
Improving Web Application Firewalls through
Anomaly Detection

Gustavo Betarte∗†, Eduardo Giménez†, Rodrigo Martínez∗† and Álvaro Pardo‡
∗Instituto de Computación, Universidad de la República, Uruguay

†Tilsor SA, Uruguay
‡Departamento de Ingeniería Eléctrica, Universidad Católica del Uruguay, Uruguay

Email: [gustun,rodmart]@fing.edu.uy,[gbetarte,egimenez,rmartinez]@tilsor.com.uy, apardo@ucu.edu.uy

Abstract—Web applications are permanently being exposed
to attacks that exploit their vulnerabilities. In this work we
investigate the application of machine learning techniques to
leverage Web Application Firewalls (WAF)s, a technology that is
used to detect and prevent attacks. We put forward an approach
of complementary machine learning models, based on one-class
classification and n-gram analysis, to enhance the detection and
accuracy capabilities of MODSECURITY, an open source and
widely used WAF. The results are promising and outperform
MODSECURITY when configured with the OWASP Core Rule Set,
the baseline configuration setting of a widely deployed, rule-based
WAF technology.

Index Terms—Web Application Firewalls, Machine Learning,
Anomaly Detection, One-class Classification, N-gram Analysis

I. INTRODUCTION

A web application is a piece of software, based on a
client-server architecture, that embodies a coordinated set of
functions. The information flowing between the client, which
runs on the user’s web browser, and the application server is
transmitted using the HTTP protocol. It is quite usual for the
code of a web application to contain vulnerabilities like the
ones listed and described in the OWASP TOP 10 [1].

A Web Application Firewall (WAF) is a piece of software
that intercepts and inspects all the traffic between the web
server and its clients, searching for attacks inside the HTTP
packet contents. Once recognized, the suspicious packets may
be processed in a different, secure way, for instance being
logged, suppressed or derived for processing. MODSECU-
RITY [2] is an open source, widely used WAF enabling real-time
web application monitoring, logging and access control. The
working of MODSECURITY is driven by rules that specify the
contents of the HTTP packets to be spotted and it supports the
configurations of both positive and negative security models.
In this work we have focused in a negative model, that is, the
firewall shall allow all traffic to pass except what is known to
be malicious.

For tackling the most usual vulnerabilities MODSECURITY
offers a default set of rules known as the OWASP Core Rule
Set (OWASP CRS) [3]. An approach only based on rules though
has some drawbacks: rules are static and rigid by nature, so

This research was partially supported by a grant given to Rodrigo Martinez
from the ICT4V center (http://ict4v.org) and was done in the context of projects
WAFINTL and FMV_1_2017_136337 (ANII).

the OWASP CRS usually produces a high rate of false positives,
which in some cases may be close to 40% [4]. As the intended
use of MODSECURITY is to block attacks, such a high false
positive rate would potentially lead to a denial of service of
the application. Rule tuning, however, is a time consuming
and error prone task that has to be manually performed for
each specific web application. In traditional networks firewalls
and IDS, the approach based on rules has been successfully
complemented with other machine learning-based tools which
provide higher levels of flexibility and adaptability. Those
approaches take advantage of sample data, from which the
normal behavior of the web application can be learned, in order
to spot suspicious situations which fall out of this nominal use
(anomalies), and which could correspond to on-going attacks.
The work we present in this paper contributes to improve the
detection capabilities of MODSECURITY with such anomaly
detection techniques.

The structure of the rest of the paper is as follows: Section II
provides some background and puts forward our proposal to
enhance MODSECURITY using machine-learning techniques.
Section III presents the two complementary learning models
that we use to ground a statistical WAF. Then, Section IV
describes and discusses the outcomes of the experiments.
Section V reviews related work. Further work and conclusions
are presented in Section VI.

II. BACKGROUND AND PROBLEM STATEMENT

In order to enhance the detection and accuracy capabilities
of MODSECURITY configured using the OWASP CRS rules out
of the box we have first experimented with a mechanism that
integrates one-class classification. This amount to combine two
experts with the objective of classifying a request. When both
experts agree (both say valid or attack) then the result is
straightforward. In the case the one-class approach classifies a
request as an attack we prioritize the answer of MODSECURITY
given that the OWASP CRS rules embody the know-how on
attacks. This integration decision also allows us to have a well
known mechanism to tune our WAF in the case we find a false
positive: we need to modify MODSECURITY rules that specify
that this request is not an attack. This rule tuning is exactly
the same as the one used with the OWASP CRS nowadays.
Finally, in the case that one-class classifies the request as

valid and MODSECURITY as an attack we prioritize one-class
since OWASP CRS is known to have high false positive rates.
This approach has shown to adapt quite well to the scenario
where there is not available a specific training dataset for
the application. We train the one-class classifier using several
datasets and the resulting classification model can be used to
protect different web applications. The main advantage is that
it is easy to deploy and capable of adapting to changes in the
web application.

However, the detection capabilities provided by the one-
class approach do not adapt so well to prevent both zero-
day attacks and attacks that exploit specific vulnerabilities
of an application, in particular those involving suspicious
input. This is why the second approach we have investigated
focuses on characterizing which are the expected (valid) input
values for a web application and classifying as a potential
attack any anomalous input supplied to it. Furthermore, this
positive characterization approach only requires a collection of
unlabeled HTTP requests produced by friendly users in order
to train the WAF.

For this second approach, we have experimented with ana-
lyzing the frequencies of n-grams in the application inputs up
to some n. Our experiments show that such technique provides
higher performance rates than the other tested ones. However,
the price to pay for this higher flexibility and performance
is that it requires to have an application specific dataset with
valid request to train the n-gram model. A second drawback
for the positive characterization of the web application is that
in some cases there is no a priori expected behavior for some
pieces of input [5]. For example, the values of a user password
should not have any particular expected bias. In this cases it
is necessary to adopt the symmetric approach, and search for
attack signatures on passwords according to the current state
of the art. This amounts to search for carefully selected tokens
which have been extracted from a labeled training dataset and
representing the knowledge of the security expert on the current
attack vectors, as it is done in the one-class classification
approach. This technique deems the HTTP request as valid by
default when it cannot be recognized as an attack according
to the previous training. This way of coping with unbiased
input provides a second level of complementary between the
one-class and the n-gram analysis approaches.

In summary, if we need to fast deploy a WAF to pro-
tect a web application without having a specific dataset or
the web application changes constantly (e.g. public website
powered by a content manager), we propose to use the one-
class approach. In this case (Scenario I) we would like to
address the following question: Is it possible to build an attack
detection system learning from training data collected from
other web applications? A second question in this scenario
is related to MODSECURITY: Can we improve the results of
MODSECURITY using anomaly detection methods? That is,
can we reduce the number of false positives (FP) generated
by MODSECURITY? In the scenario where we need to protect
a critical web application where high levels of security are
required, and the application’s changes are controlled, we can
deploy the n-gram approach. In this second case (Scenario II),
it shall be required to have a software testing phase before

each new deployment of the application, so specific training
data will be available. In this latter scenario, we would like to
understand the attainable performance of anomaly detection
methods against that of MODSECURITY.

III. LEARNING MODELS

The proposed models for anomaly detection follow the stan-
dard sequence of pre-processing of the HTTP request, feature
extraction and model learning using a training set T .

The requests are first pre-processed to decode the infor-
mation they contain. Then, a set of features, related to the
occurrences of a collection of substrings or tokens in the
request, are extracted. The model learns the distribution of
token occurrences in order to classify new request as either
valid or abnormal. Together with this classification the model
provides a score of normality.

The rest of this section is devoted to describe the two
different models: one-class classification and n-gram analysis.

A. One-Class Classification

In this approach, during the pre-processing phase decodifica-
tion is carried out together with the filtering of request headers
that are used to exchange contextual information between the
user-agent and the server. All information contained in headers
that are specific to the protocol, such as cookies, proxies and
IP, which do not represent user behavior and should not be
considered to infer application behavior, are filtered out.

Following [6] we have relied on the experience of a security
expert to define the features that capture the properties of
well- known web application attacks. The features defined
includes symbols (p.e. <,=, |) and tokens (p.e. select, passwd).
A complete list of the features used could be found in [7]. We
apply a bag-of-words model where each document (in our case
each request) is represented as a bag of those words. Since we
are modeling the valid class, we expect that few of those words
will be present in each request.

A well known method to build a one-class classifier is to
estimate the probability density function (pdf) of the training
data and to estimate a threshold to segment normal and
abnormal instances. Among the existing methods to estimate
the pdf, Gaussian Mixture Models (GMM) is one of the most
common one. In our case, each component of the obtained
GMM constitutes a cluster that captures the distribution of valid
requests. We use the Expectation Maximization (EM) algorithm
[8] to estimate the parameters of the GMM and the number of
components (clusters). To measure the distance of a feature
vector to each cluster (Ck) we use the Mahalanobis distance:

dist(xi,Ck) =
√

(xi − µk)Σ−1k (xi − µk) (1)

If one of the dimensions has a standard deviation of 0, the
Mahalanobis distance can not be calculated. To solve that, we
regularized the covariance matrix adding ε ∗ Id, where ε is the
smallest standard deviation in diag(Σi) different from 0 and Id
is the identity matrix. This regularization allows the observation
of new values on requests not seen in T .

Before being able to do request classification, we need to
estimate the threshold of each cluster. The threshold of the

cluster is defined by analyzing the distribution of the distances
of each instance of T that where assigned to the cluster. Given
that all requests assigned to a cluster (as a result of using
EM) can be represented by a component of the GMM, we
approximate the distribution of the distances with a normal
distribution. We define distk to denote the mean of all distance
of xi to Ck where xi ∈ Ck and stdk to denote the standard
deviation of the distances of xi ∈ Ck. Finally, the threshold
tCk

is defined as λ[distk + 10 ∗ stdk], with λ ∈ (0, 1]. The
use of dist and std makes it possible to have in the model a
specific threshold for each cluster that depends directly on how
the instances that belong to that cluster behave. The constant
factor 10 was derived using different dataset in a way that when
λ = 1 the distance for all xi ∈ Ck is less than tCk

. Varying the
threshold, by multiplying it by a constant λ, let us change the
model’s precision. This parameter allows us to have different
operational points. The classification of a new request starts
by calculating the Mahalanobis distance to each cluster. If any
of the distances is lower than the corresponding threshold the
request is classified as normal, otherwise is classified as an
attack.

In real life applications, typically we only have valid re-
quests. In this case, one way to define the operational point
is to set the amount of false positives that we are willing
to accept. When we do not have application specific dataset,
a mixture of several datasets from different web applications
can be used. In Section IV we will present the results of this
approach (Scenario I) to show that good performance scores
can be achieved.

B. Anomaly detection using n-grams

We now turn to present our second approach, which pos-
itively characterizes the normal behavior of each application
using n-grams as tokens.

A well-known technique for identifying the language of a
piece of text is to measure the relative frequency of each
sequences of n consecutive tokens from the alphabet used in
the text (n-grams), for example, ASCII characters, words, etc.
This provides a tokenization procedure that can be uniformly
applied independently from the language or text structure.

We try to exploit as much as we can from the HTTP structure,
computing a specific n-gram frequency distribution for each
CGI parameter and HTTP header (both referred as fields in
the sequel). The n-gram frequency distribution provides the
language signature of each field x. We consider the n-grams
up to a given length n and count them after normalizing the
text by uncapitalizing letters, removing accents and replacing
digits by the capital letter “N”. The model is enriched with an
additional attribute, namely, the number of characters (length)
of each field x. This additional attribute is also a good indicator
for code injection attacks, as they are likely to increase the
expected field length.

Let M be the distribution of n-gram frequencies for each
field x, computed from the training set T . In order to test
a given HTTP request r, the WAF computes the frequency
fr(x.z) of each n-gram z of field rx. If x is not defined in
model M , then r is rejected. Otherwise, the score sr.x =

∑
i=1..n distxi (r,M) is computed for each field x using the fol-

lowing version of Mahalanobis distance under the assumption
of n-gram independence:

distxi (r,M) =

√√√√ ∑
z∈T x

i

|µM (x.z)− fr(x.z)|2
1
|T x

i |
+ σ2

M (x.z)
(2)

where | T x
i | is the number of i-grams in model field x. The

constant 1
|T x

i |
is added to the denominator to prevent a division

by zero for those n-grams with constant frequency.
A score is considered acceptable when it is between the

minimum and maximum values of the score distribution ds
drawn from the training set T by computing the score of each
individual training request. If there is a field x for which the
obtained score is not inside the min-max interval, the whole
request is deemed as anomalous (a potential attack).

Should a given n-gram of field x not be defined in M , we use
a prior distribution of the contents of x to draw its expected
frequency. By assigning priors to some CGI parameters we
decrease the false positive rates. Specific priors, n-gram lengths
and other model parameters are configured for each field x as
part of the model tuning of each web application.

IV. EXPERIMENTAL RESULTS

We present the results of evaluating the proposed models
on the CSIC2010 dataset [9] and on a dataset of our own
which was obtained from the HTTP traffic to the web server
of a University (DRUPAL dataset). We have also experimented
the one-class approach on the dataset from the PKDD2007
challenge [10]. The results for this dataset for the one-class
approach are presented in [7]. This dataset is not suitable
for experimenting the n-gram approach, as its developpers
performed a process of obfuscation to protect the data in it,
replacing URLs, parameter names and values with random data.

Each datasets is made of a collection of complete HTTP
requests (header and body) which have been partitioned into
one training dataset and two testing ones with valid and
anomalous traffic. In Table I, we present the details of each
dataset. As explained before, our models only use normal
traffic for training, labeled attacks were considered only for
testing. The model was evaluated using true positive rate (TPR)
and true negative rate (TNR). The TPR corresponds to the
percentage of anomalous requests that are detected as attacks.
The TNR corresponds to the percentage of valid request that
are spotted as normal traffic.

The baseline to which we compare the behavior of our
models are the TPR and TNR values obtained as the outcome of
using MODSECURITY configured with the OWASP CRS version
2.2.9 out of the box.

In the one-class classification approach the main parameter
of the classifier is the threshold that governs the size of the
clusters. The size is adjusted by a parameter λ whose values
range from 0 to 1. Each value of λ determines an operational
point of the classifier. For each dataset we display two ROC
curves. The blue thin line represents the curve obtained for the
one-class classifier when training is performed using specific
data for the web application and varying λ in (0, 1]. This

Table I
DATASETS COMPOSITION

Train (Valid) Test (Valid) Test (Attack)
CSIC 36000 36000 25065
Drupal 45907 19675 1287

Figure 1. Results for the CSIC2010 dataset.

curve can be seen as the ideal result for the classifier since
it uses an application-specific training dataset. The green thick
line represents the curve produced with the one-class classifier
trained with data from other web applications (Scenario I).
A black diamond over the green curve indicates a default
operational point obtained with λ = 0.5. In Scenario I we
do not have specific training data, so we cannot fine tune the
operational point. Therefore, this point was fixed based on the
number of FP for the training set. A blue square indicates the
result of MODSECURITY using the OWASP CRS out of the box.
Finally, a yellow ball shows the performance of the model
that combines one-class with MODSECURITY following the
combination strategy discussed in Section II.

For the n-gram analysis approach, the model parameters are
the tokenization method, prior distributions and n-gram length
bound assigned to each specific field. As these are enumerated
values, the results are displayed using a table instead of a curve.
The table presents the results for the n-gram length bounds
n = 1 . . . 5 when an optimized configuration is assigned to the
other model parameters.

A. CSIC2010 dataset

This dataset embodies a collection of normal and abnormal
HTTP requests for a web application that provides function-
alities to perform an on-line shopping. The dataset contains
25.000 abnormal test requests mixing attacks with valid re-
quests containing infrequent characters in the parameter fields
(typos). Unfortunately, the distribution between attacks and
infrequent values is not specified. The attacks are concentrated
on the web application parameters.

In Figure 1 we present the results in terms of TPR and TNR
for the CSIC2010 dataset. The simplicity of the normal requests
and the mixture of attack with just anomalous traffic is observed
in the high TNR and the low TPR obtained by MODSECURITY
(blue square). As can be noticed, the one-class classifier trained
with data from other web applications (green curve), used to
evaluate Scenario I, produced good performance scores (TNR

Table II
TRUE NEGATIVE AND TRUE POSITIVE RATES (IN %) FOR EACH DATASET

CSIC2010 DRUPAL
Method TNR TPR TNR TPR

ModSecurity 76,1 34,3 61,1 72,2
One-class: λ = 0, 5 88,9 34,6 93,3 86,2
Combined OC-MS 97,3 20,1 99,1 63,0

N-grams

n=1 99,9 93,0 93,9 95,9
n=2 99,9 94,8 94,4 97,6
n=3 99,5 96,1 92,0 97,5
n=4 96,2 96,8 90,7 98,8
n=5 90,9 97,5 89,4 98,9

and TPR). The ROC curve shows that there are several points
that outperform MODSECURITY (blue square). Furthermore, if
we compare the results obtained using an application specific
training set (blue curve), we can see the performance it is not
far from the ideal one (when we train the one-class classifier
with data from the same web application). Finally, the yellow
ball shows the performance of the model that combines one-
class with MODSECURITY. The combination improves in terms
of TNR but decreases in TPR. This is because our main
objective is to decrease MODSECURITY false positives so the
combination algorithm only marks a request to be an attack if
both experts tag it as an attack. This means that some requests
that were tagged as an attack by the one-class model where
tagged as valid by MODSECURITY and viceversa.

If we compare the results with our baseline, e.g. for the
same TNR, MODSECURITY detects 34% of the attacks, where
the one-class approach detects 56%. In this particular dataset,
the integration of MODSECURITY rules with the one-class
approach does not improve the results of one-class by itself in
terms of TPR but clearly reduces the number of false positives
(i.e., TNR close to 1). See Table II for details on the results.

Let us turn now to the n-gram model for this dataset. We
performed a fine tuning, configuring our n-gram analysis tool
to perform some specific behaviors on certain fields. The URI,
login identifier, customer’s national identifier and password
fields are restricted to monogram analysis. This is because
the only biased aspect of those fields is the set of allowed
characters, but almost any combination of them is possible in
principle, so higher order n-gram analysis is prone to produce
false positives. Finally, following the technique explained in
section III-B, we specified a prior n-gram distribution to some
web application parameters (customer’s name, city and address
in Spain) drawn from a collection of Wikipedia articles written
in Spanish. The use of priors for these fields reduced the false
positive rate in 3% for trigrams. The results are presented
in Table II. The most significant impact on false positives is
observed for n = 3, where up to 96% of the attacks are detected
for less than 0,1% of false positives, clearly outperforming all
the other methods.

B. DRUPAL dataset

The CSIC2010 dataset has been artificially conceived. In
order to evaluate our approach on real life applications, based
on actual requests and attacks, we crafted a dataset by regis-
tering three days of incoming traffic to the public website of a

Figure 2. Results for the DRUPAL dataset.

University 1. The only post-processing of this dataset consisted
in blurring password values in the request.

Since the requests are from real traffic, this dataset is less
balanced. One of the difficulties that raises is classifying the
registered requests into valid ones and attacks. The web site
of the University is protected by an instance of MODSECU-
RITY featuring the OWASP CRS, which has been tuned for
several years by a team of security experts. We therefore
used MODSECURITY as the labeling tool: those requests that
were accepted by MODSECURITY were considered as the
valid ones, while those requests that MODSECURITY rejected
were labeled as attacks. Figure 2 describes the results for the
DRUPAL dataset. We observe that they are similar to the ones
obtained for CSIC2010. The one-class classifier trained with
data from other web applications (green curve), used to evaluate
Scenario I, is very close to the blue curve which is the ROC
generated with the one-class classifier trained with application
specific data. The default operational point, black diamond,
outperforms MODSECURITY, and several of the points in the
previous curves clearly perform better than MODSECURITY.
Finally, the results of the model that combines one-class and
MODSECURITY (yellow ball) improves in terms of TNR but
decreases in TPR. This is because our main objective is to
decrease MODSECURITY FP so the combination algorithm
only marks a request to be an attack if both systems tag
it as an attack. This mean that some requests that where
tagged as an attack by the one-class where tagged as valid
by MODSECURITY and viceversa.

As for the n-gram model, the only tuning performed was
excluding the URI from the analysis, as the high variance of
this model field produced too many false positives. The results
are presented in Table II. It provides a similar detection rate
as the one-class approach for monograms and bigrams. Again,
this approach outperforms the other ones respect to the TPR.

C. Discussion

Based on the previous sectionswe discuss the main questions
presented in Section II.

a) Scenario I - Is it possible to build an attack detection
system learning from training data collected from other web
applications?: The results for datasets CSIC2010 and DRUPAL

1The dataset is not public but it is available on demand.

present evidence that it is possible to build a one-class classifier
using generic training data, that is, using a dataset with requests
not from the web application to protect. Furthermore, the
degradation with respect to the same classifier trained with
specific data for the web application is not critical.

b) Scenario I - Can we improve the results of ModSecurity
using machine learning methods?: Looking at the results for
the datasets CSIC2010 and DRUPAL we can conclude that it is
possible to improve the results of MODSECURITY.

c) Scenario II - Attainable performance of machine learn-
ing methods against ModSecurity: Based on the obtained
results we can draw the following conclusions. First, also in
this scenario it is possible to improve the results of MODSE-
CURITY using machine learning approaches such as on-class
classification or n-gram analysis. Second, looking at the TNR
and TPR scores computed for the n-gram anaysis, we can say
that the n-gram approach is the most performant solution if we
have an application specific dataset to train its model.

V. RELATED WORK

Several multiclass classification techniques have been previ-
ously proposed for web application protection [10, 11, 12, 13].
Those techniques require a training set containing both normal
traffic and attacks. On the contrary, our proposal is based on
one-class anomaly detection, which only requires normal traffic
for the training phase.

Regarding anomaly detection, to the extent of our knowl-
edge, there is no previous work on the application of one-class
classification to web application protection. However, several
previous works based on n-gram analysis have been proposed
[14, 15, 16, 17, 18, 5]. Ingham and Inoue have compared
them in [19]. Some of these works construct one single n-
gram signature for the whole HTTP request [14, 15]. Our n-
gram approach goes further, constructing a specific signature
for each component of the HTTP request: URI, CGI parameters,
headers and body. This fine grain model enables us to identify
more specific bias for each one. We conjecture that mixing
field contents is the reason of the poor perfomance reported
for Stolfo and Wang’s PAYL method in [19], as well as the
rather high optimal length (n=6) proposed in that paper for
n-gram analysis.

On the other hand, previous works performing a specific
analysis for the URL and the web parameters restricts this
analysis to monograms (n=1) [16, 17, 18]. However, short n-
grams are vulnerable to mimicry attacks, in which the attacker
carefully adds characters in order to get closer to the expected
n-gram distribution [20, 21]. Mimicry attacks become much
more challenging when using higher order n-grams, but fre-
quencies become too sparse for long n-grams [15]. In our n-
gram approach, we add the scores obtained for n-grams analysis
of all lengths up to a given one, which is provided as a model
parameter. The combination of several n-gram analyses and a
fine grain parsing of the HTTP request both prevents mimicry
attacks and keeps a relative low value for optimal n (n=3).

Normalizing text before computing n-grams simplifies and
speeds up the analysis by reducing the combinatory of possible
tokens. It also reduces the risk of overfitting. Our n-gram

approach normalizes the text before computing the n-grams,
removing accents, uncapitalizing it and replacing numbers
by the capital leter N. Other authors propose more radical
transformations, such as collapsing all alphabetic strings or
numbers into single values [18, 17]. We think that the proposed
transformation provides a better compromise. For example, it
collapses all the possible variants of the where keyword used
in SQL injection attacks (namely, Where, WhERe, etc.) but still
enables to recognize that it does not match, for instance, the
distribution of a web parameter expecting personal names in
Spanish.

VI. CONCLUSION AND FURTHER WORK

We put forward a one-class classification approach to learn
the behavior of valid requests based on features typically
present in the payload of an attack which were selected based
on the knowledge of security experts. Hence, the defined
model learns the distribution of these features for the valid
requests and detects attacks as deviation from normality. This
model provides better detection and false positive rates than
MODSECURITY configured with the OWASP CRS out of the
box. We also proposed a simple integration of one-class and
MODSECURITY based on the output labels of both components
(normal, attack). In future work we will study the combination
of the scores provided by both of them.

We also presented an anomaly detection model based on
the expected n-gram frequencies of each specific HTTP re-
quest component, which combines n-grams of multiple lengths.
We have experimented with several variants of this general
framework and described results obtained with some particular
instances of the model parameters, such as the assignment of
prior distributions Anomaly detection draw its attributes from
the expected normal behavior of the application, and deems
as an attack those HTTP requests which deviates from such
behavior. This positive characterization of the normality makes
the WAF more resilient to zero-day attacks. The results of this
model clearly outperform the ones of MODSECURITY. Despite
this, the two approaches can be seen as complementary, the
one-class can be used in Scenario I, when no specific training
data is available, and the n-gram is suitable for Scenario II since
it needs specific training data to learn from normal traffic.

REFERENCES

[1] OWASP. Owasp top ten project. [Online].
Available: https://www.owasp.org/index.php/Category:
OWASP_Top_Ten_Project

[2] I. Trustwave Holdings, “Modsecurity: Open source
web application firewall.” [Online]. Available: http:
//www.modsecurity.org/

[3] OWASP. Owasp modsecurity core rule set project.
[Online]. Available: https://www.owasp.org/index.php/

[4] C. Folini. (2016) Handling false positives with the
owasp modsecurity core rule set. [Online]. Avail-
able: https://www.netnea.com/cms/apache-tutorial-8_
handling-false-positives-modsecurity-core-rule-set/

[5] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A
close look on n-grams in intrusion detection: Anomaly

detection vs. classification,” in Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security,
ser. AISec ’13. New York, NY, USA: ACM, 2013, pp.
67–76.

[6] C. Raıssi, J. Brissaud, G. Dray, P. Poncelet, M. Roche, and
M. Teisseire, “Web analyzing traffic challenge: descrip-
tion and results,” in Proceedings of the ECML/PKDD,
2007, pp. 47–52.

[7] G. Betarte, E. Giménez, R. Martínez, and Á. Pardo,
“Machine learning-assisted virtual patching of web ap-
plications,” arXiv preprint arXiv:1803.05529, 2018.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelihood from incomplete data via the
em algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.
[Online]. Available: http://www.jstor.org/stable/2984875

[9] A. P. V. Carmen Torrano Giménez and G. Á. Marañón,
“CISC2010 dataset,” http://www.isi.csic.es/dataset/.

[10] “Analyzing web traffic: Ecml/pkdd 2007 discovery chal-
lenge,” http://www.lirmm.fr/pkdd2007-challenge/.

[11] M. Exbrayat, “Ecml/pkdd challenge: analyzing web traffic
a boundaries signature approach,” 2007, p. 53.

[12] K. Pachopoulos, D. Valsamou, D. Mavroeidis, and
M. Vazirgiannis, “Feature extraction from web traffic data
for the application of data mining algorithms in attack
identification.” Citeseer, 2007.

[13] B. Gallagher and T. Eliassi-Rad, “Classification of
http attacks: a study on the ecml/pkdd 2007 discov-
ery challenge,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep., July 2009.

[14] K. Wang and S. J. Stolfo, “Anomalous payload-based
network intrusion detection,” in RAID 2004, vol. 3224.
Springer, 2004, pp. 203–222.

[15] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A
content anomaly detector resistant to mimicry attack,” in
RAID 2006, vol. 4219. Springer, 2006, pp. 226–248.

[16] C. Kruegel and G. Vigna, “Anomaly detection of web-
based attacks,” in Proceedings of CCS 2003. ACM, 2003,
pp. 251–261.

[17] C. Torrano-Gimenez, A. Perez-Villegas, G. Á. Marañón
et al., “An anomaly-based approach for intrusion detection
in web traffic,” Journal of Information Assurance and
Security, vol. 5, no. 4, pp. 446–454, 2010.

[18] I. Corona, D. Ariu, and G. Giacinto, “Hmm-web: A
framework for the detection of attacks against web ap-
plications,” in Proceedings of ICC 2009, 2009, pp. 1–6.

[19] K. L. Ingham and H. Inoue, “Comparing anomaly detec-
tion techniques for http,” in RAID, vol. 4637. Springer,
2007, pp. 42–62.

[20] O. Kolesnikov and W. Lee, “Advanced polymorphic
worms: Evading ids by blending in with normal traffic,”
Georgia Tech, Tech. Rep., 2004.

[21] S. Pastrana, C. Torrano-Gimenez, H. T. Nguyen, and
A. Orfila, Anomalous Web Payload Detection: Evaluating
the Resilience of 1-Grams Based Classifiers. Springer
International Publishing, 2015, pp. 195–200.

