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Abstract—Web applications are permanently being exposed
to attacks that exploit their vulnerabilities. In this work we
investigate the use of machine learning techniques to leverage
the performance of Web Application Firewalls (WAFs), systems
that are used to detect and prevent attacks. We propose a
characterization of the problem by defining different scenarios
depending if we have valid and/or attack data available for
training. We also propose two solutions: first a multi-class
approach for the scenario when valid and attack data is available;
and second a one-class solution when only valid data is at
hand. We present results using both approaches that outperform
MODSECURITY configured with the OWASP Core Rule Set out
of the box, which is the baseline configuration setting of a widely
deployed WAF technology. We also propose a tagged dataset based
on the DRUPAL content management framework.

Index Terms—Web Application Firewall; Web Application
Security; Machine Learning; Pattern Recognition.

I. INTRODUCTION

It is a known fact that web applications are permanently
being exposed to attacks that exploit their vulnerabilities.
Initiatives like the OWASP Top 10 [1] have greatly contributed
to rise awareness concerning the security of web applications
but have not prevented the ever increasing amount of (suc-
cessful) attacks. In this context, attack detection techniques
become necessary. These techniques involve procedures that
help distinguishing between the behavior of a valid user of
the system and a malicious agent. The identification and
determination of a user’s behavior should consider whether
each detected event is simply suspicious or actually it is an
event that is part of an attack. These types of techniques
assist in aspects such as preventing attackers to identify/verify
successfully the existence of vulnerabilities in applications
and to minimize the number of false positives (non-malicious
activity identified as such).

A technological alternative for performing attack analysis
is the use of a Web Application Firewall (WAF) [2]. A WAF
is a piece of software that intercepts and inspects all the
traffic between the web server and its clients, searching for
attacks inside the HTTP packet contents. Once recognized, the
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suspicious packets may be processed in a different, secure
way, for instance being logged, suppressed or derived for
processing.

An implementation of an open source WAF that has become
a de facto standard is MODSECURITY [3], which allows the
analysis of the users requests and the application responses by
enabling real-time web application monitoring, logging and
access control. The actions MODSECURITY undertakes are
driven by rules that specify, by means of regular expressions,
the contents of the HTTP packets to be spotted.

MODSECURITY offers a default set of rules, known as
the OWASP Core Rule Set (OWASP CRS) [4], for handling
the most usual vulnerabilities included in [5]. However, an
approach only based on rules also has some drawbacks: rules
are static and rigid by nature, so the OWASP CRS usually
produces a rather high rate of false positives, which in some
cases may be close to 40% [6]. As the intended use of
MODSECURITY is to block attacks, such a high false positive
rate would potentially lead to a denial of service of the
application (1 of 3 valid requests gets blocked), so rule tuning
is required. Rule tuning is a time consuming and error prone
task that has to be manually carried out for each specific
web application. In traditional network firewalls and IDS, the
approach based on rules has been successfully complemented
with machine learning-based and anomaly detection tools and
other statistical approaches which provide higher levels of
flexibility and adaptability. Those approaches take advantage
of sample data, from which the normal behavior of the web
application can be learned in order to spot suspicious situations
which fall out of this nominal use (anomalies), and which
could correspond to on-going attacks. A primary objective of
our work is to improve MODSECURITY with such techniques.

Our contributions: We apply machine learning tech-
niques to improve the detection capabilities of the WAF
MODSECURITY giving particular importance to the task of
diminishing the false positives generated by this tool when
it is set up to protect a web application without reducing
the true positive rate. We provide a characterization of the
problem by identifying different scenarios depending on the
availability of data to train the learning models. We have
defined a learning framework that allows us to experiment with
different learning algorithms depending on the corresponding
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scenario. The experiments have been carried out over three
different datasets. The obtained results outperform, in most of
the cases, the execution of MODSECURITY configured with
the OWASP Core Rule Set (OWASP CRS) out of the box.

The structure of the rest of the paper is as follows: Section II
provides a primer on web application security and protection
mechanisms. In Section III we present the learning framework
we have used to carry out the experiments. The outcomes
are described and discussed in Section IV. Related work is
discussed in Section V. Further work and conclusions are
presented in Section VI.

II. BACKGROUND

This section provides a concise primer on web application
security and briefly discusses protection mechanisms.

A. Web application security

The most critical web application security risk defined by
the OWASP Top 10 2017 [5] is Injection, which directly
relates to input validation. Injection occurs when data sent
by the user to the application is used as part of an instruc-
tion that an interpreter executes in the backend producing
unexpected (by the designer of the application) results. There
are different types of injections depending on the interpreter
being exploited: SQL, LDAP, XPath, NoSQL queries, OS
commands, XML parsers, SMTP headers, and others. Injection
has been consistently occupied one of the first three security
risk since the first publication of the OWASP Top 10 (year
2007). Nevertheless applications still suffer from this type of
vulnerability. Thus, input validation is critical for software
security. One such validation consist of verifying and filtering
all data that flow to the system before they are effectively
used. These procedures usually are not introduced at the design
stage of applications leaving then unattended vulnerabilities
that might be critical, specially to web applications. When data
is processed without proper validation an attacker could lead
the system to unpredictable states and exploit this for his own
benefit. This data may also produce unexpected results that
could be analyzed by the attacker to infer further information
to proceed with his activity.

B. Protecting Web Application

The principle of in-depth security means that security mech-
anisms are layered around the system being protected so if an
attack bypass one mechanism there exist other mechanisms to
provide the needed security. When concerned with the security
of a web application, the outer layer to be protected is the
organization’s network perimeter. Typically, network firewalls
are deployed to protect in/out traffic. As to the network itself,
it is common practice to use an Intrusion Prevention System
(IPS), for instance, to analyze network traffic in order to detect
potential threats. Additionally, it has become a good security
practice to deploy a Web Application Firewall (WAF) to
analyze the request/response flow through the communication
channel to identify attacks that exploit vulnerabilities proper of
web applications. In the general case, both traditional firewalls

and IPS inspect traffic at the network layer. The research
we present in this work is focused on WAF, which are the
specific tools that are currently being widely deploy to prevent
web application attacks. In contrast to traditional network
firewalls, WAFs are designed to perform packet inspection at
the application layer. Secure communications using SSL and
TLS are done by the WAF so our work focus on the HTTP
protocol analysis.

A WAF often supports different security model configura-
tions: normally it makes it possible to enforce both positive
and negative security models. A positive security model only
allows to pass known good traffic, all other traffic is blocked.
A negative one allows to pass all traffic except what is known
to be malicious. MODSECURITY is a de facto standard open
source technology. Large organizations like Verizon [7] are
currently using this technology to protect large amount of
applications. This WAF supports two working modes: detection
and prevention. In the first mode, logs are generated for
every potential attack detected. Normally this mode is used
when adding new rules and monitoring for false positives.
The second mode is when the WAF is really useful: by
correctly configuring rules it is capable of blocking potential
malicious Web traffic to and from applications. The core of
MODSECURITY implements a flexible rule engine [8]. These
rules can be applied in every application request/response.

To detect and prevent the exploitation of well-known and
common vulnerabilites the Open Web Application Security
Project [1] (OWASP) has defined a generic rule set that is
known as the OWASP Core Rule Set [4] (OWASP CRS). The
OWASP CRS is widely deployed in large organizations as
Akamai, Azure, CloudFare, Fastly and Verizon. The goal of
the OWASP CRS is to provide a set of generic attack detection
rules that when fed to MODSECURITY provide a base level
of protection for any web application. The OWASP CRS imple-
ments a negative model, where the rules are designed to detect
known attacks patterns.

The last Gartner’s Magic Quadrant for Web Application
Firewalls [9], reviews and ranks several proprietary WAF,
among others Akamai, F5 and Imperva. In that report it is
remarked the rare and still unproven use of machine learning
techniques to leverage the detection capabilities of those
technologies.

III. ADAPTIVE APPLICATION SECURITY

MODSECURITY is usually configured to work using a
negative model because defining the rules that describe normal
behavior of the application in real life is an almost impossible
task. The problem with that operational mode is the high
number of false positives that the WAF generates and therefore
the amount of tuning that is needed during the learning phase.
One of the main objectives of the research reported here is
to make MODSECURITY behavior more flexible by using
machine learning techniques to better adapt its (defensive)
behavior to that of the application that is protecting. Addition-
ally, depending on the operational context of the application
to protect one may consider alternative learning scenarios.
The ideal situation of having available a labeled dataset of
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application requests that represent valid and attack behavior
of a specific application is not always possible so we have
investigated different scenarios that we now proceed to discuss.

A. Learning Scenarios

The first scenario (sc1) corresponds to the ideal situation
where real application traffic is available which has been
tagged discriminating normal (valid) requests from attacks.
In the scenario sc2 real valid traffic (obtained from valid
requests to the application) is available and the requests
classified as attacks are a set of requests known to be malicious
but not specifically for the application to be protected (the
requests could have been collected using a Honeypot [10], for
example). Since tagged valid and attack requests are available
in both cases it is possible to apply supervised multi-class
techniques. In what follows we are going to present two
different approaches of supervised multi-class techniques and
the results obtained on sc1 and sc2.

In the scenario sc3 only valid requests are known, no re-
quests tagged as attacks are available. We believe that this is a
quite realistic approach, where valid traffic could be collected,
for instance, from the result of performing functional testing
of the application. We have pursued a one-class classification
approach [11] to handle this scenario.

B. Datasets

The classification experiments have been performed on
three different datasets containing labeled data. In addition to
that, each logged request includes both its header and its body.
As far as we know, there exists only three public datasets
that comply to these requirements: 1998 DARPA Intrusion
Detection Evaluation Data Set, PKDD2007 Challenge [12]
and CSIC2010 [13]. The first dataset was discarded since
it was generated recording network traffic, not only web
application traffic. The other two datasets are quite old (given
the evolution of web applications) and have been artificially
crafted. In order to validate our approach with recent and real
life requests, we generated an additional dataset, called here
DRUPAL, based on the public Website of our School. The
three datasets are briefly described in what follows.

a) PKDD2007: In 2007 the 18th European Conference
on Machine Learning (ECML) and the 11th European Con-
ference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), put forward a challenge on Analyzing
Web Traffic. As part of the challenge it was provided a dataset
which contained valid traffic and requests classified in seven
different types of attacks. The dataset contains 35.006 requests
classified as normal and 15.110 requests classified as attacks.
The PKDD2007 dataset was generated by recording real traffic
which was then processed to sanitize the information. This
masking process consisted in renaming every url, parameters
names and values with randomly generated strings.

b) CSIC2010: The Spanish Research National Council
(CSIC) developed in 2010 a dataset to test web application
attack protection systems. The dataset is tagged in Normal
Traffic and Anomalous Traffic. It was developed automatically
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Figure 1: Learning architecture

based on real request to an e-commerce application. The
dataset contains 36000 valid requests for training, other 36000
request for testing and 25000 requests of anomalous traffic.
To generate the anomalous traffic there were used tools such
as Paros (which later became OWASP Zed Attack Proxy
(ZAP) [14]) and w3af [15]. In addition to that, some valid
requests were modified with typo errors in parameters. Un-
fortunately, we do not know how real attacks and anomalous
traffic distribute in this dataset. However, this dataset seems
to be a reference in the MODSECURITY community, as may
be understood from a note written by Christian Folini1 who is
the project leader of the OWASP CRS project.

c) DRUPAL: In order to experiment with a real life
application, based on real requests and real attacks, we crafted
a dataset by capturing six day incoming traffic to the public
Website of our School. The only post-processing of this dataset
consisted in blurring password values in the request.

This dataset was divided into two parts, the first three days
were used to create a training and testing datasets and the last
three days were used to create a validation dataset. This gives
a validation dataset completely separated from the train/test
datasets in order to validate our results using real traffic
without any modifications. Since the requests are obtained
from real traffic they are less balanced: 65600 and 41519 valid
request and 1287 and 2226 real attacks for the train/test and
validation datasets respectively.

The web site of the School is protected by an instance of
MODSECURITY featuring the OWASP CRS, which has been
tuned for several years by a team of security and infrastructure
experts. We therefore used MODSECURITY as the labeling
tool: those requests that were accepted by MODSECURITY
were considered as valid traffic, while those requests that
MODSECURITY rejected were tagged as attacks.

C. The learning architecture

We now briefly review the components of the proposed
learning architecture depicted in Figure 1.

In this specific problem the samples are instances of the
semi-structured text-based protocol HTTP Request, which is
used to exchange information between the client and the
server. The information is encoded into binary format. We
have built a parser to decode the information which is in HTTP
URL encoded [16] format so the learning algorithm can work
with the real information. On the other hand, the information
contained in headers that are specific to the request, and there-
fore should not be considered to infer application behavior, is

1https://github.com/SpiderLabs/owasp-modsecurity-
crs/issues/1016#issuecomment-366602493
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Table I
SELECTED FEATURES BY THE SECURITY SPECIALIST

< ../ alert exec password
<> ’ alter from path/child
<!– “ and href script
= ( bash history #include select
> ) between insert shell
— $ /c into table
—— * cmd javascript: union
- */ cn= mail= upper
–> & commit objectclass url=
; + count onmouseover User-Agent:
: %00 -craw or where
/ %0a document.cookie order winnt
/* Accept: etc/passwd passwd

filtered. Examples of these cases are the value of a cookie or
the timestamp of the last time the web page was modified.

Several attacks make use of specially crafted input to make
the server to execute an unexpected functionality. Most of
these inputs use as part of the payload special characters, for
instance . , ; < >, which are normally used in information
retrieval to split the documents. In order to preserve those
characters the parser analyzes the parameters from the query
string, the body and headers and split them in name and value
pair as different text string.

The tokenization process adopted was highly dependent of
the learning scenario. In sc1 we followed the classic approach
of bag of words. In this case, the tokenizer performs the
splitting using only spaces preserving special characters that
may be included in parameters values or headers. To preserve
the special characters used in attacks, this tokenizer uses the
following character to split the request: \r \t \n. In the
case of sc2 and sc3, the use of features that were blindly
generated from the dataset, as in the case of sc1, did not work.
The main problem was the large amount and sparsity of the
extracted features, because few of them were active in each
instance. In this feature space it was difficult to distinguish
attacks from valid requests. To address this difficulty, we in-
corporated the experience of a security expert into the analysis.
In this expert-assisted approach, a set of features that better
characterize different web application attacks were defined.
Validation of the proposed features was performed applying
an information gain [17] algorithm on the three datasets. The
results showed that all features have a positive information
gain in at least one of the datasets. The CSIC2010, PKDD2007
and DRUPAL dataset have 43, 38 and 59 (respectively) features
out of 64 with a positive information gain. In this case, the
tokenizer counts for each request the number of appearances
for each feature. Table I lists the defined features.

The last component of the learning architecture is the
classifier. For the scenarios sc1 and sc2 we have followed
a multi-class supervised approach. For the scenario sc3 we
applied a one class classification approach.

The supervised approach requires a training set with labeled
samples as valid or attack. We have carried out two variants of
supervised multi-class learning, that we proceed to describe.

1) sc1 - multi-class information retrieval: After tokeniza-
tion each request is transformed into a vector applying the
classic Term Frequency Inverse Document Frequency (TF-

IDF) [18] scheme in order to calculate the corresponding
weights of each of the terms in the request. In this case,
features correspond to terms in our vocabulary, which are
generated as a result of the tokenization process. To reduce
the amount of features, feature selection is performed using
the information gain algorithm [19], keeping all features that
have an information gain grater than 0. Finally, we have trained
different classifiers using Weka: Support Vector Machine
[20](SVM), K-nearest neighbours [21](K-NN) and Random
Forest [22].

SVM is used to replicate and enhance the results reported
by Gallagher et all [23]. For the experiments we used a poly-
nomial kernel and trained the SVM using sequential minimal
optimization (SMO). We include K-NN as its simplicity allows
to categorize the complexity of the learning problem. Finally,
we used Random Forest as it could be seen as a rule set
generator (comparable to the OWASP CRS) and it has been
reported to produce good results in problems related to fraud
detection [24].

2) sc2 - multi-class expert-assisted: In this approach, the
tokenization was performed using the features defined by the
expert (see Table I). As was mentioned before, the resulting
vector after tokenization contains in each position the number
of occurrences of the feature in the requests. As in the classic
information retrieval approach, after tokenization we have
trained the K-NN and the Random Forest classifiers. One
important difference with the multi-class information retrieval
approach is that the tokenization in this case does not apply
the TF-IDF scheme in order to encode the value of a feature
depending on the frequency on the document and in the corpus.
Without this encoding, these features are not suitable for the
SVM classifier. For this reason no results using SVM are
reported.

3) sc3 - anomaly detection expert-assisted: Scenario sc3
uses only requests that belong to the valid class, that we called
the target class. We have investigated a one-class classification
approach [11] where there are available instances of one class
and none or very few samples of the other one. The proposed
anomaly detection classifiers organizes samples of the target
class into clusters and then uses the distance to these clusters
as a measure of anomaly; samples away from the clusters are
classified as anomalies.

Using the Expectation Maximization (EM) algorithm [25]
we cluster the training set containing only target samples.
The EM algorithm was used to estimate the parameters of a
Gaussian Mixture Model (GMM) and the number of clusters
(components in the GMM). In our case, each component of
the GMM constitutes a cluster that captures the distribution of
the target class. To capture the intra-cluster variability we use
the distance between samples in the cluster and its centroid.
The distance between a given x and the cluster C is computed
using the Mahalanobis distance [26]:

dist(x,C) =
√

(x− µ)Σ−1(x− µ) (1)

where Σ represents the full covariance matrix calculated
during the training phase. If one of the features is not seen
during the training phase, the corresponding dimension will
have a standard deviation of 0, and the Mahalanobis distance
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cannot be calculated. For this reason, we adjust the covariance
matrix by adding a regularization term to it ε ∗ Id, where ε
is the smallest standard deviation in diag(Σ) different from 0
and Id is the identity matrix.

If the distance of a sample to a given component is
within the observed intra-cluster variability during training,
the sample will be labeled as valid. To apply this idea we
need a distance threshold for each cluster. Therefore, for each
cluster, we obtain the corresponding mean distance (µd) and
the standard deviation of the distances (std) of the samples
assigned to it. On this basis, the threshold is defined as shown
in Eq 2.

t = λ[µd + 10 ∗ std], λ ∈ (0, 1] (2)

The parameter λ allows us to change the size of the cluster
from 0 (where only instances that correspond to the centroid
of the cluster are classified) to 1 where almost all requests
are classified as the target class (the factor 10 was empirically
calculated in order to enforce this).

During classification we calculate the Mahalanobis distance
of the requests to the clusters: if the distance is equal or
less than the threshold the request is assigned to the cluster.
Requests that are not assigned to any cluster are classified as
attacks. The threshold of each cluster then might be defined
by setting the number of false positives that we are willing
to accept. This can be done observing the distribution of
intra-cluster distances. All points above the threshold will
constitute false positives. In future work we plan to model
this distribution in order to obtain an estimation of the false
positive rate given the selected threshold.

IV. RESULTS

This section is devoted to present and discuss the outcomes
of the experiments that have been carried out. The results will
be presented in terms of Precision, Recall, True Positive Rate
(TPR) and False Positive Rate (FPR). In our case, TPR and
FPR indicate the ratio of requests correctly and incorrectly
classified as attacks, respectively.

A. Baseline

One of the main objectives of this work is to reduce
the amount of false positives generated by MODSECURITY
without decreasing the TPR. The entry Baseline of Table II
presents the results of MODSECURITY configured with the
OWASP CRS out of the box for each dataset. The baseline was
generated with an Apache HTTP Server 2.4, configured with
MODSECURITY 2.7 and the OWASP CRS 2.2.9 in collaborative
detection mode with the standard configuration (no tuning of
the rules were made).

B. Scenario 1

We have trained different multi-class classifiers after to-
kenization of the requests using a bag of words approach.
Given that real valid and attack requests are available we have
performed 10-fold cross validation to train and test the SVM,
KNN (with K = 3) and Random Forest classifiers. The results
are summarized in Table II in the section corresponding to

sc1. It can be noticed that in all datasets the results show
good performance in terms of precision, recall, TPR and FPR
for all the classifiers evaluated. In particular, we can say that
in an overall analysis, the Random Forest classifier has better
performance. The main conclusion from these results is that
the application of the multi-class approach in this case is
feasible and with good performance scores. However, this
approach has two important limitations. On the one hand,
labeled data from both classes are needed in order to train the
classifiers (see discussion in Section III-A). On the other hand,
the classifier designed for one dataset cannot be used in other
ones. Even using the same features we could not obtain good
performance scores when applying, for instance, the model
trained for PKDD2007 and then tested using DRUPAL. In other
words, the models do not seem to generalize.

C. Scenario 2

Given the lack of datasets, to emulate this scenario we have
split the PKDD2007 and DRUPAL datasets at 50% and use
half for training and half for testing. In order to generate
the training datasets, we use the valid requests from the
dataset we are going to test and the attacks requests from
the other two datasets (emulating to be generic attacks). The
CSIC2010 dataset is already split into testing and training, but
the attacks contained in the dataset not only include attacks
but also valid requests with typos. For this reason, we did
not use attack requests from the CSIC2010 dataset in the
experiments of this scenario. After generating the datasets,
we have applied the expert-assisted multi-class approach. We
proceeded to experiment with the KNN (with K = 3) and
Random Forest classifiers. In this case, instead of using 10-
fold cross validation, we used the training and testing datasets
generated in the previous step. In Table II, entry sc2, we
present the results of applying this technique on the three
datasets. As can be noticed, the performance in terms of TPR
decreased comparing to the results of sc1. In case we compare
the results with our baseline, we can notice that in general even
if there exist decrements in the number of attacks detected
(decrease of TPR), the FPR has a major increment. We also
validated that in the case that more generic attacks are added
to the training datasets the attack detection increased without
increasing the false positives. As mentioned in section III-A in
order to improve the results is required that the set of generic
requests (in this scenario the attack requests) characterize as
much as possible the universe they represent. Once again, we
can say that the Random Forest is the classifier with better
performance analyzing the overall results.

D. Scenario 3

The evaluation of this approach was performed, on each
of the datasets, using 70% of the valid requests for training
and the rest of the dataset (30% of valid and 100% of attack)
for testing. The experiments include varying the λ value from
0 to 1 in order to show 500 different operational points. In
entry sc3 of table II we present the results for the special case
of λ=0.156. This value of λ showed to be the one in which
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Table II
SUMMARIZED RESULTS OF THE MODSECURITY BASELINE AND THE THREE SCENARIOS PRESENTED

Scenario Dataset Algorithm Precision Recall TPR FPR

Baseline
DRUPAL MODSECURITY w/OWASP CRS 0.11 0.76 76.22% 38.89%
PKDD2007 MODSECURITY w/OWASP CRS 0.70 0.93 92.97% 57.21%
CSIC2010 MODSECURITY w/OWASP CRS 0.50 0.34 34.32% 23.93%

sc1

DRUPAL
Random Forest 0.97 0.91 91.22% 0.05%

KNN-3 0.97 0.89 88.97% 0.05%
SVM 0.98 0.90 89.67% 0.04%

PKDD2007
Random Forest 0.96 0.85 85.10% 1.67%

KNN-3 0.96 0.70 70.39% 1.41%
SVM 0.95 0.81 81.10% 1.91%

CSIC2010
Random Forest 0.97 0.72 72.00% 1.47%

KNN-3 0.95 0.65 65.03% 2.38%
SVM 0.97 0.70 70.34% 1.26%

sc2

DRUPAL
Random Forest 0.95 0.48 47.57% 0.05%

K-NN 3 0.90 0.07 6.99% 0.01%

PKDD2007 Random Forest 0.96 0.23 22.56% 0.45%
K-NN 3 1.00 0.12 11.70% 0.02%

CSIC2010 Random Forest 0.91 0.32 32.06% 2.27%
K-NN 3 0.66 0.50 50.43% 17.85%

sc3
DRUPAL

One-class w/λ=0.156 (test) 0.22 0.95 95.34% 22.15%
One-class w/λ=0.156 (validation) 0.15 0.89 88.90% 26.83%

PKDD2007 One-class w/λ=0.156 (test) 0.70 0.93 93.12% 58.30%
CSIC2010 One-class w/λ=0.156 (test) 0.75 0.48 47.66% 11.15%
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Figure 2: sc3: one-class ROC curve varying the λ value

for each dataset, the model behaves equal or better than the
baseline.

In Figure 2 we present the results, in terms of a ROC
curve, using the DRUPAL, PKDD2007 and CSIC2010 dataset,
respectively. The line in the graph represents the different
operation points of the one-class model. The dot represents
the performance of our baseline MODSECURITY. In the three
experiments there exist operational points where the one-
class model behaves equal or better than the MODSECURITY
baseline. For the case of the DRUPAL dataset, besides using the
testing dataset, we also validate our model using the validation
dataset. If we select the operational point with the same TPR
than the baseline, the FPR will decrease from around 38% to
4% or 22% depending on the test or validation dataset used
respectively. Using the operational point with the selected λ,
the model tested on the test and validation dataset behaves
improves the baseline in terms of TPR and FPR. In the case
of the experiments on the PKDD2007 dataset, we can notice
that our approach does not improve the baseline, but we
have at least one operational point that behaves as good as
MODSECURITY. As to the CSIC2010 dataset, like in the case
of DRUPAL, we can observe several operational points that

outperform MODSECURITY baseline. If we maintain the same
TPR as MODSECURITY, the FPR decreases from 24% to 1%.

E. Discussion
As already pointed out, false positives of MODSECURITY

might lead to a denial of service to valid users. We have
presented three approaches for addressing the problem of
attack detection in web applications.

The first approach, in which the multi-class paradigm is
used, resulted in very good performance scores (see Section
IV). The three tested classifiers provided similar results. The
fact that K-NN provided good results, very close to the ones
of Random Forest and SVM, indicates that if real samples
of valid requests and attacks are available, the classification
problem is not very complex. That is, the Bayes error (the
theoretical lowest error attainable knowing the class distribu-
tions) is not large. However, this approach has two limitations:
labeled data from both classes are needed in order to train the
classifiers and a classifier designed for one dataset can not be
used with another one.

The second approach is also based on a multi-class
paradigm, but with attack traffic collected from attacks to
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other applications. This approach has the advantage that only
real valid traffic from the web application is needed for
training. Although a low rate of false positive was obtained, the
performance on attack detection decreased. We are convinced
that this behavior relates to the complexity of constructing
the generic attack dataset from the datasets that we had at
hand. Random Forest produces more false negatives and a
similar number of true negatives compared to scenario one.
We believe that this indicates that the attack samples do not
cover the whole universe of possible attacks and therefore the
classification boundaries do not capture the optimal solution as
can be done in scenario one. In other words, for this approach
to work we need an attack training dataset that covers all
possible attacks to the given application.

Finally, the third approach, uses only valid requests to
construct a detection model. In this case, the outcome is
quite promising, since the results outperform the ones obtained
with the classic rule based MODSECURITY solution. As we
have seen in Section IV-D this one-class approach reduced
the number of false positives while not decreasing the true
positives. Furthermore, this approach has a threshold that can
be tuned depending on the number of false positives that we
are willing to accept (see Figure 2). If we take the number
of false positives produced by MODSECURITY as a reference,
we can see that the proposed solution clearly increases the
number of true positives for two of the datasets (CSIC2010
and DRUPAL) and keeps the third one without modification
(PKDD2007). Therefore, if we keep the same number of
false positives of MODSECURITY, we reduce the number of
undetected attacks. On the other hand, if we consider the
number of true positives generated by MODSECURITY as a
reference, in two of the datasets we reduce the number of
false positives (CSIC2010 and DRUPAL) and in the third one
there are no improvements (PKDD2007).

V. RELATED WORK

In the ECML/PKDD2007 challenge [12], the main objective
was to classify web application requests using a multi-class
approach. Two solutions ([27], [28]) were presented. In the
solution reported by Pachopoulos et al [28], the authors iden-
tify a set of tokens that describe attack patterns and transform
the requests into a feature vector of true/false, where each
position indicates if the token is present or not. Then they
train a C4 classifier using this information. In our supervised
multi-class approach, we identify basic tokens that describe
attack patterns and we count the number of appearances. Then
we train different classifiers using these feature vectors.

Gallagher et al [23] analyzed the results of the
ECML/PKDD2007 challenge and introduce a supervised
multi-class classification of web attacks by applying classic
techniques of information retrieval. In our work, the multi-
class information retrieval approach is a modified version of
this approach to tackle the sc1 by adding a pre-processing
phase and training using different classifiers. The main con-
clusion of our experiments is that we agree with Gallagher’s
et al regarding the precision of the approach. However, we
have studied this approach in depth from a real application

perspective and conclude that the classifiers obtained in this
way do not generalize. This supports the idea that even if the
performance scores are good the sc1 is more a lab scenario
than a real life application.

In [29], Raı̈ssi et al conclude, based on the results of the
ECML/PKDD2007 challenge and a feedback survey written
by the challengers, that using machine learning techniques to
detect web application attacks requires to involve the security
experts earlier in the knowledge discovery process. In our
approaches, the feature selection phase uses the knowledge
of the security expert to identify the tokens to be considered
in the model construction. In this way we were able to obtain
classifiers with generalization capabilities.

In [30], [31] Kar et al present a solution to detect SQL
Injection attacks by modeling SQL queries to train a Support
Vector Machine (SVM). This supervised multi-class approach
focuses in detecting SQL Injection attacks through the analysis
of the traffic between the application and the database. In our
supervised multi-class approach we analyze the traffic between
the user and the application focusing on different types of
Injection attacks.

Kruegel and Vigna in [32], propose an anomaly detection
approach where they model specific characteristics of the URL
parameters. They focus on parameter length, order and even
generate a probabilistic grammar of each parameter. In our
one-class approach we work using the whole requests, not
only the URL parameters, capturing the normal behavior by
modeling the occurrence of a specific set of tokens defined by
a security specialist. This allows us to capture the behavior of
the data sent in the normal use of the application, focusing
particularly on the behavior of special tokens that are highly
related to attacks patterns. Since the dataset used not only
have attacks in the URL parameters, but also in the body and
headers, these approach can not be compared.

Several authors propose anomaly detection techniques that
work over simplification of the application’s parameter values.
In [33], Corona et al. abstract away numbers and alphanumeric
sequences, representing each category with a single symbol.
Torrano, Perez and Marañón [34] present an anomaly detection
technique where instead of using the tokens themselves, they
use a simplification that only considers the frequencies of
three sets of symbols: characters, numbers and special symbol.
As was mentioned, in our one-class approach we analyze not
only the parameters values but the whole request without any
further simplification.

VI. CONCLUSION AND FURTHER WORK

We showed that machine learning techniques can improve
the detection capabilities of MODSECURITY in terms of the
reduction of false positives and the increment of true posi-
tives. We also provided a characterization of the problem by
identifying different scenarios depending on the availability of
training data. The scenarios vary from the rare, but best case,
where we have a dataset with real application traffic to more
practical scenarios where we have only valid requests to an
application that could be collected, for instance, during the
functional testing phase.
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If we consider the results of this work, we can conclude that
the techniques we have applied can improve the performance
of MODSECURITY. Although the task of writing rules to
detect attacks may be complex for a human expert, the results
of sc1 show that machine learning algorithms can easily learn
the decision boundary from training data. The results of sc2
complement the previous one and show the importance of
having representative attack training samples. Although a low
rate of false positives was obtained, the performance on attack
detection decreased. In future work we will address this issue
using synthetic attacks generated with automatic tools.

If only valid request are at hand, the results of the last
scenario (sc3) show that a one-class solution provides many
operational points that outperform MODSECURITY. In future
work we will study the automatic selection of the operational
point using either sampled attacks, as in sc2, or synthetic
attacks. We believe that the results of the three scenarios
here presented show the potential of machine learning for the
construction of a WAF. We plan to experiment with one-class
algorithms like SVM, instead of using classic distances, and
to study the special one-class scenario where we only would
have available attacks requests.

One of the biggest challenges we faced was the lack of pub-
licly available labeled datasets with complete HTTP requests.
We were able to find only three datasets, two of them were
used in our experiments (see section III-B) but the third one
(1998 DARPA Intrusion Detection Evaluation Data Set) was
discarded since it was constructed based on network traffic,
not only web application traffic. Additionally, these datasets
are at least 10 years old. We think those datasets no longer
represent the current state of the involved technologies. We
plan to continue working on the construction of new datasets.
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