
PEDECIBA Informática

Instituto de Computación
Facultad de Ingenieŕıa
Universidad de la República
Montevideo, Uruguay

UML 2.0 Interactions

with OCL/RT Constraints

Daniel Calegari Garćıa

Trabajo de tesis para la obtención del grado de Magister
en Informática de la Universidad de la República en el
programa de Maestŕıa del área Informática del Pedeciba

Supervisor: Dr. Alberto Pardo
Instituto de Computación
Universidad de la República

Orientador: Dra. Maŕıa Victoria Cengarle
Institut für Informatik
Technische Universität München

Dra. Nora Szasz
Facultad de Ingenieŕıa
Universidad ORT Uruguay

Presentación: 29 de octubre de 2007

UML 2.0 Interactions
with OCL/RT Constraints
Daniel Calegari Garćıa

ISSN 0797–6410
Tesis de Maestŕıa en Informática
Reporte Técnico RT 07-17
PEDECIBA
Instituto de Computación – Facultad de Ingenieŕıa
Universidad de la República

Montevideo, Uruguay, Octubre de 2007

Resumen

El uso de métodos formales en etapas tempranas del desarrollo de software
contribuye a la confiabilidad y robustez de los sistemas a construir. En este
contexto, el desarrollo de sistemas de tiempo real se beneficia de la cons-
trucción de modelos de comportamiento a los efectos de verificar la correcta
satisfacción de sus restricciones de tiempo. El Unified Modeling Language
(UML) es un lenguaje de especificación de software ampliamente utilizado
por la industria y la academia. Sin embargo, su versión 2.0 carece de una
semántica formal para el desarrollo de modelos cuya corrección pueda ser
verificada. Además, su lenguaje de especificación de restricciones, el Object
Constraint Language (OCL), posee limitaciones en cuanto a su uso en mo-
delos de comportamiento de sistemas de tiempo real. Este trabajo se centra
en la especificación del comportamiento inter-componente de sistemas de
tiempo real. Dicho comportamiento es descrito utilizando el lenguaje de
Interacciones de UML 2.0, extendido para la inclusión de restricciones de
tiempo expresadas en el lenguaje OCL for Real Time (OCL/RT). El pro-
blema central abordado en este trabajo es la definición de una semántica
formal para la fusión de ambos lenguajes. La semántica permite reconocer
comportamiento válido e inválido de un sistema con restricciones de tiempo.
Se realiza un análisis de las propiedades derivadas de la semántica, desti-
nadas a la verificación formal. En particular, se exploran las nociones de
refinamiento de interacciones y refinamiento de restricciones. Finalmente, se
compara la propuesta con trabajos relacionados y se estudia su aplicación
práctica a los efectos de analizar sus debilidades y beneficios. Este tra-
bajo contribuye a la formalización de conceptos ampliamente utilizados en
la práctica y, en consecuencia, a su inclusión en herramientas de modelado y
razonamiento formal. Además, se aumenta la expresividad del lenguaje de
Interacciones de UML 2.0 para soportar restricciones de tiempo complejas,
no expresables hasta este momento.

Abstract

The use of formal methods at early stages of software development con-
tributes to the reliability and robustness of the system to be constructed. In
this context, real-time system development benefits from the construction
of behavioral models in order to verify the correct satisfaction of time con-
straints. The Unified Modeling Language (UML) is a software specification
language widely used by the industry and the academia. Nevertheless, its
version 2.0 lacks a formal semantics for the development of provably-correct
models. In addition, its constraint specification language, Object Constraint
Language (OCL), has limitations for its use in behavioral models of real-time
systems. This work concerns the inter-component behavioral specification
of real-time systems. Such behavior is described using the UML 2.0 Interac-
tions language extended for the inclusion of time constraints using the OCL
for Real Time (OCL/RT) language. The main problem addressed in this
work is the definition of a formal semantics for the fusion of both languages.
The semantics allows recognizing valid and invalid behaviors of a system
with time constraints. Intended for formal verification, an analysis of the
properties derived from the semantics is also done. In particular, the no-
tions of refinement of interactions and refinement of constraints are explored.
Finally, the proposal is compared with related works and its practical appli-
cation is studied in order to analyze its benefits and weaknesses. This work
contributes to the formalization of concepts widely used in practice and, in
consequence, to its inclusion in modeling and formal reasoning tools. More-
over, the expressivity of the UML 2.0 Interactions language is augmented
in order to support complex real-time constraints, not expressable until this
moment.

danksagung

me he preguntado qué tan cruel puede ser un agradecimiento para

apresarlo con sus gramaticales cadenas y confinarlo a un trozo de

papel. no lo es, pero aún aśı lo dejamos a merced del tiempo

diluyéndose en olvido. solo trascendiendo los ĺımites de la razón,

solo donde la memoria claudica impotente al pie de nuestros sen-

timientos, solo alĺı es libre. por eso no agradezco grabando aqúı

tu nombre, sino que estimo tu solidaridad cuando lo que hago te

es indiferente; envidio la pasión con la que profesas tus ideales e

intento compartir tu espacio; aprecio la respetuosa distancia que

creas cuando estás cerca y la ı́ntima cercańıa cuando te alejas;

siento que olvido y distancia son lo mismo pero que nunca estu-

vimos más cerca; comparto tus horas como tu lo haces con las

mı́as; sufro por ti ante la agobiante tarea de corregirme e intento

crecer con tus comentarios; ignoro si nuestra amistad nació por

causalidad o casualidad y celebro que no nos importe; temo de

que la vida no me alcance para amarte a ti que abnegadamente

me sostienes y me das más de lo que necesito; y finalmente, te

dedico esta pequeña parte de nuestra historia con el más sincero y

profundo silencio.

daniel, setiembre de 2007

Defer no time,
delays have dangerous ends.

William Shakespeare

Contents

1 Introduction 1

2 Background and Motivation 5

2.1 Model-Driven Engineering . 5

2.2 UML 2.0 . 7

2.3 UML 2.0 Interactions . 9

2.4 Real-Time and Reactive Systems 13

2.5 Object Constraint Language 14

2.6 OCL for Real Time . 16

3 Syntax and Semantics of Constrained Interactions 21

3.1 Abstract Syntax . 21

3.2 Semantics . 25

3.2.1 Semantic Domains . 25

3.2.2 The Positive Fragment 28

3.2.3 The Negative Fragment 30

3.2.4 Summary of Constraints Satisfaction 32

3.3 Discussion: Basic vs Event . 33

3.4 Related Work . 34

3.4.1 Related Semantics . 35

3.4.2 Other Semantics . 38

Contents

4 Properties of Constrained Interactions 41

4.1 Basic Properties . 41

4.2 Constraint Properties . 43

4.3 Semantical Concretization . 44

5 Implementation and Refinement 49

5.1 Definitions . 49

5.2 Constraint Refinement . 57

5.3 Related Work . 59

6 In Practice 63

6.1 OCL/RT in use . 63

6.2 Examples . 65

6.2.1 Basic Constraints . 66

6.2.2 Satisfying System Runs 69

6.2.3 Hot and Cold Constraints 73

6.2.4 Refinement at Work 76

6.3 Discussions . 78

6.3.1 Guards on Operands 78

6.3.2 State Invariants . 80

6.4 Related Work . 82

7 Conclusions and Future Work 85

7.1 Summary and Conclusions . 85

7.2 Future Work . 88

References 91

Chapter 1

Introduction

The subject of this thesis is the behavioral specification of real-time sys-
tems. In particular, we are concerned with the inclusion of real-time con-
straints in inter-component specifications using the Unified Modeling Lan-
guage (UML,[OMG05b]).

UML enables the specification of a wide variety of aspects of a system from
static structure and dynamic behavior, including non-structural constraints
with the language OCL [OMG05a]. However, the last version of UML, 2.0,
is far from the ideal specification language since the underlying theory is
defined using natural language instead of being described in a formal way.

The inherent complexity of some kind of models, as behavioral models, in-
creases in some specific contexts, for example with real-time, embedded and
reactive systems [Dou04]. One of the main aspects involved in these kind
of systems is timing, since a real-time system have to ensure not only the
correct satisfaction of functional requirements but also the fulfillment of the
time constraints. This implies that real-time constraint specification is an
important aspect in behavioral specification of such systems.

Behavioral specifications describe how system elements interact over time.
Inter-component behavioral specifications of real-time systems can be done
using UML 2.0 Interactions. However, a real-time constraints specification
language is needed. Since OCL is part of the UML, it is a natural candidate
to be that language. The OCL has limitations for its use on the specification
of real-time and reactive systems since it neither can feature time or signal
handling constructs, nor is capable of expressing general liveness proper-
ties or performance aspects of systems conveniently. However, there is an
extension named OCL for Real Time (OCL/RT) [CK02] for these purposes.

Although OCL/RT is adequate to real-time constraints specification, it must

1

2 Chapter 1. Introduction

be related with UML 2.0 interactions. Nowadays, there is no direct relation-
ship between them and in this thesis we make them “work together”. The
main problem addressed in this sense is the statement of a formal semantics
for the fusion of both languages. By achieving this, the expressivity of UML
2.0 Interactions can be augmented considering the meaning of time for be-
havioral specification of real-time systems. A common semantics will allow
the incorporation of the resulting language in model-driven tools and its
future relation with other languages, e.g., intra-component communications
or design by contracts.

This intention is not capricious since software modeling and formal veri-
fication are strongly related in growing engineering approaches nowadays.
Model-driven engineering [Ken02, Sch06] is a software engineering approach
based on the high-level model-based specification of a system as the pri-
mary development activity. The construction of a software system is driven
by model transformation techniques and automatic code generation. This
approach allows a tighter control of the processes improving efficiency and
making the resulting products more reliable. It also ensures software qual-
ity attributes by verification of the generated models at early development
stages.

Related Work

UML 2.0 Interactions are not the only description language for inter-compo-
nent communications. Their potential can be compared with High-Level
Messages Sequence Charts (HMSC, [IT96]) and Live Sequence Charts (LSC,
[DH01]) as studied in [Hau04, HT03], but they have differences. The choice
of UML 2.0 addresses the intention of getting closer to an implicit standard.

There are some languages like UML/RT [Dou04] and ROOM [SGW94] which
extend UML for real-time specifications. However, these works only take into
account interactions with basic timing annotations, not complex constraints
as we do.

There are also some works which define the semantics of UML 2.0 Interac-
tion. Störrle [Stö03a, Stö03b, Stö04c], Haugen and Stølen [HKHS05, HS03],
and Cengarle and Knapp [CK04b, CK05] define a denotational semantics
intended to verify when an execution is valid or invalid, according to a given
interaction. The works from Grosu and Smolka [GS05], Hammal [Ham06],
and Cavarra and Küster-Filipe [CKF04] present an automata-theoretic se-
mantics for UML 2.0 Interactions. None of them addresses the inclusion
of complex real-time constraints, some of them include just basic time con-
straints. The semantics considered in this work will be the one proposed by

3

Cengarle and Knapp in [CK04b].

Finally, there are several works which analyze how to specify real-time con-
straints, from basic real-time constraints in High-Level Message Sequence
Charts [LL00, BAL97], to the meaning of allocation and scheduling [KS01].
Some of them analyze different OCL extensions, mainly to specify tempo-
ral logic constraints in state machines [Fla03, FM04], and also in interac-
tions [CKF05] to specify liveness properties. Only the work by Cavarra and
Küster-Filipe [CKF05] analyzes an OCL extension to be used with interac-
tions. In our work we consider OCL/RT, an extension of OCL for specifying
real-time constraints proposed by Cengarle and Knapp [CK02].

Contributions of this Work

This work contributes to the clarification on the use of constraints in the
inter-component behavioral specification of real-time systems. We consider
that this is an authentic contribution since UML does not take into account
interactions with time playing a main role. Our approach will go further on
considering general constraints, not only real-time ones. It also contributes
to the inclusion of concepts widely used in practice in modeling and formal
reasoning tools.

The primary goal of this thesis is the definition of a formal semantics for
the fusion of UML 2.0 Interactions and OCL/RT languages. This provides
a solid formal background that tends to bridge the gap between different
model-driven engineering needs.

We also study some properties derived from the semantics like refinement
of interactions and refinement of constraints. Besides, a comparison with
other approaches is done in order to analyze benefits and weaknesses of the
proposal.

Finally, we are concerned with how these results work from a practical point
of view. In particular, we analyze detailed consequences of this application
and also study the practical applicability of this approach.

4 Chapter 1. Introduction

Structure of the Thesis

This thesis is structured as follows. Chapter 2 includes background informa-
tion on model-driven engineering and real-time and reactive systems. Be-
havioral specifications with UML 2.0 Interactions and real-time constraints
specification with OCL/RT are further motivated, pointing previous works
strongly related to this thesis. Chapter 3 introduces a denotational seman-
tics for an enhanced UML 2.0 Interactions language with OCL/RT con-
straints support. Chapter 4 presents some properties of interest derived
from the semantics. In Chapter 5 we analyze the notions of implementa-
tion and refinement of an interaction, and refinement of constraints (both
notions intended for formal verification). Chapter 6 shows the practical ap-
plication of the concepts developed in previous sections and discusses the
use of OCL/RT constraints in UML 2.0 Interactions. Finally, Chapter 7
presents a short summary with concluding remarks and an outline of future
work.

Chapter 2

Background and Motivation

In this chapter we present the basic concepts of dynamic behavior specifi-
cation of real-time systems, the general context in which the subject of our
study is placed. We also introduce Model-Driven Engineering as a software
engineering methodology capable of reducing development costs. It is based
on the systematic use of models as primary engineering artifacts throughout
the engineering lifecycle. The use of UML 2.0 is motivated as a modeling
language for this purpose. We also present main features of real-time and
reactive systems, pointing out the importance of real-time constraints in be-
havioral specifications. Finally, the importance of a formal background and
the main aspects of our study are motivated.

This chapter is structured as follows. In Section 2.1 we present an overview
of Model-Driven Engineering. Section 2.2 introduces the use of UML 2.0 as a
wide specification language. Section 2.3 is focused on UML 2.0 Interactions
for behavioral specification and a specific formal semantics for it. In Section
2.4 an introduction to real-time and reactive systems is presented, and finally
in Section 2.5 we motivate the use of the Object Constraint Language for
real-time constraints specification.

2.1 Model-Driven Engineering

Nowadays software requirements lead to hard development decisions as they
involve a wide variety of architectural and technical problems. In the last ten
years a new development approach has been rising: the Model-Driven Engi-
neering (MDE) [Ken02, Sch06]. MDE is a software engineering methodology
based on models of the system to be constructed and the evolution of those
models in order to perform an incremental development. The methodology
involves the iterative transformation of abstract models into detailed ones

5

6 Chapter 2. Background and Motivation

ending with the automatic code generation as the main construction tech-
nique. This methodology guides from business domains to software domains,
enhancing industrial development productivity and software quality.

In this context, each model must be based on a formalism, to precisely define
its syntax and its semantics. Syntax is made up of abstract and concrete
syntax (which specifies the readable representation of the abstract notational
elements). Semantics consists of static semantics (well-formedness rules that
restrict the set of valid models) and dynamic semantics (assigning meaning
to the abstract syntax). Figure 2.1 graphically presents the relationship
among the system, the models and the formalisms. It is also very useful to
count with a graphical and flexible modeling language in order to simplify
the communication between different people involved in the project, and to
be able to extend the language with domain-specific models.

Formalism

System(s)

Model

Concrete

Syntax

Abstract

Syntax

Dynamic

Semantics

Static

Semantics

represents
 implies

assigns

meaning to

based on

abstract from/

specifies

restricts

Figure 2.1: System, model and formalism

Model-Driven Architecture (MDA, [OMG03]) is a specific implementation
of the Model-Driven Engineering (MDE) approach proposed by the Object
Management Group (OMG). Another OMG acronym is Model-Driven De-
velopment (MDD) [MCF03, Sel03]. MDA introduces a set of layers that
describe the levels of abstraction of the model. These range from mod-
els that are independent from any idea of computation to models that are
tightly coupled to a specific implementation language. MDA also describes
transformations driving business requirements models to implementations
to provide a conceptual framework, as shown in Figure 2.2.

2.2. UML 2.0 7

Computation Independent Model (CIM)

Platform Independent Model (PIM)

Platform Specific

Model (PSM)

Platform Specific

Model (PSM)

Impl

Specific

Model

(ISM)

Impl

Specific

Model

(ISM)

Impl

Specific

Model

(ISM)

Impl

Specific

Model

(ISM)

Business and Models

Analysis and Design Models

Detailed Design Models

Implementation and Runtime

Models

Figure 2.2: The layers and transformations of MDA

MDA uses the Unified Modeling Language (UML, [OMG05b]) as its spec-
ification language. This language has risen as the industry and academic
standard for system specifications. Nowadays there is a wide variety of tools
that partially support UML, varying from graphical modeling tools [Mic03]
to development assistants, including partial code generators [Tig99, OMO06,
KC04, IR05, Bor05]

2.2 UML 2.0

UML is a set of graphical languages within the object oriented paradigm
(Figure 2.3). These languages allow specifying a wide variety of aspects
of a system, from static structure to dynamic behavior. Structure can be
described with static model elements such as classes, relationships, nodes,
and components. Behavior describes how the elements within the structure
interact over time. Besides, any UML language can be extended by its
own extension mechanisms in order to define domain-specific models. UML
also provides the Object Constraint Language (OCL, [OMG05a]) to specify
non-structural constraints in a given object model with a textual notation.

UML 2.0 presents four different languages to specify dynamic behavior: Use

8 Chapter 2. Background and Motivation

Cases, State Machines, Activities, and Interactions. Use Cases show the
required usages of a system (functional requirements). State Machines are
used to describe the behavior of a class, a subsystem or an entire system,
focussing on how their state changes over time (intra-component behavior).
Activities are used to describe “how things are done” and the work that
is performed (system behavior). Finally, interactions are used to describe
how a set of objects interact (by message passing) with each other in a
specific scenario (inter-component behavior). The inherent complexity of
behavioral models grows up in some specific contexts, for example with real-
time, embedded and reactive systems. In this case not only UML models
are necessary but also a careful specification of the real-time constraints.
OCL can be used in conjunction with some dynamic specification language
but there are no standard guidelines on how to do that.

.

Deployment

«
st
»

{t=v}

{
cnt
}

OCL

.
Class

diagram

Deployment

«
st
»

{t=v}

{
cnt
}

OCL

Use Case

diagram
 Activity

diagram

Deployment

diagram

State Machine

diagram

Component

diagram

«
st
»

Stereotype

{t=v}

Tagged V
alue

{
cnt
}

Constraint

Note

OCL

Object

Constraint

Language

Package

diagram

Unified
Modeling

Language

Structure

diagrams

Behavior

diagrams

Extension

Mechanisms

Other

components

Interactions

Figure 2.3: UML components

Although UML is simple and flexible, its last version 2.0 is far away from
the ideal MDA specification language since the theory behind it is defined
using natural language instead of being described in a formal way. The lack
of a formal specification can lead to ambiguous, imprecise, contradictive
and error-prone specifications. These drawbacks are recurrent from older
versions of UML, promoting intensive academic work in order to solve them

2.3. UML 2.0 Interactions 9

[vdB02, BCR00, CK04a, CK05, GZK03, HKB04, HvdZ03, JEJ04, Jür02a,
Jür02b, KFdB+04, KMR02, Krü00, Kwo00, RCA01, Rod00, Ste02, Stö04b,
Stö04a, IMU05, Var02, Vig04]. Very often these kind of works are done
without any relationship between them. This is a drawback in order to
achieve a complete specification framework with unified semantics.

This work is focused on the inter-component behavior of real-time systems
described by UML 2.0 Interactions. In particular, we are concerned about
interactions with OCL real-time constraints and a unified formal semantics
from the fusion of both languages.

2.3 UML 2.0 Interactions

UML 2.0 interactions [OMG05b] describe possible message exchanges be-
tween system instances, and provide means for specifying sequential, alter-
native, parallel, iterative and negative behavior (i.e. behavior forbidden in
system implementations), among others.

A message is a communication between two instances which causes an op-
eration to be invoked, a signal to be raised, or an instance to be created or
destroyed. Every message is defined by two events representing the sending
and the receiving of that message. For each system instance there is a life-
line representing the instance (typically object) execution over time, that
is, messages sent or received with the corresponding object activation.

An interaction can be displayed in several different types of diagrams pro-
viding slightly different capabilities. Sequence Diagrams focus on message
interchange (communication) among lifelines. Communication Diagrams
show interactions where the communications among lifelines are decorated
with descriptions of the passed messages and their sequencing. Interaction
Overview Diagrams are a variant of Activity Diagrams that define interac-
tions in a way that promote overview of the control flow. Finally, Timing
Diagrams are used to show interactions when a primary purpose of the dia-
gram is to reason about time. Figure 2.4 shows examples of these diagrams.

The most common interaction diagram is the Sequence Diagram. A Se-
quence Diagram is enclosed by a rectangular frame. The name of the di-
agram is shown in a pentagram at the upper-left corner, prefixed by the
keyword sd. The instances involved in the sequence are on the horizon-
tal axis, each one is represented by an object rectangle with the object or
class name. The rectangle along with the vertical dashed line represents the
lifeline. Communications between instances are represented as horizontal
message lines between the instance lifelines. Sequence Diagrams are read
from top to bottom to view the exchange of messages taking place as time

10 Chapter 2. Background and Motivation

sd CommunicationDiagram

sd SequenceDiagram

:User
 :ACSystem

Code d =
duration

OK

CardOut {0..13}

Unlock

t =
now

{t..t+3}

{d..3*d}

:User

1: Code

1.1: CardOut

1.2: OK

1.3: Unlock

: ACSystem

sd TimingDiagram

{d..3*d}

CardOut

Code
 OK {t..t+3}

WaitAccess

WaitCard

Idle

:

U

s

e

r

 0 1 2
 t

sd InteractionOverviewDiagram

EstablishAccess(“Ilegal Pin”)

ref

sd

sd

OpenDoor

ref

[pin OK]

: User
 : ACSystem

CardOut

{0..25}

{1..14}

: User
 : ACSystem

Msg(“Please Enter”)

Figure 2.4: UML interaction diagrams

passes. Figure 2.5(a) shows an example of an interaction between two ob-
jects x and y that interchange messages a and b.

Each interaction may contain sub-interactions called interaction fragments,
which can be structured and combined using interaction operators. The
resulting combined fragments enclose messages within a rectangular frame
with the name of the operator shown in a pentagram at the upper-left cor-
ner. These define special behavior like sequential, parallel, and iterative
composition of interactions, alternative, optional and invalid interactions,
and interactions considering and ignoring a set of messages, among oth-
ers. An example is shown in Figure 2.5(b) where message a is optional and
message b is sent up to 12 times.

2.3. UML 2.0 Interactions 11

sd

x : X
 y : Y

a

b

sd

x : X
 y : Y

opt

a

loop {1..12}

b

(a) Basic interaction (b) Interaction with combined fragments

Figure 2.5: Basic interactions and combined fragments

Usual operators are:

alt represents a choice of behavior constrained by a guard expression

par represents a parallel merge between the behaviors of the operands

seq represents a weak sequencing between the behavior of the operands

strict represents a strict sequencing between the behaviors of the operands

loop represents an iterative behavior

ignore represents a behavior where some messages are ignored

Some other operators, such as break and critical, are left apart. Weak
sequencing between operands implies that the ordering of event occurrences
within each of the operands is maintained whereas event occurrences on
different lifelines from different operands may come in any order. It also
implies that event occurrences on the same lifeline from different operands
are ordered in such a way that an event occurrence of the first operand
comes before any other event of the second operand.

An interaction can also specify negative behavior (behavior forbidden in
system implementations). Negative behavior is introduced by two specific
unary operators: neg and assert. While neg states that the sequence of
messages within the fragment are supposed to be invalid, assert indicates
that the sequence of messages within the fragment is an assertion (the only

12 Chapter 2. Background and Motivation

valid execution of the system). The interaction shown in Figure 2.6(a) spec-
ifies that message b cannot be sent after message a, while the one of Figure
2.6(b) specifies that message b is the only possible message after message a
(any other behavior is prohibited).

sd

x : X
 y : Y

a

neg

b

sd

x : X
 y : Y

a

assert .

b

(a) Negative fragment (b) Assertion

Figure 2.6: Interactions with negative behavior

Syntax & Semantics

The UML 2.0 specification introduces some guidelines for the formal under-
standing of interactions, which is mandatory for the use of the language as
a modeling tool. However, the specification is rather vague and obscure in
some aspects since it is specified in natural language. As an example, it is
not clear whether it should be possible to have several guarded expressions
in an alternative specification (alt operator) evaluating to true.

There are some works which define the semantics of UML 2.0 Interactions:
Störrle [Stö03a, Stö03b, Stö04c], Haugen and Stølen [HS03], Cengarle and
Knapp [CK04b, CK05], and Cavarra and Küster-Filipe [CKF05]. None of
these works considers complex constraints to be verified over an interaction.
In this work we consider the semantics proposed by Cengarle and Knapp
in [CK04b], which will be introduced in this section. The semantics decides
when a trace (sequence of messages) is positive (a valid execution) or neg-
ative (an invalid execution) for some interaction. Since our work will be
strongly based in this semantics, we will briefly introduce it.

The abstract syntax of the language is specified by a context-free grammar
which does not consider all the features introduced by the UML 2.0 specifi-
cation. Some of them, such as the operators break and critical, are left
for future study.

2.4. Real-Time and Reactive Systems 13

Two satisfaction relations between a trace and an interaction are defined:
one that does not contain occurrences of the negation and assertion operators
(positive fragment), and the other that contains them (negative fragment).
The positive (negative) satisfaction relation between traces and interactions,
denoted by t |=p (|=n) S and read t positively (negatively) satisfies S, where
t is a trace and S an interaction of the positive (negative) fragment, is
inductively defined on the structure of S. The relations, plainly worded,
state that a trace satisfies the interaction if it completely runs trough a
possible path of the interaction.

Semantically, an interaction specifies valid (also called positive) traces of
event occurrences and invalid ones (also called negative). A trace t is positive
for some interaction S if it positively satisfies the interaction (t |=p S).
A trace t is negative for some interaction S if it negatively satisfies the
interaction (t |=n S). Some traces cannot be neither positive nor negative
for some interaction, those traces are called inconclusive for that interaction.
Moreover, in some cases, a trace can be both positive and negative, in this
case the interaction is called overspecified.

2.4 Real-Time and Reactive Systems

Real-time and reactive systems are special software systems concerned with
performance, scheduling and timing. Due to these aspects, real-time sys-
tems development is one of the most complex software engineering problems
[SGW94, Dou04, SR98, MCM04].

One of the main aspects involved in these systems is timing, since a real-time
system must not only ensure the correct satisfaction of functional require-
ments but also the time when the results are produced. A real-time system
can be classified as either hard or soft. The distinction is somewhat fuzzy.
On one end there are non-real-time systems, where no important deadlines
exist (meaning all deadlines can be missed), while on the other end there
are hard real-time systems, where no deadlines can be missed.

Somewhere in the real-time spectrum, real-time constraints start being the
critical aspect in the system behavioral specification. There are tools [IL05,
Sof05b, IR04, Sof05a] which allow the specification of some real-time system
aspects in UML 2.0, generate code and test the application. But some
aspects are left apart, e.g., integration with tools for testing safety and
liveness properties and specification of complex real-time constraints.

Inter-component behavioral specification of real-time systems can be done
by using UML 2.0 Interactions. However, a constraint specification language
is needed. Since OCL is part of the UML, it is a natural candidate.

14 Chapter 2. Background and Motivation

2.5 Object Constraint Language

The Object Constraint Language (OCL, [OMG05a]) is a semi-formal lan-
guage for the axiomatic specification of consistent system states using in-
variants and the transformation of system states by means of pre-/post-
conditions for operations. OCL also allows the definition of variables and
operations that can be used within expressions and action clauses (Kleppe y
Warmer [KW00]), indicating that actions will be taken when some condition
becomes satisfied.

We define the main elements of OCL with the following example (extracted
from [CK02]). In Figure 2.7 there is a class diagram representing the static
structure of a (over-simplified) model of several automatic teller machines
(ATMs) connected to a single bank, showing an association with according
multiplicities between the classes ATM and Bank. An ATM has a depot at-
tribute, holding the current amount of money it can spend; the identification
number of the card in use, with cardId set to, zero if it holds no card; and a
state indicating whether an error has occurred during processing. An ATM
may spend an amount of money when the operation spend is called on it.
The Bank has two operations: credit withdraws an amount of money from
the card holder’s account if this amount is covered; requestRefill registers
ATM s whose depots are running low.

+spend(entrada amount : Integer)

-depot : Integer

-cardId : Integer

-state: {#ok, #error}

ATM

+credit(entrada cardId : Integer, entrada amount : Integer) : Boolean

+requestRefill(entrada atm : ATM)

Bank

*
 1

atms
 bank

Figure 2.7: UML class diagram for ATMs

• Invariants An invariant is a boolean expression that must be true for
every instance of some type at any time. In the example, if there is not an
error then the ATM has enough money to spend.

context ATM
inv: (self.state = #ok) implies (self.depot >= 100)

OCL uses the dot-notation for navigation to attributes and through asso-
ciations (as well as for operation calls). The OCL expression self denotes

2.5. Object Constraint Language 15

the instance on which the constraint is evaluated, and may be omitted if the
navigation reference remains unambiguous.

• Pre- and Post- Conditions A pre-condition is a condition that must
always be true just prior to the execution of an operation in order to get
the expected effect. Every time spend is invoked, the ATM must not be on
an error state, it must have a card, the amount of money to be withdrawn
must be positive and the depot must cover the withdrawal.

context ATM::spend(amount : Integer)
pre: (state = #ok) and (cardId <> 0) and

(amount > 0) and (depot >= amount+100)

A post-condition is a condition that must always be true just after the
execution of an operation. After spend has been executed, the right amount
of money must have been spent or some error has occurred.

context ATM::spend(amount : Integer)
post: (depot = depot@pre-amount) or (state = #error)

Post-conditions make use of the @pre operator that yields the value of an
expression at pre-condition time.

• Definitions A definition is the specification of a helper variable or oper-
ation to be reused in multiple OCL expressions. The bank may define an
operation calculating the sum of the depots in its ATMs.

context Bank
def: depotSum() : Integer =

self.atms->iterate(i : ATM;
sum : Integer = 0 | sum+i.depot)

The iterate operator iterates through a given collection and accumulates
the results of evaluating an expression with an iterator variable bound to the
current element and an accumulator variable bound to the previous result.
The execution of an operation is made by the arrow notation −>.

• Actions An action clause for classes requires that whenever a condition
becomes satisfied, an operation has to be called. In the example, if the depot
is less than 1000, the bank has to refill the ATM.

16 Chapter 2. Background and Motivation

context ATM
action: depot < 1000 ==> bank.requestRefill(self)

An action clause for operations specifies that, when some condition is speci-
fied at post-condition time, certain other operation calls must have happened
while executing the operation. In the example, during the execution of spend
the bank must verify the credit in the client’s card.

context ATM::spend(amount : Integer)
action: true ==> bank.credit(cardId, amount)

The OCL has limitations for its use on the specification of real-time and
reactive systems as the language does not feature time or signal handling
constructs, nor is capable of expressing general liveness properties or perfor-
mance aspects of systems conveniently. However there are some works that
analyze different OCL extensions varying from the specification of temporal
logic constraints in state machines [Fla03, FM04] to real-time constraints
in every UML model [CK02]. There are also some works that explore how
to specify real-time constraints in interactions [HKHS05, HS03, Kna99], but
these works do not support complex constraints specification or they do not
consider it within interactions semantics.

2.6 OCL for Real Time

OCL/RT (OCL for Real Time, [CK02]) is an extension of OCL 1.4 for real-
time and reactive systems constraints specification. The language is based
on the notion of traces of events with timestamps which allows specifying the
temporal behavior of a system. The constraints are evaluated over sequences
of system states (system execution) instead of just on a given state as OCL
does. In this context, new operators are defined extending the expressiveness
of the original language.

In order to consider timed-events the meta-class Event (UML 1.5) was ex-
tended, as shown in Figure 2.8. Each event shows the time at which it
occurred by a link to the new primitive datatype Time that represents the
global system time. It is assumed that time comes with a total ordering re-
lation ≤ for comparing time values, an associative and commutative binary
operation + for adding time values, and a class attribute now that always
yields the current system time. Events are associated to instances (of clas-
sifiers), such that an instance is linked to all its current events. Also, an
event must carry a list of actual parameters.

2.6. OCL for Real Time 17

ModelElement

Event
Instance

+now() : Time

«primitive»

Time

-events

*

-arguments
*

{ordered}

*

-at

1

Figure 2.8: Event meta-class

For the definition of OCL/RT constraints, that are evaluated over a sequence
of system states, a new clause is introduced

context C
constr: c

where C is a classifier and c an OCL/RT constraint.

OCL terms are captured by a the context-free grammar in [CK04a]. This
grammar is extended with particular OCL/RT features as shown in Figure
2.9. The modality always c satisfies the constraint c over a system-run
when the constraint evaluates to true in every system state. OCL/RT ex-
pressions also include a satisfaction operator @η that yields the value of an
expression when the event η occurs (the expression Expr in Event must have
type Event to be well-formed).

The original OCL operators (inv, pre, post and action) are reinterpreted
in OCL/RT using the operator constr, as is the case of invariant (inv)
operator showed next.

-- The invariant must be checked whenever an operation
-- is called (StartEvent) on the instance from outside
context C
def: publicCalls() : Event

events->select(e |
e.isTypeOf(StartEvent) and
e.call.operation.visibility = #public)

constr: always (publicCalls()->forAll(s | inv@s))

18 Chapter 2. Background and Motivation

Term ::= Spec | Constr
Spec ::= ...
Def ::= ...

Constr ::= context Type constr: Expr
........................
Expr ::= ...

| always Expr
| Expr @ Event

Event ::= Expr

Figure 2.9: Abstract syntax of OCL/RT

In order to do such reinterpretation, it is necessary to extend the UML events
hierarchy, e.g., with call, start and termination events for the execution of
an operation as shown in Figure 2.10. Depending on what is necessary to
model, the event hierarchy must be extended, as in the case of modeling
signals or attribute value changes.

Event

Instance

StartEvent
 TerminationEvent
CallEvent

Operation

start
 termination

receiver

sender

instance

instance

call
 start

operation

1

1

1

1

1

1

1
 1
 0..1

Figure 2.10: Events for operations

With this extension, deadlines for operations and reaction to signals and
timeouts, among others, can be specified. As an example, if the operation
spend (shown in Figure 2.7) must finish before T units of time (deadline),
the post-condition of spend is rewritten as follows:

2.6. OCL for Real Time 19

context ATM::spend(amount : Integer)}
pre: ...
post: (depot = depot@pre-amount and

Time.now <= Time.now@pre+T) or (state = #error)

Although OCL/RT is adequate to real-time constraints specification, it must
be related with UML 2.0 interactions. Nowadays, there is no direct relation-
ship between both languages. A common semantics allows the incorporation
of the resulting language in model-driven tools and the future relation of it
with other languages, e.g., for intra-component communications or design
by contract.

Semantics

System states are formalized by dynamic bases. A dynamic basis comprises
an implementation of the predefined OCL types and their operations, as well
as the set of current instances of classes together with their attribute valu-
ations, connections to other instances, and implementations of operations.
Moreover a dynamic basis can be extended by implementations of auxiliary,
user-defined operations.

Invariants, pre-/post-conditions, and action clauses restrict system-runs. A
system-run ρ is a finite or infinite sequence of pairs of dynamic bases and
finite sets of events. The dynamic basis ω0 defines the initial system state;
ωn is transformed into ωn+1 by a single system step where the events in Hi

occur.

Cengarle and Knapp define an operational semantics [CK02] that derives
judgments of the form

(ρ,i);γ ` c ↓ v

where ρ is a system-run, i an index in the system-run, γ a variable environ-
ment, c an OCL/RT constraint, and v a value. Such a judgement conveys
the fact that c evaluates to v at the ith system state in the system-run ρ
using the variable environment γ.

The operational rules comprise all rules of OCL as defined in [CK01, CK04b]
and also new rules for the new language features as the instance attribute
events, the @η operator, the modality always and the evaluation of constr.

20 Chapter 2. Background and Motivation

Summary

In this chapter background information on dynamic behavior specification
of real-time systems was given. The language of UML 2.0 Interactions is
a good starting point to specify inter-component communications, as well
as OCL/RT is a good option in order to specify temporal constraints. In
addition, both languages have a formal semantics, but there are not related.

The motivation of this work is the need of a language to specify inter-
component behavior of real-time systems with constraints support. We
achieve this by defining the language of UML 2.0 Interactions with OCL/RT
constraints. This means, the fusion of both languages by the definition of
common semantics from those already defined by Cengarle and Knapp in
[CK02, CK04b]. A formal semantics allows the incorporation of the language
in model-driven tools and the future relation of it with other languages, e.g.,
for intra-component communications or design by contract.

Chapter 3

Syntax and Semantics of
Constrained Interactions

We extend the language of UML 2.0 Interactions with OCL/RT constraints
which must be satisfied on a system-run in order to consider the system-run
a valid execution of the system being modeled. This increases the potential
of the interactions for inter-component behavioral specifications. However,
the main problem addressed is the statement of a formal semantics for the
language, since without it the meaning of a specification could be ambigu-
ous, imprecise, contradictive and in consequence error-prone. Our proposal
is based on the definition of a trace-based formal semantics to recognize
valid and invalid system-runs for some given interaction with constraints
satisfaction.

This chapter is structured as follows. Section 3.1 presents the abstract
syntax of the UML 2.0 Interactions language extended with OCL/RT con-
straints. Section 3.2 introduces the trace-based formal semantics for the
resulting language. Section 3.3 presents a discussion about the possibil-
ity of simplifying the semantics already defined. Finally, in Section 3.4 a
comparison with other approaches is given and related work is considered.

3.1 Abstract Syntax

The abstract syntax of the fragment of the language of UML 2.0 Interactions
already introduced in Section 2.3 is extended in order to consider OCL/RT
time constraints as shown in Figure 3.1.

The production rule constraint(Term,Interaction) considers an OCL/RT
term and the interaction over which the term is evaluated. For our purposes,

21

22 Chapter 3. Syntax and Semantics of Constrained Interactions

we must ensure that every Term must be a boolean expression since other
kind of expressions are not constraints.

Interaction ::= Basic
| CombinedFragment

CombinedFragment ::= strict(Interaction,Interaction)
| seq(Interaction,Interaction)
| par(Interaction,Interaction)
| loop(Nat,(Nat |∞),Interaction)
| ignore(Messages,Interaction)
| alt(Interaction,Interaction)
| neg(Interaction)
| assert(Interaction)
| constraint(Term, Interaction)

Figure 3.1: Abstract syntax of interactions with OCL/RT constraints

As has been described in Section 2.6, OCL/RT is based on a modification
and extension of the original UML 1.5 abstract meta-class Event. We adapt
that extension to the UML 2.0 metamodel since the classes Instance and
ModelElement do not longer exist.

Event

MessageEvent

SndMsgEvent
 RcvMsgEvent

+now() : Time

«primitive»

Time

Classifier

sender
receiver

Message

1..2
 1

1

at
events

1
 *

1
1

Figure 3.2: Event model for messages

Each event shows the time at which it occurred by a link to the primitive
data type Time that represents the global system time, as in the original
definition. It is assumed that Time comes with a total ordering relation ≤
for comparing time values, an associative and commutative binary operation

3.1. Abstract Syntax 23

+ for adding time values, and a class attribute now that always yields the
current system time.

In order to model a system based on message passing through instances we
extend the hierarchy as shown in Figure 3.2. Every message is composed
of at most two events (partial messages) representing the sending of that
message by an instance (of a classifier) and the reception of it by another
instance (possibly the same). An instance of a classifier is linked to all
its current events, message events among them. There is also one well-
formedness rule on system-runs: send and receive events of the same message
must occur in this order.

Example (Abstract Syntax)

During this chapter we will consider two simple examples as a proof of
concepts. Figure 3.3 shows two simple interactions.

a:A
 b:B

loop {0..N}

n

m

a:A
 b:B

alt

neg
 m

assert
 n

(a) Interaction S1 (b) Interaction S2

Figure 3.3: Simple interactions

In the interaction S1 an instance a of A sends the message n to an instance
b of B and b responds sending up to N times the message m. There is also
a constraint (ϕ1), not shown graphically, involving events which says that
every message m must be sent within 10 time units since the reception of n,
we can express it as follws.

24 Chapter 3. Syntax and Semantics of Constrained Interactions

context B
def: sndM : Set(Event) =

events->select(e | e.oclIsTypeOf(SndMsgEvent)
and e.message.name = "m")

def: rcvN : Event =
events->select(e | e.oclIsTypeOf(RcvMsgEvent)

and e.message.name = "n")->any()
constr: always(sndM->forAll(e | e.at < rcvN.at + 10))

In order to construct the abstract syntax we need to represent message n as
a basic interaction B1 and message m as a basic interaction B2. Joining the
interaction and the constraint we get the following abstract syntax.

constraint(ϕ1, seq(B1, loop(0,N,B2)))

Notice that there exists an implicit weak sequence between B1 and the loop.
There is also an implicit constraint fragment which must be placed before
the weak sequence since it involves both fragments of the sequence.

In the interaction S2 there are two alternatives: sending the message n to
instance b or not receiving the message m from instance b. The operator
neg introduces negative behavior. There is also a constraint (ϕ2), not shown
graphically, involving events and the state of the system which restricts the
sending of message n only if the boolean attribute ok of instance a is true.
This constraint is expressed as follows.

context A
def: sndN : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent)
and e.message.name = "n")->any()

constr: always((self.ok)@sndN)

In this case the abstract syntax is expressed as follows, where the constraint
ϕ2 only restricts the basic interaction B1 (basic interactions B1 and B2 are
the same as in the first example).

alt(constraint(ϕ2, assert(B1)), neg(B2))

3.2. Semantics 25

3.2 Semantics

We propose a formal semantics to recognize valid and invalid behavior for
some given interaction with constraints. The semantics is divided into two
fragments: one that does not contain occurrences of the neg nor assert
operators (positive fragment), and the other that contains them (negative
fragment).

There are several semantic paradigms which must be taken into considera-
tion when dealing with concurrency, as discussed in [Stö04c]. The semantics
introduced in this work can be described as a true concurrency linear-time
trace-based semantics of complete traces with real time. The terms involved
in this classification are explained below.

• true concurrency . There is a partial order over events of an interac-
tion, two events can occur concurrently (not an interleaving semantics)

• linear-time. There is only one global time, no notion of concurrent
clocks

• trace-based . The semantics is based on the notion of trace (system-
run) over which two satisfaction relations on interactions are defined

• complete traces. A system-run is valid only if it is completely con-
sumed (except for the negation), i.e., system-run prefixes are not con-
sidered by the positive satisfaction relation.

• real time . Real-time is considered by allowing OCL/RT constraints

The semantical unification was based on the idea of the denotational seman-
tics of interactions [CK04b] and using the notion of system-run [CK02]. In
what follows we first introduce the unified semantic domains of the solution
and then we present the positive and negative fragments of the denotational
semantics.

3.2.1 Semantic Domains

We assume four primitive domains for events E, messages M, abstract time
points T and natural numbers N.

Events

An event η ∈ E is either of the form snd(s,r,m) or of the form rcv(s,r,m),
representing the dispatch and the arrival of message m from sender instance

26 Chapter 3. Syntax and Semantics of Constrained Interactions

s to receiver instance r, respectively. Events are unequivocally identified,
i.e., two arbitrary events, even if they are both a send (or receive) event
of the same message from the same sender to the same receiver, can be
distinguished.

Certain events are made anonymous and/or unobservable by replacing them
by a predefined silent event (in the sense of process algebra [Mil80]) denoted
by τ . We define the domain Eτ of events and the silent event τ as E∪{τ}. A
silent event represents an event that is not of interest for some given inter-
action, e.g. an attribute value change, but its occurrence is considered for a
state change. System runs contain every event occurred during the system
execution while interactions can specify partial behavior of the system.

We say that the instance s is active for snd(s,r,m) and, similarly, that the
instance r is active for rcv(s,r,m). We define a binary, symmetric conflict
relation <> ⊆ E×E on events: If an instance is active for both events η1 and
η2 then η1 <> η2. Trivially, τ 6<> η for any η ∈ Eτ .

Given an event η ∈ E, the occurrence time of the event can be retrieved
by the map at : E → T. T is equipped with a total ordering relation ≤
for comparing time values, and binary operations + and − for adding and
subtracting time values respectively.

We write linat(E) for all possible linearizations of the set of events E given
by the function at, i.e., l ∈ linat(E) if, and only if l is the isomorphism
class [(X, ≤X , λX)] of the totally ordered, labeled sets (X,≤X , λX) with
λX : X → E bijective and such that ∀x1, x2 ∈ X. at(λX(x1)) < at(λX(x2))
=⇒ x1 ≤X x2 and ∀x1, x2 ∈ X. x1 ≤X x2 or x2 ≤X x1.

Basic Interactions

Basic interactions are modeled using event-labeled pomsets. A partially
ordered, labelled multiset, or pomset [Pra86], is the isomorphism class
[(X,≤X,λX)] of a labeled partial order (X,≤X,λX) w.r.t. monotone, label-
preserving maps. An event-labeled pomset is a pomset with an injective
labeling function λX: X → E (or simply λ) from elements in the pomset to
events. The order x1 ≤X x2 is interpreted as “the occurrence of event λ(x1)
precedes the occurrence of event λ(x2)”.

We write lin(p) for all possible linearizations of a pomset p, i.e., all traces
that extend the ordering of p: [(X’,≤X’, λX’)] ∈ lin([(X,≤X , λX)]) if, and
only if X ’ = X, λX’ = λX , and ≤X ⊆ ≤X’ where x1 ≤X’ x2 or x2 ≤X’ x1

for all x1, x2 ∈ X’.

A basic interaction is given by an event-labeled pomset [(X,≤X,λX)] such

3.2. Semantics 27

that conflicting events do not occur concurrently, i.e., x1, x2 ∈ X with λX(x1)
<> λX(x2), then x1 ≤X x2 ∨ x2 ≤X x1. The empty interaction [(∅,∅,∅)] is
denoted by ε.

System Runs

System states are formalized by dynamic bases [CK01]. A dynamic basis
comprises an implementation of the predefined OCL types and their op-
erations as well as the set of current instances of classes of a static basis
together with their attribute valuations, connections to other instances, and
implementations of operations, as well as predefined OCL/RT extensions.
However, dynamic basis do not contain event instances.

A system-run ρ is a finite or infinite sequence of pairs of dynamic bases and
finite sets of events possibly containing the silent event τ

(ω0,H0),(ω1,H1),(ω2,H2),... ∈ (Σ × ℘≤ωEτ)∗ ∪ (Σ × ℘≤ωEτ)∞

such that at(η1) < at(η2) ∀η1 ∈ Hi \ {τ}, η2 ∈ Hj \ {τ} with i < j. The
dynamic basis ω0 defines the initial system state; ωn is transformed into
ωn+1 by a single system step where the events in Hn occur.

We denote by ω(ρ)n the nth dynamic basis in ρ, by H (ρ)n the nth set of
events in ρ, that is ωn and Hn respectively. Moreover, ρ(n) denotes the nth
pair of dynamic basis and set of events in the system-run ρ. The empty
system-run is denoted by ε.

Given an OCL/RT constraint c to be evaluated over a system-run ρ and
a variable environment γ assigning values to variables (including self), we
write (ρ, i);γ ` ϕ ↓ v for the judgement that ϕ evaluates to the value v at
the ith system state in the trace ρ using the variable environment γ.

System Run Operators

We define concurrence, strict sequencing, weak sequencing and filtering of
system-runs. Previously we present the following auxiliary definitions.

Given a system-run ρ, we define the partition of a system-run ρ∗ as the set
of pairs (ρ1,ρ2) with ρ1 and ρ2 system-runs such that ∀ j ∈ N. ω(ρi)j =
ω(ρ)j , i = 1,2 and ∀ j ∈ N. {H(ρ1)j , H(ρ2)j} is a partition of the set of
events H(ρ)j .

Given a system-run ρ, we define rem(ρ) as the system-run ρ’ resulting from
removing every pair (ωi,∅) from ρ.

28 Chapter 3. Syntax and Semantics of Constrained Interactions

The definitions of the operators are given as follows.

Given a system-run ρ, we define concurrence ρ‖ as the set of pairs of system-
runs (rem(ρ1), rem(ρ2)) such that (ρ1,ρ2) ∈ ρ∗.

Given a system-run ρ, we define strict sequencing ρ; as the set of pairs (ρ1,ρ2)
∈ ρ‖ such that ∃ k ∈ N ∀i ∈ N. 0 ≤ i ≤ k ⇒ H(ρ1)i = H(ρ)i and k < i ⇒
H(ρ2)i−k = H(ρ)i.

Given a system-run ρ, we define weak sequencing ρ;<> as the set of pairs of
system-runs (ρ1,ρ2) ∈ ρ‖ such that ∀η1 ∈

⋃
n H(ρ1)n \{τ}, η2 ∈

⋃
n H(ρ2)n \

{τ}. η1 <> η2 ⇒ at(η1) < at(η2).

Given a system-run ρ, we define filtering of system-runs filter(M)(ρ) as the
set of system-runs resulting from removing some elements of ρ whose labeling
events correspond to some message in M ∈ M and eliminating empty sets
of events, i.e., rem(ρ’) ∈ filter(M)(ρ) if ∀i ∈ N. ω(ρ)i = ω(ρ’)i and H(ρ’)i

⊆ H(ρ)i, and ∀η ∈ H(ρ)i\H(ρ’)i. η is either of the form snd(s,r,m) or
rcv(s,r,m) for m ∈ M.

3.2.2 The Positive Fragment

The semantics of the positive fragment of the language (with no occurrences
of negation and assertion) is defined by an inductive positive satisfaction
relation between system-runs and interactions as in [CK04b]. The relation
is denoted by ρ |=p S and read system-run ρ positively satisfies interaction
S. The semantics is shown in Figure 3.4.

The base case considers a system-run possibly containing one or more oc-
currences of the silent event τ . Silent events are ignored in order to verify
the satisfaction of a given system-run. A system-run satisfies a basic in-
teraction if every possible linearization of the events (with respect to their
occurrence time) within the system-run (ignoring silent events) is included
in the linearization of the basic interaction (with respect to its associated
partial ordering).

In order to satisfy strict, seq and par operators, the system-run is par-
titioned in two and the satisfaction verified for each resulting system-run.
Each partition keeps unchanged the dynamic bases but each set of events is
partitioned. This partition is defined by the concurrence, strict sequencing
and weak sequencing of system-runs presented before. Performing a parti-
tion of a system-run may produce empty set of events Hi in the resulting
system-runs. Those sets of events are removed, with their corresponding
dynamic bases, since they represent transitions taken by some other parts
of the interaction.

3.2. Semantics 29

ρ |=p B if linat(
⋃

i H(ρ)i \ {τ}) ⊆ lin(B)
ρ |=p strict(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ;. ρi |=p Si (i = 1,2)
ρ |=p seq(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ;<> . ρi |=p Si (i = 1,2)
ρ |=p par(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ‖. ρi |=p Si (i = 1,2)
ρ |=p loop(0,0,S) if

⋃
i H(ρ)i \ {τ} = ∅

ρ |=p loop(0,n+1,S) if
⋃

i H(ρ)i \ {τ} = ∅ ∨ ρ |=p seq(S,loop(0,n,S))
ρ |=p loop(m+1,n+1,S) if ρ |=p seq(S,loop(m,n,S))
ρ |=p loop(m,∞,S) if ∃ n ≥ m.ρ |=p loop(m,n,S)
ρ |=p ignore(M,S) if ∃ ρ1. ρ1 ∈ filter(M)(ρ) ∧ ρ1 |=p S
ρ |=p alt(S1,S2) if ρ |=p S1 ∨ ρ |=p S2

ρ |=p constraint(ϕ,S) if (ρ, 0); ∅ ` ϕ ↓ true ∧ ρ |=p S

Figure 3.4: Semantics of the positive fragment

The ignore operator is evaluated from filtering some events of the original
system-run. The loop operator is considered equivalent to its unfolding as
weak sequencing of its interaction arguments. The alt operator is evaluated
as the disjunction of the satisfaction of the system-run in both interaction
fragments.

Finally, there is a satisfaction rule to evaluate whether a system-run posi-
tively satisfies an OCL/RT-constrained interaction. The constraint com-
bined fragment is interpreted as a conjunction where both the constraint
and the interaction must be satisfied in order to consider positive a system-
run. In this case, it is not possible to consider positive a system-run where
constraints are not valid, not even the empty system-run (hard constraints).

Each constraint is defined locally, this means that in constraint(ϕ,S) the
constraint ϕ exclusively predicates over the interaction S. This concept is
broadly discussed in Chapter 6. This allows a compositional definition of the
semantics avoiding global constraints. Up to now, this knowledge is needed
to understand that in the evaluation process we are discarding those dynamic
bases processed by other fragments, so if the set of events associated is empty
we discard that part of the trace. An empty set of events Hi represents that
the transition between the system states represented by the dynamic bases
ωi and ωi+1 is processed by some other fragment of the interaction, since it
will not be part of the scope of a future constraint, it can be ignored.

30 Chapter 3. Syntax and Semantics of Constrained Interactions

Example (Positive Fragment)

Consider the example given in Section 3.1 and the following system-runs.

ρ1 = (ω0, { snd(a,b,n,2), rcv(a,b,n,4) })
ρ2 = (ω0, { snd(b,a,m,6), rcv(b,a,m,8) })

ρ3 = (ω0, { snd(a,b,n,2), rcv(a,b,n,4)}) (ω1, { snd(b,a,m,6), rcv(b,a,m,8)})
For the interaction S1 we have that ρ1 and ρ3 positively satisfy seq(B1,
loop(0,N,B2)). In the case of ρ1, it satisfies the interaction due to the
operator loop accepts the empty system-run and (ρ1, ε) ∈ ρ1;<> . Since there
are no occurrences of message m, the constraint ϕ1 is trivially satisfied,
consequently ρ1 |=p constraint(ϕ1, seq(B1, loop(0,N,B2))).

Besides, the system-run ρ3 positively satisfies S1 since it traverses the inter-
action (there is only one iteration of the loop) and also the send of m (at=6)
is done before 10 time units since the reception of n (at=4). The proof of
this is developed as follows.

ρ3(0) |=p B1 ρ3(1) |=p loop(0, N, B2) (ρ3(0), ρ3(1)) ∈ ρ3;<>
ρ3 |=p seq(B1,loop(0, N, B2)) (ρ3, 0); ∅ ` ϕ1 ↓ true

ρ3 |=p constraint(ϕ1,seq(B1,loop(0, N, B2)))

If the value of at for snd(b,a,m) is, for example, 15, the constraint is not
satisfied and consequently the system-run is not positive.

For the interaction S2 we will see in the next subsection that only the system-
run ρ1 could positively satisfy it (we need first to introduce the positive
satisfaction rule for assert). The system-run ρ2 is not positive but negative
as we will see in the next subsection. The system-run ρ3 is neither positive
nor negative for this interaction.

3.2.3 The Negative Fragment

The semantics of the negative fragment of the language (with occurrences
of negation and assertion) is defined by an inductive negative satisfaction
relation between system-runs and interactions as in [CK04b]. The relation
is denoted by ρ |=n S and read system-run ρ negatively satisfies interaction
S. The semantics is shown in Figure 3.5.

As in [CK04b] we regard the empty system-run and also those with events
besides possibly τ as being positive for neg(S). We made a reformulation

3.2. Semantics 31

ρ |=p neg(S) if
⋃

i H(ρ)i \ {τ} = ∅
ρ |=p assert(S) if ρ |=p S

ρ |=n strict(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ;. (ρ1 |=n S1 ∨ (ρ1 |=p S1 ∧ ρ2 |=n S2))
ρ |=n seq(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ;<> . (ρ1 |=n S1 ∨ (ρ1 |=p S1 ∧ ρ2 |=n S2))
ρ |=n par(S1,S2) if ∃ (ρ1,ρ2) ∈ ρ‖. ((ρ1 |=n S1 ∧ ρ2 |=n S2) ∨

(ρ1 |=n S1 ∧ ρ2 |=p S2) ∨ (ρ1 |=p S1 ∧ ρ2 |=n S2))
ρ |=n loop(0,n+1,S) if ρ |=n seq(S,loop(0,n,S))
ρ |=n loop(m+1,n+1,S) if ρ |=n seq(S,loop(m,n,S))
ρ |=n loop(m,∞,S) if ∃ n ≥ m. ρ |=n loop(m,n,S)
ρ |=n ignore(M,S) if ∃ ρ1. ρ1 ∈ filter(M)(ρ) ∧ ρ1 |=n S
ρ |=n alt(S1,S2) if ρ |=n S1 ∧ ρ |=n S2

ρ |=n neg(S) if ∃ (ρ1,ρ2) ∈ ρ;. ρ1 |=p S
ρ |=n assert(S) if ρ 2p S

ρ |=n constraint(ϕ,S) if (ρ, 0); ∅ ` ϕ ↓ false ∨ ρ |=n S

Figure 3.5: Semantics of the negative fragment

for the negative satisfaction rule following the same idea as sequential oper-
ators (seq and strict): after traversing a negative fragment a system-run
will always be negative no matter what happens afterwards. A system-run
positively satisfying S is positive for assert(S) since S is the only valid
execution, otherwise the system-run is negative.

For the operators strict and seq we adopt the view that only those system-
runs are negative that either run through the first operand negatively or fulfil
the first operand positively but the second operand negatively. A similar
stance is taken towards par where either both operands have to be run
through negatively or one of the operands negatively and the other one
positively in order to make a run negative. The loop and ignore operators
follow the same idea as in the positive fragment of the semantics, while for
the alt operator both operands have to be run through negatively (negation
of the positive satisfaction rule).

Finally, there is a satisfaction rule to evaluate whether a system-run neg-
atively satisfies an OCL/RT constrained interaction. The negative rule is
interpreted as the “negation” of the positive satisfaction rule: a system-run
ρ negatively satisfies a constrained interaction constraint(ϕ,S) if either the
constraint ϕ evaluates to false or the system-run ρ negatively satisfies S.

32 Chapter 3. Syntax and Semantics of Constrained Interactions

Example (Negative Fragment)

Consider the example introduced in Section 3.1 and the last two system-runs
from the example given in Section 3.2.2.

ρ2 = (ω0, { snd(b,a,m,6), rcv(b,a,m,8) })
ρ3 = (ω0, { snd(a,b,n,2), rcv(a,b,n,4)}) (ω1, { snd(b,a,m,6), rcv(b,a,m,8)})

We have that only the system-run ρ3 would negatively satisfy the interac-
tion S1 depending on the value of at for snd(b,a,m). If the time stamp were
15, the constraint would not be satisfied and consequently the system-run
would be negative for S1. The proof of this case is as follows.

ρ3(0) |=p B1 ρ3(1) |=p loop(0, N, B2) (ρ3(0), ρ3(1)) ∈ ρ3;<>
ρ3 |=p seq(B1,loop(0, N, B2)) (ρ3, 0); ∅ ` ϕ1 ↓ false

ρ3 |=n constraint(ϕ1,seq(B1,loop(0, N, B2)))

For the interaction S2 we have that the system-run ρ1 could positively sat-
isfy the interaction since it completely traverses the first fragment of the
interaction. The positive satisfaction depends on the value of the attribute
ok of a to verify the constraint ϕ2. The system-run ρ1 cannot negatively
satisfy the interaction S2. The system-run ρ2 negatively satisfies the inter-
action S2 since it traverses the negative region defined by the operator neg
and the assertion cannot be satisfied, as shown next.

ρ2 2p B1

ρ2 |=n assert(B1)
ρ2 |=n constraint(ϕ2,assert(B1))

ρ2 |=p B2

ρ2 |=n neg(B2)
ρ2 |=n alt(constraint(ϕ2,assert(B1)),neg(B2))

3.2.4 Summary of Constraints Satisfaction

The semantics defined in the previous sections, plainly worded, states that
“the system-run is bad as soon as it leaves a negative region, it is good if
both it is exhaustive (i.e., the interaction does not specify any event beyond
the system-run’s last event) and it only traverses positive regions, and it is
inconclusive otherwise.” [CK04b]

A system-run ρ is positive for an interaction constraint(ϕ,S) if the system-
run positively satisfies the interaction S and also ϕ evaluates to true in ρ. If
ρ negatively satisfies the interaction S (no matter what happens with ϕ) or
ϕ evaluates to false in ρ (no matter what happens with S), the system-run ρ

3.3. Discussion: Basic vs Event 33

negatively satisfies the interaction constraint(ϕ,S). In any other case, the
system-run ρ is considered inconclusive. Figure 3.6 resumes these results.

Notation: We use the abbreviations ρ |=i S for ρ2pS ∧ ρ2nS, and ρ ` ϕ
for (ρ, 0); ∅ ` ϕ.

ρ ` ϕ ↓ true ρ ` ϕ ↓ false ρ ` ϕ ↓ undef
ρ |=pS ρ |=pconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=iconstraint(ϕ,S)
ρ |=nS ρ |=nconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=nconstraint(ϕ,S)
ρ |=iS ρ |=iconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=iconstraint(ϕ,S)

Figure 3.6: Summary of constraints satisfaction

Finally, a system-run can be both positive and negative. In this case, the
interaction is called an overspecified interaction. As an example, consider
the interaction strict(neg(S),S) and a system-run positively satisfying S.

3.3 Discussion: Basic vs Event

In the definition of the semantics we use as the base case the basic interaction
Basic, where a basic interaction can be seen as an old sequence diagram
without any operator involved. The advantage of this is that we can model
a basic interaction as a pomset which defines an ordering within the set of
events. However, it is interesting to know if we can use an event as a simpler
base case.

Pomset theory states that every pomset is representable as the set of its
linearizations. As Basic is represented as a pomset, we can represent a basic
interaction as an alternative (operator alt) of all its possible linearizations.
However, this is not possible if Basic is infinite, because we cannot represent
an infinite disjunction with a finitely generated abstract syntax. UML 2.0
specification does not specify whether basic interactions are finite or infinite.
Intuition leads us to consider a basic interaction as finite due to the fact
that graphical representation of interactions only allows representing finite
dispatch of messages, except for the operator loop that is not considered in
a basic interaction.

Notation: By abuse of notation we abbreviate
strict(S1, strict(S2, strict(. . . , Sn))) to strict(S1, S2, . . . , Sn)
and alt(S1, alt(S2, alt(. . . , Sn))) to alt(S1, S2, . . . , Sn).

If we consider Basic as finite, then we can represent it as an alternative of

34 Chapter 3. Syntax and Semantics of Constrained Interactions

:A
 :B
 :C

1

2

3

4

5

6

5
 3

4

1

6

2

(a) Basic interaction (b) Graph of dependencies

Figure 3.7: Basic interaction

its linearizations. Consider the example shown in Figure 3.7(a), the basic
interaction (call it B) can be described as alt(B1, B2,..., Bn) where the Bi’s
are the possible linearizations, defined as follows.

Definition 3.3.1. (Syntactic Linearization)
Let B be a basic interaction represented by the pomset [(X,≤X,λX)], then
Bi represents a linearization of B if Bi = strict(η1,...,ηn) such that λX :
X → ⋃

ηi and ∀i, j. ηi = λX(x), ηj = λX(y), x 6= y. x ≤X y ⇒ i < j.

If we consider the graph shown in Figure 3.7(b), representing the implicit
partial order (where each arrow from a to b represents that a occurs before
b), possible linearizations are strict(1,4,5,6,2,3), strict(4,1,5,6,2,3) and
strict(4,1,6,2,5,3), among others.

If only finite event-labeled pomsets are used to define a basic interaction,
and given that, on the one hand, these pomsets are equivalent to the dis-
junction of their linearizations and, on the other, the operator alt provides
disjunction, then events can be used as base case instead of Basic in the
grammar of Figure 3.4. The base case of the satisfaction relation should
state that ρ |=p η if

⋃
H(ρ)n \ {τ} = {η}, where η is an event. In this way,

the semantic definition of (constrained) interactions can be substantially
simplified.

3.4 Related Work

There is a large amount of work defining the semantics of scenario-based
descriptions including UML 1.x Sequence Diagrams [LLH04, Kna99] and
Message Sequence Charts [Krü00, LKK+02].

3.4. Related Work 35

To our interest, there are works which define the semantics of UML 2.0
Interaction. Cengarle and Knapp [CK04b], Haugen and Stølen [HKHS05],
and Störrle [Stö04c] define denotational semantics closely related to our
semantics. Cengarle and Knapp in [CK05] and Lund and Stølen [LS06] also
define a formal semantics of UML 2.0 Interactions. We will not include these
two works in our comparison since they use an operational approach.

Finally, we will briefly present related work from Grosu and Smolka [GS05],
Hammal [Ham06], and Cavarra and Küster-Filipe [CKF04]. These works
present an automata-theoretic semantics for UML 2.0 Interactions.

3.4.1 Related Semantics

Our semantics is a true concurrency linear-time trace-based semantics of
complete traces with real time. In contrast, Störrle’s semantics, as the one
developed by Cengarle and Knapp, are interleaving semantics, while the one
by Haugen and Stølen is true-concurrent. The original semantics of Cengarle
and Knapp does not consider time at all while the others consider abstract
time.

Positive and Negative Behavior

The semantics of the positive fragment defined above coincides with the
interpretation given by Störrle where a trace must completely traverse a
positive region in order to be considered positive. The semantics of the
negative fragment has strong relationship with the one defined by Haugen
and Stølen [HS03].

Störrle considers three different interpretations of neg(S). All of them coin-
cide in declaring negative for neg(S) all those traces that are positive for S.
For the positive traces of neg(S), interpretation (1), called “not the [valid]
traces of S”, assigns no positive traces to neg(S) (our definition coincides
with this interpretation); interpretation (2), called “anything but the [valid]
traces of S”, makes all traces that are not positive for S the positive traces
of neg(S); interpretation (3) declares the negative traces of S to be the pos-
itive traces for neg(S). Employing the interpretations (1) or (3), the usage
of negation inside combined fragments leads to the undesirable consequence
that the overall interaction shows no positive traces at all. Interpretation
(2) excludes the possibility of inconclusive traces for neg(S).

In contrast, Haugen and Stølen use another interpretation: neg(S) only
states what we cannot do, but it does not state what we can do. So, the
only thing to do is to do nothing (the empty trace ε). The proposal of

36 Chapter 3. Syntax and Semantics of Constrained Interactions

Haugen and Stølen states that “[. . .] any trace that [completely traverses
a negative region] is a negative scenario. Anything may happen [afterwards],
it will never make it positive”. It is not explicitly said that further steps
cannot make the trace inconclusive. Our semantics follows the same ideas.

Our definition of the negative satisfaction relation for the alt operator differs
from the view of Störrle, and Haugen and Stølen. They define alt as the
disjunction of the behaviors specified by each operand. In this sense, one
of the operands has to be run through negatively in order to make a run
negative. In some cases this seems intuitive as in the example of Figure 3.8,
introduced in [HKHS05]. An execution sending and receiving the message
gravy is considered negative since gravy sauce is not wanted anymore by
the cooking apprentice, but beárnaise sauce instead. For our semantics,
this case is considered inconclusive since the system-run is negative for the
first operand and inconclusive for the other. However, this definition has an
important disadvantage which we will discuss in the next chapter.

: Chef
 : Apprentice

alt

beárnaise

neg
 gravy

Figure 3.8: Alternative as a disjunction of behaviors

A further deviation from the proposal of Haugen and Stølen, and Störle, is
the existence of overspecified interactions (which let some traces be positive
and negative at the same time). Ignoring the existence of such traces is
restrictive from a semantical point of view.

Our proposal adds another aspect to consider. In the original semantics
from Cengarle and Knapp, a negative region was only determined by the
trace and the interaction. Now, the positivity/negativity of a system-run
is determined also by the OCL/RT constraints. A new satisfaction rule
was added in order to evaluate where a system-run positively/negatively
satisfies an OCL/RT constrained interaction. Even with constraints we still
have inconclusive system-runs and overspecified interactions. Störrle, and
Haugen and Stølen incorporate time constraints in their semantics. There,

3.4. Related Work 37

only basic constraints can be expressed involving duration intervals between
two time points (events). The use of OCL/RT allows a powerful specification
of constraints, including those considered in related works.

Events and Operators

We use only two kinds of events: send and receive message events. Haugen
and Stølen consider another event corresponding to the consumption of the
message. This involves storage of events before consumption, scheduling of
them, among others. These aspects are associated with a powerful system
specification but are left for future study.

Some events from the OCL/RT proposal are discarded because they repre-
sent behavior not related to the interactions being modeled, as SignalEvent,
ChangeEvent, TerminationEvent and so on. These events will not be part
of the OCL/RT constraints specified in this work, but they will be used in a
complete specification of the system. All these events are represented within
a system-run by the silent event τ and discarded during evaluation.

Some UML 2.0 operators for interactions are not considered, namely break
and critical, and also other interaction components as message parame-
ters, references, gates and continuations (some of them are considered by
Haugen and Stølen). In order to complete the semantics given in this work,
further work is needed.

Former Semantics

Some changes were made to the semantics defined by Cengarle and Knapp
[CK04b]. We use a more expressive notion of trace: a system-run. This no-
tion allows the use of OCL/RT constraints in interactions and the fusion of
both semantics. In consequence, the concepts of concurrence, strict sequenc-
ing, weak sequencing and filtering of system-runs were redefined in order to
adapt the satisfaction rules for par, strict, seq and ignore, respectively.

We updated the negative satisfaction relation. The semantics of negation
was redefined in the style of the semantics of the sequential composition:
after traversing a negative region, a system-run will always be negative no
matter what happens afterwards.

Finally, we remark a distinction between the semantics in this work and the
original developed by Cengarle and Knapp. As it is proven in Theorem 4.3.2
below, the new semantics is a concretization of the original semantics. This
means that the set of positive system-runs accepted by the new semantics is
a subset of the positive traces accepted by the original one, negative system-

38 Chapter 3. Syntax and Semantics of Constrained Interactions

runs may now be inconclusive, and inconclusive system-runs remain being
inconclusive.

3.4.2 Other Semantics

Hammal [Ham06] defines a formal semantics for UML 2.0 Interactions by
using a branching time structure rather than traces. This model (a lattice-
like graph) records both traces of all interaction components together with
possible execution bifurcations and can be directly unfolded into a transi-
tion system capturing the intended behavior. It also proposes a method to
extract time properties from interactions and add them into the graph in
order to achieve timeliness and performance analysis. However, constraints
taken into consideration are only basic constraints as in the works of Störrle,
and Haugen and Stølen.

Grosu and Smolka [GS05] present an automata-theoretic semantics for in-
teractions that solves how to assign a precise meaning to a set of interactions
without compromising refinement. The semantics relies on the observation
that negative and positive behavior should be regarded as safety and live-
ness properties, respectively. Given a set of interactions they construct a
safety Büchi automaton from the negative behavior and a liveness Büchi
automaton [Büc62] from the positive behavior. The safety and liveness au-
tomata ensure that a trace that may either lead to the completion of a bad
scenario or prevent the completion of a good scenario is rejected. They take
the product of these two automata as the operational semantics of the orig-
inal set of interactions and the corresponding language as the denotational
semantics. The semantics does not consider constraints at interaction level.

Cavarra and Küster-Filipe [CKF04] present an operational semantics which
is based on abstract state machines. This is closely related to the idea of
state-based constraints satisfaction (as liveness properties). They describe
a set of operational rules formalizing the behavior of instances involved in
the interaction. According to the location where an instance lies, the se-
mantics decides what step to execute and allows the trace to progress to the
next location. The semantics ignores some important combined fragments
as ignore and loop and does not consider constraints. It also adds some
features in order to represent mandatory and possible behavior as in Live
Sequence Charts. In this way, they add the notion of locations, which are
points in the diagram. This notion, in our semantics, can not be repre-
sented since sometimes a location represents a time point without any event
occurring on it (as the beginning of the execution of a combined fragment).
In our approach sequence diagrams model behavior in the form of possi-
ble interactions. In contrast, our definitions for opt and assert allows the
incorporation of possible and mandatory behavior, respectively.

3.4. Related Work 39

Summary

In this chapter an extended abstract syntax of UML 2.0 Interactions with
OCL/RT constraints support was given, and a true concurrency linear-
time trace-based semantics of complete traces with real-time was developed.
The semantics allows recognizing positive and negative system-runs with
constraints satisfaction, improving the potential of the language for inter-
component behavioral specifications.

We also discussed the possibility of simplifying the defined semantics by
considering an event as the base case of every interaction instead of a basic
interaction. Finally, we made a comparison with other approaches in order
to analyze the potential of our work. In this case, as far as we know our work
is the only one which considers complex constraints in interactions with a
formal semantics supporting it.

Chapter 4

Properties of Constrained
Interactions

It is useful to prove that properties from the original semantics given in
[CK04b] still hold after defining the modifications. It is also of interest to
derive new properties from the semantics to improve its comprehension.

This chapter is structured as follows. Section 4.1 presents basic properties
from the original semantics. Section 4.2 presents properties of interest with
respect to constrained interactions. Finally, Section 4.3 proves that the
semantics of interactions with constraints is a concretization of the previous
semantics of interactions without constraints.

4.1 Basic Properties

Basic properties in the original semantics still hold in the new one. In
particular, both forms of sequential composition are associative, and parallel
and alternative composition are associative and commutative.

Lemma 4.1.1. Let S1, S2, and S3 be interactions, and ρ be a system-run.

1a. ρ |=p strict(S1,strict(S2,S3)) ⇔ ρ |=p strict(strict(S1,S2),S3)

Proof. If ρ |=p strict(S1,strict(S2,S3)) then ∃ (ρ1,ρ2) ∈ ρ; where ρ1 |=p

S1 ∧ ρ2 |=p strict(S2,S3). In the same way, ∃ (ρ3,ρ4) ∈ ρ2; where ρ3 |=p

S2 ∧ ρ4 |=p S3. According to the definition of strict sequencing, ρ is divided
into three parts corresponding to ρ1, ρ3 and ρ4 in this order. In this way,
(ρ1,ρ3) ∈ ρ5; ∧ ρ5; |=p strict(S1,S2) ∧ ρ4 |=p S3. Finally, (ρ5,ρ4) ∈ ρ and
ρ |=p strict(strict(S1,S2),S3).

41

42 Chapter 4. Properties of Constrained Interactions

1b. ρ |=n strict(S1,strict(S2,S3))⇔ ρ |=n strict(strict(S1,S2),S3)

Proof. If ρ |=n strict(S1,strict(S2,S3)) then ∃ (ρ1,ρ2) ∈ ρ; where ρ1 |=n

S1 or (ρ1 |=p S1 ∧ ρ2 |=n strict(S2,S3)). In the same way, ∃ (ρ3,ρ4) ∈ ρ2;

where ρ3 |=n S2 or (ρ3 |=p S2 ∧ ρ4 |=n S3). Making some calculations ρ1 |=n

S1 or (ρ1 |=p S1 ∧ ρ3 |=n S2) or (ρ1 |=p S1 ∧ ρ3 |=p S2 ∧ ρ4 |=n S3). As in
the last proof, according to the definition of strict sequencing ρ is divided
into three parts corresponding to ρ1, ρ3 and ρ4 in this order. In this way,
(ρ1,ρ3) ∈ ρ5; ∧ ρ5; |=n strict(S1,S2) or (ρ5; |=p strict(S1,S2) ∧ ρ4 |=n

S3). Finally, (ρ5,ρ4) ∈ ρ ∧ ρ |=n strict(strict(S1,S2),S3).

2a. ρ |=p seq(S1,seq(S2,S3)) ⇔ ρ |=p seq(seq(S1,S2),S3)

Proof. If ρ |=p seq(S1,seq(S2,S3)) then ∃ (ρ1,ρ2) ∈ ρ;<> where ρ1 |=p S1 ∧
ρ2 |=p seq(S2,S3). In the same way, ∃ (ρ3,ρ4) ∈ ρ2;<> where ρ3 |=p S2 ∧
ρ4 |=p S3. According to the definition of weak sequencing, ρ is partitioned in
ρ1, ρ3 and ρ4 without loosing events nor dynamic basis, as well as the order
given by at is kept. We can compone the system-runs in order to get the
original system-run ρ (the composition will result in a set of system-runs
with the occurrence of ρ). Consequently, (ρ1,ρ3) ∈ ρ5;<> and (ρ5,ρ4) ∈ ρ
with ρ5 |=p seq(S1,S2) ∧ ρ4 |=p S3. Finally, ρ |=p seq(seq(S1,S2),S3).

2b. ρ |=n seq(S1,seq(S2,S3)) ⇔ ρ |=n seq(seq(S1,S2),S3)

Proof Sketch. This proof is the same as in the case of strict with the
considerations done in the last proof about decomposition and composition
of system-runs using the definition of weak sequencing.

3a. ρ |=p par(S1,par(S2,S3)) ⇔ ρ |=p par(par(S1,S2),S3)

3b. ρ |=n par(S1,par(S2,S3)) ⇔ ρ |=n par(par(S1,S2),S3)

Proof Sketch. The proof for the positive satisfaction relation is the same as
in the case of strict and seq. Demonstrations for the negative satisfaction
relation involve a few more calculations and are straightforward.

4a. ρ |=p par(S1,S2) ⇔ ρ |=p par(S2,S1)

4b. ρ |=n par(S1,S2) ⇔ ρ |=n par(S2,S1)

Proof. If ρ |=p par(S1,S2) then ∃ (ρ1,ρ2) ∈ ρ‖ such that ρ1 |=p S1 ∧ ρ2 |=p S2.
Finally, by the definition of concurrence, if (ρ1,ρ2) ∈ ρ‖ then (ρ2,ρ1) ∈ ρ‖ and
thus ρ |=p par(S2,S1). Demonstration for the negative satisfaction relation
is straightforward.

5a. ρ |=p alt(S1,alt(S2,S3)) ⇔ ρ |=p alt(alt(S1,S2),S3)

Proof. ρ |=p alt(S1,alt(S2,S3)) then ρ |=p S1 ∨ ρ |=p alt(S2,S3). Following
the same reasoning, ρ |=p alt(S2,S3) if ρ |=p S2 ∨ ρ |=p S3. Finally, we have

4.2. Constraint Properties 43

the same conditions that in ρ |=p alt(alt(S1,S2),S3).

5b. ρ |=n alt(S1,alt(S2,S3)) ⇔ ρ |=n alt(alt(S1,S2),S3)

Proof. ρ |=n alt(S1,alt(S2,S3)) then ρ |=n S1 ∧ ρ |=n alt(S2,S3). Following
the same reasoning, ρ |=n alt(S2,S3) if ρ |=n S2 ∧ ρ |=n S3. Finally, we
have the same conditions that in ρ |=n alt(alt(S1,S2),S3).

6a. ρ |=p alt(S1,S2) ⇔ ρ |=p alt(S2,S1)

Proof. If ρ |=p alt(S1,S2) then ρ |=p S1 ∨ ρ |=p S2, that is the same
condition that in alt(S2,S1).

6b. ρ |=n alt(S1,S2) ⇔ ρ |=n alt(S2,S1)

Proof. If ρ |=n alt(S1,S2) then ρ |=n S1 ∧ ρ |=n S2, that is the same
condition that in alt(S2,S1).

4.2 Constraint Properties

We can prove some elementary properties using the satisfaction relation on
constraints.

Lemma 4.2.1. Let S be a non overspecified interaction, ϕ be a constraint
and ρ be a system-run.

1. ρ |=p constraint(ϕ,S) ⇒ ρ |=n constraint(not(ϕ),S)

Proof. If ρ |=p constraint(ϕ,S) then (ρ, 0); ∅ ` ϕ ↓ true. Thus (ρ, 0); ∅ `
not ϕ ↓ false, and finally ρ |=n constraint(not ϕ,S).

2. ρ |=p constraint(not(ϕ),S) ⇒ ρ |=n constraint(ϕ,S)

Proof. If ρ |=p constraint(not ϕ,S) then (ρ, 0); ∅ ` not ϕ ↓ true. Thus
(ρ, 0); ∅ ` ϕ ↓ false, and finally ρ |=n constraint(ϕ,S).

3. ρ |=n constraint(ϕ,S) ∧ ρ |=p S ⇒ ρ |=p constraint(not(ϕ),S)

Proof. If ρ |=n constraint(ϕ,S) ∧ ρ |=p S then (ρ, 0); ∅ ` ϕ ↓ false. Thus,
(ρ, 0); ∅ ` not ϕ ↓ true and finally ρ |=p constraint(not ϕ,S).

4. ρ |=n constraint(not(ϕ),S) ∧ ρ |=p S ⇒ ρ |=p constraint(ϕ,S)

Proof. If ρ |=n constraint(not ϕ,S) ∧ ρ |=p S then (ρ, 0); ∅ ` not ϕ ↓ false.
Thus, (ρ, 0); ∅ ` ϕ ↓ true, and finally ρ |=p constraint(ϕ,S).

44 Chapter 4. Properties of Constrained Interactions

4.3 Semantical Concretization

We can prove that the semantics of interactions with constraints is a con-
cretization of the original semantics of interactions without constraints, i.e.,
the new semantics recognizes more specific behavior than the original one
due to the incorporation of constraints. In other words, if some execution is
considered valid for a given interaction by the new semantics then it is also
considered valid by the previous semantics discarding constraint satisfaction.

To prove this we define the idea of interactions without OCL/RT constraints.

Definition 4.3.1. (Untimed Interactions)
The function untimes from interactions with OCL/RT constraints to inter-
actions without them is given by recursion on the syntactic structure of its
arguments as follows:

untimes(B) = B
untimes(strict(S1,S2)) = strict(untimes(S1),untimes(S2))

untimes(seq(S1,S2)) = seq(untimes(S1),untimes(S2))
untimes(par(S1,S2)) = par(untimes(S1),untimes(S2))

untimes(loop(m,n̄,S)) = loop(m,n̄,untimes(S))
untimes(ignore(M,S)) = ignore(M,untimes(S))

untimes(alt(S1,S2)) = alt(untimes(S1),untimes(S2))
untimes(neg(S)) = neg(untimes(S))

untimes(assert(S)) = assert(untimes(S))
untimes(constraint(ϕ,S)) = untimes(S)

where B ranges over basic interactions, S and Si over interactions, M over
sets of messages, m over the natural numbers, and n̄ over the natural num-
bers or ∞.

The original semantics is an interleaving semantics (only one event can hap-
pen at any given point in time) while the new one is a real-time semantics
(events can occur concurrently). Thus, to prove that the new semantics is
a concretization of the previous one, we have to prove that if a system-run
ρ positively satisfies an interaction considering the new positive satisfaction
relation, then every trace in linat(

⋃
i H(ρ)i \ {τ}) positively satisfies the un-

timed interaction considering the original positive satisfaction relation (|=∗
p,

shown in Figure 4.1).

4.3. Semantical Concretization 45

t |=∗
p B if t ∈ lin(B)

t |=∗
p strict(S1,S2) if ∃ t1,t2.t = t1;t2 ∧ t1 |=∗

p S1 ∧ t2 |=∗
p S2

t |=∗
p seq(S1,S2) if ∃ t1,t2.t ∈ lin(t1 ;<> t2) ∧ t1 |=∗

p S1 ∧ t2 |=∗
p S2

t |=∗
p par(S1,S2) if ∃ t1,t2.t ∈ lin(t1 ‖ t2) ∧ t1 |=∗

p S1 ∧ t2 |=∗
p S2

t |=∗
p loop(0,0,S) if t = ε

t |=∗
p loop(0,n+1,S) if t = ε ∨ t |=∗

p seq(S,loop(0,n,S))
t |=∗

p loop(m+1,n+1,S) if t |=∗
p seq(S,loop(m,n,S))

t |=∗
p loop(m,∞,S) if ∃ n ≥ m. t |=∗

p loop(m,n,S)
t |=∗

p ignore(M,S) if ∃ t1. t1 ∈ filter(M)(t) ∧ t1 |=∗
p S

t |=∗
p alt(S1,S2) if t |=∗

p S1 ∨ t |=∗
p S2

Figure 4.1: Original semantics of the positive fragment [CK04b]

Notation: For the following demonstrations we consider that t, t1 and t3
are traces as defined in [CK04b]: event-labeled pomset whose ordering is
total.

Theorem 4.3.2. Let ρ be a system-run, S be an interaction and |=∗
p the

positive satisfaction relation defined in [CK04b].

ρ |=p S ⇒ ∀t ∈ linat(
⋃

i H(ρ)i \ {τ}). t |=∗
p untimes(S)

Proof. By induction on the syntactic structure of S.

(Basic) If ρ |=p B, where B is a basic interaction, then (by definition of
positive satisfaction relation) linat(

⋃
i H(ρ)i\{τ}) ⊆ lin(B), this means that

∀t ∈ linat(
⋃

i H(ρ)i \ {τ}). t ∈ lin(B). Considering also that untimes(B) =
B (by definition of untimes) then t ∈ lin(untimes(B)). Finally, (by definition
of the original positive satisfaction relation) t |=∗

p untimes(B)

(Strict) If ρ |=p strict(S1,S2) then (by definition of positive satisfac-
tion relation) ∃ ρ1,ρ2. (ρ1,ρ2) ∈ ρ; ∧ ρ1 |=p S1 ∧ ρ2 |=p S2. Also, (by
Lemma 4.3.3(1)) ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}) ∃t1, t2. t = t1; t2 with t1 ∈

linat(
⋃

i H(ρ1)i \{τ}) and t2 ∈ linat(
⋃

i H(ρ2)i \{τ}). By inductive hypoth-
esis, t1 |=∗

p untimes(S1) and also t2 |=∗
p untimes(S2). Thus, by the original

positive satisfaction relation, t |=∗
p strict(untimes(S1),untimes(S2)), and

finally (by definition of untimes) t |=∗
p untimes(strict(S1,S2)).

(Seq) If ρ |=p seq(S1,S2) then (by definition of positive satisfaction rela-
tion) ∃ ρ1,ρ2. (ρ1,ρ2) ∈ ρ;<> ∧ ρ1 |=p S1 ∧ ρ2 |=p S2. Also, (by Lemma
4.3.3(2)) ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}) ∃t1, t2. t ∈ lin(t1 ;<> t2) with t1 ∈

linat(
⋃

i H(ρ1)i \ {τ}) and t2 ∈ linat(
⋃

i H(ρ2)i \ {τ}). By inductive hy-
pothesis, t1 |=∗

p untimes(S1) and also t2 |=∗
p untimes(S2). Thus, by the

original positive satisfaction relation, t |=∗
p seq(untimes(S1),untimes(S2)),

46 Chapter 4. Properties of Constrained Interactions

and finally (by definition of untimes) t |=∗
p untimes(seq(S1,S2)).

(Par) If ρ |=p par(S1,S2) then (by definition of positive satisfaction relation)
∃ ρ1,ρ2. (ρ1,ρ2) ∈ ρ‖ ∧ ρ1 |=p S1 ∧ ρ2 |=p S2. Also, (by Lemma 4.3.3(3)) ∀t ∈
linat(

⋃
i H(ρ)i \ {τ}) ∃t1, t2. t ∈ lin(t1 ‖ t2) with t1 ∈ linat(

⋃
i H(ρ1)i \ {τ})

and t2 ∈ linat(
⋃

i H(ρ2)i \{τ}). By inductive hypothesis, t1 |=∗
p untimes(S1)

and also t2 |=∗
p untimes(S2). Thus, by the original positive satisfaction

relation, t |=∗
p par(untimes(S1),untimes(S2)), and finally (by definition of

untimes) t |=∗
p untimes(par(S1,S2)).

(Loop1) If ρ |=p loop(0,0,S) then (by definition of positive satisfaction re-
lation)

⋃
i H(ρ)i \ {τ} = ∅ and consequently ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}). t

= ε. Finally, by definition of original positive satisfaction relation, t |=∗
p

loop(0,0,untimes(S)), and then (by definition of untimes)
t |=∗

p untimes(loop(0,0,S))

(Loop2) If ρ |=p loop(0,n + 1,S) then (by definition of positive satisfaction
relation)

⋃
i H(ρ)i \{τ} = ∅ ∨ ρ |=p seq(S,loop(0,n,S)). If

⋃
i H(ρ)i \{τ} =

∅ then the proof is the same as the case Loop1. If ρ |=p seq(S,loop(0,n,S))
then by (Seq), ∀t ∈ linat(

⋃
i H(ρ)i\{τ}). t |=∗

p untimes(seq(S,loop(0,n,S))),
and by definition of untimes t |=∗

p seq(untimes(S),loop(0,n,untimes(S))).
By definition of original positive satisfaction relation, t |=∗

p loop(0,n + 1,un-
times(S)). Finally, (by definition of untimes) t |=∗

p untimes(loop(0,n + 1,S))

(Loop3) If ρ |=p loop(m+1,n+1,S) then (by definition of positive satisfaction
relation) ρ |=p seq(S,loop(m,n,S)).
By (Seq), ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}). t |=∗

p untimes(seq(S,loop(m,n,S))),
and by definition of untimes t |=∗

p seq(untimes(S),loop(m,n,untimes(S))).
By definition of original positive satisfaction relation,
t |=∗

p loop(m+1,n+1,untimes(S)). Finally, (by definition of untimes)
t |=∗

p untimes(loop(m+1,n+1,S))

(Loop4) If ρ |=p loop(m,∞,S) then (by definition of positive satisfaction
relation) ∃ n ≥ m.ρ |=p loop(m,n,S). By one of the cases of (Loop) above,
∀t ∈ linat(

⋃
i H(ρ)i \ {τ}). t |=∗

p untimes(loop(m,n,S)), and by definition
of untimes, t |=∗

p loop(m,n,untimes(S)). Finally, by definition of original
positive satisfaction relation t |=∗

p loop(m,∞,untimes(S)), and then, (by
definition of untimes) t |=∗

p untimes(loop(m,∞,S))

(Ignore) If ρ |=p ignore(M,S) then (by definition of positive satisfaction
relation) ∃ ρ1. ρ1 ∈ filter(M)(ρ) ∧ ρ1 |=p S. By Lemma 4.3.3(4), ∀t1 ∈
linat(

⋃
i H(ρ)i\{τ}), ∃t∈ linat(

⋃
i H(ρ1)i\{τ}) such that t ∈ filterpom(M)(t1).

Also (by inductive hypothesis) ∀t ∈ linat(
⋃

i H(ρ1)i\{τ}). t |=∗
p untimes(S).

Thus, by definition of original positive satisfaction relation,
t1 |=∗

p ignore(M,untimes(S)). Finally, (by definition of untimes) t1 |=∗
p un-

times(ignore(M,S))

4.3. Semantical Concretization 47

(Alt) If ρ |=p alt(S1,S2) then (by definition of positive satisfaction relation)
ρ |=p S1 ∨ ρ |=p S2. By inductive hypothesis, ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}).

t |=∗
p untimes(S1) ∨ t |=∗

p untimes(S2). Thus, by original positive satisfac-
tion relation t |=∗

p alt(untimes(S1),untimes(S2)). Finally, (by definition of
untimes) t |=∗

p untimes(alt(S1,S2))

(Constraint) If ρ |=p constraint(ϕ,S) then (by definition of positive satis-
faction relation) (ρ,0); ∅ ` ϕ ↓ true ∧ ρ |=p S. By inductive hypothesis, ∀t ∈
linat(

⋃
i H(ρ)i \ {τ}). t |=∗

p untimes(S). Thus, (by definition of untimes)
t |=∗

p untimes(constraint(ϕ,S))

(Neg) If ρ |=p neg(S) then (by definition of positive satisfaction relation) ρ =
ε and consequently ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}). t = ε. Finally, by definition

of original positive satisfaction relation, t |=∗
p neg(untimes(S)), and then

(by definition of definition of untimes) t |=∗
p untimes(neg(S))

(Assert) If ρ |=p assert(S) then (by definition of positive satisfaction rela-
tion) ρ |=p S. By inductive hypothesis, ∀t ∈ linat(

⋃
i H(ρ)i \ {τ}). t |=∗

p

untimes(S). Thus, by definition of original positive satisfaction relation
t |=∗

p assert(untimes(S)). Finally, (by definition of untimes) t |=∗
p un-

times(assert(S))

The proof of the last theorem considering |=n instead of |=p is not possible
since false constraints make negative a system-run that positively satisfies
an interaction. Valid system-runs according to the previous semantics can
be considered valid, invalid or inconclusive according to the new semantics
since the semantics is more restrictive, due to the addition of constraints are
added. In the same way, if some system-run is considered invalid according
to the previous semantics it can be considered inconclusive according to the
new semantics.

In order to prove this result, we need to prove some properties about lin-
earization.

Lemma 4.3.3. Let ρ, ρ1 and ρ2 be system-runs

1. (ρ1,ρ2) ∈ ρ; ⇒ ∀t ∈ linat(
⋃

i H(ρ)i \ {τ}) ∃t1, t2. t = t1; t2 with t1 ∈
linat(

⋃
i H(ρ1)i \ {τ}) and t2 ∈ linat(

⋃
i H(ρ2)i \ {τ})

Proof. Every t ∈ linat(
⋃

i H(ρ)i \ {τ}) is a trace of the form [(X,≤X ,λX)].
Since (ρ1,ρ2) ∈ ρ;, t ∈ linat(

⋃
i H(ρ1)i \{τ} ∪

⋃
i H(ρ2)i \{τ}) for some ρ1,

ρ2. Thus, t can be written as follows [(X1∪X2, (≤X1 ∪ ≤X2 ∪ (X1×X2))∗,
λX1 ∪ λX2)], which is equal to [(X1,≤X1 ,λX1)];[(X2,≤X2 ,λX2)]. We then
define the traces t1 = [(X1,≤X1 ,λX1)] ∈ linat(

⋃
i H(ρ1)i \ {τ}) and t2 =

[(X2,≤X2 ,λX2)] ∈ linat(
⋃

i H(ρ2)i \ {τ}) and hence t = t1; t2 holds trivially

48 Chapter 4. Properties of Constrained Interactions

2. (ρ1,ρ2) ∈ ρ;<> ⇒ ∀t ∈ linat(
⋃

i H(ρ)i \ {τ}) ∃t1, t2. t ∈ lin(t1 ;<> t2)
with t1 ∈ linat(

⋃
i H(ρ1)i \ {τ}) and t2 ∈ linat(

⋃
i H(ρ2)i \ {τ})

Proof. Every t ∈ linat(
⋃

i H(ρ)i \ {τ}) is a trace of the form [(X,≤X ,λX)].
Since (ρ1,ρ2) ∈ ρ;<> , t ∈ linat(

⋃
i H(ρ1)i \ {τ} ∪ ⋃

i H(ρ2)i \ {τ}) for
some ρ1, ρ2. Thus, t can be written as follows [(X1 ∪ X2, (≤X1 ∪ ≤X2

∪ {(x1, x2) ∈ X1 × X2 | λX1(x1) <> λX2(x2)})∗, λX1 ∪ λX2)], which is
equal to [(X1,≤X1 ,λX1)] ;<> [(X2,≤X2 ,λX2)]. We then define the traces
t1 = [(X1,≤X1 ,λX1)] ∈ linat(

⋃
i H(ρ1)i \ {τ}) and t2 = [(X2,≤X2 ,λX2)] ∈

linat(
⋃

i H(ρ2)i \ {τ}) and hence t ∈ t1 ;<> t2. Since t1 and t2 are already
linearized, t ∈ lin(t1 ;<> t2) holds.

3. (ρ1,ρ2) ∈ ρ‖ ⇒ ∀t ∈ linat(
⋃

i H(ρ)i \ {τ}) ∃t1, t2. t ∈ lin(t1 ‖ t2) with
t1 ∈ linat(

⋃
i H(ρ1)i \ {τ}) and t2 ∈ linat(

⋃
i H(ρ2)i \ {τ})

Proof. Every t ∈ linat(
⋃

i H(ρ)i \ {τ}) is a trace of the form [(X,≤X ,λX)].
Since (ρ1,ρ2) ∈ ρ‖, t ∈ linat(

⋃
i H(ρ1)i\{τ} ∪

⋃
i H(ρ2)i\{τ}) for some ρ1, ρ2.

Thus, t can be written as follows [(X1 ∪X2, ≤X1 ∪ ≤X2 , λX1 ∪λX2)], which
is equal to [(X1,≤X1 ,λX1)] ‖ [(X2,≤X2 ,λX2)]. We then define the traces
t1 = [(X1,≤X1 ,λX1)] ∈ linat(

⋃
i H(ρ1)i \ {τ}) and t2 = [(X2,≤X2 ,λX2)] ∈

linat(
⋃

i H(ρ2)i \ {τ}) and hence t ∈ t1 ‖ t2. Since t1 and t2 are already
linearized, t ∈ lin(t1 ‖ t2) holds.

4. ρ1 ∈ filter(M)(ρ) ⇒ ∀t1 ∈ linat(
⋃

i H(ρ)i \ {τ}),
∃t ∈ linat(

⋃
i H(ρ1)i \ {τ}). t ∈ filterpom(M)(t1)

(filterpom is the filtering relation for pomsets defined in [CK04b])

Proof. By definition of linat, every t1 ∈ linat(
⋃

i H(ρ)i \ {τ}) is a trace
of the form [(X1,≤X1 ,λX1)] with λX1 : X1 →

⋃
i H(ρ)i and also every t

∈ linat(
⋃

i H(ρ1)i \ {τ}) is a trace of the form [(X,≤X ,λX)] with λX : X
→ ⋃

i H(ρ1)i. Since ρ1 ∈ filter(M)(ρ) then ≤X ⊆ ≤X1 and X ⊆ X1

where the elements removed are those corresponding to events in M. Fi-
nally, taking ≤X as ≤X1 restricted to those elements in X we conclude that
t ∈ filterpom(M)(t1) holds.

Summary

In this chapter some properties of the semantics were derived, in particular
there is a property which states that the semantics of interactions with
constraints is just a concretization of the original semantics. This result
states a strong relationship between our work and the one in [CK04b].

Chapter 5

Implementation and
Refinement

Refinement means to add information to a specification to make it closer
to an implementation. This definition is intended for formal verification
since during development we want to preserve some properties of the system
while it is being refined, and this can be achieved by formally defining the
notion of interactions refinement. In this work the notion of refinement by
model inclusion is used (as in [CK04b]): a concrete specification refines an
abstract specification if any model of the concrete specification is also a
model in the abstract one. We adapt these notions to our semantic domains
and we analyze their properties. We also introduce the notion of constraint
refinement since we are working with constrained interactions.

This chapter is structured as follows. Section 5.1 presents the notions of
implementation and refinement of an interaction, and analyzes some refine-
ment properties. Section 5.2 introduces the notion of constraints refinement
in the same sense as interactions refinement. Finally, Section 5.3 presents a
comparison with other approaches to refinement.

5.1 Definitions

The set of definitions given in [CK04b] about implementation and refinement
of an interaction are modified in order to consider our semantic domains. An
implementation of an interaction is related to the valid behavior specified by
the interaction. We define that a an arbitrary set of system-runs implements
some interaction if every system-run within the set does not negatively sat-
isfy the interaction, and there is at least one system-run positively satisfying

49

50 Chapter 5. Implementation and Refinement

the interaction.

Definition 5.1.1. (Implementation of Interactions)
A process is an arbitrary set of system-runs. A process I is an implementa-
tion of an interaction S, written I |= S, if

1. ∃ ρ ∈ I. ρ |=p S

2. ∀ ρ ∈ I. ρ 2n S

An interaction S is implementable if there is a process I such that I |= S.
A interaction is contradictory if it is not implementable.

As Haugen et al. define in [HKHS05], “refinement means to add information
to a specification such that the specification becomes closer to an implemen-
tation”. It is desirable to count with a formal definition of a system when
trying to establish properties at an abstract level and preserve them during
refinement. The idea of refinement used in this work is based on the idea of
“model inclusion”, in the same sense of traditional algebraic specifications:
a concrete specification refines an abstract specification if any model of the
concrete specification is also a model of the abstract one.

Definition 5.1.2. (Refinement)
An interaction S ’ refines an interaction S, written S ; S ’, if any implemen-
tation of S ’ is also an implementation of S, i.e., ∀ I. I |= S ’ ⇒ I |= S

Refinement implies that the set of genuine positive system-runs (system-
runs that are positive and not overspecified) cannot be enlarged, negative
system-runs remain negative, inconclusive system-runs can be transformed
into negative system-runs and at least one genuine positive system-run is
kept, as shown in the following Lemma (originally given in [CK04b]) and
resumed in Figure 5.1.

Lemma 5.1.3. Let S and S ’ be interactions with S ; S ’.

1. ∀ ρ. ρ 2p S ∨ ρ |=n S ⇒ ρ 2p S ’ ∨ ρ |=n S ’

Proof. Suppose ρ |=p S ’ ∧ ρ 2n S ’. Then {ρ} |= S ’, and also {ρ} |= S since
S ; S ’. Thus ρ |=p S and ρ 2n S.

2. If S ’ is implementable then ∀ ρ. ρ |=n S ⇒ ρ |=n S ’

Proof. Let I be a process such that I |= S ’ and let ρ be a system-run such
that ρ 2n S ’. Then, I ∪ {ρ} |= S ’, and thus I ∪ {ρ} |= S because S ; S ’.
Finally, ρ 2n S.

5.1. Definitions 51

3. If S ’ is implementable then ∃ ρ. ρ |=p S ∧ ρ |=p S ’

Proof. Since S ’ is implementable, there is a system-run ρ such that ρ |=p S ’
and ρ 2n S ’. Then, {ρ} |= S ’, and since S ; S ’, {ρ} |= S. Finally, ρ |=p S.

System Run Refined System Run
genuine positive genuine positive, negative or inconclusive

negative negative
inconclusive inconclusive or negative

Figure 5.1: Refinement of Interactions

A desirable property of refinement is that the operators be monotonic with
respect to it, since monotonicity ensures compositionality in the sense that
the different operands of a specification may be refined separately. Unfortu-
nately, this is not true unless the monotonicity is restricted to refinements
by non-overspecified interactions. Although for some operators, like alterna-
tive composition, this is enough, in some other cases (as sequential operators
when the refinement is done in the first argument) it is necessary to assume
that all positive system-runs before refinement are still positive after it. This
leads to the following definition.

Definition 5.1.4. (Positive Refinement)
An interaction S ’ positively refines an interaction S, written S ;p S ’, if S
; S ’ ∧ ∀ ρ. ρ |=p S ⇒ ρ |=p S ’.

With the last definition it is possible to define some refinement rules as
shown in Figure 5.2. First we prove those rules originally given in [CK04b].

Lemma 5.1.5. Let S, S1, S2, S ’, S1’ and S2’ be interactions with S ’, S1’
and S2’ implementable and not overspecified.

1. S1 ;p S1’ ⇒ strict(S1,S2) ;p strict(S1’,S2).

Proof. Let I be a process such that I |= strict(S1’,S2), then:

(a) ∃ ρ ∈ I. ρ |=p strict(S1’,S2). Thus (by definition of positive satisfaction
relation), ∃ (ρ1, ρ2) ∈ ρ;. ρ1 |=p S1’ ∧ ρ2 |=p S2. Due to the fact that S1’
is not overspecified, ρ12n S1’, and thus ρ1 |=p S1 and ρ12n S1 (by Lemma
5.1.3(1)). Finally, ρ |=p strict(S1,S2).

(b) ∀ ρ ∈ I. ρ 2n strict(S1’,S2). Thus (by definition of negative satisfaction
relation), ∀ (ρ1, ρ2) ∈ ρ;. ρ12n S1’ ∧ (ρ12p S1’ ∨ ρ22n S2). If ρ12n S1’ then

52 Chapter 5. Implementation and Refinement

(by Lemma 5.1.3(2)) ρ12n S1. If ρ12p S1’ then (by definition of positive
refinement) ρ12p S1. Putting all the information together, we conclude that
ρ 2n strict(S1,S2).

From (a) and (b) we conclude that I |= strict(S1,S2), thus if S1 ;p S1’,
then strict(S1,S2) ;p strict(S1’,S2).

2. S2 ; S2’ ⇒ strict(S1,S2) ; strict(S1,S2’).

Proof. Let I be a process such that I |= strict(S1,S2’), then:

(a) ∃ ρ ∈ I. ρ |=p strict(S1,S2’). Thus (by definition of positive satisfaction
relation), ∃ (ρ1, ρ2) ∈ ρ;. ρ1 |=p S1 ∧ ρ2 |=p S2’. Due to the fact that S2’
is not overspecified, ρ22n S2’, and thus ρ2 |=p S2 and ρ22n S2 (by Lemma
5.1.3(1)). Finally, ρ |=p strict(S1,S2).

(b) ∀ ρ ∈ I. ρ 2n strict(S1,S2’). Thus (by definition of negative satisfaction
relation), ∀. (ρ1, ρ2) ∈ ρ;. ρ12n S1 ∧ (ρ12p S1 ∨ ρ22n S2’). Then, (by Lemma
5.1.3(2)) ρ22n S2. Finally, ρ 2n strict(S1,S2).

From (a) and (b) we conclude that I |= strict(S1,S2), thus if S2 ; S2’,
then strict(S1,S2) ; strict(S1,S2’).

3. S1 ;p S1’ ⇒ seq(S1,S2) ;p seq(S1’,S2).

Proof Sketch. This proof is exactly the same as the first property of strict,
only changing ; by ;<>.

4. S2 ; S2’ ⇒ seq(S1,S2) ; seq(S1,S2’).

Proof Sketch. This proof is exactly the same as the second property of
strict, only changing ; by ;<>.

5. S1 ;p S1’ ⇒ par(S1,S2) ;p par(S1’,S2).

Proof. Let I be a process such that I |= par(S1’,S2), then:

(a) ∃ ρ ∈ I. ρ |=p par(S1’,S2). Thus (by definition of positive satisfaction
relation), ∃ (ρ1, ρ2) ∈ ρ‖. ρ1 |=p S1’ ∧ ρ2 |=p S2. Due to the fact that S1’
is not overspecified, ρ12n S1’, and thus ρ1 |=p S1 and ρ12n S1 (by Lemma
5.1.3(1)). Finally, ρ |=p par(S1,S2).

(b) ∀ ρ ∈ I. ρ 2n par(S1’,S2). Thus (by definition of negative satisfaction
relation), ∀ (ρ1, ρ2) ∈ ρ‖. (ρ12n S1’ ∨ ρ22n S2) ∧ (ρ12n S1’ ∨ ρ22p S2) ∧
(ρ12p S1’ ∨ ρ22n S2). If ρ12n S1’ then (by Lemma 5.1.3(2)) ρ12n S1. Else,
if ρ12p S1’ then (by definition of positive refinement) ρ12p S1. Putting all
the information together, we conclude that ρ 2n par(S1,S2).

From (a) and (b) we conclude that I |= par(S1,S2), thus if S1 ;p S1’, then
par(S1,S2) ;p par(S1’,S2).

5.1. Definitions 53

6. S2 ;p S2’ ⇒ par(S1,S2) ;p par(S1,S2’).

Proof. By the last property, we have that S2 ;p S2’ ⇒ par(S2,S1) ;p

par(S2’,S1). Now, using the fact that concurrence is commutative (Lemma
4.1.1(4)) we can conclude that par(S1,S2) ;p par(S1,S2’).

7. S1 ; S1’ ⇒ alt(S1,S2) ; alt(S1’,S2).

Proof. Let I be a process such that I |= alt(S1’,S2), then:

(a) ∃ ρ ∈ I. ρ |=p alt(S1’,S2). Thus (by definition of positive satisfaction
relation), ρ |=p S1’ ∨ ρ |=p S2. Due to the fact that S1’ is not overspecified,
ρ12n S1’, and thus ρ1 |=p S1 and ρ12n S1 (by Lemma 5.1.3(1)). Finally, ρ
|=p alt(S1,S2).

(b) ∀ ρ ∈ I. ρ 2n alt(S1’,S2). Thus (by definition of negative satisfaction
relation), ρ 2n S1’ ∨ ρ 2n S2. If ρ2n S1’ then (by Lemma 5.1.3(2)) ρ2n S1.
Finally, ρ 2n alt(S1,S2).

From (a) and (b) we conclude that I |= alt(S1,S2), thus if S1 ; S1’, then
alt(S1,S2) ; alt(S1’,S2).

8. S2 ; S2’ ⇒ alt(S1,S2) ; alt(S1,S2’).

Proof. By the last property, we have that S2 ; S2’ ⇒ alt(S2,S1) ;

alt(S2’,S1). Now, using the fact that alternative composition is commu-
tative (Lemma 4.1.1(6)) we can conclude that alt(S1,S2) ; alt(S1,S2’).

9. alt(S1, S2) ; S1

Proof. Let I be a process such that I |= S1. On the one hand ∃ ρ ∈ I with
ρ |=p S1 and thus ρ |=p alt(S1, S2). On the other hand ∀ ρ ∈ I. ρ 2n S1 and
hence ρ 2n alt(S1,S2) for all ρ ∈ I. Finally, we conclude that I |= alt(S1,
S2), thus alt(S1, S2) ; S1

10. alt(S1, S2) ; S2

Proof Sketch. This proof is developed in the same way as the last property.

11. S ; S ’ ⇒ assert(S) ; assert(S ’).

Proof. Let I be a process such that I |= assert(S ’), then:

(a) ∃ ρ ∈ I. ρ |=p assert(S ’). Thus (by definition of positive satisfaction
relation), ρ |=p S ’. Due to the fact that S ’ is not overspecified, ρ2n S ’, and
thus ρ |=p S and ρ2n S (by Lemma 5.1.3(1)). Finally, ρ |=p assert(S).

(b) ∀ ρ ∈ I. ρ 2n assert(S ’). Thus (by definition of negative satisfaction
relation), ρ |=p S ’. Due to the fact that S ’ is not overspecified, ρ2n S ’, and
thus ρ |=p S and ρ2n S (by Lemma 5.1.3(1)). Finally, ρ 2n assert(S).

54 Chapter 5. Implementation and Refinement

From (a) and (b) we conclude that I |= assert(S), thus if S ; S ’, then
assert(S) ; assert(S ’).

12. S ;p S ’ ⇒ neg(S) ;p neg(S ’).

Proof. Let I be a process such that I |= neg(S ’), then:

(a) ∃ ρ ∈ I. ρ |=p neg(S ’). Thus (by definition of positive satisfaction rela-
tion), ρ = ε. Then, ρ |=p neg(S).

(b) ∀ ρ ∈ I. ρ 2n neg(S ’). Thus (by definition of negative satisfaction rela-
tion), ∀ (ρ1, ρ2) ∈ ρ; ∧ ρ12p S ’. Then (by definition of positive refinement)
ρ12p S. Finally, ρ 2n neg(S).

From (a) and (b) we conclude that I |= neg(S), thus if S ;p S ’, then neg(S)
;p neg(S ’).

13. S ; S ’ ⇒ neg(S ’) ; neg(S).

Proof. Let I be a process such that I |= neg(S), then:

(a) ∃ ρ ∈ I. ρ |=p neg(S). Thus (by definition of positive satisfaction relation),
ρ = ε. Then, ρ |=p neg(S ’).

(b) ∀ ρ ∈ I. ρ 2n neg(S). Thus (by definition of negative satisfaction rela-
tion), ∀ (ρ1, ρ2) ∈ ρ; ∧ ρ12p S. Then, (by Lemma 5.1.3(1)) ρ12p S ’ or ρ1 |=n

S ’. If ρ12p S ’, then ρ 2n neg(S ’). If ρ1 |=n S ’, since S ’ is not overspecified,
ρ12p S ’, thus ρ 2n neg(S ’).

From (a) and (b) we conclude that I |= neg(S ’), thus if S ; S ’, then neg(S ’)
; neg(S).

Now we can complement the set of refinement rules with new ones for
ignore, loop and constraint, as shown in the following lemmas.

Lemma 5.1.6. Let S and S ’ be interactions with S ’ implementable and not
overspecified. Let M be a set of messages. If S ; S ’, then ignore(M,S) ;

ignore(M,S ’)

Proof. Let I be a process such that I |= ignore(M,S ’), then:

(a) ∃ ρ ∈ I. ρ |=p ignore(M,S ’). Thus (by definition of positive satisfac-
tion relation), ∃ ρ1 ∈ filter(M)(ρ). ρ1 |=p S ’. Then ρ12n S ’ as S ’ is not
overspecified, and by Lemma 5.1.3(1) ρ1 |=p S and ρ12n S. Finally, ρ |=p

ignore(M,S)

(b) ∀ ρ ∈ I. ρ 2n ignore(M,S ’). Thus (by definition of negative satisfaction
relation), ∀ρ1 ∈ filter(M)(ρ). ρ12n S ’. Finally, by Lemma 5.1.3(2) ρ12n S,
and hence, ρ2n ignore(M,S)

5.1. Definitions 55

From (a) and (b) we conclude that I |= ignore(M,S), thus if S ; S ’, then
ignore(M,S) ; ignore(M,S ’)

Lemma 5.1.7. Let S and S ’ be interactions and S ’ be implementable
and not overspecified. If S ;p S ’, then ∀ m,n, m ≤ n. loop(m,n,S) ;p

loop(m,n,S ’)

Proof. This is proven by induction on the pair (m,n), following the seman-
tic rules that define the positive and negative satisfaction relation of loop
(shown in Figure 3.4 and Figure 3.5, respectively).

Base Case ⇒ loop(0,0,-). Let I be a process such that I |= loop(0,0,S ’),
then (a) ∃ ρ ∈ I. ρ |=p loop(0,0,S ’). Thus (by definition of positive satis-
faction relation) ρ = ε, and then ρ |=p loop(0,0,S). Also, (b) ∀ ρ ∈ I. ρ
2n loop(0,0,S ’), and trivially (because loop(0,0,-) is never negative) ρ 2n

loop(0,0,S). Finally, from (a) and (b) we conclude that I |= loop(0,0,S),
thus if S ;p S ’, then loop(0,0,S) ;p loop(0,0,S ’).

Inductive Step ⇒ loop(0,n +1,-). The inductive hypothesis is: If S
;p S ’, then loop(0,n,S) ;p loop(0,n,S ’). Let I be a process such that I |=
loop(0,n+1,S ’), then (a) ∃ ρ ∈ I. ρ |=p loop(0,n+1,S ’). Thus (by definition
of positive satisfaction relation) ρ = ε or ρ |=p seq(S ’,loop(0,n,S ’)). If ρ = ε
then ρ |=p loop(0,n+1,S). In the other case we use the transitivity property
of refinement, in particular, combining the refinement properties (seq1) and
(seq2) as follows: if S ;p S ’ (hypothesis) and loop(0,n,S) ;p loop(0,n,S ’)
(inductive hypothesis) then seq(S,loop(0,n,S)) ;p seq(S ’,loop(0,n,S ’)).
Using this result, if ρ |=p seq(S ’,loop(0,n,S ’)) then ρ |=p seq(S,loop(0,n,S))
(by Lemma 5.1.3(1) and the fact that S ’ is not overspecified) and finally ρ
|=p loop(0,n+1,S). Also, (b) ∀ ρ ∈ I. ρ 2n loop(0,n+1,S ’), implies (by defi-
nition of negative satisfaction relation) ρ 2n seq(S ’,loop(0,n,S ’)). Using the
same reasoning as above with the Lemma 5.1.3(2), ρ 2n seq(S,loop(0,n,S)),
and then, ρ 2n loop(0,n+1,S).
Finally, from (a) and (b) we conclude that I |= loop(0,n+1,S ’), thus if S
;p S ’, then loop(0,n+1,S) ;p loop(0,n+1,S ’).

Inductive Step ⇒ loop(m +1,n +1,-). The inductive hypothesis is: If S
;p S ’, then loop(0,n,S) ;p loop(0,n,S ’). This case is proven exactly as
the second case due to positive/negative satisfaction relation also uses seq.
So, if S ;p S ’, then loop(m+1,n+1,S) ;p loop(m+1,n+1,S ’).

Inductive Step ⇒ loop(m,∞,-). Let I be a process such that
I |= loop(m,∞,S ’), then (a) ∃ ρ ∈ I. ρ |=p loop(m,∞,S ’). Thus (by definition
of positive satisfaction relation) ∃ m ≤ n. ρ |=p loop(m,n,S ’) and this
corresponds to one of the cases proven before. Also, (b) ∀ ρ ∈ I. ρ 2n

loop(m,∞,S ’), thus (by definition of negative satisfaction relation) ∀ m ≤ n.

56 Chapter 5. Implementation and Refinement

ρ 2n loop(m,n,S ’) and, one more time, this is one of the cases proven before.
Finally, from (a) and (b) we conclude that I |= loop(m,∞,S ’), thus if S ;p

S ’, then loop(m,∞,S) ;p loop(m,∞,S ’).

Lemma 5.1.8. Let S and S ’ be interactions with S ’ implementable and
not overspecified, let ϕ be a constraint. If S ; S ’, then constraint(ϕ,S)
; constraint(ϕ,S ’).

Proof. Let I be a process such that I |= constraint(ϕ,S ’), then:

(a) ∃ ρ ∈ I. ρ |=p constraint(ϕ,S ’). Thus (by definition of positive satisfac-
tion relation) ρ ` ϕ ↓ true ∧ ρ |=p S ’, and thus ρ2n S ’ as S ’ is not overspec-
ified. Then ρ |=p S by definition of ;, and thus, ρ |=p constraint(ϕ,S)

(b) ∀ ρ ∈ I. ρ 2n constraint(ϕ,S ’). Thus (by definition of negative satis-
faction relation) ρ 0 ϕ ↓ false ∧ ρ 2nS’. Finally, by Lemma 5.1.3(2) ρ2n S,
and hence, ρ 2n constraint(ϕ,S).

From (a) and (b) we conclude that I |= constraint(ϕ,S), thus if S ; S ’,
then constraint(ϕ,S) ; constraint(ϕ,S ’)

Finally, we can prove that if some constraint is added to an interaction then
the interaction is refined, as shown by the following lemma.

Lemma 5.1.9. Let ϕ be a constraint, and S be an interaction.
S ; constraint(ϕ,S).

Proof. Let I be a process such that I |= constraint(ϕ,S), then:

(a) ∃ ρ ∈ I. ρ |=p constraint(ϕ,S). Thus (by definition of positive satisfac-
tion relation) ρ ` ϕ ↓ true ∧ ρ |=p S.

(b) ∀ ρ ∈ I. ρ 2n constraint(ϕ,S). Thus (by definition of negative satis-
faction relation) ρ 0 ϕ ↓ false ∧ ρ 2n S

From (a) and (b) we conclude that I |= S, thus S ; constraint(ϕ,S).

A summary of refinement rules is shown in Figure 5.2 where S, S1, S2, S ’,
S1’ and S2’ are interactions and S ’, S1’ and S2’ are implementable and not
overspecified.

Corollary 5.1.10. The set of refinement rules shown in Figure 5.2 is correct
due to the proofs given in lemmas 5.1.5, 5.1.6, 5.1.7, 5.1.8 and 5.1.9.

5.2. Constraint Refinement 57

(str1)
S1 ;p S′1

strict(S1, S2) ;p strict(S′1, S2)
(seq1)

S1 ;p S′1
seq(S1, S2) ;p seq(S′1, S2)

(str2)
S2 ; S′2

strict(S1, S2) ; strict(S1, S
′
2)

(seq2)
S2 ; S′2

seq(S1, S2) ; seq(S1, S
′
2)

(par1)
S1 ;p S′1

par(S1, S2) ;p par(S′1, S2)
(par2)

S2 ;p S′2
par(S1, S2) ;p par(S1, S

′
2)

(alt1)
S1 ; S′1

alt(S1, S2) ; alt(S′1, S2)
(alt2)

S2 ; S′2
alt(S1, S2) ; alt(S1, S

′
2)

(alt3) alt(S1, S2) ; S1 (alt4) alt(S1, S2) ; S2

(loop)
S ;p S′

loop(m,n, S) ;p loop(m,n, S′)
(ass)

S ; S′

assert(S) ; assert(S′)

(ign)
S ; S′

ignore(M, S) ; ignore(M, S′)
(neg1)

S ; S′

neg(S′) ; neg(S)

(neg2)
S ;p S′

neg(S) ;p neg(S′)
(const2) S ; constraint(ϕ,S)

(const1)
S ; S′

constraint(ϕ, S) ; constraint(ϕ, S′)

Figure 5.2: Compositional refinements of interactions

We proved the essential soundness property of our calculus for interaction
refinement, that is, every statement that can be derived syntactically from
the set of refinement rules is valid from a semantical point of view. This
assertion is supported by the proofs given for each refinement rule, stating
that syntactic rules are semantically correct. However, we did not prove the
highly desirable reverse implication, called completeness, which means that
every statement semantically correct can be derived syntactically from the
refinement rules. Since this proof is not directly related with constrained
interactions, it is left for future study.

5.2 Constraint Refinement

We are tempted to define the notion of constraint refinement in the same
way as interaction refinement. A constraint refines another one if for every
system-run the evaluation of the constraints satisfies the table in Figure 5.3,

58 Chapter 5. Implementation and Refinement

formally written as follows.

Definition 5.2.1. (Constraint Refinement)
A constraint ϕ’ refines a constraint ϕ , written ϕ ; ϕ’, if ∀ ρ

• ρ ` ϕ’↓ true ⇒ ρ ` ϕ ↓ true

• ρ ` ϕ’↓ undef ⇒ ρ 0 ϕ ↓ false

Constraint Refined Constraint
true true, false or undefined
false false

undefined undefined or false

Figure 5.3: Constraint Refinement

We can also define a new refinement rule as those shown in Figure 5.2, but
this time related to constraint refinement instead of interaction refinement.

Lemma 5.2.2. Let ϕ and ϕ’ be constraints, and S be an interaction.
If ϕ ; ϕ’, then constraint(ϕ,S) ; constraint(ϕ’,S).

Proof. Let I be a process such that I |= constraint(ϕ’,S), then:

(a) ∃ ρ ∈ I. ρ |=p constraint(ϕ’,S). Thus (by definition of positive satis-
faction relation) ρ ` ϕ’ ↓ true ∧ ρ |=p S. Then (by definition of constraint
refinement) ρ ` ϕ ↓ true, and finally, ρ |=p constraint(ϕ,S)

(b) ∀ ρ ∈ I. ρ 2n constraint(ϕ’,S). Thus (by definition of negative satis-
faction relation) one of the following cases occur

(i) ρ ` ϕ’ ↓ true ∧ ρ 2nS. Then (by definition of constraint refinement)
ρ ` ϕ ↓ true, and finally ρ 2n constraint(ϕ,S)

(ii) ρ ` ϕ’ ↓ undef ∧ ρ 2nS. Then (by definition of constraint refinement)
ρ 0 ϕ ↓ false and in consequence ρ 2n constraint(ϕ,S)

From (a) and (b) we conclude that I |= constraint(ϕ,S), thus if ϕ ; ϕ’,
then constraint(ϕ,S) ; constraint(ϕ’,S).

5.3. Related Work 59

5.3 Related Work

Unfortunately, our definition of refinement does not ensure monotonicity of
operators with respect to refinement, unless some restrictions are introduced
(Section 5.1). This is the same problem as in the semantics of Cengarle and
Knapp [CK04b].

The works from Störrle, and Haugen and Stølen define alt as the disjunction
of behaviors specified by each operand. If this approach is taken in the
negative satisfaction relation, the rule alt(S1, S2) ; Si i = 1,2 is not valid
anymore. This is proven as follows. Let I be a process such that I |= S1.
Then, by the definition of refinement ∀ ρ ∈ I. ρ 2n S1. However, since
the negative satisfaction relation for the alternative is a disjunction of the
negative satisfaction of both operands, we must know what happens with S2

in order to ensure that ρ 2n alt(S1, S2). This situation prevents refinement
of an alternative by implementing only one of its operands.

Störrle, and Haugen and Stølen have different definitions of refinement which
we will discusses in the following subsections. Each definition has specific
consequences, so maybe a quite more powerful notion of refinement could
be achieved someday. They also define refinement of time constraints. Time
constraints are time intervals where the duration between two time points
(events) must occur. Refinement means decreasing the intervals. Our notion
of refinement allows specifying this kind of constraints in OCL/RT, but it is
impossible to consider exactly the same idea for constraint refinement since
we do not have the notion of interval but the existence of constraints which
evaluate to true/false/undefined. In conclusion, there is no clue about how
to define refinement of a constraint in the same terms of those works.

Grosu and Smolka [GS05] consider plain sequence diagrams represented as
automata and a set of operators which allows automata composition, and in
consequence they represent UML 2.0 Interactions. Refinement is defined in
terms of language inclusion. A sequence diagram refines another one if the
language accepted by the automaton of the first diagram is included in the
language accepted by the automaton of the second diagram. Finally, they
show that refinement is compositional with respect to sequential composi-
tion, alternative composition, parallel composition and star+ composition
(looping).

Haugen and Stølen’s Refinement

Haugen and Stølen [HKHS05] define refinement as a set of properties which
ensures that negative system-runs must always remain negative in a refine-
ment, while positive system-runs may remain positive or become negative;

60 Chapter 5. Implementation and Refinement

inconclusive system-runs may go anywhere. This is summarized in Figure
5.4.

Trace Refined Trace
positive positive or negative
negative negative

inconclusive inconclusive, positive or negative

Figure 5.4: Haugen and Stølen’s refinement

We can define this idea of refinement as follows.

Definition 5.3.1. (Haugen and Stølen’s Refinement)
An interaction S’ refines an interaction S, written S ;HS S ’, if

1. ∀ ρ. ρ |=n S ⇒ ρ |=n S ’

2. ∀ ρ. ρ |=p S ⇒ ρ |=p S ’ ∨ ρ |=n S ’

Note that there is no difference between positive and genuine positive system-
runs. In contrast, we loose the idea of implementation of a system which
seems natural.

They prove that the semantics is monotonic with respect to operators, except
for assert. Besides, they define different kinds of refinements: supplement-
ing, narrowing and detailing. The spirit behind all these concepts, however,
makes them difficult to compare, since supplementing and narrowing address
design evolution, whereas refinement is a tool for formal verification. In con-
trast with our definition of refinement, they allow inconclusive system-runs
become positive after refinement. Also, they allow S ;HS neg(S). After
applying this refinement step, there can be no further refinement steps.

If we use this definition with our semantics, we realize that refinement rules
shown in Figure 5.2 can be proven without the idea of positive refinement.
As an example, consider the next refinement rule involving strict.

Lemma 5.3.2. Let S1, S2, and S1’ be interactions. If S1 ; S1’, then
strict(S1,S2) ; strict(S1’,S2).

Proof. Both properties in the definition of Haugen and Stølen’s refinement
are used.

(a) ∀ ρ. ρ |=n strict(S1,S2) then (by negative relation definition) ∃ ρ1,ρ2.
(ρ1,ρ2) ∈ ρ; ∧ (ρ1 |=n S1 ∨ (ρ1 |=p S1 ∧ ρ2 |=n S2)). Now, if ρ1 |=n S1 then

5.3. Related Work 61

(by S ; S ’) ρ1 |=n S1’, else, if ρ1 |=p S1 then (by S ; S ’) ρ1 |=p S1’ or ρ1

|=n S1’. Putting all the cases together, ρ |=n strict(S1’,S2).

(b) ∀ ρ. ρ |=p strict(S1,S2) then (by positive relation definition) ∃ ρ1,ρ2.
(ρ1,ρ2) ∈ ρ; ∧ ρ1 |=p S1 ∧ ρ2 |=p S2. Now, if ρ1 |=p S1 then (by S1 ;

S1’) ρ1 |=p S1’ (and consequently ρ |=p strict(S1’,S2)) or ρ1 |=n S1’ (and
consequently ρ |=n strict(S1’,S2)).

From (a) and (b) we conclude that if S1 ; S1’, then strict(S1,S2) ;

strict(S1’,S2).

Störrle’s Refinement

Störrle [Stö03a] defines an elaboration as the “relation between two inter-
actions such that one of them contains more detail and less uncertainty
than the other”. In this sense, an enrichment is a relationship where one
interaction has more valid system-runs than another while a restriction is
a relationship where one interaction has more invalid system-runs than an-
other. Then, a refinement is a relationship that is an enrichment and a
restriction at the same time. Refinement tends to reduce uncertainty since
the set of inconclusive system-runs for a given interaction is reduced in
successive refinement steps becoming positive or negative. Notice that this
approach seems similar to our definition of positive refinement since positive
system-runs remain positive after refinement. This is summarized in Figure
5.5.

Trace Refined Trace
positive positive
negative negative

inconclusive inconclusive, positive or negative

Figure 5.5: Störrle’s refinement

We can define this idea of refinement as follows.

Definition 5.3.3. (Störrle’s Refinement)
An interaction S’ refines an interaction S, written S ;S S ’, if

1. ∀ ρ. ρ |=n S ⇒ ρ |=n S ’

2. ∀ ρ. ρ |=p S ⇒ ρ |=p S ’

62 Chapter 5. Implementation and Refinement

Störrle does not adopt a concrete semantics. Instead, he discusses different
possible interpretations of the specification in [OMG05b]. Consequently, it
superficially discusses the idea of refinement depending on the interpreta-
tion of neg and assert. He observes that only the interpretation of negation
called “anything but the [valid] traces of S” and the interpretation of asser-
tion as affirmation (the same idea we use) constitute elaborations in the sense
of neg(S) ;S S and assert(S) ;S S. None of the other interpretations
constitute any other of the relationships defined. These two interpretations
have in common that they completely remove contingency but in contrast
there can be no further refinement steps afterwards. Within our interpreta-
tion of refinement this means that negative system-runs can be inconclusive
after refinement.

Summary

In this chapter the notions of implementation and of interaction refinement
were presented and also a set of refinement rules was introduced intended
for formal verification. Refinement implies that the set of genuine positive
system-runs (system-runs that are positive and not overspecified) cannot be
enlarged, negative system-runs remain negative, inconclusive system-runs
can be transformed into negative system-runs and at least one genuine pos-
itive system-run is kept. Also, the notion of constraint refinement was in-
troduced in the same sense as interactions refinement.

Some alternative definitions of refinement have been analyzed. Nowadays
there is no consensus in the community about the ideal definition of refine-
ment. Each definition has its own benefits and problems, and sometimes
its own application field, but there are no strong arguments to use one or
another. Perhaps, depending on the system which might be constructed we
can select the more appropriate approach.

Chapter 6

In Practice

The semantical background was not exhaustively analyzed from a practical
point of view. This is mandatory for a fine-tuning and a careful utilization
of the proposal. In this chapter, we show some examples of interactions with
OCL/RT constraints and we study the consequences of this approach consid-
ering the abstract syntax generated, the use of positive/negative satisfaction
relations in order to evaluate validity of system-runs, and the application of
refinement. We also discuss the support for guards on operands and state
invariants.

This chapter is structured as follows. Section 6.1 analyzes the use of UML
2.0 Interactions with OCL/RT constraints from a practical point of view.
Section 6.2 shows the application of our approach in some examples taken
from the literature detailing practical consequences of the results given in
past sections, and Section 6.3 present some discussions intended for an en-
hancement of the proposal. Finally, Section 6.4 present related work.

6.1 OCL/RT in use

By definition of the semantics, every constraint is local, i.e., it only restricts
the interaction within its scope. The scope of a constraint of the form
constraint(ϕ,S) is the interaction S. We illustrate this with the next ex-
ample. Consider the interaction in Figure 6.1 and add a constraint ϕ in the
second operand. The interaction can be represented as
strict(B1,constraint(ϕ,B2)) with message m as a basic interaction B1

and message n as a basic interaction B2.

63

64 Chapter 6. In Practice

: A
 : B

strict

m

n

Figure 6.1: Interaction with a strict sequencing

If ϕ restricts the sending of message n to be within 3 units of time after the
reception of message m, the constraint ϕ has to make reference to an event
in the first operand as shown next.

context B
def: rcvM : Event =

events->select(e | e.oclIsTypeOf(RcvMsgEvent)
and e.message.name = "m")->any()

def: sndN : Event =
events->select(e | e.oclIsTypeOf(SndMsgEvent)

and e.message.name = "n")->any()
constr: always((sndN.at - rcvM.at < 3)@sndN)

The satisfaction rule for strict sequencing states that
ρ |=p strict(B1,constraint(ϕ,B2)) if ∃ρ1, ρ2 such that (ρ1,ρ2) ∈ ρ; ∧ ρ1 |=p

S1 ∧ ρ2 |=p constraint(ϕ,B2). The second condition requires (ρ2, 0); ∅ ` ϕ
↓ true, but there is no information about ρ1 when evaluating ρ2 |=p B2.

This is because the scope of ϕ is only the interaction B2. To solve the
problem in this particular case, all the interaction must be constrained, i.e.,
constraint(ϕ, strict(B1,B2)).

In other situations, a constraint needs to reference a concrete event within
its scope. As an example, suppose the interaction of Figure 6.2(a) only the
first message m is constrained, neither the second nor the third; and also
consider the example of Figure 6.2(b) where the constraint is specified using
an explicit identifier.

6.2. Examples 65

:A

m {0..12}

m

m

:B
 :A

t2 = now

t1 = now

:B
 :C

{ t1-t2 < 5 }

m1

m2

(a) (b)

Figure 6.2: Example of constraints referencing concrete events

Within a basic interaction the total order of events in a lifeline can be used
to identify any event. With the inclusion of optional, ignore and loop
fragments there is no general strategy to do so. We can think of a general
strategy consisting of looking for an event depending on the basic interaction
it belongs to. If the event has some label identifying the basic interaction
it belongs to, we can isolate the set of events of any basic interactions and
then use the ordering within lifelines to identify each event. For this we can
use the path in the syntax tree of each event and also its iteration number
(in the case of loops).

This strategy is useful only with the appropriate semantical support. We
want a formal semantics which verifies the positive/negative satisfaction of
a given system-run considering now constraints which look for events by
using the labels of the events. Since the events in the system-run are not
equipped with labels, the semantics must dynamically assign labels to each
event. Due to the fact that a system-run could satisfy an interaction in
multiple ways, there will be multiple assignments for each event and only
the right assignment will satisfy the constraints. In this context, a change
in the semantics is not an easy business. Consequently, this subject is left
for future study.

6.2 Examples

This section shows the application of our approach in some examples taken
from the literature detailing practical consequences of the results given in
past sections. In particular, we show how to use OCL/RT to write basic
temporal constraints, we show how a system-run is satisfied by the using of
the satisfaction relations, we compare our approach with the theory of Live
Sequence Charts, and finally we analyze the meaning of refinement.

66 Chapter 6. In Practice

6.2.1 Basic Constraints

The first example shows how to specify OCL/RT constraints to express
time and duration observations, and time and duration constraints as shown
in [OMG05b]. Figure 6.3 presents the example (taken from [OMG05b])
consisting in one duration observation d (duration of the message Code),
one time observation t (reception of the message CardOut), two duration
constraints: duration of message CardOut and interval between the sending
of Code and the reception of OK, and one time constraint: time point of the
reception of CardOut.

user
:
User
 system
:
ACSystem

Code d =
duration

OK

CardOut {0..13}

Unlock

t =
now

{t..t+3}

{d..3*d}

Figure 6.3: Basic interaction with basic time constraints

When representing a basic interaction we can use a more concrete, set-based
notation like writing {snd(s,r,m) ≤ rcv(s,r,m)} instead of [({e1,e2},{e1 ≤
e2}, {e1 7→ snd(s,r,m), e2 7→ rcv(s,r,m)})].
The abstract syntax of the example is just the definition of a basic inter-
action B enclosed by two OCL/RT constraints ϕ1 and ϕ2. First, the basic
interaction is as follows.

6.2. Examples 67

{snd(user,system,Code) ≤ rcv(user,system,Code),
snd(system,user,CardOut) ≤ rcv(system,user,CardOut),

snd(system,user,OK) ≤ rcv(system,user,OK),
snd(user,system,Code) ≤ rcv(system,user,OK) ≤

rcv(system,user,CardOut),
rcv(user,system,Code) ≤ snd(system,user,CardOut) ≤

snd(system,user,OK) ≤ snd(system,-,Unlock)}

The order is defined as follows: (a) the reception of a message occurs after
sending it, and (b) events within a lifeline are ordered from top to bottom.
The constraints of the example can be specified in OCL/RT as follows.

context User
def: t : Real =

ACSystem.allInstances()->any().events->
select(e | e.oclIsTypeOf(SndMsgEvent) and

e.message.name = "OK")->any().at
def: sndCardOut : Event =

ACSystem.allInstances()->any().events->
select(e | e.oclIsTypeOf(SndMsgEvent) and

e.message.name = "CardOut")->any()
def: rcvCardOut : Event =

events->select(e | e.oclIsTypeOf(RcvMsgEvent) and
e.message.name = "CardOut")->any()

-- Duration of message CardOut and time of receiving CardOut
constr: always((rcvCardOut.at - sndCardOut.at <= 13)@rcvCardOut

and (t <= rcvCardOut.at)@rcvCardOut
and (rcvCardOut.at <= t + 3)@rcvCardOut)

context User
def: sndCode : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent) and
e.message.name = "Code")->any()

def: rcvCode : Event =
ACSystem.allInstances()->any().events->

select(e | e.oclIsTypeOf(RcvMsgEvent) and
e.message.name = "Code")->any()

def: rcvOK : Event =
events->select(e | e.oclIsTypeOf(RcvMsgEvent) and

e.message.name = "OK")->any()
def: duration : Real = rcvCode.at - sndCode.at

68 Chapter 6. In Practice

-- Interval between sending Code and receiving OK
constr: always((rcvOK.at - sndCode.at <= 3 * duration)@rcvOK

and (duration <= rcvOK.at - sndCode.at)@rcvOK)

One system-run ρ positive for the interaction is of the form (in order to sim-
plify the following discussion some the value of at was added as a parameter
in each event description)

(ω0, { snd(user,system,Code,at1), rcv(user,system,Code,at2),
snd(system,user,CardOut,at3) })

(ω1, { snd(system,user,OK,at4), rcv(system,user,OK,at5) })
(ω2, { rcv(system,user,CardOut,at6), snd(system,-,Unlock,at7)})

A system-run positively satisfies the interaction S if the system-run: (a)
satisfies the structure of the interaction (the events of the system-run corre-
spond to the events within the interaction), (b) is well-timed (the occurrence
time of the events satisfies the constraints), and (c) runs through valid sys-
tem states (system states of the system-run satisfy the constraints which
involve system instances).

The system-run ρ is valid for B depending on the assignments for ati. In
Figure 6.4, two different assignments for the system-run are provided. It is
easy to show that for both assignments ρ |=p B since linat(

⋃
i H(ρ)i \ {τ})

⊆ lin(B).

However, the whole interaction is constraint(ϕ1,constraint(c2,B)). While
with the first assignment ρ positively satisfies the whole interaction, with the
right one ρ is invalid (both constraints are not satisfied). We can notice that
with the new semantics a system-run can be negative even if the interaction
does not have any occurrence of neg or assert. A basic interaction cannot
be overspecified, and any other system-run different from the one above is
inconclusive.

Basic interactions cannot be refined by adding or deleting events. How-
ever, they can be refined by its time constraints (constraint refinement using
Lemma 5.2.2). A constraint refinement for the interaction in the example
can be done by restricting the constrained intervals, e.g., restricting the in-
terval between the sending of Code and the reception of OK to {d..2*d}.
Also in this case the first assignment of Figure 6.4 makes the system-run
invalid. The basic interaction can also be refined by adding new constraints,
e.g., {t..t+4} between the sending of OK and the sending of Unlock. In
this case, only the first assignment makes the system-run valid for both
interactions, the original and the refined one.

6.2. Examples 69

ati Assignment 1 Assignment 2
at1 0 0
at2 2 1
at3 3 3
at4 4 4
at5 5 5
at6 7 8
at7 6 9

Figure 6.4: Two time assignments for the basic interaction of the example

6.2.2 Satisfying System Runs

The interaction in Figure 6.5 shows an operator receiving simple and emer-
gency calls in parallel and redirecting them to the right destination.

ignore {call}

callCallee

{0..12}

emergency
: Emergency
 operator
: Operator

call911
par

caller
: Caller

help

call

callee
: Callee

Figure 6.5: Simple and emergency calls

If there is an emergency call, the operator must send the emergency call
to the emergency before 12 time units (constraint ϕ1). Any other simple
call must be ignored during the emergency call. There is another constraint
(ϕ2, not a real-time one), not shown in the diagram, which expresses that
the operator makes simple calls only if there are lines available. These
constraints can be expressed as follows.

70 Chapter 6. In Practice

context Operator
def: rcvCall911 : Event =

events->select(e | e.oclIsTypeOf(RcvMsgEvent) and
e.message.name = "call911")->any()

def: sndHelp : Event =
events->select(e | e.oclIsTypeOf(SndMsgEvent) and

e.message.name = "help")->any()
constr: always((sndHelp.at - rcvCall911.at <= 12)@sndHelp)

context Operator
def: sndCallCallee : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent) and
e.message.name = "callCallee")->any()

constr: always((self.lines >= 0)@sndCallCallee)

For both constraints the modality always is used since the constraints must
be satisfied during all system-runs. Also, the operator @η (with η an event)
is used in order to verify each constraint at the state where some specific
event occurred.

The interaction has three basic interactions corresponding to: message call911
(denoted by B1), messages within the ignore fragment (denoted by B2) and
messages within the second operand of the parallel fragment (denoted by
B3). The resulting abstract syntax is as follows.

par(constraint(ϕ1, seq(B1,ignore(call, B2))), constraint(ϕ2,B3))

(ω0, { snd(caller,operator,call,0), snd(caller,operator,call911,0),
rcv(caller,operator,call911,5) })

(ω1, { snd(operator,emergency,help,13), rcv(caller,operator,call,6), τ ,
snd(caller,operator,call,10), rcv(operator,emergency,help,15) })

(ω2, { snd(operator,callee,callCallee,17), rcv(caller,operator,call,16),
rcv(operator,callee,callCallee,23), τ})

Figure 6.6: Example of a system-run

Take the system-run ρ shown in Figure 6.6 which shows some silent events.
In order to simplify the notation, the value of at was added in each event
description. Also, assume that the operator has always available lines.

With this information, we can prove that the system-run ρ positively satisfies
the interaction S. To prove this, decompose the system-run ρ as (ρ4,ρ3) ∈ ρ‖
and (ρ1,ρ2) ∈ ρ4;<> such that

6.2. Examples 71

ρ1 = (ω0, { snd(caller,operator,call911), rcv(caller,operator,call911) })
(ω1, { τ })

ρ2 = (ω1, { snd(operator,emergency,help), snd(caller,operator,call),
rcv(operator,emergency,help) }) (ω2, { rcv(caller,operator,call), τ})

ρ3 = (ω0, { snd(caller,operator,call) }) (ω1, { rcv(caller,operator,call) })
(ω2, { snd(operator,callee,callCallee), rcv(operator,callee,callCallee) })

It is easy to show that ρi |=p Bi i = 1..3. With this information we can
build the following proof using the positive fragment of the semantics. On
one side, we have that

∃ρ′2 ∈ filter({call})(ρ2)ρ′2 |=p B2

ρ2 |=p ignore({call}, B2) ρ1 |=p B1 (ρ1, ρ2) ∈ ρ4;<>
ρ4 |=p seq(B1,ignore({call}, B2)) (ρ4, 0); ∅ ` ϕ1 ↓ true

ρ4 |=p constraint(ϕ1,seq(B1,ignore({call}, B2)))

While, on the other side
ρ3 |=p B3 (ρ3, 0); ∅ ` ϕ2 ↓ true

ρ3 |=p constraint(ϕ2, B3)

Finally,

(ρ4, ρ3) ∈ ρ‖
ρ4 |=p constraint(ϕ1,seq(B1,ignore({call}, B2)))

ρ3 |=p constraint(ϕ2, B3)
ρ |=p par(constraint(ϕ1,seq(B1,ignore({call}, B2))),constraint(ϕ2, B3))

If any constraint evaluates to false the system-run does not positively satisfy
the interaction but negatively as explained next.

A given system-run negatively satisfies an interaction if any constraint eval-
uates to false while the others evaluate to true in that system-run, even
if it runs positively through the interaction lacking of constraints. In the
example, if the operator sends the emergency call to the emergency after
12 time units or it does not have any line available, the system-run ρ nega-
tively satisfies the interaction S. Next we show the negative satisfaction of
ρ by making false the first constraint (by assigning more than 12 time units
between the reception of call911 and the sending of help).

∃ρ′2 ∈ filter({call})(ρ2)ρ′2 |=p B2

ρ2 |=p ignore({call}, B2) ρ1 |=p B1 (ρ1, ρ2) ∈ ρ4;<>
ρ4 |=p seq(B1,ignore({call}, B2)) (ρ4, 0); ∅ ` ϕ1 ↓ false

ρ4 |=n constraint(ϕ1,seq(B1,ignore({call}, B2)))

72 Chapter 6. In Practice

Even if the system-run is positive for the second fragment of the interaction,
we have that

(ρ4, ρ3) ∈ ρ‖
ρ4 |=n constraint(ϕ1,seq(B1,ignore({call}, B2)))

ρ3 |=p constraint(ϕ2, B3)
ρ |=n par(constraint(ϕ1,seq(B1,ignore({call}, B2))),constraint(ϕ2, B3))

We can also introduce negative behavior without constraints by adding a
neg/assert fragment. Let us modify the example as shown in Figure 6.7.
Now, after receiving an emergency call the only valid execution is to ask for
help.

assert

callCallee

{0..12}

emergency
: Emergency
 operator
: Operator

call911
par

caller
: Caller

help

call

callee
: Callee

Figure 6.7: The example modified with an assertion

With this change the system-run ρ negatively satisfies the interaction due
to the assert fragment could not be positively satisfied by the system-run
ρ2, as shown next.

ρ22p B2

ρ2 |=n assert(B2) ρ1 |=p B1 (ρ1, ρ2) ∈ ρ4;<>
ρ4 |=n seq(B1,assert(B2)) (ρ4, 0); ∅ ` ϕ1 ↓ false

ρ4 |=n constraint(ϕ1,seq(B1,assert(B2)))

6.2. Examples 73

6.2.3 Hot and Cold Constraints

Damm and Damm and Harel [DH01] define an extension of Message Se-
quence Charts [IT96] called Live Sequence Charts (LSCs). LSCs distinguish
between cold and hot conditions. Cold conditions may be true otherwise
control moves out of the current block or chart. Hot conditions must be
true otherwise the system aborts. This behavior can be represented with
our approach. As an example we will use part of the “The NetPhone Ex-
ample” from [HM02].

display:{AutomaticMode,

 ReceiverBusy,

 ModeExpired}

Phone

Channel
1
1

: Phone
 : Channel

loop

call(num)

automaticMode(num)

showDisplay(AutomaticMode)

showDisplay(AutomaticMode)

opt

[Phone.display = AutomaticMode

AND Time < ts + 30]

[Phone.display = ReceiverBusy]

ts =
now

{1}

Figure 6.8: UML domain model and interaction for the NetPhone example
in automatic mode

A phone in automatic mode “displays the message Automatic Mode, and
enters an unbounded loop, which iterates for as long as the display shows

74 Chapter 6. In Practice

Automatic Mode, but no longer than 30 seconds after the mode was entered.
This loop control is captured by the cold condition inside the loop, whose
semantics prescribes exiting the current loop upon becoming false [...] and
tries calling the desired number. It then waits one second for the commu-
nication protocol to be over and checks the message on the display (hot
condition). If it says Receiver Busy, the display is set to show Automatic
Mode again. After the loop, there is a cold time constraint.” Figure 6.8
shows this behavior and a UML domain model for the example, considering
only one phone and one channel.

The abstract syntax is shown next.

constraint(ϕ1, seq(B1, loop(0,∞, constraint(ϕ3, seq(B2,
opt(constraint(ϕ2, B3)))))))

There are two guards (ϕ1 restricting the loop fragment and ϕ2 restricting
the optional fragment) and one constraint with an interval (ϕ3). Also, there
are three basic interactions: B1 for the first two messages, B2 for the call
message and B3 for the message showDisplay within the optional fragment.

Guards can be specified by OCL/RT constraints as we will discussed in
Section 6.3.1. We will first specify the loop’s guard (ϕ1). However, there
is no notion about when a guard has to be validated, because there is no
special event for that (Live Sequence Charts have the notion of location
for this purpose). We decide that a guard has to be evaluated when the
first message within the fragment that it restricts occurs. In this case, the
constraint must be validated each time call is sent.

context Phone
def: ts : Real =

events->select(e | e.oclIsTypeOf(RcvMsgEvent) and
e.message.name

= "automaticMode")->any().at
def: sndCall : Set(Event) =

events->select(e | e.oclIsTypeOf(SndMsgEvent) and
e.message.name = "call")

constr: always(sndCall->forall(e | (e.at < ts + 30 and
self.phone.display = AutomaticMode)@e))

The second guard ϕ2 restricts the optional fragment. In this case the guard
is defined locally for the optional fragment. Consequently, the only events a
system-run must have at this point will be those of the message showDisplay.
If the system-run is empty at this point the constraint is not verified since
the optional fragment is defined as opt(S) = alt(skip,S)

6.2. Examples 75

context Phone
def: sndShow : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent) and
e.message.name = "showDisplay")->any()

constr: always((self.display = ReceiverBusy)@sndShow)

The interval constraint ϕ3 is defined inside the loop right before the weak
sequence. Due to this, the system-run up to this point during evaluation
will only have one call message and possibly one showDisplay message (local
definition of constraints). The constraint must be satisfied (hot condition)
but it depends on the existence of the second message (restricted by the cold
condition).

context Phone
def: sndCall : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent) and
e.message.name = "call")->any()

def: sndShow : Event =
events->select(e | e.oclIsTypeOf(SndMsgEvent) and

e.message.name = "showDisplay")->any()
constr: always((not sndShow.oclIsUndefined()) implies

sndShow.at - sndCall.at = 1)

In summary, cold constraints are specified by guards in optional fragments
(if the guard is not satisfied then the fragment is not executed) while hot
constraints are specified by simple constraints (if the constraint is not sat-
isfied then the system-run is negative). This analysis has been restricted
to hot and cold constraints while Live Sequence Charts present some other
constructs like cold/hot messages and locations that are not presented in
UML 2.0, as discussed in [CKF05].

76 Chapter 6. In Practice

6.2.4 Refinement at Work

In this section we will work with a model of a simple train system [DLDvL05].
The system is composed of three classes: a train controller (controlling op-
erations such as start, stop, open doors, and close doors), a train actua-
tor/sensor (controlling the movement and emergency alarms), and passen-
gers, as shown in Figure 6.9.

door_open : boolean

moving : boolean

Controller

alarmed : boolean

Train Actuator/Sensor

*
1

Passenger

*
*

Figure 6.9: UML domain model for the train system

A safety goal requires train doors to remain closed while the train is moving,
but if the passenger presses the alarm button, the controller must stop the
train first and then open the doors in emergency (shown in Figure 6.10).

openDoors

neg

{0..12}

controller
: Controller
 sensor
: Train Actu
a
tor/Sensor

start

alarmPressed
alt

passenger
: Passenger

alarmPropagated

emergencyStop

Figure 6.10: Interaction for emergency stop and door closing while moving

6.2. Examples 77

There is a time constraint between the reception of the message alarmProp-
agated and the sending of the message emergencyStop, specified as follows.

context Controller
def: rcvAlarmPropagated : Event =

events->select(e | e.oclIsTypeOf(RcvMsgEvent)
and e.message.name

= "alarmPropagated")->any()
def: sndEmergencyStop : Event =

events->select(e | e.oclIsTypeOf(SndMsgEvent)
and e.message.name

= "emergencyStop")->any()
constr: always((sndEmergencyStop.at -

rcvAlarmPropagated.at <= 12)@sndEmergencyStop)

The abstract syntax of the interaction is as follows.

seq(B1,alt(constraint(ϕ,B2),neg(B3)))

where B1 is a basic interaction composed by the message start, B2 is the
basic interaction in the first argument of the alternative composition, and
B3 is the basic interaction composed by the message openDoors.

A possible refinement of the last interaction can be made by taking apart
the positive behavior, this means that,

seq(B1,alt(constraint(ϕ,B2),neg(B3))) ; seq(B1,constraint(ϕ,B2))

(seq2)

(alt3)
alt(constraint(ϕ, B2),neg(B3))

alt(constraint(ϕ,B2),neg(B3)) ; constraint(ϕ, B2)
seq(B1,alt(constraint(ϕ,B2),neg(B3))) ; seq(B1,constraint(ϕ,B2))

A constraint refinement can be made by adding another constraint that
restricts the set of positive system-runs allowed by the interaction. In the
example we can restrict that after the reception of an emergency stop if
an alarm was activated and the train was stopped then the doors must be
opened, as follows.

78 Chapter 6. In Practice

context TrainActuator
def: rcvEmergencyStop : Event =

events->select(e | e.oclIsTypeOf(RcvMsgEvent)
and e.message.name

= "emergencyStop")->any()
constr: always(rcvEmergencyStop.sender.moving = false

and alarmed => self.openDoors())

Taking S as the last interaction, ϕ as the first constraint and ϕ’ as the con-
junction of the first and the second constraints, it is straightforward to show
that ϕ ; ϕ’, and in consequence constraint(ϕ,S) ; constraint(ϕ’,S).

6.3 Discussions

This section is devoted to the discussion of how constraints can be used
to specify guards on operands and state invariants, and the impact on the
semantics we defined.

6.3.1 Guards on Operands

According to the specification of UML 2.0 Interactions [OMG05b], every
interaction operand could have an interaction constraint associated to it.
The constraint must be a boolean expression evaluating to true in order
to execute that operand. Every operand has a guard, when the guard is
omitted, true is assumed.

Guards are represented in square brackets at the top of the operand over
the leftmost lifeline, as shown in Figure 6.11. There are special guards, for
example an else guard (commonly used in an alternative fragment) can be
used within the last operand of some combined fragment representing “the
negation of the disjunction of all other guards in the enclosing combined
fragment” [OMG05b]. Also, loops have a mandatory guard representing the
minimum and maximum number of iterations.

The semantics developed in previous sections allows specifying this guards
without any change, due to the fact that every interaction can have an
OCL/RT constraint, and OCL/RT is enough powerfull to represent any
boolean guard. In fact, OCL/RT is quite more expressive than necessary.

Consider the interaction in Figure 6.11, where there exist some guarded
interaction fragments. Its syntax is (opt(S) is used as alt(skip,S)):

6.3. Discussions 79

alt(constraint(ϕ1,seq(loop(0,∞,constraint(ϕ2,B2))),
constraint(not(ϕ2),B2)),

constraint(not(ϕ1),opt(constraint(ϕ3,B3))))

Notice that each guard is represented by an OCL/RT constraint and that
an else guard is represented as the negation of the disjunction of all other
guards in the enclosing combined fragment.

:A
 :B

alt

opt

loop

B2

[else]

[cond3]

[cond1]

B3

[cond2]

B1

Figure 6.11: Guarded Interaction. B i’s are basic interactions and cond i’s
are OCL/RT constraints

There is a special case involving loop. Every loop has a guard that may
include the lower and upper number of iterations as well as a boolean expres-
sion. The first case is supported by the semantics in Section 3.2.2 and 3.2.3.
The second case can be represented by a loop with an infinite upper bound
where each of the iterations is constrained by the guard of the loop. In this
way, a system-run positively satisfies the loop if the constraint evaluates to
true in each of the iterations. But, what happens after the loop?.

• If the interaction continues after it, we have to assure that the con-
straint evaluates to false within the next step in the system-run. This
can be done by evaluating the negation of the loop’s guard outside the
loop.

• If the system-run is empty after the loop, we have also to assure that
the constraint evaluates to false. But, we do not know if an OCL/RT

80 Chapter 6. In Practice

constraint [trivially] evaluates to false in an empty system-run, because
there is no explicit rule for an empty system-run and the result depends
on the system state when the constraint is evaluated. Moreover, if
an explicit rule is added maybe it could follow the same ideas as in
classical logic, where a universal quantified formula evaluates to true
in an empty universe. In conclusion, if we want to assume this we have
to review the theory about OCL/RT, so future work is required.

6.3.2 State Invariants

The UML 2.0 specification defines a State Invariant as “a runtime constraint
on the participants of the interaction”. A State Invariant is considered an in-
teraction fragment and it is placed on a Lifeline. The constraint is evaluated
immediately prior to the execution of the next event in the same lifeline. If
the constraint is true the system-run is a valid system-run; invalid otherwise.

sd M ignore {t,r}

: X
 : Y
 : Z

consider {q,v,w}

v

s

v

assert

q

{Y.p == 15}

state

Figure 6.12: Interaction with state invariants

In Figure 6.12 (taken from [OMG05b]) we have an interaction M which
ignores (message occurrences are irrelevant for this interaction) message t
and r. The state invariant given as a state state will be evaluated at runtime
directly prior to whatever event occurs on Y after state. This may be the

6.3. Discussions 81

reception of v as specified within the consider fragment, or it may be an
event that is specified to be insignificant by the filters. The assert fragment
is nested in a consider fragment to mean that we expect a q message to
occur once a v has occurred here. Any occurrences of messages other than
v,w and q will be ignored in a test situation; thus the appearance of a w
message after the v is an invalid system-run.

The constraint of a state invariant can be described by the actual internal
state of the lifeline or by an external state machine. The second alternative
could not be taken into consideration in this section since it is out of the
scope of this thesis. Note that the first state invariant in Figure 6.12 asso-
ciates the invariant to the state named state of some external state machine
associated with the instance represented by the lifeline (we will consider it
just like any other constraint), while the second one only checks the internal
state of the instance.

As in the case of guards on operands (discussed in Section 6.3.1) the seman-
tics developed in previous sections allows specifying state invariants without
any change. In the example, the abstract syntax of the interaction can be
embedded within a constraint fragment with the next constraints (@η op-
erator is used in order to check the constraints “state” and {Y.p==15} when
the next event occurs).

context Y
def: ev(TYPE:Type, ID:String) : Event =

events->select(e | e.oclIsTypeOf(TYPE) and
e.message.name = ID)->any()

def: msgY() : Sequence(Event) =
events->select(e | e.sender = self or

e.receiver = self)->sorted()
def: next(EVE:Event) : Event =

msgY()->at(msgY()->indexOf(EVE) + 1)

-- first state invariant that must be satisfied right before
-- the next event occurrence after sending message "s"
constr: always(

self@next(ev(SndMsgEvent,"s")).oclInState(state))

-- second state invariant that must be satisfied right before
-- the next event occurrence after receiving message "q"
constr: always(self.p@next(ev(RcvMsgEvent,"q")) = 15)

In the last example we use a function sorted on collections of events that
returns the events in a sequence and ordered according to their attribute at.

82 Chapter 6. In Practice

It is defined as follows.

Collection(Event)::sorted() : Sequence(Event) =
iterate(iter; result : Sequence(Event) = Sequence{} |
if result->isEmpty() or result->last().at <= iter.at then
result->append(iterator)

else
let position : Integer = result->indexOf(

result->select(item | item.at > iter.at)->first())
in
result->insertAt(position, iter)

endif

6.4 Related Work

Complementing our research with the reviews made by Cengarle and Knapp
[CK02], and Flake [Fla03] we can notice that there are several works that
analyze different OCL temporal extensions. Most of them do not consider
real-time constraints and in the ones that do, they are mostly defined in an
informal way.

Some OCL extensions are closely related to state-based specifications [Fla03,
FM04, MCM04]. These languages allow constraints in system models spec-
ified by state diagrams. However, the use of state diagrams is more used
for intra-component than inter-component communications, so there are not
closely related to our proposal.

Only the work made by Cavarra and Küster-Filipe [CKF05] analyzes an
OCL extension to be used with interactions. They address the problem of
synchronization and the specification of liveness properties (normally ex-
pressed at the level of state diagrams). Our work does not address the
problem of synchronization but the use of OCL/RT allows specifying some
liveness properties. In this sense, OCL/RT has some limitations, for exam-
ple to state that some event will eventually be received, since this modality
is not yet considered. In order to deal with liveness they shift the context of
an interaction from one instance to the whole interaction or a specific inter-
action diagram. They also extend the language by adding some properties
that apply to all objects to know in what interaction fragment an object
is. OCL/RT keeps OCL without big changes, but knowing were an event
is located could be very helpful in practice. Cavarra and Küster-Filipe do
not focus on a formal semantics but on how the language can be enriched
for expressing inter-object behavior. Moreover, the language and the formal
semantics defined in [CKF04] are never related. We think that our work and

6.4. Related Work 83

the work from Cavarra and Küster-Filipe are complementary, and a fusion
of both can be made in order to investigate the relation between constrained
interactions and timed state machines.

Finally, some basic constraint can be graphically specified in UML 2.0 In-
teractions, as defined in [OMG05b]. These kind of constraints are simple
time and duration observations, and time and duration constraints. These
kind of constraints are also presented in other similar languages like Mes-
sage Sequence Charts and Live Sequence Charts. These constraints can be
expressed using OCL/RT assigning to them a concrete meaning in the eval-
uation of a system-run. Besides, OCL/RT allows specifying more complex
constraints involving also system instances, message events and global vari-
ables. Consequently our approach is one of the most powerful proposals in
order to specify real-time constraints in UML 2.0 Interactions.

Summary

In this chapter we analyzed the practical application of the results presented
in this work, intended for future improvements and careful utilization of
them. First, we remark that by construction of the semantics, constraints are
defined locally, this means, the constraint will only consider the interaction
attached to it. We also remark that it could be useful to refer to concrete
events in a system-run but this involves changing the semantics, which is
not straightforward.

Some examples taken from the literature were shown. These examples in-
volved the representation of UML 2.0 Interactions basic temporal constraints
and hot and cold constraints from Live Sequence Charts. We also showed
other examples detailing practical consequences of the results given in past
sections.

Finally, there has been some discussion about the possibility of specifying
guards on operands and state invariants. As a conclusion we can say that
both concepts can be represented within our approach but some remarks
must be taken into consideration. For example, there are some problems
involving guards on loops.

Chapter 7

Conclusions and Future
Work

In this work, a denotational semantics of an enhanced UML 2.0 Interactions
language with OCL/RT constraints support was developed, and an extensive
analysis of their properties from a formal and practical point of view was
made. The main results and conclusions are summarized in Section 7.1.
Future work is outlined in Section 7.2.

7.1 Summary and Conclusions

This work presents a true concurrency linear-time trace-based semantics of
complete traces of UML 2.0 Interactions with OCL/RT constraints support.
This semantics is developed from the fusion of UML 2.0 Interactions and
OCL/RT existing semantics proposed by Cengarle and Knapp in [CK04b]
and [CK02], respectively.

In this sense, the UML 2.0 Interactions abstract syntax was extended with
a new operator constraint(ϕ,S) where S is an interaction and ϕ is an
OLC/RT constraint. Not all the features introduced by the UML 2.0 spec-
ification were considered. Some of them, as break and critical, are left
for future study. Also, the event-model for OCL/RT was modified to con-
sider only send and receive events within a system-run. The denotational
semantics was defined by the fusion of both semantic domains, by consider-
ing system-runs as a powerful representation for traces, and modifying the
original UML 2.0 Interactions denotational semantics to support them.

The resulting denotational semantics evaluates the positivity/negativity of
a system-run within an interaction, considering both interaction structure

85

86 Chapter 7. Conclusions and Future Work

and constraints satisfaction. A system-run ρ is positive for an interaction
constraint(ϕ,S) if the system-run positively satisfies the interaction S and
also ϕ evaluates to true in ρ. If ρ negatively satisfies the interaction S
(no matter what happens with ϕ) or ϕ evaluates to false in ρ (no matter
what happens with S), the system-run ρ negatively satisfies the interaction
constraint(ϕ,S). A system-run can be both positive and negative. In this
case, the interaction is called an overspecified interaction. If the semantics
cannot decide whether the system-run is positive or negative for some in-
teraction, the system-run is called inconclusive. Figure 7.1 resumes these
results.

ρ ` ϕ ↓ true ρ ` ϕ ↓ false ρ ` ϕ ↓ undef
ρ |=pS ρ |=pconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=iconstraint(ϕ,S)
ρ |=nS ρ |=nconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=nconstraint(ϕ,S)
ρ |=iS ρ |=iconstraint(ϕ,S) ρ |=nconstraint(ϕ,S) ρ |=iconstraint(ϕ,S)

Figure 7.1: Satisfaction relations resume

The inclusion of the OCL/RT in interactions allows specifying a wide vari-
ety of constraints, including real-time ones, since the OCL/RT can predi-
cate over system-runs with timed events. Since some kind of constraints are
not relevant for the interactions (we are working exclusively with message
events), OCL/RT is not used in its full potential. As an example, system-
runs do not consider termination events for operations and in consequence
post-conditions cannot be verified. Moreover, synchronization is not consid-
ered since there is no agreement about the moment when an operation or a
signal starts its execution after the reception event is received. However, we
can think of extending the event-model considered in a system-run in order
to develop a powerful behavioral specification model.

It is easy to check that properties in the original semantics also hold in the
new one. In particular, both forms of sequential composition are associative,
and parallel and alternative composition are associative and commutative.
Some elementary properties about the satisfaction relation on constraints
and the negation of a constraint were proven. Also, it was proven that the
new semantics is just a concretization of the original semantics, i.e., the new
semantics recognizes more specific behavior than the previous one due to
the incorporation of constraints.

The notions of implementation and refinement of interactions, intended for
formal verification, were adapted to our semantic domain. Refinement im-
plies that the set of genuine positive system-runs (system-runs that are posi-

7.1. Summary and Conclusions 87

tive and not overspecified) cannot be enlarged, negative system-runs remain
negative, inconclusive system-runs can be transformed into negative system-
runs and at least one genuine positive system-run is kept. Their properties
were analyzed, and also the set of derivation rules was extended with loop,
ignore and constraint as shown in Figure 7.2. Also, the notion of con-
straint refinement was introduced. The soundness property of the calculus
for interaction refinement was proved and a completeness proof was left for
future study.

(loop)
S ;p S′

loop(m,n, S) ;p loop(m,n, S′)

(ign)
S ; S′

ignore(M,S) ; ignore(M,S′)

(const1)
S ; S′

constraint(ϕ, S) ; constraint(ϕ, S′)

(const2) S ; constraint(ϕ,S)

(const2)
ϕ ; ϕ′

constraint(ϕ, S) ; constraint(ϕ′, S)

Figure 7.2: Compositional refinements of interactions

We discussed how the semantics allows specifying guards on operands and
state invariants without any modifications. This can be done except for
a special case involving guarded loops, which requires the guard not to be
satisfied after the loop (and this must be assumed if the system-run is empty
after the loop). In this case some revision to the theory behind OCL/RT is
needed. A discussion about if it is possible to use Event instead of Basic as
the base case of the semantics was done. This is possible if Basic is finite
since an infinite disjunction with a finitely generated abstract syntax cannot
be represented. It was shown how to modify the semantics assuming this,
generating a simpler semantic definition.

It was also shown how this theory works from a practical point of view.
In this sense, some examples were introduced showing how to apply the
approach to existing examples in the literature (basic UML 2.0 Interactions
constraints, and Hot and Cold constraints). The examples also detailed
practical consequences and served as a proof of concepts.

Finally, a detailed comparison between this work and related ones was made,
in particular, those developed by Störrle, Haugen and Stølen, Cavarra and
Küster-Filipe, and the former work from Cengarle and Knapp on which this

88 Chapter 7. Conclusions and Future Work

work is based. The most important conclusion is that our semantics is the
only one with an expressive support of complex constraints in interactions,
in particular real-time ones.

Although all the contributions are useful for a general understanding of the
problem, a lot of work must be done before the complete inclusion of these
ideas in model-driven and formal reasoning tools.

7.2 Future Work

The semantics should be enhanced including those interaction operators
not yet included (break and critical). Other interaction constructors
could also be considered, as message parameters, asynchronous messages,
references, gates and continuations, among others. These extensions require
the study of the relationship between message events and other kind of
events, as operation and signal execution, as well as the study of the meaning
of an event occurrence in a system model.

As we discussed in Section 6.3, the semantics of OCL/RT must be revised in
order to support boolean guarded loops. OCL/RT could also be extended in
order to specify state-based constraints suited for temporal logic reasoning,
as those presented in other OCL extensions like those from Flake and Mueller
[FM02], and Cavarra and Küster-Filipe [CKF05].

A set of refinement rules was introduced but the completeness proof was left
for future study as well as the search for new refinement rules.

An important topic for further work is related to the connection between our
approach and other development activities as intra-component communica-
tions and design by contract. For example, the transformation between con-
strained interactions and timed state machines (as those in [KGSB98, Krü00,
WS00]) could be addressed. This enables model checking [Lun00, KMR02]
with tool support (e.g., Kronos [VER99] and Uppal [UU06]).

The simplification of OCL/RT constraints could be an interesting subject of
study, as well as the development of a front-end for the semantics. On the
one hand, we could incorpore labels to events in order to identify them in a
simple way, as discussed in Section 6.1. This leads to the reformulation of the
semantics for a dynamic assignment of labels during system-run verification.
On the other hand, the semantics could be incorporated into some well
known modeling tool. In this sense, a transforming algorithm from the visual
representation of an interaction to the abstract syntax could be developed.
The semantics could also be specified using some proof assistant (e.g. Coq
[INR04] and Isabelle [UM05]), integrating the modeling tool with the proof

7.2. Future Work 89

assistant.

Finally, it could be of interest to investigate how the semantics can be applied
and extended in other contexts as the behavioral specification of software
product lines [SCLC06]

References

[BAL97] Hanêne Ben-Abdallah and Stefan Leue. Timing Constraints in
Message Sequence Chart Specifications. In Formal Description
Techniques and Protocol Specification, Testing and Verification,
FORTE X, volume 107 of IFIP Conference Proceedings, pages
91–106. Chapman & Hall, 1997.

[BCR00] Egon Börger, Alessandra Cavarra, and Elvinia Riccobene. An
ASM Semantics for UML Activity Diagrams. In Proc. 8th Al-
gebraic Methodology and Software Technology, volume 1816 of
Lecture Notes in Computer Science, pages 293–308. Springer,
2000.

[Bor05] Borland. Together Architect 2005. http://www.borland.com/
us/products/together/index.html, 2005.

[Büc62] Richard Büchi. On a Decision Method in Restricted Second
Order Arithmetic. In Proc. Int. Congress on Logic, Method, and
Philosophy of Science. 1960, pages 1–12. Stanford University
Press, 1962.

[CK01] Maŕıa Victoria Cengarle and Alexander Knapp. A Formal Se-
mantics for OCL 1.4. In Proc. 4th Int. Conf. on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools,
pages 118–133. Springer-Verlag, 2001.

[CK02] Maŕıa Victoria Cengarle and Alexander Knapp. Towards
OCL/RT. In Lars-Henrik Eriksson and Peter Lindsay, editors,
Proc. 11th Int. Symp. Formal Methods Europe, volume 2391 of
Lecture Notes in Computer Science, pages 390–409. Springer-
Verlag, 2002.

[CK04a] Maŕıa Victoria Cengarle and Alexander Knapp. OCL 1.4/5
vs. 2.0 Expressions Formal Semantics and Expressiveness. In
Software and Systems Modeling, volume 3, pages 9–30. Springer,
2004.

91

92 References

[CK04b] Maŕıa Victoria Cengarle and Alexander Knapp. UML 2.0
Interactions: Semantics and Refinement. In Robert France
Jan Jürjens, Eduardo Fernandez and Bernhard Rumpe, editors,
Proc. 3rd Intl. Workshop on Critical Systems Development with
UML, pages 85–99. Technische Universität München, 2004.

[CK05] Maŕıa Victoria Cengarle and Alexander Knapp. Operational
Semantics of UML 2.0 Interactions. TUM-Report TUM-I0505,
Technische Universität München, 2005.

[CKF04] Alessandra Cavarra and Juliana Küster-Filipe. Formalizing
Liveness-Enriched Sequence Diagrams Using ASMs. Lecture
Notes in Computer Science, 3052:62–77, 2004.

[CKF05] Alessandra Cavarra and Juliana Küster-Filipe. Combining Se-
quence Diagrams and OCL for Liveness. Electronic Notes in
Theorical Computer Science, 115:19–38, 2005.

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System Design,
19(1):45–80, 2001.

[DLDvL05] Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel
van Lamsweerde. Generating Annotated Behavior Models from
End-User Scenarios. IEEE Transactions on Software Engineer-
ing, 31(12):1056–1073, 2005.

[Dou04] Bruce Powel Douglass. Real-Time UML: Advances in the UML
for Real-Time Systems. Addison Wesley Professional, 3rd edi-
tion, 2004.

[Fla03] Stephan Flake. Temporal OCL Extensions for Specification of
Real-Time Constraints. Workshop Specification and Validation
of UML models for Real Time and Embedded Systems at UML
2003, 2003.

[FM02] Stephan Flake and Wolfgang Mueller. An OCL Extension for
Real-Time Constraints. In Object Modeling with the OCL, The
Rationale behind the Object Constraint Language, pages 150–
171. Springer-Verlag, 2002.

[FM04] Stephan Flake and Wolfgang Mueller. Past- and Future-
Oriented Temporal Time-Bounded Properties with OCL. In
J.R. Cuellar and Z. Liu, editors, Proc. 2nd Int. Conf. on Soft-
ware Engineering and Formal Methods, pages 154–163. IEEE
Computer Society Press, 2004.

References 93

[GS05] Radu Grosu and Scott Smolka. Safety-Liveness Semantics for
uml 2.0 sequence diagrams. In Proc. 5th Intl. Conference on Ap-
plication of Concurrency to System Design, pages 6–14. IEEE
Computer Society, 2005.

[GZK03] Martin Gogolla, Paul Ziemann, and Sabine Kuske. Towards
an Integrated Graph Based Semantics for UML. In Electronic
Notes in Theoretical Computer Science, volume 72, pages 1–16,
2003.

[Ham06] Youcef Hammal. Branching Time Semantics for UML 2.0 Se-
quence Diagrams. In Proc. Formal Techniques for Networked
and Distributed Systems, volume 4229 of Lecture Notes in Com-
puter Science, pages 259–274. Springler, 2006.

[Hau04] Øystein Haugen. Comparing UML 2.0 Interactions and MSC-
2000. In Daniel Amyot and Alan Williams, editors, Proc. SDL
and MSC Fourth International Workshop, volume 3319 of Lec-
ture Notes in Computer Science, pages 69–83. Springer-Verlag,
2004.

[HKB04] Rolf Hennicker, Alexander Knapp, and Huber Baumeister.
Semantics of OCL Operation Specifications. In Th. Baar,
T. Clark, R. France, R. Hähnle, H. Hußmann, and P. Schmitt,
editors, Proc. OCL 2.0 - Industry standard or scientific play-
ground?, volume 102 of Electronic Notes in Theoretical Com-
puter Science, pages 111–132. Elsevier, 2004.

[HKHS05] Øystein Haugen, Ragnhild Kobro, Knut Husa, and Ketil Stølen.
Why Timed Sequence Diagrams Require Three-Event Seman-
tics. In Stefan Leue and Tarja Systä, editors, Post-proc. of
Dagstuhl seminar, Scenarios: Models, Transformations and
Tools, volume 3466 of Lecture Notes in Computer Science, pages
1–25. Springer-Verlag, 2005.

[HM02] David Harel and Rami Marelly. Playing with Time: On the
Specification and Execution of Time-Enriched LSCs. In Proc.
10th Int. Workshop on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 193–202.
IEEE Computer Society, 2002.

[HS03] Øystein Haugen and Ketil Stølen. STAIRS - Steps To An-
alyze Interactions with Refinement Semantics. In Jon Whit-
tle Perdita Stevens and Grady Booch, editors, Proc. 6th Int.
Conf. UML 2003 - The Unified Modeling Language, Modeling
Languages and Applications, volume 2863 of Lecture Notes in
Computer Science, pages 388–402. Springer-Verlag, 2003.

94 References

[HT03] David Harel and P. S. Thiagarajan. Message Sequence Charts.
pages 77–105. Kluwer Academic Publishers, 2003.

[HvdZ03] Jozef Hooman and Mark van der Zwaag. A Semantics of Com-
municating Reactive Objects with Timing. Proc. Specification
and Validation of UML models for Real Time and Embedded
Systems, 2003.

[IL05] I-Logix. Rhapsody Developer Edition. http://www.ilogix.
com/sublevel.aspx?id=53, 2005.

[IMU05] IBM, Technische Universität München, and Queen’s University.
Uml 2.0 Semantic Project, 2005.

[INR04] LOGICAL Project INRIA. Coq 8.0. http://coq.inria.fr/,
2004.

[IR04] IBM-Rational. Rational Rose Real Time. http://www-306.
ibm.com/software/awdtools/developer/technical/, 2004.

[IR05] IBM-Rational. Rational Software Architect 6. http:
//www-306.ibm.com/software/awdtools/architect/
swarchitect/index.html, 2005.

[IT96] ITU-TS. Itu-ts recommendation z.120: Message Sequence
Charts (MSC), 1996.

[JEJ04] Yan Jin, Robert Esser, and Jörn Janneck. A Method for De-
scribing the Syntax and Semantics of UML Statecharts. In Soft-
ware and Systems Modeling, volume 3, pages 150–163, 2004.

[Jür02a] Jan Jürjens. Formal Semantics for Interacting UML Subsys-
tems. Formal Methods for Open Object-Based Distributed Sys-
tems, 2002.

[Jür02b] Jan Jürjens. A UML Statecharts Semantics with Message Pass-
ing. Symposium of Applied Computing, ACM, 2002.

[KC04] Kennedy-Carter. iUML. http://www.kc.com/, 2004.

[Ken02] Stuart Kent. Model Driven Engineering. In Proc. IFM 2002,
volume 2335 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[KFdB+04] Marcel Kyas, Harald Fecher, Franks S. de Boer, Joost Jacob,
Jozef Hooman, Mark van der Zwaag, Tamarah Arons, and Hillel
Kugler. Formalizing UML Models and OCL Constraints in PVS.
In Semantic Foundations of Engineering Design Languages,
Electronic Notes in Theoretical Computer Science, 2004.

References 95

[KGSB98] Ingolf Krüger, Radu Grosu, Peter Scholz, and Manfred Broy.
From MSCs to Statecharts. In Franz Rammig, editor, Proc.
IFIP WG10.3/WG10.5 International Workshop on Distributed
and Parallel Embedded Systems, pages 61–71. Kluwer Academic
Publishers, 1998.

[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model
Checking - Timed UML State Machines and Collaborations. In
W. Damm and E. Olderog, editors, Proc. Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 2469 of Lecture
Notes in Computer Science, pages 395–416. Springler, 2002.

[Kna99] Alexander Knapp. A Formal Semantics for UML Interactions.
In Robert France and Bernhard Rumpe, editors, Proc. UML
99: The Unified Modeling Language - Beyond the Standard,
Second International Conference, volume 1723 of Lecture Notes
in Computer Science, pages 116–130. Springer, 1999.

[Krü00] Ingolf Krüger. Distributed System Design with Message Se-
quence Charts. PhD thesis, Technische Universität München,
2000.

[KS01] Jochen Malte Küster and Joachim Stroop. Consistent Design of
Embedded Real-Time Systems with UML-RT. In Proc. 4th Int.
Symposium on Object-Oriented Real-Time Distributed Comput-
ing, pages 31–40. IEEE Computer Society, 2001.

[KW00] Anneke Kleppe and Jos Warmer. Extending OCL to include
Actions. In Andy Evans, Stuart Kent, and Bran Selic, editors,
Proc. 3rd Int. Conf. UML 2000, volume 1939 of Lecture Notes
in Computer Science, pages 440–450. Springer, 2000.

[Kwo00] Gihwon Kwon. Rewrite Rules and Operational Semantics for
Model Checking UML Statecharts. In A. Evans, S. Kent, and
B. Selic, editors, Proc. International Conference on the Unified
Modeling Language, volume 1939 of Lecture Notes in Computer
Science, pages 528–540. Springler, 2000.

[LKK+02] A. Letichevskii, Yu. Kapitonova, V. Kotlyarov, A. Letichevskii,
and V. Volkov. Semantics of Timed Message Sequence Charts.
In Cybernetics and Systems Analysis, volume 38, pages 475–484.
Springer, 2002.

[LL00] Xuandong Li and Johan Lilius. Checking Compositions of UML
Sequence Diagrams for Timing Inconsistency. In Proc. 7th Asia-
Pacific Software Engineering Conference, pages 154–161. IEEE
Computer Society, 2000.

96 References

[LLH04] Xiaoshan Li, Zhiming Liu, and Jifeng He. A Formal Semantics
of UML Sequence Diagram. In Proc. 15th Australian Software
Engineering Conference, pages 168–177. IEEE Computer Soci-
ety, 2004.

[LS06] Mass Soldal Lund and Ketil Stølen. A Fully General Opera-
tional Semantics for UML 2.0 Sequence Diagrams with Potential
and Mandatory Choice. In Proc. 14th International Symposium
on Formal Methods, volume 4085 of Lecture Notes in Computer
Science, pages 380–395. Springer, 2006.

[Lun00] Carlos Luna. Especificación y Análisis de Sistemas de Tiempo
Real en Teoŕıa de Tipos. Caso de Estudio : The Railroad Cross-
ing Example. Number RT 00-01, 2000.

[MCF03] Stephen Mellor, Anthony Clark, and Takao Futagami. Model-
Driven Development. In IEEE Software, volume 20, pages 14–
18, 2003.

[MCM04] Rafael Marcano, Samuel Colin, and Georges Mariano. A Formal
Framework for UML Modelling with Timed Constraints: Appli-
cation to Railway Control Systems. Workshop of Specification
and Validation of UML models for Real Time and Embedded
Systems, UML 2004, 2004.

[Mic03] Microsoft. Visio for Enterprise Architects. http://www.
microsoft.com/office/visio/prodinfo/default.mspx,
2003.

[Mil80] Robin Milner. A Calculus of Communicating Systems. vol-
ume 92 of Lecture Notes in Computer Science. Springler, 1980.

[OMG03] OMG. Model-driven architecture. Guide v1.0.1, Object Man-
agement Group, 2003.

[OMG05a] OMG. UML 2.0 OCL. Adopted Specification ptc/05-06-06,
Object Management Group, 2005.

[OMG05b] OMG. UML 2.0 Superstructure. Formal Specification
formal/05-07-04, Object Management Group, 2005.

[OMO06] OMONDO. EclipseUML Studio. http://www.
eclipsedownload.com/product.html, 2006.

[Pra86] Vaughan Pratt. Modelling Concurrency with Partial Orders. In-
ternational Journal of Parallel Programming, 15(1):33–71, 1986.

References 97

[RCA01] Gianna Reggio, Maura Cerioli, and Egidio Astesiano. Towards
a Rigorous Semantics of UML Supporting its Multiview Ap-
proach. In H. Hußmann, editor, Proc. Fundamental Approaches
to Software Engineering, volume 2029 of Lecture Notes in Com-
puter Science, pages 171–186. Springler, 2001.

[Rod00] Roberto Rodrigues. Formalising UML Activity Diagrams using
Finite State Processes. 2000.

[Sch06] Douglas Schmidt. Model-Driven Engineering. In Computer,
volume 39, pages 25–31, 2006.

[SCLC06] Nora Szasz, Daniel Calegari, Carlos Luna, and Maŕıa Victo-
ria Cengarle. Extensiones de Modelos UML para el Diseño el
Comportamiento de Sistemas de Tiempo Real y Ĺıneas de Pro-
ducción. Proyecto PDT de Investigación Fundamental en Áreas
Básicas, 2006.

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. In
IEEE Software, volume 20, pages 19–25, 2003.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time
Object-Oriented Modeling. Wiley, 1994.

[Sof05a] Artisan Software. Real-time Studio Professional. http://www.
artisansw.com/products/professional_overview.asp,
2005.

[Sof05b] Tri-Pacific Software. Rapid RMA. http://www.tripac.com/
html/prod-toc.html, 2005.

[SR98] Bran Selic and Jim Rumbaugh. Using UML for Modeling Com-
plex Real-Time Systems. Technical Report, IBM Technical li-
brary, 1998.

[Ste02] Perdita Stevens. On the Interpretation of Binary Associations
in the Unified Modelling Language. In Software and Systems
Modeling, volume 1, pages 68–79, 2002.

[Stö03a] Harald Störrle. Assert, Negate and Refinement in UML-2 In-
teractions. Intl. Ws. Critical Systems Development with UML,
at UML’03, 2003.

[Stö03b] Harald Störrle. Semantics of Interactions in UML 2.0. Intl. Ws.
Visual Languages and Formal Methods, at HCC’03, 2003.

[Stö04a] Harald Störrle. Semantics and Verification of Data Flow in
UML 2.0 Activities. 2004.

98 References

[Stö04b] Harald Störrle. Semantics of UML 2.0 Activities. In Proc.
Symposium on Visual Languages - Human Centric Computing,
pages 235–242, 2004.

[Stö04c] Harald Störrle. Trace Semantics of Interactions in UML 2.0.
Technical Report TR 0403, Technische Universität München,
2004.

[Tig99] Tigris. Argo/UML. http://argouml.tigris.org/, 1999.

[UM05] Cambridge University and Technische Universität München.
Isabelle. http://www.cl.cam.ac.uk/Research/HVG/
Isabelle/, 2005.

[UU06] Uppsala University and Aalborg University. Uppaal 3.6. http:
//www.uppaal.com/, 2006.

[Var02] Daniel Varró. A Formal Semantics of UML Statecharts by
Model Transition Systems. In A. Corradini, H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, Proc. International Con-
ference on Graph Transformation, volume 2505 of Lecture Notes
in Computer Science, pages 378–392. Springer, 2002.

[vdB02] Michael von der Beeck. A Structured Operational Semantics for
uml-Statecharts. In Software and System Modeling, volume 1,
pages 130–141, 2002.

[VER99] VERIMAG. Kronos 2.4. http://www-verimag.imag.fr/
TEMPORISE/kronos/index-english.html, 1999.

[Vig04] Andrés Vignaga. Una Semántica Formal de Primitivas de Mod-
ificación de Estados de Sistemas Orientados a Objetos. Tesis de
Maestŕıa RT 04-01, InCo-PEDECIBA, 2004.

[WS00] Jon Whittle and Johann Schumann. Generating Statechart De-
signs from Scenarios. In Proc. 22nd Int. Conference on on Soft-
ware Engineering, pages 314–323, 2000.

