of (D.76) affects outgoing
transitions from u ∈ {w}∪{wb : b ∈ A}, and we observe that it gives rise to the factor Π(`w=1)

exactly as in the case `w = 1. In the sequel we study outgoing transitions from pseudo-states
u 6∈ {w} ∪ {wb : b ∈ A}, which are not affected by the first summation of (D.76).

We claim that
F ′u∗!

/∏
v F
′
u,v!

Fu∗! /
∏
v Fu,v!

= 1 for every u ∈ S1\Uw . (D.77)

As u ∈ S1, u is a state of T and therefore Bu∗ = B′u∗ = 0, i.e., we only need to take care
of the matrix entries in D and D′. For the same reason, u is not of the form µi(w)b. Since
also u 6∈ Uw, the difference between F ′u,v and Fu,v for any v ∈ U ∪U ′ is determined by the last
summation of (D.76). Recalling that u 6= µm(w) for u 6∈ Uw, it then follows that F ′u,v = Fu,v
for all v, except possibly for v ∈ {τ(u, a), τ ′(u, a)}, where a = head(ν1(w)), and τ(u, a) 6=
τ ′(u, a). By Claim 3, τ(u, a) = µ1(w), and τ ′(u, a) = µ1(w)bu where bu ∈ A depends solely on
u. Since µ1(w)bu 6∈ U by Claim 3, Fu,µ1(w)bu = 0. Thus, F ′u,µ1(w)bu

=
(

∆D(`w>1)
n

)
u,µ1(w)bu

=

Ku,ν1(w). Also since µ1(w) ≺ τ ′(u, a), F ′u,µ1(w) = 0 by Lemma 4.13(vii). Thus, Fu,µ1(w) =

−
(

∆D(`w>1)
n

)
u,µ1(w)

= Ku,ν1(w). We conclude that F ′u,µ1(w)bu
= Fu,µ1(w), and Fu,µ1(w)bu =

F ′u,µ1(w), from which (D.77) follows.

D.3. Proof of Lemma 4.22 169

We are left with the multinomial factors in the pseudo-states of Uw and U ′w, i.e., with the
quotient ΠT ′ /ΠT where

ΠT =
∏

u∈Uw∪U ′w

Fu∗!∏
v Fu,v!

; ΠT ′ =
∏

u∈Uw∪U ′w

F ′u∗!∏
v F
′
u,v!

.

For convenience we split ΠT and ΠT ′ in two factors as

ΠT = ΠT,U ×ΠT,U ′ ; ΠT ′ = ΠT ′,U ×ΠT ′,U ′ ,

where

ΠT,U ′ =
∏
u∈U ′w

Fu∗!∏
v Fu,v!

; ΠT,U =
∏

u∈Uw\U ′w

Fu∗!∏
v Fu,v!

,

and

ΠT ′,U ′ =
∏
u∈U ′w

F ′u∗!∏
v F
′
u,v!

; ΠT ′,U =
∏

u∈Uw\U ′w

F ′u∗!∏
v F
′
u,v!

.

We can write ΠT,U ′ as

ΠT,U ′ =
∏
b∈A

`w−1∏
i=1

Fµi(w)b∗!∏
v Fµi(w)b,v!

, (D.78)

and also for ΠT ′,U ′

ΠT ′,U ′ =
∏
b∈A

`w−1∏
i=1

F ′µi(w)b∗!∏
v F
′
µi(w)b,v!

. (D.79)

For ΠT,U and ΠT ′,U however, some indexes in the range from i = 1 to `w−1 may be excluded
from the product as they may correspond to elements µi(w) that belong to the intersection
Uw ∩ U ′w. We now characterize the elements in Uw ∩ U ′w, for which we define r as the largest
index, in the range from 1 to `w − 1, such that µr(w) has the form c|µr(w)| with c ∈ A, or
r = 1 if such index does not exist.

6. Claim. Let i be an integer such that 1 ≤ i < `w. Then, µi(w) ∈ Uw ∩ U ′w if and only if
i ≤ r and i > 1.

Proof. If µi(w) ∈ Uw ∩U ′w, there exist b ∈ A and 1 ≤ j < `w such that µi(w) = µj(w)b. Since
µi(w) and µj(w)b are equally long, we must have i > 1 and j = i− 1, i.e., µi(w) = µi−1(w)b.
Since by definition also µi(w) = dµi−1(w) for some d ∈ A, µi(w) must have the form b|µi(w)|.
Hence, i ≤ r as claimed. On the other hand, if 1 < i ≤ r, then µi(w) = c|µi(w)| by the
definition of r. In this case, µi−1(w) = tail(µi(w)) = c|µi(w)|−1. Thus, µi(w) = µi−1(w)c,
which belongs to Uw ∩ U ′w. 2

Indexes m and r are related as follows.

7. Claim. If m > 0 and r > 1, then m > r.

170 D. Proofs for Chapter 4

Proof. If r > 1, then µr−1(w) = c|µr−1(w)| and µr(w) = c|µr(w)|. Thus, µr−1(w) ≺ µr(w) and
therefore µr(w) 6∈ ST . Hence m 6= r by the definition of m. If 1 ≤ i < r, then µi+1(w) ∈ U ′

by Claim 6, and therefore i 6= m by the definition of m. We conclude that if m > 0 and r > 1,
then m > r. 2

By Claim 6 we can now express ΠT,U and ΠT ′,U as

ΠT,U =
Fµ1(w)∗!∏
v Fµ1(w),v!

`w−1∏
i=r+1

Fµi(w)∗!∏
v Fµi(w),v!

, (D.80)

and

ΠT ′,U =
F ′µ1(w)∗!∏
v F
′
µ1(w),v!

`w−1∏
i=r+1

F ′µi(w)∗!∏
v F
′
µi(w),v!

. (D.81)

Consider the subsets U+
w = {µi(w) ∈ Uw : i > 1} and U ′+w = {µi(w)b ∈ U ′w : i > 1, b ∈ A}.

8. Claim. For every u ∈ U+
w ∪ U ′

+
w , Ftail(u),u = F∗u = Fu∗ + δsn,u and F ′tail(u),u = F ′∗u =

F ′u∗ + δsn,u.

Proof. By Lemma 4.13(xi), B′∗u = B∗u = 0 for every u ∈ U+
w ∪ U ′

+
w , and therefore F∗u = D∗u

and F ′∗u = D′∗u. From Lemma 4.13(vii), we observe that for a positive entry Dv,u with
u ∈ U+

w ∪ U ′
+
w , v must be of the form v = tail(u). Hence, F∗u = Dtail(u),u = Ftail(u),u. Also

by Lemma 4.13(ix), Fu∗ + δsn,u = F∗u, where we have ruled out the term δs0,u by the con-
dition of s0 being of maximal length. Similarly, F ′u∗ + δs′n,u = F ′∗u = F ′tail(u),u, and since
u 6∈ {w} ∪ {wb : b ∈ A} by Claim 5, δs′n,u = δsn,u. 2

By Claim 8 we then have

ΠT,U ′ =
∏
b∈A

Fµ1(w)b∗!
Fµ`w−1(w)b,wb!

`w−1∏
i=1

∏
v 6=µi+1(w)b

Fµi(w)b,v!

−1

, (D.82)

and, when r < `w − 1, ΠT,U = Π(r)
T,U where,

Π(r)
T,U =

Fµ1(w)∗!∏
v Fµ1(w),v!

Fµr+1(w)∗!
Fµ`w−1(w),w!

 `w−1∏
i=r+1

∏
v 6=µi+1(w)

Fµi(w),v!

−1

(D.83)

×

(
`w−1∏
i=r+2

max
{

1, F∗µi(w)δsn,µi(w)

})−1

.

Notice that the last factor of (D.83) accounts for the term δsn,u in Claim 8, which makes Fu∗
to differ from Ftail(u),u = F∗u when sn = u. A similar factor is not necessary in (D.82) as
clearly µi(w)b is not a state of T (nor of T ′ since i < `w). In the case r = `w − 1, we simply
get from (D.80), ΠT,U = Π(R)

T,U where,

Π(R)
T,U =

Fµ1(w)∗!∏
v Fµ1(w),v!

. (D.84)

D.3. Proof of Lemma 4.22 171

Equations (D.82), (D.83), and (D.84) are valid for ΠT ′,U and ΠT ′,U ′ replacing F by F ′.

We now proceed to analyze the different kinds of factors in (D.83) and (D.82). The
following claims are instrumental to this aim.

9. Claim. Let u = µi(w)b with b ∈ A and 1 ≤ i < `w. Then, for v = µi+1(w)b,

D′u,v −Du,v =

{
N ′∗wb −N∗w, if i+ 1 < r, b = head(u),
N ′∗wb, otherwise.

(D.85)

Also for v 6= µi+1(w)b,

D′u,v −Du,v =

{
−N∗w, if i+1 = r, b = head(u), v = µi+2(w),
0 , otherwise.

(D.86)

Proof. Since u is not a state of T , u 6∈ S1, and therefore D′u,v−Du,v is determined exclusively
by the second summation of (D.76). If i+ 1 < r and b = head(u), we know by Claim 6 that
µi+2(w) = b|µi+2(w)|, and therefore µi+1(w) = µi(w)b, and µi+2(w) = µi+1(w)b. Furthermore,
since w is not of the form b|w| for `w > 1, i+2 < `w. Hence, the term 1µi(w)b,µi+1(w)b, which is
added N ′∗wb times, and the term −1µi+1(w),µi+2(w), which is added N∗w times, affect both the
same entry

(
∆D(`w>1)

)
u,µi+1(w)b

. This gives the first line of (D.85) where v = µi+1(w)b. Since

these are the only two terms that affect
(
∆D(`w>1)

)
u,v

in this case, we get D′u,v −Du,v = 0
if v 6= µi+1(w)b. Thus, to prove the second line of (D.86), it remains to show that when
v 6= µi+1(w)b, D′u,v − Du,v = 0 if i + 1 > r, or b = head(u), or v 6= µi+2(w). Indeed,
since v 6= µi+1(w)b entry

(
∆D(`w>1)

)
u,v

can only be affected by a term −1µi+1(w),µi+2(w) with
µi+1(w) = u and µi+2(w) = v. The condition µi+1(w) = u implies i+ 1 ≤ r and b = head(u)
by Claim 6, which completes the proof of the second line of (D.86). Moreover, if i + 1 = r

and b = head(u), so that µi+1(w) = u by Claim 6, and also µi+2(w) = v 6= µi+1(w)b, then
the only term of (D.76) that affects

(
∆D(`w>1)

)
u,v

is −1µi+1(w),µi+2(w), which is added N∗w
times as i + 2 = r + 1 ≤ `w. This proves the first line of (D.86). Finally, if i + 1 ≥ r,
or b 6= head(u), then we see that for v = µi+1(w)b, entry

(
∆D(`w>1)

)
u,v

is only affected by
the term 1µi(w)b,µi+1(w)b. Indeed, if the entry were affected by a term −1µi+1(w),µi+2(w), then
µi+2(w) = µi+1(w)b and therefore i + 2 ≤ r, and b = head(u) by Claim 6. Since the term
1µi(w)b,µi+1(w)b is added N ′∗wb times, the first line of (D.85) is proved. 2

10. Claim. Let u = µi(w) with 1 ≤ i < `w and i 6= m. Then, for v = µi+1(w) and
b = head(u),

D′u,v −Du,v =

{
N ′∗wb −N∗w, if 1 < i < r,

−N∗w, otherwise.
(D.87)

172 D. Proofs for Chapter 4

Also for v 6= µi+1(w) and b = head(u),

D′u,v −Du,v =

N ′∗wb, if 1 < i = r, v = ub,

Ku,ν1(w), if u ∈ ST , τ(u, head(v)) = µ1(w), τ ′(u, head(v)) = µ1(w)c = v,

−Ku,ν1(w), if u ∈ ST , τ(u, head(v)) = µ1(w) = v, τ ′(u, head(v)) = µ1(w)c,

0 , otherwise.
(D.88)

Proof. We first prove (D.87), i.e., we consider v = µi+1(w). If 1 < i ≤ r, then µi(w) =
µi−1(w)b with b = head(u) by Claim 6. Hence, u 6∈ ST and therefore, only the second sum-
mation of (D.76) may affect entry

(
∆D(`w>1)

)
u,v

. If i < r, then also µi+1(w) = µi(w)b. In
this case, the term 1µi−1(w)b,µi(w)b, which is added N ′∗wb times, and the term −1µi(w),µi+1(w),
which is added N∗w times, affect the same entry

(
∆D(`w>1)

)
u,µi+1(w)

. This proves the first
line of (D.87). If i ≥ r and i > 1, then µi+1(w) 6= µi(w)b for all b ∈ A. Thus, the terms
1µi−1(w)b,µi(w)b with b ∈ A do not affect

(
∆D(`w>1)

)
u,v

for v = µi+1(w). Hence, in this

case, the second summation of (D.76) makes a negative contribution −N∗w to
(
∆D(`w>1)

)
u,v

through the term −1µi(w),µi+1(w). The same applies when i = 1, as in this case no term of
the form 1µj−1(w)b,µj(w)b affects the entry

(
∆D(`w>1)

)
u,v

. We next show that the third sum-

mation of (D.76) does not affect
(
∆D(`w>1)

)
u,v

, which concludes the proof of the second line
of (D.87). Suppose that (u, v′) ∈ Z, where v′ is the unique state of T such that v′ � v, and
τ(u,head(v)) 6= τ ′(u,head(v)). Since i 6= m, by Claim 3 we have that τ(u,head(v)) = µ1(w),
and τ ′(u,head(v)) = µ1(w)b. Thus, in order to affect entry

(
∆D(`w>1)

)
u,v

with v = µi+1(w),
we must have v = µ1(w)b, but µ1(w)b 6∈ U by Claim 3. This concludes the proof of (D.87).
We now consider (D.88), where v 6= µi+1(w). If i = r > 1, then µi(w) = µi−1(w)b with
b = head(u). Thus, u 6∈ ST , and therefore, only the second summation of (D.76) may af-
fect entry

(
∆D(`w>1)

)
u,v

. Since v 6= µi+1(w), only the term 1µi−1(w)b,µi(w)b, which is added

N ′∗wb times, affects
(
∆D(`w>1)

)
u,v

for v = ub. This proves the first line of (D.88). Notice

that when v 6= ub we obtain
(
∆D(`w>1)

)
u,v

= 0 in agreement with the last line of (D.88),
which is selected since u 6∈ ST as required by the second and third line. If 1 < i < r, then
µi(w)b = µi+1(w) 6= v, and therefore the term 1µi−1(w)b,µi(w)b does not affect

(
∆D(`w>1)

)
u,v

.

Similarly, if i = 1, no term of the form 1µj−1(w)b,µj(w)b affects
(
∆D(`w>1)

)
u,v

. Thus, in any

case, the value of
(
∆D(`w>1)

)
u,v

is determined exclusively by the third summation of (D.76).
The remaining lines of (D.88) then follow by Claim 3 recalling that i 6= m. 2

The analogous of Claim 10 for the special case u = µm(w) is Claim 11 below. When
m > 0 we denote the symbol head(µm+1(w)) by am. Notice that, since m < `w − 1 by the
definition of m, µm+1(w) 6= w, and therefore µm+1(w) is not an internal node of T ′. Thus,
τ ′(u, am) is well defined for u = µm(w).

D.3. Proof of Lemma 4.22 173

11. Claim. Suppose m > 0 and let u = µm(w). Then,

Du,µm+1(w) = Ku,νm+1(w) +N∗w ,

D′u,µm+1(w) = 0 ,

D′u,τ ′(u,am) = Ku,νm+1(w) ,

Du,τ ′(u,am) = 0 .

Also for all v 6∈ {µm+1(w), τ ′(u, am)},

D′u,v−Du,v =

Ku,ν1(w), if τ(u, head(v)) = µ1(w), τ ′(u, head(v)) = µ1(w)c = v,

−Ku,ν1(w), if τ(u, head(v)) = µ1(w) = v, τ ′(u, head(v)) = µ1(w)c,

0 , otherwise.

(D.89)

Proof. Since µm+1(w) 6∈ U ′, D′u,µm+1(w) = 0. Hence, Du,µm+1(w) = −
(

∆D(`w>1)
n

)
u,µm+1(w)

.

Also τ ′(u, am) ≺ τ(u, am) = µm+1(w) for µm+1(w) 6∈ U ′, and we see from Lemma 4.13(vii)
that Du,τ ′(u,am) = 0. As a consequence, D′u,τ ′(u,am) =

(
∆D(`w>1)

n

)
u,τ ′(u,am)

. The last sum-

mation of (D.76) adds Ku,νm+1(w) times the terms 1u,τ ′(u,am) − 1u,µm+1(w). As the second
summation of (D.76) does only include terms of the form 1tail(v),v, and τ ′(u, am) ≺ µm+1(w),

entry (u, τ ′(u, am)) of ∆D(`w>1)
n is determined exclusively by the last summation. We then

conclude that D′u,τ ′(u,am) = Ku,νm+1(w). As for entry (u, µm+1(w)), recall that by Claim 7, if
r > 1 then m > r, and therefore µm(w) is not of the form µm−1(w)b. Thus, no term of the
form 1µj−1(w)b,µj(w)b of the second summation of (D.76) affects

(
∆D(`w>1)

)
u,µm+1(w)

. On the
other hand, the second summation of (D.76) does subtract N∗w times the term 1u,µm+1(w),
which together with the last summation yield Du,µm+1(w) = Ku,νm+1(w) + N∗w. We finally
observe that for v 6∈ {µm+1(w), τ ′(u, am)}, the term −1µm(w),µm+1(w) of the second summa-

tion of (D.76) does not affect
(

∆D(`w>1)
n

)
u,v

. A term of the form 1µj−1(w)b,µj(w)b does not

affect
(

∆D(`w>1)
n

)
u,v

either, for otherwise, µm−1(w)b = µm(w) and therefore, 1 < m ≤ r,

contradicting Claim 7. Thus, only the third summation of (D.76) may affect
(

∆D(`w>1)
n

)
u,v

,

and since v 6∈ {µm+1(w), τ ′(u, am)}, (D.89) follows from Claim 3. 2

We now consider the quotient ΠT ′,U ′
/

ΠT,U ′ . By Claim 9, we see that the factors Fµi(w)b,v,
and F ′µi(w)b,v of (D.82) cancel each other, except possibly, when they correspond to B and B′

entries, or when the first line of (D.86) applies. In the latter case, i+ 1 = r,b = head(u), and
v = µi+2(w). Thus, µi(w)b = µi+1(w) = µr(w), and v = µr+1(w). We then get,

ΠT ′,U ′

ΠT,U ′
=

(∏
b∈A

F ′µ1(w)b∗!Fµ`w−1(w)b,wb!

F ′µ`w−1(w)b,wb!Fµ1(w)b∗!

`w−1∏
i=1

Bµi(w)b,ρ(µi(w)b)!
B′µi(w)b,ρ′(µi(w)b)!

)
((1− δr,1)Dµr(w),µr+1(w))!
((1− δr,1)D′µr(w),µr+1(w))!

.

(D.90)
A similar factor cancelation occurs in ΠT ′,U /ΠT,U when we look at (D.83). By Claim 10,

we see that the factors Fµi(w),v, and F ′µi(w),v, with r < i < `w, i 6= m, and v 6= µi+1(w), cancel

174 D. Proofs for Chapter 4

each other, except possibly, when they correspond to B and B′ entries, or, when the second or
third line of (D.88) applies. In the latter case, observe that if u ∈ ST , τ(u,head(v)) = µ1(w),
and τ ′(u,head(v)) = µ1(w)c, then µ1(w)c does not belong to U by Claim 3. Hence, if
v = µ1(w)c, Du,v = 0 and therefore D′u,v = Ku,ν1(w) by Claim 10. Also, if v = µ1(w), since
µ1(w) ≺ τ ′(u,head(v)), we see from Lemma 4.13(vii) that D′u,v = 0, and therefore Du,v =
Ku,ν1(w) by Claim 10. Hence, when the second or third line of (D.88) applies, the factors
Fµi(w),v, and F ′µi(w),v′ also cancel each other for v = µ1(w) and v′ = µ1(w)c. Similarly, if i = m,
by Claim 11 the factors Fµi(w),v, and F ′µi(w),v cancel each other for v 6∈ {µm+1(w), τ ′(u, am)},
except possibly, when the first or second line of (D.89) applies. In this case, the factors Fµi(w),v,
and F ′µi(w),v′ cancel each other for v = µ1(w) and v′ = µ1(w)c. Thus, when r < `w − 1 we get
from (D.83),

Π(r)
T ′,U

Π(r)
T,U

=
F ′µ1(w)∗!

∏
v Fµ1(w),v!

Fµ1(w)∗
∏
v F
′
µ1(w),v!

F ′µr+1(w)∗!Fµ`w−1(w),w!

Fµr+1(w)∗!F ′µ`w−1(w),w!

`w−1∏
i=r+1

Bµi(w),ρ(µi(w))!
B′µi(w),ρ′(µi(w))!

(D.91)

× Π̃(
(1−δm,0)(1−δm,1)Kµm(w),νm+1(w)

)
!
,

where,

Π̃ =

∏`w−1
i=r+2 max

{
1, F∗µi(w)δsn,µi(w)

}
∏`w−1
i=r+2 max

{
1, F ′∗µi(w)δsn,µi(w)

} . (D.92)

Notice that if m > 1, then m > r by Claim 7. Thus, the factor Kµm(w),νm+1(w)! arises in the
denominator of (D.91), since for v = τ ′(u, am) 6= µm+1(w), we have D′u,τ ′(u,am) = Ku,νm+1(w),
but Du,τ ′(u,am) = 0 by Claim 11. The same factor cancelation arguments used to derive (D.91)

apply also to the quotient
∏
v Fµ1(w),v!

/∏
v F
′
µ1(w),v! . In this case, if m 6= 1 we see by

Claim 10 that only the factors with v = µ2(w), or those corresponding to B and B′ entries,
survive. If m = 1, by Claim 11 we see that, besides B and B′ entries, and the factor with
v = µ2(w) = µm+1(w), a factor Kµm(w),νm+1(w)! arises in the denominator. This comes
from the fact that for v = τ ′(u, am) 6= µm+1(w), we have D′u,τ ′(u,am) = Ku,νm+1(w), but
Du,τ ′(u,am) = 0. Thus,∏

v Fµ1(w),v!∏
v F
′
µ1(w),v!

=
Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!
F ′µ1(w),µ2(w)!B

′
µ1(w),ρ′(µ1(w))!

× 1(
δm,1Kµm(w),νm+1(w)

)
!
. (D.93)

Substituting (D.93) in (D.91), we get

Π(r)
T ′,U

Π(r)
T,U

=
F ′µ1(w)∗!Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗F
′
µ1(w),µ2(w)!B

′
µ1(w),ρ′(µ1(w))!

F ′µr+1(w)∗!Fµ`w−1(w),w!

Fµr+1(w)∗!F ′µ`w−1(w),w!

`w−1∏
i=r+1

Bµi(w),ρ(µi(w))!
B′µi(w),ρ′(µi(w))!

× Π̃(
(1−δm,0)Kµm(w),νm+1(w)

)
!
. (D.94)

Also from (D.93) and (D.84), we get for r = `w − 1,

Π(R)
T ′,U

Π(R)
T,U

=
F ′µ1(w)∗!Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗F
′
µ1(w),µ2(w)!B

′
µ1(w),ρ′(µ1(w))!

× 1(
δm,1Kµm(w),νm+1(w)

)
!
. (D.95)

D.3. Proof of Lemma 4.22 175

If r > 1, then by Claim 7, either m = 0, or m > r. But since m < `w − 1 by definition,
we must have m = 0 if r = `w − 1. On the other hand, if r = 1, and r = `w − 1, we have
m < `w − 1 = 1 and therefore m = 0. Hence, when r = `w − 1, δm,1 is always zero, as so is
(1− δm,0). Since also Π̃ = 1 when r = `w − 1, we get combining (D.94) and (D.95),

ΠT ′,U

ΠT,U
=
F ′µ1(w)∗!Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!F ′µ1(w),µ2(w)!B
′
µ1(w),ρ′(µ1(w))!

× Π(r) × Π̃(
(1− δm,0)Kµm(w),νm+1(w)

)
!
, (D.96)

where Π(r) = 1 if r = `w − 1, and otherwise,

Π(r) =
F ′µr+1(w)∗!Fµ`w−1(w),w!

F ′µ`w−1(w),w!Fµr+1(w)∗!

`w−1∏
i=r+1

Bµi(w),ρ(µi(w))!
B′µi(w),ρ′(µi(w))!

. (D.97)

We will further simplify (D.96) and (D.90) by means of the claims that we show next.

12. Claim. Let u = µi(w) with 1 < i < `w. Then for all v ∈ Λ̄(u), Bv,ρ(v) = 0, and for all
v ∈ Λ̄′(u), B′v,ρ′(v) = 0. We then have for all strings u′ such that u ≺ u′,∑

v∈Λ(u′)

D∗v −Dv∗ =
∑

v∈Λ′(u′)

D′∗v −D′v∗ = 0 . (D.98)

Proof. Since i > 1, tail(u) = µi−1(w) is a pseudo-state of T , and therefore tail(uz) 6∈ T

for all z ∈ A+. Hence, by Lemma 4.13(xi), we get Bv,ρ(v) = 0 for all v ∈ Λ̄(u). Since
tail(u) = µi−1(w) 6= w, tail(u) is not an internal node of T ′, and therefore tail(uz) 6∈ T ′ for
all z ∈ A+. Thus, also B′v,ρ′(v) = 0 for all v ∈ Λ̄′(u). Equation (D.98) then follows by the
definition of matrix B. 2

Notice that an immediate consequence of Claim 12 is that Bu,ρ(u) = 0 and B′u,ρ′(u) = 0

for all u ∈ U ′+w . Hence, (D.90) reduces to

ΠT ′,U ′

ΠT,U ′
=

(∏
b∈A

F ′µ1(w)b∗!Fµ`w−1(w)b,wb!

F ′µ`w−1(w)b,wb!Fµ1(w)b∗!
Bµ1(w)b,ρ(µ1(w)b)!
B′µ1(w)b,ρ′(µ1(w)b)!

)
((1− δr,1)Dµr(w),µr+1(w))!
((1− δr,1)D′µr(w),µr+1(w))!

. (D.99)

Also notice that Fµ`w−1(w)b,wb = 0 for wb 6∈ U for all b ∈ A. Moreover, since wb has maximal
depth in T ′, F ′µ`w−1(w)b,wb = N ′∗wb by Claim 4. Hence, (D.99) becomes

ΠT ′,U ′

ΠT,U ′
=

(∏
b∈A

F ′µ1(w)b∗!

N ′∗wb!Fµ1(w)b∗!
Bµ1(w)b,ρ(µ1(w)b)!
B′µ1(w)b,ρ′(µ1(w)b)!

)
((1− δr,1)Dµr(w),µr+1(w))!
((1− δr,1)D′µr(w),µr+1(w))!

. (D.100)

We next analyze the factors Bµ1(w)b,ρ(µ1(w)b) and B′µ1(w)b,ρ′(µ1(w)b) of the last equation.
The following claims are instrumental to this aim.

13. Claim. Let u′ = µ1(w)bz with b ∈ A and z ∈ A+. Then,
for m = 0, or u′ 6∈ {µm+1(w), τ ′(µm(w), am)},

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ , (D.101)

176 D. Proofs for Chapter 4

for m > 0 and u′ = µm+1(w),

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ −Kµm(w),νm+1(w) , (D.102)

and for m > 0 and u′ = τ ′(µm(w), am),

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ +Kµm(w),νm+1(w) . (D.103)

Proof. By Claim 5 µ1(w)b 6= w. Hence, u′ 6∈ {w} ∪ {wc : c ∈ A} and therefore the first sum-
mation of (D.76) does not affect outgoing transitions from u′. The last summation of (D.76)
does not affect the total amount of outgoing transitions from any pseudo-state. On the
other hand, by Claim 3 and recalling that u′ 6∈ {µ1(w)c : c ∈ A} ∪ {µ1(w)} for z ∈ A+,
the first and last summation of (D.76) do not affect incoming transitions to u′ if m = 0 or
u′ 6∈ {µm+1(w), τ ′(µm(w), am)}. Since the second summation of (D.76) preserves the flow
balance in u′, for u′ 6∈ {w} ∪ {wc : c ∈ A}, and u′ 6∈ {µ1(w)c : c ∈ A} ∪ {µ1(w)}, we conclude
that for m = 0, or u′ 6∈ {µm+1(w), τ ′(µm(w), am)},

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ . (D.104)

For u′ = µm+1(w) with m > 0, Claim 11 gives D′µm(w),u′−Dµm(w),u′ = −Kµm(w),νm+1(w)−N∗w.
Since µm+1(w) 6∈ U ′ by the definition of m, D′∗u′ = 0. Also since µm(w) = tail(u′), we
observe from Lemma 4.13(vii) that all input transitions to u′ in D come from µm(w). Thus,
D′∗u′ −D∗u′ = −Kµm(w),νm+1(w) −N∗w. For output transitions from u′ = µm+1(w) we apply
Claim 10 with i = m+ 1, which by the definition of m satisfies i < `w. Since µm+1(w) = u′ =
µ1(w)bz with z ∈ A+, m > 1 and therefore m > r by Claim 7. Thus, the first line of (D.87),
and the first line of (D.88) in Claim 10 do not apply. Hence, D′u′∗ −Du′∗ = −N∗w, and we
conclude that for u′ = µm+1(w),

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ −Kµm(w),νm+1(w) . (D.105)

Suppose now that u′ = τ ′(µm(w), am) with m > 0. Since u′ ≺ µm+1(w), and µm(w) is a
state of T , then tail(u′) is an internal node of T . As a consequence, for all j > 1, u′ is not
of the form µj(w) nor of the form µj(w)c by (4.6). But, since u′ = µ1(w)bz with z ∈ A+,
u′ is not of the form µ1(w) nor of the form µ1(w)c either. Hence, the second summation
of (D.76) does not affect incoming transitions to u′, nor outgoing transitions from u′. Also
since u′ 6∈ {µ1(w)c : c ∈ A} ∪ {µ1(w)} for z ∈ A+, by Claim 3 the first and last summation
of (D.76) do not affect the total number of incoming transitions to u′, except for the term
(Kn)µm(w),νm+1(w) (1µm(w),τ ′(µm(w),am)−1µm(w),µm+1(w)). Thus, D′∗u′−D∗u′ = Kµm(w),νm+1(w).
Regarding output transitions from u′, we recall that u′ 6∈ {w}∪{wc : c ∈ A} and therefore the
first summation of (D.76) does not affect outgoing transitions from u′. The third summation
does not affect them either, since µ1(w)b ≺ u′ and therefore u′ 6∈ ST . Hence, D′u′∗−Du′∗ = 0,
and we conclude

D′∗u′ −D′u′∗ = D∗u′ −Du′∗ +Kµm(w),νm+1(w) . (D.106)

2

D.3. Proof of Lemma 4.22 177

14. Claim. Let u = µ1(w)b with b ∈ A. If u 6∈ U , F ′u∗ = B′u,ρ′(u) + N ′∗wb. If on the other
hand u ∈ U , B′u,ρ′(u) −Bu,ρ(u) = −N ′∗wb, and F ′u∗ − Fu∗ = −δu,µ2(w)N∗w.

Proof. If u 6∈ U , wb is the only state of T ′ that includes µ1(w)b in its forced pseudo-state
sequence. Since wb has maximal depth in T ′, j ∈ J for every j such that 0 ≤ j ≤ n and
s′j = wb. Then, by Lemma 4.13(vii), D′u∗ = D′µ1(w)b,µ2(w)b = N ′∗wb. As a consequence,
F ′u∗ = B′u,ρ′(u) +N ′∗wb. Suppose now that u ∈ U . By Claim 9 with i = 1,

(
D(`w>1)
n

)
u∗

=

{
N ′∗wb −N∗w if i+ 1 ≤ r, b = head(u);
N ′∗wb otherwise ,

(D.107)

or, equivalently, (
D(`w>1)
n

)
u∗

= N ′∗wb − δu,µ2(w)N∗w . (D.108)

Suppose first that m = 0 or µm+1(w) 6∈ Λ(u). In this case, recalling that u ∈ U , we know
by Claim 3 that only the second summation of (D.76) may affect incoming transitions to u.
This in turn can only occur if u coincides with µ2(w). Hence,(

D(`w>1)
n

)
∗u

= −δu,µ2(w)N∗w . (D.109)

Since µm+1(w) 6∈ Λ(u), by Claim 13 and the definition of B we have

B′u,ρ′(u) −Bu,ρ(u) =
(
D′∗u −D′u∗

)
− (D∗u −Du∗)

=
(
D′∗u −D∗u

)
−
(
D′u∗ −Du∗

)
.

(D.110)

Substituting (D.108) and (D.109) in (D.110) we get,

B′u,ρ′(u) −Bu,ρ(u) = −N ′∗wb ,

which combined with (D.108) yields

F ′u∗ − Fu∗ = −δu,µ2(w)N∗w .

We now consider the case in which m > 0 and µm+1(w) ∈ Λ(u). In fact, since µm+1(w) 6∈
U ′ by the definition of m, and u = µ1(w)b ∈ U ′, then u 6= µm+1(w), and we must have
µm+1(w) ∈ Λ̄(u). We start by analyzing incoming transitions to u in D′ − D by means
of (D.76). Since µ1(w)b ∈ U , by Claim 3 we see that the first summation of (D.76) does
not affect any incoming transitions to u, and the third summation may affect

(
D

(`w>1)
n

)
∗u

only through the term (Kn)µm(w),νm+1(w) (1µm(w),τ ′(µm(w),am)−1µm(w),µm+1(w)). Since we have

argued that u 6= µm+1(w), this term may affect
(
D

(`w>1)
n

)
∗u

only if τ ′(µm(w), am) = µ1(w)b.

The second summation may affect incoming transitions to u only if µ1(w)b = µ2(w). In this
case, (D.76) includes N∗w times the term −1µ1(w),µ1(w)b. We then conclude that(

D(`w>1)
n

)
∗u

= δu,τ ′(µm(w),am)Kµm(w),νm+1(w) − δu,µ2(w)N∗w . (D.111)

178 D. Proofs for Chapter 4

We now study the difference B′u,ρ′(u) − Bu,ρ(u). We start by analyzing B′∗u − B∗u for which
we have,

B′∗u −B∗u =
∑

v′:ρ′(v′)=u

B′v′,u −
∑

v:ρ(v)=u

Bv,u . (D.112)

We recall that B′v′,u =
∑

t∈Λ′(v′)D
′
∗t − D′t∗, and Bv,u =

∑
t∈Λ(v)D∗t − Dt∗. Hence, since

D′∗t = D′t∗ = 0 for t ∈ U\U ′, and D∗t = Dt∗ = 0 for t ∈ U ′\U , we can equivalently write

B′∗u −B∗u =
∑

t∈Λ̄′(u)∪Λ̄(u)

(D′∗t −D′t∗)− (D∗t −Dt∗) . (D.113)

Each t ∈ Λ̄′(u) ∪ Λ̄(u), has the form µ1(w)bz with z ∈ A+, and therefore we can apply
Claim 13. By the definition of τ , τ ′(µm(w), am) is the longest prefix of µm+1(w) that belongs
to U ′. Thus, since µm+1(w) ∈ Λ̄(u), either τ ′(µm(w), am) = u, or there exists t ∈ Λ̄′(u) such
that τ ′(µm(w), am) = t. Hence, Claim 13 applied to the terms in (D.113) gives,

B′∗u −B∗u = −δu,τ ′(µm(w),am)Kµm(w),νm+1(w) , (D.114)

where Kµm(w),νm+1(w) comes from (D.102) with t = µm+1(w), which is canceled by (D.103) if
and only if τ ′(µm(w), am) 6= u. Summing (D.114) to (D.111) we get,

F ′∗u − F∗u = −δu,µ2(w)N∗w . (D.115)

Since u = µ1(w)b is not a state of T , nor of T ′, we must have F ′∗u − F∗u = F ′u∗ − Fu∗ by
Lemma 4.13(ix). Thus,

F ′u∗ − Fu∗ = −δu,µ2(w)N∗w . (D.116)

Since F ′u∗ − Fu∗ = D′u∗ −Du∗ +B′u,ρ′(u) −Bu,ρ(u), subtracting (D.108) from (D.116) we get,

B′u,ρ′(u) −Bu,ρ(u) = −N ′∗wb .

2

We now apply Claim 14 to the factors of (D.100). For a symbol b ∈ A such that µ1(w)b 6∈
U , Fµ1(w)b∗ = 0, Bµ1(w)b,ρ(µ1(w)b) = 0, and, by Claim 14, F ′µ1(w)b∗ = B′µ1(w)b,ρ′(µ1(w)b) + N ′∗wb.
Hence, the factor

F ′µ1(w)b∗!

N ′∗wb!Fµ1(w)b∗!
Bµ1(w)b,ρ(µ1(w)b)!
B′µ1(w)b,ρ′(µ1(w)b)!

, (D.117)

reduces to (
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)
.

On the other hand, for a symbol b ∈ A such that µ1(w)b ∈ U , by Claim 14, Bµ1(w)b,ρ(µ1(w)b) =
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb, and F ′µ1(w)b∗−Fµ1(w)b∗ = −δµ1(w)b,µ2(w)N∗w. Hence, (D.117) becomes(

B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)
×

(δµ1(w)b,µ2(w)F
′
µ1(w)b∗)!

(δµ1(w)b,µ2(w)Fµ1(w)b∗)!
. (D.118)

D.3. Proof of Lemma 4.22 179

Thus, since µ1(w)b = µ2(w) if and only if r > 1 and b = head(µ2(w)), we get replacing
in (D.100),

ΠT ′,U ′

ΠT,U ′
=

[∏
b∈A

(
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)]
×

((1− δr,1)F ′µ2(w)∗)!

((1− δr,1)Fµ2(w)∗)!
×

((1− δr,1)Dµr(w),µr+1(w))!
((1− δr,1)D′µr(w),µr+1(w))!

.

(D.119)
We now turn to (D.96). We start by simplifying (D.97) by means of the following claim.

15. Claim. Let u = µi(w) with r < i < `w. For i 6= m + 1, Bu,ρ(u) = B′u,ρ′(u), and for
i = m+ 1, Bu,ρ(u) = Kµm(w),ν1(w) and B′u,ρ′(u) = 0.

Proof. Notice that since i > r, we know by Claim 6 that µi(w) 6∈ U ′w. The second summation
of (D.76) preserves the flow balance in u, i.e., the incoming transition term 1µi−1(w),u is
subtracted as many times as the outgoing term 1u,µi+1(w). The last summation of (D.76)
preserves the total count of outgoing transitions from a pseudo-state. By Claim 3, both the
first and the last summation of (D.76) only affect incoming transitions to µ1(w), µm+1(w),
τ ′(µm(w), am), and µ1(w)b for b ∈ A. Now, since i > r ≥ 1, we know that u 6= µ1(w), and
by Claim 6, u 6= µ1(w)b for all b ∈ A. Also, as τ ′(µm(w), am) ≺ µm+1(w) when m > 0,
and µm(w) is a state of T , then tail(τ ′(µm(w), am)) is an internal node of T . Thus, by (4.6),
τ ′(µm(w), am) 6= u, for u = µi(w) with i > 1. Hence, the unique term of (D.76) that
affects incoming transitions to u is (Kn)µm(w),νm+1(w) (1µm(w),τ ′(µm(w),am) − 1µm(w),µm+1(w))
when u = µm+1(w). We conclude that

D∗u −Du∗ = D′∗u −D′u∗ if i 6= m+ 1 , (D.120)

and,
D∗u −Du∗ = D′∗u −D′u∗ +Kµm(w),νm+1(w) if i = m+ 1 . (D.121)

Suppose that i 6= m+1. If u ∈ U ′, the definition of B and Claim 12 yield Bu,ρ(u) = B′u,ρ′(u). If
u 6∈ U ′, B′u,ρ′(u) = 0 by definition. Also D′∗u = D′u∗ = 0, and (D.120) reduces to D∗u−Du∗ = 0.
This implies by the definition of B and Claim 12 that Bu,ρ(u) is also zero. Thus, in any case
Bu,ρ(u) = B′u,ρ′(u) for i 6= m + 1. We now consider the case in which i = m + 1. Since
u 6∈ U ′ by the definition of m, B′u,ρ′(u) = 0 and also D′∗u = D′u∗ = 0. Thus, (D.121) gives
D∗u−Du∗ = Kµm(w),νm+1(w), from which we get Bu,ρ(u) = Kµm(w),νm+1(w) by the definition of
B and Claim 12. Claim 15 is proved. 2

Now, by Claim 15, the factors Bµi(w),ρ(µi(w))! and B′µi(w),ρ′(µi(w))! of (D.97) cancel each
other, except, possibly, for i = m+1 whereBµi(w),ρ(µi(w)) = Kµm(w),νm+1(w), andB′µi(w),ρ′(µi(w)) =
0. Now, if r > 1, by Claim 7, either m = 0 or m > r. In the latter case, (D.97) includes
a factor with i = m + 1, since also m + 1 ≤ `w − 1 by the definition of m. If r = 1, either
m = 0, or m ≥ r and therefore (D.97) includes, also in this case, a factor with i = m + 1.
Hence, (D.97) becomes,

Π(r) =
F ′µr+1(w)∗!Fµ`w−1(w),w!

F ′µ`w−1(w),w!Fµr+1(w)∗!
×
(
(1− δm,0)Kµm(w),νm+1(w)

)
! . (D.122)

180 D. Proofs for Chapter 4

Notice that, since w 6∈ U ′, F ′µ`w−1(w),w = 0. Also since |w| ≥ depth(T)− 1, Fµ`w−1(w),w = N∗w
by Claim 4. Hence, (D.122) becomes,

Π(r) =
F ′µr+1(w)∗!N∗w!

Fµr+1(w)∗!
×
(
(1− δm,0)Kµm(w),νm+1(w)

)
! . (D.123)

Then, for r < `w − 1, we get from (D.96)

ΠT ′,U

ΠT,U
=
F ′µ1(w)∗!Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!F ′µ1(w),µ2(w)!B
′
µ1(w),ρ′(µ1(w))!

F ′µr+1(w)∗!N∗w!

Fµr+1(w)∗!
× Π̃ (D.124)

By Claim 8, Fµ1(w),µ2(w) = Fµ2(w)∗ + δsn,µ2(w) = F∗µ2(w), and F ′µ1(w),µ2(w) = F ′µ2(w)∗ +
δsn,µ2(w) = F ′∗µ2(w). Thus, we can substitute Fµ2(w)∗ for Fµ1(w),µ2(w), and F ′µ2(w)∗ for F ′µ1(w),µ2(w)

in (D.124), multiplying by an additional factor
max{1,F∗µ2(w)δsn,µ2(w)}
max{1,F ′∗µ2(w)

δsn,µ2(w)}
.

ΠT ′,U

ΠT,U
=
F ′µ1(w)∗!Fµ2(w)∗!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!F ′µ2(w)∗!B
′
µ1(w),ρ′(µ1(w))!

F ′µr+1(w)∗!N∗w!

Fµr+1(w)∗!
× Π̃×

max{1, F∗µ2(w)δsn,µ2(w)}
max{1, F ′∗µ2(w)δsn,µ2(w)}

.

(D.125)
Now, if r = 1 the factors Fµ2(w)∗! and Fµr+1(w)∗! cancel each other, and the same occurs with
F ′µ2(w)∗! and F ′µr+1(w)∗!. Thus, multiplying (D.125) by (D.119) we obtain

ΠT ′,U

ΠT,U
×

ΠT ′,U ′

ΠT,U ′
=

[∏
b∈A

(
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)] F ′µ1(w)∗!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!B′µ1(w),ρ′(µ1(w))!
×N∗w!× Π̃

×
max{1, F∗µ2(w)δsn,µ2(w)}
max{1, F ′∗µ2(w)δsn,µ2(w)}

. (D.126)

If on the other hand 1 < r < `w − 1, we know by Claim 8 that Fµr+1(w)∗ + δsn,µr+1(w) =
Fµr(w),µr+1(w) = F∗µr+1(w), and F ′µr+1(w)∗ + δsn,µr+1(w) = F ′µr(w),µr+1(w) = F ′∗µr+1(w). Thus,
we can substitute Fµr(w),µr+1(w) for Fµr+1(w)∗, and F ′µr(w),µr+1(w) for F ′µr+1(w)∗ in (D.125),

multiplying by an additional factor
max{1,F∗µr+1(w)δsn,µr+1(w)}
max{1,F ′∗µr+1(w)

δsn,µr+1(w)}
, obtaining

ΠT ′,U

ΠT,U
=

F ′µ1(w)∗!Fµ2(w)∗!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!F ′µ2(w)∗B
′
µ1(w),ρ′(µ1(w))!

F ′µr(w),µr+1(w)!N∗w!

Fµr(w),µr+1(w)!
× Π̃

×
max{1, F∗µ2(w)δsn,µ2(w)}
max{1, F ′∗µ2(w)δsn,µ2(w)}

max{1, F∗µr+1(w)δsn,µr+1(w)}
max{1, F ′∗µr+1(w)δsn,µr+1(w)}

. (D.127)

When we multiply (D.127) by (D.119), the factor Fµ2(w)∗!
/
F ′µ2(w)∗! of (D.127) cancels with

the inverse factor of (D.119). Also the factor F ′µr(w),µr+1(w)!
/
Fµr(w),µr+1(w)! of (D.127) cancels

with Dµr(w),µr+1(w)!
/
D′µr(w),µr+1(w)! of (D.119). Thus, for 1 < r < `w − 1 we obtain,

ΠT ′,U

ΠT,U
×

ΠT ′,U ′

ΠT,U ′
=

[∏
b∈A

(
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)] F ′µ1(w)∗!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!B′µ1(w),ρ′(µ1(w))!
×N∗w!× Π̃

×
max{1, F∗µ2(w)δsn,µ2(w)}
max{1, F ′∗µ2(w)δsn,µ2(w)}

max{1, F∗µr+1(w)δsn,µr+1(w)}
max{1, F ′∗µr+1(w)δsn,µr+1(w)}

. (D.128)

D.3. Proof of Lemma 4.22 181

We combine (D.126), which is valid for r = 1, with (D.128) to obtain a single equation valid
for r < `w − 1,

ΠT ′,U

ΠT,U
×

ΠT ′,U ′

ΠT,U ′
=

[∏
b∈A

(
B′µ1(w)b,ρ′(µ1(w)b) +N ′∗wb

N ′∗wb

)] F ′µ1(w)∗!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!B′µ1(w),ρ′(µ1(w))!
×N∗w!× Π̃′ ,

(D.129)
where, noting that (1− δ`w,2) = 1 for r < `w − 1,

Π̃′ = Π̃×
max{1, F∗µ2(w)δsn,µ2(w)(1− δ`w,2)}
max{1, F ′∗µ2(w)δsn,µ2(w)(1− δ`w,2)}

max{1, F∗µr+1(w)δsn,µr+1(w)(1− δr,1)}
max{1, F ′∗µr+1(w)δsn,µr+1(w)(1− δr,1)}

. (D.130)

Although the factor (1− δ`w,2) in (D.130) is never null for r < `w − 1, it makes this equation
also applicable in the case r = `w − 1 that we analyze next.

If r = `w − 1, we recall from the discussion preceding (D.96) that m = 0. Thus, (D.96)
reduces to

ΠT ′,U

ΠT,U
=
F ′µ1(w)∗!Fµ1(w),µ2(w)!Bµ1(w),ρ(µ1(w))!

Fµ1(w)∗!F ′µ1(w),µ2(w)!B
′
µ1(w),ρ′(µ1(w))!

. (D.131)

Since r = `w − 1, µr+1(w) = w. Hence, if also r > 1, the factor D′µr(w),µr+1(w) of (D.119) is
null, and the factor Dµr(w),µr+1(w) equals N∗w by Claim 4. Also by Claim 8, Fµ1(w),µ2(w) =
Fµ2(w)∗ + δsn,µ2(w) = F∗µ2(w) and F ′µ1(w),µ2(w) = F ′µ2(w)∗ + δsn,µ2(w) = F ′∗µ2(w). Thus, (D.131)
together with (D.119) yields the same Equation (D.129) that we have derived for r < `w − 1.
If in particular r = 1, i.e., `w = 2, then µ2(w) = w and therefore Fµ1(w),µ2(w) = N∗w by
Claim 4, and F ′µ1(w),µ2(w) = 0. Thus, (D.131) together with (D.119) yield (D.129) once again.
The following claim will allow us to further simplify (D.129).

16. Claim. If µ1(w) 6∈ U ′, Fµ1(w)∗ = Bµ1(w),ρ(µ1(w)) + N∗w and
∑

b∈AB
′
µ1(w)b,ρ′(µ1(w)b) =

Bµ1(w),ρ(µ1(w)) + δsn,µ1(w). If µ1(w) ∈ U ′, B′µ1(w),ρ′(µ1(w)) = Bµ1(w),ρ(µ1(w)) and F ′µ1(w)∗ −
Fµ1(w)∗ = −N∗w.

Proof. We first study the difference between
∑

b∈A(D′∗µ1(w)b−D∗µ1(w)b) and D′∗µ1(w)−D∗µ1(w).
By Claim 3, the first and last summation of (D.76) subtract as many incoming transitions
to µ1(w), as they add to the pseudo-states in the set {µ1(w)b : b ∈ A}. The only exception
is, when m > 0, the term (Kn)µm(w),νm+1(w) (1µm(w),τ ′(µm(w),am) − 1µm(w),µm+1(w)), which
adds incoming transitions to τ ′(µm(w), am), which may be of the form µ1(w)b, but subtracts
incoming transitions from µm+1(w) 6= µ1(w). The second summation of (D.76) does not affect
incoming transitions to µ1(w), although it may subtract incoming transitions to µ1(w)b in
the case µ1(w)b = µ2(w). Since these are the only terms involving incoming transitions to
pseudo-states in {µ1(w)b : b ∈ A} ∪ {µ1(w)}, we conclude that∑

b∈A
D′∗µ1(w)b −D∗µ1(w)b = −

(
D′∗µ1(w) −D∗µ1(w)

)
(D.132)

+ (1−δm,0)
∑
b∈A

δµ1(w)b,τ ′(µm(w),am)Kµm(w),νm+1(w)

−
∑
b∈A

δµ2(w),µ1(w)bN∗w .

182 D. Proofs for Chapter 4

We now study the total amount of outgoing transitions from pseudo-states in {µ1(w)b : b ∈
A} ∪ {µ1(w)}. The last summation of (D.76) preserves the number of outgoing transitions
from any pseudo-state, and the first summation does not involve pseudo-states in Uw ∪ U ′w
by Claim 5. The second summation subtracts N∗w times the term 1µ1(w),µ2(w) and adds the
same number of terms of the form 1µ1(w)b,µ2(w)b with b ∈ A. Additionally, if µ1(w)b = µ2(w)
for some b ∈ A, µ2(w) must be of the form bk, which differs from w as `w > 1. Hence, `w > 2
and the second summation also subtracts N∗w times the term 1µ1(w)b,µ3(w). As a consequence,

∑
b∈A

D′µ1(w)b∗ −Dµ1(w)b∗ =

(
1−

∑
b∈A

δµ2(w),µ1(w)b

)
N∗w , (D.133)

and,

D′µ1(w)∗ −Dµ1(w)∗ = −N∗w . (D.134)

Subtracting (D.133) from (D.132) we get∑
b∈A

(
D′∗µ1(w)b −D∗µ1(w)b

)
−
∑
b∈A

(
D′µ1(w)b∗ −Dµ1(w)b∗

)
= −

(
D′∗µ1(w) −D∗µ1(w)

)
−N∗w + (1−δm,0)

∑
b∈A

δµ1(w)b,τ ′(µm(w),am)Kµm(w),νm+1(w) .

Combining the last equation with (D.134), and reordering terms, we get∑
b∈A

(
D′∗µ1(w)b −D

′
µ1(w)b∗

)
−
∑
b∈A

(
D∗µ1(w)b −Dµ1(w)b∗

)
=

=
(
D′µ1(w)∗−Dµ1(w)∗

)
−
(
D′∗µ1(w)−D∗µ1(w)

)
+ (1−δm,0)

∑
b∈A

δµ1(w)b,τ ′(µm(w),am)Kµm(w),νm+1(w) .

(D.135)

Now, by Claim 13, we have,∑
b∈A

∑
u∈Λ̄(µ1(w)b)

(
D′∗u −D′u∗

)
−
∑
b∈A

∑
u∈Λ̄(µ1(w)b)

(D∗u −Du∗)

= −(1− δm,0)
∑
b∈A

δµ1(w)b,τ ′(µm(w),am)Kµm(w),νm+1(w) ,

where the negative term−Kµm(w),νm+1(w) arises when τ ′(µm(w), am) = µ1(w)b for some b ∈ A,
so that (D.102) applies to µm+1(w) ∈ Λ̄(µ1(w)b), and it is not canceled by (D.103). Summing
this equation to (D.135) we get,∑

b∈A

∑
u∈Λ(µ1(w)b)

(
D′∗u −D′u∗

)
−
∑
b∈A

∑
u∈Λ(µ1(w)b)

(D∗u −Du∗)

=
(
D′µ1(w)∗ −Dµ1(w)∗

)
−
(
D′∗µ1(w) −D∗µ1(w)

)
,

D.3. Proof of Lemma 4.22 183

or equivalently,∑
b∈A

B′µ1(w)b,ρ′(µ1(w)b) −
∑

v:ρ(v)=µ1(w)

Bv,µ1(w) =
(
D′µ1(w)∗ −Dµ1(w)∗

)
−
(
D′∗µ1(w) −D∗µ1(w)

)
.

(D.136)
Now, if µ1(w) ∈ U ′, ρ′(µ1(w)b) = µ1(w) for all b ∈ A. Thus, the left hand side of (D.136) is
simply B′∗µ1(w) −B∗µ1(w). In this case, by Lemma 4.13(ix), we get from (D.136)

B′µ1(w),ρ′(µ1(w)) = Bµ1(w),ρ(µ1(w)) if µ1(w) ∈ U ′ , (D.137)

where we have used in the application Lemma 4.13 that δsn,µ1(w) = δs′n,µ1(w) for µ1(w) 6= w,
and δs0,µ1(w) = δs′0,µ1(w) = 0 for µ1(w) is not of maximal depth. This combined with (D.134)
gives

F ′µ1(w)∗ − Fµ1(w)∗ = −N∗w . (D.138)

If on the contrary µ1(w) 6∈ U ′, D′µ1(w)∗ = 0 and (D.134) gives Dµ1(w)∗ = N∗w. Hence,
Fµ1(w)∗ = Bµ1(w),ρ(µ1(w)) +N∗w. Also D′∗µ1(w) = 0 and (D.136) reduces to∑

b∈A
B′µ1(w)b,ρ′(µ1(w)b) −B∗µ1(w) = D∗µ1(w) −Dµ1(w)∗ , (D.139)

which, by Lemma 4.13(ix), gives∑
b∈A

B′µ1(w)b,ρ′(µ1(w)b) = Bµ1(w),ρ(µ1(w)) + δsn,µ1(w) . (D.140)

The proof of Claim 16 is completed. 2

We now apply Claim 16 to Equation (D.129). If µ1(w) ∈ U ′, the factors B′µ1(w),ρ′(µ1(w))

and Bµ1(w),ρ(µ1(w)) of (D.129) cancel each other. Since also Fµ1(w)∗ = F ′µ1(w)∗ +N∗w, (D.129)
reduces to,

ΠT ′,U

ΠT,U
×

ΠT ′,U ′

ΠT,U ′
=

∏
b∈A

(B′
µ1(w)b,ρ′(µ1(w)b)

+N ′∗wb
N ′∗wb

)
(Fµ1(w)∗

N∗w

) × Π̃′ . (D.141)

If on the contrary µ1(w) 6∈ U ′, F ′µ1(w)∗ = 0 and B′µ1(w),ρ′(µ1(w)) = 0. Since also Fµ1(w)∗ =
Bµ1(w),ρ(µ1(w)) +N∗w, (D.129) reduces to (D.141) again.

To complete the proof of the lemma it remains to show (4.31). Claim 16 already states
that, for µ1(w) 6∈ U ′,

∑
b∈AB

′
µ1(w)b,ρ′(µ1(w)b) = Bµ1(w),ρ(µ1(w)) +δsn,µ1(w), and Bµ1(w),ρ(µ1(w)) =

Fµ1(w)∗ −N∗w. If otherwise µ1(w) ∈ U ′, by (4.6) tail(µ1(w)) is an internal node of T , and a
fortiori an internal node of T ′. Hence, since µ1(w) has a full complement of children in U ′,
i.e., µ1(w)b ∈ U ′ for all b ∈ A, τ ′(s, a) 6= µ1(w) for all states s of T ′ and all symbols a. Hence,
by Lemma 4.13(vii), D′∗µ1(w) = 0. As a consequence,

∑
b∈AB

′
µ1(w)b,ρ′(µ1(w)b) = B′∗µ1(w) =

F ′∗µ1(w). This in turn is equal to F ′µ1(w)∗ + δsn,µ1(w) by Lemma 4.13(ix). Since by Claim 16,
F ′µ1(w)∗−Fµ1(w)∗ = −N∗w, we conclude that

∑
b∈AB

′
µ1(w)b,ρ′(µ1(w)b) = Fµ1(w)∗−N∗w+δsn,µ1(w).

2

Appendix E

Type classes under general initial conditions

In this appendix we extend the results of Chapter 4 to the more general setting in which the
initial conditions are determined by transient states of the context tree, rather than a fixed
initial permanent state s0. In this case, a sequence xn determines a state sequence s′0, s

′
1 · · · s′n,

where each s′i may be a transient state of the form u$ ∈ S$
T , with u ∈ I(T). The probability

assignment P〈T,pT 〉(·) of (4.1) is now replaced by

P〈T,pT 〉(λ) = 1; P〈T,pT 〉(x
n) =

n∏
i=1

pT (xi|s′i−1), n ≥ 1 , (E.1)

which depends on the conditional probability mass functions of all the states of T , SA
T , in-

cluding permanent and transient states. Notice that this setting is more general in that it
lets the model allocate arbitrary probabilities for the first symbols. As a consequence, the
defining condition of a type class, namely, containing equiprobable sequences under any model
parameter, becomes more constraining. Thus, we can foresee that, in relation to the original
setting, type classes shrink, and there is a slight increment in the number of type classes.

We will study how this modification of the initial conditions affect the results we have
derived in Chapter 4, either asymptotically or in the exact formula of Theorem 4.15. To
avoid confusion with the notation introduced in Chapter 4 we define n′s as the number of
occurrences of the state s ∈ SA

T in the sequence s′0, s
′
1 · · · s′n−1, and n′(a)

s as the number of
occurrences of symbol a in state s ∈ SA

T . Notice that this definition agrees with our previous
definition of ns and n(a)

s in Chapter 3, if we eliminate the sign $ from transient states. Clearly
the type class of xn is now

T ′(xn) =
{
yn ∈ An : n′(a)

s (yn) = n′
(a)
s (xn) ∀s ∈ SA

T , a ∈ A
}
. (E.2)

We define i0(xn), or simply i0 when xn is clear from the context, as the last index in the
state sequence of xn where a transient state shows up, i.e., i0 = max{i : xi ∈ I(T)}. The
following lemma characterizes T ′(xn).

E.1. Lemma. yn ∈ T ′(xn) if and only if yn ∈ T (xn), xi0(xn)+1 � yn, and i0(yn) = i0(xn).

Proof. Notice that for fixed s0 of maximal depth, the counts {n(a)
s (yn)}s∈ST ,a∈A together

with the prefix yi0(yn)+1 determines the counts {n′(a)
s (yn)}

s∈SA
T ,a∈A

. Thus, the converse part
follows immediately from this observation. Now, let s = s′i0(xn)(x

n), which, by definition of

i0(xn), is equal to xi0(xn)$. If yn ∈ T ′(xn), then n′(a)
s (yn) = n′(a)

s (xn) = δa,xi0(xn)+1
, and

therefore xi0(xn)+1 � yn. Moreover, all states s′i(y
n) with i > i0(xn) are permanent states,

186 E. Type classes under general initial conditions

for otherwise n′s′i(yn) = 1 in yn, but n′s′i(yn) = 0 in xn. Thus, we have i0(yn) = i0(xn).

Since the counts {n′(a)
s (yn)}

s∈SA
T ,a∈A

together with the prefix yi0(yn)+1 determines the counts

{n(a)
s (yn)}s∈ST ,a∈A, we must also have yn ∈ T (xn). 2

Observe that Lemma E.1 suffices to extend the asymptotic results of Chapter 4. Since
T ′(xn) ⊂ T (xn), the upper bound of Theorem 4.18 is of course valid for the expected size of
T ′(Xn). Moreover, since each type class T (xn) is partitioned into up to a constant number
of subclasses T ′ for S$

T is finite, the asymptotic result of Theorem 4.33 remains valid. The
following lemma will help us in deriving an exact formula for the size of T ′(xn), and an enu-
meration algorithm for it. As we did in Chapter 4, we will establish a one-to-one mapping
between unlabeled paths in a graph, and the set of strings in

T ′∗(xn)
{
yn ∈ T ′(xn) : sn(xn) = sn(yn)

}
.

By the same arguments used in Chapter 4, an enumeration algorithm, and an exact formula
for the size of T ′∗(xn), yield straightforwardly their counterpart for T ′(xn).

E.2. Lemma. Let J be the forced sequence parsing of xn. We have i0 ∈ J .

Proof. Let i = i0, and h = ~i0. By (4.5) we decompose sh as

sh = (sh)
`sh−j
1 µj(sh), 1 ≤ j ≤ `sh .

We take in particular j = i∆, which by Lemma 4.13(ii) satisfies 1 ≤ i∆ ≤ `sh , and since
`sh − j = h− i by the definition of i∆, we get

sh = (sh)h−i1 µi∆(sh) . (E.3)

Since sh � xhs0, we have (sh)h−i1 = xhi+1, and sice xi ≺ si by the definition of i0, we know
that xh ≺ (sh)h−i1 si. Furthermore, since si = νi∆(sh) by Lemma 4.13(ii), we get

xh ≺ (sh)h−i1 µi∆(sh) .

Thus, by (E.3), we know that xh ≺ sh, and we must have h = i by the definition of i0. 2

Since i0(xn) ∈ J(xn), the unlabeled path ξ$ = s0ς1 · · · ςj , where tj = i0, is by Theorem 4.15
a prefix of the unique Eulerian unlabeled path ξ from s0 to sn in GF such that ω(ξ) = xn.
By Lemma 4.13(ii) and the definition of ςi, it follows that ω(ξ$) = xi0 . Furthermore, by
Lemma 4.14, there is a unique unlabeled path ξ$ from s0 to si0 such that ω(ξ$) = xi0 . Hence,
by Lemma E.1, and noting that si0(yn) = si0(xn) for all yn ∈ T ′∗(xn) since s0 is fixed, we
conclude that ξ$ is a prefix of any Eulerian unlabeled path γ from s0 to sn in GF such that
ω(γ) ∈ T ′∗(xn). Furthermore, since xi0(xn)+1 is a prefix of all strings yn ∈ T ′∗(xn), ξ$ must
necessarily be followed by the pseudo-state τ(si0 , xi0+1) in any such Eulerian unlabeled path.

We define u0 = arg max{|u| : u ∈ U, u � xi0(xn)+1}, and β′ as the unlabeled path formed
by context-dropping transitions from τ(si0 , xi0+1) to u0, i.e., β′ is empty if τ(si0 , xi0+1) = u0,

187

and otherwise β′ = v0v1 · · · vm where v0 = τ(si0 , xi0+1), vm = u0, and vj = ρ(vj−1) for
j = 1 · · ·m. We also denote by G′F (xn) a graph obtained from GF (xn) by deleting the set of
edges of any path that is a representative of the unlabeled path ξ0 = ξ$τ(si0 , xi0+1)β′, i.e.,
the incidence matrix of G′F (xn) is given by F ′u,v = Fu,v − |{i : 1 ≤ i ≤ l, vi−1 = u, vi = v}|,
where ξ0 = v0 · · · vl.

Observe that ξ0 and F ′ are determined by the counts {n′(a)
s (xn)}

s∈SA
T ,a∈A

, which charac-
terize T ′(xn). Hence, only the type class, and not the specific string xn, is sufficient to obtain
F ′. Indeed, the longest transient state s = u$ with a positive count n′(a)

s = 1 determines
xi0(xn)+1 = ua. This, together with the fixed state s0, determine the initial portion of the
state sequence s0 · · · si0 , which allows for the computation of the whole state transition matrix
N , and hence of F . Since xi0(xn)+1 is known, we can compute the forced sequence parsing
of xi0 , from which we get ξ$, and then complete it with the concatenation of τ(si0 , xi0+1)
and context-dropping transitions until we obtain ξ0. The following theorem parallels The-
orem 4.15 in the context of general initial conditions. We define the normalized |U | × |U |
matrix F̂ ′ as F̂ ′i,j = F ′i,j/F

′
i∗ if F ′i∗ > 0 and F̂ ′i,j = 0 otherwise.

E.3. Theorem. Let xn be a sequence in An.

(i) The unlabeled path ξ′, obtained from ξ = s0ς1 · · · ςr by deleting the prefix ξ0, is an
Eulerian unlabeled path from u0 to sn in G′F such that xi0(xn)+1ω(ξ′) = xn.

(ii) The function ω defines a one-to-one correspondence between the set of Eulerian unlabeled
paths from u0 to sn in G′F and the sequences in T ′∗(xn).

(iii) Let M denote the cofactor of entry (sn, u0) in I−F̂ ′. Then, M ≤ 1 and

|T ′∗(xn)| = M

∏
i F
′
i∗!∏

i,j F
′
i,j !

. (E.4)

Proof. We will show that for an Eulerian unlabeled path γ from s0 to sn in GF , ω(γ) ∈
T ′∗(xn) if and only if ξ0 is a prefix of γ, which proves parts (i) and (ii). The proof of Part (iii)
follows exactly as Part (iii) of Theorem 4.15.

Suppose first that the string yn = ω(γ) belongs to T ′∗(xn). By Theorem 4.15(i), γ =
s0ς1 · · · ςr, where the unlabeled paths ςi are defined with respect to the forced sequence parsing
of yn, J(yn) = {ti}ri=0. Moreover, by the discussion preceding the theorem, we know that
ξ$τ(si0 , xi0+1) is a prefix of γ, where ξ$ = s0ς1 · · · ςj and tj ∈ J(yn) is tj = i0(yn) = i0(xn). By
the definition of ςi before Theorem 4.15, and the definition of β′ above, to prove that ξ0 is a
prefix of γ we must show that µ1(stj+1(yn)) � u0. Suppose on the contrary that µ1(stj+1) 6� u0,
where stj+1 hereafter stands for stj+1(yn). Since u0 � xi0(xn)+1, and µ1(stj+1) � yi0(yn)+1s0 =
xi0(xn)+1s0, but µ1(stj+1) 6� u0, we must have u0 ≺ µ1(stj+1). Hence, by the definition of u0

we know that µ1(stj+1) 6� xi0(xn)+1, and therefore

xi0(xn)+1 ≺ µ1(stj+1) . (E.5)

Now, by (4.5) we decompose stj+1 as

stj+1 = (stj+1)
`stj+1

−i
1 µi(stj+1), 1 ≤ i ≤ `stj+1

. (E.6)

188 E. Type classes under general initial conditions

We take i = 1 in (E.6) and, recalling that `stj+1
= tj+1 − tj by Lemma 4.13(iii), we get

stj+1 = (stj+1)tj+1−tj−1
1 µ1(stj+1) . (E.7)

Notice that stj+1 � ytj+1 and therefore (stj+1)tj+1−tj−1
1 = y

tj+1

tj+2. Hence, by (E.5) and (E.7),

we get ytj+1

tj+2 x
i0(xn)+1 ≺ stj+1 , and since xi0(xn)+1 = yi0(yn)+1, we obtain ytj+1 ≺ stj+1 . We

arrive to a contradiction by Lemma E.1 since in this case we have i0(yn) ≥ tj+1 > tj = i0(xn).
We conclude that µ1(stj+1(yn)) � u0 and therefore ξ0 is a prefix of γ.

Suppose now that γ is an Eulerian unlabeled path from s0 to sn in GF such that ξ0 is
a prefix of γ. We will prove that yn = ω(γ) belongs to T ′∗(xn). Clearly xi0(xn)+1 � yn

for ω(ξ0) = xi0(xn)+1. Since also yn ∈ T ∗(xn) by Theorem 4.15, by Lemma E.1 we only
need to show that i0(yn) = i0(xn). Let ξ0 = v0 · · · vl, and γ = v0 · · · vlvl+1 · · · vm. Each
pair of consecutive vertexes in γ satisfies |vi+1| ≤ |vi| + 1, and the equality may hold only
if |ω(v0 · · · vi+1)| > |ω(v0 · · · vi)|. Hence, since vl = u0 � xi0(xn)+1 = ω(v0 · · · vl), we have
vi � ω(v0 · · · vi) for all i ≥ l by Part (i) of Lemma 4.14. Hence, for all i ≥ l, the string
ω(v0 · · · vi) selects the unique permanent state of T that is a prefix of vi. Thus, all pre-
fixes of yn of length grater than i0(xn) select permanent states, and therefore we must have
i0(yn) = i0(xn). 2

Appendix F

Eulerian unlabeled paths enumeration algorithm

Consider a graph G = (V,E) and fix a complete order on the set V . Without loss of generality,
let V = {v1 . . . vk}, and vi < vj whenever i < j. We extend the order to length-m unlabeled
paths lexicographically, i.e., for γ = u0, u1 · · ·um and γ′ = u′0, u

′
1 · · ·u′m , we have γ < γ′ if

and only if for some i ≤ m, ui < u′i , and uj = u′j for all j < i. Let Γu,v(G) be the set
of Eulerian unlabeled path from u to v in G, and Nu,v(G) the cardinality of Γu,v(G). For
γ ∈ Γu,v(G) , we denote Idx(G, γ) the number of Eulerian unlabeled paths in Γu,v(G) that
appear before γ lexicographically, i.e.,

Idx(G, γ) =
∣∣{γ′ ∈ Γu,v(G) : γ′ < γ

}∣∣ ; γ ∈ Γu,v(G) .

For an edge e ∈ E, we denote G − e the graph G′ = (V,E\{e}). Furthermore, for u, u′ ∈ V
such that (u, u′) ∈ E, denote by G − (u, u′) a graph G′ = G − e, where e is any edge with
source u, and destination u′. Letting γ = u0, u1 · · ·um, and denoting tail(γ) = u1 · · ·um, it is
readily verified by induction that the following recurrence holds.

Idx(G, γ) =

 ∑
u′∈V :u′<u1,(u0,u′)∈E

Nu′,um(G− (u0, u
′))

+ Idx(G− (u0, u1), tail(γ)) . (F.1)

Given a way of computing Nu,v(G), implementing an algorithm that computes Idx(G, γ)
using (F.1) is straightforward, either recursively or iteratively. We next demonstrate that
such an algorithm can be implemented with polynomial complexity in the number of edges
of G.

F.1. Proposition. Idx(G, γ) can be computed in a polynomial order number of bit operations
with respect to the number of edges of G, i.e., regarding |V | as constant.

Proof. In each step of the recurrence in (F.1), the number of edges of the graph is decremented
by one. Thus, computing Idx(G, γ) amounts to computing Nu,v(G) up to |V | × |E| times.
By [22], using the same arguments as for the derivation of the formula in Theorem 4.15, we
have

Nu,v(G) = M

∏
i G̃i∗!∏
i,j G̃i,j !

,

where G̃ is the incidence matrix of G, and M denotes the cofactor of entry (v, u) in I−Ĝ,

with Ĝi,j = G̃i,j/G̃i∗ if G̃i∗ > 0 and ˆ̃Gi,j = 0 otherwise. Multiplying by G̃u∗ the u-th row of
Ĝ for every u ∈ V , we get

Nu,v(G) =

∏
i 6=v

G̃i∗

−1

M ′
∏
i G̃i∗!∏
i,j G̃i,j !

, (F.2)

190 F. Eulerian unlabeled paths enumeration algorithm

where M ′ is the cofactor of entry (v, u) in L, with Lu,v = δu,vG̃u∗ − G̃u,v. The matrix L is
integer, and M ′ can be computed with a number of operations that depends only on |V | with
operands of |V | log |E| bits, which take of course a polynomial number of bit operations with
respect to |E|.

As for the multinomial coefficients in (F.2), we can compute G̃i∗!/
∏
i,j G̃i,j ! as the product

of |V |−1 binomial coefficient. Each binomial coefficient
(
n
r

)
can be computed, by means of the

Pascal triangle (see e.g. [25]), with r(n − r) additions. Thus, working with |E| bits numeric
representations, the computation of the multinomial coefficients in (F.2) take O(|E|3) bit
operations.

Finally, again working with |E| bits numeric representations, dividing by
∏
i 6=v G̃i∗ takes

O(|E|2) bit operations, even with naive implementations of integer multiplications an di-
visions. Hence, the overall complexity of computing Nu,v(G) is polynomial, and so is the
complexity of computing Idx(G, γ). 2

The inverse problem of obtaining γ given Idx(G, γ) can also be derived from (F.1) straight-
forwardly, and yields the same complexity as Proposition F.1 by the same arguments.

In the application of Proposition F.1 to the enumeration of T (xn) in Chapter 4, the graph
GF has a set of vertices U that depends only on T . As for the number of edges, |Eµ|, clearly
|Eµ| = O(n) by Lemma 4.13(x). Thus, by Proposition F.1 and Theorem 4.15, T (xn) can be
enumerated in polynomial time in n.

Appendix G

Proofs for Chapter 5

G.1 Proof of Lemma 5.2

For the proof of Lemma 5.2 we make use of the following theorem from [40], which we present
below in a simplified form, which is nevertheless suitable for our setting.

G.1. Theorem. [40, Theorem 2]Suppose {Xn} is an ergodic finite-state chain with a set
of states S and a stationary distribution π. Let F : S → R be any bounded function and
F̄ = sups |F (s)|. Then for any ε > 0 we have,

logP

{
n−1∑
i=0

(
F (Xi)− Eπ

[
F
])
≥ nε

}
≤ −n− 1

2

(
ε

dF̄
− 3
n− 1

)2

(G.1)

as long as n ≥ 1 + 3dF̄ /ε, where d is a positive constant and Eπ
[
F
]

is the expectation of
F (Xi) under π.

We prove next the following Lemma G.2, which includes Lemma 5.2 in Part (ii). Part (i)
is used in the proof of Lemma 5.8 in Section G.2.

G.2. Lemma. Let 〈T, pT 〉 be a tree source such that all conditional probabilities are positive.
Then,

(i) For every k ≥ 1, and n > N0 independent of k,

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤ 4

P〈T,pT 〉 {nw > 0}
exp

{
−n− 1

2

(
r
k

2
√
n
− 3
n− 1

)2
}

(G.2)
where r is a positive constant independent of k.

(ii) The expectation E〈T,pT 〉
[
bZw,ac>

]
with respect to the tree source 〈T, pT 〉 is bounded by

a constant independent of n.

Proof. The expectation of bZw,ac> is

E〈T,pT 〉
[
bZw,ac>

]
=
∑
k≥1

P〈T,pT 〉
{
bZw,ac> ≥ k

}
. (G.3)

Since bZw,ac> = 0 when nw = 0 by definition, for k ≥ 1, we have

P〈T,pT 〉
{
bZw,ac> ≥ k

}
= P〈T,pT 〉

{
bZw,ac> ≥ k, nw > 0

}
= P〈T,pT 〉

{
bZw,ac> ≥ k

∣∣∣nw > 0
}

P〈T,pT 〉 {nw > 0} .

192 G. Proofs for Chapter 5

By definition of bZw,ac>, we have

P〈T,pT 〉
{
bZw,ac> ≥ k

∣∣∣nw > 0
}
≤ P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
,

which, together with (G.3), yields

E〈T,pT 〉
[
bZw,ac>

]
≤ P〈T,pT 〉 {nw > 0}

∑
k≥1

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
. (G.4)

For each term of the summation in the last equation, we have

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}

= P〈T,pT 〉 {Zw,a ≥ k
√
nw|nw > 0}

= P〈T,pT 〉

{
Zw,a
nw
≥ k
√
nw

∣∣∣∣nw > 0
}

= P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− n

(a)
s

ns

∣∣∣∣∣ ≥ k
√
nw

∣∣∣∣∣nw > 0

}
,

where the last equality follows from the definition of Zw,a. Now, denote by pT (a|w) the
probability of symbol a conditioned on context w. For the state s ∈ ST such that s ≺ w, we
have pT (a|w) = pT (a|s), where pT (a|s) is the probability of symbol a conditioned on state s.
Thus, we have

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}

=

= P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w) + pT (a|s)− n

(a)
s

ns

∣∣∣∣∣ ≥ k
√
nw

∣∣∣∣∣nw > 0

}

≤ P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣+

∣∣∣∣∣pT (a|s)− n
(a)
s

ns

∣∣∣∣∣ ≥ k
√
nw

∣∣∣∣∣nw > 0

}
,

and since n ≥ nw, we get

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤

≤ P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣+

∣∣∣∣∣pT (a|s)− n
(a)
s

ns

∣∣∣∣∣ ≥ k√
n

∣∣∣∣∣nw > 0

}
.

If
∣∣∣n(a)

w
nw
− pT (a|w)

∣∣∣ +
∣∣∣pT (a|s)− n

(a)
s
ns

∣∣∣ ≥ k√
n

, we must have either
∣∣∣n(a)

w
nw
− pT (a|w)

∣∣∣ ≥ k
2
√
n

, or∣∣∣pT (a|s)− n
(a)
s
ns

∣∣∣ ≥ k
2
√
n

. Hence, we get

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤ P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ ≥ k

2
√
n

∣∣∣∣∣nw > 0

}

+ P〈T,pT 〉

{∣∣∣∣∣pT (a|s)− n
(a)
s

ns

∣∣∣∣∣ ≥ k

2
√
n

∣∣∣∣∣nw > 0

}
.(G.5)

G.1. Proof of Lemma 5.2 193

Since nw > 0 implies ns > 0, the second term of (G.5) is

P〈T,pT 〉

{∣∣∣∣∣pT (a|s)− n
(a)
s

ns

∣∣∣∣∣ ≥ k

2
√
n

∣∣∣∣∣nw > 0

}
=

= P〈T,pT 〉

{∣∣∣∣∣pT (a|s)− n
(a)
s

ns

∣∣∣∣∣ ≥ k

2
√
n

∣∣∣∣∣nw > 0, ns > 0

}

=
P〈T,pT 〉

{∣∣∣pT (a|s)− n
(a)
s
ns

∣∣∣ ≥ k
2
√
n

∣∣∣ns > 0
}

P〈T,pT 〉 {nw > 0|ns > 0}
,

and replacing in (G.5) we get

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤ P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ ≥ k

2
√
n

∣∣∣∣∣nw > 0

}

+
P〈T,pT 〉

{∣∣∣pT (a|s)− n
(a)
s
ns

∣∣∣ ≥ k
2
√
n

∣∣∣ns > 0
}

P〈T,pT 〉 {nw > 0|ns > 0}
. (G.6)

We now bound P〈T,pT 〉
{∣∣∣n(a)

w
nw
− pT (a|w)

∣∣∣ ≥ ε∣∣∣nw > 0
}

for any fixed context w with s � w.
Notice that this includes the case w = s, and thus applies to both terms of (G.6). Let pw and
paw be the probabilities of w and wa under the stationary distribution of the source T . We
have pT (a|w) = paw/pw, and therefore

n
(a)
w

nw
− pT (a|w) =

n
(a)
w /n

nw/n
− paw

pw
.

Let 0 < δ < pw. When paw − δ < n
(a)
w
n < paw + δ, and pw − δ < nw

n < pw + δ, we have

paw − δ
pw + δ

<
n

(a)
w /n

nw/n
<
paw + δ

pw − δ
.

Thus, the event
{∣∣∣n(a)

w
n − paw

∣∣∣ < δ
}
∩
{∣∣nw

n − pw
∣∣ < δ

}
implies

paw
pw
−
(
paw
pw
− paw − δ

pw + δ

)
<
n

(a)
w /n

nw/n
<
paw
pw

+
(
paw + δ

pw − δ
− paw

pw

)
,

or,
paw
pw
− δ(pw + paw)

pw(pw + δ)
<
n

(a)
w /n

nw/n
<
paw
pw

+
δ(pw + paw)
pw(pw − δ)

.

Since we have
δ(pw + paw)
pw(pw + δ)

<
δ(pw + paw)
pw(pw − δ)

, the condition above further implies,

paw
pw
− δ(pw + paw)

pw(pw − δ)
<
n

(a)
w /n

nw/n
<
paw
pw

+
δ(pw + paw)
pw(pw − δ)

,

194 G. Proofs for Chapter 5

which in turn gives ∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ < δ(pw + paw)
pw(pw − δ)

. (G.7)

Now, given 0 < ε ≤ 1, we take δ = ε p2
w

pw+paw+1 , which satisfies the condition 0 < δ < pw.

Then, δ ≤ ε p2
w

pw+paw+εpw
, and therefore δ(pw+paw)

pw(pw−δ) ≤ ε. Thus, from (G.7) it follows that the

event
{∣∣∣n(a)

w
n − paw

∣∣∣ < δ
}
∩
{∣∣nw

n − pw
∣∣ < δ

}
implies

∣∣∣n(a)
w
nw
− pT (a|w)

∣∣∣ < ε. Hence, we have

P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ < ε

∣∣∣∣∣nw > 0

}
≥

≥ P〈T,pT 〉

{{∣∣∣∣∣n(a)
w

n
− paw

∣∣∣∣∣ < δ

}
∩
{∣∣∣nw

n
− pw

∣∣∣ < δ
}∣∣∣∣∣nw > 0

}
,

and by De Morgan’s law, we get

P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ > ε

∣∣∣∣∣nw > 0

}
≤

≤ P〈T,pT 〉

{{∣∣∣∣∣n(a)
w

n
− paw

∣∣∣∣∣ > δ

}
∪
{∣∣∣nw

n
− pw

∣∣∣ > δ
}∣∣∣∣∣nw > 0

}

=
P〈T,pT 〉

{{∣∣∣n(a)
w
n − paw

∣∣∣ > δ
}
∪
{∣∣nw

n − pw
∣∣ > δ

}}
P〈T,pT 〉 {nw > 0}

,

which we further bound as

P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ > ε

∣∣∣∣∣nw > 0

}
≤

≤
P〈T,pT 〉

{∣∣∣n(a)
w
n − paw

∣∣∣ > δ
}

+ P〈T,pT 〉
{∣∣nw

n − pw
∣∣ > δ

}
P〈T,pT 〉 {nw > 0}

.

We now apply Theorem G.1, from [40], which gives

P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ > ε

∣∣∣∣∣nw > 0

}
≤ 2

P〈T,pT 〉 {nw > 0}
exp

{
−n− 1

2

(
δ

d
− 3
n− 1

)2
}
,

as long as n ≥ 1 + 3d
δ , where δ = ε p2

w
pw+paw+1 as before, and d is a positive constant. We can

rewrite the last equation as

P〈T,pT 〉

{∣∣∣∣∣n(a)
w

nw
− pT (a|w)

∣∣∣∣∣ > ε

∣∣∣∣∣nw > 0

}
≤ 2

P〈T,pT 〉 {nw > 0}
exp

{
−n− 1

2

(
rε− 3

n− 1

)2
}
,

(G.8)

G.2. Proof of Lemma 5.8 195

as long as n ≥ 1 + r′

ε , where r and r′ are positive constants. Going back to equation (G.6),
for 1 ≤ k ≤ 2

√
n we get from (G.8) with ε = k

2
√
n

, for all n ≥ 1 + r′ 2
√
n
k ,

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤ 2

exp
{
−n−1

2

(
r k

2
√
n
− 3

n−1

)2
}

P〈T,pT 〉 {nw > 0}

+ 2
exp

{
−n−1

2

(
r k

2
√
n
− 3

n−1

)2
}

P〈T,pT 〉 {ns > 0}P〈T,pT 〉 {nw > 0|ns > 0}
,

which becomes

P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣∣nw > 0
}
≤ 4

P〈T,pT 〉 {nw > 0}
exp

{
−n− 1

2

(
r
k

2
√
n
− 3
n− 1

)2
}
.

(G.9)
The condition n ≥ 1+r′ 2

√
n
k holds true for every n greater than a constant N0 independent of

k. On the other hand, for k > 2
√
n, it follows from (G.5) that P〈T,pT 〉

{
Zw,a√
nw
≥ k

∣∣∣nw > 0
}

= 0.
Thus, (G.9) holds in fact for every k ≥ 1 and every n > N0. This concludes the proof of (i).
We can now bound the exponent in (G.9) as

n− 1
2

(
r
k

2
√
n
− 3
n− 1

)2

≥ Ck2 with C > 0 for n > N ′0 ,

and going back to (G.4) we get

E〈T,pT 〉
[
bZw,ac>

]
≤ 4

∑
k≥1

exp
{
−Ck2

}
≤ 4

∑
k≥1

exp {−Ck} ,

which is a convergent series. 2

G.2 Proof of Lemma 5.8

Suppose
∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ ≤ k
√
ml+1 for all l < i ≤ t, where we extend the definition of mi

for i = t as mt = nut . Then, we have

nαi−1

ni−1
mi−1 − k

√
ml+1 ≤ mi ≤

nαi−1

ni−1
mi−1 + k

√
ml+1 .

Applying the same inequalities for mi−1 we obtain

nαi−1

ni−1

(
nαi−2

ni−2
mi−2 − k

√
ml+1

)
− k√ml+1 ≤ mi ≤

nαi−1

ni−1

(
nαi−2

ni−2
mi−2 + k

√
ml+1

)
+ k
√
ml+1 .

Thus, we have

nαi−1

ni−1

nαi−2

ni−2
mi−2 −

(
1 +

nαi−1

ni−1

)
k
√
ml+1 ≤ mi ≤

nαi−1

ni−1

nαi−2

ni−2
mi−2 +

(
1 +

nαi−1

ni−1

)
k
√
ml+1 ,

196 G. Proofs for Chapter 5

and, successively applying the same reasoning, we conclude that

ml+1

t−1∏
i=l+1

nαi
ni
−

1 +
t−1∑
j=l+2

t−1∏
i=j

nαi
ni

 k
√
ml+1 ≤ mt ≤ ml+1

t−1∏
i=l+1

nαi
ni

+

1 +
t−1∑
j=l+2

t−1∏
i=j

nαi
ni

 k
√
ml+1 .

Since nαi
ni
≤ 1 for all i, we further bound

ml+1

t−1∏
i=l+1

nαi
ni
− (t− l + 1)k

√
ml+1 ≤ mt ≤ ml+1

t−1∏
i=l+1

nαi
ni

+ (t− l + 1)k
√
ml+1 .

Hence, the event
{∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ ≤ k√ml+1 for all l < i ≤ t
}

implies that{∣∣∣mt −ml+1
∏t−1
i=l+1

nαi
ni

∣∣∣ ≤ k(t− l + 1)√ml+1

}
. Since mt = nu, we have

P〈T,pT 〉
{
Zu ≥ k(t− l + 1)

√
ml+1

∣∣A} ≤ t∑
i=l+1

P〈T,pT 〉

{∣∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣∣ ≥ k√ml+1

∣∣∣∣A} ,

where A denotes the event {ml+1 > 0, ni > 0 ∀i : l < i < t}. Since ul+1 is a substring of ui−1

for l < i ≤ t, we get ml+1 ≥ mi−1. Thus, we have

P〈T,pT 〉
{
Zu ≥ k(t− l + 1)

√
ml+1

∣∣A} ≤ t∑
i=l+1

P〈T,pT 〉

{∣∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣∣ ≥ k√mi−1

∣∣∣∣A} .

(G.10)
Each term of the summation in (G.10) is

P〈T,pT 〉

{∣∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣∣ ≥ k√mi−1

∣∣∣∣A} =
P〈T,pT 〉

{∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣ ≥ k√mi−1

∣∣∣ni−1 > 0
}

P〈T,pT 〉 {A|ni−1 > 0}
.

(G.11)
Now, mi = n

ui
= n

(ui)

ui−1
and by Lemma G.2 we get

P〈T,pT 〉

{∣∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣∣ ≥ k√mi−1

∣∣∣∣ni−1 > 0
}
≤

≤ 4
P〈T,pT 〉 {ni−1 > 0}

exp

{
−n− 1

2

(
r
k

2
√
n
− 3
n− 1

)2
}
.

Replacing in (G.11), and then in (G.10), we get

P〈T,pT 〉
{
Zu ≥ k(t− l + 1)

√
ml+1

∣∣A} ≤ (t− l)4
P〈T,pT 〉 {A}

exp

{
−n− 1

2

(
r
k

2
√
n
− 3
n− 1

)2
}
.

Thus, we have

P〈T,pT 〉
{
Zu ≥ k

√
ml+1

∣∣A} ≤ (t− l)4
P〈T,pT 〉 {A}

exp

{
−n− 1

2

(
r

t− l + 1
k

2
√
n
− 3
n− 1

)2
}
.

The proof then follows exactly as in Lemma G.2.
2

G.3. Proof of Lemma 5.10 197

G.3 Proof of Lemma 5.10

Suppose the claim of Lemma 5.10 is not true and let z ∈ A∗, c ∈ A such that zc ∈ Uk+1 is of
maximal length among those elements of Uk+1 that are not leaves of T [k]

c . Since the children
of zc were added to T [k+1]

c for zc was forgetful, we know that azc is an internal node of T [k+1]
c

for every a ∈ A. If azc ∈ Uk+1, azc is a leaf of T [k]
c for azc is longer than zc. Therefore, az is

an internal node of T [k]
c . If azc 6∈ Uk+1, azcd 6∈ U ′k+1 for any d ∈ A. Hence, by definition of

U ′k+1, either azcd ∈ T [k]
c or azcd ∈ T [k+1]. In any case we have that azc ∈ T [k]

c , i.e., az is an

internal node of T [k]
c . We conclude that az is an internal node of T [k]

c for every a ∈ A, thus
zc ∈ T [k]

c by definition of canonical context tree. Furthermore, since zc ∈ Uk+1, zcd ∈ U ′k+1

for some d ∈ A, thus zcd 6∈ T [k]
c and zc is a state of T [k]

c , a contradiction. 2

G.4 Proof of Lemma 5.13

We will equate the number of counts given in each iteration of the loop to the increment in
|E

T
[k+1]
c
| − |V

T
[k+1]
c
| with respect to |E

T
[k]
c
| − |V

T
[k]
c
|. For u ∈ A∗ we define Vi(u) = {uv ∈ S[i]

c :

v ∈ A ∪ {λ}}, Ai(u) = {(uv,w) ∈ E
T

[i]
c

: v ∈ A ∪ {λ}} and, for a ∈ A, A(a)
i (u) = {(uv,w) ∈

Ai(u) : a = head(w)}. Notice that since T [k+1]
c refines states of T [k]

c in at most one level,
Ak(r) and Vk(r) exhaust E

T
[k]
c

and V
T

[k]
c

respectively as r varies in Rk+1. Of course, Ak+1(r)
and Vk+1(r) do also exhaust E

T
[k+1]
c

and V
T

[k+1]
c

respectively as r varies in Rk+1.

We claim that the number of counts given by an invocation to P(r, c) equals |A(c)
k+1(r)| −

|A(c)
k (r)|. When the condition of Step 1 holds true, we describe α − 1 counts. There are α

edges from children of r to children of cr in Ak+1(r) and one edge from r to cr in Ak(r), i.e.,
the number of given counts coincides with the increment |A(c)

k+1(r)| − |A(c)
k (r)|. Now, when

the condition of Step 5 is satisfied, we have for each csu ∈ W , that there is an increment of
α − 1 in the number of edges that depart from s to children of csu in Ak+1(r) with respect
to the one single edge from σ

[k]
c (s) to csu in Ak(r). The increment coincides with the number

of counts given in Step 9. On the other hand, in Step 12, where csv is a state of T [k+1]
c that

is not in W ′, csv is also a state of T [k]
c . There is one edge from s to csv in Ak+1(r) and also

one edge from σ
[k]
c (s) to csv in Ak(r). Thus, there is no increment in the number of edges.

Finally, in Step 14, we have that cs is a leaf of T [k+1]
c . Then, as mentioned, either cs ∈ T [k]

c

or s ∈ T [k]
c , for otherwise, by Corollary 5.11, their parents cr, r, would belong to T

[k]
c and

the condition of Step 1 would hold true. When cs ∈ T [k]
c , there is one edge from s to cs in

Ak+1(r) and also one edge from σ
[k]
c (s) to cs in Ak(r). If, on the other hand, s ∈ T [k]

c , there
is one edge from s to cs in Ak+1(r) and also one edge from s to σ[k]

c (cs) in Ak(r). The claim
is proved.

We now analyze RefineTypeClass. When r ∈ Uk+1, the number of counts described in
Step 4 is |Ak+1(r) \ A(d)

k+1(r)| − |Ak(r) \ A
(d)
k (r)|. For the symbols d ∈ A of Step 3, we have

that dr is not an internal node of T [k]
c but, since r ∈ Uk+1, dr is an internal node of T [k+1]

c .
Then, dr is a leaf of T [k]

c and the full set of children of dr are leaves of T [k+1]
c . There are α

edges from the children of r to the children of dr in A(d)
k+1(r) and one single edge from r to dr

198 G. Proofs for Chapter 5

in A
(d)
k (r). Hence, the number of counts described in Step 4 is |Ak+1(r)| − |Ak(r)| − (α− 1).

Since |Vk+1(r)| − |Vk(r)| = α − 1 we have that the total number of counts described is
(|Ak+1(r)|−|Vk+1(r)|)−(|Ak(r)|−|Vk(r)|). We now consider the case where r 6∈ Uk+1 and the
children of r belong to T [k]

c . When cs 6∈ T [k+1]
c , the decoder computes state transition counts

in Step 9. In this case, for every state s ∈ S[k+1]
c child of r, there is one edge from s to s′ =

σ
[k+1]
c (cs) in Ak+1(r) and, since also s ∈ S[k]

c , there is also one edge from σ
[k]
c (s) to σ[k]

c (cs) in
Ak(r). Hence, |A(c)

k+1(r)| = |A(c)
k (r)|. For the remaining values of c, we use |A(c)

k+1(r)|−|A(c)
k (r)|

counts in Step 11. Since the children of r belong to T [k]
c , we have |Vk+1(r)| = |Vk(r)|. Thus,

the total number of counts is (|Ak+1(r)| − |Vk+1(r)|)− (|Ak(r)| − |Vk(r)|). Finally, when the
algorithm skips to Step 12, we have that all states s that are children of r do not belong to
T

[k]
c , and do not belong to U ′k+1, for r 6∈ Uk+1 in Step 2. Hence, by the definition of U ′k+1, all

states s that are children of r belong to T [k+1]\T [k]
c and, thus, |s| = k+1 and as is sufficiently

long to determine a state in T [k+1]
c for every symbol a. There are α edges in Ak+1(r) departing

from each of the α children of r, for a total of α2 edges in Ak+1(r). On the other hand, r is a
leaf of maximal length in T [k]

c and therefore there are α edges departing from r in Ak(r). Since
|Vk+1(r)| = α and |Vk(r)| = 1, we have (|Ak+1(r)|− |Vk+1(r)|)− (|Ak(r)|− |Vk(r)|) = (α−1)2.

Over all, the number of counts described is
(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)
−

Bk+1(α − 1)2 where Bk+1 is the number of elements r in Rk+1 with |r| = k. Clearly, the
children in T

[k+1]
c of such elements of Rk+1 are the nodes in T [k+1]\T [k] and we can write

Bk+1 = (|ST [k+1] | − |ST [k] |) /(α − 1). It follows that the number of counts described can be
written as

(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)
− (α− 1) (|ST [k+1] | − |ST [k] |).

The total number of counts described by EncodeTypeClass is, therefore,

d−1∑
k=h+1

(
|E

T
[k+1]
c
| − |V

T
[k+1]
c
|
)
−
(
|E

T
[k]
c
| − |V

T
[k]
c
|
)
− (α− 1) (|ST [k+1] | − |ST [k] |) , (G.12)

where we recall that d = max{|s| : s ∈ ST } and h = min{|s| : s ∈ ST }. The telescopic sum
in (G.12) reduces to

(|ETc | − |VTc |)−
(
|E

T
[h+1]
c
| − |V

T
[h+1]
c
|
)
− (α− 1) (|ST | − |ST [h+1] |) . (G.13)

Now, since T [h+1] is FSM, V
T

[h+1]
c

= VT [h+1] = ST [h+1] , E
T

[h+1]
c

= ET [h+1] , and |ET [h+1] | =
α|ST [h+1] |, so that |E

T
[h+1]
c
| − |V

T
[h+1]
c
| = (α− 1)|ST [h+1] | and (G.13) becomes

(|ETc | − |VTc |)− (α− 1)|ST | . (G.14)

2

Appendix H

Probability of context tree estimation error

H.1 Proof of Lemma 5.17

Consider a fixed state s ∈ ST , and a sequence xn with T̂ = T̂ (xn) such that s is an internal
node of T̂ . Let W = {sw ∈ T̂ : w ∈ A+}, and SW the set of leaves descending from s in T̂ .
Define the context trees T ′ = T ∪W , and T̂ ′ = T̂\W . The context trees T ′ and T differ only
in that s is refined by a subtree W in T ′ and the same occurs between T̂ ′ and T̂ . Thus,

− log P̂T̂ (xn) + log P̂T̂ ′(x
n) = −

∑
su∈SW

∑
a∈A

n(a)
su (xn) log

n
(a)
su (xn)
nsu(xn)

+
∑
a∈A

n(a)
s (xn) log

n
(a)
s (xn)
ns(xn)

= − log P̂T ′(xn) + log P̂T (xn) . (H.1)

Since T̂ is the estimated context tree for xn, by (5.15) we have

− log P̂T̂ (xn) + log P̂T̂ ′(x
n) ≤ (KT̂ ′ −KT̂)f(n) . (H.2)

Also by linearity of the penalization coefficient,

KT̂ ′ −KT̂ = KT −KT ′ = β(|ST | − |ST ′ |) = −β(|SW | − 1) , (H.3)

and replacing (H.3) in (H.2), we get

− log P̂T ′(xn) + log P̂T (xn) ≤ −β(|SW | − 1)f(n) . (H.4)

Define the probability distribution QT over An, as that induced by the probability assign-
ment obtained by replacing the conditional probability pT (·|s) in the model 〈T, pT 〉, by the
empirical distribution in s of xn, i.e.,

logQT (yn) =
∑

t∈ST \{s}

∑
a∈A

n
(a)
t (yn) log pT (a|t) +

∑
a∈A

n(a)
s (yn) log

n
(a)
s (xn)
ns(xn)

. (H.5)

Similarly, define QT ′ such that

logQT ′(yn) =
∑

t∈ST \{s}

∑
a∈A

n
(a)
t (yn) log pT (a|t) +

∑
su∈SW

∑
a∈A

n(a)
su (yn) log

n
(a)
su (xn)
nsu(xn)

. (H.6)

Let Ts,T ′(xn) be the (s,T’)-type class of xn, defined as the set of sequences of An with the
same symbol occurrence counts as xn with respect to the states descending from s in T ′,

Ts,T ′(xn) = {yn ∈ An : n(a)
su (yn) = n(a)

su (xn) for all su ∈ SW , and all a ∈ A} .

200 H. Probability of context tree estimation error

From (H.5) and (H.6) we get

− logQT ′(yn) + logQT (yn) = −
∑

su∈SW

∑
a∈A

n(a)
su (yn) log

n
(a)
su (xn)
nsu(xn)

+
∑
a∈A

n(a)
s (yn) log

n
(a)
s (xn)
ns(xn)

.

(H.7)
Hence, − log QT ′ (y

n)
QT (yn) is constant within Ts,T ′(xn), or equivalently QT ′ (y

n)
QT (yn) = QT ′ (x

n)
QT (xn) for all

yn ∈ Ts,T ′(xn). Therefore,

− log

∑
yn∈Ts,T ′ (xn)QT ′(y

n)∑
yn∈Ts,T ′ (xn)QT (yn)

= − log
QT ′(yn)
QT (yn)

∑
yn∈Ts,T ′ (xn)QT (yn)∑
yn∈Ts,T ′ (xn)QT (yn)

= − log
QT ′(xn)
QT (xn)

. (H.8)

By (H.1) and (H.7), we have

− logQT ′(xn) + logQT (xn) = − log P̂T ′(xn) + log P̂T (xn) , (H.9)

and, thus, from (H.4) and (H.8), we get

− log

 ∑
yn∈Ts,T ′ (xn)

QT ′(yn)

+ log

 ∑
yn∈Ts,T ′ (xn)

QT (yn)

 ≤ −β(|SW | − 1)f(n) . (H.10)

Since QT maximizes the probability of the sub-sequence of xn that occurs in state s, we have
QT (yn) ≥ P〈T,pT 〉(y

n) for every yn ∈ Ts,T ′(xn). Thus,

− log

 ∑
yn∈Ts,T ′ (xn)

QT ′(yn)

+ log P〈T,pT 〉
{
Ts,T ′(xn)

}
≤ −β(|SW | − 1)f(n) , (H.11)

where we use the notation P〈T,pT 〉 {Ω} for Ω ∈ An as a shorthand for P〈T,pT 〉 {X
n ∈ Ω}. Since

also
∑

yn∈Ts,T ′ (xn)QT ′(y
n) ≤ 1, we further get

log P〈T,pT 〉
{
Ts,T ′(xn)

}
≤ −β(|SW | − 1)f(n) ,

or,
P〈T,pT 〉

{
Ts,T ′(xn)

}
≤ 2−β(|SW |−1)f(n) . (H.12)

Let Ons,W ⊂ An be the set of sequences whose estimated context tree refines s with the
subtree W , and let Ps,T ′ be the set of possible (s, T ′)−type classes of sequences from An.
Then, we have

Ons,W ⊂
⋃

T ∈Ps,T ′

⋃
xn∈Ons,W∩T

Ts,T ′(xn) .

Since there are at most nα|SW | elements in Ps,T ′ , we get, by (H.12),

P〈T,pT 〉
{
Ons,W

}
≤ nα|SW |2−β(|SW |−1)f(n) = 2|SW |(α logn−βf(n))+βf(n) . (H.13)

Let Ons,k =
⋃
|SW |=k O

n
s,W be the set of sequences whose estimated context tree refines s

with k ≥ α states. The number of nodes in the subtree that refines s is αk−1
α−1 ≤ 2k. By using

H.2. Proof of Lemma 5.18 201

a natural code [56, 88], a full tree can be described with as many bits as the number of nodes.
Thus, the number of different subtrees that refine s with k states is bounded by 22k. Then,
we get from (H.13)

P〈T,pT 〉
{
Ons,k

}
≤ 2k(α logn−βf(n)+2)+βf(n) . (H.14)

Notice that when βf(n) > α log n + 2, the exponent in the last equation is a decreasing
function of k, and since k ≥ α, we have

P〈T,pT 〉
{
Ons,k

}
≤ 2α(α logn−βf(n)+2)+βf(n) = nα

2
2β(1−α)f(n)+2α . (H.15)

Let On be the set of sequences whose estimated context tree refines as least one state of T .
Then, On ⊂

⋃
s∈ST

⋃
k≥αO

n
s,k and by (H.15) we have

P〈T,pT 〉 {O
n} ≤

∑
s∈ST

∑
k≥α

nα
2
2β(1−α)f(n)+2α . (H.16)

The number of states in T̂ (xn) is bounded by n and we conclude that

P〈T,pT 〉 {O
n} ≤ |ST |nα

2+12β(1−α)f(n)+2α . (H.17)

2

H.2 Proof of Lemma 5.18

Let w be an internal node of T , and let W = {wu ∈ T : u ∈ A+} be the subtree of T
descending from w (excluding w). Similarly, let WF = {wu ∈ Tsuf : u ∈ A+} be the subtree
of the FSM closure Tsuf of T descending from w. Let also SW = ST ∩W be the set of states
of T descending from w, and SWF

= STsuf
∩WF be the set of states of Tsuf descending from

w.
Consider a sequence xn such that w is a state in T̂ = T̂ (xn), and define the context trees

T̂ ′ = T̂ ∪WF , T ′ = T ∪WF and T ′′ = T\WF . The context trees T ′′ and T ′ differ only in
that state w of T ′′ is refined by a subtree WF in T ′, and the same occurs between T̂ and T̂ ′.
Thus,

− log P̂T̂ (xn) + log P̂T̂ ′(x
n) = − log P̂T ′′(xn) + log P̂T ′(xn) . (H.18)

Since T̂ is the estimated context tree for xn, by (5.15), we have

− log P̂T̂ (xn) + log P̂T̂ ′(x
n) ≤ (KT̂ ′ −KT̂)f(n) . (H.19)

Also by linearity of the penalization coefficient,

KT̂ ′ −KT̂ = KT ′ −KT ′′ = β(|ST ′ | − |ST ′′ |) = β(|SWF
| − 1) , (H.20)

and replacing (H.20) in (H.19), and using (H.18), we get

Ωw(xn) , − log P̂T ′′(xn) + log P̂T ′(xn) ≤ β(|SWF
| − 1)f(n) . (H.21)

202 H. Probability of context tree estimation error

Notice that, since T ′ and T ′′ differ only in that state w of T ′′ is refined by the set SWF
of

states in T ′, we have

− log P̂T ′′(xn) + log P̂T ′(xn) = −
∑
a∈A

n(a)
w log

n
(a)
w

nw
+

∑
wu∈SWF

∑
a∈A

n(a)
wu log

n
(a)
wu

nwu

= −
∑

wu∈SWF

∑
a∈A

n(a)
wu log

n
(a)
w

nw
+

∑
wu∈SWF

∑
a∈A

n(a)
wu log

n
(a)
wu

nwu

=
∑

wu∈SWF

∑
a∈A

n(a)
wu log

n
(a)
wu/nwu

n
(a)
w /nw

. (H.22)

Define Unw,ε as

Unw,ε =
{
xn ∈ An :

Ωw(xn)
n

≤ ε(w)
}
. (H.23)

Since f(n) = o(n), it is clear from (H.21) that, if ε(w) > 0 for all w ∈ I(T), for n sufficiently
large, we have

Un ⊂
⋃

w∈I(T)

Unw,ε . (H.24)

Consider the empirical distribution over STsuf
× STsuf

defined as

P̂F,xn(s, z) =

{
n

(a)
s
n , if f(s, a) = z,

0, otherwise,

where f : STsuf
× A → STsuf

is the next-state function of Tsuf. For a distribution Q over
STsuf

× STsuf
, let Q̄ denote its left marginal, and define

Q(s|z) =
Q(z, s)
Q̄(z)

, Q̄(z) 6= 0 .

Furthermore, for w ∈ I(T) define

Q(s|w) =

∑
z∈SWF

Q(z, s)∑
z∈SWF

Q̄(z)
,

∑
z∈SWF

Q̄(z) 6= 0 .

Let Γ denote the set of distributions Q over STsuf
× STsuf

that satisfy

ε(Q) ,
∑

z∈SWF

∑
s∈STsuf

Q(z, s) log
Q(s|z)
Q(s|w)

≤ ε(w) .

By (H.22) and the definition of Unw,ε it follows that xn ∈ Unw,ε if and only if P̂F,xn ∈ Γ. Let
pF (·|·) denote the next-state probability mass functions conditioned on the states of Tsuf,
induced by the symbol conditional probability mass functions on states of T , pT (·|·). This is,

pF (z|s) ,

{
pT (a|s′), if s′ ∈ ST , s′ � s, and f(s, a) = z,

0, otherwise.

H.2. Proof of Lemma 5.18 203

Let also PF (·) denote the probability assignment induced by pF (·|·). Denote by Γ0 the set
of distributions in the closure of Γ (relative to the set of all distributions over STsuf

× STsuf
)

with identical left and right marginal distributions. By [14, Lemma 2(a)],

lim sup
n→∞

n−1 log PF
{

P̂F,xn ∈ Γ
}
≤ −D , (H.25)

where
D = min{D(Q||PF) : Q ∈ Γ0} ,

and
D(Q||PF) =

∑
s,z∈STsuf

Q(s, z) log
Q(s, z)

Q̄(s)pF (z|s)
.

The unique distribution Q0 over STsuf
× STsuf

with two identical marginal distributions for
which D(Q0||PF) = 0 is

Q0(s, z) = P 0
F (s)× pF (z|s) ,

where P 0
F is the unique stationary distribution defined by pF (·|·). Clearly ε(Q0) > 0, for

otherwise Q0(.|z) = pF (.|z) for all z ∈ SWF
and the states in SW of T would have identical

conditional distributions, and thus T would not be minimal. Hence, taking 0 < ε(w) < ε(Q0),
Q0 6∈ Γ0 and D > 0. Thus, by (H.25), P〈T,pT 〉

{
xn ∈ Unw,ε

}
≤ 2−nD with D > 0, and by (H.24)

P〈T,pT 〉 {X
n ∈ Un} ≤ |ST |2−nD

2

Bibliography

[1] Paul H. Algoet and Thomas M. Cover. A sandwich proof of the Shannon-McMillan-Breiman
theorem. The Annals of Probability, 16(2):899–909, 1988. 126

[2] Robert B. Ash. Information Theory. John Wiley & Sons, Inc., 1967. 1, 2, 18, 19, 26

[3] Dror Baron and Yoram Bresler. An O(n) semi-predictive universal encoder via the BWT. IEEE
Trans. Inform. Theory, 50(5):928–937, May 2004. 10, 21, 40, 42, 43, 114

[4] Andrew R. Barron. Logically Smooth Density Estimation. PhD thesis, Stanford University,
Stanford, CA, September 1985. 125

[5] Claude Berge. Graphs. North-Holland, Amsterdam, 1985. 56, 86, 87

[6] Patrick Billingsley. Statistical methods in Markov chains. Annals Math. Stat., 32:12–40, 1961.
11, 52, 55

[7] Lawrence D. Brown. Fundamentals of statistical exponential families with applications in statis-
tical decision theory. Institute of Mathematical Statistics, Hayward, CA, 1986. 13

[8] Peter L. Buhlmann and Abraham J. Wyner. Variable length Markov chains. Annals of Statistics,
27:480–513, 1998. 7

[9] Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report SRC Research Report 124, Digital Systems Research Center, Palo Alto, CA,
May 1994. 10

[10] John G. Cleary and Ian H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Trans. Commun., 32 (4):396–402, April 1984. 10

[11] Thomas M. Cover. Enumerative source encoding. IEEE Trans. Inform. Theory, IT-19:73–77,
January 1973. 7, 12, 97

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons,
Inc., New York, second edition, 1991. 2, 4, 115, 124

[13] Imre Csiszár. The method of types. IEEE Trans. Inform. Theory, 44(6):2505–2523, October
1998. 11

[14] Imre Csiszár, Thomas M. Cover, and Byoung-Seon Choi. Conditional limit theorems under
Markov conditioning. IEEE Trans. Inform. Theory, IT-33(6):788–801, November 1987. 11, 203

[15] Imre Csiszár and János Körner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Academic, New York, 1981. 6, 11, 51

206 BIBLIOGRAPHY

[16] Imre Csiszár and Paul C. Shields. Information theory and statistics: A tutorial. Foundations and
Trends in Communications and Information Theory, 1(4), 2004. 112

[17] Imre Csiszár and Zsolt Talata. Context tree estimation for not necessarily finite memory processes,
via BIC and MDL. IEEE Trans. Inform. Theory, 52(3):1007–1016, March 2006. 112, 126

[18] Lee D. Davisson. Universal noiseless coding. IEEE Trans. Inform. Theory, IT-19(6):783–795,
November 1973. 3, 4

[19] Lee D. Davisson. Minimax noiseless universal coding for Markov sources. IEEE Trans. Inform.
Theory, IT-29(2):211–215, March 1983. 4

[20] Lee D. Davisson and Alberto Leon-Garcia. A source matching approach to finding minimax codes.
IEEE Trans. Inform. Theory, IT-26:166–174, March 1980. 3

[21] Lee D. Davisson, Giuseppe Longo, and Andrea Sgarro. The error exponent for the noiseless
encoding of finite ergodic Markov sources. IEEE Trans. Inform. Theory, IT-27(4):431–438, July
1981. 11

[22] Nicolaas Govert de Bruijn and Tanja van Aardenne-Ehrenfest. Circuits and trees in oriented
linear graphs. Simon Stevin, 4:203–217, 1951. 11, 67, 69, 70, 189

[23] Michelle Effros. PPM performance with BWT complexity: A fast and effective data compression
algorithm. Proceedings of the IEEE, 88(11):1703–1712, November 2000. 10, 21, 47, 145

[24] Michelle Effros, Karthik Visweswariah, Sanjeev Kulkarni, and Sergio Verdú. Universal lossless
source coding with the Burrows-Wheeler transform. IEEE Trans. Inform. Theory, 48:1061–1081,
May 2002. 10

[25] Shimon Even. Algorithmic Combinatorics. Macmillan, 1973. 190

[26] Robert M. Fano. The transmission of information. Technical Report Technical Report No. 65,
Research Laboratory of Electronics, M.I.T., Cambridge, MA, USA, 1949. 2

[27] Meir Feder, Neri Merhav, and Michael Gutman. Universal prediction of individual sequences.
IEEE Trans. Inform. Theory, 38:1258–1270, July 1992. 26

[28] William Feller. Probability theory and its applications, volume 1. John Wiley & Sons, Inc., New
York, third edition, 1968. 18

[29] Boris M. Fitingof. Optimal coding in the case of unknown and changing message statistics.
Problems of Information Transmission, 2(2):1–7, 1966. 4

[30] Boris M. Fitingof. The compression of discrete information. Problems of Information Transmis-
sion, 3(3):22–29, 1967. 4

[31] Robert G. Gallager. Source coding with side information and universal coding. Unpublished
manuscript, October 1974. 3

[32] Robert Giegerich and Stefan Kurtz. From Ukkonen to McCreight and Weiner: A unifying view
to linear-time suffix tree construction. Algorithmica, 19:331–353, November 1997. 10, 21, 22, 30,
33, 40, 42, 43, 130

[33] Solomon W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory, IT-12:399–401, July
1966. 98

[34] Leo A. Goodman. Exact probabilities and asymptotic relationships for some statistics from m-th
order Markov chains. Annals of Mathematical Statistics, 29:476–490, 1958. 11, 49, 52, 55, 60, 130

BIBLIOGRAPHY 207

[35] Philippe Jacquet and Wojciech Szpankowski. Markov types and minimax redundancy for Markov
sources. IEEE Trans. Inform. Theory, 50(7):1393–1402, July 2004. 11, 52, 55

[36] John C. Kieffer. Sample converses in source coding theory. IEEE Trans. Inform. Theory,
37(2):263–268, 1991. 125

[37] Donald E. Knuth. The Art of Computer Programming. Fundamental Algorithms, volume 1.
Addison-Wesley, Reading, MA, third edition, 1997. 21, 37, 42, 43

[38] Donald E. Knuth. The Art of Computer Programming. Sorting and Searching, volume 3. Addison-
Wesley, Reading, MA, second edition, 1997. 21

[39] Andrey N. Kolmogorov. Three approaches to the quantitative definition of information. Problems
in Information Transmission, 1:1–7, 1965. 4

[40] Ioannis Kontoyiannis, Luis A. Lastras-Montaño, and Sean P. Meyn. Relative entropy and expo-
nential deviation bounds for general Markov chains. In Proc. 2005 International Symposium on
Information Theory, pages 1563– 1567, Adelaide, Australia, September 2005. 101, 191, 194

[41] Rafail E. Krichevskii. The relation between redundancy coding and the reliability of information
from a source. Problems of Information Transmission, 4(3):37–45, 1968. 4

[42] Rafail E. Krichevskii and Victor K. Trofimov. The performance of universal encoding. IEEE
Trans. Inform. Theory, IT-27:199–207, Mar 1981. 4, 5, 12, 37, 38

[43] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathemat-
ical Statistics, 22:49–86, 1951. 4

[44] N. Jesper Larsson. Extended application of suffix trees to data compression. In Proc. 1996 Data
Compression Conference, pages 190–199, Snowbird, Utah, USA, April 1996. 10, 21, 40

[45] N. Jesper Larsson. The context trees of block sorting compression. In Proc. 1998 Data Compres-
sion Conference, pages 189–198, Snowbird, Utah, USA, March 1998. 10, 20

[46] Thomas J. Lynch. Sequence time coding for data compression. Proceedings of the IEEE,
54(10):1490–1491, Oct. 1966. 12

[47] Álvaro Mart́ın, Neri Merhav, Gadiel Seroussi, and Marcelo J. Weinberger. Twice-universal sim-
ulation of Markov sources and individual sequences. In Proc. 2007 International Symposium on
Information Theory, Nice, France, June 2007. 14, 15, 119, 122, 126, 131

[48] Álvaro Mart́ın, Gadiel Seroussi, and Marcelo J. Weinberger. Linear time universal coding and
time reversal of tree sources via FSM closure. IEEE Trans. Inform. Theory, 50(7):1442–1468,
July 2004. 8, 15, 17, 27, 28, 29, 37, 44

[49] Álvaro Mart́ın, Gadiel Seroussi, and Marcelo J. Weinberger. Type classes of tree models. In Proc.
2007 International Symposium on Information Theory, Nice, France, June 2007. 15, 49

[50] Álvaro Mart́ın, Gadiel Seroussi, and Marcelo J. Weinberger. Enumerative coding for tree sources.
In Peter Grünwald, Petri Myllymäki, Ioan Tabus, Marcelo J. Weinberger, and Bin Yu, editors,
Festschrift in Honor of Jorma Rissanen on the Occasion of his 75th Birthday, 38, pages 93–116.
Tampere University of Technology, Tampere International Center for Signal Processing, Tampere,
2008. 15, 97

[51] Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262–272, 1976. 21

208 BIBLIOGRAPHY

[52] Brockway McMillan. Two inequalities implied by unique decipherability. IEEE Trans. Inform.
Theory, IT-2(4):115–116, December 1956. 2

[53] Neri Merhav and Meir Feder. Universal prediction. IEEE Trans. Inform. Theory, 44:2124–2147,
October 1998. 5

[54] Neri Merhav and Marcelo J. Weinberger. On universal simulation of information sources using
training data. IEEE Trans. Inform. Theory, 50(1):5–20, January 2004. 13, 124, 131

[55] Donald R. Morrison. Patricia - practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4):514–534, 1968. 21

[56] Ragnar Nohre. Some Topics in Descriptive Complexity. PhD thesis, Department of Computer
Science, The Technical University of Linkoping, Sweden, 1994. 10, 37, 40, 113, 126, 201

[57] Jorma Rissanen. Generalized Kraft inequality and arithmetic coding. 20(3):198–203, May 1976.
2

[58] Jorma Rissanen. A universal data compression system. IEEE Trans. Inform. Theory, IT-29:656–
664, September 1983. 6, 7, 9, 19, 20, 23

[59] Jorma Rissanen. Universal coding, information, prediction, and estimation. IEEE Trans. Inform.
Theory, IT-30:629–636, July 1984. 4

[60] Jorma Rissanen. Complexity of strings in the class of Markov sources. IEEE Trans. Inform.
Theory, IT-32(4):526–532, July 1986. 8, 78

[61] Jorma Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100, Septem-
ber 1986. 9, 37

[62] Jorma Rissanen. Fisher information and stochastic complexity. IEEE Trans. Inform. Theory,
42(1):40–47, 1996. 12

[63] Jorma Rissanen and Glen G. Langdon. Universal modeling and coding. IEEE Trans. Inform.
Theory, IT-27:12–23, January 1981. 17, 18

[64] Boris Y. Ryabko. Encoding a source with unknown but ordered probabilities. Problems of
Information Transmission, pages 134–138, oct 1979. 3

[65] Boris Y. Ryabko. Twice-universal coding. Problems of Information Transmission, 20:173–177,
July/September 1984. 4, 9, 37

[66] Johan P.M. Schalkwijk. An algorithm for source coding. IEEE Trans. Inform. Theory, 18(3):395–
399, May 1972. 12

[67] Gadiel Seroussi. On universal types. IEEE Trans. Inform. Theory, 52(1):171–189, January 2006.
7, 13, 14, 15, 119, 120, 122, 124, 125, 126, 131

[68] Gadiel Seroussi, Nicolás Fraiman, Alix Lhéritier, and Alfredo Viola. Lossless compression for
sparse finite memory sources. In Information Theory and applications (ITA’08), San Diego, CA,
USA, January 2008. 8

[69] Gadiel Seroussi and Marcelo J. Weinberger. On tree sources, finite state machines, and time rever-
sal. In Proc. International Symposium on Information Theory, Whistler, BC, Canada, September
1995. 8, 26

[70] Claude E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:379–423,
623–656, 1948. 1, 2

BIBLIOGRAPHY 209

[71] Yuri M. Shtarkov. Universal sequential coding of single messages. Problems of Inform. Trans.,
23:175–186, July 1987. 12

[72] Valeri T. Stefanov. Noncurved exponential families associated with observations over finite-state
Markov chains. Scand. J. Statist, 18:353–356, 1991. 13

[73] Joe Suzuki. A CTW scheme for some FSM models. In Proc., 1995 IEEE International Symposium
on Information Theory, page 389, Sep 1995. 8

[74] Wojciech Szpankowski. Average Case Analysis of Algorithms on Sequences. John Wiley & Sons,
Inc., New York, 2001. 21

[75] Jun’ichi Takeuchi and Andrew R. Barron. Asymptotically minimax regret by Bayes mixtures. In
Proc. 1998 International Symposium on Information Theory, page 318, Cambridge, MA, U.S.A.,
August 1998. 13

[76] Jun’ichi Takeuchi and Tsutomu Kawabata. Exponential curvature of Markov models. In Proc.
2007 International Symposium on Information Theory, Nice, France, June 2007. 13

[77] Sandeep Tata, Richard A. Hankins, and Jignesh M. Patel. Practical suffix tree construction. In
Proc. 13th International Conference on Very Large Data Bases, pages 36–47, 2004. 130

[78] Tjalling J. Tjalkens, Paul A.J. Volf, and Frans M.J. Willems. A context-tree weighting method
for text generating sources. Data Compression Conference, 0:472, 1997. 129

[79] Victor K. Trofimov. Redundancy of universal coding of arbitrary Markov sources. Problems of
Information Transmission, 10(4):16–24, 1974. 4

[80] Paul A.J. Volf and Frans M. J. Willems. Context-tree weighting for extended tree sources. In
Proc. of the 17th Symposium on Information Theory in the Benelux, pages 95–101, Enschede,
The Netherlands, May 1996. 8

[81] Marcelo J. Weinberger and Meir Feder. Predictive stochastic complexity and model estimation
for finite-state processes. Journal of Statistical Planning and Inference, 39:353–372, 1994. 26, 27

[82] Marcelo J. Weinberger, Abraham Lempel, and Jacob Ziv. A sequential algorithm for the universal
coding of finite-memory sources. IEEE Trans. Inform. Theory, 38:1002–1014, May 1992. 8, 9, 19,
20, 43

[83] Marcelo J. Weinberger, Neri Merhav, and Meir Feder. Optimal sequential probability assignment
for individual sequences. IEEE Trans. Inform. Theory, 40(2):384–396, March 1994. 6, 11, 12, 50,
86

[84] Marcelo J. Weinberger, Jorma Rissanen, and Meir Feder. A universal finite memory source. IEEE
Trans. Inform. Theory, 41:643–652, May 1995. 1, 7, 9, 19, 20, 25, 113

[85] Peter Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Annual Symposium on
Switching and Automata Theory, pages 1–11, 1973. 21

[86] Peter Whittle. Some distribution and moment formulae for the Markov chain. J. Roy. Statist.
Soc. Ser. B, 17(3):235–242, 1955. 11, 49, 52, 55

[87] Frans M. J. Willems. The context-tree weighting method: Extensions. IEEE Trans. Inform.
Theory, 44:792–798, March 1998. 9, 10

[88] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The context-tree weighting
method: Basic properties. IEEE Trans. Inform. Theory, IT-41:653–664, May 1995. 5, 8, 9, 10,
26, 37, 126, 201

210 BIBLIOGRAPHY

[89] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. Context weighting for general
finite-context sources. IEEE Trans. Inform. Theory, 42(5):1514–1520, Sep 1996. 8

[90] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. Context-tree maximizing. In
Proc. 2000 Conference on Information Sciences and Systems, pages TP6–7–TP6–12, Princeton,
New Jersey, USA, March 2000. 10, 20, 37

[91] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory, IT-24:530–536, September 1978. 13, 119

