Web Application Attacks Detection Using
Deep Learning *

Nicolds Montes, Gustavo Betarte!, Rodrigo Martinez', and Alvaro Pardo?

! Instituto de Computacién, Facultad de Ingenierfa
Universidad de la Republica, Uruguay
2 Departamento de Ingenierfa, Facultad de Ingenierfa y Tecnologfas
Universidad Catdlica del Uruguay, Uruguay

Abstract. This work investigates the use of deep learning techniques
to improve the performance of web application firewalls (WAFS), sys-
tems that are used to detect and prevent attacks to web applications.
Typically, a WAF inspects the HTTP requests that are exchanged between
client and server to spot attacks and block potential threats. We model
the problem as a one-class supervised case and build a feature extractor
using deep learning techniques. We treat the HTTP requests as text and
train a deep language model with a transformer encoder architecture
which is a self-attention based neural network. The use of pre-trained
language models has yielded significant improvements on a diverse set of
NLP tasks because they are capable of doing transfer learning. We use
the pre-trained model as a feature extractor to map a HTTP request into a
feature vector. These vectors are then used to train a one-class classifier.
We also use a performance metric to automatically define an operational
point for the one-class model. The experimental results show that the
proposed approach outperforms the ones of the classic rule-based MoD-
SECURITY configured with a vanilla OWASP CRS and does not require the
participation of a security expert to define the features.

Keywords: Web Application Firewall, Anomaly Detection, Deep Learning

1 Introduction

It has become a regular security practice to deploy a Web Application Firewall
(WAF) [9] to identify attacks that exploit vulnerabilities of web applications. A
WAF is a piece of software that intercepts and inspects all the traffic between the
web server and its clients, searching for attacks inside the HTTP packet contents.
An implementation of an open source WAF that has become a de facto standard
is MODSECURITY [24]. The actions this WAF undertakes are driven by rules that
specify, by means of regular expressions, the contents of the HTTP packets to

* This research was partially supported by a grant given to Nicolds Montes from ANII
(http://anii.org.uy) and was done in the context of projects FMV_1_2017-136337
(Fondo Marfa Vinas, ANII) and WAFINTL from ICT4V center (http://ictdv.org).

2 Nicolds Montes, Gustavo Betarte, Rodrigo Martinez, and Alvaro Pardo

be analyzed and eventually flagged as potential attacks. MODSECURITY comes
equipped with a default set of rules, known as the owasp Core Rule Set (OWASP
CRS) [15], for handling the most usual vulnerabilities included in the OWASP Top
Ten [16]. However, this rule-based approach has some drawbacks: rules are static
and rigid by nature, so the OWASP CRS usually produces a rather high rate of false
positives, which in some cases may be close to 40% [8] that would potentially lead
to a denial of service of the application. The systematic review presented in [22]
analyzes the available scientific literature focused on detecting web attacks using
machine learning techniques. In [4,3,13] we have presented solutions where the
rule-based detection approach of MODSECURITY is complemented with machine
learning-based models to mitigate the rule-based approach’s drawbacks.

In this work we present an approach that makes use of deep learning tech-
niques to improve the performance of MODSECURITY. It consists of a two step
learning framework: first we build a feature extractor using deep learning tech-
niques; then we train a one-class supervised model. We treat the HTTP requests
as raw text and pre-train a deep language model with the architecture proposed
n [12]. These models can operate in huge amounts of text and are called self-
supervised because the optimization of the network does not require labels (we
will explain this in Section 3).

The structure of the rest of the paper is as follows: Section 2 describes the
deep learning techniques and the related work. Section 3 presents the deep learn-
ing framework. The outcomes are described and discussed in Section 4. Further
work and conclusions are presented in Section 5.

2 Background and related work

NLP techniques have been greatly improved by the advancements of deep learn-
ing [12,6,19,17]. These models rely on a two-step approach. First, they learn deep
contextual word representation from raw text in a self-supervised way (stage re-
ferred as pre-training). Then, this pre-trained language model can be applied
to downstream NLP tasks by choosing between two learning strategies: feature-
based and fine-tuning.

Traditional NLP techniques represent words as atomic units and text is trans-
formed into a numeric vector using one-hot encoding. There are two main prob-
lems with this approach. First, there is no notion of similarity between words,
as they are represented as indices in a vocabulary [14]. Additionally, the size of
the vector is as large as the size of the vocabulary, |V |, making machine learning
methods prone to problems related with high dimensional feature spaces such
as the curse of dimensionality. With the progress of machine learning techniques
it has become possible to train more complex models. Probably one of the most
successful concept is to use distributed representations of words, also know as
word embedding. In this approach words are represented in a continuous vector
space with much lower dimension than |V|. Additionally, it has been shown that
words with semantic similarities tend to be nearby in the vector space [2]. In
the last decade, word embeddings have established themselves as a core element

Web Application Attacks Detection Using Deep Learning 3

of many NLP systems. However, as word embedding techniques are static they
miss a crucial element for fully capturing local contexts, that is, the semantic
and syntactic meaning of words. These methods actually learn to capture the
general (most common) context of words in their representations, but they are
not able to handle polysemy. Replacing static embeddings with deep contextu-
alized representations has yielded significant improvements on a diverse set of
NLP tasks. The idea is simple, a word is assigned a representation that is a func-
tion of the entire input sequence (the whole text sequence). The success of deep
contextualized word representations suggests that despite being trained with
only a language modelling goal, they learn highly transferable and task-agnostic
properties of the language [7].

In this work we propose the use of deep contextualized representation of HTTP
requests to extract feature vectors that then will be used to train a classifier to
detect attacks to web applications. In a first step we create a deep pre-trained
language model from scratch using a set of HTTP requests from the web applica-
tion that we aim to protect. In a second step, we use the feature-based strategy
to transform each HTTP request into a feature vector. That is, once we have
obtained the pre-trained model, we convert each HTTP request into a numeric
representation using the weights of the last layer of the network, also known
as feature extraction. With these representations as input we build a One-Class
Classification model (OCC).

Related work In [10] Kruegel and Vigna propose an anomaly detection approach
where they model specific characteristics of the URL parameters, such as pa-
rameter length and input order to generate a probabilistic grammar of each
parameter. In our one-class approach we work using the whole request, not only
the URL parameters, capturing the normal behavior by modeling the occurrence
of a specific set of tokens. This allows us to capture the behavior of the data sent
in the normal use of the application. In our approach we also deal with attacks
present in the body and header of the requests.

Several authors propose anomaly detection techniques that work over simpli-
fication of the application’s parameter values. In [5], numbers and alphanumeric
sequences are abstracted away, representing each category with a single symbol.
In [23] Torrano-Giménez et al present an anomaly detection technique that in-
stead of using the tokens themselves uses a simplification that only considers the
frequencies of three sets of symbols: characters, numbers and special symbol. In
our approach the whole request is analyzed without any further simplification.

The work presented in [28] uses word embeddings to represent the URLs.
This approach has three steps. First, an ensemble clustering model is applied
to separate anomalies from normal samples. Then they use word2vec to get
the semantic representations of anomalies. Finally, another multi-clustering ap-
proach clusters anomalies into specific types. In our model, static embeddings
(word2vec) are replaced with deep contextualized representations. We use these
representations to get the semantic representations of normal data and use it as
input to build the one-class model. In [27] Yu et al propose a method that uses
Bidirectional Long Short-Term Memory (Bi-LSTM) with an attention mecha-

4 Nicolds Montes, Gustavo Betarte, Rodrigo Martinez, and Alvaro Pardo

nism to model the HTTP traffic. This approach is supervised, as they train the
Bi-LSTM network to predict whether a request is anomalous or not.

In [18] Qin et al propose a model which learns the semantics of malicious
segments in payload using a Recurrent Neural Network (RNN) with an attention
mechanism. The payload is transformed into a hidden state sequence by a RNN
and then an attention mechanism is used to weight the hidden states as the
feature vector for further detection. Thus, they also can use the hidden state of
the network as features for a second classifier. The difference with the learning
technique that we propose is that they learn the weights of the RNN, the feature
extractor model, using normal and abnormal instances. In our case, we build a
self-supervised pre-trained model using only normal data.

The work [25] proposes a model that uses a stacked auto-encoder (SAE) and
a deep belief network as feature learning methods in which only normal data is
used in the learning phase. Subsequently, OCSVM, Isolation Forest and Elliptic
Envelope are used as classifiers. In this work features of the HT'TP are extracted
using n-grams and then deep learning models are applied to reduce the dimen-
sionality generated by the n-grams vectors. In our case we work directly with
the HTTP request and avoid building the n-grams which require large amounts
of data to correctly capture the statistics of each modelled field.

3 A two-step learning approach for anomaly detection

We propose a learning architecture composed of a two-step method to improve
web application anomaly detection models. In a first step, we create a deep pre-
trained language model using only normal HTTP requests to the web application.
In a second step, we use this model as a feature extractor and train a one-class
classifier. That is, each web application has its own model (both the pre-trained
language model and the one-class classifier). In the following sections we describe
the components of the proposed learning architecture depicted in Figure 1.

3.1 Pre-training a HTTP language model

We train a language model for the HTTP requests in a self-supervised way. We
use a Robustly Optimization Bidirectional Encoder Representations from Trans-
formers architecture (RoBERTa) [12]. Using this model each HTTP request is
transformed into a numeric vector that captures the contextual information of
each token present in the request. The architecture of the network used to build
the language model is a multi-layer bidirectional Transformer Encoder [26]. This
is an attention-based architecture for modeling sequential data which is an al-
ternative to recurrent neural networks (RNN) and is capable of capturing long
range dependencies in sequential data.

The proposed model (see top Figure 1), is composed of a stack of L identical
transformer encoder layers, as detailed at the bottom of Figure 1. Each encoder
layer contains two types of sub-layers. The first one is a multi-head self-attention
mechanism, which helps looking at other tokens in the sequence while encoding

Web Application Attacks Detection Using Deep Learning 5

Stepf: Self-supervised Step 2: One class [One Class SYM J
Classification . .
i
Request Target
Predict A =T, fom] [Normal Request Target
n = [s Prnna] | Normal > | n = mean(hy, ..., s,) | Normal
())) 3
B rm = mean(hm. hmn,) | Normal
Model: ﬂ
Transformer Encoder
Pre-trained
token_1] [(token_2 | (token_3 | [MASK] [token 5 (i A
Request Target H
11 = tokenyy...tokenyn, | Normal
Oataset: [——— | Request Target |
Im = tokenyy...tokenmn,, Normal | 1 = tokemy...tokeni,, | Normal |
Objective: Language Model Im = tokeny...token,,,. | Normal
4 4
.(Add & Normalize)

{ = 3
t (reedroward) ((_Feedforward)

2 [ENCODER]

OoT 1T
2 [ENCODER] 4 4

1 [ENCODER }—‘ -
1 2 3 4 ses 512 ' L) Y
L1 Y
C Self-Attention)
))

Fig. 1: Top: Proposed architecture. Left: transformer encoder used to extract
the contextual representation of each token token;; in the request r;. Right: each
request 7; is represented as the mean of token deep contextualized representation
hij and how they are used to train a one-class classifier. Bottom: Architecture
of the Transformer Encoder (Jay Alammar, 2018 [1])

a specific token. The second sub-layer is simply a feed-forward network (FFN),
which is applied to each position (token representation from previous layer)
separately and identically. Because our implementation is almost identical to the
original, for a detailed description of the model architecture, we refer readers to
[26,12]. We denote the number transformer encoder blocks as L (see top Figure
1), the hidden size as H (the output of the transformer encoder denoted as h
in Figure 1), and the number of self attention heads as A. Our model uses the
following set of parameters (L=12, H=768, A=12, Total Parameters = 125M).

Token encoding and model training. The input to the model composed
of L blocks of transformers is a tokenized version of the HTTP request. For that
we use a Byte-Pair Encoding (BPE)[21] tokenizer, a hybrid between character
and token-level representations. It relies on sub-word units which are extracted
by performing statistical analysis of a training corpus. We use the same tok-
enizer learned by [19]3, a clever implementation of BPE that uses bytes instead

3 We could have chosen another pre-trained BPE tokenizer instead of the one proposed
in [19]. The key point is to use a BPE tokenizer trained on huge corpus (40 GB
of text) because they can tokenize any word (and any character) of any language
without using the unknown token.

6 Nicolds Montes, Gustavo Betarte, Rodrigo Martinez, and Alvaro Pardo

of unicode characters as the basic sub-words units. This tokenizer has a sub-
word vocabulary of 50K units that can still encode any input string without
introducing any unknown tokens.

Given the model architecture the next step is to define the training strategy,
that is, the learning goal and the training mechanisms. In our case, in order to
learn the deep contextualized representation of tokens we apply a self-supervised
learning approach. We randomly masks some of the tokens from the input, and
then the goal is to predict the original masked token based only on its context. In
[6] they refer to this procedure as Masked Language Model (MLM). In contrast
to denoising auto-encoders, these models only predict the masked words rather
than reconstructing the entire input [6]. In an attempt to predict the masked
tokens, the model should be able to extract some information from the language,
not only structural information but some semantic information as well. This
information is encoded in the weights of the encoding layers.

3.2 Omne-Class Classification

The pre-trained model detailed in section 3.1 takes a request r; and tokenizes it
to obtain a representation r; = {token;y, ..., token;,, }, where n; is the number
of tokens in the request r; (the model has a maz length of 2048 tokens as inputs
to be processed). Then, generates as output a deep contextual representation
of each token. This deep representation is obtained using the weights of the
encoder’s last layer. In this way, each request r; is transformed into a numeric
vector {h;1, ..., hin, }. Each h;; € RH is the vector representation for the token,;
in r; (where H = 768 is the size of the encoder hidden layer).

In order to get a representation of the full request, the most common tech-
nique is to average token representations to produce a vector 7#; € R such that:
T = ni Z;;l h;j. With these procedure we transform a set of normal HTTP
requests D = {ry,..,7,} into a numeric form D = {7,..,7,,}, each 7; € RH.
We perform a One-Class Classification model (OCC), with a One-Class Support
Vector Machine (OCSVM), with these representations. We operate in a scenario
in which only valid requests are known, and no requests tagged as attacks are
necessary. We believe that is a realistic approach, where valid traffic could be
collected, for instance, as the result of performing functional testing of the ap-
plication.

Once we have the feature vector mentioned above, we apply the well-know
OCSVM classifier introduced in [20] with a Radial Basis Function (RBF) Kernel.
They develop an algorithm that returns a function f that takes the value +1 in a
“small” region capturing most of the training data points and —1 elsewhere. The
strategy is to map the data into the feature space corresponding to the kernel
and to separate them from the origin with maximum margin. For a new point z,
the value f(z) is determined by evaluating which side of the hyper-plane it falls
on in feature space. For each sample, we can calculate the signed distance to
the separating hyper-plane. The distance is positive for an inlier (considered as
normal) and negative for an outlier (a possible attack). We can set a threshold (6)

Web Application Attacks Detection Using Deep Learning 7

and classify a sample as normal if the distance to the hyper-plane is greater than
0. Varying 6 between —1 and +1 we obtain a ROC with different operational
points. Below we will explain how to automatically obtain the best 6 using a
grid search approach.

Estimation of the optimal operational point. We must set up two pa-
rameters to optimize the performance of the OCSVM: v and . v parameter
is required by the RBF kernel to define a frontier. v corresponds to the prob-
ability of finding a new, but normal, observation outside the frontier. To find
the optimal parameters we use a traditional grid-search method. In the case of
supervised classification, we can use performance metrics such as F-score or the
overall accuracy to evaluate each configuration of parameters. However, these
metrics rely on positive and negative samples so it is not possible to use them
in an anomaly detection scenario. Nevertheless, [11] introduces a performance
measure, F, that can be estimated from normal and unlabeled examples. They
show that F is proportional to the square of the geometric mean of precision and
recall. Thus, they argue that has roughly the same behaviour as the Fj-score
(the harmonic mean of the precision and recall). Therefore, we use a grid-search
with the F' metric for selecting the best parameters of the OCSVM classifier.
We use a validation set with only normal and unlabeled examples. The best
parameters for both datasets used in Section 4 are: v = 0.05 and v = 0.5

4 Results

The performance of the proposed method is analyzed in terms of True Positive
Rate (TPR) and False Positive Rate (FPR). In our case, TPR and FPR indicate
the ratio of requests correctly and incorrectly classified as attacks, respectively.
To evaluate the proposed method we shall use the same datasets used in our
previous work [3,13]. The €s1¢2010 dataset embodies a collection of normal
and abnormal HTTP requests for a web application that provides functionalities
to perform an on-line shopping. The dataset contains 36.000 valid request for
training, other 36.000 for testing and 25.000 request of anomalous traffic. We use
the DRUPAL dataset in order to evaluate the model on a real life application. We
crafted this dataset by registering three days of incoming traffic to the public
website of a University. The dataset contains 65.000 valid request and 1.287 real
attacks.

One of the main goals of this work is to reduce the amount of false posi-
tives generated by MODSECURITY without decreasing the TPR. For this reason
we compare our results against MODSECURITY configured with the OWASP CRS
version 3 out of the box with two paranoia levels. We also compare the results
with the classic information retrieval approach based one-class model presented
in [3] later improved in [13]. In this case, a security expert defines the features
to be extracted and used to train a one-class classifier based on a Gaussian mix-
ture model. One objective of this work is to compare the features automatically
extracted with deep learning with the ones selected by the expert.

8 Nicolds Montes, Gustavo Betarte, Rodrigo Martinez, and Alvaro Pardo

Table 1. TPR and FPR for each dataset. (*) One-class classifier using features manu-
ally selected by an expert (HTTP tokens). The operational point was manually selected
by the authors. (+) The operational point was automatically selected (see Section 3.2).

DRUPAL CSIC 2010
Method TPR | FPR | TPR |FPR
ModSecurity OWASP CRS v3 -PL 129.55%|15.57%26.62%|0.00%
ModSecurity OWASP CRS v3 -PL 2|77.89%)]49.93%29.48%(0.00%
One-class classifier from [13] (*) [94.43%] 6.00% [39.63%(5.37%
RoBERTa + OCSVM (+) 95.00%| 3.73% |47.10%|7.54%

Receiver operating characteristic - DRUPAL dataset Receiver operating characteristic - CSIC dataset

True Positive Rate
True Positive Rate

* ROBERTa + OCSWM test auc: 0.97 ROBERTa + OCSVM test auc: 0.75
* Baseline: ModSecurity + CRSV3 PL1 * Baseline: ModSecurity + CRSV3 PL1
+ Baseline: ModSecurity + CRSV3 PL2 + + Baseline: ModSecurity + CRSV3 PL2
@ ROBERTa + OCSVM optim @ ROBERTa + OCSVM optim
EA + Gaussian M EA + Gaussian M

0.0 0.2 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10
False Positive Rate False Positive Rate

Fig. 2: One-class ROC curve varying the 6 value

The evaluation was performed, on each of the datasets, using 70% of the
valid requests for training and the rest of the dataset (30% of valid and 100%
of attacks) for testing. The results of our proposal (RoBERTa + OCSVM) in
Table 1 were obtained with parameters v, v and 6 found automatically as ex-
plained in Section 3. In Figure 2 we present the results in terms of a ROC curve
(constructed in terms of TPR and FPR) The solid line represents the different
operation points of the OCSVM model. The stars represents the performance of
MOoDSECURITY. The plus symbol represents the operating point achieved by the
EA+Gaussian Mixture model in [13]. The circle represents the operating point
achieved by OCSVM with the estimated v, v and 6 as explained above.

In the case of the DRUPAL dataset the ROC curve shows that there are several
points that outperform all configurations of MODSECURITY. If we compare the
results with our baseline, the best configuration MODSECURITY detects 75% of
the attacks, whereas RoBERTa + OCSVM detects 95.00%. The FPR of MoD-
SECURITY is 39.69% and RoBERTa + OCSVM is 3.37%. As to the dataset
¢s1¢2010 the TPR is higher than all versions of MODSECURITY. Cs1c2010 is
a synthetic dataset constructed adding some attacks and anomalous requests
to a set of normal ones. MODSECURITY with paranoia levels 1 and 2 does not
produce any false positives at the expense of extremely low TPR. With a more
strict paranoia level (PL 3) FPR is 13.95% and TPR is 52.61%. Our method
produces a low FPR (7.54%) with a similar TPR (47.10%) for this dataset.

Web Application Attacks Detection Using Deep Learning 9

5 Conclusion and further work

To the best of our knowledge, the method we propose is a first attempt in using
a deep transformer based language representation of HTTP requests to address
the problem of web applications attack detection.

We used two different datasets to pre-train a deep language model for the
HTTP requests without requiring a security expert to define the set of features.
We have proposed a two-step learning approach consisting in first mapping a
HTTP request into a continuous space using a transformer encoder and then
applying a OCSVM to discriminate normal traffic from attacks. We have used a
performance metric proposed by [11] to automatically obtain the parameters of
the OCSVM.

We find that the results presented in Section 4 are quite promising. They
outperform MODSECURITY using the most widely adopted rules and are slightly
better than those presented in [3] later improved in [13] with the advantage of
not requiring the participation of a security expert to define the features.

As future work, we intend to re-train the pre-trained language model with the
dataset DRUPAL with more HTTP requests and check whether we can improve the
language model. We also plan to use a set of attacks and explore the fine-tuning
approach. That strategy consists in adding one additional layer and fine-tuning
all the parameters of the whole network. The goal of this supervised downstream
task is to check whether the model generalizes.

References

1. The Hlustrated Transformer — Jay Alammar — Visualizing machine learning one
concept at a time. http://jalammar.github.io/illustrated-transformer/.
(Accessed on 02/14/2021).

2. Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic lan-
guage model. The journal of machine learning research, 3:1137-1155, 2003.

3. G. Betarte, E. Giménez, R. Martinez, and A. Pardo. Improving web application
firewalls through anomaly detection. In 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pages 779-784. IEEE, 2018.

4. G. Betarte, R. Martinez, and A. Pardo. Web application attacks detection using
machine learning techniques. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 1065-1072. IEEE, 2018.

5. L. Corona, D. Ariu, and G. Giacinto. Hmm-web: A framework for the detection of
attacks against web applications. In Proceedings of ICC 2009, pages 1-6, 2009.

6. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

7. K. Ethayarajh. How contextual are contextualized word representations? com-
paring the geometry of bert, elmo, and gpt-2 embeddings. arXiv preprint
arXiv:1909.00512, 2019.

8. C. Folini. Handling false positives with the owasp modsecurity core rule set, 2016.

9. A. J. Hacker. Importance of web application firewall technology for protecting
web-based resources. ICSA Labs an Independent Verizon Business, 2008.

10

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

Nicolds Montes, Gustavo Betarte, Rodrigo Martinez, and Alvaro Pardo

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceedings
of CCS 2003, pages 251-261. ACM, 2003.

W. S. Lee and B. Liu. Learning with positive and unlabeled examples using
weighted logistic regression. In ICML, volume 3, pages 448-455, 2003.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiw:1907.11692, 2019.

R. Martinez. Enhancing web application attack detection using machine learning.
Master’s thesis, Facultad de Ingenieria,UdelaR - Area Informética del Pedeciba,
Uruguay, 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiw:1301.3781, 2013.

OWASP. Owasp modsecurity core rule set project. URL: https://coreruleset.
org. Last visited on 14/02/2021.

OWASP. Owasp top ten project. URL: https://www.owasp.org/index.php/
Category:0WASP_Top_Ten_Project. Last visited on 14/02/2021.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018.

Z.-Q. Qin, X.-K. Ma, and Y.-J. Wang. Attentional payload anomaly detector for
web applications. In International Conference on Neural Information Processing,
pages 588-599. Springer, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

B. Schélkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural computation,
13(7):1443-1471, 2001.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909, 2015.

T. Sureda Riera, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-J. Martinez Her-
raiz, and J.-A. Sicilia Montalvo. Prevention and fighting against web attacks
through anomaly detection technology. a systematic review. Sustainability, 12(12),
2020.

C. Torrano-Gimenez, A. Perez-Villegas, G. A. Maranén, et al. An anomaly-based
approach for intrusion detection in web traffic. Journal of Information Assurance
and Security, 5(4):446-454, 2010.

I. Trustwave Holdings. Modsecurity: Open source web application firewall.

A. M. Vartouni, M. Teshnehlab, and S. S. Kashi. Leveraging deep neural networks
for anomaly-based web application firewall. IET Information Security, 13(4):352—
361, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

Y. Yu, H. Yan, H. Guan, and H. Zhou. Deephttp: semantics-structure model with
attention for anomalous http traffic detection and pattern mining. arXiv preprint
arXiv:1810.12751, 2018.

G. Yuan, B. Li, Y. Yao, and S. Zhang. A deep learning enabled subspace spectral
ensemble clustering approach for web anomaly detection. In 2017 International
Joint Conference on Neural Networks (IJCNN), pages 3896-3903. IEEE, 2017.

