
Exploring the Application of Process Mining
Techniques to Improve Web Application Security
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Abstract—Web applications are permanently being exposed to
attacks that exploit their vulnerabilities. To detect and prevent
misuse of the functionality provided by an application, it has
become necessary to develop techniques that help discern between
a valid user of the system and a malicious agent. In recent years,
a technology that has been widely deployed to provide automated
and non-invasive support for detecting web application attacks
is Web Application Firewalls. In this work, we put forward and
discuss the application of Process Mining techniques to detect
deviations from the expected behavior of web applications. The
objects of behavior analysis are logs generated by a widely
deployed WAF called ModSecurity. We discuss experiments we
have carried out applying our mining method on the well-known
e-commerce platform Magento and using the ProM tool for the
execution of the process mining techniques.

Keywords- Security, web applications, process mining, web
application firewall, ModSecurity, ProM.

I. INTRODUCTION

A web application is software based on a client-server
architecture. The information flowing between the client and
the application server is transmitted using the HTTP(s) pro-
tocol. Web applications are typically designed to be exposed
to any individual or artifact with capabilities to access the
Internet. Therefore they are a primary target for any attacker
who wants to get unauthorized access to the information they
handle or to place baits to lure honest users. Attackers exploit
vulnerabilities, i.e., a hole or a weakness in the application,
which can be a design flaw or an implementation bug. Web
application vulnerabilities are listed and precisely described in
the Open Web Security Project TOP 10 [1].

Although the natural path to provide more secure web
applications is to perform vulnerability analysis and modify
the application’s code or the technological platform it runs,
some scenarios require an alternative approach. For example,
when the code is unavailable or correcting the vulnerability is
expensive for the organization. In this context, it has become
popular the application of a Virtual Patching strategy [2],
e.g., using a Web Application Firewall (WAF) to protect the
application. A WAF is software that intercepts and inspects all
the traffic between the web server and its clients, searching for
attacks inside the HTTP packet contents. Once recognized, the
suspicious packets may be processed in a different secure way,
for instance, been logged or suppressed. ModSecurity [3] is an
open-source, widely used WAF enabling real-time web appli-
cation monitoring, logging, and access control. ModSecurity

undertakes actions driven by rules that specify, through regular
expressions, the contents of the packets to be analyzed and
eventually spotted. Trial-and-error is needed to adjust these
rules discerning between valid and malicious behavior.

Process Mining (PM) [4] allows analyzing the event logs
associated with the execution of a system’s processes, consid-
ering a process as a set of coordinated tasks to achieve an ob-
jective. Process discovery techniques find behavioral (process)
models that best describe the behavior within the event log.
A large variety of discovery algorithms are available, e.g., the
Inductive Miner [5], which copes with infrequent behavior and
large event logs. Process models can be compared with other
execution logs, measuring how much they fit. This procedure
is called conformance checking. There exist several tools, e.g.,
the ProM framework [6], which provide automated support to
perform PM-based analysis of systems behavior.

Few works exist on the application of PM techniques in
the context of web applications [7]–[9], since they frequently
embody loosely structured processes, or even worst, there is
no prior definition of a process at all. In those cases, only
a subset of the PM techniques is applicable. In [10] the
authors propose a method based on PM to improve the security
of web information systems. They assume the existence of
UML models specifying the application’s expected behavior,
which is not always possible when the application is already
in operation. In this context, it seems reasonable to exploit
information registered from the applications’ execution.

In this paper, we explore the application of PM techniques,
being the object of analysis logs generated by ModSecurity, to
detect deviations in the expected behavior of web applications.
Our proposal elaborates on the method presented in [10],
which we have adapted to focus on the use of the WAF to
register the interaction among users (and artifacts) and the
application server. This information allowed us to leverage,
from a security point of view, the mining method.

The rest of the paper is structured as follows. In Section II,
we discuss related work. In Section III, we describe our
proposal for a security-oriented PM method. In Section IV,
we present the experiments we have carried out on the well-
known e-commerce application Magento and, in Section V, we
discuss some limitations of the proposed approach. Finally, in
Section VI, we conclude and describe future work.



II. PROCESS MINING AND WEB APPLICATION SECURITY

Few works exist on the application of PM techniques for
modeling and analyzing the behavior of web applications. In
[7] the authors structure models of user behavior intended
to provide insights, from a business perspective, on potential
improvements of the analyzed application. Some works apply
PM to address security issues [8], [9], but the primary target
of the study is not web applications.

In [10] the authors propose a method based on PM to
improve the security of web information systems. They specify
the application’s expected behavior using UML behavioral
models. Their approach assumes that UML behavioral models
are already available or can be obtained by through reverse
engineering. They also assume that the behavioral specification
is complete enough to generate a proper normative model by
applying a model transformation. Although these assumptions
are not always possible when the application is already in
operation, they devise a platform-independent methodology to
identify attack patterns by detecting deviations from the known
behavior of the system, which a corresponding normative
model gives. Their main ideas can be adapted to work with
factual information from executing a web application.

As depicted in Figure 1, the method proposed in [10]
consists of five steps: (Step 1) specification of the system
behavior using Unified Modeling Language (UML) sequence
diagrams; (Step 2) automatic generation of a formal (nor-
mative) model from the UML-based specification; (Step 3)
acquisition of real behavior logs, which are obtained as the
result of monitoring the web information system to get data
representing its operational behavior; (Step 4) preprocessing
of the registered behavior using process mining techniques
to get helpful event logs; and finally, (Step 5) identification
of behavioral deviations applying PM techniques to perform
conformance checking between the normative model and the
operative behavior logs.

Fig. 1: Mining attack patterns in information systems [10].

We propose to adapt this method by using a WAF to register
the behavior generated from the response of a web application
to HTTP requests. It makes it possible to leverage the mining
method in several ways, as described in what follows.

Specification of the system behavior: Instead of using a
UML diagram to specify the application’s expected behavior,
we have chosen to register valid executions that can be

captured using the WAF ModSecurity. The WAF logs capture
the application’s execution for each HTTP request directed
to the protected application. ModSecurity is configured on
an Apache server, pointing as a reverse proxy to the website
in question. In this way, the information can be collected by
merely browsing the application.

Generation of a normative model: As was already men-
tioned, valid behavior logs can be used to obtain the normative
model of the system. With the help of simple software tools,
it is possible to transform the files generated by ModSecurity
to a single log in XES format (a standard used by the ProM
framework). From the generated XES log, a Petri Net [11] can
then be obtained using a discovery algorithm. Since the initial
logs are the product of navigation of the website, the different
activities of the Petri net correspond to the URLs of the site
to which users were accessing during the (adequate) use of it.
For this reason, we have decided to filter static content, such
as requests for CSS files and images, since they do not provide
valuable information regarding user behavior.

Obtaining real behavior logs: Using ModSecurity, it is
possible to obtain information from navigation carried out by
well-intentioned users and generated automatically by naviga-
tions belonging to potential or attempted attacks. This latter
probing of the application can be performed using a dedicated
tool. It is worth mentioning that each log file contains, among
others, basic information about the HTTP requests and the
rules that the WAF has applied in the request corresponding
to the log file. These rules are incorporated as information in
all the logs generated in the system.

Pre-processing of the logs: We had to face the granularity
of the registered data since the applications generate low-level
records based on HTTP requests. A model generated from
the navigation through a website without any refinement is
unstructured (a.k.a., spaghetti processes). Figure 2 shows a
model discovered using a log from the example applications
that is described in Section IV.

Due to the complexity of the web application and the fact
that usually, there exist accessible URLs that correspond to
elements that are not relevant for vulnerability analysis, we
have defined filters that allow us to disregard access to URLs
of that kind. Therefore, in contrast to what is described in [10],
our method incorporates a data filtering stage and a strategy
for identifying critical areas to narrow the analysis phase. A
critical area is defined as a set of activities around certain parts
of the web that may involve a possible risk for the system, such
as a login procedure. Another point to consider is that the logs
available for the study do not contain fields that refer to user
sessions. Different heuristics can be considered to obtain that
information from the logs using the IP values, the elapsed time,
or the browser. If the system allows more than one user, this
data could also identify the application user. One option is to
consider that if the HTTP requests registered in ModSecurity
come from the same IP, the same user interacts with the system
in a work session. We followed this approach, and a deeper
exploration of this problem is left for future work.



Fig. 2: Model discovered from a well-intentioned navigations on a site.

Identification of deviations: The conformance checking
procedure identifies deviations from a normative model. It
compares a normative model with an event log of the same
process, checking if the actual execution of the process (i.e.,
the event log) conforms to the model. A widely used deviation
measure is the notion of each trace’s fitness value, which
takes value in the range 0..1. The lowest fitness value (0)
corresponds to the worst possible alignment case (the log does
not conform to the model), and the highest (1) corresponds to
a perfect alignment without penalties (the log fits perfectly
with the model).

III. MINING WEB APPLICATION BEHAVIOR FROM
MODSECURITY LOGS

As mentioned in the previous section, we make extensive
use of logs generated by the WAF ModSecurity for analyzing
deviations from the expected behavior of web applications.
In the first place, we use logs generated from regular use
to discover a corresponding normative model using process
mining algorithms. That model shall be the typical behavior
reference to compare when analyzing logs that might register
abnormal or malicious web system uses.

In what follows, we proceed to describe the security-
oriented PM method depicted in Figure 3, which constitutes
an adapted formulation on the one presented in [10].

A. Log-based application behavior modeling

On “Step 1: Specification of the system behavior” depicted
in Figure 3, we configure the WAF ModSecurity to generate a
log file for each HTTP request sent to an application. We
developed the tool ParserModSecurity [12] a Java console
application that can be used to transform a ModSecurity log
into a corresponding XES log, which in turn can be handled by
PM tools. In Listing 1 we show a fragment of a ModSecurity
log file corresponding to a given HTTP request. Section A
shows the client’s IP, section B the method and resource
associated with the request (in this case, a catalog search),
section F the response header (200, a successful request), and
section H the rules activated by ModSecurity (in this particular
case there is no rule).

Listing 1: Example ModSecurity log (excerpt).
--4c358d0e-A--
[19/Jul/2020:17:20:08+0000]

XxSAxawRAAQAAAAM9LEAAABL 172.17.0.1
55218 172.17.0.4 80

--4c358d0e-B--
POST /catalogsearch/result/?q=aa
Host: modsecurity-magento
--4c358d0e-F--
HTTP/1.1 200 OK
--4c358d0e-H--

The tool ParserModSecurity transforms this event into
the XES fragment shown in Listing 2. The attribute
org:resource corresponds to the user’s IP who made
the request. The attribute time:timestamp contains the
date and time in which the request was made. The attribute
concept:name represents an activity. It corresponds to
the specific web resource requested by the user. Its value
provided by ModSecurity corresponds to the original URL of
the requestor. However, as will be explained later, we perform
a grouping transformation to simplify requests. The attribute
debug:originalUri corresponds to the original URL of
the request. Finally, idRules contains a comma-separated
list of all the ModSecurity rules activated by the request. In
the example, the H section is empty since this section generates
logs with valid behavior that do not generate rules. Each trace
corresponds to an execution of a user, which corresponds to a
particular IP (i.e., the case id), to distinguish different users.

Listing 2: Example XES log (excerpt).
<event>

<string key="org:resource" value="
172.17.0.1"/>

<date key="time:timestamp" value="
2020-07-19T17:20:08"/>

<string key="concept:name" value="
POST:catalogSearchResult"/>

<string key="debug:originalUri" value=
"POST:/catalogsearch/result/?q=a"/>

<string key="idRules" value=""/>
</event>



Fig. 3: Method overview.

Suppose an HTTP request activates a ModSecurity rule
(within the H section). In that case, that rule is added in the
idRule attribute of the XES event, and an event is created
that represents such activation. These actions allow explicit
the activated rules in the generated models and intentionally
penalize one such rule when executing conformance checking
against a normative model, affecting its fitness values nega-
tively. It is assumed that a model generated with information
from well-intentioned users does not contain that kind of rule.

In Listing 3 we show the event of Listing 2 representing
the request of the resource POST:catalogSearchResult
together with the activation of two rules. In such cases we also
add two more rule events RULE:Id=1 and RULE:Id=2.

Listing 3: Example XES log with rules (excerpt).
<event>

...
<string key="concept:name" value="

POST:catalogSearchResult"/>
...
<string key="idRules" value="1,2"/>

</event>
<event>

<string key="org:resource" value="
172.17.0.1"/>

<date key="time:timestamp" value="
2020-07-19T14:27:38.038-0300"/>

<string key="concept:name" value="
RULE:Id=1"/>

<string key="debug:originalUri" value=
"RULE:/catalogsearch/result/?q=aaa"
/>

<string key="idRules" value=""/>
</event>

<event>
<string key="org:resource" value="

172.17.0.1"/>
<date key="time:timestamp" value="

2020-07-19T14:27:38.038-0300"/>
<string key="concept:name" value="

RULE:Id=2"/>
<string key="debug:originalUri" value=

"RULE:/catalogsearch/result/?q=aaa"
/>

<string key="idRules" value=""/>
</event>

It should be noted that each event, which is the execution
of an activity by a user in a given time, is contained within a
trace in the XES log, which represents an execution of a user
(with a concrete IP), to distinguish different users. Likewise,
there may be several traces corresponding to the same IP of the
same user, since in our proposed method, as shall be explained
later, the traces are separated by critical areas.

B. Security analysis-oriented log selection

Once the logs have been generated, on “Step 2: Prepro-
cessing of the logs” depicted in Figure 3 we filter information
that is not relevant for the analysis, and that additionally
might prevent the correct working of PM techniques. Three
procedures, of different nature, are carried out: i) records
that are not relevant for the security analysis are filtered out,
ii) certain logs are unified into a single activity (e.g., loop)
or into a single record type (e.g., collapsing a certain set of
web pages), and iii) only certain parts of the web that are
considered critical are considered.



Filters of different nature can be applied:
• Static web application elements such as images, CSS

style sheets, and JavaScript files are filtered since they
do not provide information about user behavior on the
web application.

• It is interesting to filter out certain intermediate requests
that do not add value to the analysis. An example of
this is search fields, which are very common on AJAX
websites.

• It is often of interest to filter ModSecurity rules applied
to a certain dataset known to have no impact on web
application security.

ParserModSecurity tool applies these filters by defining
rules using JSON configuration files. Figure 4 shows an
example of a configuration rule for static elements.

Fig. 4: Filter rule example in ParserModSecurity

We then group URLs that are not interesting to be con-
sidered as separate events. The activities are being identified
from URLs, but some have parameters that, if not previously
processed, will be reflected in the model as different activities.
For example, the following URLs are generated from viewing
a review of two different products on one website:

/opinion/product/id/699/
/opinion/product/id/700/

ModSecurity generates two different activities, but the in-
terest to be modeled is consulting the opinion of a product,
not the specific product. We group both into a single activity
to display the opinion of a product.

Original URLs Grouped URL
/opinion/product/id/699/ productOpinion
/opinion/product/id/700/

We finally refine the log by focusing on what we call
critical areas, defined in Section II. Despite the filtering and
groupings carried out, the models generated from these logs
are complex. Typically, a web application has several links that
can be accessed from many different places. In this case, it is
impossible to identify a predefined process or user behavior.
Given that the focus of our research is to detect evidence
of inappropriate behavior, which could potentially have the
objective of violating some security properties, we have chosen
to focus on portions of the web application. We select certain
traces that may involve a possible risk for the system (i.e., a
critical area), such as a login procedure, access to input fields,
or bank transactions. Activities can also be selected based on
whether they have triggered ModSecurity rules.

We generate a trace for each critical area. For example, to
analyze the behavior of users when using a functionality, such
as consulting an item on the site, we take a fixed number
of previous events and the same fixed number of events

following the execution of the functionality mentioned above.
This number is called the window of the critical area. For
example, if we consider the trace

a1 a2 a4 a5 a7 a3 a9 a10 a11 a12

and we define the critical area around an activity a3 with a
window of length 2, we get the trace

a5 a7 a3 a9 a10

Repeated activities are not considered while counting the
previous and subsequent activities. If we consider the trace

a1 a2 a2 a3 a4 a5 a5 a5 a6 a7

and we define the critical area around an activity a4 with a
window of length 2, we get the trace

a2 a2 a3 a4 a5 a5 a5 a6

In this case, the resulting trace ends up having a length of
8 instead of 5 if there were no repeated activities. This rule
avoids the loss of pre or post-information due to loops.

The activated rules are not counted for this window either.
Therefore, if we consider the trace

a1 a2 a3 a4 a5 r1 a6 a7

and we define the critical area around an activity a4 with a
window of length 2, being r1 an activated rule, we get the
trace

a2 a3 a4 a5 r1 a6

Using these rules for filtering critical areas, we can generate
an XES file for each such area. Notice that we can extract
multiple critical area logs from the ModSecurity log registered
from a user since the user can cross an area many times. It
generates more extensive but focused event logs.

C. Log-based generation of normative models
On “Step 3: Generation of a normative model” depicted

in Figure 3 we use the ProM framework to apply PM
techniques to discover process models from the logs and
perform conformance checkings. More precisely, we use the
Inductive Miner Infrequent [5] algorithm. This variant of the
classical Inductive Miner is recommended because, in addition
to guaranteeing the generation of a sound model, it filters
infrequent behavior in every step whose result is a flower
model, which significantly improves its limitation to generate
adequate models and its precision. The precision metric could
also be used together with fitness on the normative model after
generating it to have a more strong quality assessment.

To model behavior within a critical area, it is necessary
to define the corresponding window. If the window is too
small, the appropriate behavior before and after the critical
event might not be observed. If the window is too high, the
logged events might occur too far from the critical event and
do not contribute to understanding that event. Thus, we used
an empirically inspired criterion to select those values: the
window chosen is the one that obtains the best fitness value
concerning the normative model.



D. Obtaining (almost)real behavior logs

Once the normative model has been generated, we can
compare it against the actual observed behavior of the web
application and identify possible deviations concerning the ex-
pected behavior. If there are deviations, they must be analyzed
in greater detail since they could imply a potential attack on the
system. Using the WAF ModSecurity, on “Step 4: Obtaining
real behavior logs” depicted in Figure 3, we generate logs of
everyday use of the system by users. It is enough to have the
WAF correctly configured.

We propose to generate two sets of logs to perform confor-
mance checking against the same normative model and study
the results. The first one is a set of logs obtained from the well-
intentioned use of the site, a different one from the one used in
the discovery stage. We can verify that traces are different from
those who allow the normative model discovery, with high
fitness values when performing conformance checking against
it. The second one is a set of logs obtained from attacks.
With this objective in mind, we use the OWASP Zap [13]
tool, an open-source security scanner that provides various
functionalities and modes of operation. In particular, its attack
mode allows specifying a website URL, and the tool scans the
site and executes malicious requests, testing different types of
attacks. Then, the logs generated by ModSecurity constitute
an attack log.

E. Preprocessing of the logs and identification of deviations

On “Step 5: Preprocessing of the logs” depicted in Figure 3,
the tool ParserModSecurity takes as input ModSecurity logs
and returns as output XES logs, which are suitable for applying
PM techniques within ProM. The parser also uses the filtering
and grouping techniques described above according to the con-
figuration that is set. The next step is to perform conformance
checking of these logs against the normative model. Thus, the
parser must have the same configuration, i.e., the same filtering
and grouping strategies.

After having generated and processed the logs, on “Step
6: Identification of deviations” depicted in Figure 3, we use
ProM to perform conformance checking using alignments [14].
It allows us to see the deviations of the logs according to the
normative model. It should be considered that there will be
a log per user, group of users, or critical area, expanding the
type of studies that can be carried out.

We consider the following data to interpret the results and
identify potentially malicious behavior:

• Average fitness value of traces.
• Standard deviation of the fitness of traces.
• Minimum fitness value of traces.
• Length of traces.

The first value to consider is the average fitness of the log.
An average fitness value can be high (higher than 0.8) and its
standard deviation low, and it can also be a log that implies an
attack or attempted attack on the site. Here are some reasons
why this can happen:

• Many attacks are carried out using the HTTP request
body, and that information is not used in the generation
of the logs, so these requests are not properly reflected.

• The attacks may involve many requests to the same
activity or set of activities, represented as loops in the
model. Still, the model is not detected as something
wrong, although it may be suspicious behavior.

• By grouping URLs, malicious URLs can be grouped into
valid URLs, and, in this way, those traces have their
correspondence in the normative model, even if this is
incorrect.

• There can be only some traces with invalid behavior. As
these are only a few, this may not affect the average
fitness. For these cases, it is necessary to see each trace’s
fitness detail or consider the log’s minimum fitness to
detect the traces with undesirable behavior.

The fitness will be low in the case of an attack where
ModSecurity rules are activated. As they are added in the
traces as events, the value of fitness will be low since, in
the normative model, there are no modeled rules. Likewise,
if the average fitness is low, it does not necessarily imply a
log with invalid behavior. It is possible to have a low fitness
value because the behavior of the log was not modeled in the
normative model, but it is proper behavior.

The following steps must be followed to interpret the results
obtained from performing the conformance checking of the log
against the model:

• If the minimum fitness value:
– Is low, so the trace with minimal fitness should be

analyzed, and look for more traces with low fitness, to
analyze if they are attack cases.

– Is high (close to 1), it may or may not be an attack. A
more in-depth analysis of the cases should be carried
out to ensure that it is not a malicious log.

• If there are very long traces, it should be verified if it is
due to an excessive amount of loops or rules activation. It
can be malicious behavior in both cases, so they should
be analyzed in more depth.

IV. EXPERIMENTATION

We present the results of experiments we have carried
out concerning applying the proposed mining method on
a concrete web application. The experiment’s target is the
Magento e-commerce platform [15], an open-source platform
that offers a flexible shopping cart system. It is written in PHP
and uses a MySQL relational database.

A. Generation of the normative model

For the generation of the normative model, we have de-
ployed and made accessible on the Internet an instance of
the Magento application. Approximately 60 users accessed
the site, performing non-malicious browsing of the application
and generating about 22.500 Modsecurity audit log files that
correspond to HTTP requests made by those users.

Then, using ParserModSecurity, the generated logs were
transformed into XES format, filtered out, and grouped.



In the first place, URLs involving requests for CSS,
JavaScript, and image files were filtered out. Additionally,
each URL associated to a GUI-specific element that does not
provide information about user behavior on the site, was also
filtered. Example of that kind of resource are static elements
that start with either of the following formats:

/pub/static/
/customer/section/

page cache/block/render/

URLs representing equivalent actions over the system were
grouped into a single abstract activity representing those
actions. This grouping allows us to reduce spaghetti models,
like the one depicted in Figure 2, which would prevent reliable
results out of a conformance checking. As an example, one of
the groupings performed relates to a particular kind of query
on the site menu. In that menu, product categories are exposed
and classified into subcategories, as shown in Figure 5. The
corresponding URLs were grouped into two abstract activities:
menuCategory and menuSubcategory, for URLs providing
access to categories and subcategories, respectively.

Fig. 5: Categories present in the Magento site, e.g., within the
Men category there is Tops category, and within it there is
Jackets category.

As the final step of the preprocessing step, we have de-
fined several critical areas that were considered especially
vulnerable to possible attacks. We have used the OWASP
ZAP [13] tool to generate attacks on the site. It is possible to
spot activities that significantly triggered ModSecurity rules,
like the addProductToCart related to adding a product to the
site’s shopping cart catalogSearchResult concerning searches
in the products catalog. We decided to study critical areas
surrounding both activities. For this, it was necessary to define
the window of activities that make up these critical areas. The
objective is to have a window value that is not too small for the
model to have a single activity, nor too large that the critical
zone becomes meaningless. The larger is the trace, the fewer
related events are recorded with critical functionalities.

Table I shows the lengths of the traces for the addProduct-
ToCart functionality using different windows. The greater the
window, the greater the average and maximum length of the
traces. For example, with a window of length 10, the maximum
trace length is 40 events, quite far from the mean of 22, close
to the maximum number of different activities in a log with
a window of length 10. We took 10 as the maximum length
since trace length can reach high values with larger windows.

TABLE I: Lengths of the traces used for the addProductToCart
functionality w.r.t. different window length.

Trace lenght
Window Avg Min Max
1 3.47 3 9
2 5.81 4 11
3 8.1 5 20
4 10.36 6 26
5 12.47 7 29
6 14.42 8 21
7 16.31 9 24
8 18.16 9 36
9 19.9 9 38
10 21.55 9 40

Fitness values in Table II have been obtained from con-
formance checking performed between the normative model
generated for each window and the same log that generated
it, bounded to that same window. We considered the three
window values with the highest average fitness: 6, 8, and 9
with values 0.94, 0.96, and 0.94, respectively. These three
values are very similar, and it would be acceptable to use any
of them. In this case, the model of a window of length 6 was
chosen because it had smaller traces and a greater number of
cases with a perfect fitness of 1. Figure 6 shows the Petri net
model obtained for a window of length 6, using the Inductive
Mining Infrequent algorithm executed in ProM.

TABLE II: Fitness values of the traces used for the addPro-
ductToCart functionality w.r.t. different window length.

Trace Fitness

Window Avg/
Case Max Min Std

Deviation
Cases with
value 1.0

Total
cases

0 0.94 1 0.50 0.14 112 137
1 0.87 1 0.40 0.17 74 137
2 0.72 1 0.38 0.15 15 137
3 0.92 1 0.56 0.11 80 137
4 0.87 1 0.50 0.13 46 137
5 0.84 1 0.50 0.14 39 137
6 0.94 1 0.57 0.08 73 137
7 0.91 1 0.47 0.10 47 137
8 0.96 1 0.59 0.07 72 137
9 0.94 1 0.57 0.08 60 137
10 0.82 1 0.45 0.15 30 137

Although there is no formal definition for differentiating
structured from unstructured processes, a widely used rule is
to verify that the conformance checking is greater than 0.8
[16]. In the case of addProductToCart, its fitness value is 0.94,
so by this rule, it could be assumed that the resulting model
is structured enough. In the case of catalogSearchResult, the
average fitness for all windows is less than 0.8.



Fig. 6: Petri net model corresponding to the addProductToCart log with window of length 6

When considering the number of traces that repeat the
same path in the model, it can be noted that access to
the addProductToCart functionality is more restricted than
catalogSearchResult since to add a product to the cart, cer-
tain preconditions must be met. With a sufficient number
of traces, which varies depending on the expected behavior,
more heterogeneous traces can indicate habitual behaviors that
are not recorded. Also, more homogeneous traces give the
guideline that if other behaviors exist, they will correspond to
exceptional cases. In the case of addProductToCart, 132 traces
out of 137 have a common path, while in the case of cata-
logSearchResult, 52 traces out of 63 have a unique path. As a
result, the lower average fitness value of catalogSearchResult
does not ensure reliable results. The problem is that it does
not has a process-like behavior but single and heterogeneous
events that are not easily evaluated through PM. In this case,
another kind of security analysis should be carried out, which
is left as future work. We omit the analysis of catalogSearch
in the rest of the sections.

B. Identifying deviations from the normative model
As already mentioned, we have performed several execu-

tions of the OWASP ZAP [13] for injecting malicious requests.
Those requests were audited and registered using ModSecurity,
giving rise to what we call the ZAP log.

We have also generated what we call a Valid log. It was
obtained from registering navigations of the site that make
regular and straightforward use of it. These navigations are
similar to those carried out by most of the users who visited
the site from which logs were generated to create the normative
model (called the Users log).

Moreover, the Test log from navigations related to unusual
behavior within the website, such as browsing without follow-
ing the order indicated by the user interface, pretending to be
a testing user. These navigations do not involve an attack on
the site. Still, as they represent behavior that is unlikely to be
included in its entirety by the mandatory model, they could
be identified as incorrect and potentially malicious behavior.

An additional log (Valid with Attack) was created from the
Valid log, adding an attack trace extracted from the ZAP logs.
In the case of addProductToCart, this trace contains 97 events,
of which 50 correspond to activated rules. This log is used to
evaluate how sensible the proposed method is, i.e., if it can
detect outliers within a large log with valid behavior.

Table III shows the different logs, their total number of
traces, and the maximum number of events within a trace.
All the logs mentioned above were then processed using
ParserModSecurity, using precisely the same configuration
settings as the generation of the normative model.



TABLE III: Max and total length of the traces of each log.

Log Max. events in a trace Total traces
Valid 17 7
ZAP 141 323
Test 17 6
Valid with Attack 97 8
Users 31 137

We performed conformance checking using alignments of
the normative model against the logs. To identify whether
the logs present attacks on the site or not, we consider their
fitness value and standard deviation. These values for each
log corresponding to the addProductToCart functionality are
shown in Figure 7 and Figure 8

Fig. 7: Average/case fitness value of each log.

Fig. 8: Fitness standard deviation of each log.

As shown in Figure 7, the minimum fitness of the Valid log
is high, and its standard deviation (in figure 8) is very low.
It indicates the proper behavior of the activity registered by
that log. As shown in the table III, no long traces could imply
activation of rules or iterations on the same activity.

On the other hand, the minimum fitness is very low for
the ZAP log, so the particular trace and the traces with low
fitness should be better analyzed, as this is likely an attack on
the site. In addition, its standard deviation is higher than the

rest of the logs, indicating varied behavior. That is, the fitness
values are not uniformly distributed concerning the average.
It implies possible suspicious behavior. Table III also shows
that the maximum length of a ZAP trace is much longer than
the others. Looking for the longest trace, it is easy to see that
it corresponds to ModSecurity rules events.

The remaining logs (Test and Valid with Attack), have a
minimum fitness between 0.47 and 0.59, so must be analyzed
further. The Valid with Attack log has a maximum trace length
greater than the User or Valid logs. Furthermore, as a window
of length 6 activities was defined, presenting a trace of length
97 could be because it contains many iterations of activities,
which may be suspicious, or ModSecurity rules were activated
since neither the loops nor the rules count for the window. In
this case, there is a single trace longer than the others in which
many ModSecurity rules were activated. The Test log has a
maximum length of trace with a value of 17, which indicates
no large loops or a trace that could activate many rules. It may
be grasped as behavior not identified in the normative model.
In that case, the decision is whether or not such behavior will
be allowed on the site. Loops represent repeated access on the
same activity or set of activities, where specific parameters of
the request may vary. It could imply a possible attack on the
site since it is not usually a typical site user’s typical behavior.

The logs we have just presented and discussed might be
separated into logs that contain attacks (ZAP and Valid with
Attack) and logs that do not (Users, Valid, and Test). One
question is whether that separation could be defined as the
analysis of those logs’ fitness values. The average fitness value
is not helpful in logs with valid mixed traces and a few traces
with an attack. They can even have an average fitness greater
than some log without attacks but with unusual behavior. For
example, the average value of Valid with Attack is greater than
the one of the Test log. On the other side, the logs Users, Valid,
and Test have a minimum fitness value of 0.57, 0.86, and 0.59,
respectively, while the logs ZAP and Valid with Attack have a
minimum fitness value of 0.34 and 0.47, respectively. It seems
to suggest a differentiation criterion.

V. DISCUSSION

Although PM techniques are promising in detecting mali-
cious behavior, some limitations need to be further studied.

The experience shows that web applications are subjected to
corrective and preventive maintenance throughout their lifes-
pan. Even if what we are presenting in this work are techniques
that help spot vulnerabilities of running applications, we are
convinced that security must be present in applications by
design. In particular, the use of PM techniques to perform
vulnerability analysis of applications may greatly benefit from
the use of design criteria that helps to avoid the generation
of spaghetti models like the ones illustrated in this paper. For
instance, Web applications allow accessing some functionality
from many places simultaneously, giving rise to that kind of
behavior, making it challenging to extract a common behavior
pattern. For this reason, before exposing this kind of func-
tionality, the developers must consider the balance between



usability and security. For example, a designer could consider
structuring a process-like behavior around critical areas, e.g.,
requiring login before adding a product to a cart. Nevertheless,
a challenge is identifying critical areas in advance, in which
it must be considered common security risks and the main
business interest for the organization.

Without proper preprocessing, we are convinced that a dis-
covered reference model can provide no helpful information.
It is essential, for instance, to correctly group the URLs in the
log preprocessing stage since this can be a critical point in
determining whether some attacks are detected. On the other
side, the grouping of URLs may give rise to problems since, in
some cases, information about specific attacks might be lost. A
complementary approach could be moving event log activities
from low-level to high-level, following the approach in [17].

As illustrated with the radius of a critical area, there must be
an adjustment phase to define the most appropriate granularity
for grouping events. Another issue is that, as was the case in
[10], we have assumed that the IP determines the user session
(i.e., the case id within an event log). However, a common
strategy of attackers is to change such IPs to hide their identity.
In real environments, it requires more advanced heuristics to
identify the user session considering, for instance, whether
the request comes from the same browser, the time elapsed
between events, or the parameters of a request. It is an open
problem within the community of PM [18].

Concerning the identification phase, not every attack can be
identified from the URLs that the user access. For example,
attacks are carried out on the bodies of HTTP messages that
present valid URLs, and therefore, they are considered valid
activities. Moreover, loops on activities are not detected by
analyzing the fitness of models. However, some attacks try to
exploit some vulnerabilities by performing multiple requests
to the same resource. For this reason, the length of the loops
must be considered in the log analysis since it is a way to
detect suspicious behavior. These aspects can be indirectly
seen in both cases by adding ModSecurity triggered rules as
events within a log. When a log presents rules as events, the
conformance checking presents the worst fitness results.

The techniques we have explored so far do not make it
possible to provide decisive arguments to identify whether a
log contains attacks or not. However, we are convinced that
they constitute an excellent means to approximate the correct
characterization of the application´s use and behavior. If the
logs do not fit the model, further analysis must help identify
an attack or unspecified behavior. If they are well suited, it is
more likely that they represent inappropriate behavior.

VI. CONCLUSION AND FURTHER WORK

In this work, we have presented initial results regarding the
application of PM techniques to improve the security of web
applications. Our working thesis is that the well-known benefit
of applying PM to discover the usual behavior of application
users can be used to identify possible vulnerabilities and
malicious activity directed towards the same application.

We have adapted previous work by integrating a Web Ap-
plication Firewall that makes it possible to generate security-
enriched logs that register interactions with a web application.
In particular, we provide the basis to define a normative
model using a discovery algorithm from the logs generated
by the WAF ModSecurity. We also put forward criteria that
guide to perform a security-oriented selection of the activity
registered by ModSecurity. We identified critical areas to focus
the security analysis, and we also incorporated into the logs
the ModSecurity rules that were activated. These suspicious
interactions with the application allow considering potential
behavioral deviations during conformance checking.

As discussed in the previous section, there are several
research problems to pursue as future work. Most notably, the
identification of user sessions from attack logs and enhancing
the methodology for analyzing attacks that are not detected by
just using fitness as a metric.
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