Enhancing web application attack detection using
machine learning

Rodrigo Martinez
Instituto de Computacién, Facultad de Ingenieria
Universidad de la Republica, Uruguay
Email: rodmart@fing.edu.uy

Abstract—The exploit of vulnerabilities present in Web appli-
cations has been the main attack vector in the last decade biggest
data breaches. In this work we put forward a framework to
leverage the performance of Web Application Firewalls (WAFs)
using machine learning techniques. We propose the use of two
types of machine learning models: a multi-class approach for the
scenario when valid and attack data is available and alternatively
a one-class model when only valid data is at hand. The use of
both models to predict potential malicious traffic has shown to
outperform MODSECURITY, a widely deployed WAF technology,
configured with the OWASP Core Rule Set out of the box. We
also present a prototype that integrates the one-class model with
MODSECURITY.

Index Terms—Web Application Firewall; Web Application
Security; Machine Learning; Pattern Recognition.

I. INTRODUCTION

The ever increasing advance in communications and global-
ization forces organization to take fast decisions, in particular
in the way they make available new services through the
Internet. Due to the potential of web applications in supporting
this new business rush the use of web technologies has spread
significantly, usually inadvertently making also available paths
to access critical or sensible data.

In the recent years several data breaches have seriously
affected many companies inflicting not only an economic loss
but also causing damages to their image and reputation. Some
examples of the most popular cases are the Equifax and Adult
Friend Finder data breaches. In both cases the attack vector
essentially consisted in the exploitation of web applications
vulnerabilities. According to Verizon [1] this was the case in
almost 20% of the last 10 years most significant data breaches.
Within this category, the use of stolen credentials is the first
vector of attack followed by SQL Injection.

New regulations about privacy and personal information
force organizations to improve data protection. Following
an in-depth security approach to protect web applications,
several layers of security activities and controls need to be
implemented in order to mitigate this type of threats. One
tool that is typically used as a first line of defense for web
applications is the Web Application Firewall (WAF). A WAF is
a piece of software that intercepts and inspects all the traffic
between users and web servers, searching for attacks inside the
HTTP packet contents. Once recognized, the suspicious packets
may be processed in a different, secure way, for instance being
logged, suppressed or derived for processing.

An implementation of an open source WAF that has become
a de facto standard is MODSECURITY [2], which allows the
analysis of the users requests and the application responses by
enabling real-time web application monitoring, logging and
access control. The actions MODSECURITY undertakes are
driven by rules that specify, by means of regular expressions,
the contents of the HTTP packets to be spotted.

MODSECURITY offers a default set of rules, known as
the OWASP Core Rule Set (OWASP CRS) [3], for handling
the most usual vulnerabilities included in [4]. However, an
approach only based on rules also has some drawbacks: rules
are static and rigid by nature, so the OWASP CRS usually
produces a rather high rate of false positives, which in some
cases may be close to 40% [5]. As the intended use of
MODSECURITY is to block attacks, such a high false positive
rate would potentially lead to a denial of service of the
application (1 of 3 valid requests gets blocked), so rule tuning
is required. Rule tuning is a time consuming and error prone
task that has to be manually carried out for each specific
web application. In traditional network firewalls and IDS, the
approach based on rules has been successfully complemented
with machine learning-based and anomaly detection tools and
other statistical approaches which provide higher levels of
flexibility and adaptability. Those approaches take advantage
of sample data, from which the normal behavior of the web
application can be learned in order to spot suspicious situations
which fall out of this nominal use (anomalies), and which
could correspond to on-going attacks. A primary objective of
our work is to improve MODSECURITY with such techniques.

The structure of the rest of the paper is as follows: Section II
provides a primer on web application security and protection.
In Section III we present the learning framework we have con-
ceived and developed to integrate machine learning techniques
to MODSECURITY. Further and current work is described
and discussed in Section IV. Conclusions are presented in
Section V.

II. WEB APPLICATION SECURITY

OWASP [6] is a worldwide not-for-profit organization fo-
cused on improving software security. One of the OWASP
flagship projects is the Top 10 most critical risk in web
application security [4]. Since its first publication in 2007,
Injection has been in the top 3 positions. Injection occurs
when data sent by the user to the application is used as part



of an instruction that an interpreter executes in the backend
producing unexpected (by the designer of the application)
results. There are different types of injections depending on
the interpreter being exploited: SQL, LDAP, XPath, NoSQL
queries, OS commands, XML parsers, SMTP headers, among
others. A SQL injection takes place when an attacker sends
SQL code as input to the application and it results in the
execution of a SQL sentence that behaves as not expected by
the developer.

Even if the research and industrial communities have iden-
tified injection as a critical issue already 15 years ago, appli-
cations still suffer from this type of vulnerability. Thus, input
validation is critical for software security. One such validation
consist of verifying and filtering all data that flow to the system
before they are effectively used. These procedures usually
are not introduced at the design stage of applications leaving
then unattended vulnerabilities that might be critical, specially
to web applications. When data is processed without proper
validation an attacker could lead the system to unpredictable
states and exploit this for his own benefit. This data may
also produce unexpected results that could be analyzed by
the attacker to infer further information to proceed with his
activity.

The research we present in this work is focused on WAF,
which are the specific tools that are currently being widely
deployed to prevent web application attacks. In contrast to
traditional network firewalls and Intrusion Prevention System
(IPS), WAFs are designed to perform packet inspection at
the HTTP layer analyzing the request/response flow through
the communication channel to identify attacks that exploit
vulnerabilities proper of web applications.

A WAF usually supports different security model configura-
tions: normally it makes it possible to enforce both positive
and negative security models. A positive security model only
allows to pass known good traffic, all other traffic is blocked.
A negative one allows to pass all traffic except what is known
to be malicious. MODSECURITY is a de facto standard open
source technology. Large organizations like Verizon [7] are
currently using this technology to protect large amount of
applications. It is open source, flexible and extensible. It has
two working modes: detection and prevention. In the first
mode, logs are generated for every potential attack detected.
Normally this mode is used when adding new rules and
monitoring for false positives. The second mode is when
the WAF is really useful: by correctly configuring rules it is
capable of blocking potential malicious Web traffic to and
from applications. The core of MODSECURITY implements
a flexible rule engine [8]. These rules can be applied in every
application request/response.

To detect and prevent the exploitation of well-known and
common vulnerabilites OWASP has defined a generic rule set
that is known as the OWASP Core Rule Set [3] (OWASP CRS).
The OWASP CRS is widely deployed in large organizations as
Akamai, Azure, CloudFare, Fastly and Verizon. The goal of
the OWASP CRS is to provide a set of generic attack detection
rules that when fed to MODSECURITY provide a base level

of protection for any web application. The OWASP CRS imple-
ments a negative model, where the rules are designed to detect
known attacks patterns.

The last Gartner’s Magic Quadrant for Web Application
Firewalls [9], reviews and ranks several proprietary WAF,
among others Akamai, F5 and Imperva. In that report it is
remarked the rare and still unproven use of machine learning
techniques to leverage the detection capabilities of those
technologies.

III. LEVERAGING MODSECURITY AND THE OWASP CRS
WITH MACHINE LEARNING TECHNIQUES

When fed with the rules of the OWASP CRS the WAF
MODSECURITY implements a negative model: the rules are
designed to identify attacks. This approach has two major
disadvantages: i) the application of a static and generic set
of rules usually generates a high amount of False Positives,
and ii) only the known attacks characterized by the rules are
the ones detected. One of the main objectives of our research
is to enhance with machine supported learned knowledge this
rule-based decision process. For doing that we have conceived
a framework whose architecture is depicted in Figure 1. The
main idea is to combine the flexibility provided by classi-
fication procedures obtained from the definition of machine
learning models with the hard-coded knowledge embedded
in the specification of the rules. One important challenge is
to be able to provide the possibility to integrate user defined
learning models with the rule decision engine of MODSECU-
RITY. Thus, the framework embodies a model development
environment and a classifier module called the Web Attack
Classification Engine (WACE).

The core of the model development environment is a set of
tools that implement several machine learning algorithms, pre-
processing and training tasks. In order to maximize the expert’s
knowledge the framework allows the expert to work using
his preferred tool and then exporting the resulting model into
PMML [10]. PMML is an XML-style language that has been
conceived and designed to describe trained models. The model
described in PMML is then fed to WACE in order to classify
new requests. The tool provides support for carrying out a
statistical pattern recognition approach, like the one presented
in [11], where the experts design the models based on two
steps: first a model is trained using testing data and then new
instances are processed with the help of the trained model.

The module WACE, on the other side, embodies two major
components: 1) an API that encapsulates all the interactions
of this module with MODSECURITY. It provides a set of
services to be used by the client, namely information available
of the models, classification of a HTTP requests/response and
module configuration, and ii) a model evaluator, which is a
component that allows to load and process different machine
learning models described using PMML. It is composed of the
PMML processor and the evaluator it self. The PMML processor
allows to import an already trained model described in the
PMML language. After the model is loaded, the evaluator
can extract the features, pre-process and classify an HTTP



OPerl ¢ WAF 1
2 @%¥ >
pgthon zﬁ MATLAB Java Model
il i Evaluator API ~_] WAF ..
Spark > \
Model Development PMML/ Web Attack WAE n
Enviroment XML Classifier Engine

Figure 1. Framework for machine learning leveraged attack detection: high level architecture

requests/response using the defined model. The evaluator will
provide the implementation of common machine learning
algorithms and it will allow to be extended with custom
implementations.

A. Machine Learning Models

In order to validate the chosen approach, the first step was
to define and train different models in order to understand
the impact that machine learning could have when classifying
web applications attacks. We have followed two different
approaches: a multi-class approach for the scenario when valid
and attack data is available and a one-class solution when only
valid data is at hand.

The multi-class approach is an extension of the work
presented by Gallagher et al [12]. They analyzed the results
of the ECML/PKDD2007 challenge [13] and introduced a
supervised multi-class classification of web attacks by ap-
plying classic information retrieval techniques. They process
the dataset as a corpus of documents and extract features
by splitting the request into tokens and then train a vector
space model. In our work, we add a pre-processing phase
using the knowledge of the HTTP structure to improve the
feature extraction. And we train using different classifiers,
we include K-nearest neighbours [14](K-NN) as its simplicity
allows to categorize the complexity of the learning problem
and the Random Forest [15] as it could be seen as a rule
set generator (comparable to the OWASP CRS) and it has been
reported to produce good results in problems related to fraud
detection [16]. The main conclusion of our experiments is that
we agree with Gallagher’s et al regarding the precision of the
approach. However, we have studied this approach in depth,
by training the model using generic requests and then test it
on each application dataset, and conclude that the classifiers
obtained in this way do not generalize. This means that a
model that has been trained for one application can not be
used to protect a different one.

In scenarios where we only have requests that belong to
one of the classes, valid or attack, we have investigated a one-
class classification approach [17] where there are available
instances of one class and none or very few samples of the
other one. In [18] we present the one-class approach when
only valid requests are available. In this approach we process
the requests by counting the amount of times that a specific
feature appears. The features that better characterize different

web application attacks were defined making use of a security
expert’s knowledge. Then we measure the distance of the
requests to the clusters defined during the learning phase. One
major feature of this approach is the threshold that allows
to change the classification tolerance. Each possible value of
this threshold is a model operational point, allowing the expert
to change the attack detection or false positive rate by only
changing this value. We present several operational points in
which the one-class approach outperforms MODSECURITY
configured with the OWASP CRS. We also present one way
of integrating this approach with the OWASP CRS.

B. Prototyping the Web Attack Classification Engine

We have developed a proof of concept of the WACE dis-
cussed above. It has been implemented using the LUA ex-
tensions provided by MODSECURITY. The machine learning
model evaluator is implemented in Java.

The prototype allows us to test the whole process: from
adding a rule in MODSECURITY to invoke the LUA ML
module, which in turns invoke the Java one-class evaluator, to
getting the result back to MODSECURITY in order to take an
action. The prototype implementation and the Java one-class
evaluator are available at [19].

IV. WORK IN PROGRESS

This section discusses current and further work.

Machine Learning Models: Concerning the one-class
approach model we shall study the automatic selection of the
optimal operational point using either sampled or synthetic
attacks. We plan to experiment with one-class algorithms like
SVM, instead of using classic distances, and to study the
special scenario where we only would have available attacks
requests for training.

We also plan to continue working on the construction of
new datasets in order to produce new examples of attacks and
valid application traffic that represents nowadays applications.
We intend to use these new datasets to train specialized models
for an specific kind of application. For instance, we want
to experiment with the generation of a specialized learning
model that captures the behavior of Magento, a widely used
e-commerce application.

Design and Implementation of the Web Application Clas-
sifier Engine: As an of improvement of the prototype we
described in Section III we are currently working on the design



and full implementation of WACE as a library package. This
library could be used by different WAF or any other application
that needs to classify HTTP requests. To improve the prototype
described in Section III, we are currently working on the
design and full implementation of WACE as a library package.
This library could be used by different WAF or any other
application that needs to classify HTTP requests.

Integration with MODSECURITY: The implemented pro-
totype uses the LUA bindings provided by MODSECURITY to
call the evaluator. The integration experiment showed to work
alright, however the exchange of information (the requests
and the scores) between the evaluator and MODSECURITY is
not transparent enough. In order to integrate the ML Module
with MODSECURITY we plan to extend the MODSECURITY
language with a new rule directive specifically design to call
the WACE APL

Integration with OWASP CRS: In [18] we have proposed a
concrete integration mechanism where the scores produced by
both the rules and machine learning models were combined
in a fixed voting manner. When both agree (both say valid
or both say attack) then the result is straightforward. In the
case the one-class approach classifies a request as an attack,
given that the OWASP CRS have the know-how on attacks, we
prioritize its answer (so if OWASP CRS classifies the request
as valid then is valid). The OWASP CRS when configured to
block attacks, has two working modes: traditional and anomaly
scoring. In the anomaly scoring mode, all rules get evaluated,
and each matching rule will add to a global score depending
on the rule severity. After all rules gets evaluated, the final
score is compared with a defined threshold and takes the
action depending on the result, if the score is higher than the
threshold, the request is rejected. In this line of work, we plan
to study the case where we use the machine learning results
in order to adjust the value of the threshold per requests when
the OWASP CRS is configured in anomaly scoring mode. This
will allow the WAF to be more strict o tolerant with the scores
of the rules, depending on the machine learning model result.

V. FINAL CONSIDERATIONS

In the last decade web applications have been used as
the major attack vector in the most critical data breaches.
New data privacy regulations, high fines and image reputation
have became relevant for organizations which are forced to
take measures in order to mitigate web applications risks.
Nowadays, the first line of defense that an organization has
to protect the web applications it exposes to the Internet is the
use of Web Application Firewalls. According to Gartner [9],
”by 2020, more than 50% of public-facing web applications
will be protected by cloud-based WAF service platforms”. One
of the major challenges to face when deploying a WAF is to
keep the rules correctly tuned while Web Applications evolve
and new attacks are employed. In this work we have presented
a framework that allows to use machine learning models in
order to improve WAF capabilities.

We have designed, trained and tested two machine learning
models: one for the rare, but best case, where we have a labeled

dataset with real application traffic and a more practical case
where we have only valid requests. Both models outperform
the detection capabilities of MODSECURITY configured with
the OWASP CRS out of the box.

We have also implemented a prototype to integrate the one-
class model with MODSECURITY. This allows to validate the
whole process, from the generation of the machine learning
model to real-time web application attack detection using a
widely deployed tool.

In the short term we plan to focus our work in the design
and implementation of the web attack classification engine, as
it will facilitate both the research of new machine learning
models and the testing of different integration mechanisms
with the OWASP CRS.

REFERENCES

[1] Verizon, “2018 data breach investigations report 11th edition research
report,” Verizon, Tech. Rep., 2018.

[2] 1. Trustwave Holdings, “Modsecurity: Open source web application
firewall.” [Online]. Available: http://www.modsecurity.org/

[3] OWASP. Owasp modsecurity core rule set project. [Online]. Available:
https://www.owasp.org/index.php/

. Owasp top ten project. [Online]. Available: https://www.owasp.
org/index.php/Category: OWASP_Top_Ten_Project

[5] C. Folini. (2016) Handling false positives with the owasp modsecurity
core rule set. [Online]. Available: https://www.netnea.com/cms/
apache-tutorial-8_handling-false- positives-modsecurity-core-rule-set/

[6] OWASP, “Open web application security project.” [Online]. Available:
https://www.owasp.org

[4]

[7] Verizon. Podcast: Advantages of web appli-
cation firewalls and open-source waf. [On-
line]. Available: https://www.verizondigitalmedia.com/blog/2017/11/

advantages-of-web-application- firewalls-and-open-source- waf/

[8] SpiderLabs/ModSecurity, “Reference manual.” [Online]. Available:
https://github.com/spiderlabs/modsecurity/wiki/reference-manual

[91 M. Quadrant, “Magic quadrant for web application firewalls,” Analyst
(s), p. G00314552, 2017.

[10] R. Pechter, “What’s pmml and what’s new in pmml 4.0?” Acm Sigkdd
Explorations Newsletter, vol. 11, no. 1, pp. 19-25, 2009.

[11] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition:
a review,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 1, pp. 4-37, Jan 2000.

[12] B. Gallagher and T. Eliassi-Rad, “Classification of http attacks: a
study on the ecml/pkdd 2007 discovery challenge,” Lawrence Livermore
National Laboratory (LLNL), Livermore, CA, Tech. Rep., July 2009.

[13] “Analyzing web traffic: Ecml/pkdd 2007 discovery challenge,” http://
www.lirmm.fr/pkdd2007-challenge/.

[14] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37-66, 1991.

[15] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

[16] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, no. 3, pp. 602-613, 2011.

[17] S. S. Khan and M. G. Madden, “A survey of recent trends in one
class classification,” in Irish conference on Artificial Intelligence and
Cognitive Science. Springer, 2009, pp. 188-197.

[18] G. Betarte, E. Giménez, R. Martinez, and A. Pardo, “Machine
learning-assisted virtual patching of web applications,” arXiv preprint
arXiv:1803.05529, 2018.

[19] Modsecurity and machine learning module.
https://gitlab.fing.edu.uy/gsi/modsec-ml

[Online]. Available:



