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Abstract

Sets of primitive operations for state modification of object-oriented systems
have been proposed elsewhere for expressing system behavior at a conceptual
level. Primitives are operations that perform basic changes on states, and they
ultimately are the basic constructs from whom higher level operations can be
built. The main problem addressed in this work is the statement of a formal
semantics, with a high level of abstraction, of a set of five system state modifi-
cation primitives. The modifications which are the subject of our study concern
creation and destruction of objects, creation and destruction of links, and up-
date of attribute values. Although in some cases informal descriptions of the
primitives may suffice, a formal specification allows removing subtle ambiguities
and leave an open door for the application of formal methods to early phases
of object-oriented systems development. Programs expressed as sequences of
state changes are shown to be powerful enough to represent non-trivial system
level operations. A framework for rigorously reasoning about these programs
is proposed, where proofs of program correctness can be constructed. A simple
environment for specifying and verifying system behavior is prototyped using a
proof assistant, where users are assisted in the task of proof construction, and
where proofs are mechanically checked. Automatic proof construction within
the environment is also explored. The framework is applied to a realistic infor-
mation system within a known problem already developed in the bibliography.
This case study demonstrates the feasibility and power of our approach.
This work is devoted to specifically study system state modification primitives
and applications with mathematical rigor, and contributes to fill the existing gap
in the area between related formalizations and works which informally describe
concepts widely used in practice.
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Chapter 1

Introduction

Systems that model computational behavior typically include a notion of state
that stores information. As this information, and therefore the state, usually
changes over the time, these changes determine the evolution and life cycle of a
system. A good grasp of possible state changes is essential for either defining or
understanding the overall behavior of a system. Operations or programs that
have effect on system states may differ in their purpose and level of abstraction,
but they are all ultimately expressed in terms of system state modification prim-
itives, which are operations that perform basic atomic changes on system states.

From an implementation point of view, state modification primitives may be
regarded as basic programming language constructs (such as Java’s new oper-
ator or C++’s delete operator). In most programming languages some object-
oriented concepts (commonly associations and related notions) are not sup-
ported. Therefore, idioms need to be specifically defined for the programming
language in order to implement those concepts. For this reason, the imple-
mentation of conceptually simple state modifications may imply some complex
logic involving pointer or reference handling. From a specification perspective,
state modification primitives describe basic state changes at a conceptual level
using the full object oriented terminology, instead of a programming language-
constrained and implementation-driven one. In this way, we believe that primi-
tives are a useful tool for thinking about more complex state modifications and
describing them conceptually in early phases of software development, and thus
avoiding the (increasing) complexity associated to late phases of the develop-
ment process.

System state modification primitives have been used in many other works. How-
ever, a definition of their semantics with a formal background has been only
partially addressed. A fully formalized semantics for them would naturally re-
move any subtle ambiguities, and can be useful for rigorously reasoning about
the use of the primitives, in particular about system behavior.

1



2 Chapter 1. Introduction

The main problem addressed in this work is the statement of a formal semantics
for a set of system state modification primitives. State-of-the-art object oriented
concepts have grown fast in their complexity in the past few years, especially
due to the joint effort of the object community in the definition of the Unified
Modeling Language (UML) [OMG03b]. Not all the concepts from this huge
domain are used in practice with the same frequency. For that reason, in this
work we shall cover only a subset of those concepts. Particularly, we will be
focusing on those most frequently used, which allow us to define simple but yet
realistic system states and handle useful modifications on them.

Related Work

The UML Reference Manual [RJB98], first introduced the idea of primitive op-
erations for state modification. An informal description for them was embedded
in the description of basic concepts, such as object and link. The idea of using
modification primitives for describing system behavior was taken from [Lar98].
There, a set of primitives were suggested, albeit not defined, for specifying the
behavior of system operations.
In object-oriented software engineering, many object-oriented concepts have
been formalized in different works, but to the extent of the author’s knowl-
edge this is the first time a semantics for system state modification primitives
is formally addressed.
Animation techniques have been applied in [Oli99, OK99] for validation pur-
poses. There, a system specified by a UML model is animated by showing
the sequence of states resulting from the application of operations specified by
OCL [OMG03a, WK98] constraints. Each operation is realized by translating
its specification into a sequence of modification primitives (called operations on
snapshots). The USE tool [Ric01], implements an environment for performing
animation in a similar way. The work that originated the tool [Ric02] focuses
in validating the OCL constraints that specify class operations, rather than in
validating the model that specifies the system. In USE, the execution of an op-
eration is simulated by interactively performing the application of system state
modification primitives (called system state manipulation commands) to a given
state.
A response to the Action Semantics for the UML RfP [OMG98] became part of
the current adopted version of UML (version 1.5), introducing in its metamodel
the Actions package. The elements in this package conform an action language
for modeling executable programs, typically methods. Among others, these
constructs include different kinds of actions, as well as control structures. Some
metaclasses in the Read Write Actions subpackage [OMG03c, p. 2-252] specify
actions with side effects on states, corresponding to modification primitives. A
subset of UML together with this action language is named eXecutable UML
(xUML) [KC03]. The xUML process is closely related to Model Driven Archi-
tecture (MDA) [OMG01], and involves the definition of platform-independent
executable models which can be then realized into platform-specific code. MDA
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provides a separation between conceptual modeling from technology specific
modeling, and xUML applies the action language defined within UML for mod-
eling and thinking about behavior in that first conceptual stage. Although an
important effort is still carried out in definition of a semantics of an action
language (we refer to [ASC01] for further information), action semantics is ulti-
mately specified in natural language, as it is defined within the UML metamodel
specification.

In [AL98], a logic for an imperative object-oriented language was first intro-
duced. That language is an object based variant of the ς-calculi presented in
[AC96]. A semantics of some object manipulations such as object creation and
attribute update is defined, having in fact much in common with parts of the
semantics defined in this work. However, issues concerning associations, which
are vital in object-oriented software engineering areas are not addressed. Simi-
larly, [Mül02] presents a logic for a programming language similar to sequential
Java.

In conclusion, many authors identified a number of system state modification
primitives. Some of them are based on very basic concepts and were defined
formally, and others not. Different levels of rigor was applied to the specification
of their semantics, from naming-descriptive approaches, through brief textual
descriptions, to metamodeling. Although in some cases such informal descrip-
tions may suffice, a formal specification would avoid ambiguities and leave an
open door for the application of formal methods.

Contributions of this Work

The primary goal of this thesis is to define a formal semantics for a set of ba-
sic system state modification primitives. The benefits of the formalization is
demonstrated by the definition of a framework which allows to reason about
the use of primitives on states. The framework will permit the construction
of reliable proofs of properties on states modified by primitives. By treating
sequences of state modifications as programs and pairs of properties on states
as specifications for programs, the framework will allow the proof of correctness
of such programs with respect to their specification.

In summary, this work makes the following contributions:

• A formal semantics for a reduced but intuitively powerful enough set of
system state modification primitives is specified. This provides a solid
clarification of known object-oriented concepts, and tends to bridge the
gap between existing formalizations and those concepts used in practice.

• A framework for reasoning about the use of primitives is defined. Based on
the defined semantics, the framework is a tool for constructing programs
as sequences of primitives, and proving their correctness with respect to
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specifications in the form of pre- and postconditions, as well as properties
on final states.

• A specification of the framework for a proof assistant is provided. The use
of a proof assistant facilitates the application of the framework, since part
of the work in building proofs is delegated to its proof engine. Moreover,
the proof assistant mechanically checks the proofs built, making them
completely reliable.

• A starting point is provided for the generation of an environment where
the specification and verification of modifications on system states can
be reliably performed. Tools for analysis and verification could use the
results presented in this report.

This approach can be useful particularly for data-intensive systems, where some
functionalities are usually implemented as operations that affect the state of the
system. This kind of operations are normally called system operations, and can
be realized by modification primitives. System operations are used in devel-
opment processes such as the Unified Process (UP) [JBR99] to implement the
steps of system use cases. [Lar02] is an example of this methodology. Use cases
are a widely used tool for specifying system behavior [Coc01]. Therefore the
benefits of our approach can be propagated to higher levels of abstraction.

Finally, we should note that this approach could be used to specify system
level operations, but not exclusively so. In fact, it can be used to specify and
reason about operations of modules with different levels of granularity. The
only existing restriction is that the module, while exhibiting a public interface
(i.e. a set of public operations), needs to be object oriented in its internal
structure. Examples of mid-grained modules are subsystems and components.
Particularly, components are software units with usually manageable size and
complexity, being a feasible target for our framework. Work focusing on software
components specification has been done in [CD01]. Component interfaces with
component operations are a very hot spot in Component-based Development
(CBD), since their specification is a key for the component to fulfill one of its
most important purposes: to be identified as a compatible building block for an
application for its later use or replacement.

Approach Followed

Before ending this introduction, we overview the approach followed for produc-
ing the results. The results are produced in two major steps:

1. A precise but not completely formalized specification of the semantics of
the primitives, related notions and infrastructure of the framework is first
introduced.

2. A formalization of the specification is then generated.
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In the first step we present a mathematical specification of the semantics of sys-
tem state modification primitives, the framework, and other necessary concepts
of our theory. It is an intermediate step towards the formal specification. In this
step we emphasize understandability, through standard and well known speci-
fication techniques, over extreme rigor. We use abstract data types (ADTs) as
a tool for specifying notions present in object-oriented systems (e.g. the state
of a system). The primitives are then functions associated to a type State, and
their semantics is defined axiomatically. In turn, the framework is specified as
an inference system, in which rules are defined in the usual way.
In the second step, the formalization process is carried out using the system
Coq [INR02]. The specification introduced in the first step is translated into
the Calculus of Inductive Constructions, which is a variant of Constructive
Type Theory [Wer94, PM97]. Finally, the code generated for the system Coq
embodies the complete formalization of both the semantics of the system state
modification primitives and the framework.

Structure of the Thesis

This thesis is structured as follows. Chapter 2 includes background information
on object oriented systems, program specification and verification, and proof
systems. The set of system state modification primitives to be tackled and the
framework for reasoning about their use are further motivated. Chapter 3 in-
troduces an axiomatic semantics for the modification primitives based on the
specification of abstract data types. Modification primitives and other opera-
tions used to define the framework are defined as functions associated to those
types. In Chapter 4, an inference system that realizes our framework for reason-
ing about the use of primitives is presented. The steps followed for producing
the formalization in Coq are reported in Chapter 5. A case study is presented in
Chapter 6, where we demonstrate the use of the framework. Chapter 7 concludes
the thesis with a short summary and an outline of future work.
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Chapter 2

Background and Motivation

In this chapter we present background information on the object-oriented para-
digm, the general context in which the subject of our study is placed. Herein,
system state modification primitives are motivated and informally described.
Our exploration of the application of the formal semantics of the primitives to
software specification and correctness is motivated too. Finally, proof systems
and proof assistants are reviewed as they contribute to the formalization of our
specification.

This chapter is structured as follows. In section 2.1 we review object-oriented
systems, from the essence of object-oriented approach to the concrete structure
of object-oriented systems. Section 2.2 motivates and describes the set of system
state modification primitives that will be treated in this work. Section 2.3
gives an overview of program specification and program correctness and its
applications to object-oriented development. An application of the primitives to
program correctness is also presented. In section 2.4 we overview proof systems
for formalization and proof verification, proof assistants for mechanic formal
proof handling, and discuss the role played by the system Coq in our work.

2.1 Object-Oriented Systems

In this section we discuss concepts of object orientation that will be used
throughout this work. Starting with a brief description of the object-oriented
approach, we then review current trends in object-oriented development. We
also explore the key ideas in widely used methods, and the positioning of mod-
ification primitives among them. Then we analyze in more detail the structure
of object-oriented systems from a runtime and static points of view as a foun-
dation for the introduction of the primitives and the specification addressed in
the next chapter. Finally, state well-formedness is addressed and its connection
with the primitives is discussed.

7



8 Chapter 2. Background and Motivation

2.1.1 The Object-Oriented Approach

The object-oriented approach to software development is a specific way of think-
ing of a software product that goes beyond a particular style of programming.
It is strongly based on establishing an analogy between a software system and
the physical system being represented. Entities in software, called objects, are
abstractions of real world concepts, and emulate how things work in the physi-
cal system. The tight correspondence between entities in both worlds makes a
system developed according to the object-oriented approach intuitive and un-
derstandable.
In the last decade a number of methods and techniques for object-oriented de-
velopment appeared, remarkably OMT [RBP+91], OOSE [JCJÖ92], and Booch
[Boo94]. A unification of their notation (the Unified Modeling Language) was
quickly adopted as a standard. Although a unification of their methods, the
Unified Process (UP) [JBR99], did not reach that status yet, the UP and its
commercial refinement, the Rational Unified Process (RUP) [Kru00], emerged
as popular software development processes for building object-oriented software.
UP combines commonly accepted best practices in object-oriented development
in a well documented description, but does not recommend concrete activities
for object-oriented analysis and design.
This kind of activities, in the context of UP, are treated in detail in the pop-
ular text book by Larman [Lar02]. In general terms, object-oriented analysis
activities involve abstracting significant concepts from the problem domain, as
an intuitive first draft for further refinement of the classes of objects that will
participate in the actual solution, and capturing requirements as use cases. Use
cases can be roughly described as complete stories of using a system to meet
goals. They can be expressed in a narrative form, but being completely informal
they are meant for human interpretation only. These stories are then expressed
in a more precise way as interactions between the system as a black box and
external agents. An interaction is typically a sequence of calls to system opera-
tions. Some of them just query the system state, and others modify it. In turn,
object-oriented design activities involve the definition of actual software entities
that will participate in the execution of system operations inside the system,
and the way they will collaborate to resolve them. These collaborations (objects
and operations) are said to realize the story told in the use case. Design models
usually limit their repertoire of object-oriented constructs to those supported by
the programming language or technology adopted in order to simplify the code
generation phase. Finally, object-oriented implementation activities involve the
translation of the design artifacts into object-oriented code. Code generation for
business or domain objects (i.e. objects which mainly hold information about
domain entities) is highly automated by CASE tools such as Rational Rose
[IBM03] and Together [Bor03].
The set of all use cases describes all the possible ways to use a system, and
therefore completely specifies its behavior. The semantics of system operations
then plays a vital role in the development process, since objects will be de-
signed for fulfilling the system operation’s intended behavior. As we shall see
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in this work, this semantics can be defined and specified using system state
modification primitives.

2.1.2 Static and Dynamic Views of Systems

A system is object-oriented when it is organized at runtime as a collection
of connected objects that incorporate data structure and behavior [RBP+91].
Many definitions of object-oriented systems are available from different authors,
each emphasizing different aspects of the system according to their particular
intentions. From this wide range of definitions we chose the above definition for
focusing on structure. It will be our basis for both defining the notion of system,
and for motivating and further defining the modification primitives. This defi-
nition considers objects as more a primitive notion than classes, as in [AC96]. In
fact, this definition emphasizes a dynamic (runtime) view, rather than a static
one. Let us take a closer look at the dynamic view first and analyze the given
definition. First, object-oriented systems are organized as a collection of objects.
Objects encapsulate state and behavior [RJB98] and are structured as: a set of
named slots holding typed values, and a set of implemented operations. Since
we are not interested in the individual behavior of objects we ignore operations,
and thus we omit them from objects structure. Second, objects are connected
to other objects. Connections between objects are achieved by means of links.
A link is a tuple (with at least two elements) of objects, and an object in a tuple
is said to be connected to the rest of the objects in the tuple.
Now looking at systems from a static point of view, identifying and defining
individual objects and relationships between them is not practical [EKW92].
Therefore, common properties of objects such as slots and even operations are
abstracted away in classes. A class is an abstraction of a set of objects that
share the same set of properties. In a class we find the description of these com-
mon properties. Particularly, a class has typed attributes that describe slots
in objects. Analogously, an association abstracts away the common properties
of a set of tuples of connected objects (e.g. the type of objects they refer to).
Thus an association is a relationship between classes, where the same collection
of classes may participate in a relationship (but under a different name) more
than once. An association also includes constraints on the number of tuples
that may refer to the same object. These constraints are called multiplicities
of the association. One (at most) of the participating classes in an association
can be designated to be composite. This means that an instance of that class is
actually composed by the instances connected to it by a link through this asso-
ciation. The semantic impact of such construct is that, in general, actions over
the composite objects (e.g. object destruction) are propagated to its parts. The
composition relationship is transitive and no cycles are allowed. This means
that an object may not be ultimately part of itself.
Another important concept is generalization. A generalization is a reflexive,
antisymmetric and transitive relation between classes denoted by symbol <:.
When a class c is generalized by a class c′, class c incorporates properties of
class c′, particularly, attributes (provided that clashes are avoided) and partic-
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ipation in associations. The intuition behind this idea is that instances of class
c can be subsumed under instances of class c′, and therefore also exhibit their
properties. The mechanism by which a class is able to incorporate properties of
other classes is called inheritance.
In conclusion, the structure of objects and their connections (system structure)
constitutes the static view and is described by means of classes and associa-
tions. A model of a sample system structure is shown in Figure 2.1. On the
other hand, the runtime structure of a system (system state) is structured as a
set of connected objects. A pair of possible states corresponding to the system
structure of Figure 2.1 are shown in Figure 2.2.

Person Company

avail : Boolean = false
Product

SalesmanManager

0..* 1
1

1..*

0..* 1

works_for 

sells 

produces 

Figure 2.1: UML diagram modeling a system structure

avail = true
p : Product c : Company

s : Salesman

avail = true
p : Product c : Company

(a) (b)

Figure 2.2: Possible system states

Throughout this work we use the example above to illustrate the concepts intro-
duced. The example is discussed in more detail in section 2.2.3 and is developed
in the following chapters.

2.1.3 State Well-formedness

In a running system, not every possible state configuration may be desirable.
The notion of well-formedness allows distinguishing the desired configurations
from the undesired. In general terms, well-formedness involves both syntactic
and semantic aspects. In UML, a state is said to be well-formed if it satisfies
all predefined and model-specified rules or constraints [RJB98]. Predefined rules
and constraints are those imposed by the UML metamodel (e.g. an attribute
may not realize a node, or an operation may not be an instance of an actor).
States violating predefined rules and constraints are unacceptable. In turn,
model-specified rules and constraints include system structure and invariants.
As discussed in the previous section, actual state configurations are described



2.2. System State Modification Primitives 11

statically by the system structure. This structure specifies what classes of ob-
jects are admissible along with their attributes, and how they are related. States
not conforming to the system structure are also unacceptable. Static structure
includes notion of multiplicity. A multiplicity is an expression that defines a
subset of the nonnegative integers different from {0}, which is attached to an
association end. It constrains the number of instances of the class at the specified
end that can be linked to the same set of instances of the other participating
classes. For example, given an association between classes c1, c2 and c3, the
number of instances of c3 which may be linked to a particular pair of instances
of classes c1 and c2 must be included in the set defined by the multiplicity at
the end corresponding to c3. Stable states should satisfy all the multiplicities,
but it is often necessary for reaching a stable well-formed state that some in-
termediate ill-formed states are momentarily traversed. For this reason, these
kind of semantic constraints cannot be structurally enforced, rather they are
conditions that can be checked at any point in time.
A similar situation occurs with invariants, in fact, multiplicities can be under-
stood as a particular case of these. Invariants are general conditions that must
be satisfied at all times, and quoting [RJB98], “or, at least, when no operation
is incomplete”. This means that, as with loop invariants, system invariants are
allowed to be momentarily broken during the execution of an operation, but
they must be reestablished at its completion.
In conclusion, state well-formedness involves both syntactic and semantic as-
pects, and system state modification primitives affect both of them. As some
primitives introduce new elements or modify existing ones in a state, it could
be possible that a state resulting from state change violates syntactic or se-
mantic constraints. For example, an instance of a nonexisting class could be
erroneously created, or a state change may break an invariant or multiplicity.
Well-formedness concerning syntactic aspects is usually enforced by construc-
tion and is intended to be permanent. Well-formedness concerning semantics
aspects are just checked at some specific points at runtime, usually at the com-
pletion of higher level operations. An example in the next section will illustrate
this point in more detail.

2.2 System State Modification Primitives

System state modification primitives are primitive operations that perform basic
modifications to a system state at a conceptual level. Operations that have effect
on the state of an object-oriented module at any level of granularity (system,
subsystem, component, etc.) can be represented as a sequence of primitive
changes on states. In this section we motivate a set of five primitives already
identified in the bibliography, and informally describe their semantics. A final
example illustrates the use of the primitives and some issues concerning state
well-formedness.
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2.2.1 Motivation

After the brief structure-oriented review of systems in the previous section,
we motivate the set of primitives to be addressed in this work. We proceed
by investigating what can and what cannot be changed in a system runtime
configuration (state). A possible change in a state would suggest the existence
of a system state modification primitive:

• New objects can be added to the state.

• Existing objects can be removed from the state.

• New tuples representing links can be added to the state.

• Existing tuples representing links can be removed from the state.

• The structure of a tuple cannot be changed (i.e. associations cannot be
changed), that is, the number and type of objects it refers to are fixed.

• The structure of an object cannot be changed (classes cannot be changed),
that is, the number and type of slots is fixed 1.

• The values held in slots can be replaced by new values of the proper type.

Adding a new object is done by a primitive named create, and removing an
existing one is done by destroy. Links can be added and removed with link and
unlink respectively. The value of an attribute can be changed with set. These five
primitives match those identified in [Oli99] and [Ric02], and they form the set
of primitives that will be the subject of our formalization. Next, we informally
describe each one of them.

2.2.2 Informal Semantics of Primitives

This section introduces an informal description of the primitives listed above
as a foundation for the specification in the next chapter. The main references
are the UML Action Semantics Specification [OMG03c, p. 2-199], the UML
Reference Manual [RJB98], and research in [Vig03].

Object Creation

The create primitive allows the instantiation of a class (i.e. creation of a new
object), and adds the resulting object to the system state. It needs a unique
name for the object to be created, as well as the name of the class to be in-
stantiated. Thus, the chosen name for the object may not already be in use for
an object already in the system state, and the class from whom that instance
will be created must be an existing class in the system structure, and it may
not be abstract. After the primitive is performed, the system state owns a new

1UML supports the concepts of multiple classification and dynamic classification, but they
are not widely used due to a general lack of support in programming languages
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instance of the specified class. The UML Action Semantics [OMG03c, p. 2-
271] specifies that after the execution of an instance of the CreateObjectAction
class no attribute values are set for the created instance (the default values for
its attributes), that is, no constructor executes. The UML Reference Manual
[RJB98, p. 307] is consistent with this approach, but distinguishes two stages in
the actual creation of an object; first, the allocation of the new instance in the
environment of the system (instantiation), and second, the initialization of its
attributes (initialization), which occurs immediately after the instantiation. It
also warns that an object instantiated but not initialized (called raw instance)
might be inconsistent and “is not available to the rest of the system until it
has been initialized”. We expect an instance to be available after creation,
so for practical reasons, we decided to assume that the create primitive both
instantiates a class producing an instance, and initializes it with default values.

Object Destruction

With the destroy primitive an object can be removed from the system state.
This primitive only needs the name of the object to be removed, and requires
that an object with that name exists in the system. After the primitive is
executed, the specified object is no longer available in the system. This implies
that any link previously involving the object is also removed from the system
state. Moreover, any composing object should be also recursively removed.

Link Creation

The link primitive allows establishing a connection between a tuple of objects.
The ability to connect the tuple of objects must have been declared in the system
structure, thus there must be an association between the classes of objects (or
any of its ancestors in order <:) we wish to connect. For the execution of
this primitive it is required that the objects to connect exist in the system
state, and since the extent of an association (i.e. the collection of connections
between instances of the associated classes) is a set, the objects to be connected
must not be already connected through this association. After the primitive is
completed, there is a new link between the tuple of specified objects through
the specified association.
Finally, the case in which the association is an association class would require
the creation of a special kind of object, which is also a link. Since it is a link,
the semantics shown right above still holds, and since it is an object it is also
needed to initialize its attributes as discussed for create.

Link Destruction

Using the unlink primitive a link between objects through a specific association
can be removed. This primitive requires that the specified association exists
in the system structure and associates the classes of the specified objects (or
any of its ancestors). It is also required that the objects to disconnect exist in
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the system state and are already linked through the specified association. After
completion, the link between the specified tuple of objects through the specified
association is removed.
The case of an association class would require removing an element that is both
a link and an object. The semantics above still holds for the “link” part of
the element. For the “object” part, object destruction (i.e. eventual link and
components destruction) apply as in destroy.

Attribute Value Replacement

With the set primitive the value of an attribute of an object can be changed.
It takes as input the target object, the attribute, and the new value for it. It
is required that the target object exists in the system state, and the specified
attribute is defined in the target object class (or any of its ancestors). Also, the
type of the new value must conform to the type of the attribute (i.e. either both
types match or the type of the value is a subtype of the type of the attribute).
After the primitive is completed, the object holds the new value for the attribute.

2.2.3 A Simple Example

In this section we use a very simple example to illustrate the use of system state
modification primitives and state well-formedness issues. In this example we use
the system structure shown in Figure 2.1. We have classes Company, Product,
Person, Manager and Salesman. Class Company is associated to class Person.
That means that persons work for companies. Class Manager and class Salesman
are related by generalization with class Person, meaning that every manager
and salesmen are persons, and that they inherit every property of persons (i.e.
the participation in the works for association). Then managers and salesmen
work for companies. We also have class Product. This class is associated to
Company and to Salesman (by associations produces and sells respectively). This
models the fact that companies produce products, and salesmen sell them. Class
Product has a boolean attribute avail which represents whether a product is
available or not. By default products are not available. From multiplicities we
can know that persons work for exactly one company, and that companies may
have any number of employees. Also, companies produce at least one product,
and a product is produced by exactly one company. Finally, a product can be
sold by any number of salesmen, and salesmen only sell exactly one product.
We do not define invariants for this system at this moment.
We now consider the system states of Figure 2.2. First, we use primitives to
reach state (a) from a state where no object exist as follows:

1. create the company with create(c,Company)

2. create the product with create(p,Product)

3. connect the company with the product with link(c,p,produces)

4. make the product available with set(p,avail,true)
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Note that the order assigned to each invocation is incidental. The only restric-
tions are that link needs both objects, and set needs the product. Any other
ordering satisfying the above restrictions is also acceptable.
We now consider the transition from state (a) to state (b). The modification
depicted is not atomic, and is carried out in a number of steps. It involves the
creation of a new salesman s, and connecting it to the existing company and
product. This can be done as:

1. create(s,Salesman)

2. link(c,s,works for)

3. link(s,p,sells)

In the resulting state of this program (i.e. resulting from step 3), there is a new
salesman s linked to company c through the works for association, and linked
to product p through sells, as it was expected. Multiplicities are also satisfied.
However, after step 1 and even after step 2 this was not the case.
In the intermediate state resulting from step 1, the multiplicities of both as-
sociations works for and sells, at the end of Company and Product respectively,
were not satisfied. In fact, both constraints require that the created salesman
must be connected to exactly one company, and also to exactly one product.
As salesman s is not connected to a company or a product, those multiplicities
are not satisfied, and therefore the state is ill-formed. However, it is easy to
see that it is not possible to avoid that situation. A salesman must be created
before it can be connected to a company and a product, thus there will always
be an intermediate state where the salesman exists but it is not yet connected.
A similar situation occurs with the state resulting from step 2, where despite
being connected to a company, the salesman is not connected to a product.
For this reason, as discussed in the previous section, it is unacceptably restric-
tive to demand well-formedness on every intermediate state. Resulting states
of system operations or sequences of meaningful state changes are expected
to be well-formed, however it is admissible for some cases that intermediate
states may not satisfy invariants or multiplicities. The responsibility of ensur-
ing well-formedness on final states, as well as handling ill-formed intermediate
ones, relies on the programmer. How system state modification primitives affect
state well-formedness, particularly multiplicities and invariants, is explored in
Chapter 4.

2.3 Program Specification and Correctness

In this section we review the technique on which most of the approaches for
object-oriented program specification are based. We also explore the notion of
program correctness which is closely related to that technique. An application
of the formal semantics of system state modification primitives, which will be
addressed in Chapter 4, is here introduced.
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2.3.1 The Axiomatic Approach

According to UML terminology, the term behavior means semantics of an op-
eration [RJB98]. In object-oriented development the most popular approach
to specifying behavior on a rigorous basis is a technique called Software Con-
tracts. Contracts are directly derived from the axiomatic approach introduced
by C.A.R. Hoare [Hoa69] for proving properties of programs, but also for spec-
ifying the semantics of imperative programming languages [Win93]. According
to that approach, a program is specified using a formula of the form { P } S {
Q }, where S is the statement (or program) being specified, and P and Q are
assertions on the state. There, P is called the precondition and Q is called the
postcondition. The operational interpretation of such formula is [NN92]:

if P holds in the initial state, and
if the execution of S terminates when started in that state,
then Q will hold in the state in which S halts.

This kind of formulae is called a partial correctness assertion because it need
not to ensure that program S terminates.

Precondition P and postcondition Q alone are called a specification for S. Based
on the interpretation given above, they express the effect of S on the state. A
specification can be used by the programmer for describing his intentions about
the program, but also by a user for making sure that the program fits his needs.
Whether a specification is useful or not for those purposes highly depends on
the way in which assertions are formulated. Assertions expressed informally or
based on a poorly defined notion of state are not of much use. Instead, precise
assertions about a well defined state both fulfill the goal and are the basis for
more advanced techniques such as proving program correctness.
Given a specification and an implementation of a program, it could be possible
to prove its correctness. Particularly, correctness of the implementation with
respect to the specification, again in the sense of the interpretation above. If
it is possible to build a proof for a correctness formula {P}S{Q}, then the im-
plementation of S satisfies the specification. Such a proof can be constructed
by applying rules specifically defined for the programming language used to im-
plement S. Rules are axiomatizations of the meaning of basic constructs of the
programming language; they can be understood as proved correctness assertions
for programs each one consisting of just a simple construct. Then, the rules can
be combined to build a proof tree for composite and more complex programs.
Again, a well defined set of rules is necessary for a proof to be formally con-
structed.
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2.3.2 Application to Object-Orientation

Several proposals applied the ideas discussed in the previous section to object-
oriented development, with variable degree of formalism and different purposes.
They were first applied to object-oriented development by Bertrand Meyer who
introduced a technique called Design-by-Contract [Mey92]. This technique sug-
gests a way of thinking about object interactions with native support in the Eiffel
[Mey91] programming language. Eiffel allows the programmer to annotate class
level operations with assertions (pre- and postconditions), which are evaluated
by the runtime environment before and after the execution of the operation re-
spectively. A similar approach for the Java programming language [JSGB00] is
being developed in the Java Modeling Language (JML) [LC03] project.
Contracts are also applied in [Lar98] as a tool for specifying system level op-
erations. There, assertions are written in natural language, and in particular,
postconditions are expressed in terms of the five primitives discussed earlier in
this chapter. Another application of contracts can be found in [DW99, CD01].
In this case they are used for specifying component level operations, and asser-
tions are expressed using OCL [OMG03a, WK98].
Table 2.1 summarizes the applications of correctness assertions reviewed before.
They are classified by the level of the operation they are applied to, the purpose
of the application (proof of correctness, execution of runtime tests and spec-
ification), the language used for expressing assertions, and the programming
language used for implementing the operation.

Approach Level Main Purpose Pre-/Post- Lang
Hoare Program Spec/Correctness Logic Algol-like
Meyer Class Spec/Runtime test Eiffel Eiffel
JML Class Spec/Runtime test JML Java
Catalysis Component Specification OCL -
Larman System Specification NL -

Table 2.1: Applications of correctness assertions

In the last two rows the programming language is left unspecified because in
those approaches contracts are written in an analysis phase for specification
purposes only, and at that time the operation is not yet implemented.
In conclusion, software contracts, which were originated from correctness asser-
tions, are the most popular technique for specifying behavior in object-oriented
systems. It should be noticed that specification purposes are present in all of
the approaches reviewed. However, the purpose of proving correctness is not.
In that context, as pointed out before, assertions need a formal foundation, and
also a set of inference rules for the programming language is required. A group
in Nijmeegs Instituut voor Informatica en Informatiekunde [SoS03] is developing
the LOOP tool [vdBJ01]. This tool is used for reasoning about small sequential
Java programs annotated with JML specifications. It translates the program
to its semantics in higher order logic, acting as a front-end to a theorem prover
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(such as PVS [ORS92] and Isabelle [Pau94]) in which the actual proofs are built.
Translation of JML specifications is not yet available in this on-going project.
The application of the JML approach takes place in the implementation phase
of the development process. Approaches focusing on analysis and early de-
sign phases are unable to reason in a similar way for the simple fact that no
implementation exists at that stage. However, this missing ingredient could
be conceptually represented using system state modification primitives. Then,
reasoning in an early phase of software development would become possible, pro-
viding (hopefully) valuable feedback to design and the definitive implementation
phase. In this context, the semantics of system state modification primitives can
be used to develop a theory in which formal proofs of correctness of programs
can be built. This task is addressed in Chapter 4.

2.4 Proof Systems and Proof Assistants

Different approaches can be applied to theorem proving. Proof systems provide
a framework where propositions (and all necessary notions) can be formally
expressed, and unambiguous proofs for them can be constructed and verified
by simple syntactic checking. Building and verifying formal proofs is a highly
complex process, usually too complex to be carried out by hand. Proof assistants
are computer programs which help users handling formal proofs.
In this section we overview the characteristics of proof systems, discuss the steps
for building reliable proofs, and review the main features of proof assistants. The
section ends up explaining how the System Coq has been used in this work. The
information presented here is mostly based on a work by Bruno Barras [Bar99]
and the Coq Reference Manual [CDT02].

2.4.1 Proof Systems and Formal Proofs

A reliable approach to theorem proving is the use of logic. The main goal of
logic is to describe as rigorously as possible what a proof of a theorem is. A proof
system provides a formal language and a set of rules. Propositions and proofs
can be unambiguously expressed using the formal language. In turn, deductions
are limited to the application of the well defined set of rules. Formal proofs are
then reliable because it is possible to verify if things were done according to the
rules.
There are three major steps in the construction of formal proofs. The problem
statement, the construction of the proof itself, and (optionally) the verification
of the proof. The first step is called formalization. It involves the translation
of the problem into a logic formula of the logical system, that is, expressing the
proposition using the provided formal language. The second step is the proof
construction. Here, the structure of the proof is built and each step of deduction
must be justified by a rule. The last step is the proof checking. Checking a proof
involves the verification that the proof was actually constructed according to the
rules, it reduces to a syntactic check of the proof structure. Provided that the
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formalization was carried out properly, if the resulting formula can be proved
in the logical system, then the proposition is a theorem of that system. In
addition, a thorough verification increases the reliability of the proof.
In summary, a proof system provides a framework where reliable proofs can
be built. However, for humans, the construction of complex proofs and their
verification turns to be overwhelming and error prone. In this context, computer
programs are very helpful for performing those tasks.

2.4.2 Proof Assistants

Proof assistants are computer programs which help users of a proof system in
the construction and verification of a proof. Some examples of such systems are
PVS, Isabelle and Coq. They are usually composed by two tools: a proof checker
and a proof assistant. A proof checker can automatically tell the user whether a
proof of a theorem is in fact correct. In turn, a proof assistant provides the user
with commands which he or she can use to tell the system the actual structure of
the proof. This hides much of the complex details of the construction, allowing
the user to focus on the architecture of the proof.
An important characteristic of these systems is that they can usually separate
the stages of construction and validation of a proof. In general, a program which
takes as input a proof and which answers if it is correct is much like a parser, and
thus it is relatively simple to write and validate. This program is the essential
component of what is called the core of the system. Around this core, more or
less complex functions allow the user to conceive and build a proof. The key
point is that the reliability lies on the core, and not on these functions.

2.4.3 The Role of Coq

The system Coq is a proof assistant based on Type Theory. More precisely, its
logical system is the Calculus of Inductive Constructions [Wer94, PM97], which
is a λ-calculus with a rich type system. All logical judgments in Coq are typing
judgments. The core of the Coq system is the type-checking algorithm (proof
checker) that mechanically checks the correctness of proofs. Coq also provides an
interactive front-end (proof assistant) for building proofs using specific programs
called tactics.
In this work the Coq system is used for the following purposes:

1. Formalization. Every basic concept as well as every proposition is en-
coded using Coq’s formal language (Calculus of Inductive Constructions).
This provides the ultimate meaning for every element in our theory which
is semi-formally introduced in Chapters 3 and 4.

2. Proof construction. Coq’s front-end is used as an environment which
assists the construction of proofs for every proposition.

3. Proof verification. Every generated proof is verified mechanically by
the Coq’s type-checking algorithm.
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Summary

In this chapter an overview of object-oriented systems and system state modi-
fication primitives was given. Also, a natural application of the primitives was
presented, and the role of a proof system in this work was explained.
System state modification primitives describe at a conceptual level basic changes
that can be applied to the state of an object-oriented system. A possible imple-
mentation of higher level operations can be represented or described in terms
of these primitives. A formalization of the semantics of the primitives can be
then used as a mean to reason about their use. This allows the formal proof of
correctness of such program descriptions with respect to a specification, as well
as other properties on the resulting state. These activities can be carried out in
an early phase of the development process, providing feedback to later phases.
The formalization of both semantics and proofs can be carried out using a proof
assistant, particularly Coq. The system Coq provides a formal language to
express our specification, a proof assistant for a computer-assisted proof con-
struction, and most importantly a proof checker which mechanically validates
the correctness of every generated proof.
In the next chapter we start our specification of system state modification prim-
itives, as well as other required notions such as the state of a system.



Chapter 3

Specification of System
State Modification
Primitives

In this chapter, the semantics of the already introduced system state modifica-
tion primitives is specified. Programs which provide methods to higher level
operations, such as system operations, can be represented at early stages of
the development process as sequential compositions of these basic operations.
Such representations could be useful for providing some input to system design,
and even for code generation in the implementation phase. Since the primi-
tives primarily affect the state of object-oriented systems, for a specification of
their semantics, a clear definition of what we understand by system and state
is mandatory. We define types for system and state notions with a high level of
abstraction. The primitives are specified in terms of pre- and postconditions in-
stead of introducing particular algorithms operating on concrete data structures.

This chapter is structured as follows. Section 3.1 identifies the set of types
needed to specify the semantics of system state modification primitives. It
also discusses the application of abstract data types as a foundation for our
specification. The specification starts in section 3.2, in which we specify all the
basic types which are necessary to define types System and State. In section
3.3 the specification of type System is presented, and section 3.4 proceeds with
type State. The system state modification primitives are specified as operations
associated to that type. This chapter concludes with a discussion on possible
implementations of the abstract types here introduced.

21
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3.1 Types and Specification Approach

In this section we identify a set of concepts for describing the logic structure of
object-oriented systems. These concepts are the types which drive our specifica-
tion. We then overview the Abstract Data Types approach, and briefly describe
its application to the specification of system state modification primitives.

3.1.1 Structural Concepts

We now proceed with the identification of the types which are necessary for
specifying the semantics of the system state modification primitives. In combi-
nation, all these types represent the structural concepts which are the basis of
our specification.
We organize our specification around two core types, State and System. The
concept of system state plays a vital role in our specification since the primitives
operate directly on it. Instances of type State represent the runtime configura-
tion of a system at a particular moment in time. The concept of system structure
is also important because it defines the structure of states, and affects how the
primitives manipulate them. An instance of type System represents the static
structure of a system. Different states of the same system are described by the
static structure of that system. Therefore, an instance of type State needs to
be related to the instance of type System which describes it. This relation will
be discussed later on. Table 3.1 summarizes the basic types which were selected
and specifies the core type to which they are associated.

Basic type Associated to
Association System
Attribute System
Class System
Multiplicity System
Object State
Type System
Value State

Table 3.1: Basic types associated to types State and System

The selection of the concepts above is based on the concepts reviewed in section
2.1.2 and is aligned with UML terminology [OMG03c]. UML elements for mod-
eling the static structure of a system are defined in the Core package of the UML
metamodel [OMG03c, pp. 2-12]. In turn, model elements for modeling runtime
structure are defined in the Common Behavior package [OMG03c, pp. 2-93].
For us, the structure of a system is defined by a set of classes and the association
relationships between them. Classes have typed attributes, and multiplicities
are attached to associations. We do not handle generalization relationships ex-
plicitly. A system state is defined by a set of objects and the values they hold
for their attributes. Links between objects are not handled explicitly either.



3.1. Types and Specification Approach 23

A number of restrictions are applied, for reasons of clarity and in some cases for
simplicity as discussed next. Particularly:

• Associations are assumed to be binary.

• Association classes are not considered.

• Compositions are not considered (an OCL-based semantics of system state
modification primitives considering compositions can be found in [Vig03]).

• We assume a multiplicity to be a subrange of the set of the nonnegative
integers.

• We do not support multiple classification (i.e. objects are created from
exactly one class).

• Attributes hold exactly one value at a time, that is, we assume that at-
tribute multiplicities are 1.

The restrictions listed above do not represent an important loss in expressive-
ness, and with the unique exception of compositions, the do not show either a
great impact on the semantics of the primitives. The binary form is the most
widely used variant of associations. In fact, n-ary associations are not supported
in Meta Object Facility (MOF) [OMG02], which is a basic subset of UML, and
is the language used for expressing the UML metamodel. Association classes
were not considered as a relevant structural concept in [Ric02]. According to the
UML Reference Manual [RJB98], a multiplicity is most often a single interval of
natural numbers with a minimum and a maximum value. Attributes commonly
hold a single value. However, multi-valued attributes can be defined by simply
using collection types [Ric02]. As discussed in section 2.2.2, compositions do
play an important role in the semantics of the primitives, especially for destroy.
When destroying an object, every (either direct or indirect) component object
should be also destroyed. This suggests two different levels of behavior. In the
lower level, where no composition is defined or considered, destroy involves a
simple destruction of the target object and also the destruction of all the links
in which it participates. In the higher level, where compositions are applied,
that primitive potentially involves recursive object destruction. In this work we
address only the former form of destroy. We specify a basic form of destroy,
which can be used for defining a more sophisticated one.
Next, we overview the specification of abstract data types, which will be applied
in the remaining sections of this chapter.

3.1.2 Abstract Data Types Specification

The specification presented in this chapter is based on abstract data types
(ADTs). An abstract data type can be understood as a algebraic model of
a set of entities [AHU83]. No assumption on the actual representation of the
model is made, and the entity is entirely defined by the set of associated op-
erations. The ADT approach focuses on the essential properties of the entity
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being specified, rather than on its internal structure. Varying representations
of the entity are allowed, avoiding the complexities and particular details of
concrete data structures. This feature is very important to us, since it enables
a specification possessing a high level of abstraction, which results to be fairly
simple and compact. In section 3.5 we discuss other existing specifications and
the impact of their use on our specification of the semantics of the primitives.
For the core types State and System, and for type Multiplicity we define ab-
stract data types following the style applied in [Mey97]. An ADT specification
is basically structured in four sections: the first is named Functions which lists
the operations applicable to instances of the ADT. For convenience, we organize
functions into groups: creators are operations which produce instances of the
ADT from instances of other types; queries are operations which yield properties
of instances of the ADT, expressed in terms of instances of other types; com-
mands are operations which yield instances of the ADT from existing instances
of it (and possibly instances of other types); and extensors are operations which
are usually queries, and are not primitive operations of the ADT (they are deriv-
able from others). The second section is named Preconditions and consist of a
number of predicates which define the domain of the operations that are partial
functions. Preconditions are of the form: func requires cond, which means that
an application to func only makes sense if cond is satisfied. The last section
is named Axioms which implicitly specifies the semantics for each function, by
stating properties in the form of predicates on their possible values. System
state modification primitives are then specified as commands associated to type
State. Some operations of an ADT are used in the definition of other opera-
tions. These are the basic operations of the ADT. Basic operations are properly
identified in each ADT specification.
Finally, at this stage of the specification, with the unique exception of type Mul-
tiplicity, the basic types are informally specified as types whose instances are
just names. Their ultimate meaning, along with a concrete semantics for partial
functions denoted by a hooked arrow (↪→) in ADTs specifications, is given in
Chapter 5, where the formalization of the entire specification in the Calculus of
Inductive Constructions is addressed.
In the rest of this chapter we introduce types in a bottom-up fashion, starting
with the basic types and specifying types System and State at last.

3.2 Specification of Basic Types

In this section we introduce a first part of our specification. Here we present
the basic types that are needed for the specification types System and State.
For types Association, Attribute, Class, Object, and Type we only assume that
instances of these types are disjoint names. Types are associated with attributes,
and are used for specifying the domain of admissible values held by objects. Our
specification does not include operations on concrete types such as Integer or
String. However, if needed, operations over types (instances of Type) could be
specified and seamlessly integrated to our specification. We assume Value as a
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family of sets indexed by Type, and a function hasType which tests whether a
value corresponds to a type:

hasType : Value×Type→Boolean

In what follows, we specify an abstract data type for type Multiplicity. A mul-
tiplicity is a (potentially infinite) subrange of the natural numbers, defined by
its lower and upper bounds. For this ADT specification we introduce a special
type UnlimitedNatural, whose values are natural numbers augmented with the
special value ’∞’:

UnlimitedNatural , Natural + {∞}

This value is greater that every natural number, that is, (∀n : natural)(n <∞).
Then a multiplicity of the form (1,10) denotes natural numbers between 1 and
10, and (0,∞) denotes the whole set of natural numbers. The upper bound
must be grater than zero. If the upper bound was zero, no links through the
association would be allowed, since the multiplicity constrains the number of
admissible links. An association without links is no use. The creator operation
newMultiplicity is the basic operation of this ADT.

Functions

Creators
newMultiplicity : Natural×UnlimitedNatural↪→Multiplicity

- - creates a new multiplicity
Queries

min : Multiplicity→Natural
- - returns the lower bound of the multiplicity

max : Multiplicity→UnlimitedNatural
- - returns the upper bound of the multiplicity

Extensors
inRange : Natural×Multiplicity→Boolean

- - tests if a value is in the range of the multiplicity

Preconditions

PreMul1 The minimum may not be greater than the maximum, which in turn
must be greater than zero:

newMultiplicity(m,M) requires m ≤M ∧M > 0

Axioms

AxMul1 The lower bound of a multiplicity equals the value of the first argument
used for its creation:
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min(newMultiplicity(m,M)) = m

AxMul2 The upper bound of a multiplicity equals the value of the second ar-
gument used for its creation:

max(newMultiplicity(m,M)) = M

AxMul3 A value is in range if it is greater or equal to the lower bound, and it
is less or equal to the upper bound:

inRange(n,m)⇔ (min(m) ≤ n ∧ n ≤ max(m))

3.3 Specification of type System

In this section we introduce an ADT specification for type System. A system
has the following properties:

• A collection of classes

• A collection of typed attributes for each class

• A collection of associations with multiplicities

• A generalization hierarchy over classes

In this specification the hierarchical organization of concepts concerning the
system structure as discussed in section 2.1.2 is flattened. We specify all those
concepts as direct properties of System. For example, an attribute is a property
of a system and is associated to classes in it, instead of being a property of a
class.

3.3.1 Functions

Properties of a system are exposed through the following set of operations.
Since a system is meant to be static, a property may not be removed, and thus
we only provide operations for adding properties to a system. A class may be
specified as abstract. An abstract class may not be instantiated, and is included
in a system for other classes to inherit its associated attributes and association
relationships. A default value is specified for every attribute. The notion of
ancestor of a class is specified as the set of its related classes (transitive closure)
over the generalization hierarchy, therefore representing relation <:.

Creators

newSystem : System
- - creates an empty system
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Queries

existsClass : Class×System→Boolean
- - tells if certain class exists in a given system

isAbstract : Class×System↪→Boolean
- - tells if a class is abstract

isSubclass : Class×Class×System↪→Boolean
- - tells if one class is subclass of another in the system

isAttribute : Attribute×Class×System↪→Boolean
- - tells if an attribute is a feature of a class in the system

getAttributeType : Attribute×Class×System↪→Type
- - returns the type of the attribute of the class in the system

defVal : Attribute×Class×System↪→Value
- - returns the default value of an attribute of a class

existsAssociation : Association×System→Boolean
- - tells if an association exists in the system

associates : Association×Class×Class×System↪→Boolean
- - tells if an association associates a pair of classes in the system

multiplicities :
Association×Multiplicity×Multiplicity×System↪→Boolean

- - tells if the association has the specified multiplicities in the system

Commands

addClass : Class×Boolean×System↪→System
- - returns a new system containing the new class (abstract or concrete
- - as specified by the boolean argument)

addAssociation : Association×Class×Class×
Multiplicity×Multiplicity×System↪→System

- - returns a new system containing the new association between the
- - specified classes with the specified multiplicities

addGeneralization : Class×Class×System↪→System
- - returns a new system containing a generalization relationship
- - between the specified classes

addAttribute : Attribute×Type×Value×Class×System↪→System
- - returns a new system in which the specified class has a new
- - attribute of the specified type with a default value

Extensors

isAncestor : Class×Class×System↪→Boolean
- - tells if a class is an ancestor of another in the system

3.3.2 Preconditions

We now specify preconditions for every partial function in the previous sec-
tion. Classes and associations may not be duplicated. An attribute may not
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be associated more than once with the same class, but it can be associated to
different classes as long as they are not related by generalization. This prevents
the occurrence of clashes caused by a class inheriting repeated attributes. Since
generalization is an antisymmetric relation, cycles may not be formed.

PreSys1 A class must exist for being abstract:
isAbstract(c, S) requires existsClass(c, S)

PreSys2 Two classes must exist for one to be subclass of the other:
isSubclass(c1, c2, S) requires existsClass(c1, S) ∧ existsClass(c2, S)

PreSys3 A class must exist for owning an attribute:
isAttribute(a, c, S) requires existsClass(c, S)

PreSys4 A class must exist and an attribute must be owned by the class for
retrieving its type:

getAttributeType(a, c, S) requires existsClass(c, S) ∧ isAttribute(a, c, S)

PreSys5 A class must exist and an attribute must be owned by the class for
retrieving its default value:

defVal(a, c, S) requires existsClass(c, S) ∧ isAttribute(a, c, S)

PreSys6 The association in question and two classes must exist for these to be
associated:

associates(a, c1, c2, S) requires
existsAssociation(a, S) ∧ existsClass(c1, S) ∧ existsClass(c2, S)

PreSys7 An association must exist for having multiplicities:
multiplicities(a,m1,m2, S) requires existsAssociation(a, S)

PreSys8 A class may not be added twice to a system:
addClass(c, b, S) requires ¬existsClass(c, S)

PreSys9 An association may not be added twice to a system:
addAssociation(a, c1, c2,m1,m2, S) requires

¬existsAssociation(a, S) ∧ existsClass(c1, S) ∧ existsClass(c2)

PreSys10 Two classes must exist for establishing a generalization between them.
They may not already be in a generalization, a cycle may not be formed, and
attribute clashes may not occur:

addGeneralization(c1, c2, S) requires
existsClass(c1) ∧ existsClass(c2) ∧ ¬isSubclass(c1, c2, S)∧
¬isAncestor(c1, c2, S)∧
(∀a : Attribute | isAttribute(a, c1, S);∀c : Class | isAncestor(c, c1, S))

(¬isAttribute(a, c, S))
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PreSys11 A class must exist for adding an attribute to it. The attribute may
not be already owned by the class nor by any ancestor of it. The default value
must be an instance of the specified type:

addAttribute(a, t, v, c, S) requires
existsClass(c, S) ∧ hasType(v, t)∧
(@c′ : Class | isAncestor(c′, c, S) ∧ isAttribute(a, c′, S))

PreSys12 Two classes must exist in a system for one to be ancestor of the other:
isAncestor(c1, c2, S) requires existsClass(c1, S) ∧ existsClass(c2, S)

3.3.3 Axioms

In this section, functions declared in section 3.3.1 are specified. The basic op-
erations in this ADT specification are the command operations: addClass,
addAttribute, addAssociation and addGeneralization.

AxSys1 In a new system no classes exist:
(∀c : Class)(¬existsClass(c, newSystem())

AxSys2 A class exists in a system iff it was previously added:
existsClass(c, S)⇔

(∃S′ : System | S = addClass(c, b, S′))∨
(∃S′ : System | existsClass(c, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(a, c1, c2,m1,m2, S

′)∨
S = addGeneralization(c1, c2, S′)∨
S = addAttribute(a, t, v, c′, S′))

AxSys3 A class is abstract in a system iff it was previously added using a true
argument:

isAbstract(c, S)⇔
(∃S′ : System | S = addClass(c,true, S′))∨
(∃S′ : System | isAbstract(c, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(a, c1, c2,m1,m2, S

′)∨
S = addGeneralization(c1, c2, S′)∨
S = addAttribute(a, t, v, c′, S′))

AxSys4 A class is subclass of another class iff they are the same class or a gen-
eralization between them was previously added:

isSubclass(c1, c2, S)⇔
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(c1 = c2)∨
(∃S′ : System | S = addGeneralization(c1, c2, S′)))∨
(∃S′ : System | isSubclass(c1, c2, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(a, c′1, c

′
2,m1,m2, S

′)∨
S = addGeneralization(c′1, c

′
2, S
′)∨

S = addAttribute(a, t, v, c′, S′))

AxSys5 An attribute is a feature of a class iff it was previously added to it:
isAttribute(a, c, S)⇔

(∃S′ : System | S = addAttribute(a, t, v, c, S′)))∨
(∃S′ : System | isAttribute(a, c, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(as, c1, c2,m1,m2, S

′)∨
S = addGeneralization(c1, c2, S′)∨
S = addAttribute(a′, t, v, c′, S′))

AxSys6 The type of an attribute of a class is the one specified when the at-
tribute was added to the class:

t = getAttributeType(a, c, S)⇔
(∃S′ : System | S = addAttribute(a, t, v, c, S′)))∨
(∃S′ : System | t = getAttributeType(a, c, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(as, c1, c2,m1,m2, S

′)∨
S = addGeneralization(c1, c2, S′)∨
S = addAttribute(a′, t′, v, c′, S′))

AxSys7 The default value of an attribute of a class is the one specified when
the attribute was added to the class:

v = defV al(a, c, S)⇔
(∃S′ : System | S = addAttribute(a, t, v, c, S′)))∨
(∃S′ : System | v = defV al(a, c, S′)∧

(S = addClass(c′, b, S′)∨
S = addAssociation(as, c1, c2,m1,m2, S

′)∨
S = addGeneralization(c1, c2, S′)∨
S = addAttribute(a′, t′, v′, c′, S′))

AxSys8 An association exists in a system iff it was previously added:
existsAssociation(a, S)⇔

(∃S′ : System | S = addAssociation(a, c1, c2,m1,m2, S
′)))∨

(∃S′ : System | existsAssociation(a, S′)∧
(S = addClass(c, b, S′)∨
S = addAssociation(a′, c′1, c

′
2,m

′
1,m

′
2, S
′)∨

S = addGeneralization(c′1, c
′
2, S
′)∨

S = addAttribute(at, t, v, c, S′))
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AxSys9 An association associates the classes specified when it was added to the
system:

associates(a, c1, c2, S)⇔
(∃S′ : System | S = addAssociation(a, c1, c2,m1,m2, S

′)))∨
(∃S′ : System | associates(a, c1, c2, S′)∧

(S = addClass(c, b, S′)∨
S = addAssociation(a′, c′1, c

′
2,m1,m2, S

′)∨
S = addGeneralization(c′1, c

′
2, S
′)∨

S = addAttribute(at, t, v, c, S′))

AxSys10 The multiplicities of an association are those specified when they were
added to the system:

multiplicities(a,m1,m2, S)⇔
(∃S′ : System | S = addAssociation(a, c1, c2,m1,m2, S

′)))∨
(∃S′ : System |multiplicities(a,m1,m2, S

′)∧
(S = addClass(c, b, S′)∨
S = addAssociation(a′, c1, c2,m′1,m

′
2, S
′)∨

S = addGeneralization(c1, c2, S′)∨
S = addAttribute(at, t, v, c, S′))

AxSys11 An ancestor is a superclass or an ancestor of a superclass:
isAncestor(c1, c2, S)⇔ isSubclass(c2, c1, S)∨

(∃c : Class | isSubclass(c2, c, S) ∧ isAncestor(c1, c, S))

3.3.4 Example

In this section we illustrate the use of the query operations associated to type
System. Assuming that instance S of that type represents the system shown
in Figure 2.1, in Figure 3.1 we show the results of some invocations to query
operations on S. We show some invocations to operations associated to type
Multiplicity as well. For the invocations, the following variables are used:

Person,Company, Product,Manager, Salesman : Class
works for, produces, sells : Association
m1,m2,m3 : Multiplicity
avail : Attribute
Boolean : Type
ff : V alue

existsClass(Person, S) = true
existsClass(Company, S) = true
existsClass(Product, S) = true
existsClass(Manager, S) = true
existsClass(Salesman, S) = true
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associates(works for , Company, Person, S) = true
associates(produces, Company, Product, S) = true
associates(sells, Salesman, Product, S) = true
isSubclass(Manager, Person, S) = true
isSubclass(Salesman, Person, S) = true

min(m1) = 1 max(m1) = 1
min(m2) = 0 max(m2) =∞
min(m3) = 1 max(m3) =∞

isAttribute(avail, Product, S) = true
getAttributeType(avail, Product, S) = Boolean
defVal(avail, Product, S) =ff

multiplicities(works for ,m1,m2, S) = true
multiplicities(sells,m2,m1, S) = true
multiplicities(produces,m1,m3, S) = true

3.4 Specification of type State

In this section we introduce an ADT specification for type State. A state has
the following properties:

• A system which describes its structure

• A collection of objects

• A collection of values for object attributes

• A collection of links between objects

For this specification, the same approach as for type System is applied. For ex-
ample, values are properties of a state and are associated with objects, instead
of being properties of them. State well-formedness is partially specified in this
ADT. Well-formedness with respect to invariants is defined completely outside
the type State, and is discussed in the next chapter. In this specification we de-
fine well-formedness with respect to multiplicities only. In particular, we specify
an operation isWellFormed which can be used for testing whether a particular
state satisfies all defined multiplicities or not. That test can be performed when-
ever is desired. However, as discussed in section 2.1.3, the information provided
by isWellFormed about a state is more useful when the state is the result of a
higher level operation, than in the case of intermediate ones. The primitives are
not affected by well-formedness, since by being as basic as possible they do not
enforce well-formedness and thus can potentially, and in some cases inevitably,
yield ill-formed states. However, in the next chapter we explore the situations
in which well-formedness is preserved, gained or lost, by the application of a
single primitive.
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3.4.1 Functions

When created, a state is associated to a given system. Once that association
is established, it cannot be changed. System state modification primitives are
specified as command operations associated to this State. Query operations,
particularly existsObj, getVal, areLinked and isInstanceOf, play an im-
portant role in the next chapter.

Creators

newState : System→State
- - creates a new state from a given system

Queries

isEmpty : State→Boolean
- - tells if a state is the empty state

structure : State→System
- - returns the system that structures the state

existsObj : Object×State→Boolean
- - tells if certain object exists in a given state

getVal : Object×Attribute×State↪→Value
- - returns the value of an attribute of a given object

areLinked : Object×Object×Association×State↪→Boolean
- - tells if two objects are linked together by an association

isInstanceOf : Object×Class×State↪→Boolean
- - tells if an object is an instance of a given class

isWellFormed : State→Boolean
- - tells if a state is well-formed

Commands

create : Object×Class×State↪→State
- - returns a new state containing a new instance of the specified class

destroy : Object×State↪→State
- - removes the specified object returning the resulting state

link : Object×Object×Association×State↪→State
- - connects a pair of objects returning the resulting state

unlink : Object×Object×Association×State↪→State
- - removes the connection between a pair of objects returning the
- - resulting state

set : Object×Attribute×Value×State↪→State
- - changes the attribute value for another returning the resulting state
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3.4.2 Preconditions

We now specify preconditions for every partial function in the previous section.
In this specification primitives preconditions are in general more restrictive than
their analogues in UML Action Semantics [OMG03c, p. 2-199]. In that spec-
ification some particular scenarios are not restricted, but the semantics of the
action is left unspecified. For example, the semantics of creating an object from
an abstract class (i.e. having an instance of CreateObjectAction class, asso-
ciated to an abstract classifier) is undefined, arguing that it is possible that
someone could be able to find a meaning for that. That kind of flexibility is
paid with undefinedness, which is not desirable for us. In our specification we
avoid such situations by strengthening the preconditions.

PreStt1 An object must exist and an attribute must be owned by the class of
the object for retrieving its value:

getV al(o, a, s) requires existsObj(o, s)∧
(∃c : Class | isInstanceOf(o, c, s)∧
isAttribute(a, c, structure(s)))

PreStt2 An association and two objects must exist, and they must be instances
of the classes associated by the association for them to be linked:

areLinked(o1, o2, a, s) requires
existsAssociation(a, structure(s))∧existsObj(o1, s)∧existsObj(o2, s)
∧(∃c1, c2 : Class | isInstanceOf(o1, c1, s)∧

isInstanceOf(o2, c2, s) ∧ associates(a, c1, c2, structure(s)))

PreStt3 An object and a class must exist for the object to be an instance of the
class:

isInstanceOf (o, c, s) requires existsClass(c, structure(s)) ∧ existsObj(o, s)

PreStt4 An object may not be created twice. The class to be instantiated must
exist in the system of the state and it may not be abstract:

create(o, c, s) requires existsClass(c, structure(s))∧
¬isAbstract(c, structure(s)) ∧ ¬existsObj(o, s)

PreStt5 An object must exist in the state for being destroyed:
destroy(o, s) requires existsObj(o, s)

PreStt6 For two objects to be linked through an association, the association
and the two objects must exist, they must be instances of the classes associated
by the association and may not be already linked through the association:

link(o1, o2, a, s) requires
existsAssociation(a, structure(s)) ∧ existsObj(o1, s)∧
existsObj(o2, s) ∧ ¬areLinked(o1, o2, a, s)

PreStt7 For two objects to be unlinked with respect to an association, the as-
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sociation and the two objects must exist, they must be instances of the classes
associated by the association and they must be already linked through the as-
sociation:

unlink(o1, o2, a, s) requires
existsAssociation(a, structure(s)) ∧ existsObj(o1, s)∧
existsObj(o2, s) ∧ areLinked(o1, o2, a, s)

PreStt8 For the attribute value of an object to be updated with a new value,
the object must exist, the attribute must be owned by the object class, and the
type of the value must match the type of the attribute:

set(o, a, v, s) requires existsObj(o, s)∧
(∃c : Class | isInstanceOf(o, c, s)∧

isAttribute(a, c, structure(s))∧
hasType(v, getAttType(a, c, structure(s))))

3.4.3 Relations between States

The following relations between states are the very heart of the specification
of the primitives which is introduced in the next section. Inspired by a set of
equivalences between memories of Smart Cards defined in [BCST00], these re-
lations focus on differences between states in terms of their basic properties (i.e.
objects, links and attribute values). They could be included as extensor opera-
tions, but for reasons of clarity we specify them separately. For the same reason
we omit preconditions such as “for every relation structure(s) = structure(s′)
must hold”.

Relations on Objects

∼obj , such that s ∼obj s′ holds whenever objects in s are the same as in s′:

s ∼obj s
′ ⇔ (∀o : Object)(existsObj(o, s)⇔ existsObj(o, s′))

∼obj+o, such that s ∼obj+o s′ holds whenever objects in s′ are the same as in s
but also contain object o:

s ∼obj+o s
′ ⇔ ¬existsObj(o, s) ∧ existsObj(o, s′)∧

(∀o′ : Object | o′ 6= o)(existsObj(o′, s)⇔ existsObj(o′, s′))

∼obj−o, such that s ∼obj−o s′ holds whenever objects in s′ are the same as in s
except for object o, which exists in s but not in s′:

s ∼obj−o s
′ ⇔ existsObj(o, s) ∧ ¬existsObj(o, s′)∧

(∀o′ : Object | o′ 6= o)(existsObj(o′, s)⇔ existsObj(o′, s′))
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Relations on Links

∼link, such that s ∼link s′ holds whenever links in s are the same as in s′:

s ∼link s
′ ⇔ (∀o1, o2 : Object;∀a : Association)

(areLinked(o1, o2, a, s)⇔ areLinked(o1, o2, a, s
′))

∼link+(o1,o2,a), such that s ∼link+(o1,o2,a) s
′ holds whenever links in s′ are the

same as in s but also contain a link between o1 and o2 through association a:

s ∼link+(o1,o2,a) s
′ ⇔ ¬areLinked(o1, o2, a, s) ∧ areLinked(o1, o2, a, s

′)∧
(∀o3, o4 : Object | o3 6= o1 ∨ o4 6= o2)

(areLinked(o3, o4, a, s)⇔ areLinked(o3, o4, a, s
′))∧

(∀a′ : Association | a′ 6= a;∀o3, o4 : Object)
(areLinked(o3, o4, a

′, s)⇔ areLinked(o3, o4, a
′, s′))

∼link−(o1,o2,a), such that s ∼link−(o1,o2,a) s
′ holds whenever links in s′ are the

same as in s except for a link between o1 and o2 through association a:

s ∼link−(o1,o2,a) s
′ ⇔ areLinked(o1, o2, a, s) ∧ ¬areLinked(o1, o2, a, s

′)∧
(∀o3, o4 : Object | o3 6= o1 ∨ o4 6= o2)

(areLinked(o3, o4, a, s)⇔ areLinked(o3, o4, a, s
′))∧

(∀a′ : Association | a′ 6= a;∀o3, o4 : Object)
(areLinked(o3, o4, a

′, s)⇔ areLinked(o3, o4, a
′, s′))

∼link−o, such that s ∼link−o s′ holds whenever links in s′ are the same as in s
except for those in which object o participates:

s ∼link−o s
′ ⇔ (∀a : Association;∀o′ : Object)

(¬areLinked(o, o′, a, s′) ∧ ¬areLinked(o′, o, a, s′))∧
(∀a : Association;∀o1, o2 | o1 6= o ∧ o2 6= o)
(areLinked(o1, o2, a, s)⇔ areLinked(o1, o2, a, s

′))

Relations on Attribute Values

∼att, such that s ∼att s′ holds whenever the values of all the attributes of all
objects in s are the same as their corresponding in s′:

s ∼att s
′ ⇔ (∀o : Object;∀a : Attribute)

(getV al(o, a, s) = getV al(o, a, s′))

∼att−o, such that s ∼att−o s′ holds whenever the values of all the attributes of
all objects of s′, except for those of object o, are the same as in s:

s ∼att−o s
′ ⇔ (∀o′ : Object | o′ 6= o;∀a : Attribute)

(getV al(o′, a, s) = getV al(o′, a, s′))
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∼att−(o,a), such that s ∼att−(o,a) s
′ holds whenever the values of all the at-

tributes of all objects of s′, except for the value of attribute a of object o, are
the same as in s:

s ∼att−(o,a) s
′ ⇔ (∀o′ : Object;∀a′ : Attribute | a′ 6= a)

(getV al(o′, a′, s) = getV al(o′, a′, s′))∧
(∀o′ : Object | o′ 6= o;∀a′ : Attribute)

(getV al(o′, a′, s) = getV al(o′, a′, s′))

3.4.4 Axioms

In this section, functions declared in section 3.4.1 are specified. A resulting state
from a command application is associated to the same system as the originat-
ing state. Thanks to the relations specified in the previous section, a compact
specification of the primitives is achieved. The basic operations in this ADT
specification are the query operations: existsObj, getVal and areLinked.

AxStt1 A new state is empty:
isEmpty(newState(S))

AxStt2 The empty state has no objects:
isEmpty(S)⇔ (∀o : Object)(¬existsObj(o, S))

AxStt3 The structure of a state is the one specified at state creation and is
preserved across command applications:

structure(s) = S ⇔
s = newState(S)∨
(∃s′ : State | structure(s′) = S∧

(s = create(o, c, s′)∨
s = destroy(o, s′)∨
s = link(o1, o2, a, s

′)∨
s = unlink(o1, o2, a, s

′)∨
s = set(o, a, v, s′))

AxStt4 An object is an instance of the class from which it was created, and it
is also instance of any of its ancestors (subsumption property). Classification is
preserved across command applications:

isInstanceOf(o, c, s)⇔
existsObj(o, s)∧
((∃c′ : Class | isAncestor(c, c′, structure(s)) ∧ isInstanceOf(o, c′, s))∨
(∃s′ : State | s = create(o, c, s′))∨
(∃s′ : State | isInstanceOf(o, c, s′)∧

(s = create(o′, c′, s′)∨
(o 6= o′ ∧ s = destroy(o′, s′))∨
s = link(o1, o2, asc, s

′)∨
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s = unlink(o1, o2, asc, s
′)∨

s = set(o′, att, v, s′))))

AxStt5 Semantics for create:
s′ = create(o, c, s)⇔

s ∼obj+o s
′ ∧ s ∼link s′ ∧ s ∼att−o s′∧

(∀c′ : Class | isAncestor(c′, c, structure(s);
∀a : Attribute | isAttribute(a, c′, strucure(s)))

(getV al(o, a, s′) = defVal(a, c′, structure(s)))

AxStt6 Semantics for destroy:
s′ = destroy(o, s)⇔ s ∼obj−o s

′ ∧ s ∼link−o s′ ∧ s ∼att−o s′

AxStt7 Semantics for link:
s′ = link(o1, o2, a, s)⇔ s ∼obj s

′ ∧ s ∼link+(o1,o2,a) s
′ ∧ s ∼att s′

AxStt8 Semantics for unlink:
s′ = unlink(o1, o2, a, s)⇔ s ∼obj s

′ ∧ s ∼link−(o1,o2,a) s
′ ∧ s ∼att s′

AxStt9 Semantics for set:
s′ = set(o, a, v, s)⇔

s ∼obj s
′ ∧ s ∼link s′ ∧ s ∼att−(o,a) s

′ ∧ getV al(o, a, s′) = v

AxStt10 A state is well-formed iff every multiplicity is satisfied:
isWellFormed(s)⇔

(∀a : Association | existsAssociation(a, structure(s));
∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

((∀o1 : Object | existsObj(o1, s) ∧ isInstanceOf(o1, c1, s))
(inRange(|{o2 : Object | existsObj(o2, s)∧

isInstanceOf(o2, c2, s)∧
areLinked(o1, o2, a, s)}|,m2))∧

(∀o2 : Object | existsObj(o2, s) ∧ isInstanceOf(o2, c2, s))
(inRange(|{o1 : Object | existsObj(o1, s)∧

isInstanceOf(o1, c1, s)∧
areLinked(o1, o2, a, s)}|,m1)))

3.4.5 Example

In this section we continue our example initiated in the previous chapter. We
show invocations to commands of type State by rewriting the examples infor-
mally introduced in section 2.2.3. We assume the same variables and operation
results as in the example in section 3.3.4, and in addition:



3.5. Discussion 39

s1, s2, s3, s4, s5, s6, s7, s8 : State
Company, Product : Class
produces : Association
c, p, s : Object
tt : V alue

The first modification takes a state with no objects in it and produces a state as
shown in Figure 2.2 (a). For this we also assume that s1 = newState(S), which
means that s1 has no objects and is a state associated to S. That modification
can be rewritten as:

s2 = create(c, Company, s1);
s3 = create(p, Product, s2);
s4 = link(c, p, produces, s3);
s5 = set(p, avail, tt, s4);

Then the state shown in Figure 2.2 (a) is represented by s5. We now consider
the second modification. There, state s5 is modified to produce a resulting state
corresponding to that shown in Figure 2.2 (b). That modification can be rewrit-
ten as:

s6 = create(s, Salesman, s5);
s7 = link(c, s, works for, s6);
s8 = link(s, p, sells, s7);

Similarly as before, state s8 represents the state shown in Figure 2.2 (b). It
is interesting to observe that these last invocations can be regarded as the
implementation of some system level operation hireSalesman. Such operation
would take as arguments a company and a product, and create a new salesman.
That person is then “hired” by the company and “assigned” to sell the product.
With this simple example we demonstrate that it is possible to represent the
essence of a possible implementation of an operation like hireSalesman. At
a conceptual level, what really matters is that an object of class Salesman is
created and linked to given instances of classes Company and Product. An
implementation in a language like Java would probably involve some object
lookup, adding the salesman into the company ArrayList and vice versa, etc.
This level is usually too detailed for globally thinking about system behavior,
especially in early stages of the development process.

3.5 Discussion

In this section we discuss some alternative specifications of the concepts treated
in this chapter, and particularly the impact of their use on the specification of
the primitives.
Our specification has a high level of abstraction. Abstract data types enabled
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a simple specification of the concepts that constitute the foundation for our
semantics. Based on that simplicity, a compact definition of the semantics of
the primitives was produced. By abstracting away actual representations, we
were able to focus on the effect of each primitive without getting distracted by
the complexities of data structures. For example, it is not necessary to know
how a state is represented to understand the meaning of creating an object in
it. It is possible to express the effect of such modification in terms of observ-
able properties of both source and final states. However, a semantics of the
primitives as the one presented in this chapter, and therefore the framework to
be introduced next, can be based on other specifications which are compatible
with the concepts specified here. The difference between such semantics is a
matter of complexity, which is a subjective aspect. However, our specification
has shown to have the power to support the primitives, and we consider that
is simple enough to allow a smooth translation into the Calculus of Inductive
Constructions.
Other works, such as [Ric02] and [OMG03c], include a specification of the nec-
essary types for specifying the primitives. The context of those works was
different, as is the level of abstraction of their specifications. The motivation of
those specifications is tool-oriented, so representations naturally show some de-
gree of detail which, in our case, is completely unnecessary, as discussed above.
The first specification is based on set theory, and is the foundation of the de-
velopment of the USE Tool [Ric01]. It proposes structures representing systems
and states, and defines an interpretation of systems as the set of all possible
states. A specification of the Object Constraint Language is also included.
The main goal of the implemented tool is to provide an environment where a
OCL constraints (i.e. invariants, and pre- and postconditions) can be evalu-
ated for validation purposes. In such environment, a UML model specifying a
system can be instantiated, states can be interactively changed via the same
set of primitives we specified, and OCL constraints are evaluated against the
current state. The second specification is the UML metamodel. It is an object-
oriented representation of object-oriented system and states, among others. Its
primary audience includes advanced modelers, metamodelers, and tool builders
[OMG03b, p. 2-2]. Possible target tools are modeling tools and code gener-
ators. Despite being intended as a logical model instead of a physical one, it
is very concrete. In fact, major parts of the implementation of a tool which
stores systems and state descriptions can be easily produced with help of a code
generation tool. Microsoft Visio [MC03] is a good example of a modeling tool
whose implementation closely follows that specification.
Some of the flavour of a semantics of the primitives defined using the alterna-
tive specifications is shown in Appendix A, where we experiment with the create
primitive.
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Summary

In this chapter, an ADT-based specification of the notions of system and state
was presented. This specification is the foundation for the definition of the
semantics of system state modification primitives. The specification here in-
troduced possesses a high level of abstraction. This feature results in a simple
specification of the types necessary to define the semantics of the primitives. In
turn, we were able to propose that semantics in a compact and understandable
way, which is defined making use of well understood and widely used mathe-
matical constructs. Before we move into the formalization of the specification
in the Calculus of the Inductive Constructions, we first investigate a natural
application of the defined semantics. In the next chapter, we address the def-
inition of a framework which aids in formally reasoning about the use of the
primitives.
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Chapter 4

Reasoning about the Use of
Primitives

System state modification primitives can be regarded, in the sense of imperative
programming, as basic commands for changing system states. In the previous
chapter it was shown that these commands can be used for representing higher
level programs with effects on states. This naturally raises the idea of writ-
ing programs at a conceptual level as sequences of basic state modifications or
system state modification primitives, and also considering the problem of how
to prove that such programs do what we require from them. The specification
presented in the previous chapter provides a solid foundation to address this
problem.
In this chapter, we explore the systematic verification of programs written as
sequences of modification primitives. For that, we define a framework where cor-
rectness assertions about programs can be formulated and proved. Type State
is the basis of such a framework. Correctness assertions are formulated using
operations associated to that type. We use commands for writing programs,
and queries for expressing assertions about properties of states. For proving
formulae we use the specification of the primitives as an axiomatic definition of
commands, and we also define specific rules.
The framework is actually an inference system where we will try to build proofs
for correctness assertions. As discussed in Chapter 2, those assertions express
some interesting properties about the resulting state of a program (postcon-
ditions), provided that its execution started under some specified conditions
(preconditions). Choosing the right pre- and postconditions and then proving
the correctness assertion means ensuring that the program does what we expect
from it. The use of preconditions and postconditions as specifications for pro-
grams, constitutes the most popular technique for specifying and documenting
operations in object-orientation.

43
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This chapter is structured as follows. In section 4.1 we describe our approach to
program verification. In section 4.2 the definition of the framework for reasoning
about the use of primitives is presented. An extension to our framework where
new assertions about state properties are provided is proposed in section 4.3.
Section 4.4 explores a further extension to the framework for reasoning about
state well-formedness.

4.1 Our Approach to Program Verification

In this section we explain our approach to program verification. First, we discuss
in more detail the motivation for defining a framework for reasoning about the
use of primitives. Then we overview inference systems and briefly describe the
key elements we will define for our framework.

4.1.1 Motivation

System state modification primitives can be used as commands of a basic com-
mand language for building programs which operate on system states. The idea
of such a command language is actually not new. In fact, the USE Tool [Ric01]
provides an environment where such programs can be executed on particular
states, in what is called animation. There, conforming to a given structure, a
system changes from one state to another. Commands are issued sequentially
and each one triggers a transition between states. Based on the idea of cor-
rectness assertions, as discussed in section 2.3.1, the main purpose of that tool
is to provide an environment for validating UML models and OCL constraints.
Concretely, it accepts a system structure description, operation specifications
and invariants expressed in OCL, and programs implementing those operations
written in the command language. At any point, an invocation to an operation
can be started. The environment evaluates its preconditions against the current
state, and if satisfied lets the user execute the program. When the program is
completed the postconditions are in turn evaluated again against the current
state, which is the resulting state of the program. Trusting the program cor-
rectness, it is possible to check whether the pre- and postconditions are right or
not. That is what the author mean by validation. Of course, if the specifica-
tion is trusted instead, then validation applies to the program. By this process,
specifications or programs are validated with respect to particular state con-
figurations. In practice, a number of test cases should be validated. However,
complete reliability is achieved only by being exhaustive, which in general is not
possible.
We are interested in a stronger use of correctness assertions, particularly, we are
interested in proving them. A proof of a correctness assertion can be informally
understood as a proof of the fact that a program starting in any state that
satisfies the precondition, if it terminates, it will do so in a resulting state that
will satisfy the postconditions. Such proofs are based on properties of the states
and the program, rather than on the values in the state. In other words, proofs
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are inferences and not computations of particular test cases. It is for this reason
that such a high level of abstraction could apply.
The use of inference systems is a possible approach for systematic program ver-
ification. As we define our framework as an inference system, in what follows
we overview their main concepts first.

4.1.2 Inference Systems

Formulae of an inference system are properties, and derivation trees that con-
stitute proofs for formulae are called inference trees because they show how to
infer that certain property holds.
To recall, an inference system has two major parts: a language and a set of rules.
The language is used for expressing the formulae or properties, while the set of
rules restricts the form which proofs can take. In inference systems, this means
that rules limit the admissible inference steps in a proof. In our case, we will
handle a proof system were formulae are just correctness assertions. As usual,
some rules are actually axioms. These axioms ultimately describe the meaning
of the constructs in the language used to write the programs in the correctness
assertions [Win93]. That is the way in which the framework uses or includes the
specification of the system state modification primitives of the previous chap-
ter. State queries in turn, are used for expressing pre- and postconditions in
correctness assertions, since they are the means we defined for accessing state
properties.
In the next section we fully define the inference system which will be our frame-
work for reasoning about the use of primitives.

4.2 The Framework

In this section the framework for reasoning about the use of primitives is de-
fined as an inference system. Formulae are partial correctness assertions. For
formulating those assertions we introduce the notion of program, and describe
the structure of pre- and postconditions. For building proofs, axioms are intro-
duced and a set of inference rules are defined.

4.2.1 Formulae

In this inference system, formulae are partial correctness assertions of the form

{ P } S { Q }

where S is a program, and P and Q are assertions on the state. Assertion P
is called the precondition and Q is called the postcondition. The operational
interpretation of such formula is:
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if P holds in the initial state, and
if the execution of S terminates when started in that state,
then Q will hold in the state in which S halts.

Note that for { P } S { Q } to hold it is not required that S terminates when
started in states satisfying P . What it is required is that Q must hold if it
terminates. We will come back to termination issues later in this section.

Programs

We define a program as a finite number of composite applications of commands
to a given state, such as:

sn = cmdn(cmdn−1(. . . cmd1(s)))

for a state s and a finite and positive n. Then a program can be understood as
a sequence of applications of primitives where the first (innermost) is applied
to an initial state and the i + 1th primitive is applied to the result of the ith
application; the result of the last (outmost) application is the resulting state of
the program. For clarity, we write program in an imperative-like style, using
operator ’;’ for denoting functional composition:

s2 = cmd1(s);
...

sn = cmdn(sn−1);

We also call each application a step of the program, and at one step the program
performs an action on the current state (i.e. modifies the state according to the
corresponding primitive of the step). However, it is important to note that
both programs and steps are functions. For example, a step of a program like:
s′ = create(o, c, s) does not actually modify state s. Rather, it yields a new state
s′. When compared to the initial state, the final state shows some differences:
object o, which was not present in state s, is in state s′, as defined in the previous
chapter.

Assertions

An assertion language allows us to express pre- and postconditions. In our
system, assertions are based on query operations associated to types System
and State. Queries returning boolean values can be combined using any of
the usual connectives: ∧,∨,¬ and ⇒. For operations returning other types of
values, operator = may be used as well. Quantifiers ∃ and ∀ are allowed too.
Queries associated to type State are intended to express properties about initial
and final states, therefore are naturally used in pre- and postconditions. Queries
associated to type System are intended to express properties about the system
associated to the initial state. For this reason, they are likely to be used in
preconditions. In addition, structure would occur in preconditions too, since all
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states involved in a program, particularly source and final states, share the same
structure. The use within the framework of operations concerning multiplicities
(e.g. isWellFormed and multiplicities) will be explored in section 4.4.

Termination

As already discussed, in a partial correctness assertion, postconditions are guar-
anteed only when the execution starts in a state in which preconditions hold,
and it terminates. On the other hand, total correctness deals with program ter-
mination, requiring an explicit proof of it for every program. In our framework
programs always terminate, since they were defined as finite sequences of trans-
formations, where no iteration or recursion is supported. We say our framework
uses partial correctness only because we do not provide proofs of termination.
However, as termination is guaranteed by construction, the particular form of
partial correctness we use actually acts as total correctness.

4.2.2 Axioms

Axioms in this kind of systems describe the meaning of the program constructs.
In our case, we already have that ingredient for our framework, and it is the
specification of system state modification primitives introduced in the previ-
ous chapter. Particularly, we use axioms AxStt5, AxStt6, AxStt7, AxStt8, and
AxStt9. For completeness we recall:

AxStt5 s′ = create(o, c, s)⇔
s ∼obj+o s

′ ∧ s ∼link s′ ∧ s ∼att−o s′∧
(∀c′ : Class | isAncestor(c′, c, structure(s);
∀a : Attribute | isAttribute(a, c′, strucure(s)))

(getV al(o, a, s′) = defVal(a, c′, structure(s)))

AxStt6 s′ = destroy(o, s)⇔ s ∼obj−o s
′ ∧ s ∼link−o s′ ∧ s ∼att−o s′

AxStt7 s′ = link(o1, o2, a, s)⇔ s ∼obj s
′ ∧ s ∼link+(o1,o2,a) s

′ ∧ s ∼att s′

AxStt8 s′ = unlink(o1, o2, a, s)⇔ s ∼obj s
′ ∧ s ∼link−(o1,o2,a) s

′ ∧ s ∼att s′

AxStt9 s′ = set(o, a, v, s)⇔
s ∼obj s

′ ∧ s ∼link s′ ∧ s ∼att−(o,a) s
′ ∧ getV al(o, a, s′) = v

There exist a tight connection between these axioms and the assertion language,
which will become more evident in the next section. The semantics of the prim-
itives heavily relies on the relations between states introduced in section 3.4.3,
which in turn were defined completely in terms of query operations associated
to type State. All the rules were derived from the axioms, therefore there is
nothing really new in them. This means that proofs could be built just using
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these axioms. Our rules ultimately are a more convenient means for performing
inference steps.

4.2.3 Inference Rules

We now introduce the set of inference rules for proving correctness assertions.
The following rules are derived from the axioms defined for the type State, and
we present them organized according to the kind of property they allow us to
infer. Each rule specifies the form of individual steps which make up a proof.
They involve only consecutive states. In the premises only one state appears,
the one taken as argument by a command, and the consequent refers to the
result of the command.
For the rules we assume the following symbols:

s, s′ : State
o, o′, o1, o2, o3, o4 : Object
c, c′, c1, c2 : Class
v, v′ : V alue
att : Attribute
asc : Association

Symbols a and a′ refer to instances of both Attribute and Association, although
in disjoint contexts.

Rules for Object Existence

The following set of rules allows the inference of the existence of an object.
The object could have been created in the previous state, or the object already
existed and was preserved in the last step. We similarly include rules for inferring
the non-existence of objects.
Using the first rule we infer that an object exists because it was created in the
transition to the final state.

¬existsObj(o, s)
¬isAbstract(c, structure(s)) s′ = create(o, c, s)

Ex1
existsObj(o, s′)

The next group of rules allows us to infer that an object exists because it already
existed before the transition, and it was not destroyed.

existsObj(o, s) o 6= o′ s′ = create(o′, c, s)
Ex2Cr

existsObj(o, s′)

existsObj(o, s) o 6= o′ s′ = destroy(o′, s)
Ex2Dt

existsObj(o, s′)
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existsObj(o, s) s′ = link(o1, o2, a, s)
Ex2Lk

existsObj(o, s′)

existsObj(o, s) s′ = unlink(o1, o2, a, s)
Ex2Ul

existsObj(o, s′)

existsObj(o, s) s′ = set(o′, a, v, s)
Ex2St

existsObj(o, s′)

Rule Ex3 expresses a sufficient condition for object existence. It is introduced
by precondition PreStt3.

isInstanceOf(o, c, s)
Ex3

existsObj(o, s)

The following rule allows us to infer that an object does not exist in a state
when it is destroyed in the transition to that state.

existsObj(o, s) s′ = destroy(o, s)
NEx1

¬existsObj(o, s′)

In this group of rules the inference is based on the case where the object did
not exist and was not created in the transition.

¬existsObj(o, s) o 6= o′ s′ = create(o′, c, s)
NEx2Cr

¬existsObj(o, s′)

¬existsObj(o, s) s′ = destroy(o′, s)
NEx2Dt

¬existsObj(o, s′)

¬existsObj(o, s) s′ = link(o1, o2, a, s)
NEx2Lk

¬existsObj(o, s′)

¬existsObj(o, s) s′ = unlink(o1, o2, a, s)
NEx2Ul

¬existsObj(o, s′)

¬existsObj(o, s) s′ = set(o, a, v, s)
NEx2St

¬existsObj(o, s′)

Rules for Attribute Values

The following set of rules allows the inference of attributes holding particular
values. The value could have been set in the previous state, or it was already
held by the attribute and was not changed in the last step. As before, we also
include rules for inferring that an attribute does not hold a particular value.
The first rule is used to infer the value of an attribute based on the update
performed on it in the transition.
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s′ = set(o, a, v, s)
GV1

getV al(o, a, s′) = v

The next rule is used to infer the value of an attribute based on the fact that
the target object was created in the transition.

isAncestor(c′, c, structure(s)) isAttribute(a, c′, structure(s))
defVal(a, c′, structure(s)) = v s′ = create(o, c, s)

GV2
getV al(o, a, s′) = v

Rules in the following group are used to infer the value of an attribute based on
the fact that the last known value is preserved in the transition.

getV al(o, a, s) = v s′ = create(o′, c, s)
GV3Cr

getV al(o, a, s′) = v

getV al(o, a, s) = v o 6= o′ s′ = destroy(o′, s)
GV3Dt

getV al(o, a, s′) = v

getV al(o, a, s) = v s′ = link(o1, o2, asc, s)
GV3Lk

getV al(o, a, s′) = v

getV al(o, a, s) = v s′ = unlink(o1, o2, asc, s)
GV3Ul

getV al(o, a, s′) = v

getV al(o, a, s) = v a 6= a′ s′ = set(o, a′, v′, s)
GV3St1

getV al(o, a, s′) = v

getV al(o, a, s) = v o 6= o′ s′ = set(o′, a′, v′, s)
GV3St2

getV al(o, a, s′) = v

With this rule we can infer that the value of an attribute is not a given one
when some different value was set to it in the transition.

v 6= v′ s′ = set(o, a, v′, s)
NGV1

getV al(o, a, s′) 6= v

Using rules of the following group it is possible to infer that when an attribute
of a particular object does not hold some value and in the transition that value
was not set to the attribute, then the attribute still does not hold that value.

getV al(o, a, s) 6= v s′ = create(o′, c, s)
NGV2Cr

getV al(o, a, s′) 6= v

getV al(o, a, s) 6= v o 6= o′ s′ = destroy(o′, s)
NGV2Dt

getV al(o, a, s′) 6= v
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getV al(o, a, s) 6= v s′ = link(o1, o2, asc, s)
NGV2Lk

getV al(o, a, s′) 6= v

getV al(o, a, s) 6= v s′ = unlink(o1, o2, asc, s)
NGV2Ul

getV al(o, a, s′) 6= v

getV al(o, a, s) 6= v (o 6= o′ ∨ a 6= a′) s′ = set(o′, a′, v′, s)
NGV2St

getV al(o, a, s′) 6= v

Rules for Object Linkage

The following set of rules allows the inference of the existence of a link between
a pair of objects. The link could have been created in the previous state, or
it could already exist and is preserved in the last step. Rules for inferring the
non-existence of a link are also included.
With this first rule we infer that two objects are linked in some state when the
link was created in the transition to that state.

s′ = link(o1, o2, a, s)
AL1

areLinked(o1, o2, a, s
′)

With the rules of the following group, inference is based on the fact that the
link existed before the transition and is preserved in it.

areLinked(o1, o2, a, s) s′ = create(o, c, s)
AL2Cr

areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) o 6= o1 o 6= o2 s′ = destroy(o, s)
AL2Dt

areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) a 6= a′ s′ = link(o3, o4, a
′, s)

AL2Lk1
areLinked(o1, o2, a, s

′)

areLinked(o1, o2, a, s) (o1 6= o3 ∨ o2 6= o4) s′ = link(o3, o4, a, s)
AL2Lk2

areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) a 6= a′ s′ = unlink(o3, o4, a
′, s)

AL2Ul1
areLinked(o1, o2, a, s

′)

areLinked(o1, o2, a, s) (o1 6= o3 ∨ o2 6= o4) s′ = unlink(o3, o4, a, s)
AL2Ul2

areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) s′ = set(o, att, v, s)
AL2St

areLinked(o1, o2, a, s
′)
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With this rule we infer that a link does not exist in a state because it was
removed in the transition to it.

areLinked(o1, o2, a, s) s′ = unlink(o1, o2, a, s)
NAL1

¬areLinked(o1, o2, a, s
′)

The destruction of an object let us infer that any possible link which involved
that object no longer exist.

s′ = destroy(o1, s)
NAL2

¬areLinked(o1, o2, a, s
′) ∧ ¬areLinked(o2, o1, a, s

′)

The following rules are used to infer that a link does not exist based on the
fact that before the transition it did not exist and in the transition it was not
created.

¬areLinked(o1, o2, a, s) s′ = create(o, c, s)
NAL3Cr

¬areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) o1 6= o o2 6= o s′ = destroy(o, s)
NAL3Dt

¬areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) (o1 6= o3 ∨ o2 6= o4) s′ = link(o3, o4, a, s)
NAL3Lk1

¬areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) a 6= a′ s′ = link(o1, o2, a
′, s)

NAL3Lk2
¬areLinked(o1, o2, a, s

′)

¬areLinked(o1, o2, a, s) (o1 6= o3 ∨ o2 6= o4) s′ = unlink(o3, o4, a, s)
NAL3Ul1

¬areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) a 6= a′ s′ = unlink(o1, o2, a
′, s)

NAL3Ul2
¬areLinked(o1, o2, a, s

′)

¬areLinked(o1, o2, a, s) s′ = set(o, att, v, s)
NAL3St

¬areLinked(o1, o2, a, s
′)

Rules for Object Classification

The following set of rules allows the inference of the classification of an object.
Rules for inferring that an object is not instance of a class are also included.
The first rules are directly derived from the specification of create. We can infer
the class of an object knowing the class used for its creation.

s′ = create(o, c, s)
IO1

isInstanceOf(o, c, s′)
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The next rule is the subsumption property [AC96], also known as substitutabil-
ity principle [RJB98].

isInstanceOf(o, c1, s) isAncestor(c2, c1, structure(s))
Subs

isInstanceOf(o, c2, s)

By the next rules we infer, while still existing, an object does not change its
classification.

isInstanceOf(o, c, s) s′ = create(o′, c′, s)
IO5Cr

isInstanceOf(o, c, s′)

isInstanceOf(o, c, s) o 6= o′ s′ = destroy(o′, s)
IO5Dt

isInstanceOf(o, c, s′)

isInstanceOf(o, c, s) s′ = link(o1, o2, a, s)
IO5Lk

isInstanceOf(o, c, s′)

isInstanceOf(o, c, s) s′ = unlink(o1, o2, a, s)
IO5Ul

isInstanceOf(o, c, s′)

isInstanceOf(o, c, s) s′ = set(o′, a, v, s)
IO5St

isInstanceOf(o, c, s′)

4.2.4 Using the Framework

Our framework is complete and ready for start working. In this section we
illustrate its use through an example and discuss the necessary steps to prove
correctness assertions. We use once again the case introduced in Chapter 2.
A correctness assertion for operation hireSalesman is formulated and proved.
The program used for this operation is that presented in section 3.4.5.

Formulating Correctness Assertions

For formulating a correctness assertion we need a specification and a program.
The specification expresses our intentions with respect to the program behav-
ior, and the program specifies the commands that realize these intentions. The
precondition expresses the conditions that needs to be guaranteed on the initial
state for the program to execute. The postcondition in turn, expresses what
properties, in our judgement, should hold when the program is complete. A
proof of a correctness assertion means that the program meets the specification.
Usually, we first write the specification and then the program. A framework like
this can be used to make sure the second task was performed correctly. How-
ever, correctness is a relative notion because we rely on the specification. The
specification of a program is crucial, simply because a wrong specification can
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make a right program look as if it is wrong, and more dangerously, can make a
wrong program look as if it is right. For the hireSalesman operation, we write
the following correctness assertion :

{ ¬existsObj(s, s1) ∧ ¬isAbstract(Salesman, structure(s1))∧
works for 6= sells ∧ areLinked(c, p, produces, s1) }
s2 = create(s, Salesman, s1);
s3 = link(c, s, works for , s2);
s4 = link(s, p, sells, s3);

{existsObj(s, s4)∧areLinked(c, s, works for , s4)∧areLinked(s, p, sells, s4)}

The program in this formula is is the same as that in section 3.4.5, although using
the composition operator. The postcondition is a conjunction which expresses
what we expect from the program: the salesman should have been created, and
it should have been linked to both the company and product. Note all those
properties refer only to state s4, the final state. The precondition is also a con-
junction of information we need to know in order to properly run the program.
Note again that properties in the precondition refer only to state s1, the initial
state. Now, we have formulated our correctness assertion for hireSalesman,
but what is exactly what we have to prove? For any assertion { P } S { Q }
we need to prove the following proposition:

P (s) s′ = S(s)

Q(s′)

This can be understood as assuming that the precondition holds on the initial
state, and assuming the program yields the final state, then prove that the post-
condition holds for that final state. This is consistent with the interpretation of
the correctness assertion given at the beginning of this section. Note that the
equality used here is computable, meaning that S always delivers a result, or in
other words, it always terminates. In our particular case, we should prove the
following:

¬existsObj(s, s1)
¬isAbstract(Salesman, structure(s1))
works for 6= sells
areLinked(c, p, produces, s1)
s2 = create(s, Salesman, s1)
s3 = link(c, s, works for, s2)
s4 = link(s, p, sells, s3)

existsObj(s, s4) ∧ areLinked(c, s, works for, s4) ∧ areLinked(s, p, sells, s4)

Next, we discuss how inference is drawn in our framework, and we build and
explain the proof for our example.
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Inference and Proof Building

In our framework we perform top-down inference, which is the manner in which
solutions are most often discovered [Kow79]. Top-down inference is the analysis
of goals into subgoals. It consists in proceeding backwards from the conclusion
by using implications to reduce problems to subproblems. There, the aim is
to reduce the original problem to a set of subproblems each of which has been
solved. In other words, we match the conclusion against the conclusion of some
rule, doing which we generate subgoals (proof obligations) for the premises of
the rule, if any. The subgoals are then proved in the same fashion. The process
ends when all the premises are found as hypothesis in the context of the proof.
In our system, we are likely to find many rules whose conclusion matches the
conclusion of the main proposition. Assuming this conclusion refers to state si,
we look for the command that produces that state, and simply apply the rule
which has the same command in its premises.
In our example, the conclusion is a conjunction, so the first thing we do is to
split it and prove each conjunct separately. Let us start with existsObj(s, s4).
The command yielding state s4 is link, therefore we apply rule Ex2Lk since its
conclusion matches our current goal and one of its premises is proved by hypoth-
esis. However, a new subgoal is generated corresponding to the other premise.
Now we have to infer existsObj(s, s3). Again we apply rule Ex2Lk, and again
a new subgoal is generated, now existsObj(s, s2). For this subgoal we apply
rule Ex1, concluding this part of the proof since all its premises are part of the
hypotheses.
We summarize this procedure by annotating the correctness assertion similarly
as in [Kal90], instead of using an inference tree. Since the proof of individual
steps are simply rule applications, we justify each inference step by including in
the annotation the name of the applied rule.

{ ¬existsObj(s, s1) ∧ ¬isAbstract(Salesman, structure(s1))∧
works for 6= sells ∧ areLinked(c, p, produces, s1) }
s2 = create(s, Salesman, s1);
{ existsObj(s, s2),Ex1 }
s3 = link(c, s, works for, s2);
{ existsObj(s, s3),Ex2Lk }
s4 = link(s, p, sells, s3);

{ existsObj(s, s4),Ex2Lk }

We proceed similarly to prove the rest of the conjuncts in the original goal.
The details of the complete proof can be expressed in one annotated correctness
assertion, or if it is more convenient, separately.
Finally, it can be seen that it is feasible to build proofs of this kind (at least
semi-) automatically. A report of experiments on automatic proof generation
can be found in Chapter 5. We experimented on the formalized version of the
framework in the System Coq.
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4.2.5 Analysis

Previously, we discussed the important role played by specifications in correct-
ness assertions, particularly the consequences of committing errors when writing
specifications. There is another issue concerning specifications we need to dis-
cuss. Postconditions impose conditions which must be fulfilled by the final state.
However, situations where postconditions completely characterize the final state
are very atypical, simply because for large states that would be tedious or even
impracticable. For simplicity, postconditions are generally weakened under the
assumption that unreferenced variables remain unchanged. In other situations,
postconditions are inadvertently weakened just by omission. In any case, par-
tially specified final states are an open door for unexpected things to happen.
Let us consider again the correctness assertion just discussed. Now consider a
program that also changes the value of avail in object p. It should be noticed
that this program can also be proved to be correct with respect to the same
specification. Therefore, someone who only reads a program specification, typi-
cally a user, in this kind of situations could be unaware of all the things that the
program actually does. Whenever these kind of scenarios should be prevented
a possible solution is being exhaustive when writing postconditions. A more
practical approach is addressed in the next section, where an extension to our
framework is introduced.

4.3 An Extension

In this section we extend our framework for providing a practical means by which
the complete effect of programs can be specified. New relations for specifying
postconditions are defined. They relate the initial state of the program to its
final state. A new set of rules for deriving properties about the final state from
these relations is also defined.

4.3.1 Assertions and Inference Rules

We are looking for a practical way of expressing the exact differences that the fi-
nal state has with respect to the initial state in a postcondition. Specifically, our
extension should enable us to focus only on differences, without being forced to
explicitly handle all the possible cases. For that to be achieved, the unchanged-
by-default basis must be defined and not simply assumed.
We define a relation between two states and a set of differences between them,
from which we then infer properties on the final state like those in the previous
section. The semantics of that relation must be such that the two states are
equal except for exactly those changes. More precisely, we define a relation for
every sort of state changes already identified: changes on objects, links and at-
tribute values. In fact, such relations can be understood as a generalization of
relations introduced in section 3.4.3. For example, relations ∼obj+o and ∼obj−o,
which were meant to handle differences between states consisting of a single
object and in a single direction, are generalized into ∼ obj C D. This particular
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relation handles sets C and D of created and destroyed objects. In what follows
we define such relations.

Relation on Objects

Elements in the relation objectsChanged represent the observable differences in
terms of objects between two states. The domain of this relation is defined as:

objectsChanged ⊆ Set(Object)×Set(Object)×State×State

We define the relation such that objectsChanged(C,D, s, s′) holds whenever the
objects in s′ are the same as those in s, except for those included in D, and
including those in C. We denote objectsChanged(C,D, s, s′) as s ∼obj C D s′,
and define it inductively by the following constructors:

s ∼obj s
′

nilnilO
s ∼obj ∅ ∅ s

′

s ∼obj C D s′ s′ ∼obj s
′′

indEqO
s ∼obj C D s′′

s ∼obj C D s′ s′ ∼obj+o s
′′ ¬existsObj(o, s) o /∈ C o /∈ D

indPlusO1
s ∼obj C∪{o}D s′′

s ∼obj C D s′ s′ ∼obj+o s
′′ existsObj(o, s) o /∈ C o ∈ D

indPlusO2
s ∼obj C D−{o} s

′′

s ∼obj C D s′ s′ ∼obj−o s
′′ existsObj(o, s) o /∈ C o /∈ D

indMinusO1
s ∼obj C D∪{o} s

′′

s ∼obj C D s′ s′ ∼obj−o s
′′ ¬existsObj(o, s) o ∈ C o /∈ D

indMinusO2
s ∼obj C−{o}D s′′

The first two constructors, nilnilO and indEqO, handle the cases where there are
no changes occurring in the step. The next two constructors handle cases where
an object is created. Since an object may not be in the two sets simultaneously,
if the object is in set D then it is removed by constructor indPlusO2, otherwise
constructor indPlusO1 adds it to set C. Note that although these collections
are sets, before adding an element to a collection we explicitly require that
the element may not be in that collection already. This is to prevent erroneous
cases where a program attempts to issue a create command on an object already
created and not destroyed. Similarly, constructors indMinusO1 and indMinusO2
handle cases where an object is destroyed. Finally, note that there are no rules
for base steps involving s ∼obj+o s′ and s ∼obj−o s′, but only for s ∼obj s′. Since



58 Chapter 4. Reasoning about the Use of Primitives

s ∼obj s holds for every state s, any of the two cases above can be resolved using
s ∼obj s in addition to s ∼obj+o s′, or s ∼obj−o s′ respectively.

Relation on Links

Elements in the relation linksChanged represent the observable differences in
terms of links between two states. The domain of this relation is defined as:

linksChanged ⊆ Set(Link)×Set(Link)×State×State

In turn, type Link is defined inductively by the following constructors:

o1 : Object
o2 : Object
a : Association

oneL
(o1, o2, a) : Link

o : Object
allL

(o, ∗) : Link

We define the relation such that linksChanged(C,D, s, s′) holds whenever the
links in s′ are the same as those in s, except for those included in D, and includ-
ing those in C. An instance of type Link of the form (o1, o2, a) represents a link
between objects o1 and o2 through association a. An instance of type Link of the
form (o, ∗) represents all links involving object o. We use a special infix operator:

	 : Set(Link)×Object→Set(Link)

where (st 	 o) is equal to set st where all elements involving o in any position
are removed. We denote linksChanged(C,D, s, s′) as s ∼link C D s′, and define
it inductively by the following constructors:

s ∼link s
′

nilnilL
s ∼link ∅ ∅ s

′

s ∼link C D s′ s′ ∼link s
′′

indEqL
s ∼link C D s′′

s ∼link C D s′ s′ ∼link+(o1,o2,a) s
′′ ¬areLinked(o1, o2, a, s)

(o1, o2, a) /∈ C (o1, o2, a) /∈ D
indPlusL1

s ∼link C∪{(o1,o2,a)}D s′′

s ∼link C D s′ s′ ∼link+(o1,o2,a) s
′′ areLinked(o1, o2, a, s)

(o1, o2, a) /∈ C (o1, o2, a) ∈ D
indPlusL2

s ∼link C D−{(o1,o2,a)} s
′′

s ∼link C D s′ s′ ∼link−(o1,o2,a) s
′′ areLinked(o1, o2, a, s)

(o1, o2, a) /∈ C (o1, o2, a) /∈ D
indMinusL1

s ∼link C D∪{(o1,o2,a)} s
′′
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s ∼link C D s′ s′ ∼link−(o1,o2,a) s
′′ ¬areLinked(o1, o2, a, s)

(o1, o2, a) ∈ C (o1, o2, a) /∈ D
indMinusL2

s ∼link C−{(o1,o2,a)}D s′′

s ∼link C D s′ s′ ∼link−o s
′′ existsObj(o, s′)

indMinusLo
s ∼link C	o (D	o)∪{(o,∗)} s

′′

The idea behind these constructors is completely analogous to that of the pre-
vious relation. Constructors nilnilL and indEqL handle cases where no changes
occur. Cases where a link is created are handled by constructors indPlusL1 and
indPlusL2. Constructors indMinusL1 and indMinusL2 are used for cases where
a link is removed. Finally, when all links concerning an object are removed
(i.e. caused by the destruction of that object), constructor indMinusLo is used.
Again, there are no rules for base cases involving relations s ∼link+(o1,o2,a) s

′,
s ∼link−(o1,o2,a) s

′ and s ∼link−o s
′. As before, s ∼link s is used.

Relation on Attribute Values

Elements in the relation valuesChanged represent the observable differences in
terms of attribute values between two states. The domain of this relation is
defined as:

valuesChanged ⊆ Sequence(AttValue)×State×State

In turn, type AttValue is defined inductively by the following constructors:

o : Object
a : Attribute
v : V alue

oneAV
(o, a, v) : AttV alue

o : Object
allAVpo

(o,+) : AttV alue

o : Object
allAVmo

(o,−) : AttV alue

We define the relation such that valuesChanged(C, s, s′) holds whenever for
every object o the values of its attributes are the same in s′ as in s, except in
the case that there is a element in C involving o. An instance of AttValue of
the form (o, a, v) represents attribute a of o holding value v. An instance of that
type of the form (o,+) represents every attribute of o holding its default value.
This is the case when o does not exist in s, but it do exist in s′. An instance of
AttValue of the form (o,−) represents that values of every attribute of object
o are ignored. This is the case when o exists in s, but it does not in s′. We use
the following special infix operators:

- 	 : Sequence(AttValue)×Object×Attribute→Sequence(AttValue)
where (sq	 (o, a)) is equal to sequence sq where all triples involving o and
a are removed.
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- ⊕ : Sequence(AttValue)×AttValue→Sequence(AttValue)
which is a classic insBack operator.

- ∈ : AttValue×Sequence(AttValue)→Boolean
where t∈sq is true if the last element of sq in which the object in t occurs
is t, and false otherwise.

We denote valuesChanged(C, s, s′) as s ∼att C s′, and define it inductively
by the following constructors (for indMinusAVo1 and indMinusAVo2 we assume
that c is a class satisfying isInstanceOf(o, c, s′′) and a is an attribute satisfying
isAttribute(a, c, structure(s′′))):

s ∼att s
′

nilnilAV
s ∼att [ ] s

′

s ∼att C s′ s′ ∼att s
′′

indEqAV
s ∼att C s′′

s ∼att C s′ s′ ∼att−(o,a) s
′′

existsObj(o, s′) v = getV al(o, a, s′′)
indMinusAVoa

s ∼att (C	(o,a))⊕(o,a,v) s
′′

s ∼att C s′ s′ ∼att−o s
′′ s′ ∼obj+o s

′′ (o,+)/∈C
defVal(a, c, structure(s′′) = getV al(o, a, s′′))

indMinusAVo1
s ∼att C⊕(o,+) s

′′

s ∼att C s′ s′ ∼att−o s
′′ s′ ∼obj−o s

′′ (o,−)/∈C
indMinusAVo2

s ∼att C⊕(o,−) s
′′

The first two constructors, nilnilAV and indEqAV, handle cases where no changes
are produced in the transition between the states. Constructor indMinusAVoa
handles cases where an attribute changed its value. Note that the new value is
part of the constructed element. The cases where all attributes of an object are
set to their default values (caused by the creation of the object) are handled
by constructor indMinusAVo1. Constructor indMinusAVo2 similarly handles the
cases where all attribute values of an object should be ignored in the final state.
This kind of cases corresponds to object destruction. Finally, s ∼att s holds for
every state s, and can be used to construct base cases.

4.3.2 Additional Rules

The relations introduced so far can be used to relate the initial and final states
of a program to the changes from one to the other introduced by the program.
They are a possible solution to the problem of completely characterize the final
state of a program in a practical way. But how do these relations characterize
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the final state? The final state is characterized partly by its similarities to the
initial state, and partly by the results of the changes introduced by the program.
We need a set of rules for inferring explicit properties on the final state as we
did in the original framework.
In what follows we define a set of inference rules based on the relations just
introduced. Particularly, they allow us to infer the same kind of properties on
the final state of a program as rules in section 4.2.3 do. In the premises of
the rules, there will occur one of the three relations, some conditions on their
collections, as well as properties on the initial state. The conclusion refers to the
final state of the program. As usual, we organize the rules into groups according
to the property they allow to infer.

Rules for Object Existence

The following set of rules allows the inference of the existence and non-existence
of an object in the final state of a program. An object in C exists in the final
state, an object in D does not, and an object in neither of them is unchanged
with respect to the initial state. For the rules we assume the following symbols:
s, s′ : State; o : Object; and C,D : Set(Object). We believe that rules are
understood straightforwardly, therefore we omit further comments.

existsObj(o, s) s ∼obj C D s′ o /∈ D
EOr1

existsObj(o, s′)

¬existsObj(o, s) s ∼obj C D s′ o ∈ C
EOr2

existsObj(o, s′)

existsObj(o, s) s ∼obj C D s′ o ∈ D
EOr3

¬existsObj(o, s′)

¬existsObj(o, s) s ∼obj C D s′ o /∈ C
EOr4

¬existsObj(o, s′)

Rules for Object Linkage

The following set of rules allows the inference of whether two objects are linked
through an association or not. A triple of the form (o1, o2, a) in C means that
the two objects are linked, and the same triple in D means that the objects are
not linked. An element of the form (o, ∗) in D means that the object is linked
to no other. Linkage of objects not involved in any Link element is unchanged
with respect to the initial state. For the rules we assume the following symbols:
s, s′ : State; o1, o2 : Object; a : Association; and C,D : Set(Link).

areLinked(o1, o2, a, s) s ∼link C D s′

(o1, o2, a) /∈ D (o1, ∗) /∈ D (o2, ∗) /∈ D
ALr1

areLinked(o1, o2, a, s
′)
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areLinked(o1, o2, a, s) s ∼link C D s′ (o1, o2, a) ∈ D
ALr2-1

¬areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) s ∼link C D s′ (o1, ∗) ∈ D
ALr2-2

¬areLinked(o1, o2, a, s
′)

areLinked(o1, o2, a, s) s ∼link C D s′ (o2, ∗) ∈ D
ALr2-3

¬areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) s ∼link C D s′ (o1, o2, a) ∈ C
ALr3

areLinked(o1, o2, a, s
′)

¬areLinked(o1, o2, a, s) s ∼link C D s′ (o1, o2, a) /∈ C
ALr4

¬areLinked(o1, o2, a, s
′)

Rules for Attribute Values

The following set of rules allows the inference of whether an attribute of an
object holds a given value or not. If an object is not involved in any triple of
the sequence, then all its attribute values are unchanged with respect to the
initial state. If it does, the form and values of the triple in which the object
lastly occurs defines what can be inferred. If it occurs in a triple of the form
(o,−), then the object does not exist in the final state. If it occurs in a triple
of the form (o,+), then the object holds in all its attributes their default value.
Finally, a last occurrence of the form (o, a, v) means that o holds in attribute
a the value v. For the rules we assume the following symbols: s, s′ : State;
o : Object; a : Attribute; v : V alue; c : Class; and C : Sequence(AttV alue).

v = getV al(o, a, s) s ∼att C s′

(o, a, ?) /∈ C (o,+) /∈ C (o,−) /∈ C
GVr1

v = getV al(o, a, s′)

s ∼att C s′ isInstanceOf(o, c, s′)
isAttribute(a, c, structure(s′)) (o,+) ∈ C

GVr2
getV al(o, a, s′) = defVal(o, c, structure(s′))

s ∼att C s′ (o, a, v) ∈ C
GVr3

getV al(o, a, s′) = v

s ∼att C s′ (o,−) ∈ C
GVr4

¬existsObj(o, s′)
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4.3.3 Example

The extension to our framework is complete, we defined special relations to ex-
press in a compact way the changes produced by a program on its final state,
and a set of rules for inferring properties from the relations about it were pro-
vided. Next, we illustrate the use of the extended framework. The example of
hireSalesman of the previous section is reformulated. In that case, the pro-
gram creates a new salesman s and connects it to company c and to product
p. Here is the proposition we should prove in order to prove the corresponding
correctness assertion:

¬existsObj(s, s1)
¬isAbstract(Salesman, structure(s1))
works for 6= sells
areLinked(c, p, produces, s1)
s2 = create(s, Salesman, s1)
s3 = link(c, s, works for, s2)
s4 = link(s, p, sells, s3)

objectsChanged({s}, ∅, s1, s4)∧
linksChanged({(c, s, works for), (s, p, sells)}, ∅, s1, s4)∧

valuesChanged([(s,+)], s1, s4)

Our goal is a conjunction of the three relations. The first conjunct specifies
that the only changes in state s4 regarding objects with respect to state s1 is
that object s was created. Similarly, there are two new links, between c and s
through works for, and between s and p through sells. No links were removed.
Finally, if class Salesman had attributes, the only changes in attribute values
would have been attributes of s, having their default value.
Now we prove only the conjunct concerning the linksChanged relation. De-
spite being possible to reason in a top-down fashion, in this example we per-
form bottom-up inference. This means that we combine the solutions of known
subproblems into the main goal. The annotated correctness assertion for the
chosen conjunct is:

{ ¬existsObj(s, s1) ∧ ¬isAbstract(Salesman, structure(s1))∧
works for 6= sells ∧ areLinked(c, p, produces, s1)∧
linksChanged(∅, ∅, s1, s1),Proof 0 }
s2 = create(s, Salesman, s1);
{ linksChanged(∅, ∅, s1, s2),Proof 1 }
s3 = link(c, s, works for, s2);
{ linksChanged((c, s, works for), ∅, s1, s3),Proof 2 }
s4 = link(s, p, sells, s3);

{ linksChanged({(c, s, works for), (s, p, sells)}, ∅, s1, s4),Proof 3 }

and the proofs are presented below.
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Proof 0: linksChanged(∅, ∅, s1, s1)
This trivially holds. Since s ∼link s holds for every state s, and particularly for
s1, we apply constructor nilnilL to s1 and prove the thesis.

Proof 1: linksChanged(∅, ∅, s1, s2)
From axiom AxStt5 we can prove that s2 = create(s, Salesman, s1) implies
s1 ∼link s2. We can apply constructor indEqL to prove the thesis.

Proof 2: linksChanged((c, s, works for), ∅, s1, s3)
From axiom AxStt7 we can prove that s3 = link(c, s, works for, s2) implies both
¬areLinked(c, s, works for, s2) and s2 ∼link+(c,s,works for) s3. We can apply
constructor indPlusL1, since (c, s, works for) /∈ ∅, to prove the thesis.

Proof 3: linksChanged({(c, s, works for), (s, p, sells)}, ∅, s1, s4)
From axiom AxStt7 we can prove that s4 = link(s, p, sells, s3) implies both
s3 ∼link+(s,p,sells) s4 and ¬areLinked(s, p, sells, s3). Since (s, p, sells) /∈ ∅ and
(s, p, sells) /∈ {(c, s, works for)}, we can apply again indPlusL1 to prove the the-
sis.

To complete our example, now we apply additional rules to infer the same
properties as we did in the previous version. From ¬existsObj(s, s1) from the
precondition, objectsChanged({s}, ∅, s1, s4) from the recently proved postcon-
dition, and s ∈ {s}, applying rule EOr2 we prove existsObj(s, s4). Then from
¬areLinked(c, s, works for, s1) which is implied by ¬existsObj(s, s1) from the
precondition, with linksChanged({(c, s, works for), (s, p, sells)}, ∅, s1, s4) from
the postcondition, and (c, s, works for) ∈ {(c, s, works for), (s, p, sells)}, ap-
plying rule ALr3 we prove areLinked(c, s, works for, s4). We complete our ex-
ample applying ALr3 to prove areLinked(s, p, sells, s4). In the application we
use ¬areLinked(s, p, sells, s1) which is also implied by ¬existsObj(s, s1), again
linksChanged({(c, s, works for), (s, p, sells)}, ∅, s1, s4) from the postcondition,
and (s, p, sells) ∈ {(c, s, works for), (s, p, sells)}, .

4.4 Reasoning about State Well-formedness

In this section we explore the applicability of the framework to reason about
state well-formedness. First we analyze system invariants and propose a mecha-
nism to integrate them into the framework. Then, the support for multiplicities
is discussed.

4.4.1 System Invariants

The UML Reference Manual [RJB98, p. 317] defines the notion of invariant as
a constraint that must be true at all times, and then weakens the definition by
adding that the constraint must be true at least when no operation is incom-
plete. In turn, applying to the entire system the definition by Bertrand Meyer
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of class invariant [Mey97, p. 363], invariants express global properties of states,
characterizing deeper semantic properties and integrity constraints. Then he
adds that invariants must be preserved by all operations.
Analyzing these, at least not incompatible, definitions we identify two funda-
mental issues, one giving sense to the other. We discuss them separately. The
first issue is, what is really an invariant? We could summarize that it is a
constraint, particularly expressing some semantic properties about states. To
illustrate this, let us use again the example we developed in the last chapters. A
semantic condition we are not able to express in the system structure, and thus
remained unconsidered so far is that the product that a salesman sells should
be produced by the company in which he or she works. We can express such a
condition in our framework as:

I ≡ (∀stt : State;∀c, p, s : Object)
((areLinked(c, s, works for, stt) ∧ areLinked(s, p, sells, stt))
⇒ areLinked(c, p, produces, stt))

Now the second issue is, when does such a constraint must be satisfied? Since
states are continuously evolving, the answer may not be obvious. However, it can
be stated that invariants can be broken during the execution of an operation, but
it is mandatory to reestablish them at completion. Then it seems reasonable
to ask that for every program in a system, invariants must be satisfied right
before a program starts its execution, and immediately after its completion.
More precisely, they must be satisfied for the initial state and for the final state.
A natural form to ensure this is by adding the invariants to every correctness
assertion:

{ P ∧ I } S {Q ∧ I }

Note that for the occurrence of I in the precondition, the variable stt in the
invariant definition is bound to the initial state, and similarly in the postcon-
dition, stt is bound to the final state. Let us show the concrete proposition
to prove in this case. For clarity, we only concern ourselves about invariant
preservation thus omitting the properties already proved in sections 4.2.4 and
4.3.3. We also omit properties on the structure of s1, despite they are required
for the actual proof:

(∀c′, p′, s′ : Object)
((areLinked(c′, s′, works for, s1) ∧ areLinked(s′, p′, sells, s1))
⇒ areLinked(c′, p′, produces, s1))

s2 = create(s, Salesman, s1)
s3 = link(c, s, works for, s2)
s4 = link(s, p, sells, s3)

(∀c′′, p′′, s′′ : Object)
((areLinked(c′′, s′′, works for, s4) ∧ areLinked(s′′, p′′, sells, s4))
⇒ areLinked(c′′, p′′, produces, s4))



66 Chapter 4. Reasoning about the Use of Primitives

In conclusion, our framework gives support to the notion of system invariants
according to the approach discussed in this section. If we are able to express
an invariant within our framework, then we will have the possibility to prove
whether a program preserves it or not.

4.4.2 Multiplicities

Multiplicities are semantic restrictions on states which can be understood as
a particular case of system invariants. As discussed in the previous chapter,
multiplicities aim at restricting the cardinality of the set of objects that are
linked to every object in the state. For example, in the case of the system studied
in this text, the cardinal of the set of companies which are allowed to be linked
to a given person is exactly 1. This does not restrict which company is linked
to a particular person, just demands that there must be one. Modifications to
a state like those that are performed by the primitives may have effect on the
fulfillment of the multiplicities. For example, if we remove the link between
a person and its corresponding company, the multiplicity specified for class
person is violated, making the whole state ill-formed. The discussion in the
previous section for invariants applies to multiplicities, in the sense that well-
formedness with respect to multiplicities may be broken during the execution of
an operation, but it must be reestablished by the time of its completion. This
means that for dealing with this form of well-formedness, just as for invariants, it
may be assumed in the precondition, but must be ensured in the postcondition.
For our framework to support reasoning about well-formedness, it would be
necessary to extend our assertion language including operation isWellFormed
to it. In such a case, an extended correctness assertion would be written as:

{ P ∧ I ∧ isWellFormed } S {Q ∧ I ∧ isWellFormed }

As before, the precondition P , invariant I and function isWellFormed are ex-
pressed in terms of the initial state, while on the other hand postcondition Q,
invariant I and function isWellFormed are expressed in terms of the final state.
An annotated correctness assertion corresponding to hireSalesman where only
multiplicity related well-formedness is to be proved could simply be:

{ isWellFormed(s1) }
s2 = create(s, Salesman, s1);
{ ¬isWellFormed(s2),Proof 1 }
s3 = link(c, s, works for, s2);
{ ¬isWellFormed(s3),Proof 2 }
s4 = link(s, p, sells, s3);

{ isWellFormed(s4),Proof 3 }

Note that in this case all intermediate states “happen” to be ill-formed. How-
ever, for some other programs, all intermediate states could be well-formed, or
even some could be well-formed and the rest ill-formed. This use of our frame-
work imposes a requirement which must be fulfilled. We now need some special
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rules for justifying each step of inference. In this work we investigated under
what conditions it is possible to ensure that the resulting state of the applica-
tion of a primitive is well-formed or not, in both cases where the initial state is
well-formed too and when it is not. The propositions introduced next provide
necessary and sufficient conditions for well-formedness of the state delivered as
a result by a primitive. We stressed all possible cases, so therefore a complete
set of inference rules may be extracted from them. The proofs for all the propo-
sitions can be found in Appendix B. They are thorough, although they were
written in natural language.
As final remark, as discussed in section 4.2.5, postconditions are commonly
underspecified, and so happens with preconditions for similar reasons. As the
reader may soon notice, some of the hypotheses required by the propositions
could be very demanding. In scenarios where states are partially specified by
developers, the chances of a practical application of this approach for reasoning
about well-formedness could be compromised.

Modification of Well-formed States

Proposition When creating an instance in a well-formed state, it is a neces-
sary and sufficient condition for the resulting state to be well-formed that the
minimum of all opposite multiplicities through all the possible associations with
respect to the class instantiated is zero. In symbols:

isWellFormed(s) ∧ s′ = create(o, c, s)⇒
((((∀a : Association | existsAssociation(a, structure(s))∧

associates(a, c, c′, structure(s));
∀m : Multiplicity |multiplicities(a,m′,m, structure(s)))

(min(m) = 0))∧
((∀a : Association | existsAssociation(a, structure(s))∧
associates(a, c′, c, structure(s));
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(min(m) = 0)))⇔ isWellFormed(s′))

Proposition When destroying an instance in a well-formed state, it is a neces-
sary and sufficient condition for the resulting state to be well-formed that every
instance of every class associated to the class of the object to be destroyed is
linked at least to a number of objects (excluding the one to be destroyed) that
equals the minimum of the multiplicity at its opposite end. In symbols:

isWellFormed(s) ∧ s′ = destroy(o, s)⇒
((((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o)∧
isInstanceOf(o′′, c, s)∧
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areLinked(o′′, o′, a, s)}| ≥ min(m))∧
(((∀a : Association | associates(a, c′, c, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m′,m, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o)∧
isInstanceOf(o′′, c, s)∧
areLinked(o′, o′′, a, s)}| ≥ min(m))))))

⇔ isWellFormed(s′))

Proposition When creating a link between two instances through an associ-
ation in a well-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that the number of objects linked through the
association to both objects is strictly less than the maximum of its opposite
multiplicity. In symbols:

isWellFormed(s) ∧ s′ = link(o1, o2, a, s)⇒
(((∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, strucutre(s)))

(|{o : Object | areLinked(o1, o, a, s)}| < max(m2)∧
|{o : Object | areLinked(o, o2, a, s)}| < max(m1)))

⇔ isWellFormed(s′))

Proposition When removing a link between two instances through an associ-
ation in a well-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that the number of objects linked through the
association to both objects is strictly greater than the minimum of its opposite
multiplicity. In symbols:

isWellFormed(s) ∧ s′ = unlink(o1, o2, a, s)⇒
(((∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, strucutre(s)))

(|{o : Object | areLinked(o1, o, a, s)}| > min(m2)∧
|{o : Object | areLinked(o, o2, a, s)}| > min(m1)))

⇔ isWellFormed(s′))

Proposition When updating the value of an attribute of an instance in a well-
formed state, the resulting state is well-formed. In symbols:

isWellFormed(s) ∧ s′ = set(o, a, v, s)⇒
isWellFormed(s′)

Modification of Ill-formed States

Proposition When creating an instance in an ill-formed state, the resulting
state is ill-formed. In symbols:
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¬isWellFormed(s) ∧ s′ = create(o, c, s)⇒
¬isWellFormed(s′)

Proposition When destroying an instance in an ill-formed state, it is a nec-
essary and sufficient condition for the resulting state to be well-formed that
(i) every object of the state (except the one to be removed) satisfies the mul-
tiplicities constraints (i.e. the object to be removed is the only cause for the
ill-formedness of the state) and (ii) every object linked to it through any asso-
ciation is unaffected by losing a link (i.e. after being unlinked from the object
to be destroyed they still satisfy the multiplicities). In symbols:

¬isWellFormed(s) ∧ s′ = destroy(o, s)⇒
((isWellFormed(s)|o∧
(((∃a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(¬inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m′)))∨
((∃a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c′, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(¬inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m))))∧
((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o) ∧ areLinked(o′′, o′, a, s)}| ≥ min(m))∧
((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c′, s);
∀m : Multiplicities |multiplicities(a,m′,m, structure(s));
∀o′ : Object | isInstanceOf(o′, c, s))

(|{o′′ : Object | (o′′ 6= o) ∧ areLinked(o′, o′′, a, s)}| ≥ min(m′))))
⇔ isWellFormed(s′))

Proposition When creating a link between two instances through an associ-
ation in an ill-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that every object of the state (except for at
least one of those involved in the primitive) satisfies the multiplicities, and at
least one of them needs one link through the association to satisfy the multi-
plicities. In symbols:

¬isWellFormed(s) ∧ s′ = link(o1, o2, a, s)⇒
((isWellFormed(s)|a∧
((∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

((∀o : Object | (o 6= o1) ∧ isInstanceOf(o, c1, s))
(inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m2))∧
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(∀o : Object | (o 6= o2) ∧ isInstanceOf(o, c2, s))
(inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m1))))∧

(max(m2) > |{o : Object | areLinked(o, o2, a, s)}| ≥ min(m2)− 1∨
max(m1) > |{o : Object | areLinked(o1, o, a, s)}| ≥ min(m1)− 1))
⇔ isWellFormed(s′))

Proposition When removing a link between two instances through an asso-
ciation in an ill-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that every object of the state (except for at
least one of those involved in the primitive) satisfies the multiplicities, and at
least one of them exceeds by one the maximum of the multiplicity with respect
to the association. In symbols:

¬isWellFormed(s) ∧ s′ = unlink(o1, o2, a, s)⇒
((isWellFormed(s)|a∧
((∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

((∀o : Object | (o 6= o1) ∧ isInstanceOf(o, c1, s))
(inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m2))∧

(∀o : Object | (o 6= o2) ∧ isInstanceOf(o, c2, s))
(inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m1))))∧

(min(m2) < |{o : Object | areLinked(o, o2, a, s)}| ≤ max(m2) + 1∨
min(m1) < |{o : Object | areLinked(o1, o, a, s)}| ≤ max(m1) + 1))
⇔ isWellFormed(s′))

Proposition When updating the value of an attribute of an instance in an
ill-formed state, the resulting state is ill-formed. In symbols:

¬isWellFormed(s) ∧ s′ = set(o, a, v, s)⇒
¬isWellFormed(s′)

Summary

In this chapter, we introduced a framework for reasoning about the use of primi-
tives. We presented the notion of program, which was defined as a finite compo-
sition of primitives, for representing simple imperative programs. We described
an assertion language composed by queries associated to the types specified in
the previous chapter. In combination, these two elements allow the formulation
of correctness assertions. Such formulae can be proved by inference using a set
of axioms corresponding to those that defined the semantics of the primitives,
and a set of inference rules specifically introduced. Program correctness is then
inferred and not computed. An extension to the framework was also presented.
It provides a practical means for specifying the exact effect of program on states.
For that, new constructs were added to the assertion language, and new rules
were provided for the inference of state properties. Finally, the support of the
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framework for reasoning about well-formedness was explored. Proof of preserva-
tion for some form of invariants was shown to be available in the current version
of the framework. We introduced a number of propositions from whom new
rules can be generated in order to infer state well-formedness with respect to
multiplicities. In the next chapter, we report the formalization of the framework
in the System Coq.
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Chapter 5

Formalization of the
Framework in Coq

Our theory is completely introduced and our framework can be used for rea-
soning about system state modification primitives. However, any proof should
be constructed and verified by hand. The last step of our work consists in for-
malizing our framework in a proof assistant. Such a formalization carries over
all the benefits we reviewed in Chapter 2. A precise meaning is assigned to
every element in our theory, and proofs are taken to a more rigorous level in
which mechanical verification is possible. In addition, the process of construc-
tion of proofs is aided by the proof assistant. The scope of the formalization
includes the system defined in section 4.2 and the extension introduced in sec-
tion 4.3. Formulae such as those presented in sections 4.2.4, 4.3.3 and 4.4.1
can be handled. A formalization of the ideas discussed in section 4.4.2 was not
included in this version of our work. In this chapter we report the formalization
of our framework using the Calculus of Inductive Constructions supported by
the System Coq version 7.3 [INR02]. We discuss the criteria for representing
our ADT-based specification in that formal language, and illustrate some key
points of the results. We also report on some simple experiments carried out
using the System Coq for testing the feasibility of automatic proof construction
in our framework.
This chapter is structured as follows. Section 5.1 includes our criteria for rep-
resenting our theory in the Calculus of Inductive Constructions. Section 5.2
shows the key points in the formalized specification of our framework. Results
on automatic proof generation are reported in section 5.3.

5.1 Formalization of Abstract Data Types

In this section we show the criteria adopted for representing our specification in
the Calculus of Inductive Constructions. The ideas are organized for matching
the structure of the ADT-based specification introduced in Chapter 3.

73
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5.1.1 Types

In our specification, all types were defined abstractly. This means that we did
not provide an internal representation for any of them. We formalized types as
parameters of type Set. For example, in code:

Parameter Class : Set.

In this way a type is declared and not defined. If at one point a representation
for a type is to be given, this declaration is replaced for an actual definition.
Its type would still be Set, and an internal representation is then supported.
Equalities for all the types are decidable, therefore each type definition is fol-
lowed by an axiom expressing such property. For example:

Axiom EqClass : (c1,c2:Class){c1 = c2} + ∼{c1 = c2}

5.1.2 Functions

In our specification many functions were specified as partial. In Coq partial
functions are not supported, and the only way to interpret them is as relations,
most commonly, inductively defined. The reasons for this are discussed in a
later section. In our framework, functions were defined as inductive predicates.
For example, in code:

Inductive existsClass [c:Class;S:System] : Prop := . . .

5.1.3 Axioms

In ADTs, axioms are assumptions we make about the behavior of functions. In
some cases, they express some conditions that must be satisfied, and in others,
they completely define an operation. Axioms like those defined in association
to ADTs are of the form func ⇔ def, and an example of them could be axiom
AxSys2 which defines function existsClass. As said before, the function is for-
malized as an inductive predicate, and the definition of the predicate is the def
part of the axiom statement. In particular, if def is a disjunction, then each dis-
junct introduces its own constructor in the inductive definition. By this means,
we ensure that those are the only cases where func is defined. For example:

Inductive existsClass [c:Class;S:System] : Prop :=
exClBase:

(b:bool)
(EX S’:System | (addClass c b S’ S))

->(existsClass c S)
...
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5.1.4 Preconditions

As discussed before, partial functions are formalized in Coq as relations, most
commonly defined as inductive predicates. Inductive definitions in Coq support
the closure property. This means that an element is an object of an inductively
defined predicate if and only if it can be generated according to the formation
rules (constructors). This is enough to read the formation rules backwards to
derive the necessary conditions for a given instance to hold [CT96]. In Coq
this is called inversion. Then extra arguments can be added to constructors for
representing preconditions. In this way, to construct an instance of an induc-
tive predicate which was originated from a partial function, we must provide
a proof for each precondition, otherwise the introduction rule could not be ap-
plied. Conversely, from an instance of such predicate, it is possible to perform
an inversion to get proofs of its preconditions. For example, in code:

Inductive destroy : Object->State->State->Prop :=
consDs:

(o:Object;s,s’:State)
(existsObj o s)->(Rel objminuso o s s’)->
(Rel linkminuso o s s’)->(Rel attminuso o s s’)

->(destroy o s s’).

The inductive definition shown above is the formalization of the partial function
destroy of type State. Note that its definition is very similar to that of axiom
AxStt6. The argument of type (existsObj o s) in its constructor is due to
precondition PreStt5. Then, a proof of (destroy o s s’) without a proof of
(existsObj o s) would never be constructed, and from a proof of (destroy
o s s’), a proof of (existsObj o s) is obtained using the tactic Inversion.
Additional information on inductive definitions can be found in [Gim98].
The primitives could have been alternatively represented as different construc-
tors in a single inductive definition, enabling a separate definition of pre- and
postconditions for each primitive, and an explicit representation of the language
used to write programs. However, as discussed above, the set of possible prim-
itives becomes unnecessarily closed, and the incorporation of new primitives
would require the update of existing proofs. As the framework is intended to be
further extended with new primitives, we preferred to define them separately.

5.1.5 Other Definitions

In our specification, other elements were defined besides functions, axioms and
preconditions. In section 3.4.3 we defined a set of relations between states.
These relations were defined as Coq terms, using the Definition construct.
For example, specified the relation s ∼obj s

′ as:

Definition Rel obj : State->State->Prop
:= [s,s’:State]

(o:Object)(existsObj o s) <-> (existsObj o s’).
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5.2 Formalization of the Framework

In this section we address the formalization of the framework. We produced
seven Coq files with approximately five thousands lines of code. This amount
includes both definitions and proof scripts. About 15% of the code is dedicated
to infrastructure (i.e. types, functions and axioms), and the rest corresponds to
the framework itself (i.e. predicates, inference rules together with their proofs).
We summarize the key points of the formalized specification. Finally, we discuss
a number of issues concerning the formalization process.

5.2.1 The Core

In what follows, we summarize the key aspects of the formalization of the core
part of the framework introduced in section 4.2.

Inference Rules

Inference rules were formalized as lemmas and proved making extensive use of
the tactic Inversion on the premises concerning the primitives. As an example,
this is the type of rule Ex2Dt:

Lemma RuleExists2vDestroy:
(o,o’:Object;s,s’:State)
(existsObj o s)->∼o=o’->(destroy o’ s s’)

->(existsObj o s’).

Correctness Assertions

The concrete proposition derived from the correctness assertions are expressed
as theorems in Coq. Here is the formalized version of the correctness assertion
for the hireSalesman example.

Theorem correct hireSalesman:
(s,c,p:Object;Salesman:Class;
sells,works for,produces:Association;s1,s2,s3,s4:State)
(existsObj c s1)->(existsObj p s1)->∼(existsObj s s1)->
∼(isAbstract Salesman (structure s1))->
∼works for=sells->(areLinked c p produces s1)->
(create s Salesman s1 s2)->
(link c s works for s2 s3)->
(link s p sells s3 s4)->

(existsObj s s4) /\ (areLinked c s works for s4) /\
(areLinked s p sells s4).

Note that variables need to be explicitly quantified. The next three lines after
the quantifications correspond to preconditions, the next three to the program
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and the last two to postconditions. To show some of the flavor of the proof
assistant, here is a proof script for the theorem above.

Do 11 Intro.
Intros ExObj c ExObj p NExObj s NAbs Sales.
Intros Neq wf s AL cp Cr s Lk cs Lk sp.
Split.
Apply (RuleExists2vLink s s p sells s3 s4).
Apply (RuleExists2vLink s c s works for s2 s3).
Apply (RuleExists1 s Salesman s1 s2 NExObj s NAbs Sales Cr s).
Do 2 Assumption.
Split.
Apply (RuleAreLinked2vLink1 c s s p works for sells s3 s4).
Apply (RuleAreLinked1 c s works for s2 s3 Lk cs).
Do 2 Assumption.
Apply (RuleAreLinked1 s p sells s3 s4 Lk sp).

The first three lines introduces the preconditions and the program as hypotheses,
leaving the postcondition as the current goal. Using Split, we replace the cur-
rent goal with two subgoals: one with the leftmost conjunct in the postcondition
(i.e. (existsObj s s4)), and another with the other two (i.e. (areLinked c s
works for s4) /\ (areLinked s p sells s4)). As showed in section 4.2.4,
the first subgoal is proved by applying rules Ex2Lk twice and Ex1 once. Subgoals
∼(existsObj s s1) and ∼(isAbstract Salesman (structure s1)) gener-
ated from the application of Ex1 are trivially proved using tactic Assumption
since they are hypotheses. The second subgoal is split into conjuncts (areLinked
c s works for s4) and (areLinked s p sells s4) respectively. They are
similarly proved using rules AL2Lk and AL1.
Propositions that state program correctness share the same overall structure:
queries on the initial state and successive state changes as hypotheses, and a
conjunction of queries on the final state as the goal. In addition, proofs share
the same structure too and are constructed applying top-down reasoning, gener-
ally in a very similar fashion, by splitting conjuncts and applying inference rules
until premises can be assumed. These commonalities inspired the experiment
on automatic proof construction discussed in section 5.3.

5.2.2 The Extension

Next is a summary of the key ideas of the formalization of the extension to
the framework presented in section 4.3. New relations for specifying the exact
effect of programs were defined, and also a set of additional rules for inferring
properties about final states from them.
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Relations between States

Recall that, relations objectsChanged, linksChanged and valuesChanged were
introduced for their use in postconditions. Those relations involve collections
that register changes produced from one state to its subsequent. Proposition
objectsChanged uses sets of objects, while linksChanged and valuesChanged
use sets and sequences of some specific elements respectively. Both kind of ele-
ments are defined inductively. For example, the type Link used in linksChanged
is defined as follows:

Inductive Link : Set :=
oneL : Object->Object->Association->Link
| allL : Object->Link.

Here, the triple is composed by two objects and one association. The second
constructor of the type allows the introduction of the special value (o, ∗), which
represents “all the links where o participates”.
In turn, the three relations are also defined inductively from the specification.
For example, relation linksChanged, denoted as s ∼link C D s′, is partially spec-
ified as follows:

Inductive linksChanged :
SetLink->SetLink->State->State->Prop :=
nilnilL:

(s,s’:State)(Rel link s s’)
->(linksChanged (empty Link) (empty Link) s s’)

| indEqL:
(C,D:SetLink;s,s’,s’’:State)
(linksChanged C D s s’)->(Rel link s’ s’’)

->(linksChanged C D s s’’)
...

where SetLink is a specification of a set of instances of type Link, and Rel link
is the relation ∼link.

Correctness Assertions

The formulation of correctness assertions using the extension is carried out
straightforwardly. The precondition and the program occur similarly as in the
previous section, and the postcondition is replaced by a conjunction of applica-
tions of the defined relations between states with appropriate arguments. The
hireSalesman example reformulated in section 4.3.3 can be formalized as follows.
For clarity, only the application of linksChanged is shown, and Ins is used as
a shortcut for InsertSetLink.
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Theorem correct hireSalesman2:
(s,c,p:Object;Salesman:Class;
sells,works for,produces:Association;s1,s2,s3,s4:State)
(existsObj c s1)->(existsObj p s1)->∼(existsObj s s1)->
∼(isAbstract Salesman (structure s1))->
∼works for=sells->(areLinked c p produces s1)->
(create s Salesman s1 s2)->
(link c s works for s2 s3)->
(link s p sells s3 s4)->

(linksChanged
(Ins (Ins (emptyLink) (oneL c s works for))

(oneL s p sells))
(empty Link) s1 s4).

Additional Rules

Finally, as we did with the set of derivation rules in the previous section, all the
rules in the additional rules were represented as lemmas, also directly from the
specification. As an example, rule ALr3 which allows proving that two objects
are linked through an association was specified as:

Lemma ALr3:
(o1,o2:Object;a:Association;C,D:SetLink;stt1,stt2:State)
∼(areLinked o1 o2 a stt1)->(linksChanged C D stt1 stt2)->
(MemberSetLink C (oneL o1 o2 a))->

->(areLinked o1 o2 a stt2).

Now, having a proof of correct hireSalesman2 it is possible to prove (areLinked
c s works for s4), the second conjunct proved in the previous section. As-
suming the same preconditions as those for the original correctness assertion, we
simply apply rule ALr3. For the application, we bind the variable o1 to c, o2 to
s, a to works for, D to (emptyLink), stt1 to s1, and stt2 to s4. Variable C is
bound to (Ins (Ins (emptyLink) (oneLcsworks for)) (oneLspsells)). Finally,
∼(areLinked o1 o2 a stt1) is assumed, (linksChanged C D stt1 stt2) is
exactly correct hireSalesman2, and (MemberSetLink C (oneL o1 o2 a)) is
easily proved.

5.3 Experiments on Automatic Proof Construc-
tion

In this section we show the results of our simple experiment on automatic proof
construction. The objective of the experiment was to explore the application of
some of the tactics provided by Coq for automatic proof generation to simple
correctness assertions. As we discussed in section 5.2.1, this kind of propositions



80 Chapter 5. Formalization of the Framework in Coq

are usually structured as a number of hypotheses, one for every precondition
and program step, and the goal is commonly a conjunction of queries on the
final state. An approach to proof construction based on top-down inference was
outlined in section 4.2.4. There, an inference tree is constructed from its root
to the leaves. In such a tree, the root represents the original goal, a change
in the level of the tree represents an inference step, and a leaf represents the
application of an axiom or a rule where all premises are satisfied by hypotheses.
We start by briefly reviewing the tools provided by Coq for automatic proof
generation, and then we show how they were applied.

5.3.1 The Coq Approach to Automatizing

In Coq, tactics implement top-down reasoning. A simple example is tactic
Split, its associated deduction rule reduces a goal like A∧B into two subgoals:
A and B. An important tactic for us is Apply and its variants because it enables
top-down reasoning with our own rules. This rule is applied to any term and
tries to match the current goal against the conclusion of the term. If it succeeds,
then a subgoal is generated for every instantiation of premises of the term. For
example, EApply postpones to a later moment in the proof the instantiation of
variables in the premises that may not be deduced. This is usually the case
when dependent quantifications occur. We refer to [CDT02] for further details.
There are tactics in Coq that implement heuristics or decision procedures to
build a complete proof of a goal. Tactics of this kind, such as Auto and EAuto,
are used for automatic proof generation. Tactic Auto implements a resolution
procedure to solve the current goal, solving it completely or leaving it intact. It
tries to prove the goal directly from hypotheses, or by applying the tactics in a
hints database, and proceeding recursively for the generated subgoals. A hint
in a database will be tried by Auto if the conclusion of the current goal matches
the pattern of the hint. In turn EAuto is similar to Auto, but it uses unification
of the goal against the hints, instead of pattern-matching as Auto. In [Mon98],
a concrete example of EAuto is discussed.
Hints are added to a database using the command Hint. Adding a term to
a database with the Resolve option, adds Apply term to the hint list. If the
inferred type of term contains a dependent quantification, EApply term is added
instead, and thus the hint will be tried only if EAuto is used.

5.3.2 Application to the Framework

The decision procedure implemented by tactics like Auto seem to be compatible
with the approach to proof construction in our framework. In this simple ex-
periment we tried to prove the proposition correct hireSalesman introduced
in section 5.2.1. We added our inference rules to a database hints, as well as
all axioms such as AxObjDiff introduced in section 5.1.3, because they may
be needed to prove an eventual subgoal such as ∼(o = o’) introduced by the
application of rule Ex2Cr. We added those terms to the database issuing the
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following command:

Hints Resolve RuleExists1 RuleExists2vCreate . . . : hints.

At the moment of adding hints to the database, Coq detected dependent quan-
tifications in our rules; for that reason we tried the EAuto variant. The first test
was unsuccessful and the goal was left intact. When we tried EAuto to atomic
goals, after splitting the original conjunction, the tactic successfully proved the
three of them. As Coq provides the ability to construct new tactics from exist-
ing ones, this simple result was enough to show that it could be worth the effort
to develop specific EAuto-based tactics for automatic or semiautomatic con-
struction of more complex proofs. For example, a tactic which splits conjuncts
occurring in subgoals before applying EAuto would suffice to automatically prove
correct hireSalesman. Moreover, such tactics would provide an algorithm for
the construction of proofs in our framework, which could be of methodological
interest.

Summary

In this chapter, we presented the most important issues in the formalization of
our framework in Coq. We discussed the specification of every construct used in
the definition of our theory. Examples of the most interesting parts of the final
specification were also given. Finally, the results of an experiment on automatic
proof construction suggest the development of customized tactics in that respect
as a possible future improvement to our framework.
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Chapter 6

A Case Study

In this chapter we present a case study in which we illustrate a practical use of
the framework in a complete example treated in the bibliography [Lar02]. We
start by introducing the problem domain and a specification of system behavior
for the addressed use case. It consists in a brief description of the use case and
a system sequence diagram showing the interaction between the system and ex-
ternal agents along the main success scenario of the use case. A specification of
the static structure of the system is presented next. Also, a software contract
for every system operation in the diagram is included. We use the framework
for formulating a correctness assertion for each system operation. A proof of
program correctness for one of them is discussed. Finally we identify a system
invariant, and its preservation is justified.

This chapter is structured as follows. In section 6.1 we introduce the example to
be developed. The system, and its behavior is specified using UML diagrams,
use case descriptions and software contracts. Section 6.2 presents how we used
our framework for that case.

6.1 The Point-of-Sale System

In this section we introduce the example and a specification for it. This case
is used throughout [Lar02] as its driving case study. That work presents a de-
scription of a Unified Process [JBR99] based software development process.
The case is based on a system for a retail store register, also known as a Point-
of-Sale, or POS for short. It is a simple problem, however it is realistic because
organizations do write POS systems using object technologies. A POS system is
a computerized application used (in part) to record sales and handle payments,
used typically in a retail store. It includes hardware components such as a com-
puter and a bar code scanner, and software to run the system. It interfaces with
various service applications, such as third-party tax calculator, and inventory
control. The addressed use case is the Process Sale use case, since it is central
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in the case study on which we base ours.
An outline of the system behavior for the selected use case is given. Next, we
include a specification of the system structure. A detail of the system behavior
is finally presented.

6.1.1 The Process Sale Use Case

We start with a textual description for the Process Sale use case, in which only
the main success scenario is included. For example, we do not consider the case
when a customer asks to cancel the purchase of one of the products. Next a
representation of that scenario is shown as an interaction diagram, where the
primary actor and the system are involved.

Use Case Description

Use Case: Process Sale

Primary Actor: Cashier

Overview: A Customer arrives at the checkout with items to purchase. The
Cashier records the purchase items and collects the payment. On completion,
the Customer leaves with the items.

Main Success Scenario:
1. Customer arrives at POS check out with goods to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and

running total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.

5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.
8. System logs completed sale and sends sale and payment information to

the external Accounting system and Inventory system.
9. System presents receipt.

10. Customer leaves with receipt an goods.

External System Interaction

The diagram in Figure 6.1 represents the interaction between the primary actor
and the system described above. The instance on the left represents the role of a
cashier, while the instance on the right represents the running system. Messages
are abstractions of information exchange between the participants in the dia-
logue depicted by the use case description. Time ordering of messages is repre-
sented vertically from top to bottom, message makeNewSale occurs before than
makePayment. The box around the second message models that addLineItem
may occur any number of times before the next message is delivered.
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 : System

makeNewSale()
 : Cashier

addLineItem(itemID, quantity)

endSale()

makePayment(amount)

* [more items]

Figure 6.1: System sequence diagram for Process Sale

6.1.2 Point-of-Sale System Structure

The system structure used for the forthcoming specification is illustrated in
Figure 6.2. Class Store models the organization that owns the registers where
the system runs. The store also logs every completed sale. The register knows
its current sale by association captured on. A sale contains line items for every
different product purchased. A line item knows the specification of the prod-
uct and the number of pieces purchased. Information about the payment is
associated to a sale when it is completed.

amount
Payment

isComplete
Sale Register

quantity
SalesLineItem

name

Store
price
itemID

Product
Specification

captured_on 
 paid_by

 described_by

 logs_completed

houses 
contained_in 

1 1

1

1..*

1 *

1

1..*

1 1

1

*

Figure 6.2: POS system structure
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The following condition was identified as a system invariant by us, however
many others may also exist:

System invariant: Every logged sale must be paid.

In other words, every sale which is associated to a store must be also associated
to a payment. This system invariant will be specified in our framework later in
the present case study.

6.1.3 Software Contracts

In what follows, we include a reduced version, containing essential information
only, of the software contracts for the Process Sale use case. Every contract
specifies a system operation. The information included is the operation sig-
nature, and the pre- and postconditions, which are expressed in terms of the
system structure showed in Figure 6.2.

Operation: makeNewSale()
Preconditions: – None
Postconditions: – A Sale instance s was created

– s was associated with the Register
– Attributes of s were initialized

Operation: enterItem(itemID:ItemID,quantity:Integer)
Preconditions: – There is a sale underway
Postconditions: – A SaleLineItem sli was created

– sli was associated with the current Sale
– sli.quantity became quantity
– sli was associated with a ProductSpecification

Operation: endSale()
Preconditions: – There is a sale underway
Postconditions: – s.isComplete became true

Operation: makePayment(amount:Money)
Preconditions: – There is a sale underway
Postconditions: – A Payment instance p was created

– p.amount became amount
– p was associated with the current Sale
– The current Sale was associated with the Store
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6.2 The Framework in Practice

The problem is completely presented; now we show how our framework can
be used. First, we formulate correctness assertions for every system operation,
and the proof of one of them is discussed. We formulate the system invariant
identified in the previous section. Finally, we show that the invariant is preserved
by the system operations.

6.2.1 Correctness Assertions for Process Sale Operations

Next are the correctness assertions for every system operation. For reasons of
clarity, information about the system structure is included in the precondition
only when it is required. Names used for structural features correspond to
those in Figure 6.2, that is, variable Sale : Class represents class Sale. For the
formulae, let variables stti denote states, and variables s and r denote arbitrary
objects. Variables which are specific to a formula are introduced next to it.

makeNewSale

For the following formula, additionally assume the variable ff : V alue.

{ existsObj(r, stt1) ∧ defVal(isComplete, Sale, structure(stt1)) = ff ∧
¬isAbstract(Sale, structure(stt1)) }
stt2 = create(s, Sale, stt1);
stt3 = link(s, r, captured on, stt2);

{ existsObj(s, stt3) ∧ areLinked(s, r, captured on, s3)∧
getV al(s, isComplete, stt3) = ff }

enterItem

For the following formula, additionally assume variables sli, ps : Object. Oper-
ation arguments are represented by variables qty, itID : V alue.

{ areLinked(s, r, captured on, stt1) ∧ getV al(ps, itemID, stt1) = itID }
stt2 = create(sli, SalesLineItem, stt1);
stt3 = link(sli, s, contained in, stt2);
stt4 = set(sli, quantity, qty, stt3);
stt5 = link(ps, sli, described by, stt4);

{ existsObj(sli, stt5) ∧ areLinked(sli, s, contained in, stt5)∧
getV al(sli, quantity, stt5) = qty ∧ areLinked(ps, sli, described by, stt5) }

endSale

For the following formula, additionally assume the variable tt : V alue.
{ areLinked(s, r, captured on, stt1) }

stt2 = set(s, isComplete, tt, stt1);
{ getV al(s, isComplete, stt2) = tt }
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makePayment

For the following formula, additionally assume variables st, p : Object. The
operation argument is represented by variable amt : V alue.

{ areLinked(s, r, captured on, stt1) ∧ areLinked(st, r, houses, stt1)∧
¬existsObj(p, stt1) ∧ ¬isAbstract(Payment, structure(s1)) }
stt2 = create(p, Payment, stt1);
stt3 = set(p, amount, amt, stt2);
stt4 = link(p, s, paid by, stt3);
stt5 = link(st, s, logs completed, stt4);
stt6 = unlink(s, r, captured on, stt5);

{ existsObj(p, stt6) ∧ getV al(p, amount, stt6) = amt∧
areLinked(p, s, paid by, stt6) ∧ areLinked(st, s, logs completed, stt6)
¬areLinked(s, r, captured on, stt6) }

Conjunct ¬areLinked(s, r, captured on, stt6) in this postcondition is not present
in the contract defined in [Lar02]. However, we identified it as necessary since
a register is linked to the current sale only. Once completed, the sale is logged
and the register may not have any associated sale. This is because in the next
call to makeNewSale another sale will be associated to the register becoming
the new (and only) current sale.

For constructing a proof for this formula we proceed as described in section 4.2.4.
For every conjunct in the postcondition we successively apply inference rules
propagating the condition upward the program until every generated subgoal
is proved by hypotheses. Let us start with existsObj(p, stt6). Applying rule
Ex2Ul we generate according to its premises, subgoals existsObj(p, stt5) and
stt6 = unlink(o1, o2, a, stt5) for some objects o1 and o2, and association a. Since
we have as hypothesis stt6 = unlink(s, r, captured on, stt5) the second subgoal
is proved by binding o1 to s, o2 to r and a to captured on respectively. For
proving the first subgoal we proceed similarly with rule Ex2Lk, which in turn
generates subgoals existsObj(p, stt4), and stt5 = link(o1, o2, a, stt4). Again
the second subgoal is proved by hypothesis, and we proceed with the first one
for which we apply rule Ex2Lk once more. Finally, we finish the proof for the
conjunct applying rule Ex2St followed by rule Ex1. The premises of the last rule
are satisfied by the preconditions.
The rest of the conjuncts are proved in a very similar fashion. For conjunct
getV al(p, amount, stt6) = amt we apply successively rules GV3Ul, GV3Lk twice,
and GV1. For conjunct areLinked(p, s, paid by, stt6) we apply rules AL2Ul1,
AL2Lk1, and AL1. For conjunct areLinked(st, s, logs completed, stt6) the proof
proceeds applying rules AL2Ul1 and AL1. Finally, the proof is completed when
proving conjunct ¬areLinked(s, r, captured on, stt6) applying only rule NAL1.
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6.2.2 An Invariant of the POS System

In this section we precisely define the invariant that has been identified in section
6.1.2 and outline the arguments that would allow us to justify that such invariant
is preserved by every system operation.
The invariant can be formulated as:

I ≡ (∀state : State;∀store, sale : Object)
((areLinked(store, sale, logs completed, state)
⇒ (∃payment : Object | areLinked(payment, sale, paid by, state))

Let us start seeing in more detail the most simple among the system operations,
endSale. Since set preserves all links, it can be proved that if an arbitrary sale
s is linked to a store st in the final state, it must have been linked to st in
the initial state too. Since by hypothesis every sale that is linked to a store
in the initial state is also linked to a payment, there must exist a payment p
linked to s. Then using rule AL2St we prove that in the final state s is still
linked to payment p. Which means that in fact there is a payment linked to
s in the final state. The cases of operations makeNewSale and enterItem are
very similar since their programs do not affect either links through associations
logs completed or paid by. Finally, the case introduced by makePayment is a
little more complicated. There, we need to discuss whether the sale s we consider
is the same sale s that occurs in the program. This is because it could be false
that s is linked to a store in the initial state, particularly, we know that its
link to st does not exist in the initial state. If s is the same as s, then the
postcondition ensures that s is linked to p, and the thesis is simply proved. If
s is not the same as s, then it is true that s preserves its link to a store from
the postcondition to the precondition, and then the same argument as for the
other operations holds.

Summary

In this section we showed how to use our framework in a complete and non-
trivial case study taken from the bibliography. Correctness assertions were
defined for every system operation in a use case of a realistic system. Proofs
for such assertions were constructed and explained. In addition, we identified a
system invariant which was also defined in our framework, and the preservation
of that invariant through every system operation was justified.
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Chapter 7

Conclusions and Further
Work

In this thesis, a semantics for system state modification primitives and a frame-
work for reasoning about programs based on them were formally specified in
Type Theory. The main results and conclusions are summarized in section 7.1.
Further work is outlined in section 7.2.

7.1 Summary and Conclusions

In this work, a mathematical specification of state modification primitives of
object-oriented systems has been proposed. This specification was formalized
in Type Theory using the proof assistant Coq [INR02]. Such a formal seman-
tics provided a precise understanding of the most basic behavioral constructs
removing subtle ambiguities, and enabled us to apply formal methods to object-
oriented systems development. In that context, a framework for reasoning about
simple but powerful programs expressed as sequences of state changes or appli-
cation of the primitives has been developed. The core of the framework allows
to formulate specifications of programs and rigorously prove their correctness.
Moreover, a method to prove system invariant preservation across programs
using the core constructs was outlined. To deal with partial specifications, an
extension was proposed where the exact effect of a program can be specified. We
studied under what conditions the resulting state of a primitive can be assured
to be well-formed with respect to multiplicities. The results were a number
of propositions which have been also proved. These propositions can be incor-
porated to the framework for additionally reason about state well-formedness.
A simple environment for specifying and verifying system behavior has been
prototyped using the Coq. Within this system, users are assisted in the task
of proof construction, and most importantly proofs are mechanically checked.
In addition, automatic proof construction for simple correctness assertions was
explored, showing that some degree of automation is feasible to be achieved.
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Related formalizations, such as [AL98] or [Mül02], are usually close to program-
ming languages like Java, and therefore do not include concepts not supported
by them as for example links and associations. Works from the object com-
munity instead cover a wider range of concepts whether they are supported by
programming languages or not. However, their approach is commonly informal.
The work presented in this thesis specifically addressed modification primitives
with a formal foundation, including concepts already formalized, such as objects
and attributes, as well as links which are normally treated with less rigor. We
believe that this work then contributes to fill the gap that exists between these
two areas of study. Furthermore, as it makes use of concepts widely applied to
conceptual modeling, our formal approach can be applied even in early phases
of the development process.

The semantics of the primitives that has been presented is expressed in terms
of a ADT-based specification of object-oriented concepts, which was specifically
developed for being used in this work. This specification possesses a high level of
abstraction, since functions do not operate on concrete data structures. Our ap-
proach does not necessarily have to rely on our specification for being applied, in
other words, other specifications could have been used to base the semantics of
the primitives as well. However, some reviewed specifications [Ric02, OMG03c]
were found unnecessarily detailed for our purposes, which was in fact reasoning
instead of testing. Based on our own specification, the resulting semantics of
the primitives also possesses a high level of abstraction and have been presented
in a simple and compact manner.

In addition, the formal semantics can serve as a specification of the primitives
for an eventual implementation of them in a concrete system. This could simply
be done by providing an implementation for the basic operations associated to
the ADT specifications. Every other operation, including the primitives them-
selves, could be defined then in terms of these basic operations, as specified
in the ADTs. This is another benefit of having used an abstract ADT-based
specification.

Our approach of incorporating widely used object-oriented concepts to system
states, and manipulating these concepts through specific primitives in a plat-
form independent approach, was found to be in compatibility with recent trends
in the object community. The Object Management Group recently incorpo-
rated into the UML the UML Action package [OMG03c, p. 2-199], providing
new constructs for modeling behavior, also platform independently. In fact,
the primitives specified in this work are in close correspondence to some of the
actions defined within UML. Model Driven Architecture [OMG01] defines the
context in which that behavior is defined. In turn, xUML [KC03] implements
a particular action language which is compliant with the UML Action Seman-
tics for a tool-based execution of models in the context of MDA. As tools are
involved, a formal approach as ours could be of interest in that domain.
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Formal verification techniques are usually applied to simple or reduced systems.
However, we have applied the framework to a realistic information system within
a known problem already addressed in the object-oriented software engineering
bibliography. The case study demonstrated the applicability and power of our
approach, which leads to our final conclusion. We believe that the results here
reported could be a good starting point to an improved and more powerful
framework for specifying and reasoning about object-oriented systems behavior.

7.2 Further Work

An important topic for further work is related to the UML Action Semantics
and other UML-related specifications. Particularly, it is our interest to reduce
the gap between our approach and that of the UML Actions Semantics. On one
hand, a complete alignment of the two semantics could be addressed. Possible
mismatches between corresponding concepts should be studied. Elements dis-
cussed in section 3.1.1 should be integrated to our specification, as well as other
UML concepts not yet included. This could result in new queries in our specifi-
cation, thus potentially increasing the expressiveness of the assertion language.
On the other hand, the framework could be extended with a formalization of
new actions. These actions could be other state modification actions, but par-
ticularly other control structures such as branching and iteration, which would
enable more complex programs to be written. A possible connection between
our framework and the Object Constraint Language [OMG03a] could be also
investigated. First, OCL could be used in our framework as an assertion lan-
guage, or for writing expressions within assertions. Additionally, a translation
mechanism from our program specifications to OCL expressions could also be
of interest.

Finally, our proposal for reasoning about state well-formedness could be im-
proved, including the generation of inference rules from propositions in section
4.4.2. Optimized tactics for automatic, or semiautomatic, proof construction
can be developed. One of the main drawbacks in the use of the prototypical im-
plementation of the framework is probably the cost of learning Coq from some of
the potential users. In this direction, it could be of interest the development of
a front-end for our environment, which would assist users in formulating actual
propositions and automating (parts of) proofs.
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Appendix A

Other Semantics

The semantics of system state modification primitives introduced in Chapter 3
is based on the specification of types System and State, and other associated
notions. That specification possesses a high level of abstraction, which allowed
the defined semantics to be simple and compact. However, our specification is
not the only existing specification of all those concepts. In fact, [Ric02] and
[OMG03c] include alternative specifications which could have been used instead
of ours as a foundation for the definition of the semantics of the primitives.
In this section, we explore those alternatives showing the specification of the
primitive create based on each of them. As those specifications are more concrete
than ours, this exploration can reveal the complexities that could have been
introduced in our semantics by such specifications. In section A.1 we overview
specification in [Ric02] and use it for specifying the semantics of the create
primitive. We follow the same approach in section A.2 for the specification
included in [OMG03c].

A.1 A Set Theory based Specification

In [Ric02], a set theory based specification of UML concepts for modeling sys-
tems and states is included. There, our notions of system and state are called
object model and system state respectively. They are specified as related struc-
tures involving a number of accessory sets and functions. We overview the
essential parts of this specification before introducing the semantics of create.
A model M, is structured as follows:

M = (Class,Abstract,Attc,Assoc, associates,multiplicities,≺)

where

• Class is a set of names representing all the classes in the object model.

• Abstract is a subset of Class representing abstract classes.
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• Attc is a set of signatures indexed by Class. The signatures are of the
form a : tc → t and represent attributes of class c, where a is the name of
the attribute, tc is the type induced by class c, and t is the attribute type.

• Assoc is a set of names representing all the associations in the object
model.

• associates is a function mapping each association name to a list of par-
ticipating classes.

• multiplicities is a function assigning each end of an association a multi-
plicity specification.

• ≺ is a partial order on Class reflecting the generalization hierarchy of
classes.

In turn, a system state for a model M is a structure:

σ(M) = (σClass, σAtt, σAssoc)

where

• σClass(c) are finite sets containing all objects identifiers of a class c ∈
Class existing in the system state. The set σClass(c) is a subset of oid(c),
the set of object identifiers of class c.

• σAtt are functions for retrieving attribute values, matching the signatures
in Att

∗
c . This set contains the union of all signatures for class c (i.e.

Attc), with the signatures for all its ancestors classes through ≺.

• σAssoc are sets containing links between objects. The set σAssoc(as) is a
subset of the cartesian product of the interpretation of all classes partici-
pating in as. The interpretation of a class is the union of all object iden-
tifiers of that class with object identifiers of its ancestors classes through
≺.

Finally, the interpretation of an object model M is defined as the set of all
possible states σ(M). We refer to [Ric02] for further information about this
specification.

Now, we define the primitive create as a relation between states typed as follows,
where set Oid is defined as the union of all object identifiers of all classes in
Class:

create: Oid→Class→Model→State→State→Prop

For the specification of create we use the function parents mapping a class with
the set of its ancestors classes, and define a function defval which maps at-
tributes with their default value.
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Let

i. M = (Class,Abstract,Att,Assoc, associates,multiplicities,≺)
An object model

ii. c ∈ Class, c /∈ Abstract

A concrete class defined in M

iii. σ(M) = (σClass, σAtt, σAssoc)
A state of model M

iv. σ′(M) = (σ′
Class

, σ′
Att

, σ′
Assoc

)
A state of model M

v. o ∈ (oid(c)− σClass(c))
A valid object identifier for class c not already in use in state σ(M)

then create(o, c,M, σ(M), σ′(M)) iff

i. Object identifier o refers to the created instance and is included, in the
resulting state σ′(M), in the set of instances corresponding to class c.
Since o is also an instance of all parent classes of class c, o is also included
in every set of instances corresponding to each parent of class c (if any).

σ′
Class

(x) =
{
σClass(x) if x /∈ (parents(c) ∪ c)
σClass(x) ∪ {o} if x ∈ (parents(c) ∪ c)

ii. Function σ′
Att

in the resulting state σ′(M) returns the default value of
each attribute for the created instance o.

σ′
Att

(a)(x) =

 σAtt(a)(x) if x 6= o,∀z ∈ Class | x ∈ σClass(z),
∀a : tz → t ∈ Att

∗
z

defval(a) if x = o, ∀a : tc → t ∈ Att
∗
c

iii. No links are changed in σ′(M).

σ′
Assoc

= σAssoc

A.2 An Object-Oriented based Specification

The UML metamodel is an object-oriented specification of constructs of the
Unified Modeling Language. It is expressed in a language called Meta Object
Facility (MOF), which is a subset of UML itself. The UML is intended, among
others things, to be used for describing object-oriented systems from different
points of view. Particularly, it has specific constructs for modeling the static
structure of a system and their runtime configuration, and the metamodel in-
cludes a specification for all those constructs.
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The UML metamodel is organized in packages each containing the specification
of a group of related concepts. In the Core package, elements for modeling
system structure are defined. Elements for modeling states are defined in the
Common Behavior package. Every model element have a unique name. For
reasons of brevity we will focus on concrete metaclasses, collapsing inherited
properties, although we refer to abstract metaclasses if needed. From the Core
package, the Class metaclass, subclass of Classifier, is a central concept. A class
is associated to features, particularly attributes. An instance of metaclass At-
tribute can have an initial value, and is associated to a type. Generalization
and Association are special cases of relationships. A generalization is associ-
ated to two classes through two different associations. One class play the role
of superclass in that generalization, while the other plays the role of subclass.
An association is associated to a sequence of association ends. An instance of
AssociationEnd is the connection between the association and the participating
classes. Multiplicities and compositions are specified in association ends. An-
other subclass of classifier is DataType, which we use for typing attributes.

In turn, the structure of states shows a strong correspondence with that of sys-
tems. Metaclass Instance is associated to Classifier. By this association, par-
ticular forms of instances, objects and data values are connected to classes and
data types respectively. Such association represents, for example, the connec-
tion between a class and all objects created from it. The mechanisms by which
an object is connected to values and links are actually very similar. An object
is connected to attribute links, and link ends. An instance of AttributeLink
is also connected to an attribute and a data value. That value is the value
held by the object for the attribute. An instance of Link is connected to the
association from which it was originated, and to the instances of LinkEnd that
are the bridge to the objects participating in the link. Those link ends are also
connected to their corresponding association ends.

Finally we define two special elements, System and State. System represents the
system structure and is associated to the reviewed elements of the Core pack-
age. State represents the system state and is similarly associated to elements in
Common Behavior package. These two elements are associated, and a system
may have many states, but a state is connected to only one system. The system
is accessible from the state through the role name structure. We naturally de-
fine the primitives as operations of State, which will be the context of the OCL
pre- and postconditions used for specifying them. Further information on this
specification can be found in the UML Semantics specification [OMG03c]. The
next specification of create is based in [Vig03]. For the specification of create
we define a function ancestors which return all direct or indirect superclasses
of a given class.
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context State::create(o:Name,c:Name)
pre: - - Exists a class named “c” in the associated system and

- - is not an abstract class
self.structure.ownedClass→exists(e | e.name = c and e.isAbstract = false)

pre: - - There is no object with name “o” in the state
not self.ownedObject→exists(e | e.name = o)

post: - - Exists a new object of class named “c” that is named “o” and all
- - its attributes are initialized with their default values
- - C is the class used to create the new object
let C = self.structure.ownedClass→select(e | e.name = c)→any(true) in
- - O is the new object
let O = self.ownedObject→select(e | e.name = o and e.oclIsNew())→

any(true) in
- - C is the classifier for O
O.classifier→includes(C) and
- - the new instance is owned by self
O.owner = self and
- - self is the owner of the new instance
self.ownedObject→includes(O) and
- - for every feature a of class C
C.ancestors()→collect(feature)→asSet→

forAll(a | a.oclIsTypeOf(Attribute) implies
- - if feature a is an attribute implies that a is attached
- - to an attribute link al that
a.oclAsType(Attribute).attributeLink→exists(al |

- - is new
al.oclIsNew() and
- - is attached to the new object O
al.instance = O and
- - its value is the default value
al.value.oclAsType(DataValue).value =

a.oclAsType(Attribute).initialValue and
- - is owned by the state
al.owner = self and
self.ownedAttributeLink→includes(al)

)
)
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Appendix B

Properties on
Well-formedness

As discussed in section 4.4.2, it could be possible to reason about state well-
formedness with respect to multiplicities. In that context, it is our interest
to study under what conditions it is possible to anticipate the well-formedness
of a state resulting from a modification. In this chapter, we introduce a set
of propositions that provide necessary and sufficient conditions for the well-
formedness of a state which is the result of the application of a command to both
well-formed states and ill-formed states. These propositions can be then used to
generate inference rules for constructing proofs for many steps of modifications.
We prove first some basic propositions. The proofs are carried out in logic with
a high degree of detail. In turn, the proofs for the main set of propositions are
expressed in natural language.

B.1 Basic Properties

Proposition An empty state is well-formed. In symbols:

(∀s : State)(isEmpty(s)⇒ isWellFormed(s))

Proof.
Reasoning by contradiction, by AxS2 we have that an empty state has no ob-
jects: isEmpty(s)⇒ (∀o : Object)(¬existsObj(o, s))
By hypothesis we assume that s is ill-formed, then at least one object exist that
violates the multiplicities:
¬isWellFormed(s)⇒
(∃o : Object | existsObj(o, s))

((∃a : Association;
c1, c2 : Class;
m1,m2 : Multiplicity |
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associates(a, c1, c2, structure(s))∧
multiplicities(a,m1,m2, structure(s))

(isInstanceOf(o, c1, s)⇒
¬inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m2)∨

isInstanceOf(o, c2, s)⇒
¬inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m1))))

This is a contradiction, since we showed that s has no objets. This concludes
that s is well-formed. �

Proposition (Necessary condition for well-formedness)
It is a necessary condition for a state to be well-formed that for every associa-
tion a if there exists an instance of one of the classes c participating in a, then
there exist at least a number of instances of class c′, opposite to c across a, that
equals the minimum of the multiplicity at the association end of c′. In symbols:

Given a function objsInstanceOf : Class×State→Natural where
objsInstanceOf(c, s) = |{o : Object | isInstanceOf(o, c, s)}|
For every state s we have:

isWellFormed(s)⇒
(∀a : Association | existsAssociation(a, structure(s));
∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

(objsInstanceOf(c1, s) > 0⇒ objsInstanceOf(c2, s) ≥ min(m2)∧
(objsInstanceOf(c2, s) > 0⇒ objsInstanceOf(c1, s) ≥ min(m1))

Proof.
Reasoning by contradiction, we assume that s is well-formed and
∃a : Association | existsAssociation(a, structure(s))∧
∃c1, c2 : Class | associates(a, c1, c2, structure(s))∧
∃m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

where:
¬(objsInstanceOf(c1, s) > 0⇒ objsInstanceOf(c2, s) ≥ min(m2)∧
objsInstanceOf(c2, s) > 0⇒ objsInstanceOf(c1, s) ≥ min(m1))

We proceed by proving that exists an object in s that violates the condition
of isWellFormed(s).

Case 1 : objsInstanceOf(c1, s) > 0 ∧ objsInstanceOf(c2, s) < min(m2)

We have objsInstanceOf(c1, s) > 0⇒ ∃o|existsObj(o, s)∧isInstanceOf(o, c1, s)
then
|{o′ : Object |existsObj(o′, s)∧ isInstanceOf(o′, c2, s)∧areLinked(o, o′, a, s)}| ≤
|{o′ : Object | existsObj(o′, s) ∧ isInstanceOf(o′, c2, s)}| =
objsInstanceOf(c2) < min(m2)
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This proves that:
¬inRange(|{o′ : Object | existsObj(o′, s)∧

isInstanceOf(o, c2, s)∧
areLinked(o, o′, a, s)}|,m2)))

which leads to a contradiction because isWellFormed(s) holds.

Case 2 : objsInstanceOf(c2, s) > 0 ∧ objsInstanceOf(c1, s) < min(m1)

This case is analogous. �

B.2 Modification of Well-formed States

Proposition When creating an instance in a well-formed state, it is a neces-
sary and sufficient condition for the resulting state to be well-formed that the
minimum of all opposite multiplicities through all the possible associations with
respect to the class instantiated is zero. In symbols:

isWellFormed(s) ∧ s′ = create(o, c, s)⇒
((((∀a : Association | existsAssociation(a, structure(s))∧

associates(a, c, c′, structure(s));
∀m : Multiplicity |multiplicities(a,m′,m, structure(s)))

(min(m) = 0))∧
((∀a : Association | existsAssociation(a, structure(s))∧
associates(a, c′, c, structure(s));
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(min(m) = 0)))⇔ isWellFormed(s′))

Proof.
(⇒) State s is well-formed, and we know that s ∼obj+o s′ and s ∼link s

′ hold,
and by AxStt3 the structures of s and s′ are the same. This means that without
considering o in s′ the rest of objects and links are the same as those of s. Thus,
without considering o the state s′ is well-formed. For the entire s′ to be well-
formed it is necessary that the size of every set of objects linked to o through
any association is included in the opposite multiplicity respect to o through the
association. Since s ∼link s′ holds, we know that no object is linked to o in
s′, then the size of all sets of objects linked to o is zero. We also know (by
hypothesis) that the minimum of all multiplicities opposite to o is zero. This
shows that o satisfies all multiplicities in s′, concluding that s′ is well-formed.

(⇐) State s is well-formed, and we know that s ∼obj+o s′ and s ∼link s
′ hold,

and by AxStt3 the structures of s and s′ are the same. Reasoning similarly as
above, we show that the size of every set of objects linked to o through any
association in s′ is zero. Being s′ well-formed, every object (in particular o)
satisfies the multiplicities. Then zero must be included in every multiplicity
opposite to o. Hence, zero is the minimum for all of them. �
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Proposition When destroying an instance in a well-formed state, it is a neces-
sary and sufficient condition for the resulting state to be well-formed that every
instance of every class associated to the class of the object to be destroyed is
linked at least to a number of objects (excluding the one to be destroyed) that
equals the minimum of the multiplicity at its opposite end. In symbols:

isWellFormed(s) ∧ s′ = destroy(o, s)⇒
((((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o)∧
isInstanceOf(o′′, c, s)∧
areLinked(o′′, o′, a, s)}| ≥ min(m))∧

(((∀a : Association | associates(a, c′, c, structure(s))∧
isInstanceOf(o, c, s);

∀m : Multiplicity |multiplicities(a,m′,m, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o)∧
isInstanceOf(o′′, c, s)∧
areLinked(o′, o′′, a, s)}| ≥ min(m))))))

⇔ isWellFormed(s′))

Proof.
(⇒) State s is well-formed, and we know that s ∼obj−o s′ and s ∼link−o s

′

hold, and by AxStt3 the structures of s and s′ are the same. This means that
only links involving o have changed from s to s′. Thus, without considering
any association where o is an instance of a class on any of its ends, state s′

is well-formed. Focusing on those associations, instance o does not exist in s′

and we know that any object that is instance of the same class as o satisfies
the multiplicity in s′, since they did so in s and their links were unaffected.
Finally, we know that objects from opposite classes satisfy the multiplicities in
s′, since they already did in s even without considering an eventual link to o.
We conclude that every instance in s′ satisfies the multiplicities.

(⇐) State s is well-formed, and we know that s ∼obj−o s′ and s ∼link−o s′ hold,
and by AxStt3 the structures of s and s′ are the same. State s′ is well-formed,
and every instance satisfies the multiplicities without any link to o (which does
not exist in s′), in particular instances of a class which is associated to a class
that o was instance of in s. Those instances (without considering any link to o)
have the same links in s, since s ∼link−o s′ holds, yielding that in s they satisfy
the multiplicities even without o’s help. �
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Proposition When creating a link between two instances through an associ-
ation in a well-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that the number of objects linked through the
association to both objects is strictly less than the maximum of its opposite
multiplicity. In symbols:

isWellFormed(s) ∧ s′ = link(o1, o2, a, s)⇒
(((∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

(|{o : Object | areLinked(o1, o, a, s)}| < max(m2)∧
|{o : Object | areLinked(o, o2, a, s)}| < max(m1)))

⇔ isWellFormed(s′))

Proof.
(⇒) State s is well-formed, and we know that s ∼obj s′ and s ∼link+(o1,o2,a) s

′

hold, and by AxStt3 the structures of s and s′ are the same. This means that
only a link between o1 and o2 through a differ from s′ to s. Thus, without con-
sidering these objects, every object in s′ satisfies the multiplicities because they
did so in s. By hypothesis, object o1 preserved in s′ all of its links through any
other association than a, meaning that it satisfies all their multiplicities in s′

too. Object o1 was not linked in s through a to o2 and it was linked to a number
of objects that is strictly less than the maximum of its opposite multiplicity. In
s′, o1 preserves its links and is also linked to o2 through a. This implies that
o1 is linked in s′ to a number of objects that is less or equal to the maximum
of its opposite multiplicity, concluding that o1 satisfies all multiplicities. Anal-
ogously, o2 satisfies all the multiplicities in s′. Now every object in s′ satisfies
the multiplicities, concluding that s′ is well-formed.

(⇐) State s is well-formed, and we know that s ∼obj s′ and s ∼link+(o1,o2,a) s
′

hold, and by AxStt3 the structures of s and s′ are the same. Since s′ is well-
formed every object satisfies the multiplicities, particularly o1 and o2 through
a. This means that o1 in s′ is linked through a at most to a number of objects
that equals the maximum of its opposite multiplicity (the link to o2 is included).
But since in s the link to o2 is not present and all the rest is preserved, that
number in s is strictly less than the maximum of the opposite multiplicity. The
same result is also valid for o2 in a similar way. �

Proposition When removing a link between two instances through an associ-
ation in a well-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that the number of objects linked through the
association to both objects is strictly greater than the minimum of its opposite
multiplicity. In symbols:

isWellFormed(s) ∧ s′ = unlink(o1, o2, a, s)⇒
(((∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

(|{o : Object | areLinked(o1, o, a, s)}| > min(m2)∧
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|{o : Object | areLinked(o, o2, a, s)}| > min(m1)))
⇔ isWellFormed(s′))

Proof.
(⇒) State s is well-formed, and we know that s ∼obj s′ and s ∼link−(o1,o2,a) s

′

hold, and by AxStt3 the structures of s and s′ are the same. This means that
only a link between o1 and o2 through a differ from s′ to s. Thus, without
considering these objects, every object in s′ satisfies the multiplicities because
they did so in s. By hypothesis, object o1 preserved in s′ all of its links through
any other association than a, meaning that it satisfies all their multiplicities in
s′ too. Object o1 was linked in s through a to a number of objects (including
o2) that is strictly greater than the minimum of its opposite multiplicity. In
s′, o1 preserves its links except that to o2 through a. This implies that o1 is
linked in s′ to a number of objects that is greater or equal to the minimum of
its opposite multiplicity, concluding that o1 satisfies all multiplicities. Analo-
gously, o2 satisfies all the multiplicities in s′. Now every object in s′ satisfies
the multiplicities, concluding that s′ is well-formed.

(⇐) State s is well-formed, and we know that s ∼obj s′ and s ∼link−(o1,o2,a) s
′

hold, and by AxStt3 the structures of s and s′ are the same. Since s′ is well-
formed every object satisfies the multiplicities, particularly o1 and o2 through a.
This means that o1 in s′ is linked through a to at least a number of objects that
equals the minimum of its opposite multiplicity (the link to o2 is not included).
But since in s the link to o2 is present and all the rest is preserved, that number
in s is strictly greater than the minimum of the opposite multiplicity. The same
result is also valid for o2 in a similar way. �

Proposition When updating the value of an attribute of an instance in a well-
formed state, the resulting state is well-formed. In symbols:

isWellFormed(s) ∧ s′ = set(o, a, v, s)⇒
isWellFormed(s′)

Proof.
We know that s ∼obj s′ and s ∼link s

′ hold, and by AxStt3 the structures of
s and s′ are the same. This means that objects and links are preserved in s′.
Since they satisfy all multiplicities in s, they also do in s′. This concludes that
s′ is well-formed. �

B.3 Modification of Ill-formed States

Proposition When creating an instance in an ill-formed state, the resulting
state is ill-formed. In symbols:
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¬isWellFormed(s) ∧ s′ = create(o, c, s)⇒
¬isWellFormed(s′)

Proof.
We know that s ∼obj+o s′ and s ∼link s

′ hold, and by AxStt3 the structures of
s and s′ are the same. State s is ill-formed, so there exists an object o′ that
does not satisfy its multiplicities at least with respect to an association a. This
object exist in s′ (by s ∼obj+o s′) and its links are preserved (by s ∼link s′), in
particular those through a. This means that object o′ does not satisfy at least
its opposite multiplicity through a in s′, concluding that s′ is ill-formed. �

Proposition When destroying an instance in an ill-formed state, it is a nec-
essary and sufficient condition for the resulting state to be well-formed that
(i) every object of the state (except the one to be removed) satisfies the mul-
tiplicities constraints (i.e. the object to be removed is the only cause for the
ill-formedness of the state) and (ii) every object linked to it through any asso-
ciation are unaffected by losing a link (i.e. after being unlinked from the object
to be destroyed they still satisfy the multiplicities). In symbols:

¬isWellFormed(s) ∧ s′ = destroy(o, s)⇒
((isWellFormed(s)|o∧
(((∃a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(¬inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m′)))∨
((∃a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c′, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s)))

(¬inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m))))∧
((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c, s);
∀m : Multiplicity |multiplicities(a,m,m′, structure(s));
∀o′ : Object | isInstanceOf(o′, c′, s))

(|{o′′ : Object | (o′′ 6= o) ∧ areLinked(o′′, o′, a, s)}| ≥ min(m))∧
((∀a : Association | associates(a, c, c′, structure(s))∧

isInstanceOf(o, c′, s);
∀m : Multiplicities |multiplicities(a,m′,m, structure(s));
∀o′ : Object | isInstanceOf(o′, c, s))

(|{o′′ : Object | (o′′ 6= o) ∧ areLinked(o′, o′′, a, s)}| ≥ min(m′))))
⇔ isWellFormed(s′))

Proof.
(⇒) We know that s ∼obj−o s′ and s ∼link−o s

′ hold, and by AxStt3 the struc-
tures of s and s′ are the same. State s is ill-formed, but o is the only object that
violates its opposite multiplicities. Since object o does not exist in s′, in that
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state every object satisfies the multiplicities. But in s′ every object linked to o
in s lost their links to that object, so we need to make sure that they still satisfy
the multiplicities in s′. In fact, that actually happens because by hypothesis
they already did so in s even without taking into account the links to o. This
concludes that s′ is well-formed.

(⇐) We know that s ∼obj−o s′ and s ∼link−o s
′ hold, and by AxStt3 the struc-

tures of s and s′ are the same. State s′ is well-formed, so every object in s′

satisfies the multiplicities. Respect to that set of objects, there is in s another
object (object o), which must be responsible for the ill-formedness of state s,
and thus it violates at least one multiplicity. If we do not take o into account
in s, this state would be well-formed. In addition, there must have been some
links in s that do not exit in s′. Those links (if present) involved o and some
other objects. For these objects (objects linked to o in s) the multiplicities are
satisfied in s′ because s′ is well-formed, so the number of links to other objects
is included in their opposite multiplicities; in particular, their number is greater
or equal to the opposite multiplicity. Despite that number is increased in s due
to the existence of links to object o, if we do not consider these links to o the
number stays unchanged, thus they are linked in s, excluding o, to at least a
number of objects equal to the minimum of the opposite multiplicity. �

Proposition When creating a link between two instances through an associ-
ation in an ill-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that every object of the state (except for at
least one of those involved in the primitive) satisfies the multiplicities, and at
least one of them needs one link through the association to satisfy the multi-
plicities. In symbols:

¬isWellFormed(s) ∧ s′ = link(o1, o2, a, s)⇒
((isWellFormed(s)|a∧
((∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

((∀o : Object | (o 6= o1) ∧ isInstanceOf(o, c1, s))
(inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m2))∧

(∀o : Object | (o 6= o2) ∧ isInstanceOf(o, c2, s))
(inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m1))))∧

(max(m2) > |{o : Object | areLinked(o, o2, a, s)}| ≥ min(m2)− 1∨
max(m1) > |{o : Object | areLinked(o1, o, a, s)}| ≥ min(m1)− 1))
⇔ isWellFormed(s′))

Proof.
(⇒) We know that s ∼obj s′ and s ∼link+(o1,o2,a) s

′ hold, and by AxStt3 the
structures of s and s′ are the same. State s is ill-formed, but we know that
except for objects o1 and o2 all other object satisfies the multiplicities in s.
Moreover, we know that they are not linked in s through a and at least one of
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them is one link below the minimum (causing s to be ill-formed), but both are
strictly below the maximum. In s′ all objects are preserved, and so happens to
the links but adding one between o1 and o2 through a. This means that for all
objects but for them through a the multiplicities are satisfied in s′. In s′, o1

and o2 are linked through a, thus the count of objects linked to them through a
is increased by one. This proves that for both in s′ the count is greater than or
equal to the minimum, and is less than or equal to the maximum, concluding
that they satisfy the multiplicities in s′ too. This shows that s′ is well-formed.

(⇐) We know that s ∼obj s′ and s ∼link+(o1,o2,a) s
′ hold, and by AxStt3 the

structures of s and s′ are the same. State s′ is well-formed, so every object
satisfies the multiplicities in s′, particularly o1 and o2 through a. Since s and
s′ have the same objects, and the only link changed is through a, we can say
that excluding objects that are instances of classes participating in association
a, all the rest satisfy the multiplicities. Moreover, objects that are instances of
classes associated by a that are not o1 or o2 are unaffected in the step from s to
s′, so if they satisfy the multiplicities in s′ they also do in s. Finally, objects o1

and o2 satisfy the multiplicities in s′ with the link between them included, so
preserving in s all their links but the one that connect them, both are strictly
below the maximum and either of them are at most one below the minimum. �

Proposition When removing a link between two instances through an asso-
ciation in an ill-formed state, it is a necessary and sufficient condition for the
resulting state to be well-formed that every object of the state (except for at
least one of those involved in the primitive) satisfies the multiplicities, and at
least one of them exceeds by one the maximum of the multiplicity with respect
to the association. In symbols:

¬isWellFormed(s) ∧ s′ = unlink(o1, o2, a, s)⇒
((isWellFormed(s)|a∧
((∀c1, c2 : Class | associates(a, c1, c2, structure(s));
∀m1,m2 : Multiplicity |multiplicities(a,m1,m2, structure(s)))

((∀o : Object | (o 6= o1) ∧ isInstanceOf(o, c1, s))
(inRange(|{o′ : Object | areLinked(o, o′, a, s)}|,m2))∧

(∀o : Object | (o 6= o2) ∧ isInstanceOf(o, c2, s))
(inRange(|{o′ : Object | areLinked(o′, o, a, s)}|,m1))))∧

(min(m2) < |{o : Object | areLinked(o, o2, a, s)}| ≤ max(m2) + 1∨
min(m1) < |{o : Object | areLinked(o1, o, a, s)}| ≤ max(m1) + 1))
⇔ isWellFormed(s′))

Proof.
(⇒) We know that s ∼obj s′ and s ∼link−(o1,o2,a) s

′ hold, and by AxStt3 the
structures of s and s′ are the same. State s is ill-formed, but we know that
except for objects o1 and o2 all other object satisfies the multiplicities in s.
Moreover, we know that they are linked in s through a and at least one of them



110 Appendix B. Properties on Well-formedness

is one link over the maximum (causing s to be ill-formed), but both are strictly
over the minimum. In s′ all objects are preserved, and so happens to the links
but removing one between o1 and o2 through a. This means that for all objects
but for them through a the multiplicities are satisfied in s′. In s′, o1 and o2

are not linked through a, thus the count of objects linked to them through a is
decreased by one. This proves that for both in s′ the count is less than or equal
to the maximum, and is greater than or equal to the minimum, concluding that
they satisfy the multiplicities in s′ too. This shows that s′ is well-formed.

(⇐) We know that s ∼obj s′ and s ∼link−(o1,o2,a) s
′ hold, and by AxStt3 the

structures of s and s′ are the same. State s′ is well-formed, so every object
satisfies the multiplicities in s′, particularly o1 and o2 through a. Since s and
s′ have the same objects, and the only link changed is through a, we can say
that excluding objects that are instances of classes participating in association
a, all the rest satisfy the multiplicities. Moreover, objects that are instances of
classes associated by a that are not o1 or o2 are unaffected in the step from s to
s′, so if they satisfy the multiplicities in s′ they also do in s. Finally, objects o1

and o2 satisfy the multiplicities in s′ without the link between them included,
so preserving in s all their links including the one that connect them, both are
strictly over the minimum and either of them are at most one over the maxi-
mum. �

Proposition When updating the value of an attribute of an instance in an
ill-formed state, the resulting state is ill-formed. In symbols:

¬isWellFormed(s) ∧ s′ = set(o, a, v, s)⇒
¬isWellFormed(s′)

Proof.
We know that s ∼obj s′ and s ∼link s

′ hold, and by AxStt3 the structures of
s and s′ are the same. State s is ill-formed, so there exists an object o′ that
does not satisfy its multiplicities at least with respect an association as. This
object exist in s′ (by s ∼obj+ s′) and its links are preserved (by s ∼link s

′), in
particular those through as. This means that object o′ does not satisfy at least
its opposite multiplicity through as in s′, concluding that s′ is ill-formed. �
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[BCST00] G. Betarte, C. Cornes, N. Szasz, and A. Tasistro. Specification of a
Smart Card Operating System. In T. Coquand, P. Dybjer, B. Nord-
ström, and J. M. Smith, editors, Types for Proofs and Programs,
International Workshop TYPES’99, Lökeberg, Sweden, June 12-16,
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Lyon, 1997.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Objrct-Oriented Modeling and Design. Prentice Hall, Englewood
Cliffs (NJ), 1991.

[Ric01] M. Richters. The USE tool: a UML-based specification envi-
ronment. Internet: http://www.db.informatik.uni-bremen.de/
projects/USE/, 2001.

[Ric02] M. Richters. A Precise Approach to Validating UML Models and
Constraints. Number 14 in BISS Monographs. Logos Verlag, Berlin,
2002.

[RJB98] J. Rumbaugh, I. Jaconson, and G. Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1998.

[SoS03] Security of Systems Group. SoS Project. Nijmeegs Instituut
voor Informatica en Informatiekunde, Internet: http://www.cs.
kun.nl/ita/research/projects/loop/, 2003.

[vdBJ01] J. van den Berg and B. Jacobs. The LOOP compiler for Java and
JML. In T. Margaria and W. Yi, editors, Tools and Algorithms
for the Construction and Analysis of Software (TACAS), number
2031 in Springer Lecture Notes on Computer Science, pages 299–
312. Springer-Verlag, 2001.



Bibliography 115

[Vig03] A. Vignaga. An OCL-based Semantics of System State Modification
Primitives. Technical Report 03-18, InCo-Pedeciba, Montevideo,
Uruguay, 2003.
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