
PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Maestría

en Informática

Diseño y Mantenimiento de Data Warehouse
a través de Transformaciones de Esquema

Adriana Marotta

Octubre de 2000

Tutor: Raúl Ruggia

 Tribunal: Alejandro Gutiérrez

 Regina Motz
 Nora Szasz

Diseño y mantenimiento de Data Warehouse a través de transformaciones de esquema.
Tesis de Maestría
Marotta, Adriana
I
ISSN 0797-6410
Tesis de Maestría en Informática
Reporte Técnico RT 01-01
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, Octubre de 2000

 iii

RReessuummeenn

Un Data Warehouse (DW) es una base de datos que almacena información para satisfacer

requerimientos de toma de decisiones. Es una base de datos que tiene características particulares en

cuanto a los datos que contiene y en cuanto a su utilización.

En este trabajo nos concentramos en diseño de DW y evolución de DW.

Las características de los DWs hacen que el proceso y las estrategias de diseño de éstos sean diferentes

de los usados para sistemas OLTP. Nosotros abordamos el problema de diseño de DW con un enfoque de

transformación de esquemas. Proponemos un conjunto de primitivas de transformación de esquemas, las

cuales son operaciones de alto nivel que transforman sub-esquemas relacionales en otros sub-esquemas

relacionales. Junto con ellas proveemos algunas herramientas que pueden ayudar en el proceso de

diseño de DW: (a) la traza del diseño, (b) un conjunto de invariantes de esquema de DW, (c) un conjunto

de reglas que especifican como corregir situaciones de inconsistencia de esquemas que fueron generadas

por aplicación de primitivas, y (d) algunas estrategias para diseñar el DW a través de aplicación de

primitivas.

La evolución de esquema de un DW puede ser generada por dos causas diferentes: (i) un cambio en el

esquema fuente o (ii) un cambio en los requerimientos del DW. En este trabajo abordamos el problema

de evolución del esquema fuente. Separamos este problema en dos fases: (1) determinación de los

cambios que deben ser aplicados al esquema de DW y a la traza, y (2) aplicación de la evolución al DW.

Para resolver (1) utilizamos la traza de la transformación que fue generada en el diseño. Para resolver

(2) proponemos una adaptación de los modelos y técnicas existentes para evolución de esquemas de

bases de datos, a evolución de esquemas de DW, considerando las características que diferencian a los

DWs de las bases de datos operacionales tradicionales.

PPaallaabbrraass ccllaavvee

Data Warehouse, diseño DW, evolución esquema DW, transformación de esquemas, DW Relacional,

traza diseño DW

 iv

AAggrraaddeecciimmiieennttooss

Quisiera agradecer a mi tutor, el Profesor Raúl Ruggia, quien me guió durante todo el proceso de

investigación y escritura de esta tesis. También quisiera agradecer a los Profesores Regina Motz,

Alejandro Gutiérrez, y Nora Szasz, de quienes recibí valiosos aportes en distintas instancias de este

trabajo, y a todos los integrantes del Grupo CSI por el apoyo que me brindaron.

 v

AAbbssttrraacctt

A Data Warehouse (DW) is a database that stores information oriented to satisfy decision-making

requests. It is a database with some particular features concerning the data it contains and its utilisation.

In this work we concentrate in DW design and DW evolution.

The features of DWs cause the DW design process and strategies to be different from the ones for OLTP

Systems. We address the DW Design problem through a schema transformation approach. We propose a

set of schema transformation primitives, which are high-level operations that transform relational sub-

schemas into other relational sub-schemas. We also provide some tools that can help in DW design

process: (a) the design trace, (b) a set of DW schema invariants, (c) a set of rules that specify how to

correct schema-inconsistency situations that were generated by applications of primitives, and (d) some

strategies for designing the DW through application of primitives.

Schema evolution in a DW can be generated by two different causes: (i) a change in the source schema or

(ii) a change in the DW requirements. In this work we address the problem of source schema evolution.

We separate this problem into two phases: (1) determination of the changes that must be done to the DW

schema and to the trace, and (2) application of evolution to the DW. For solving (1) we use the

transformation trace that was generated in the design. In order to solve (2) we propose an adaptation of

the existing models and techniques for database schema evolution, to DW schema evolution, taking into

account the features that differentiates the DWs from traditional operational databases.

KKeeyywwoorrddss

Data Warehouse, DW design, DW schema evolution, schema transformation, Relational DW, DW design

trace

 vi

CCoonntteennttss

CHAPTER 1. INTRODUCTION..1

1. CONTEXT ..1

2. MOTIVATION...1

3. GOAL AND PROPOSED SOLUTIONS...2

4. CONTRIBUTIONS ...3

5. OUTLINE OF THE THESIS..3

CHAPTER 2. EXISTING KNOWLEDGE ..5

1. INTRODUCTION ...5

2. AN OVERVIEW OF DATA WAREHOUSING ..5

3. DW DESIGN..8

4. SCHEMA TRANSFORMATION..11

5. SCHEMA EVOLUTION...11

6. DW SCHEMA EVOLUTION..13

7. CONCLUSION...13

CHAPTER 3. DATA WAREHOUSE LOGICAL DESIGN ...15

1. INTRODUCTION ...15

2. BASIC DEFINITIONS...17

3. DW SCHEMA INVARIANTS ..18

4. THE SCHEMA TRANSFORMATION PRIMITIVES...20

4.1. Descriptions of primitives..21

4.2. Specifications of primitives..26

5. CONSISTENCY RULES..50

6. DESIGN STRATEGIES...51

7. TRANSFORMATION TRACE...65

7.1. Trace specification...65

8. CONCLUSION...68

CHAPTER 4. SOURCE SCHEMA EVOLUTION..69

1. INTRODUCTION ...69

2. SOURCE EVOLUTION TAXONOMY ...71

3. DETERMINING THE CHANGES TO THE DW...72

3.1. Obtaining DW-Source DB dependencies...72
3.1.1. Basic operations...73
3.1.2. The Primitives expressed in terms of basic operations..74
3.1.3. Processing the transformation trace...74

3.2. Evolution Propagation...83
3.2.1. Deducing the Propagation Rules..83

 vii

3.3. Consistency corrections...89

4. APPLYING EVOLUTION TO THE DW...91

4.1. Model for DW Evolution ..91
4.1.1. Previous considerations...91
4.1.2. The proposed mechanism..93

4.2. Instance Conversion Functions..94

5. CONCLUSION...97

CHAPTER 5. IMPLEMENTATION..99

1. INTRODUCTION ...99

1.1. Context ...99

1.2. The prototype...100

2. PROTOTYPE DESCRIPTION ...100

2.1. Functional Features...101

2.2. Conceptual design..104

2.3. Implementation...104

3. CONCLUSION...105

CHAPTER 6. CONCLUSION...107

1. DW DESIGN THROUGH SCHEMA TRANSFORMATIONS: TECHNIQUES AND CASE TOOL107

2. REPERCUSSION OF SOURCE SCHEMA EVOLUTION ON THE DW ..108

3. ONGOING WORK ..108

4. FUTURE WORK ..108

APPENDICES..111

1. APPENDIX 1 – AN APPLICATION EXAMPLE...111

2. APPENDIX 2 – THE BASIC OPERATIONS..115

3. APPENDIX 3 - THE PRIMITIVES IN TERMS OF BASIC OPERATIONS ...117

4. APPENDIX 4 - CLASS DIAGRAM OF THE DW DESIGN TOOL ..129

BIBLIOGRAPHY ..131

 viii

 1

CCHHAAPPTTEERR 11.. IInnttrroodduuccttiioonn

1. Context

A Data Warehouse (DW) is a Database that stores information oriented to satisfy decision-making

requests. A very frequent problem in enterprises is the impossibility for accessing to corporate, complete

and integrated information of the enterprise that can satisfy decision-making requests. A paradox occurs:

data exists but information cannot be obtained. In general, a DW is constructed with the goal of storing

and providing all the relevant information that is generated along the different databases of an enterprise.

A DW is a database with some particular features. Concerning the data it contains, it is the result of

transformations, quality improvement and integration of data that comes from operational bases. Besides,

it includes indicators that are derived from operational data and give it additional value. Concerning its

utilisation, it is supposed to support complex queries (summarisation, aggregates, crossing of data), while

its maintenance does not suppose transactional load. In addition, in a DW environment end users make

queries directly against the DW through user-friendly query tools, instead of accessing information

through reports generated by specialists.

The data model considered in this work is the Relational Model, for both the DW and the source

databases.

2. Motivation

In this work we concentrate in DW design and DW evolution.

The features of DWs cause the DW design process and strategies to be different from the ones for OLTP1

Systems [Kim96-1]. For example, in DW design, the existence of redundancy in data is admitted for

improving performance of complex queries and it does not imply problems like data update anomalies,

since data is not updated on-line (DWs’ maintenance is performed by means of controlled batch loads).

Another issue to be considered is that a DW design must take into account not only the DW requirements,

but also the features and existing instances of the source databases.

Evolution in a DW can be generated by two different causes. A DW schema can evolve as a consequence

of: (i) a change in the source schema or (ii) a change in the DW requirements. These two cases have to be

treated separately, since they involve different taxonomies of changes and different processes to impact

the DW schema.

Source schema evolution is particularly relevant in the cases where the DW is generated from Web

sources. In this context source schema will probably change very frequently. Our research group is

1 OLTP: On Line Transaction Processing

 2

working on a project that covers the different stages that exist in a DW system which information is

extracted from Web sites [CSI99]. The present work can be seen as a module of this project, although at

the same time it is not specific to this context. In our work we have two main reasons to concentrate in the

problem of source schema evolution: (1) the highly evolutive context of the project [CSI99], and (2) the

important facilities for propagating schema changes from source to DW that are provided by our proposal

for DW design.

3. Goal and proposed solutions

The goal of this work is to provide a help tool that allows designing a DW starting from the source

database and propagating source schema evolution to the DW.

We address the DW Design problem through a schema transformation approach. We propose a set of

schema transformation primitives, which are high-level operations that transform relational sub-schemas

into other relational sub-schemas. The idea for the design process is that the designer, taking into account

the DW requirements and his own design criteria, applies primitives to construct a DW schema from a

source schema.

We design the primitives considering the set of schema structures that are the most used in relational

DWs and the possible existing source structures, so that there is one primitive for each one of these target

and source structures.

Having the primitives as the core of the proposal for DW design, we also provide some tools that help in

DW design process. The first is the design trace, which is generated when a DW schema is constructed

through application of primitives. The second is a set of schema invariants. Schema invariants are

properties useful to check DW schema consistency. Having these invariants, we provide a set of rules

that specify how to correct schema-inconsistency situations that were generated by applications of

primitives. Finally, we provide some strategies for designing the DW through application of primitives.

These strategies serve as guidelines for solving some common DW design problems.

We separate the problem of propagating source schema evolution to the DW schema into two phases: (1)

determination of the changes that must be done to the DW schema and to the trace, and (2) application of

evolution to the DW.

For solving (1) we use the transformation trace that was generated in the design. This trace allows us to

obtain the path that was followed by each schema element and then decide how to propagate the changes

occurred on the source schema. In some cases it is not necessary to modify the DW schema, but we

always have to modify the trace in order to maintain the connection between source and DW schema

elements. We provide a set of propagation rules that state which changes have to be done to the DW and

to the trace, depending on each case of source schema change and dependency between source and DW

schema elements.

 3

In order to solve (2) we analyse the applicability of existing schema evolution models and techniques to

DW schema evolution. We consider DW features that affect the treatment of evolution. We adapt existing

models, mainly applying the Versioning approach (presented in Chapter 2).

In addition, we propose instance conversion functions that are necessary to convert instances from one

version of the DW to another. These functions are required for the posterior usage of the DW.

4. Contr ibutions

This work contributes in two directions: (1) DW design and (2) DW evolution.

With respect to DW design, the main contribution of this work is the proposal of a set of DW schema

design primitives. These primitives must be applied to the source schema. Together, with each primitive,

this work provides the specification of the transformation that must be applied to the source schema

instances in order to populate the generated DW.

The main interest for the definition of design primitives is twofold. First, primitives materialise design

criteria knowledge. Second, they provide a way for tracing the design. In addition, they increase

designer’s productivity by behaving as design building blocks that can be composed for building the final

schema. There is an operational prototype, which covers the functionalities of DW design through

primitive applications, and has been developed in the context of a graduate project [Gar99] and

complemented in the context of this thesis (Chapter 5).

In DW evolution we also contribute mainly in two aspects. On one hand, we present a mechanism for

deducing the changes that have to be done to the DW schema when the source schema evolves. This

mechanism is designed for the context of DW design proposed in this work. On the other hand, we

present an analysis of the applicability of database schema evolution techniques to DW schemas. There is

an ongoing graduate project [Alc00], which will extend the existing prototype, including the

functionalities of source schema evolution propagation.

5. Outline of the thesis

This thesis consists of six chapters. Chapter 2 presents an overview of the existing knowledge in the areas

that are more relevant to our work. Chapter 3 and Chapter 4 contain our proposals: in Chapter 3 we

present a solution for DW logical design and in Chapter 4 we present a solution for propagation of source

schema evolution to the DW. Chapter 5 is a brief description of the implemented prototype for DW

design. Chapter 6 presents the conclusions and future work. Finally, there are 4 appendices and the used

bibliography.

 4

 5

CCHHAAPPTTEERR 22.. EExxiissttiinngg kknnoowwlleeddggee

1. Introduction

Our work is related to various sub-areas of Databases research area. It is situated mainly in the area of

DW, in particular DW Design and DW Evolution. However it also applies techniques of Schema

Transformations and Schema Evolution. The base data model it uses is the Relational Model (for basic

definitions about databases and Relational Model, see [Elm00]).

Existing DW design techniques were the base for the definition of the set of transformation primitives. In

addition, existing knowledge about database schema evolution was almost directly applied to the

definition of the model for DW schema evolution.

In this chapter we present an overview of the existing knowledge on the areas that are the most relevant to

our work. In Section 2 we present an overview of DW problems and how they are addressed. In Section 3

we show the existing approaches and the existing practical techniques about DW Design. In Section 4 we

enumerate some works about schema transformation. In Section 5 and Section 6 we present the existing

knowledge about schema evolution and DW schema evolution. In Section 7 we present the conclusion of

the chapter.

2. An overview of Data Warehousing

DW is a very wide research area. It has many different sub-areas and it can be treated with different

approaches. Some overviews of the research area are [Wid95][Wu97][Cha97].

The global architecture of DW systems proposed or assumed in most works is the one shown in Figure

2.1, although there is a variant that is proposed in [Inm96]: the ODS (Operational Data Store), shown in

Figure 2.2.

 6

QUERIES

Source
 DB

Source
 DB

Source
 DB

Data Transformation

D W

Data Mart Data MartData Mart

OLAP System Reports

Figure 2.1

Source databases can be heterogeneous with respect to their data representation and to the data itself. Data

integration is an important research area that attacks this problem. Some publications that concentrate on

source heterogeneity are [Pap96][Lev96], which consider in particular the web sources. In many projects

as H20, TSIMMIS, DWQ, strong attention is paid to data integration [Hull96][Hull97][Pap96][Cal99].

In order to translate heterogeneous data models to a common model, some authors propose the use of

wrappers [Lab97][Tork97], which encapsulate data sources and mediate between them and the rest of the

system.

Data transformation layer involves a wide range of transformations that have to be applied to source data,

for example data quality control and data cleaning, data integration, and conversions that are necessary

for adapting data to the DW structures.

 7

QUERIES

Source
 DB

Source
 DB

Source
 DB

Data Transformation

D W

Data Mart Data MartData Mart

OLAP System Reports

ODS

Data Transformation

Figure 2.2

The ODS can be seen as an intermediate stage between the sources and the DW, although authors also

propose that it can be used as a database for operational processing [Inm96][Kim96-2]. It contains

integrated data, but this data is at detail level and it is only current data. Therefore we can think that with

this architecture we are dividing the transformation work into two phases: in the first phase the main task

is integration, and in the second phase the rest of the data transformation work is done.

Data Marts are proposed as logical subsets of the complete DW [Kim98]. They should be consistent in

their data representation in order to assure DW robustness.

OLAP2 [Tho97] systems have been heavily developed by industry community, while research community

has not concentrated so much in it.

The data models that are used for DWs are Multidimensional Model and Relational Model. At the

conceptual design level there is no discrepancy in choosing a multidimensional data model, since DW

requirements are in general managed with a multidimensional perspective. Some publications about

multidimensional data models are [Agr97][Gol98][Hac97]. The database system where the DW is built

can be a multidimensional or a relational one. When this system is relational the logical design can be

done applying techniques of multidimensional modelling to relational databases, as the ones presented in

[Kim96-1]. This is the approach we adopted for data modelling in our work.

2 OLAP: On Line Analytical Processing

 8

The most used approach, in research community, for definition and management of the DW is the one of

materialised views. In the WHIPS project [Lab97][Ham95][Wie96] they work mainly in definition and

maintenance of the DW [Zhu95][Lab96] and view consistency [Zhu96-1][Zhu96-2]. In the H2O project

[Zhou95] they propose the combination of materialised and virtual views and they focus on data

integration [Hull96][Hull97]. A very recent proposal about materialised views is in [Theo99-1], where

they address the problem of selecting the views to materialise. We comment more about this approach in

next section.

3. DW Design

As we have shown in Figure 2.1, in some possible architectures, a DW may be used by an OLAP front-

end or it may be queried directly by SQL statements.

We found in the literature, globally two different approaches for Relational DW design: one that applies

dimensional modelling techniques, and another that bases mainly in the concept of materialized views.

Dimensional models represent data with a “cube” structure [Kim96-1], making more compatible logical

data representation with OLAP data management. According to [Kor99], the objectives of dimensional

modelling are: (i) to produce database structures that are easy for end-users to understand and write

queries against, and (ii) to maximise the efficiency of queries. It achieves these objectives by minimising

the number of tables and relationships between them. Normalized databases have some characteristics

that are appropriate for OLTP systems, but not for DWs: (i) Its structure is not easy for end-users to

understand and use. In OLTP systems this is not a problem because, usually end-users interact with the

database through a layer of software. (ii) Data redundancy is minimised. This maximises efficiency of

updates, but tends to penalise retrievals. Data redundancy is not a problem in DWs because data is not

updated on-line.

The basic concepts of dimensional modelling are: facts, dimensions and measures [Bal98]. A fact is a

collection of related data items, consisting of measures and context data. It typically represents business

items or business transactions. A dimension is a collection of data that describe one business dimension.

Dimensions determine the contextual background for the facts; they are the parameters over which we

want to perform OLAP. A measure is a numeric attribute of a fact, representing the performance or

behaviour of the business relative to the dimensions.

Considering Relational context, there are two basic models that are used in dimensional modelling: (i)

star model and (ii) snowflake model. The star model is the basic structure for a dimensional model. It has

one large central table (fact table) and a set of smaller tables (dimensions) arranged in a radial pattern

around the central table. (We show an example in Figure 2.3). The snowflake model is the result of

decomposing one or more of the dimensions. The many-to-one relationships among sets of attributes of a

dimension can separate new dimension tables, forming a hierarchy. (Figure 2.4 shows an example). The

decomposed snowflake structure visualises the hierarchical structure of dimensions very well.

 9

 Figure 2.3

Other models that implement different design alternatives can be used. In [Kor99] they present a number

of them, for example, flat, terraced, star cluster.

 Figure 2.4

Practical design techniques and methods are proposed in [Kim96-1][Kim98][Kim96-3][Bal98], following

mainly a star-schema approach. In [Ada98], authors also present concrete solutions for different target

business. In [Sil97], they present DW models in a pattern-oriented approach, and propose techniques for

converting a corporate logical data model into the DW model. In [Kor99] authors present a method for

developing dimensional models from traditional Entity Relationship models.

 Sales
 Facts

Product

Manufacturing
Location

Time

Customer

Seller

Sales
Facts

Model

Plant
Date Customer

Sales
Person

Month Week

Region

Product Outlet

Type Region

 10

In [Theo99-1] they focus on DW design, following the approach of materialised views. They address the

problem of selecting a set of views to materialise in a DW taking into account: (i) the space allocated for

materialisation, (ii) the ability of answering a set of queries (defined against the source relations) using

exclusively these views, and (iii) the combined query evaluation and view maintenance cost. In this

proposal they define a graph based on states and state transitions. They define a state as a set of views

plus a set of queries, containing an associated cost. Transitions are generated when views or queries are

changed. They demonstrate that there is always a path from an initial state to the minimal cost state. Some

other publications about this approach are [Theo99-2][Lig99]. In [Theo99-3], working with the same

model, they address the “Dynamic DW Design Problem”, where basically, they determine which

additional views have to be materialised when new queries have to be answered by the DW.

Our approach for DW design is not based on the materialisation of views. When using materialised views

each desired relation of the schema must be able to be expressed in only one SQL query. Besides, we

think that design process is easier and purer if it is done thinking only in the desired schema and not

having to construct adequate SQL queries for obtaining the desired structures. In our work we clearly

separate schema design from data loading, and we concentrate on schema design. According to our

approach a DW schema can be designed transforming the source schema through a set of primitives and

not depending on SQL expressiveness. Once the DW schema is designed, loading processes can be

constructed.

Our goal with respect to the set of primitives we designed is that they embed DW design techniques,

covering all the possible basic transformations that may be necessary for obtaining a DW schema from a

source schema. In order to achieve this goal we base on the existing bibliography about DW design

practical techniques and methods.

In general, existing work in DW design consists mainly of techniques for specific sub-models (as star or

snowflake) and design patterns for specific domain areas. Although this work constitutes a precious

knowledge base in DW design its practical application is not direct. In order to do it, designers must

incorporate this knowledge, abstract the design rules and strategies, and then apply them in particular

cases. Furthermore, this application would not be structured in well-defined design steps.

The present work intends to abstract and structure DW design techniques and strategies in the schema

transformation primitives.

 11

4. Schema transformation

The use of schema transformation primitives is a classical conceptual tool in Databases area. In [Bat92],

design primitives and strategies are presented as the building blocks of conceptual design methodologies.

In [Hai91], they analyse the concept of schema transformation and generalise many of the proposed

transformations in a conceptual schema design context. In [Sta90], database schema transformations are

used and automated to perform schema evolution and reorganisation.

Our work proposes schema transformation primitives for relational DW design.

5. Schema evolution

A big amount of work has been done on schema evolution. We present in this section only the concepts

that are the most relevant and applicable to our case.

The proposals existing in the consulted bibliography about schema evolution always deal with Object

Oriented (OO) Databases. In order to apply this knowledge to our context, we will have to do a mapping

of the presented concepts and techniques, to Relational Databases.

In general (e.g. [Zic91][Fer96][Ska86]) we found that two main aspects are taken into account with

respect to the state of a database after schema evolution: (i) structural consistency and (ii) behavioural

consistency. In [Fer96] these concepts are defined in the following manner. Structural consistency is the

consistency between the database and the schema. Behavioural consistency is to keep the consistency of

the application programs that existed before evolution. The different authors concentrate in maintaining

these properties.

On the other hand, we found two approaches for managing schema evolution: (a) Adaptational

approach [Fer93][Fer94][Fer95] and (b) Versioning approach [Ska86][Fer96][Lau96][Lau97][Ngu89].

In the adaptational approach, when the schema is modified the state of the schema before the change is

lost and the final result of evolution is an only one schema with the new structure. The existing instances

have to be adapted to the new schema and the application programs that run over the database before the

changes, also have to be adapted. In the versioning approach, modifications to the schema are not applied

directly on the existing schema. Instead, a new version of the schema is created. In this case the existing

instances do not necessary have to be transformed to satisfy the new schema. Besides, the application

programs will continue running with the same behaviour over the previous version of the database; they

neither have to be adapted to the new schema.

When adaptational approach is chosen for managing schema evolution, another dilemma comes up: how

to manage the unavoidable update of the existing data. This problem is addressed in

[Fer93][Fer94][Fer95]. There are mainly two options: (1) immediate updates and (2) lazy (deferred)

updates. In the first case, data is updated immediately after a modification is done to the schema. In the

second, data is updated at the moment it is used. These two strategies are intended to have the same final

result: the database reaches a consistent state with respect to the new schema. For the database updates

 12

the designer has to provide the conversion functions. Depending on the complexity of these functions

each strategy can be better applied or not. Various algorithms are proposed for implementing lazy updates

[Fer94]. They address the problems of complex conversion functions and cycles that can be generated in

the execution of the updates. In [Fer95] benchmarks are performed in order to compare the two possible

strategies considering different contexts.

When versioning approach is used [Lau96][Lau97][Fer96] a list of schema versions with a relationship

“ is-derived-from” is managed. Only the last version of the list can be modified; the other ones are

“ frozen” . This mechanism allows having different schema states, which gives the possibility to go back to

a previous state if some update led to an unexpected result. In addition, with this mechanism existing

applications can continue working over previous versions. The problem that has to be solved in this case

is how to share data between the different schema versions. For this, three main concepts are defined and

managed: (i) Instance Access Scope (IAS), (ii) conversion functions, and (iii) propagation flags. (i) The

IAS of a schema version is the part of the database that is visible through this version. The IAS contains

instances that were created by this version and instances that were propagated from other versions. (ii)

Conversion functions are used to transform data to the new version of the schema. They are implemented

at class level, and there are default conversion functions. In order to share instances between versions,

two kind of conversion functions exist: forward conversion functions (f.c.f) and backward conversion

functions (b.c.f). As an example, to read old data from the new version, you have to read and then

transform (f.c.f.), to write old data from a new version you transform (b.c.f.) and then write. Many f.c.f or

b.c.f can be composed for propagating data throughout chains of versions. (iii) The propagation flags are

4 flags that the designer must define when a new version is derived. With these flags he defines which

parts of the superversion’s3 database will be shared by the subversion and what kind of operations the

subversion will be able to apply over this database.

In [Fer96] an integration of the two approaches presented previously (adaptational and versioning) is

proposed. Considering the fact that using adaptational approach we might invalidate applications, which

are already running on top of the database, and versioning approach might burden a large overhead on the

system, they propose a new solution. The idea is to apply the schema updates (adaptational) for certain

cases, where applications are not corrupted by the updates, and to create a new schema version for the

other cases. They categorise the schema changes into extending and modifying ones, and determine

which approach should be used for each case.

In our proposal we extract some techniques from this existing work, and we adapt, combine and apply

them for the resolution of our problem.

There is in the literature much work about taxonomies for evolution and the effects of each operation on

the schema and its instances [Ban87][Ska86][Zic91]. However, this work is not so useful for us because it

is specific for OO databases.

3 Superversion and subversion are the predecessor and successor in the derivation list of versions,

respectively.

 13

Finally, in [Ban87] they define a set of invariants of an OO schema, which must be preserved throughout

the schema changes, and they define a set of rules that state how to preserve the invariants for each

schema change. In our work we use a very similar approach for preserving consistency in the DW

schema, when it is constructed (Chapter 3, Sections: 3, 5) as well as when it is modified (Chapter 4,

Section 3.3).

6. DW schema evolution

The work we have found in latest publications about DW evolution shows that this is an interesting and

important problem to address, but it has not been very much explored yet.

The EVE (Evolvable View Environments) project [Nic98][Run97] studies the problem of how to

maintain a DW under data and schema changes. When there are source schema changes they rewrite view

definitions adapting all affected materialised views. This is called View Sinchronization. A master thesis

related to this project [Zha99] proposes solutions to concurrent updates problems, reusing the proposal of

EVE for View Synchronization and integrating it with other solutions for View Maintenance.

In addition, we have found some work about multidimensional (MD) schema evolution and some other

work that concentrates on the impact DW evolution has on DW quality.

In the first [Bla99-1][Bla99-2], they define a conceptual model for MD schemas and instances and

present a list of evolution operations including the effects they have on the MD schema. They consider

only evolution that occurs over the DW schema as a consequence of user requirements changes.

In the second [Qui99][Vas99], they extend a process model for DWs they had previously defined, with

the capability of representing DW evolution processes. In their approach, DW evolution processes that

are executed on the DW are stored in the metadata repository, and then information can be extracted for

analysing the impact that evolution operations had on the DW. They present a list of DW evolution

operations with the quality factors and schema structures they affect.

7. Conclusion

In this chapter we presented the state of the art in the areas that are related to our work.

With respect to DW in general, the most focused problems are Data Integration, Extraction and

Transformation, DW Maintenance and DW Design. For conceptual design Multidimensional data model

is used, while logical design can also be done upon a Relational model. Materialised views is the most

used approach for DW management.

In the area of DW Design we find works about how to select the views to materialise for a DW. The other

bibliography we consulted presented techniques and strategies for relational DW design.

Schema Transformation is used in some proposals as a tool for constructing or evolving database

schemas.

 14

In the area of Schema Evolution there are different approaches for solving the problem of changes in a

schema. The most relevant ones are: Adaptational and Versioning approach. With respect to DW Schema

Evolution we have found work about multidimensional schema evolution and work that concentrates on

the impact DW evolution has on DW quality.

 15

CCHHAAPPTTEERR 33.. DDaattaa WWaarreehhoouussee llooggiiccaall ddeessiiggnn

1. Introduction

One of the most important tasks in the construction of a DW is the logical design of its schema. This

logical design has to be done considering the particularities a DW has with respect to the information it

stores and the requirements it has to support (described in Chapter 1). The techniques that are used for

designing a database of an OLTP system are not applicable for designing a DW [Kim96-1], due to the

existing differences between these two kind of databases.

We propose a tool that is intended to be of help at the time of designing a DW. Together with this tool we

provide some guidelines for its utilisation. The tool is a set of schema transformation pr imitives that

must be applied to a source schema in order to obtain a corresponding DW schema. The designer has to

use his own design criteria to apply the primitives, although we give him some help through a set of rules

and strategies he can use.

The primitives work with one source schema; they are not useful for performing integration of several

source schemas. In this work we assume that the design process starts from an integrated schema.

Figure 3.1 shows the basic architecture of the transformation of a source schema into a DW schema,

through the application of primitives.

 Figure 3.1

DW

source DB

Application of
primitives

relations

relations

pr imitives

 16

In our approach, DW design is a process that starts with a source database schema, applies

transformations to it, and ends with a resulting DW schema. The transformations are applied through the

primitives to the source schema and to the intermediate sub-schemas4 that are generated during the

process, i.e. primitives are composed to obtain the final schema. Therefore, all the elements that constitute

the final schema, are results of primitives application to the source schema.

The primitives are high-level transformations of Relational schemas. Roughly speaking, they take as input

a sub-schema and their output is another sub-schema. Besides, they include an outline of the

transformations that have to be applied to the source instance. We group some of the primitives into

families because in some cases there are several alternatives for solving the same problem, or more than

one style of design that can be applied.

For ensuring schema consistency we provide: (i) a set of DW schema invariants, and (ii) a set of

consistency rules for application of primitives. We consider a schema consistent if it satisfies the DW

schema invariants we define. With (i) we can check the consistency of the DW schema. (ii) states the

actions that must be done on application of certain primitives in certain situations, with the form of ECA

(Event Condition Action) rules, in order to preserve schema consistency.

In addition, for assisting the designer during the design process, we provide strategies for solving typical

problems that appear in DW design. These strategies should act as guidelines for the application of the

primitives, covering many possible design alternatives for each considered design problem. Note that the

primitives themselves do not lead to some specific strategy or methodology. Moreover, their application

without well-defined design criteria, could lead to undesired results. For us, a good design should

structure data so that the DW requirements can be satisfied efficiently. DW requirements, which usually

consist on complex queries that imply large volumes of data, are the ones that determine the data

structures that are the most convenient for the DW schema.

In Section 2 we present some basic definitions about the model we use for the specification of the

primitives. In Section 3 we define a set of DW schema invariants for DW schema consistency. In Section

4 we present the schema transformation primitives. In Section 5 we propose a set of consistency rules for

application of primitives, and in Section 6 we propose a set of design strategies, which address the most

common problems that appear when designing a DW. In Section 7 we show the format and specification

of the trace that is generated when DW design is done through the primitives. Section 8 is the conclusion

of this chapter. In Appendix 1 we present an example of a complete design process through primitive

applications.

4 We consider a sub-schema as a set of relations that are part of a schema.

 17

2. Basic definitions

The underlying model for the proposed transformation primitives is the Relational Model. In addition, the

relational elements (relations and attributes) are classified into different sets, according to their behaviour

in a DW context. As a glance, some of the classified elements are: dimension relations, measure relations,

descriptive attributes, measure attributes.

This classification enables the primitives to perform a more refined treatment of the different situations in

DW design.

The following are the sets defined over the Relational Model:

Relation5 sets:

Rel – Set of all the relations (any kind of relation).

RelD – Set of “dimension” relations. These are the relations that represent descriptive information

about real world subjects.

RelC – Set of “crossing” relations. These are the relations that represent relationships or combinations

among the elements of a group of dimensions. Usually, they contain attributes that represent

measures for the combinations.

RelM – Set of “measure” relations. These are the crossing relations that have at least one measure

attribute.

RelJ – Set of “hierarchy” relations. These are the dimension relations that contain a set of attributes

that constitute a hierarchy. The fact that there exists a hierarchy among a set of attributes, can

only be determined having into account the semantics of them.

RelH – Set of “historical” relations. These are the relations that have historical information that

corresponds to information in other relation.

We define a function fH : RelH -> Rel , which, given a historical relation, returns the

corresponding current relation.

These sets verify the following properties:

- RelM ⊂ RelC

- RelJ ⊂ RelD

- RelH ⊂ (RelD ∪ RelC)

Attribute sets:

Att(R) – Set of all attributes of relation R.

5 In this work, we use the word relation as a synonym of relation schema.

 18

AttM(R) – Set of measure attributes of relation R.

AttD(R) – Set of descriptive attributes of relation R.

AttC(R) – Set of derived (calculated) attributes of relation R.

AttJ – Set of sets of attributes that represent a hierarchy.

AttK(R) – Set of sets of attributes that are key in relation R.

AttFK(R) – Set of sets of attributes that are foreign key in relation R.

AttFK(R1, R2) – Set of attributes that is a foreign key in relation R1 with respect to relation R2.

These sets verify the following properties:

- AttM(R) ∪ AttD(R) ∪ AttC(R) = Att(R)

- ∀ X / X ∈ AttJ, X ⊂ ∪R∈Rel AttD(R)

- AttFK(R) = { e / e = AttFK(R, Ri) } , i=1..n, where n is the number of relations with respect to which

R has a foreign key.

- ∀ A / A ∈ X and X ∈ (AttK(R) ∪ AttFK(R)), A ∈ AttD(R)

- If X ∈ AttK(R) and Y ∈ AttFK(R) , it may be: X ∩ Y ≠ ∅

The following are some definitions that are necessary for the specifications we present in the rest of the

document.

Rel_Name – Set of relation names.

Att_Name – Set of attribute names.

Primitive_Name – Set of primitive names.

Fun_Name – Set of function names.

subst (A, B, X) – function that substitutes attribute A by attribute B in the set of attributes X.

conc (s1, s2) – function that concatenates two strings.

name (A) – function that returns the name of an attribute.

3. DW schema Invar iants

Considering the classification we have defined for the elements of a DW schema, we can find some

conditions that must be satisfied by the different types of elements, in order to maintain the consistency in

the DW schema.

In this section we propose a set of DW schema invariants. They are a set of properties that must be

satisfied by a relational DW schema in order to be consistent.

 19

Invariants:

1. Referential integr ity :

Each declared foreign key must have a corresponding primary key in the relations it references.

Besides it must reference to all relations with this primary key.

∀ X, R1, R2 / X = AttFK(R1, R2), it holds:

X ∈ AttK(R2) ∧

∀ R / X ∈ AttK(R), X ∈ AttFK(R1, R)

2. Hierarchies :

Given a set of attributes X representing a hierarchy, a functional dependency must hold between

each attribute of X and all attributes of X that identify higher levels in the hierarchy.

Let X / X ∈ AttJ ∧ X = { A1,, An} ∧

 A1 < A2 < < An , where a<b means that b identifies a higher level in the hierarchy than “a”

it holds A1 → A2

A2 → A3

............

An-1 → An

3. History relations :

• A history relation that corresponds to a current data relation, must include a foreign key

referencing to the corresponding current relation.

Let RH / RH ∈ RelH(R), it holds that ∃ X / X = AttFK(RH,R)

4. Measure relations :

• If a measure relation has an attribute from some dimension relation, then it must have a foreign

key relative to this relation.

Let RD, RM / RD ∈ RelD ∧ RM ∈ RelM

if ∃ A / A ∈ Att(RD) ∧ A ∈ Att(RM) ⇒ ∃ X / X = AttFK(RM,RD)

• Measure relations must have a functional dependency, whose left-hand side is the set of

attributes that are foreign keys to dimensions and right-hand side are the rest of attributes.

Let RM, X / RM ∈ RelM ∧ X = AttFK(RM), it holds X → (Att(RM) – X)

 20

4. The Schema Transformation Pr imitives

In this section we propose a set of schema transformation primitives. Our goal is to provide a set of high-

level transformations that can be combined to cover a wide spectrum of DW schema designs. The idea is

that these transformations are applied to a schema in order to make it more suitable for the kind of queries

that will be submitted to it.

The kind of transformations involved by the primitives are: table partitions, table merges, attribute

addings, attribute removes, and keys and foreign keys changes.

Figure 3.2 shows a table containing the whole set of primitives proposed. In this table, the primitive

names marked with a “ *” symbol correspond to groups of primitives.

 Pr imitive Descr iption

P1 Identity Given a relation, it generates another that is exactly the same as the source one.

P2 Data Filter Given a source relation, it generates another one where only some attributes are

preserved. Its goal is to eliminate purely operational attributes.

P3 Temporalization It adds an element of time to the set of attributes of a relation.

P4 Key Generalization * These primitives generalize the primary key of a dimension relation, so that

more than one tuple of each element of the relation can be stored.

P5 Foreign Key Update Through this primitive, a foreign key and its references can be changed in a

relation. This is useful when primary keys are modified.

P6 DD-Adding * The primitives of this group add to a relation, an attribute that is derived from

others.

P7 Attr ibute Adding It adds attributes to a dimension relation. It should be useful for maintaining in

the same tuple more than one version of an attribute.

P8 Hierarchy Roll Up This primitive does the roll up by one of the attributes of a relation following a

hierarchy. Besides, it can generate another hierarchy relation with the

corresponding level of detail.

P9 Aggregate Generation Given a measure relation, this primitive generates another measure relation,

where data are resumed (or grouped) by a given set of attributes.

P10 Data Ar ray Creation Given a relation that contains a measure attribute and an attribute that represents

a pre-determined set of values, this primitive generates a relation with a data

array structure.

P11 Partition by Stability * These primitives partition a relation, in order to organize its history data storage.

Vertical Partition or Horizontal Partition can be applied, depending on the

design criterion used.

P12 Hierarchy Generation * This is a family of primitives that generate hierarchy relations, having as input,

relations that include a hierarchy or a part of one.

P13 Minidimension Break off This primitive eliminates a set of attributes from a dimension relation,

constructing a new relation with them.

P14 New Dimension Crossing This primitive allows to materialize a dimension crossing in a new relation.

Figure 3.2

 21

As seen, the proposed schema transformation primitives do not intend to be “complete” in the sense of

enable the design of any Relational schema, but they are intended to enable the design of DW. We find

there is a trade-off between the level of expressiveness and the compactness of the set of primitives.

The following sub-sections present: first the description of all primitives and second the specifications of

them.

4.1. Descr iptions of pr imitives

This section presents a description of each primitive. These descriptions are intended to show the

usefulness of the primitives as well as their behaviour.

Primitive 1. IDENTITY

This primitive is useful when we want to generate in the DW, a relation that is exactly the same as

another one. The original relation may be one existing in the source database or one that is an

intermediate result (the result of the application of a primitive).

It gives as result, a copy of the relation given as input.

Primitive 2. DATA FILTER

In operational databases, there are some attributes that are of interest for the DW system, but there

are some others that correspond to data that is purely operational and that is not useful for the kind

of analysis that is made with the DW.

The goal of this primitive is to preserve only the useful attributes, removing the other ones.

Primitive 3. TEMPORALIZATION

Many relations in operational systems do not maintain a temporal notion. For example, stock

relations use to have the current stock data, updating it with each product movement.

In DWs, many relations need to include a temporal element, so that they can maintain historical

information.

This primitive adds an element of time to the set of attributes of a relation.

Primitive 4. KEY GENERALIZATION

The real world subjects represented in dimensions, usually evolve through time. For example, a

client may change his address, a product may change its description or package_size.

In some cases it is enough to maintain only the last value, but in other ones it is necessary to store all

versions of the element, so that history is maintained.

 22

The goal of this group of primitives is to generalize the primary key of a dimension relation, so that

more than one tuple of each subject represented in the relation, can be stored.

Two alternatives are provided to do this generalization, through the primitives: Version Digits and

Key Extension.

Primitive 4.1. VERSION DIGITS

To generalize the key, version digits are added to each value of the attribute.

Primitive 4.2. KEY EXTENSION

The key is extended; new attributes of the relation are included in it.

Primitive 5. FOREIGN KEY UPDATE

When the key of a relation is changed, it is necessary to make the same changes in all the foreign

keys that reference to it from other relations. For example, if an attribute is added to a key, it must

be added also to the foreign keys of the referencing relations.

This primitive is useful for updating a foreign key in a relation when its corresponding primary key

is modified.

Primitive 6. DD-ADDING

In production systems, usually, data is calculated from other data at the moment of the queries, in

spite of the complexity of some calculation functions, in order to prevent any kind of redundancy.

For example, the product prices expressed in dollars are calculated from the product prices

expressed in some other currency and a table containing the dollar values.

In a DW system, sometimes it is convenient to maintain these kind of data calculated, for

performance reasons.

The primitives of this group add an attribute that is derived from others to a relation. They never

cause changes to the grain of the relation.

Primitive 6.1. DD-ADDING 1-1

In this case, the calculations are made over only one relation and one tuple. For example, the total

import of a sale is calculated from the quantity sold and the unit-price, which are all in the same

relation.

 23

Primitive 6.2. DD-ADDING N-1

In this case two relations are used. A calculated attribute is added to one of the relations. This

attribute is derived from some attributes from the same relation and others from the other relation.

This is the case of the example mentioned for the group of primitives (product prices).

The calculation function works over only one tuple of the relations. This tuple must be obtained

uniquely through a join of the two relations.

Primitive 6.3. DD-ADDING N-N

This is the more complex case. Two relations and n tuples are used for the attribute calculation.

Consider the following example in a bank. There exists a relation with client data and another

relation with account data. If we want to add to the former the total amount of all the accounts for

each client, the amounts contained in the second relation must be summed for each client.

The calculation function works over a set of tuples of one of the relations. These tuples must be

obtained through a join of the two relations.

Primitive 7. ATTRIBUTE ADDING

The real world subjects represented in dimensions usually evolve through time. For example, a

client may change his address, a product may change its description or package_size.

Sometimes it is required to maintain the history of these changes in the DW. In some cases, only a

fixed number of values of certain attribute should be stored. For example, it could be useful to

maintain the current value of an attribute and the last one before it, or the current value of an

attribute and the original one.

In these cases, empty attributes are reserved in a dimension relation, for future changes. Suppose, for

instance, that when a client changes his address we want to store the new and the old addresses.

With this primitive an attribute is added to the relation, initially with a null value, to be filled in case

the client moves out.

Primitive 8. HIERARCHY ROLL UP

In operational databases the information in the relations are stored at the highest level of detail that

is possible. For example, the measure relations use to have all the movements. Usually, in these

relations there is an attribute that has a hierarchy associated.

Often, when these relations are used in a DW, they are summarised by an attribute following some

hierarchy (doing a “roll-up”), for example, if data is in a daily level and monthly totals are required.

In this case we are doing a roll-up in a hierarchy of time.

 24

This primitive does the roll up by one of the attributes of a relation following a hierarchy. Besides, it

can generate another hierarchy relation with the corresponding level of detail.

Primitive 9. AGGREGATE GENERATION

In operational systems data is managed as crossings of many dimensions. In general, many DW

relations are constructed from these crossings, and data is grouped by some of the dimensions. Other

dimensions are removed as a consequence of this information grouping.

For example, for a salary system, may be of great importance which employee has made certain

sale. However, for analysing the sales at a global level in the DW, it is required resumed data and

not that information in particular.

This primitive removes a set of attributes from a measure relation, summarising the measures. This

operation has the effect of decreasing the number of tuples of the relation.

Primitive 10. DATA ARRAY CREATION

In a relation where measures are maintained on a month-by-month basis, it can be useful, instead of

having an attribute for the month and another one for the measure, to have 12 attributes for the

measures of the 12 months respectively. With this structure comparative reports can be done more

easily and with better performance, since annual totals are calculated at a tuple level. Besides, the

number of tuples decreases.

This multiple attributes schema (data array) is useful not only for months, in fact it can be used for

any attribute whose associated set of values is finite and known (so that an attribute can be assigned

to each value).

Given a relation that contains an attribute that represents a pre-determined set of values, this

primitive generates a relation with a data array structure.

Primitive 11. PARTITION BY STABILITY

In some cases it is recommended to partition a relation, distributing its data into different relations.

This can be useful, for example, for maintaining the most recent data more accessible than the rest

of the data. It also allows organising data according to its propensity for change.

These primitives partition a relation, in order to organise its data storage. The first (Vertical

Partition) or the second primitive (Horizontal Partition) of this family, can be applied, depending on

the design criterion used.

Primitive 11.1. VERTICAL PARTITION

This primitive applies a vertical partition to a dimension relation, giving several relations as result. It

distributes the attributes, so that they are grouped according to their propensity for change.

 25

Primitive 11.2. HORIZONTAL PARTITION

Two relations, one for more current data and the other for historical information, are generated from

an original one. Each resulting relation contains the same attributes as the source one.

Primitive 12. HIERARCHY GENERATION

This is a family of primitives that generate hierarchy relations, having as input relations that include

a hierarchy or a part of one.

In addition, they transform the original relations, so that they do not include the hierarchy any more.

Instead of this, they reference the new hierarchy relation or relations, through a foreign key.

The three primitives that compose this family implement three different design alternatives for the

generated hierarchy.

Primitive 12.1. DE-NORMALISED

This primitive generates only one relation for the hierarchy.

Primitive 12.2. SNOWFLAKE

This primitive generates several relations for the hierarchy, representing it in a normalised form.

Primitive 12.3. FREE DECOMPOSITION

This primitive generates several relations for the hierarchy. The form (distribution of attributes) of

these relations is decided by the designer.

Primitive 13. MINIDIMENSION BREAK OFF

Often, in a dimension there is a set of attributes that have a limited number of possible values.

The idea is to code the various combinations of values of these attributes (only the combinations that

really occur) and store them in a separate relation, so that they can be referenced from other

relations. Storage space is saved using this structure.

This primitive generates two dimension relations. One is the result of eliminating a set of attributes

from a dimension relation. The other is a relation that contains only this set of attributes. Besides, it

defines a foreign key between the two relations.

 26

Primitive 14. NEW DIMENSION CROSSING

In many cases, we need to materialise a dimension crossing in a new relation. This can be done

through a join of some relations. For example, there is a measure relation where the product

dimension is crossed with other dimensions, and another relation where supplier is determined by

product. The supplier dimension can be added to the measure relation and the product can be

removed, obtaining a crossing between supplier and the other dimensions existing in the measure

relation.

4.2. Specifications of pr imitives

The following specifications present four sections. The Descr iption specifies a natural language

description about the primitive behaviour. The Input specifies the source schema and other arguments

that are necessary for the application of the primitive. The Resulting schema is the specification of the

schema that is generated by the primitive. The Generated instance is a sketch of the transformation that

has to be applied to the instance of the source schema in order to populate the generated schema.

Primitive 1. IDENTITY

Descr iption:

Given a relation, it generates another that is exactly the same as the source one.

Input:
� source schema : R ∈ Rel � source instance : r

Resulting schema:
� R’ ∈ Rel / R’ = R

Generated instance:
� r’ = select *

 from R

 27

Primitive 2. DATA FILTER

Descr iption:

Given a source relation, it generates another one where only some attributes are
preserved. Its goal is to eliminate purely operational attributes.

Input:
� source schema : R (A1,, An) ∈ Rel
� X ⊂ { A1,, An } ∧ X ⊂ AttD(R) � source instance : r

Resulting schema:
� R’ (A’1,, A’ m) ∈ Rel / { A’1,, A’ m } = { A1,, An } – X

Generated instance:
� r’ = select A’1,, A’ m

 from R

Primitive 3. TEMPORALIZATION

Descr iption:

It adds an element of time to the set of attributes of a relation.

Input:
	 source schema : R (A1,, An) / ∃ X ⊂ { A1,, An } ∧ X ∈ AttK(R)

 T time attribute / DOM(T) = { t0,, tk } set of time measures ∨

 DOM(T) = { c / c ⊆ { t0,, tk } set of time measures } . � Key, Boolean argument. It tells if T will be part of R’s key or not. � source instance : r

Resulting schema:
 R’ (A1,, An, T) / T ∈ AttD ∧ if key then XT ∈ AttK(R)

Generated instance:
� r’ = select A1,, An, V(t)
 from R

where V(t) is a user-function. It gives, for example, the snapshot time or snapshot
date.

 28

Primitive 4. GROUP: KEY GENERALIZATION

Descr iption:

These primitives generalise the primary key of a dimension relation, so that more
than one tuple of each subject represented in the relation can be stored.

Primitive 4.1. VERSION DIGITS

Descr iption:

To generalise the key, version digits are added to each value of the attribute.

Input:
� source schema : R (A1,, An) ∈ RelD / A1 ∈ AttK(R) � source instance : r

Resulting schema:
� R’ ∈ RelD / Att(R’) = subst (A1, B, Att(R)) ,

where name(B) = conc (‘GR’ , name(A1))

Generated instance:
� r’ = select concat(num_gen, A1),, An

 from R

 where num_gen is a user-function that must generate series of numbers.

Primitive 4.2. KEY EXTENSION

Descr iption:

The key is extended; new attributes of the relation are included in it.

Input:
� source schema : R (A1,, An) ∈ RelD / ∃ X ⊂ { A1,, An } ∧ X ∈ AttK(R)
� Y ⊂ ({ A1,, An } – X) , attributes to be added to the key � source instance : r

Resulting schema:
� R’ (A1,, An) ∈ RelD / XY ∈ AttK(R’)

Generated instance:
� r’ = r

 29

Primitive 5. FOREIGN KEY UPDATE

Descr iption:

Through this primitive, a foreign key and its reference can be changed in a
relation.

Input:
� source schema : R (A1,, An) ∈ Rel / X ∈ AttFK(R) � X, set of attributes to be eliminated � Y, set of attributes which will substitute X � { R1,, Rm } set of relations with respect to which Y will be a foreign key
� S ∈ Rel / Att(S) = X ∪ Y , auxiliary relation that contains the correspondence

between the old key and the new key � Source instance : r, s

Resulting schema:
� R’ ∈ Rel / Att(R’) = Y U ({ A1,, An } – X) ∧ Y = AttFK(R’ ,R1) ∧

∧ Y = AttFK(R’ ,Rm)

Generated instance:
� r’ = select Y ∪ ({ A1,, An} – X)

 from R S
 where R.X = S.X

Primitive 6. GROUP: DD-ADDING

Descr iption:

The primitives of this group add to a relation an attribute that is derived from
others.

In this kind of problem, four different cases can be distinguished taking into account the number of

relations and the number of tuples that participate in the calculation.

 1 n

1 P 4.1 P 8

n P 4.2 P 4.3

In this group of primitives three primitives are proposed, which solve the cases of:

1 relation, 1 tuple

n relations, 1 tuple

n relations, n tuples

In these cases the derived attribute has the same grain as the other attributes of the relation.

r
e
l
s

t u p l e s

 30

The case of: 1 relation, n tuples, is in essence different from the other ones because in the resulting

relation the original grain is changed, eliminating some attributes and adding others. The goal in this

case is to group information by certain attributes, which is different form the goal in the other cases.

There are two separate primitives that treat this case: Pr imitive 8 – Hierarchy Roll Up and

Pr imitive 9 – Aggregate Generation.

Primitive 6.1. DD-ADDING 1-1

Descr iption:

Given a relation, this primitive adds an attribute that is derived from others of the
same relation.

Input:
 source schema : R (A1,, An) ∈ Rel
! f (A i1,, A im) / { A i1,, A im } ⊆ { A1,, An } , where f is a user-defined

function " source instance : r

Resulting schema:
R’ (A1,, An, An+1) ∈ Rel / An+1 represents f (A i1,, A im)

Generated instance:
$ r’ = select A1,, An, f (A i1,, A im)
 from R

Example:
DETAIL

ART. NUM. QUANTITY UNIT_PRICE

100 20 200

105 7 115

108 32 40

We want to have the total price calculated and materialised in the relation.
Primitive 6.1 is applied, where the input is:
% R = DETAIL & f = QUANTITY x UNIT_PRICE ' r = tuples of DETAIL

Result:

 DETAIL

ART. NUM QUANTITY UNIT_PRICE TOTAL_PRICE

100 20 200 4000

105 7 115 805

108 32 40 1280

♦

 31

Primitive 6.2. DD-ADDING N-1

Descr iption:

This primitive adds to a relation an attribute that is derived from some attributes
from the same relation and others from the other relation. In this case the
calculation function works over only one tuple of the relations. This tuple must be
uniquely obtained through a join operation. Besides, the derived attribute can be
defined as a foreign key to another relation.

Note: This primitive works with only two relations. If participation of more than
two relations is required, additional steps must be applied.

Input:
(source schema : R1 (A1,, An), R2 (B1,, Bm) ∈ Rel
) f (C1,, Ck) / { C1,, Ck } ⊆ { A1,, An } ∪{ B1,, Bm } , where f is a user-

defined function
* A / A ∈ { A1,, An } ∧ A ∈ { B1,, Bm } , join attribute + is_fk , Boolean argument (declare An+1 as a foreign key or not)
, R3 ∈ Rel , relation to which An+1 is a foreign key (optional) - source instance : r1, r2

Resulting schema:
. R’1 (A1,, An, An+1) ∈ Rel / An+1 represents f (C1,, Ck) ∧

 if is_fk then An+1 = AttFK(R’ 1, R3)

Generated instance:
/ r’1 = select A1,, An, f (C1,, Ck)

 from R1 R2
 where R1.A = R2.A

Example:

PRODUCTS

PROD_COD PROD_NAM PRICE SUPP_COD

C1 Clavos 5 P1

C2 Tornillos 3 P1

C3 Sillas 200 P14

SUPPLIERS

SUPP_COD SUPP_NAM ADDRESS PHONE

P1 T&F B. Artigas 444 121212

P14 Muebles Garcia G. Flores 2255 545454

We want to have the supplier name in the PRODUCTS relation.
Primitive 6.2 is applied, where the input is:
0 R1 = PRODUCTS, R2 = SUPPLIERS

 32

1 f = SUPPLIERS.SUPP_NAM 2 A = SUPP_COD 3 is_fk = FALSE 4 r1 = tuples of PRODUCTS, r2 = tuples of SUPPLIERS

Result:

PRODUCTS

PROD_COD PROD_NAM PRICE SUPP_COD SUPP_NAM

C1 Clavos 5 P1 T&F

C2 Tornillos 3 P1 T&F

C3 Sillas 200 P14 Muebles Garcia

Note: For totally de-normalising, apply successively this primitive in the same fashion, adding the
rest of the attributes of the relation SUPPLIERS.

♦

Primitive 6.3. DD-ADDING N-N

Descr iption:

This primitive adds to a relation an attribute that is derived from an attribute of
another relation. In this case the calculation function works over a set of tuples of
the other relation. This set is obtained through a join operation between the two
relations.

Note: This primitive works with only two relations. If participation of more than
two relations is required, additional steps must be applied.

Input:
5 source schema : R1 (A1,, An), R2 (B1,, Bm) ∈ Rel
6 e(B) / B ∈ { B1,, Bm } , where e(B) is an aggregate expression over the

attribute B
7 X / X ⊂ AttD(R2) , attributes by which we want to group
8 A / A ∈ { A1,, An } ∧ A ∈ { B1,, Bm } , join attribute 9 source instance : r1, r2

Resulting schema:
: R’1 (A1,, An, An+1) ∈ Rel / An+1 represents e(B) in R2

Generated instance:
; r’1 = select A1,, An, e(B)

 from R1 R2
 where R1.A = R2.A
 group by A1,, An, X

 33

Example:

 CUSTOMERS

SSN NAME ADDRESS PHONE CS

2760527 Juan Perez B. Artigas 444 121212 S

5321532 Maria Lopez G. Flores 2255 545454 C

 ACCOUNTS

SSN ACCOUNT_NUM AMOUNT

2760527 15382130 5000

2760527 30010011 200

2760527 10001000 30000

5321532 15482122 12000

5321532 10001001 700

We want to have the total amount of money that each customer has in the bank.
Primitive 6.3 is applied, where the input is:
< R1 = CUSTOMERS, R2 = ACCOUNTS = e(B) = SUM(AMOUNT) > X = { SSN } ? A = SSN @ r1 = tuples of CUSTOMERS, r2 = tuples of ACCOUNTS

Result:

 CUSTOMERS

SSN NAME ADDRESS PHONE CS AMOUNT

2760527 Juan Perez B. Artigas 444 121212 S 35200

5321532 Maria Lopez G. Flores 2255 545454 C 12700

♦

 34

Primitive 7. ATTRIBUTE ADDING

Descr iption:

Given a dimension relation, this primitive adds one or more attributes to it.

Input:
A source schema : R (A1,, An) ∈ RelD B { B1,, Bm } , attribute set C source instance : r

Resulting schema:
D R’ (A1,, An, B1,, Bm) ∈ RelD

Generated instance:
E r’ = select A1,, An, ‘NULL’ ,, ‘NULL’

 from R

 35

Primitive 8. HIERARCHY ROLL UP

Descr iption:

Given a measure relation R1 and a hierarchy relation R2, this primitive does a roll
up to R1 by one of its attributes following the hierarchy in R2 (by a foreign key
that must exist from R1 to R2). Besides, it can generate another hierarchy relation
with the corresponding grain.

Input:
F source schema :

- R1 (A1,, An) ∈ RelM / ∃ A ∈ { A1,, An } ∧ { A} = AttFK(R1, R2)
- R2 (B1,, Bn) ∈ RelJ / A ∈ { B1,, Bn } ∧ { A } ∈ AttK(R2) G Z set of attributes / card(Z) = k (measures)

H B / B ∈ { B1,, Bn } ∧ B ∈ AttD(R2) (chosen hierarchy level) I { e1,, ek } , aggregate expressions
J X / X ⊂ { A1,, An } ∧ X ⊂ (AttD(R1) ∪ AttM(R1)) (they have a lower grain)
K Y / Y ⊂ { B1,, Bn } ∧ Y ⊂ AttD(R2) (they have a lower grain) L agg_h , Boolean argument (generate a new hierarchy or not) M source instance : r1, r2

Resulting schema:
N R’1 (A’1,, A’ m) ∈ RelM / { A’1,, A’ m } = sust [A, B, { A1,, An } – X]

∧ AttFK(R’ 1) = AttFK(R1) - AttFK(R1, R2) O If agg_h then
 R’2 (B’1,, B’m) ∈ RelJ / { B’1,, B’m } = { B1,, Bn } – Y ∧
 { B } ∈ AttK(R’ 2) ∧
 AttFK(R’ 1, R’ 2) = { B }

P Note: Note that the original hierarchy relation is not part of the resulting schema
in any case of application of this primitive.

Generated instance:
Q r’1 = select ({ A’1,, A’ m } - Z) ∪ { e1, …., ek }

 from R1 R2
 where R1.A = R2.A
 group by { A’1,, A’ m } – Z

R r’2 = select distinct B’1,, B’ m
 from R2

 36

Example:
SALES

CUSTOMER SALESMAN DATE PROD CITY QUANTITY

Juan Pedro 1/1/98 25 Montevideo 2

Juan Pedro 5/1/98 25 Montevideo 3

Juan Pedro 8/1/98 7 Colonia 7

Juan Maria 7/2/98 4 Montevideo 1

Juan Laura 1/2/98 4 Maldonado 5

Luis Pedro 3/1/98 100 Montevideo 2

Luis Laura 5/1/98 100 Montevideo 6

Luis Laura 8/4/98 100 Canelones 3

 TIME

DATE WEEK MONTH TRIMESTER YEAR

1/1/98 1/98 1/98 1/98 1998

3/1/98 1/98 1/98 1/98 1998

5/1/98 2/98 1/98 1/98 1998

8/1/98 2/98 1/98 1/98 1998

1/2/98 6/98 2/98 1/98 1998

7/2/98 6/98 2/98 1/98 1998

8/4/98 14/98 4/98 2/98 1998

We want to have the sales’ information grouped by month instead of by date. We scale two levels in
the hierarchy of time.
Primitive 8 is applied, where the input is:
S R1 = SALES, A = DATE, foreign key T R2 = TIME, A = DATE, relation key U Z = { QUANTITY } , card(Z) = k = 1, measure attribute V B = MONTH W { e1,, ek } = { sum(QUANTITY) }
X X = ∅ Y Y = { DATE, WEEK } Z agg_h = true [r1 = tuples of SALES, r2 = tuples of TIME

Result:

MONTH_SALES

CUSTOMER SALESMAN MONTH PROD CITY QUANTITY

Juan Pedro 1/98 25 Montevideo 5

Juan Pedro 1/98 7 Colonia 7

Juan Maria 2/98 4 Montevideo 1

Juan Laura 2/98 4 Maldonado 5

Luis Pedro 1/98 100 Montevideo 2

Luis Laura 1/98 100 Montevideo 6

Luis Laura 4/98 100 Canelones 3

 37

 TIME_MONTH

MONTH TRIMESTER YEAR

1/98 1/98 1998

2/98 1/98 1998

4/98 2/98 1998

♦

Primitive 9. AGGREGATE GENERATION

Descr iption:

Given a measure relation, this primitive generates another measure relation, where
data is resumed (or grouped) by a given set of attributes.

Input:
\ source schema : R (A1,, An) ∈ RelM] Z , set of attributes / card(Z) = k (measures) ^ { e1,, ek } , aggregate expressions
_ Y / Y ⊂ { A1,, An } ∧ Y ⊂ (AttD(R) ∪ AttM(R)) , attributes to be removed ` source instance : r

Resulting schema:
a R’ (A’1,, A’ m) ∈ RelM / { A’1,, A’ m } = { A1,, An } – Y ∪ Z

Generated instance:
b r’1 = select ({ A’1,, A’ m } - Z) ∪ { e1, …., ek }
 from R

 group by { A’1,, A’ m } – Z

Example:

We have a relation with the quantities sold by customer, salesman, month, product and city.

MONTH_SALES

CUSTOMER SALESMAN MONTH PROD CITY QUANTITY

Juan Pedro 1/98 25 Montevideo 5

Juan Pedro 1/98 7 Colonia 7

Juan Maria 2/98 4 Montevideo 1

Juan Laura 2/98 4 Maldonado 5

Luis Pedro 1/98 100 Montevideo 2

Luis Laura 1/98 100 Montevideo 6

Luis Laura 4/98 100 Canelones 3

Now we want to store the quantities that were sold by each customer on each month and of each
product. Therefore we will group by CUSTOMER, MONTH, PRODUCT.

 38

We apply primitive P9, where the input is:

c R = MONTH_SALES d Z = { QUANTITY } , card(Z) = k = 1, the measure we want to appear e { e1,, ek } = { sum(QUANTITY) } f Y = { SALESMAN, CITY } g r = tuples of MONTH_SALES

Result:

 CUST_MON_PROD_SALES

CUSTOMER MONTH PROD QUANTITY

Juan 1/98 25 5

Juan 1/98 7 7

Juan 2/98 4 6

Luis 1/98 100 8

Luis 4/98 100 3

♦

 39

Primitive 10. DATA ARRAY CREATION

Descr iption:

The source schema considered by this primitive is a relation that includes an
attribute representing a set of predetermined values (e.g., month). The primitive
generates a relation that includes an attribute for each predetermined value.

Input:
h source schema : R (A1,, An) ∈ Rel / ∃ B ∈ { A1,, An } ∧
 B represents a set of predefined values
i A ∈ Att(R) j { V1,, Vk } set of attributes corresponding to each value of B k source instance : r

Resulting schema:
l R’ (A’1,, A’ m) ∈ Rel /

 { A’1,, A’ m } = { A1,, An } – { A, B } ∪ { V1,, Vk }

Generated instance:
m r’ =
 host variables: X, A, B

 X = Att(R) – { A, B}
 next (R, cursor)
 while not end(cursor) do
 quant_v = corresp_att (:B)
 if empty (select *
 from R’
 where X = :X) then
 insert into R’ (X, quant_v) values (:X, :A)
 else
 update R’ set quant_v = :A where X = :X
 next (R, cursor)
 end.

where corresp_att is a user-defined function that given a value of attribute B, gives
the name of the corresponding attribute in R’ .

Example:

 40

SALES

SALESMAN CITY QUANTITY_

SOLD

YEAR

Ana Montevideo 20 1997

Ana Canelones 3 1997

Ana Rivera 7 1997

Pedro Montevideo 44 1997

Pedro Canelones 62 1997

Pedro Rivera 9 1997

Pedro Salto 40 1997

Ana Montevideo 50 1998

Ana Canelones 32 1998

Ana Rivera 10 1998

Ana Salto 15 1998

Pedro Montevideo 112 1998

Pedro Canelones 20 1998

Pedro Rivera 9 1998

Pedro Salto 20 1998

Primitive 10 is applied, where the input is:
n R = SALES, A = QUANTITY_SOLD, B = CITY o { V1,, Vk } = { MON_QUAN, CAN_QUAN, RIV_QUAN, SAL_QUAN } p r = tuples of SALES

Result:

SALES_BY_CITY

SALESMAN YEAR MON_QUAN CAN_QUAN RIV_QUAN SAL_QUAN

Ana 1997 20 3 7 0

Ana 1998 50 32 10 15

Pedro 1997 44 62 9 40

Pedro 1998 112 20 9 20

♦

Primitive 11. GROUP: PARTITION BY STABILITY

Descr iption:

These primitives partition a relation, in order to organise its history data storage.
The first (Vertical Partition) or the second primitive (Horizontal Partition) of this
family, can be applied, depending on the design criterion used.

Source schema:
q R (A1,, An) ∈ RelD / X ∈ AttK(R)

 41

Primitive 11.1. VERTICAL PARTITION

Descr iption:

This primitive applies a vertical partition to a dimension relation, giving several
relations as result. It should distribute the attributes, so that they are grouped
according to their propensity for change.

Input:
r source schema : the source schema defined for the group
s Y ⊆ { A1,, An } , attributes which values never change
t Z ⊆ { A1,, An } , attributes which values sometimes change
u W ⊆ { A1,, An } , attributes which values change very frequently

W ∩ Y ∩ Z = ∅ v source instance : r

Resulting schema:
w if Y ≠ ∅ then R1 (XY) ∈ RelD / X ∈ AttK(R1) x if Z ≠ ∅ then R2 (XZ) ∈ RelD / X ∈ AttK(R2) y if W ≠ ∅ then R3 (XW) ∈ RelD / X ∈ AttK(R3)

Generated instance:
z r1 = ΠXY r
{ r2 = ΠXZ r
| r2 = ΠXZ r

Primitive 11.2. HORIZONTAL PARTITION

Descr iption:

Two relations, one for more current data, and the other for historical information,
are generated from an original one. Each new relation contains the same attributes
as the source one. One relation is defined as historical with respect to the other.

Input:
} source schema : the source schema defined for the group ~ source instance : r

Resulting schema:
� RCur = R / X ∈ AttK(RCur) � RHis = R / X ∈ AttK(RHis) ∧ RHis ∈ RelH(RCur)

Note: The primitive assigns to RHis the same key as to RCur. However, this should
be changed when one of the primitives suitable for the problem of versioning (P3
or P4) are applied to RHis.

Generated instance:
� rCur = r
� rHis = ∅

 42

Primitive 12. GROUP: HIERARCHY GENERATION

Descr iption:

These primitives generate hierarchy relations, having as source relations that
include a hierarchy or a part of one. In addition, they transform the original
relations, so that they do not include the hierarchy any more. Instead of this, they
reference the new hierarchy relation or relations, through a foreign key.

The three primitives that compose this family implement three different design
alternatives for the generated hierarchy. The alternatives are: de-normalized,
totally normalized (snowflake), or partitioned in a form that is given by the
designer.

Source schema:
� R1,, Rn / ∃ A / A ∈ AttD(Ri) , i = 1...n ∧ A is the lowest level of a hierarchy

 43

Primitive 12.1. DE-NORMALIZED HIERARCHY GENERATION

Descr iption:

This primitive generates only one relation for the hierarchy.

Input:
� Source schema : the source schema defined for the group � { J1,, Jm } , set of attributes that constitutes a hierarchy /

A ∈ { J1,, Jm } ∧ A is the lowest level
� K / K ∈ { J1,, Jm } key for the hierarchy � Source instance : r1,, rn

Resulting schema:
� R’ (J1,, Jm) ∈ RelJ / { K } ∈ AttK(R’)
� R’ i / Att(R’ i) = { K } ∪ (Att(Ri) - { J1,, Jm }) ∧ { K} = AttFK(R’ i, R’), i: 1..n

Generated instance:
� r’ = for each i: 1..n do

 si = select Att(Ri) ∩ { J1,, Jm}
 from Ri

 s = Integrate (s1,, sn)
 Insert s into R’

 For each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do
Fill values of Ji in R’

� r’ i = for each tuple t of ri do
 if K = A then

 t’ .Att(R’ i) = t.Att(R’ i)
 else
 t’ .{ Att(R’ i) – K} = t.{ Att(R’ i) – K}
 t’ .K = select K
 from R’
 where R’ .A = t.A
 add t’ to r’ i

Example:

EMPLOYEES

SSN EMP_NAM POSITION ADDRESS REGION CITY

2190882 R. Mendez C1 Bvar. Artiga P. Rodo Montevideo

2233553 S. Nunez C1 J. Herrera y Centro Montevideo

7657657 L. Lopez C1 18 de Julio Centro Montevideo

3476434 M. Kiuyd C2 21 de Setie Pocitos Montevideo

4567326 S. Sanchez C2 Gral. Flores Centro Montevideo

4678893 W. Yan C3 Gonzalo Ra P. Rodo Montevideo

4888640 B. Pitt C3 Bvar. Españ Pocitos Montevideo

 44

BRANCHES

BRAN_CODE BRAN_NAME ADDRESS REGION CITY COUNTRY

C1 A Bvar. Artiga P. Rodo Montevideo Uruguay

C2 B J. Herrera y Centro Montevideo Uruguay

C3 C 19 de Junio Centro Bs. As. Argentina

C4 D Calle A 334 Palermo Bs. As. Argentina

We want to have the geographic hierarchy in only one table, which can be referenced from
dimensions. This hierarchy will be extracted from the relations EMPLOYEES and BRANCHES.
We apply primitive P12.1, where the input is:
� R1 = EMPLOYEES, Rn = BRANCHES, A = REGION � { J1,, Jm } = { GEO_COD, REGION, CITY, COUNTRY } � K = GEO_COD � r1 = tuples of EMPLOYEES, r2 = tuples of BRANCHES

Result:

GEOGRAPHICS

GEO_COD REGION CITY COUNTRY

G01 P. Rodo Montevideo Uruguay

G02 Centro Montevideo Uruguay

G03 Pocitos Montevideo Uruguay

G04 Centro Bs. As. Argentina

G05 Palermo Bs. As. Argentina

EMPLOYEES

NSS EMP_NAM POSITION ADDRESS GEO_COD

2190882 R. Mendez C1 Bvar. Artiga G01

2233553 S. Nunez C1 J. Herrera y G02

7657657 L. Lopez C1 18 de Julio G02

3476434 M. Kiuyd C2 21 de Setie G03

4567326 S. Sanchez C2 Gral. Flores G02

4678893 W. Yan C3 Gonzalo Ra G01

4888640 B. Pitt C3 Bvar. Españ G03

 BRANCHES

BRAN_CODE BRAN_NAME ADDRESS GEO_COD

C1 A Bvar. Artiga G01

C2 B J. Herrera y G02

C3 C 19 de Junio G04

C4 D Calle A 334 G05

♦

 45

Primitive 12.2. SNOWFLAKE HIERARCHY GENERATION

Descr iption:

This primitive generates several relations for the hierarchy, representing it in a
normalised form.

Input:
� source schema : the source schema defined for the group � J1,, Jm , sorted list of attributes that constitutes a hierarchy /

A ∈ { J1, J2 } ∧ A is the lowest level
� K / K = J1 , key for the hierarchy � source instance : r1,, rn

Resulting schema:
� RJi (Ji, Ji+1) ∈ RelJ ∧ Ji ∈ AttK(RJi) ∧ Ji+1 = AttFK(RJi, RJi+1), i: 1..m-1
� R’ i / Att(R’ i) = { K } ∪ (Att(Ri) - { J1,, Jm }) ∧ { K} = AttFK(R’ i, RJ1), i: 1..n

Generated instance:
� rJ1,, rJm =

 for each i :1..n do
 si = select Att(Ri) ∩ { J1,, Jm}
 from Ri

 s = Integrate (s1,, sn)
 Insert in snowflake mode, s into RJ1, RJ2,, RJm-1

 for each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do
Fill values of Ji in RJ1, RJ2,, RJm-1

� r’ i = for each tuple t of ri do
 if K = A then

 t’ .Att(R’ i) = t.Att(R’ i)
 else
 t’ .{ Att(R’ i) – K} = t.{ Att(R’ i) – K}
 t’ .K = select K
 from RJ1

 where RJ1.A = t.A
 add t’ to r’ i

 46

Pr imitive 12.3. FREE DECOMPOSITION - HIERARCHY GENERATION

Descr iption:

This primitive generates several relations for the hierarchy. The form (distribution
of attributes) of these relations is decided by the designer.

Input:
� source schema : the source schema defined for the group � J1,, Jm , set of attributes that constitutes a hierarchy /

A ∈ { J1,, Jm } ∧ A is the lowest level
� K / K ∈ { J1,, Jm } , key for the hierarchy � { RJ1,, RJh } , set of relations where the attributes of the hierarchy
 are distributed / K ∈ Att(RJ1) ∧ A ∈ Att(RJ1)) � source instance : r1,, rn

Resulting schema:
� RJ1 ∈ RelJ ∧ { K} ∈ AttK(RJ1) � ………………..
� RJh ∈ RelJ R’ i / Att(R’ i) = { K } ∪ (Att(Ri) - { J1,, Jm }) ∧ { K} = AttFK(R’ i, RJ1), i: 1..n

Generated instance:
¡ rJ1,, rJm =

 for each i :1..n do
 si = select Att(Ri) ∩ { J1,, Jm}
 from Ri

 s = Integrate (s1,, sn)
 Insert as corresponds, s into RJ1, RJ2,, RJh

 for each i:1..m / ∀ j:1..n, Ji ∉ Att(Rj) do
Fill values of Ji in RJ1, RJ2,, RJh

¢ r’ i = for each tuple t of ri do
 if K = A then

 t’ .Att(R’ i) = t.Att(R’ i)
 else
 t’ .{ Att(R’ i) – K} = t.{ Att(R’ i) – K}
 t’ .K = select K
 from RJ1

 where RJ1.A = t.A
 add t’ to r’ i

 47

Primitive 13. MINIDIMENSION BREAK OFF

Descr iption:

This primitive generates two dimension relations. One is the result of eliminating a
set of attributes from a dimension relation. The other is a relation that contains
only this set of attributes. Besides, it defines a foreign key between the two
relations.

Input:
£ source schema : R (A1,, An) ∈ RelD ¤ K, key for the new dimension
¥ X ⊂ { A1,, An } , set of attributes of the minidimension ¦ source instance : r

Resulting schema:
§ R1 (A’1,, A’n) ∈ RelD / { A’1,, A’n } = { A1,, An } – X ∪ { K }
¨ R2 / Att(R2) = { K } ∪ X

Generated instance:

Note: For continuously valued attributes such as age or income level,
the instance must be pre-processed so that the distinct values of the
attributes are grouped into bands.
© r2 = select key-gen, X
 from R
ª r1 = select R2.K, R.A’1,, R.A’n
 from R, R2
 where R.X = R2.X

where key-gen is a user-function that must provide the keys for the tuples of R2.

Example:

CUSTOMERS

NAME AGE INCOME_LEVEL ADDRESS SEX CITY CS

R. Mendez 20 10000 Bvar. Artigas 3 F Mont. S

S. Nunez 30 15000 J. Herrera y Ob M Mont. C

M. Garcia 20 10000 Garzon 2125 F Salto S

L. Lopez 50 5000 18 de Julio 643 M Colonia C

Primitive 13 is applied, where the input is:
« R = CUSTOMERS ¬ K = DEM_COD X = { AGE, INCOME_LEVEL, SEX, CE} ® r = tuples of CUSTOMERS

Result:

 48

 DEMOGRAPHICS

DEM_COD AGE INCOME_LEVEL SEX CE

100 20 10000 F S

200 30 15000 M C

300 50 5000 M C

CUSTOMERS

NAME ADDRESS CITY DEM_COD

R. Mendez Bvar. Artiga Mont. 100

S. Núñez J. Herrera y Mont. 200

M. Garcia Garzon 2125 Salto 100

L. Lopez 18 de Julio Colonia 300

♦

 49

Primitive 14. NEW DIMENSION CROSSING

Descr iption:

The source schema is composed of two relations of any type (dimension
or crossing), which have an attribute in common. Only one of the
relations can contain measure attributes. This primitive generates a
crossing relation whose attributes are the union of attribute subsets of
the source relations.

Note: If one of the source relations is a measure relation, its relationship with the
other source relation must be N:1.

Input:
¯ source schema : R1, R2 / (R1, R2 ∈ (RelD ∪ RelC) ∨
 (R1 ∈ RelM ∧ R2 ∈ (RelD ∪ RelC))) ∧

 AttK(R1) = X1 ∧ AttK(R2) = X2 ∧
 R1 ∩ R2 = Z ° Y1, Y2, sets of attributes to be excluded from the resulting relation ± N:N, Boolean argument (the relationship between the relations is N:N or not) ² source instance : r1, r2

Resulting schema:
³ R ∈ RelC / Att(R) = { Att(R1) – Y1} ∪ { Att(R2) – Y2} ∧

if N:N then
if R1, R2 ∈ RelD then

AttK(R) = (X1 ∪ X2) ∧
AttFK(R, R1) = X1 ∧ AttFK(R, R2) = X2

else if R1, R2 ∈ RelC then
 AttK(R) = ∪ A / (A ∈ (X1 ∪ X2) ∧ A ∈ R)

AttFK(R) = { W / W ∈ (AttFK(R1) ∪ AttFK(R2)) ∧ W ⊆ R }
else if R1 ∈ RelC ∧ R2 ∈ RelD then
 AttK(R) = (∪ A / (A ∈ X1 ∧ A ∈ R)) ∪ X2

AttFK(R) = X2 ∪ { W / W ∈ AttFK(R1) ∧ W ⊆ R }
else // N:1

AttK(R) = X1 ∧
if R1, R2 ∈ RelD then

AttFK(R, R1) = X1 ∧ AttFK(R, R2) = X2

else if R1, R2 ∈ RelC then
 AttFK(R) = { W / W ∈ (AttFK(R1) ∪ AttFK(R2)) ∧ W ⊆ R }
else if R1 ∈ RelC ∧ R2 ∈ RelD then

 AttFK(R) = X2 ∪ { W / W ∈ AttFK(R1) ∧ W ⊆ R }

Generated instance:
´ r = select distinct { Att(R1) – Y1} ∪ { Att(R2) – Y2}

 from R1 R2

 where R1.A1 = R2.A1

 50

Example:

ACTIVITIES
STUDENT COURSE

S1 C1
S1 C2
S1 C3
S2 C1
S2 C2
S3 C1
S3 C2
S3 C3

INSTRUCTORS

COURSE INSTRUCTOR

C1 I1
C2 I1
C2 I2
C3 I2

Primitive 14 is applied, where the input is:
µ R1 = ACTIVITIES, R2 = INSTRUCTORS ¶ Y1 = { COURSE} , Y2 = { COURSE} · N:N = TRUE ¸ r1 = tuples of ACTIVITIES, r2 = tuples of INSTRUCTORS

Result:

 STUDENT-INSTRUCTOR
STUDENT INSTRUCTOR

S1 I1
S1 I2
S2 I1
S2 I2
S3 I1
S3 I2

♦

5. Consistency Rules

These are some rules that should be applied always, when a DW schema is constructed through

application of the primitives. The goal of these rules is to assure that the obtained DW schema is

consistent. We consider a DW schema consistent when it satisfies the DW schema invariants (defined in

Section 3).

The rules consider the different cases of inconsistencies that can be generated by application of primitives

and state the actions that must be performed to correct them.

R1, R2 and R3 correspond to the case of invariants I1, I4 and I3 violation, respectively.

R1 – Foreign key updates

R1.1 –

ON APPLICATION OF: Temporalization (adding the time attribute to the key) or Key

Generalization to R, where X = old key and Y = new key

APPLY: Foreign Key Update to all Ri / AttFK(Ri,R) = X, obtaining AttFK(Ri,R) = Y

 51

R1.2 –

ON APPLICATION OF: Vertical Partition to R with key X, obtaining R1, R2, R3, with key

X for each case

APPLY: Foreign Key Update to all Ri / AttFK(Ri,R) = X, obtaining AttFK(Ri,R1) = X,

AttFK(Ri,R2) = X, AttFK(Ri,R3) = X

R2 – Measure relations cor rection

ON APPLICATION OF: Data Filter or Aggregate Generation to R ∈ RelM, removing A ∈ AttD(R),

obtaining relation R’

WHEN: ∃ S ∈ RelD / AttFK(R’ , S) = ∅ ∧ ∃ B / B ∈ Att(R’) ∧ B ∈ Att(S)

APPLY: Data Filter to R’ removing attribute B

R3 – History relations update

R3.1 –

ON APPLICATION OF: Data Filter to R1 ∈ RelH(R), removing A ∈ AttFK(R1,R), obtaining

R2

APPLY: Foreign Key Update to R2, obtaining R3, where A ∈ Att(R3) ∧ A ∈ AttFK(R3, R)

R3.26 –

ON APPLICATION OF: DD-Adding, Attribute Adding, Hierarchy Generation, Aggregate

Generation or Data Array Creation to R, adding A / A ∈

Att(R)

WHEN: ∃ R’ / R’ ∈ RelH(R)

APPLY: Attribute Adding to R’ , obtaining A ∈ Att(R’)

6. Design Strategies

Strategies for application of primitives are designed taking into account some typical problems of Data

Warehousing and should be useful to solve them.

The strategies proposed address design problems relative to: dimension versioning, versioning of N:1

relationships between dimensions, data summarisation and data crossing, hierarchies’ management, and

derived data. We select these problems basing on the literature [Kim96-1][Kim96-3][Sil97] and on our

own experience.

6 This rule is optional. The user chooses if the rule is active or not.

 52

1. DIMENSION VERSIONING

Real-world subjects represented in dimensions, usually evolve through time. For example, a customer

may change his address, a product may change its description or package_size. Sometimes it is required

to maintain the history of these changes in the DW. In some of these cases it is necessary to store all

versions of the element so that the whole history is maintained. In other cases, only a fixed number of

values of certain attributes should be stored. For example, it could be useful to maintain the current value

of an attribute and the last one before it, or the current value and the original one.

A usual problem DW designers have to face is how to manage dimension versioning. This refers to how

dimension information must be structured when its history needs to be maintained. The idea is to maintain

versions of each real-world subject information.

Several alternatives are provided. In all of them, a new dimension relation is generated, where historical

data about the subjects can be maintained.

The following are the possible strategies to apply:

S1) Apply Temporalization primitive (P3), such that the time attribute belongs to the key of the

relation.

S2) Generalise the key of the dimension relation through one of the primitives of Key Generalization

family (P4). The two options are:

2.1) Apply Version Digits primitive (P4.1), so that version digits are added to the key.

2.2) Apply Key Extension primitive (P4.2). In this case new attributes of the relation are included

in the key.

S3) Add new attributes, so that a small number of versions of certain data can be maintained. Do this,

applying the primitive Attr ibute Adding (P7).

S4) Generalise the key of the relation following alternatives 2.1 or 2.2, and add an attribute of time that

does not belong to the key (P4.1, P3 or P4.2, P3).

S5) Partition the relation according to its stability through one of the primitives of Par tition by

Stability family (P11). Here the alternatives are:

5.1) Vertically partition the relation, according to attribute values stability, through Ver tical

Par tition primitive (P11.1).

5.2) Horizontally partition the relation, generating a relation for current data and another one for

historical data, through Hor izontal Partition primitive (P11.2). Immediately apply

alternatives S1, S2 or S4 to the history relation generated.

 53

Example:

 CUSTOMERS

SSN NAME AGE INCOME ADDRESS SEX CITY CS

276052 R. Mendez 20 10000 Bvar. Artigas 3 F Montevideo S

342587 S. Nunez 30 15000 J. Herrera y Ob M Montevideo C

431222 M. Garcia 20 10000 Garzon 2125 F Salto S

213438 L. Lopez 50 5000 18 de Julio 643 M Colonia C

 CUSTOMERS_1

GR_SSN NAME

01276052 R. Mendez

01342587 S. Nunez

01431222 M. Garcia

01213438 L. Lopez

 CUSTOMERS_2

SSN DATE NAME

276052 1/1/93 R. Mendez

342587 23/4/97 S. Nunez

431222 5/2/98 M. Garcia

213438 3/3/99 L. Lopez

♦

2. VERSIONING OF N:1 RELATIONSHIPS BETWEEN DIMENSIONS

Frequently, it is necessary to maintain the history about the relationships between the elements of two

dimensions. In particular, we will treat the case where originally we have a dimension relation that has a

N:1 relationship with another dimension relation, and is referenced from a measure relation. They are

connected through foreign keys. In order to be able to maintain the history of the dimensions’

relationship, some transformations in the schema has to be applied.

First of all, the designer has to make some decisions:

a) Which is the history he really wants to maintain and how he wants to do it

1- Maintain the history only in the dimension.

In this case the complete history of the relationship with the other dimension will be

maintained, and it will be accessible from the dimension.

2- Maintain the history through the data recorded in the measure relation that references the

dimension.

Here, it may happen that some states of the relationship between the dimensions are not

recorded. Besides, the way to obtain information about the history of the relationships of

a dimension’s subject, is not direct.

2 different

options

 54

b) Which is the desired design style

1- Normalised

2- De-normalised

Here we propose four different strategies that can be followed to obtain the desired design. There is a

suitable strategy for each of the possible decisions made by the designer. In the following table we show

the strategy that must be applied for each combination of type of history and type of design chosen.

 a-1 a-2

b-1 S 1 S 2

b-2 S 3 S 4

Possible strategies:

Given a measure relation R1 and two dimension relations R2 and R3, where there is a N:1 relationship

between R1 and R2 and a N:1 relationship between R2 and R3, which slowly changes7, the possible

applicable strategies are the following:

S1) Do a versioning of relation R2. Due to the consistency rule R1, it also will be necessary to update

relation R1 so that it references to R2.

The obtained schema will allow storing several tuples corresponding to the same element of

relation R2, so that each one can reference to a different element of R3.

7 “slowly change” is an expression used by R. Kimball [Kim96-1] referring to data that evolve slowly.

d

e

s

i

g

n

h i s t o r y

R1

 A

R2

 B

R3

 A B

R’1

A modif

R’2

 B

R’3

 B A modif

 55

Steps:

1) Apply to R2 alternatives S1), S2) or S4) of the Versioning strategies presented earlier.

2) Apply R1 consistency rule.

S2) Modify the measure relation R1 so that, in addition to referencing relation R2, it references relation

R3.

With the obtained schema, each movement of the measure relation will reference to an element of

R2 and to an element of R3, and each element of R2 will reference to only one of R3. The idea is

that the elements of R2 reference only to the current corresponding element of R3.

Steps:

1) Apply to R1 Primitive DD-Adding n-1 (P6.2), adding to R1 the attribute that is key of R3.

Derive this attribute from R2 and declare it as foreign key to R3.

S3) Do a versioning of relation R2. Due to the consistency rule R1, it also will be necessary to update

relation R1 so that it references to R2. Afterwards, include the attributes of R3 in R2 (de-

normalising).

The obtained schema will allow storing several tuples corresponding to the same element of

relation R2, but containing different data obtained from relation R3.

R’1

 A

R’2

 B

R’3
 A

 B

 B

R’1

A modif

R’2

 B
R3

A modif

 56

Steps:

1) Apply to R2 the alternatives S1), S2) or S4) of the Versioning strategies presented earlier.

2) Apply R1 consistency rule.

3) Apply to R2 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

R3. Derive these attributes from R3.

S4) Include the attributes of relation R3 in relation R1 and in relation R2 (de-normalising).

With the obtained schema, each movement of the measure relation will reference to an element of

R2 and will contain the corresponding data of R3, and each element of R2 will contain the data of

only one of R3. The idea is that the elements of R2 contain only the data of the current

corresponding element of R3.

Steps:

1) Apply to R2 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

R3. Derive these attributes from R3.

2) Apply to R1 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

R3. Derive these attributes from R2.

3. AGGREGATES AND DATA CROSSINGS

As a consequence of the type of requirements that in general exist over a DW, there is a large number of

different data crossings and different level of summarisations that should be materialised in the DW.

Therefore, measure and crossing relations are the most common type of relations that are constructed

during a DW design.

The new crossing relations are constructed from existing relations that use to be dimension, hierarchy and

crossing relations.

R’1

 A

R’2

 B
R3

 A

 B

R3

 57

The following are some general cases that may appear in this context, and the existing alternatives for

constructing the new relations through application of the primitives.

S1) There is a measure relation where one of the attributes is part of a hierarchy that exists in another

relation. It is required to increase the level of this attribute in the measure relation, following the

hierarchy.

 Two options exist for the generated sub-schema:

1.2) A new measure relation equal to the original one, except for one of its attributes, which

corresponds to a higher level in the hierarchy. The data will be at the same or higher

summarisation level.

1.3) The same measure relation as in 1.2) and in addition, a new hierarchy relation where the

lower level is the same as the level chosen for the attribute of the measure relation.

For obtaining any of these two results, apply Primitive Hierarchy Roll Up (P8), specifying in the

input if a new hierarchy relation is wanted or not.

S2) Given a measure relation, the designer wants to group information by some of the attributes of the

relation.

In this case a new measure relation is constructed. In this relation data will be grouped by some of

the attributes of the original relation. The attributes included in the new relation are only the ones

that correspond to the new grain. For obtaining this result apply Primitive Aggregate Generation

(P9).

S3) It is required to obtain new data combinations structured in crossing relations, starting from

different types of relations.

The relations to be combined may be of dimension or crossing type, and only one of them can be a

measure relation. These relations must have some attributes in common so that they can be joined.

The new crossing relation will have attributes of the two original relations, filtering the attributes

of no interest for the new crossing. For obtaining this result apply Primitive New Dimension

Crossing (P14).

S4) Combinations of the cases above.

Compose Primitives Hierarchy Roll Up, Aggregate Generation and New Dimension Crossing

(P8, P9 and P14).

 58

Examples:

a) We want to construct a crossing relation combining data from a measure and a crossing relation.

Then we want to group by some attributes of the new relation.

PROD-MONTH
PRODUCT MONTH QUANTITY

P1 5 100
P1 6 120
P2 5 50
P3 5 300

 PROD-SUP-MONTH

PROD-SUP
PRODUCT SUPPLIER

P1 PR1
P2 PR1
P3 PR3
P4 PR4

PRODUCT SUPPLIER MONTH QUANTITY

P1 PR1 5 100
P1 PR1 6 120
P2 PR1 5 50
P3 PR3 5 30

 SUP-MONTH

SUPPLIER MONTH QUANTITY

PR1 5 150
PR1 6 120
PR3 5 30

♦

Crossing

Group by Supplier and Month

 59

b) We want to construct a measure relation that combines data from two crossing relations. In this case

a new measure attribute is generated.

ACTIVITIES
STUDENT COURSE

E1 C1
E1 C2
E1 C3
E2 C1
E2 C2
E3 C1
E3 C2
E3 C3

 INSTRUCTOR
COURSE INSTRUCTOR

C1 D1
C2 D1
C3 D2

STUDENT COURSE INSTRUCTOR

E1 C1 D1
E1 C2 D1
E1 C3 D2
E2 C1 D1
E2 C2 D1
E3 C1 D1
E3 C2 D1
E3 C3 D2

INSTRUCTOR STUD_QUANT

D1 5
D2 2

♦

Crossing

Group by Instructor

 60

4. IDENTIFICATION AND SEPARATION OF HIERARCHIES

Frequently, in operational databases we can find embedded in relations sets of attributes where exists a

hierarchy relation between the attributes. Besides, in cases where the database is obtained from several

different sources, it may happen that the same hierarchy is repeated in different representations.

In general, with respect to a relation that “ includes” a hierarchy we can find two different situations:

1) All the attributes of the hierarchy belong to the relation.

2) The relation has an attribute of the hierarchy that references to the rest of the hierarchy, which can be

distributed in several relations.

A reasonable possibility in a DW schema is that a set of attributes that semantically constitute a hierarchy

exists in the schema only once and is reused by all the relations that need to reference to it. This also

allows that relations that contain a subset of the considered hierarchy, can reference the whole hierarchy

and therefore can make new groupings of its data.

In order to perform a reorganisation and cleaning of all relative to the hierarchies in a schema, we propose

to follow these steps:

1) Select all the relations of the schema that include a hierarchy or part of one.

2) With the selected relations, form groups of relations that correspond to the same hierarchy.

3) For each group do:

a) For each relation that references a hierarchy that is in other relations (situation 2)) do:

Apply Primitive New Dimension Crossing (P14) to all involved relations, obtaining only

one relation.

b) Determine the attributes of the hierarchy to be constructed and its key.

c) Apply Primitive Hierarchy Generation (P12) to all relations of the group. In this step there

are three possible design alternatives with respect to the hierarchy to be constructed:

i) De-normalised. All the attributes of the hierarchy belongs to the same relation. (P12.1)

ii) Normalised. The attributes of the hierarchy are distributed in several relations, each one

containing two attributes. (P12.2)

iii) Distributed in several relations according to some designer’s criteria. (P12.3)

Example:

Suppose we have already done steps 1) and 2), and one of the groups of relations we obtained is

composed by relations Branches, Customers, Suppliers and Supp-Location.

 61

BRANCHES

BRAN_CODE BRAN_NAME ADDRESS MANAGER CITY COUNTRY

C1 A Bvar. Artiga Juan Perez Montevideo Uruguay

C2 B J. Herrera y Pepe Diaz Montevideo Uruguay

C3 C 19 de Junio Maria Suarez Bs. As. Argentina

C4 D Calle A 334 Jose Sanchez Bs. As. Argentina

CUSTOMERS

CUST_CODE CUST_NAME ADDRESS CITY REGION COUNTRY

C1 Empresa ABC 18 de Julio 1 Montevideo Montevideo Uruguay

C2 Ramirez Hnos. Rambla Arm Montevideo Montevideo Uruguay

C3 Daniel Kual 19 de Junio Bs. As. Bs. As. Argentina

C4 Nuvoses Calle de los La Plata Bs. As. Argentina

SUPPLIERS (CITY foreign key to SUPP-LOCATION)

SUPP_CODE SUPP_NAME ADDRESS CITY

S1 AAAA Bvar. Artiga Montevideo

S2 BBBB J. Herrera y Montevideo

S3 CCCC 19 de Junio Bs. As.

S4 DDDD Calle A 334 La Plata

SUPP-LOCATION

CITY REGION COUNTRY

Montevideo Montevideo Uruguay

Bs. As. Bs. As. Argentina

La Plata Bs. As. Argentina

Now we will perform step 3). First we apply a) to relations Suppliers and Supp-Location and we obtain a

new relation Suppliers.

SUPPLIERS

SUPP_CODE SUPP_NAME ADDRESS CITY REGION COUNTRY

S1 AAAA Bvar. Artiga Montevideo Montevideo Uruguay

S2 BBBB J. Herrera y Montevideo Montevideo Uruguay

S3 CCCC 19 de Junio Bs. As. Bs. As. Argentina

S4 DDDD Calle A 334 La Plata Bs. As. Argentina

 62

According to b) we have to determine the hierarchy we want to construct.

Hierarchy’s attributes: city, region, country Key: geo_cod

Following step c), we apply Primitive 12.1 generating new Branch, Customers and Suppliers relations

and a de-normalised hierarchy Geography.

BRANCHES

BRAN_CODE BRAN_NAME ADDRESS MANAGER GEO_COD

C1 A Bvar. Artiga Juan Perez G01

C2 B J. Herrera y Pepe Diaz G01

C3 C 19 de Junio Maria Suarez G02

C4 D Calle A 334 Jose Sanchez G02

CUSTOMERS

CUST_CODE CUST_NAME ADDRESS GEO_COD

C1 Empresa ABC 18 de Julio 1 G01

C2 Ramirez Hnos. Rambla Arm G01

C3 Daniel Kual 19 de Junio G02

C4 Nuvoses Calle de los G03

SUPPLIERS

SUPP_CODE SUPP_NAME ADDRESS GEO_COD

S1 AAAA Bvar. Artiga G01

S2 BBBB J. Herrera y G01

S3 CCCC 19 de Junio G02

S4 DDDD Calle A 334 G03

GEOGRAPHY

GEO_COD CITY REGION COUNTRY

G01 Montevideo Montevideo Uruguay

G02 Bs. As. Bs. As. Argentina

G03 La Plata Bs. As. Argentina

♦

 63

5. DERIVED DATA

In general, in a DW is useful to have attributes whose value is derived from others, which can be stored in

other relations, in order to simplify and accelerate queries.

When it is necessary to add to a relation R1 an attribute that is calculated from other relations R2, ..., Rn,

one of the following situations may happen:

S1) Each value of the attribute is calculated from values of attributes that belong to only one tuple

obtained from the R2, ..., Rn join.

The steps to follow in order to generate the derived attribute in R1 are the following:

a) If n>2 then

Apply Primitive New Dimension Crossing (P14) to relations R2, ..., Rn, obtaining R’ .

b) If n=2 then

Apply Primitive DD-Adding n-1 (P6.2) to R1 and R2.

Else if n>2 then

 Apply Primitive DD-Adding n-1 (P6.2) to R1 and R’ .

Example:

CUSTOMERS
SSN NAME ADDRESS PHON

E
PLAN QUOTE CURR_

QUOTE

2760527 Juan Perez B. Artigas 444 121212 100 2 490
5321532 Maria Lopez G. Flores 2255 545454 101 1 315

 PLANS

PLAN QUOTE QUOTE_
VALUE

100 1 500
100 2 495
100 3 490
101 1 350

DISCOUNTS
PLAN DISC%

100 1
101 10
102 7
103 3

♦

R1

R2

 B

R3

 A B

 A

 DD

 64

S2) Each value of the attribute is calculated from the composition of the aggregations of values of the

attributes belonging to the relations R2, ..., Rn.

The steps to follow in order to generate the derived attribute in R1 are the following:

a) If n=2 then

Apply Primitive DD-Adding n-n (P6.3) to relations R1 and R2.

Else if n>2 then

Compose applications of Primitive DD-Adding n-n, starting from the two relations with

highest grain and then applying the primitive successively to the last result and the

following highest grain relation.

Example:

 INVESTMENTS
YEAR CITY AMOUNT

1999 Montevideo 126000
1999 Canelones 57000

 CUSTOMERS
SSN NAME CITY PACK

_COD
AMOUNT

2760527 Juan Perez Montevideo P1 57000
343566 Jorge Martin Montevideo P1 57000
4568899 Luisa Kun Montevideo P2 12000
5321532 Maria Lopez Canelones P1 57000

 PACKAGES

PACK
_COD

INV_
COD

AMOUNT

P1 I1 5000
P1 I2 12000
P1 I3 40000
P2 I2 12000

♦

R1

R2

 B

R3

 A B

 C

 A

 DD

 65

7. Transformation trace

In this section we present how we manage and specify the trace of the transformation that was applied to

a source database schema in order to obtain a DW schema.

In our proposal DW design is a subsequent application of primitives in a composition mode. The result of

this application is a schema where each relation is obtained by application of primitives.

In most cases a final sub-schema is not obtained through application of one primitive to a sub-schema of

the source schema, but it is obtained through composition of several primitives. We call this process a

sequence of primitive applications.

The subsequent primitive application generates a trace of the transformation made. Therefore, for each

element of the final schema there is a trace that can be seen as the path that was followed for obtaining

this element starting from a source element. This trace provides the information about the sequences of

primitives that were applied to the source element.

In the following section we give a way to represent and specify the trace of a schema design.

7.1. Trace specification

We specify the trace of a schema design using a set of expressions with the form of function applications.

By means of this specification we can use the trace starting from elements of the final schema in order to

know their origin. We obtain a mapping that is necessary for the construction of the processes for loading

data from the source database to the constructed DW.

At the same time this specification allows us to use the trace starting from elements of the source schema.

This perspective is necessary for propagating changes that these elements have suffered to the DW

schema.

Definition: Transformation Trace T

Given a set of relations, a set of attributes, a set of functions and a set of primitives, the

Transformation Trace is represented by the following grammar:

T ::= <exp_set>

<exp_set> ::= <rel_set> ‘=’ <prim_app> | <rel_set> ‘=’ <prim_app> ‘ ;’ <exp_set>

<rel_set> ::= ‘ { ’ <relations> ‘ } ’ | <relation>

<relations> ::= <relation> | <relation> ‘ ,’ <relations>

<relation> ::= Rel_Name

<prim_app> ::= <primitive> ‘ (’ <rel_set> ‘ ,’ <arg_list> ‘)’ |

<primitive> ‘ (’ <prim_app> ‘ ,’ <arg_list> ‘)’

<primitive> ::= Primitive_Name

<arg_list> ::= <argument> | <argument> ‘ ,’ <arg_list>

<argument> ::= <rel_set> | <att_set> | <function_set> | Boolean | ∅

<att_set> ::= ‘ { ’ <attributes> ‘ } ’ | <attribute>

 66

<attributes> ::= <attribute> | <attribute> ‘ ,’ <attributes>

<attribute> ::= Att_Name

<function_set> ::= ‘ { ’ <functions> ‘ } ’ | <function>

<functions> ::= <function> | <function> ‘ ,’ <functions>

<function> ::= Fun_Name

Note that this grammar does not control the validity of the arguments (quantity and types) passed to each

primitive. We complement it with the following restriction expressed in natural language:

The <prim_app> expression must respect the format of the input of the primitive, which is stated in

the specification of the primitive.

In a concrete application these expressions are complemented with the specifications of the relations.

♦

Example: The representation of part of a schema design trace.

{ TIME_MONTH, MONTH_SALES} = P8 ({ SALES, TIME} , { quantity} , month,

{ sum(quantity)} , ∅, { date, week} , true)

CMP_SALES = P9 (MONTH_SALES, { quantity_m} , { sum(quantity_m)} , { salesman, city})

{ CUSTOMERS_1, DEMOGRAPHICS} = P13 (CUSTOMERS, dem_code, { age, income_level,

sex, ce})

CUSTOMERS_DW = P3 (CUSTOMERS_1, date, true)

Relation schemas:

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)
CUSTOMERS (name, age, income_level, address, sex, city, cs)
MONTH_SALES (customer, salesman, month, prod, city, quantity_m)
CUSTOMERS_1 (name, address, city, dem_code)
CMP_SALES (customer, month, prod, quantity_cmp)
TIME_MONTH (month, trimester, year)
CUSTOMERS_DW (name, date, address, city, dem_code)
DEMOGRAPHICS (dem_cod, age, income_level, ce)

♦

In addition we use a graphic representation, a directed acyclic graph G(T), which main goal is to show a

global perspective of the process. This representation facilitates the comprehension and localisation of the

trace of a certain element.

We complement this graph with textual representation of: (i) the structure of the relations, and (ii) the

input arguments of each primitive application. We do not include these specifications in the graph for

readability reasons.

 67

Definition: Graph G(T).

G(T) is a directed acyclic graph composed by the following:

Nodes: Three types of nodes.

1) - Represents the application of a primitive.

2) - Represents a relation.

3) - Represents a list of external arguments for a primitive.

Edges:

- Each edge joins : (a) a relation with a primitive, (b) two primitives, (c) a primitive with a relation, or (d) a list

of arguments with a primitive. The representations in each case are the following: in (a) the relation is part of

the input of the primitive, in (b) part of the output of one primitive is the input of the other one, in (c) the

relation is part of the output of the primitive, and in (d) the arguments are part of the input of the primitive.

- The edges are labelled when necessary. (Edges need to be labelled only when they are joining two

primitives). The label of an edge is the name of a relation

♦

Example: Figure 3.3 shows the graph corresponding to the trace specified in the previous example.

SALES

TIME

P 8 P 9 CMP_SALES

TIME_MONTH

MONTH_SALES

CUSTOMERS P 13 P 3
CUSTOMERS_DW

DEMOGRAPHICS

CUSTOMERS_1

param1

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)
CUSTOMERS (name, age, income_level, address, sex, city, cs)

MONTH_SALES (customer, salesman, month, prod, city, quantity)
CUSTOMERS_1 (name, address, city, dem_code)

CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year)
CUSTOMERS_DW (name, date, address, city, dem_code)
DEMOGRAPHICS (dem_cod, age, income_level, ce)

param1 =
{ quantity} , month, { sum(quantity)} , ∅, { date, week} , true

param2 = { quantity} , { sum(quantity)} , { salesman, city}

param3 = dem_code, { age, income_level, sex, ce}

param4 = date, true

param2

param3 param4

 Figure 3.3

♦

 68

8. Conclusion

In this chapter we presented transformation primitives and guidelines for designing a DW schema starting

from a source schema and taking into account DW requirements. The underlying data model is the

Relational model, classifying the elements according to DW concepts.

Our proposal is based on the transformation of the source schema into a schema whose structures are

more suitable for DW requirements. The proposed approach is based on a set of transformation

primitives, which are applied to the source sub-schemas and generate new sub-schemas. The primitives

are high-level operations that allow using different design techniques and should be applied with clear

criteria. We also provided the designer some help in this direction. We defined a set of DW schema

Invariants that are consistency properties, a set of Consistency Rules that ensure the satisfaction of the

Invariants after primitives application, and some Design Strategies that act as guidelines for solving

frequent DW design problems through application of primitives. In addition, we defined and specified the

Transformation Trace, which is a tool that allows obtaining all the transformations that were applied to a

schema element.

 69

CCHHAAPPTTEERR 44.. SSoouurrccee sscchheemmaa eevvoolluuttiioonn

In the previous chapter we presented a mechanism for designing a DW starting from a source database,

through application of transformations. Once the design process has finished and the DW is completely

generated, this DW remains linked to the source database through the trace that has been generated during

the design. The link between DW and source database can be exploited at least for: (i) generating data

loading processes (from source database to DW) and (ii) propagating to the DW changes occurred to the

source database schema.

In this chapter we address the problem of propagation to the DW of source schema evolution.

1. Introduction

Source database schema may change, i.e. evolve. This invalidates the links between the source structures

and the DW ones. Besides, the evolved database may have new data available that could be exploited by

the DW. Therefore it is necessary to propagate source schema evolution to the DW.

The trivial solution for this problem would be re-designing all the DW. This implies starting from scratch,

studying the problem and making design decisions again. However, the existence of the trace, which

contains the design decisions, gives us the possibility of applying evolution to the DW.

In fact, the whole structure, composed by: trace, loading processes, DW schema and DW instance, has to

evolve. However, we will see that evolution can involve changes over only one or some of these

components.

In the cases where DW schema is changed, DW schema invariants have to be verified. In case these

invariants are not satisfied, corrections to the schema have to be done (Consistency Corrections). After

these corrections, the DW schema will be again in a consistent state. In addition, it will exist forward and

backward conversion functions (f.c.f. and b.c.f.) (described in Chapter 2, Section 5) that are needed to

transform data between old and new DW schema structures.

In Figure 4.1 we show a global architecture of the evolution scenario in our context.

 70

Source
DB

DW

Source
DB’

DW’

¹»º½¼

¾ ¼

¹À¿Á¼

¾ ¾ÃÂ

f.c.f.

b.c.f.

Consistency
Corrections

 Figure 4.1

Data loading processes are generated from the trace, thus when we apply changes to the trace the

associated data loading processes have to be re-generated.

The problem of propagating to the DW source schema evolution includes two main sub-problems: (1)

determining the changes that must be done to the DW and to the trace, and (2) applying the

corresponding changes to the DW and to the trace.

In Section 2 we present the Evolution Taxonomy of the source database, in Section 3 we present a

solution for problem (1), in Section 4 we present a solution for problem (2), and in Section 5 we present

the conclusion of this chapter. In Figure 4.2 we show the structure of the chapter.

Chapter 4: Source Schema Evolution

Introduction Source
Evolution
Taxonomy

Determining the
changes to theDW

Applying Evolution
to theDW

Obtaining DW-Source
DB dependencies

Evolution
Propagation

Consistency
corrections

Model for DW
evolution

Instance Conversion
Functions

 Figure 4.2

 71

2. Source Evolution Taxonomy

In this section we define the taxonomy of changes that can happen to the source schema.

As we mentioned in Chapter 1, this work can be seen as a module of the project [CSI99] that is being

developed in our research group. Figure 4.3 shows the global architecture of the project. As can be seen,

this work focuses on a part of the total process considered in the project. This part takes as input an

integrated database. One of the other modules of the project [DoC00] solves the problem of propagation

of source databases evolution to the integrated database.

 Figure 4.3

When there is evolution in one of the source databases, this is propagated to the integrated database, and

then it must be propagated to the DW that was constructed from it. In the whole process considered in the

project, the module that solves the problem of evolution of the integrated database would pass to our

system the changes suffered by the integrated database and our system should propagate them to the DW.

Therefore, our work should consider as the evolution taxonomy the set of schema changes that is

managed by the mentioned module.

The taxonomy we use in this work covers the changes managed by the mentioned module of the project,

presented in [DoC00]. However, it also includes some changes that are not considered in that module:

rename attribute, rename relation, and change the key of a relation. These changes are added because

they allow distinguishing more cases of change and provide more semantic to the evolution operations

set. On the other hand, this taxonomy presents basically the same operations that are presented in

taxonomies of the consulted bibliography [Zic91][Fer96][Ska86][Ban87].

DW

Integrated DB

Web pages

Local DBs

INTEGRATION

TRANSFORMATION

 72

The selected taxonomy for representing the possible changes to the source schema is the following:

1) Rename attribute

2) Add attribute

3) Remove attribute (the attribute cannot be a primary key)

4) Change the key of a relation

5) Rename relation

6) Add relation

7) Remove relation

3. Determining the changes to the DW

In this section we concentrate on the problem of determining the changes that must be applied to the DW

and to the trace in order to propagate source schema evolution.

In this problem we have as input the trace and the change that has been applied to the source schema, and

we have to give as solution the changes that must be applied to the DW and to the trace. The trace gives

us the dependencies that exist between the source schema elements and the DW schema ones. We have to

process the trace in order to deduce these dependencies.

The steps we follow for solving this problem are:

(a) definition of a mechanism for obtaining the dependencies between DW elements and source

database elements

(b) analysis of the possible combinations of schema element dependencies and changes of the

taxonomy

(c) definition of a set of Propagation Rules for each combination considered

(d) definition of a set of Correction Rules to be applied to the evolved schema for assuring its

consistency

3.1. Obtaining DW-Source DB dependencies

The DW-Source DB dependencies we are most interested in are the ones between basic elements of the

schemas, i.e. between attributes. Therefore, the first step we will perform in order to give a mechanism to

deduce these dependencies is to express the primitives in terms of basic operations (operations that apply

over basic elements of schemas).

 73

Once we have de-composed the primitives into basic operations, we can process the trace by refining it,

and obtaining the corresponding detailed trace. This is the trace in function of basic operations. After

that, we can deduce the dependency expressions of a source schema element. A dependency expression

gives the information of how an element of the DW schema depends on the selected element of the source

schema. For example, an attribute of the DW schema could be a calculation from an attribute of the

source schema.

In following sub-sections we present the set of basic operations, the primitives expressed in function of

them, and the processing of the trace that is applied for obtaining the dependency expressions of the

elements.

3.1.1. Basic operations

The transformation primitives can be de-composed into smaller operations that apply over basic elements

of the sub-schemas. We define a set of Basic Operations that apply over basic elements of the data model

we use, and that cover all the changes the primitives may do over these elements. Therefore, the

primitives defined can be expressed in terms of these basic operations.

We classify the operations according to what object they are modifying.

During the schema transformation process, a set of relational elements (relations with all their properties)

is maintained. This set is the intermediate result corresponding to each step of the process. We call the

current intermediate result, the context.

The set of Basic Operations is shown in Figure 4.4.

Applied to Operations Descr iption

The Context Rel_add Add a relation.

 Rel_del Remove a relation.

A Relation Att_add Add a set of attributes.

 Att_rem Remove a set of attributes.

 Att_cpy Copy a set of attributes from a relation.

 Att_calc Add a derived attribute.

A set of keys Key_add Add a key.

 Key_del Remove a key.

A set of foreign keys Fkey_add Add a foreign key.

 Fkey_del Remove a foreign key.

 Figure 4.4

When we substitute a primitive by the sequence of basic operations, we lose the abstraction of the

primitive. This abstraction is essential at the moment of design, but it is not important when considering

the trace of the design made.

In Appendix 2 we provide the list of the basic operations with their descriptions.

Notation: Basic_operation_Name is the set of the names of the Basic Operations.

 74

3.1.2. The Primitives expressed in terms of basic operations

We expressed the transformation primitives in terms of the basic operations that were previously defined.

The set of primitives specified through these operations is presented in Appendix 3.

3.1.3. Processing the transformation trace

The design trace of the DW schema provides a mapping between original and final schema elements. It

allows us to identify certain elements of the source schema and know the transformation they suffered

during the DW schema design.

Using the trace we can identify certain element in the source schema and know all the operations that

were applied to it during the schema transformation process, obtaining the transformation trace of the

element. Then, starting from this trace we can obtain the dependency expressions of the element (defined

later in this section), where elements of the DW schema are expressed in function of the source schema

element.

In this section we concentrate in defining a mechanism to process the design trace, with the ultimate goal

of obtaining the dependency expressions of the source elements.

Given an element of the source schema that has changed, we have to follow three steps with respect to the

design trace:

1) Extract from the design trace the transformation trace of the element in terms of primitives.

The transformation trace of the element in terms of primitives contains the set of the sequences of

primitives that were applied to the element. We consider that a sequence of primitives was applied to

an element if this element was part of the input of the first primitive of the sequence.

It does not matter if the considered element is a relation or a part of one, the extracted trace will

always be the trace of a relation, since the input schema of the primitives is always a set of relations.

2) Obtain the detailed trace of the element.

Express the trace obtained in (1), in terms of basic operations. Extract an expression that shows only

the sequence of basic operations that were applied to the considered element.

3) Obtain the dependency expressions of the element.

From the detailed trace of the element we deduce its dependency expressions.

Following subsections present the used notation and mechanisms to obtain: the detailed trace and the

dependency expressions of an element.

 75

Detailed trace of an element

In order to obtain the detailed trace of an element from its trace, we have to do an “explosion” of the

primitives that appear in the trace, de-composing them into the basic operations they perform.

With respect to the graphical representation of this trace, the idea is to explode each circular node

(circular nodes represent primitives) into a set of nodes that represent the basic operations performed by

the primitive. At the same time the rectangular nodes (corresponding to relations) must be exploded into

sets of nodes that represent the sets of attributes of the relations. The obtained diagram is the graphic

representation of the detailed trace of the element.

We can apply the same idea to the textual representation of the trace. The textual representation of the

trace in terms of primitives consists of functional expressions. When we explode the primitives into the

corresponding basic operations, we do not preserve this “ functional format” of the expressions. We

express the detailed trace of each relation as a sequence of basic operations applications.

Definition: Detailed Trace of a relation TD(R)

Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the

Detailed Trace of a relation is represented by the following grammar:

TD(R) ::= <opapp_seq>

<opapp_seq> ::= <op_app> | <op_app>

 <opapp_seq>

<op_app> ::= <operation> “(” <arg_list> “)”

<operation> ::= Basic_operation_Name

<arg_list> ::= <argument> | <argument> ‘ ,’ <arg_list>

<argument> ::= <relation> | <att_set> | <att_set_set> | <function>

<relation> ::= Rel_Name

<att_set_set> ::= ‘ { ’ <att_sets> ‘ } ’

<att_sets> ::= <att_set> | <att_set> ‘ ,’ <att_sets>

<att_set> ::= ‘ { ’ <attributes> ‘ } ’

<attributes> ::= <attribute> | <attribute> ‘ ,’ <attributes>

<attribute> ::= Att_Name

<function> ::= Fun_Name

Note that this grammar does not control the validity of the arguments (quantity and types) passed to each

basic operation. We complement it with the following restriction expressed in natural language:

The <op_app> expression must respect the format of the input of the basic operation, which is stated

in the specification of the basic operation.

♦

 76

The textual representation of the detailed trace of a relation is the representation that best allows us to

deduce the detailed trace of an attribute of the relation. Exploring this trace we can extract exactly the

sequence of basic operations that were applied to the attribute.

For the representation of the detailed trace of an attribute we define a graph G(Tatt).

Definition: Detailed Trace of an attribute. Graph G(Tatt).

Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the

Detailed Trace of an attribute is represented by the graph G(Tatt), with the following characteristics:

The nodes represent attributes or the null value. The edges represent the application of a basic

operation that transforms one attribute into the other. The edges have labels that are the names of the

corresponding operation. It exists a path between two attributes when it is possible to reach one

from the other going through the edges.

G(Tatt) = < Nodes, Edges, Paths >

- ∀ n ∈ Nodes, Att(n) returns the attribute represented by the node.

- Let n1, n2 / n1, n2 ∈ Nodes, ∃ e(n1, n2) ∈ Edges ⇔ Att(n2) = bop(Att(n1)),

bop ∈ Basic_Operations,

- Let n1, n2 / n1, n2 ∈ Nodes, ∃ p(n1, n2) ∈ Paths ⇔

∃ e(n1, m1), e(m1, m2), e(m2, m3), …, e(mN, n2) ∈ Edges

♦

The general format of the graph is as follows:

 <op1> <op2> <op3>
<attribute1> <attribute2> <attributen>

We illustrate the proposed mechanisms through an example.

Example:

Consider the example trace presented in Chapter 3, Section 7.1. Suppose we are interested in the trace of

the attribute quantity of the relation SALES. The detailed trace of the relation SALES is obtained from

its transformation trace, decomposing the primitives that are part of this trace into the basic operations

they perform.

The trace of SALES:

Graphical and textual representations are shown in Figure 4.5 and Figure 4.6.

 77

SALES

TIME

P 8 P 9 CMP_SALES

TIME_MONTH

MONTH_SALES

param1 param2

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)

MONTH_SALES (customer, salesman, month, prod, city, quantity)

CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year)

param1 =
{ quantity} , month, { sum(quantity)} , ∅, { date, week} , true

param2 = { quantity} , { sum(quantity)} , { salesman, city}

 Figure 4.5

{ TIME_MONTH, MONTH_SALES} = P8 ({ SALES, TIME} , { quantity} , month,

{ sum(quantity)} , ∅, { date, week} , true)

CMP_SALES = P9 (MONTH_SALES, { quantity_m} , { sum(quantity_m)} , { salesman, city})

Relation schemas:

SALES (customer, salesman, date, prod, city, quantity)
TIME (date, week, month, trimester, year)
MONTH_SALES (customer, salesman, month, prod, city, quantity_m)
CMP_SALES (customer, month, prod, quantity_cmp)
TIME_MONTH (month, trimester, year)

 Figure 4.6

The detailed trace of relation SALES:

Graphical and textual representations are shown in Figure 4.7 and Figure 4.8.

As can be seen, graphical representation for detailed traces does not seem to be so practical; it becomes

difficult to manage because of the large amount of elements it has to represent. This representation may

be more manageable if it is restricted to a small portion of the whole trace.

 78

SALES

customer
salesman
date
prod
city
quantity

Att_cpy

MONTH_SALES

customer
salesman
date
prod
city
quantity

Att_calc

MONTH_SALES

Att_rem

MONTH_SALES

customer
salesman
month
prod
city
quantity

Att_calc

CMP_SALES

Att_calc

CMP_SALES

customer
month
prod
quantity_m
quantity_cmp

sum

TIME

date
week
month
trimester
year

=

customer
salesman
date
prod
city
quantity
month

sum

MONTH_SALES

customer
salesman
month
prod
city
quantity
quantity_m

Att_rem

MONTH_SALES

customer
salesman
month
prod
city
quantity_m

Att_cpy

customer
month
prod
quantity_m

Att_rem

CMP_SALES

customer
month
prod
quantity_cmp

 Figure 4.7

MONTH_SALES trace = Att_cpy ({ customer, salesman, date, prod, city, quantity} , SALES,

MONTH_SALES)

Att_calc ({TIME.month} , =, { TIME.date, MONTH_SALES.date} ,

MONTH_SALES.month)

Att_rem ({ date} , MONTH_SALES)

Att_calc ({ MONTH_SALES.quantity} , sum, { } ,

MONTH_SALES.quantity_m)

Att_rem ({ quantity} , MONTH_SALES)

CMP_SALES trace = Att_cpy ({ customer, month, prod, quantity_m} , MONTH_SALES,

CMP_SALES)

Att_calc (CMP_SALES.quantity_m, sum, { } ,

CMP_SALES.quantity_cmp)

Att_rem ({ quantity_m, CMP_SALES)

 Figure 4.8

 79

From the textual representation of the detailed trace of SALES we can easily extract the detailed trace

of the attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity MONTH_SALES.quantity MONTH_SALES.quantity_m

 Att_rem

 //
Att_cpy Att_calc
 CMP_SALES.quantity_m CMP_SALES.quantity_cmp

 Att_rem

 //

Other examples are the traces of the attributes customer and date:

Att_cpy Att_cpy
SALES.customer MONTH_SALES.customer CMP_SALES.customer

 Att_cpy Att_calc

SALES.date MONTH_SALES.date MONTH_SALES.month

 Att_rem

 //
Att_cpy
 CMP_SALES.month

Note: In this representation, when the operation is Att_calc we also specify the calculation function that is

used. We use the word “req” when the attribute is required for the calculation although it does not

participate directly in the function.

♦

Dependency expressions of an element

The last step we have to follow in the processing of the trace of an element is to obtain the dependency

expression of the element. This is an expression of the final element in function of the original one.

The dependencies information required for the management of source schema evolution vary according to

the type of element considered (attribute or relation). Therefore, the dependency expressions that are

constructed for each type of element will have different formats.

If the element is an attribute, the possible operations that can have been applied to it are: a copy, a

calculation, and a remove. The dependency expression of an attribute will be deduced from its trace,

considering the combination of copies and calculations. The removes do not participate in the generation

of the dependency expressions.

sum

sum

req

 80

If the element is a relation, the information needed about its dependencies is related to the dependencies

of its attributes. Thus, a dependency expression of a relation with respect to a final relation, should

specify the number of attributes that are copied to the final relation, and the number of attributes that

participate in derivations of attributes of the final relation.

First we will present the dependency expressions for attributes and then the dependency expressions for

relations.

Dependency expression of an attr ibute:

Simple dependency expressions:

Trace Dep. expression

 Att_cpy
R1.A1 R2.A2

R2.A2 = R1.A1

 Att_calc
R1.A1 R2.A2
 F

R2.A2 = f (R1.A1)

In most cases the trace of an attribute will consist of a sequence of operation applications, causing the

generation of a complex dependency expression. In these cases the dependency expression for the

attribute must be constructed composing the operation applications.

Mechanism to construct a complex dependency expression:

<left_part> = <right_part>

1) <left_part>: Left part of the expression: Last element of the trace. This element belongs to the

final schema.

2) <right_part>: Right part of the expression: Follow the trace starting from the final element.

Substitute each attribute of the trace by the corresponding expression according to the simple

dependency expressions presented below, until an expression in function of the first attribute of

the trace is obtained.

Note that in the case of calculation dependencies this expression shows how a final element depends on a

source element, but it does not mean that the final element depends exclusively on this source element; it

may depend also on other attributes.

 81

Examples:

Trace of attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity MONTH_SALES.quantity MONTH_SALES.quantity_m

 Att_rem

 //
Att_cpy Att_calc
 CMP_SALES.quantity_m CMP_SALES.quantity_cmp

 Att_rem

 //

Dependency expression of attribute SALES.quantity:

CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Trace of attribute SALES.customer:

Att_cpy Att_cpy
SALES.customer MONTH_SALES.customer CMP_SALES.customer

Dependency expressions of attribute SALES.customer:

CMP_SALES.customer = SALES.customer

Trace of attribute SALES.date:

 Att_cpy Att_calc
SALES.date MONTH_SALES.date MONTH_SALES.month

 Att_rem

 //
Att_cpy
 CMP_SALES.month

Dependency expressions of attribute SALES.date:

CMP_SALES.month = req (SALES.date)

Note: Looking at the detailed trace of SALES we can see that the attribute CMP_SALES.month also

depends on other attributes: TIME.date and TIME.month.

♦

sum

sum

req

 82

Dependency expression of a relation:

Mechanism to construct a dependency expression between a source and a final relation:

1) Make a list containing all the dependency expressions of all the attributes of the source relation

with respect to the final relation.

2) Deduce from this list the number of attributes that are copied to the final relation and the number

of attributes that are needed for the calculation of an attribute of the final relation.

3) Construct the dependency expression of the relation with the following format:

<final_rel> = dep_cpy (<source_rel>, n) ∧ dep_calc (<source_rel>, m)

where dep_cpy is an expression that indicates that n attributes are copied from <source_rel>, and

dep_calc is an expression that indicates that m attributes of <source_rel> are used for the

derivation of attributes of <final_rel>.

Obtain a reduced dependency expression with the following format:

<final_rel> = dep (<source_rel>, n+m)

Example:

Dependency expressions of the attributes of SALES:

CMP_SALES.customer = SALES.customer

CMP_SALES.month = req (SALES.date)

CMP_SALES.prod = SALES.prod

CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Dependency expression of the relation SALES with respect to the relation CMP_SALES:

CMP_SALES = dep_cpy (SALES, 2) ∧ dep_calc (SALES, 2)

Reduced expression:

CMP_SALES = dep (SALES, 4)

♦

 83

3.2. Evolution Propagation

Now that we have proposed a solution to the problem of determining the dependencies between final and

initial schema elements (DW and source schema elements), we can focus on the problem of how changes

on the source may be propagated to the DW schema.

In this Section our goal is to provide a set of Propagation Rules that state the modifications that should be

applied to the DW schema after source schema evolution.

3.2.1. Deducing the Propagation Rules

Our goal in this section is to provide a set of Propagation Rules that give the modifications that have to

be done to the trace and, when necessary, to the DW schema, when a change has occurred to the source

schema. These modifications are stated according to: (i) the changes occurred to the source schema, and

(ii) the dependencies between elements of the source schema and elements of the DW schema.

We will start by analysing the possible combinations change-dependency, determining in each case if the

DW should be affected by the change or not. Each time the DW is affected by a change the trace will also

be affected. However, sometimes the trace will be able to make the change to the source schema

transparent to the DW. In these cases we will say that the trace “absorbs” the changes.

Afterwards, we will present the rules that will specify the actions to be performed for each combination

change-dependency.

Analysing the “ combinations change-dependency”

In the table in Figure 4.9 we show the possible combinations between changes of the source schema and

type of dependency of the involved source element with respect to the DW schema, pointing out whether

the trace and/or the DW should be modified or not. At this stage, only the changes at attribute level are

considered.

 Dependency

Change to source att.

No dependency Copied Used in Calc. Req. for Calc.

Rename attribute

 T T T

Add attribute T
DW

Remove attribute T
DW

T
DW ?

T
DW

Change key of a relation T ?
DW

T
DW ?

 Figure 4.9

?

 84

Note: In Figure 4.9, T represents the trace, a “?” symbol means that only in some cases the DW/trace

must be modified.

If an attribute is renamed in the source schema, the trace should absorb this change. The attributes of the

DW that depends on the renamed attribute of the source schema do not need to be changed in any case of

dependency. Only the mapping between these DW attributes and the renamed attribute should be

changed.

In the case of adding an attribute to the source schema, the repercussion to the DW schema cannot be

decided automatically. The designer should participate in the decision and in the process of repercussion

in case it exists. In order to allow this, the following questions should be made to the designer: (i) Do you

want to add one (or more than one) corresponding attribute to the DW schema? (ii) Where and how do

you want to add them? (iii) Do any of the new structures substitute any structure in the DW schema?

Which one/s?

In case the answer of question (i) is “No” , nothing has to be done to the DW nor to the trace, and

questions (ii) and (iii) are not necessary. But if the answer is “Yes” , then the designer has to answer

questions (ii) and (iii). The mechanism we offer him for answering question (ii), is to apply

transformations through application of primitives to the new attribute (and, if necessary, to other

structures of the source schema), directly generating the new structures of the DW. Finally, answering

question (iii), he has to specify if the new structures are substituting any structure of the DW and in this

case which of them. If some structure is being substituted it is automatically eliminated. Obviously, if the

answer of question (i) is “Yes” both the trace and the DW are modified.

When an attribute is removed from the source schema the three different cases of dependency have to be

considered for deciding the repercussion this change will have. (a) If the attribute has a copy in the DW,

this attribute of the DW has to be eliminated. This elimination can be implemented in different ways, for

example not physically removing the attribute and stating a fixed null value for all its instances. Besides

the trace has to be modified, removing the connections existing between the two eliminated attributes. (b)

If the attribute is used in the calculation function of a derived attribute of the DW, then we propose two

alternatives. One is to eliminate the derived attribute from the DW, and the other is to modify the

calculation function of the derived attribute so that the removed source attribute does not participate any

more in this function. In both cases the trace is modified and only in the first case the DW is modified. (c)

If the attribute is required for the calculation of an attribute of the DW, the derived attribute must be

eliminated. This is because an attribute is defined (in the trace) as required when it behaves as a “ join

attribute” , i.e. it allows two relations to join in order to derive an attribute of one relation from attributes

of the other relation. If this “ join attribute” is lost, the calculation will no longer be able to be done. In this

case both the trace and the DW must be modified.

 85

Now we will consider the case of changing the key of a relation, combining it with some of the possible

existing dependencies between source and DW attributes. (A) When the source attribute that is the “old”

key has a dependency of copy in the DW, there are two possibilities for the corresponding DW attribute:

(i) it is key in a DW relation, and (ii) it is foreign key in a DW relation. In case (i) the DW must be

modified changing the key so that it agrees with the “new” key defined in the source schema. If the

attribute defined as “new” key does not exist in the DW relation, then it must be added. Only in case of

adding an attribute the trace must be modified. In case (ii), the attribute corresponding to the “old” key

defined as foreign key in the DW relation, must be substituted by the attribute that corresponds to the

“new” key in the source. In the trace we have to delete the path corresponding to the substituted DW

attribute and add the path corresponding to the added DW attribute. Both DW and trace must be modified.

(B) When the source attribute that corresponds to the “old” key is used in the calculation function of a

DW derived attribute, no action has to be performed, since the change should not affect the DW or the

trace. (C) When the source attribute that corresponds to the “old” key is required for the calculation of a

DW derived attribute, user participation is needed for deciding the repercussion the change will have. As

said below, an attribute is defined (in the trace) as required when it behaves as a “ join attribute” with

respect to other relation. Therefore, we give two alternatives to the user: (i) eliminate the derived attribute

in the DW, and (ii) substitute in the trace the required attribute by the “new” key attribute, paying

attention to also changing the corresponding join attribute of the other relation. In (i) both the trace and

the DW are modified, while in (ii) only the trace is modified.

Dependencies between relations

When we consider the changes of the taxonomy that affect a whole relation instead of an attribute, we can

take into account the dependency that exists between a source relation and the DW relations. The

dependency expression between two relations tells “how much” the DW relation is derived from the

source one. This information can be useful for deciding if it is worthwhile to maintain a DW relation

when the corresponding source relation was removed.

The dependency between a DW relation and a source relation is reduced to how many attributes of the

DW relation depend on the source relation. We define a parameter t, to be set by the user, that states a

threshold for this quantity. This value will be used in the corresponding Propagation Rules.

 86

Propagation Rules

These rules state the actions that must be performed in each case of change to the source Database and

dependency between source and DW elements.

For specifying the actions that affect the DW we use the Basic Operations defined in Section 3.1.1, since

these operations work over a database schema and at a level that is suitable for the actions that must be

performed. In addition, the use of the Basic Operations facilitates the specification of the Consistency

Corrections for satisfying the invariants, which will be presented in next section.

R1) CHANGE: Rename attribute: A1 -> A2, where A1, A2 ∈ Att_Name

DEPENDENCY: Copied, Used in calculation, or Required for calculation

ACTION: - substitute in G(Tatt) A1 by A2.

R2) CHANGE: Add attribute

DEPENDENCY: None

ACTION: - if user wants to add sub-schema DWSS to the DW schema

 - user applies primitives adding DWSS

 - if user wants to remove an existing DW sub-schema, DWSS’

- for each R ∈ DWSS’

- Rel_del (R) // remove from DW relation R

- remove path(_,A) from G(Tatt), where A ∈ R // Remove form

trace all paths that finish on an R’s attribute.

R3) CHANGE: Remove attribute R.A

DEPENDENCY: Copied. R’ .B = R.A

ACTION: - Att_rem ({ B} , R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

R4) CHANGE: Remove attribute R.A

DEPENDENCY: Used in calculation function. R’ .B = f(R.A)

ACTION: - if user wants to remove attribute R’ .B

- Att_rem ({ B} , R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- else

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

- user modifies the calculation function of B in the trace.

R5) CHANGE: Remove attribute R.A

DEPENDENCY: Required for calculation. R’ .B = req(R.A)

ACTION: - Att_rem ({ B} , R’) // remove from DW schema attribute B

- remove path(A,B) from G(Tatt) // remove from trace path(A,B)

 87

R6) CHANGE: Change the key of a relation R. old key = A, new key = A’ .

DEPENDENCY: Copied. R’ .B = R.A.

ACTION: - if B is key in DW relation R’

 - if ∃ B’∈ R’ , R’ .B’ = R.A’

 - Key_del ({ B} , AttK(R’))

 - Key_add ({ B’} , AttK(R’)) // set B’ as the key of R’ in the DW

 - else

 - Att_add ({ B’} , R’) // add attribute B’ to relation R’ in the DW

 - Key_del ({ B} , AttK(R’))

 - Key_add ({ B’} , AttK(R’)) // set B’ as the key of R’ in the DW

 - add path(A’ ,B’) to G(Tatt) // add path(A’ ,B’) to the trace

 - else if B is foreign key in DW relation R’ , with respect to DW relation R’ ’

 - Att_add ({ B’} , R’) // add attribute B’ to relation R’ in the DW

- FKey_add ({ B’} , AttFK(R’ ,R’ ’), AttFK(R’)) // set B’ as foreign key to R’ ’ in

the DW

- Att_rem ({ B} , R’) // remove attribute B from R’ in the DW

 - remove path(A,B) from G(Tatt) // remove from trace path(A,B)

 - add path(A’ ,B’) to G(Tatt) // add path(A’ ,B’) to the trace

R7) CHANGE: Change the key of a relation R. old key = A, new key = A’ .

DEPENDENCY: Required for calculation. R’ .B = req(R.A)

ACTION: - if user wants to eliminate attribute B from DW

 - Att_rem ({ B} , R’) // remove attribute B from R’ in the DW

 - remove path(A,B) from G(Tatt) // remove from trace path(A,B)

 - else if user wants to change the required attribute in the trace

 - substitute path(A,B) by path(A’ ,B) in G(Tatt)

- user corrects path(_,B), updating the other required attributes.

With rules R1 to R7 we cover the changes of the Taxonomy that affect an attribute (the first four

changes). Rules R8 to R10 cover the changes over a whole relation (the last three changes of the

Taxonomy).

R8) CHANGE: Rename relation: R1 -> R2, where R1, R2 ∈ Rel_Name

DEPENDENCY: R = dep (R1, n), ∀ n

ACTION: - substitute in G(Tatt) R1 by R2

 88

R9) CHANGE: Add relation: R

DEPENDENCY: None

ACTION: - if user wants to add sub-schema DWSS to the DW schema

 - user applies primitives adding DWSS

 - if user wants to remove an existing DW sub-schema, DWSS’

- for each R ∈ DWSS’

- Rel_del (R) // remove from DW relation R

- remove path(_,A) from G(Tatt), where A ∈ R // Remove form

trace all paths that finish on an R’s attribute.

R10) CHANGE: Remove relation: R

DEPENDENCY: R’ = dep (R, n), where n > t

ACTION: - Rel_del (R’) // remove from DW relation R’

- remove path(_,A) from G(Tatt), where A ∈ R’ // Remove form trace all paths that

finish on an attribute of R’ .

R11) CHANGE: Remove relation: R

DEPENDENCY: R’ = dep (R, n), where n <= t

ACTION: - for each A / A ∈ Att(R) ∧ A ∈ Att(R’)

- if R’ .A = R.A

- apply R3

 - else if R’ .A = f(R.A)

 - apply R4

 - else if R’ .A = req(R.A)

 - apply R5

 89

3.3. Consistency corrections

When a Database schema is modified it may happen that some property that was satisfied by the schema

before the change, is not satisfied after the change. In Chapter 3, Section 3 we have defined a set of

consistency properties that must be satisfied by a DW schema, which we called invariants.

In the previous section we proposed the Schema Propagation Rules for propagating source schema

evolution to the DW schema. However, once changes to the source schema were propagated to the DW

schema, an important task has to be carried out yet: the verification of DW schema consistency and, if

necessary, its correction. Figure 4.10 shows an example, which is explained following. In a) Sales is a

source relation, Sales_DW is a DW relation (a measure relation), and Ä is the trace that relates them. In b)

the schema of Sales changes. Attribute city_id is removed. In c) schema evolution is propagated to the

DW. Attribute city_id is removed form relation Sales_DW and Ä is modified. However, relation

Sales_DW still contains an attribute, city_name, that makes it inconsistent according to the “measure

relations invariant” . In d) city_name is removed and Ä is modified, so that Sales_DW satisfy the

invariants.

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

sale_date
customer_id
presentation_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

modify trace

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

sale_month
subtype_id
presentation_id
city_id
city_name
sale_amount
sale_cost
sale_qty

SALES_DW

modify trace

!!

Å

Å

Å

Åa)

b)

c)

d)

 Figure 4.10

 90

In this section we propose a mechanism to correct the DW schema in case the changes applied to it have

left it in an inconsistent state, i.e. in case the DW schema does not satisfy the DW schema invariants any

more. We provide a set of rules that intend to cover all the inconsistencies that may be generated by the

DW evolution, and give the actions that should be performed in each case.

In this case we must consider the DW schema type of each element being changed. It will be relevant if,

for example, a relation is of “measure” or of “dimension” type.

R1 – Foreign key updates

R1.1 - ON APPLICATION OF: Key_del ({A}, AttK(R)) and Key_add ({A’ }, AttK(R)), where A =

old key and A’= new key

APPLY: FKey_add ({A’ }, AttFK(Ri,R), AttFK(Ri)) to all Ri / AttFK(Ri,R) = A

R1.2 - ON APPLICATION OF: Rel_del (R), where R ∈ RelD

WHEN: ∃ R’ ∈ RelM / AttFK(R’ , R) ≠ ∅

APPLY: Primitive Aggregate Generation to R’ , removing X,

where X = { A / A ∈ Att(R) ∧ A ∈ Att(R’) }

R2 – Measure relations cor rection

ON APPLICATION OF: Att_rem ({A}, R) / R ∈ RelM

WHEN: ∃ S ∈ RelD / AttFK(R, S) = ∅ ∧ ∃ B / B ∈ Att(R) ∧ B ∈ Att(S)

APPLY: Att_rem ({B}, R)

remove path(_,B) from G(Tatt) // remove from trace the path that finishes in B

R3 – History relations update8

ON APPLICATION OF: Att_add ({A}, R), obtaining A ∈ Att(R)

WHEN: ∃ R’ / R’ ∈ RelH(R)

APPLY: Att_add ({A}, R’), obtaining A ∈ Att(R’)

8 This rule is optional. The user chooses if the rule is active or not.

 91

4. Applying evolution to the DW

In this section we focus on the problem of applying the corresponding changes to the DW and to the

trace.

In order to solve this problem we have to: (a) define the model we will follow for the management of DW

schema evolution, and (b) provide the Conversion Functions to be applied to the instance of the DW

schema to transform it to an instance of the evolved DW schema.

4.1. Model for DW Evolution

In this section we define which strategy we would implement to apply evolution to the DW.

In Chapter 2, Section 5 we present an overview of the existing knowledge about schema evolution. In our

proposal we extract some techniques from this existing work, and we adapt, combine and apply them for

the resolution of our problem.

4.1.1. Previous considerations

We start enumerating the particular features of DWs, specially in the context of this work, that affect the

treatment of evolution. Afterwards, we discuss how these elements affect the possible models or

approaches considered in our work for applying evolution to the DW.

Some particular features of DWs:

Æ History data is stored in a DW.

Ç Applications that run over the DW only query the data. They do not modify it.

È Some evolution operations that in the context of operational databases are considered that do not

corrupt existing applications using an adaptational approach [Fer96], in the context of DWs can lead

to unexpected results.

É Most of the queries that are submitted to a DW require a big range of the history of the data existing

in the DW.

Ê Due to the meta-information that our system manages, some of the conversion functions for the

instances can be provided by it.

In a DW history data is relevant and it is maintained for a long time. Therefore, it would not be

reasonable to transform this data to other formats perhaps loosing some of it or some of its semantic.

Considering this aspect, a versioning approach would be a suitable solution.

 92

We assume that modifications over the data only are applied in the context of loading data to the DW. For

this reason, if we use the solution of schema versioning, only the last version will be updated. It will

never exist updates over the data of other versions; this data will only be queried. This situation is

favourable for the application of versioning approach, because it will not be necessary to convert updates

to the new format of the data into updates to the old format of the data, which seems to be a nontrivial

problem.

In [Fer96] some schema update operations are classified as schema extending, and they are stated as not

affecting existing applications in the context of an adaptational approach. These operations include, for

example, “Create an attribute” . Considering the DW evolution taxonomy we define in Section 4.2, the

corresponding operation (doing a mapping between OODBs and RDBs) would be “Add attribute” . We

can show that in the specific case of adding a foreign key to a measure relation, this operation can lead to

unexpected results of queries that run on the old schema. We show an example in Figure 4.11. Taking

into account this difference, the proposal of integrating the two approaches [Fer96] does not seem to be so

applicable to DW schemas.

SALES

prod_cod cust_cod date quantity

p1 c1 1/1/00 10
p2 c2 1/1/00 20
p2 c2 2/1/00 10

select prod_cod, cust_cod, date, quantity
from SALES

prod_cod cust_cod date quantity
p1 c1 1/1/00 10
p2 c2 1/1/00 20
p2 c2 2/1/00 10

SALES

prod_cod cust_cod date empl_cod quantity

p1 c1 1/1/00 e1 2
p1 c1 1/1/00 e2 8
p2 c2 1/1/00 e3 20
p2 c2 2/1/00 e3 10

select prod_cod, cust_cod, date, quantity
from SALES

prod_cod cust_cod date quantity
p1 c1 1/1/00 2
p1 c1 1/1/00 8
p2 c2 1/1/00 20
p2 c2 2/1/00 10

Add attr ibute: empl_cod

For obtaining the same result the query should be modified: select prod_cod, cust_cod, date, quantity
from SALES
group by prod_cod, cust_cod, date

Q1:

Q1:

Q2:

Figure 4.11

In general, queries that are submitted to a DW refer to data across a long time period. Therefore, if we

work in a context of schema versioning, probably most of queries will require data of many different

versions. In these cases the use of instance conversion functions will be necessary.

In this work we propose a context where a considerable amount of information about schemas and

instances is maintained. This meta-information allows us to decide, in some cases, how data should be

transformed in case of DW schema evolution. This is specified in Section 4.2 by the instance conversion

functions.

 93

4.1.2. The proposed mechanism

Considering the characteristics of the solutions extracted from the consulted bibliography, and the

particular features studied in the previous section, we propose the following solution for applying

evolution to a DW in our context:

Management of DW evolution is based on the versioning approach. We maintain a list of schema

versions, as proposed in [Fer96]. We apply the same strategy for trace evolution.

The queries over the DW will behave according to the following guidelines:

Ë Queries that were already running over any version can continue running over the same version

without any modification. These queries will not have access to information stored in subversions of

that version.

Ì When a query is submitted to the actual (last) version, data stored in superversions is transformed

through the f.c.f., which in some cases are provided by the system and in other ones are asked to the

user. The mechanic is shown in Figure 4.12. The f.c.f are presented in Section 4.2 as i.c.f (instance

conversion functions).

DW vers.1

DW vers.2

DW vers.3

DW vers.n

Í

f.c.f.3→4 o f.c.f. 4→5 ... o f.c.f. n-1→n

transformed
instance

Example:

Query Î needs data from
version n and from version 3.

Figure 4.12

Note: If there are some queries to a version that need to access data of a newer version, it will be

necessary to implement the b.c.f. for transforming this data.

 94

4.2. Instance Conversion Functions

When an evolution operation has been applied to the DW schema, a conversion function can be applied to

the instance of the old DW schema so that it can be seen as an instance of the evolved DW schema (see

Figure 4.13).

In this section we provide the queries that have to be done to the data existing in the old DW in order to

obtain the same data structured according to the new DW schema. We call these queries instance

conversion functions (i.c.f.).

Source
DB

Evolved
Source DB

DW
Schema

DW
Instance

Evolved
DW Schema

Converted
DW Instance

PR
O

PA
G

ATI
O

NÏ»Ð½Ñ
Propagation Rules
and
Consistency Corrections

i.c.f.

Figure 4.13

In some cases of change it is not possible to determine the i.c.f. automatically. For these cases we need

the designer participation. Sometimes it is enough to ask the designer some questions, but other times is

the designer who has to give the complete conversion function. The latter case happens when the change

involves adding of information.

For determining the i.c.f. corresponding to each case of change, we must consider the type of the DW

schema element that is being affected. In some cases, for example, the transformation of a relation

instance will be different if the relation is a dimension or a measure one.

We define another taxonomy: a DW evolution taxonomy, which includes the possible changes that can be

applied to the DW schema in our context. The changes are sub-classified according to the type of DW

schema element, only in the cases that it is necessary to deduce the i.c.f.

 95

DW Evolution Taxonomy

1) Add attribute

2) Remove attribute

a) from Measure Relation

a1) descriptive attribute

- foreign key

- not foreign key

a2) measure attribute

b) from Dimension Relation

b1) descriptive attribute

b2) hierarchical attribute

3) Change key of a relation

4) Change foreign key of a relation

Instance Conversion Functions

1) Add attribute

i.c.f. 1: user-defined function

2) Remove attribute

c) from Measure Relation

a1) descriptive attribute

- foreign key

i.c.f. 2: - R ∈ RelM, A = AttFK(R,R’), B1, ..., Bn ∈ AttM(R)

- provided by the user: list of f1(B1), ..., fn(Bn) , where f1, ..., fn are

aggregation functions

 - select { AttD(R) – A} , f1(B1), ..., fn(Bn)

 from R

 group by { AttD(R) – A}

- not foreign key

i.c.f. 3: - R ∈ RelM, A ∈ AttD(R)

 - select Att(R) - A

 from R

 96

a2) measure attribute

 i.c.f. 4: - R ∈ RelM, A ∈ AttM(R)

 - select Att(R) - A

 from R

d) from Dimension Relation

b1) descriptive attribute

 i.c.f. 5: - R ∈ RelD, A = AttD(R)

 - select Att(R) - A

 from R

b2) hierarchical attribute

 i.c.f. 6: - R ∈ RelD, A = AttJ(R)

 - select Att(R) - A

 from R

3) Change key of a relation

i.c.f. 7: - R ∈ Rel, { A} ∈ AttK(R) old key, B ∈ Att(R) new key

 - The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

4) Change foreign key of a relation

i.c.f. 8: - R ∈ Rel, { A} ∈ AttFK(R,R’) old foreign key, B ∈ Att(R) new foreign key

 - The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

 97

5. Conclusion

This chapter focuses on the whole process that starts with evolution of the source schema and finishes

with evolution of the DW schema.

We present a strategy that solves how to propagate the changes occurred on the source schema to the DW

schema, and how to manage evolution in the context of the DW. The steps that should be performed in

case of a change in the source schema are the following: 1- Identify the dependencies that exist between

the changed element and elements in the DW. This is done using the trace (in Section 3.1). 2- Apply the

Propagation Rules. Choose the appropriate rule according to the change and the dependency (in Section

3.2). Create a new schema if it has to be changed and a new trace. Mark them as a new version. 3- Verify

the DW schema consistency and apply consistency corrections to the new schema if it is necessary (in

Section 3.3). 4- Implement the f.c.f. for the instance, if it is possible (in Section 4.2). 5- If there is a new

version of the schema or the trace, re-generate the loading processes. 6- Manage the queries as it is

proposed in Section 4.1.2.

With respect to the classification of schema elements into DW elements, in the propagation rules it was

not necessary to consider this classification, while in the instance conversion functions it had to be

considered.

In Section 3.1.3 we present the detailed trace of an element and we define the graph of an attribute’s

detailed trace. We do not specify the procedure to pass from the detailed trace to this graph. We describe

it, and we illustrate it with examples.

The Propagation Rules we propose state the modifications that must be done to the DW and to the trace.

Another approach for this rules that seems to be more efficient for implementation is the following: The

rules state only the modifications that must be done to the trace. At the moment of applying evolution the

affected portion of the trace is re-applied (the operations of this portion of the trace are applied),

generating the modified portion of the DW schema, which must substitute the original portion.

 98

 99

CCHHAAPPTTEERR 55.. IImmpplleemmeennttaattiioonn

1. Introduction

1.1. Context

We have developed a prototype of a DW Design tool, called DWDesigner, that can be combined with

other components conforming a CASE tool. These other components have been developed in the context

of students’ graduate projects and a demonstration that was presented in the ER’99 Conference [Per99].

The components are the following: (1) CMDM (Conceptual Multidimensional Data Model) [Pic99], (2) A

Repository Manager for a CASE tool [Arz99], and (3) From the conceptual schema to the logic schema of

a DW [Per00].

Figure 5.1 presents an overview of the architecture of the whole CASE environment.

CMDMDWDesigner
Repository
Manager

DW

Source Databases

Conceptual to
logic schema
transformation

Physical
Repository

CORBA

 Figure 5.1

DWDesigner is a tool that implements the principal ideas of Chapter 3 of this thesis (DW logical design):

transformation primitives, transformation trace, schema invariants and consistency rules. Implementation

of DW evolution, whose ideas were presented in Chapter 4, is in course.

 100

1.2. The prototype

The prototype is a DW Design tool with the following main characteristics:

Ò It allows the designer to design a DW schema starting form a source schema by means of Primitive

applications.

Ó It generates a trace of the transformation applied.

Ô It provides invariants checking.

Õ It includes consistency rules triggering.

Ö It has a graphical user interface.

× It is extensible. Its modular design allows adding and removing primitives without modifying or re-

compiling the existing code.

Most of this prototype was designed and programmed by a group of students in the context of their

graduate project [Gar99], during 1999. The author of the present thesis co-directed9 this graduate project

and therefore participated in the analysis and design of the prototype. In addition, she developed alone

(analysis, design and implementation) invariants checking and rules triggering functionalities, which had

been left as future work in the mentioned graduate project.

Currently, we are directing a new graduate project that will implement DW evolution functionality for the

existing tool.

In Section 2 we present a brief description of the prototype and in Section 3 we present the conclusions of

this chapter.

2. Prototype descr iption

In this section we pretend to give a descriptive view of the whole prototype (for a detailed description see

[Gar99]) and give more detail about the modules we developed and how they integrate with the rest of the

modules.

First we present a summarised analysis of the tool’s functional features, then we present the most relevant

aspects of the conceptual design, and by last we make some comments about the implementation.

9 Together with Professor Alejandro Gutierrez.

 101

2.1. Functional Features

The tool’s main features were enumerated in Section 1.2 of this Chapter.

The tool is intended to be a DW design graphical environment. It should be useful to a DW designer who

has a source database, some DW requirements, and wants to generate a DW schema that satisfies these

two elements. With this tool the designer can apply different DW design criteria and techniques in order

to obtain the target DW schema.

Invariants checking can be invoked at any moment in the design process. It allows checking the

consistency of the schema that is being generated.

Consistency rules are triggered by the application of certain primitives to certain elements; when these

applications put in danger the consistency of the schema that is being generated.

The graphical interface facilitates interaction with the source database elements, application of primitives

and parameters selection, and visualisation of the design trace.

Figures 5.2, 5.3, 5.4, 5.5 and 5.6 show the interface of the tool.

 Figure 5.2

 102

 Figure 5.3

 Figure 5.4

 103

 Figure 5.5

 Figure 5.6

 104

2.2. Conceptual design

For the design of the tool we applied object-oriented techniques. The design language we used was UML.

The core of the tool is the Virtual Machine. This is the most important layer of the system. The main

components of the Virtual Machine are the following:

1) Tools for schema transformation

This is the representation of: the transformation primitives, and two sets of schema elements (called

Repository and Datawarehouse) that are the containers used during the transformation process.

2) Database concepts representation

All schema elements, relations, attributes, keys, etc. must be represented in order to be manipulated

by the user and the primitives.

3) Trace

Each applied primitive, with its input and output relations, is recorded in the trace.

In the context of the present thesis, the students’ work was extended with:

4) Invariants

The invariants are properties that must be satisfied by the schema. Therefore we represented the

invariants as a part of the schema representation.

5) Consistency Rules

We represented the Rules as an independent entity, which is referenced and invoked from different

places.

The class diagram of the DW design tool can be seen in Appendix 4.

2.3. Implementation

The prototype was implemented in JAVA language, using the Java Development Kit version 1.2.2 (JDK

1.2.2) and Borland’s JBuilder version 2 as the development environment.

Implementation details of the tool, excepting the parts of Invariants and Rules, can be found in [Gar99].

In this Section we briefly explain how we implemented Invariants Checking and Rules Triggering.

Invariants Checking is an option of the tool’s main menu that allows checking the consistency of the

existing DW schema. The user has the possibility of choosing between a list of invariants. We

implemented the procedures that perform the Invariants Checking as methods of the General Schema

class. When the user press OK button, we call the methods of the General Schema class that correspond

to the invariants selected by the user.

 105

Rules are implemented as an abstract class Rule and a sub-class RuleXX for each existing rule (analogous

to the primitives). We defined the RuleDirectory, which is a sequence containing the existing rules and is

initialised at start. Also at this moment, some primitives initialise the rules attribute that is a set of rules

(referencing to rules of the RuleDirectory). The rules that belong to a primitive’s set of rules are the ones

that must be triggered after the primitive application. When the user applies certain primitives, a dialog

box appears showing him what rules should be applied in the form of check boxes. The rules that are

checked by the user are applied automatically. The transformations that are made by the rules, are

applications of primitives, therefore they have the same behaviour as any primitive application (e.g. they

are reflected in the trace).

3. Conclusion

DWDesigner is a prototype of a DW Design Tool. We directed the development of this prototype and we

developed a new part of it; Invariants Checking and Rule Triggering functionalities.

The developed tool implements the principal ideas of Chapter 3 of this thesis (DW logical design):

transformation primitives, transformation trace, schema invariants and consistency rules. This tool offers

a graphical user interface that allows the designer to apply primitives to a source schema, constructing a

new schema, visualise the generated transformation trace, check schema invariants and apply consistency

rules.

The tool can be connected with other modules, complementing each other. Altogether, they constitute a

CASE tool for designing a DW that covers the stages of: conceptual modelling, derivation of a logical

model, management of the logical model, and persistency of the design.

 106

 107

CCHHAAPPTTEERR 66.. CCoonncclluussiioonn

This thesis addresses two main issues: DW design, and the repercussion of source schema evolution on

the DW.

The obtained results consist of:

• a CASE tool for designing DWs by application of schema transformations

• techniques for repercussion of source schema evolution on the DW

1. DW design through schema transformations: techniques and

CASE tool

The help tool for DW design is a set of schema transformation primitives complemented with some

strategies and rules for their practical application. These transformation primitives enable to design a

relational DW from a source relational schema, acting as design building blocks that have DW design

knowledge embedded in their semantics. In addition, the application of these primitives provides a trace,

which will be the trace of the design. Utilisation of design building-blocks improves quality and

productivity in the design. On the other hand, the design trace is an important tool for documentation and

design process management, and it is essential for performing DW maintenance. In particular, it enables

to perform the repercussion of source schema evolution to the DW.

In our proposal schema consistency is managed through DW schema invariants and rules. While

invariants specify the consistency conditions the DW schemas must satisfy, the rules state additional

schema transformations to maintain the DW schema in a consistent state.

Concerning the scope of the proposed primitives, the presented design strategies show how a wide

spectrum of DW design problems can be solved through application of primitives.

The primitives, invariants and consistency rules were implemented in a DW design tool. The tool can be

connected with other modules, complementing each other. Altogether, they constitute a CASE tool for

designing a DW that covers the stages of: conceptual modelling, derivation of a logical model,

management of the logical model, and persistency of the design.

Some other work that was done around our proposal for DW design is: experimentation with the

primitives by applying them in real DW developments [Abe98], and presentation in ER’99 conference of

a poster and demonstration containing it [Per99].

 108

2. Repercussion of source schema evolution on the DW

The solution we propose for the problem of source schema evolution is applicable to a DW that was

generated by application of the primitives, and uses the results obtained in the proposal for DW design.

We propose a mechanism for repercuting source schema changes to the DW, which basically consists on

deducing which changes have to be made to the DW and applying them.

For deducing the changes to be applied to the DW, we provide the following: (i) a taxonomy of source

schema changes, (ii) a mechanism for obtaining dependencies between source and DW schema elements,

(iii) a set of propagation rules, and (iv) a set of correction rules. For obtaining the dependencies we

propose a way to process the trace so that more detailed traces are derived. The propagation rules state

which changes must be performed on the DW and on the trace, depending on the elements’ dependencies

and the occurred source change. The correction rules assure consistency of the modified DW, being based

on the schema invariants previously proposed in this work.

For applying the changes to the DW we propose a strategy that is based on the Versioning Model for

object oriented schemas (presented in Chapter 2, Section 5). In order to make this choice, we analyse the

features of DWs and the applicability of the existing models to DW evolution. We also propose some

instance conversion functions that are the conversions of the instance of a schema version into an instance

of another schema version. For stating these conversions we had to determine another taxonomy, a DW

evolution taxonomy.

It is important to note that for solving the evolution problem we define 2 different taxonomies. First, we

need the source evolution taxonomy, which is defined taking into account the context of the project

[CSI99]. Second, we define the DW evolution taxonomy. In this case, the changes of the taxonomy are

the ones that may be generated by the application of the propagation rules.

3. Ongoing work

At the moment, source schema evolution management is being implemented in the context of a graduate

project. This will be an extension of the implemented DW design tool.

A proposal about the automatic application of the primitives, starting from the conceptual model (high

level vision about the information requirements) and the correspondences with the source schemas, is

being developed as part of a master thesis [Per00].

4. Future work

 In the future the following additional issues could be addressed:

• experimentation with the primitives in different applications and generation of new versions of the

set of primitives

 109

We believe that the set of primitives can be improved in some ways. Experimentation with it shows

that correcting some parameters of some of the primitives, their application would be more flexible

and simpler.

• inclusion of schema integration facilities to the primitives

We consider that this is a problem itself, which involves specific aspects like concept

correspondence specification, conflict resolution, schema merging, etc. Nevertheless we believe that

the primitives should enable to perform schema integration in some way.

• completeness of the primitives

Primitive completeness could be informally shown by testing them in a wide gamma of scenarios,

applying different techniques, in different application areas, etc.

Another way to show it, is trying to apply the different design proposals that can be found in the

bibliography, through the primitives.

By last, we think that the primitives could be complemented with the basic operations (proposed in

this thesis for decomposing the primitives) at the moment of design, in case it is necessary. In

addition, we think that considering the basic operations, completeness could be formally

demonstrated, following these ideas: (a) In our context, a schema consists of relations, attributes,

and definitions of keys and foreign-keys. (b) In the basic operations set exists an operation for

adding a relation (Rel_add), an operation for adding an attribute (Att_add), and operation for

defining a key (Key_add) and an operation for defining a foreign key (FKey_add). (c) (a) and (b)

lead us to think that any schema can be constructed through application of basic operations of this

set.

• data loading and maintenance

Together with each primitive, we provide an outline of the transformation that should be done to the

existing data for populating the generated sub-schema. For solving the problem of data loading and

maintenance much more work must be done in this direction.

• application to real cases of the proposed mechanism for managing evolution

It would be interesting to apply the proposed mechanism for source schema evolution to real cases,

as we did with the primitives.

• evolution generated by changes in DW requirements

We proposed a solution for DW schema evolution that was generated by evolution of the source

schemas. DW schema evolution generated by changes in DW requirements is an important problem

that was not addressed in this work.

 110

 111

AAppppeennddiicceess

1. Appendix 1 – An Application Example

This is a case of a product distribution company who wants to construct a DW. The most important

requirements are related to: (i) sales evolution by product families and geographic regions, (ii) product

cost analysis, (iii) market analysis (types of clients), and (iv) geographic distribution of the sales.

The source database schema is shown in Figure 7, which is a representation of the relational schema,

where the lines represent the links between the tables through the foreign keys.

Figure 7: The source database schema

We suppose that, following one of the existing DW design methodologies [Kim96-1][Kor99][Bal98], we

arrived to the design presented in Figure 8. It is a star schema10, where the dimensions are Time,

Customers_DW, Products_DW, and Geography, and the fact table is Sales_DW, where sale_amount,

sale_cost and sale_qty are the measures.

10 Star Schema is defined in [Kim96-1]

sale_date
customer_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES

presentation_id
presentation_name
product_id
size

PRESENTATIONS

product_id
product_name
family
expiration

PRODUCTS

customer_id
customer_name
customer_address
subtype_id
city_id

CUSTOMERS

subtype_id
subtype_name
type_id

SUBTYPES

type_id
type_name

TYPES

city_id
city_name
region_id

CITY

region_id
region_name

REGION

 112

Figure 8: The target logical DW schema

Now, we apply the transformation primitives to the source schema in order to generate the desired DW

schema.

First, we de-normalise the relations that correspond to the dimensions, generating a new relation for each

dimension of the desired schema. We use primitive P6.2 DD-Adding 1-N for adding the attributes from

one relation to the other relation.

Products_DW: We apply P6.2 to relations Presentations and Products, obtaining:

PRODUCTS_DW (presentation_id, presentation_name, product_id, product_name,
size, family, expiration)

Customers_DW: We apply P6.2 to relations Customers, Subtypes and Types, obtaining:

CUSTOMERS_DW_01 (customer_id, customer_name, customer_address, subtype_id,
city_id, subtype_name, type_id, type_name)

Geography: We apply P6.2 to relations City and Region, obtaining:

GEOGRAPHY (city_id, city_name, region_id, region_name)

CUSTOMERS_DW_01 has some attributes that are not relevant for this case. We apply primitive P2

Data Filter for eliminating them.

Customers_DW: We apply P2 to relation Customers_DW_01, obtaining:

CUSTOMERS_DW_02 (customer_id, subtype_id, subtype_name, type_id, type_name)

For the Time dimension we obtain the date attribute from the Sales relation. We do this through the

primitive P12.1 De-Normalized Hierarchy Generation, which generates a hierarchy relation from

relations that contain a whole hierarchy or a part of one. Then we calculate the attributes month and year

from the date, using primitive P6.1 DD_Adding 1-1.

sale_month
subtype_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES_DW

presentation_id
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW

subtype_id
subtype_name
type_id
type_name

CUSTOMERS_DW

month
year

TIME

city_id
city_name
region_id
region_name

GEOGRAPHY

 113

Time: We apply P12.1 to Sales, obtaining:

TIME_01 (date)

and we apply twice P6.1 to TIME_01 for adding attributes month and year:

TIME_02 (date, month)

TIME_03 (date, month, year)

For generating the fact table (measure relation) Sales with the desired granularity, which is subtype for

Customer dimension and month for Time dimension, we apply the primitive P8 Hierarchy Roll-Up. This

primitive also changes the level of detail of the dimensions. The summarisation function for each measure

must be specified to the primitive. In this case it is the sum function.

Sales_DW: We apply P8 to Sales and Customers_DW_02, obtaining:

SALES_DW_01 (sale_date, subtype_id, presentation_id, city_id, sale_amount, sale_cost,
sale_qty)

and

CUSTOMERS_DW (subtype_id, subtype_name, type_id, type_name)

We apply P8 to Sales_DW_01 and Time_03, obtaining:

SALES_DW (sale_month, subtype_id, presentation_id, city_id, sale_amount, sale_cost,
sale_qty)

and

TIME (month, year)

Through the applied primitives we generated the desired schema, showed in Figure 8.

Now we will refine the design. Suppose we detect that the Product dimension has some attributes (size,

family) that change their values through time. According to definitions in [Kim96][Kim97] it is a slowly

changing dimension. We decide that, for query performance reasons, we will maintain this history data in

a separate relation. For this, we follow two steps. First, we apply P11.2 Hor izontal Par tition to

Products_DW relation for generating a new relation for the history data. Second, we apply P3

Temporalization to the history relation adding the time attribute to the key of the relation.

Products_DW_His: We apply P11.2 to Products_DW, obtaining:

PRODUCTS_DW_HIS_01 (presentation_id, presentation_name, product_id,
product_name, size, family, expiration)

We apply T3 to Products_DW_His_01, obtaining:

PRODUCTS_DW_HIS (presentation_id, change_date, presentation_name,
product_id, product_name, size, family, expiration)

Finally, also for performance reasons, we want to add to Geography relation a calculated attribute

cust_qty, which represents the quantity of customers that belongs to each city. We do this through the

application of the primitive P6.3 DD_Adding N-N, which adds to a relation an attribute that is calculated

from the summarisation of many tuples of other relation.

Geography_Cust: We apply T6.3 to Geography and Customers, obtaining:

GEOGRAPHY_CUST (city_id, city_name, region_id, region_name, cust_qty)

 114

The final DW schema is shown in Figure 9.

Figure 9: The obtained DW schema

The applied primitives generate a trace of the design, which is shown in Figure 10.

Figure 10: The generated trace

sale_month
subtype_id
presentation_id
city_id
sale_amount
sale_cost
sale_qty

SALES_DW

presentation_id
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW

subtype_id
subtype_name
type_id
type_name

CUSTOMERS_DW

month
year

TIME

city_id
city_name
region_id
region_name
cust_qty

GEOGRAPHY_CUST

presentation_id
change_date
presentation_name
product_id
product_name
size
family
expiration

PRODUCTS_DW_HIS

TYPES

SUBTYPES

CUSTOMERS

REGION

CITY

SALES

PRESENTATIONS

PRODUCTS

CUSTOMERS_DW

SALES_DW

TIME

PRODUCTS_DW

PRODUCTS_DW_
HIS

GEOGRAPHY_
CUST

6.2

6.2

6.2

6.2

6.2

6.2

6.2 2

12.1 6.16.1

8

8

11.2

3

6.3

 115

2. Appendix 2 – The Basic Operations

Operations over the context:

Ø Rel_add (R)

Arguments: A relation.

Behaviour: It adds relation R to the current intermediate result.

Ù Rel_del (R)

Arguments: A relation.

Behaviour: It eliminates relation R from the current intermediate result.

Operations over a relation:

Ú Att_add (X, R)

Arguments: - A set of attributes.

- A relation.

Behaviour: It adds a set of attributes to a relation. If the relation does not exist it generates a

new one.

Û Att_rem (X, R)

Arguments: - A set of attributes.

- A relation.

Behaviour: It removes a set of attributes from a relation.

Ü Att_cpy (X, R, R’)

Arguments: - A set of attributes.

- A relation. This is the origin of the copy.

- A relation. This is the target of the copy.

Behaviour: It copies a set of attributes from one relation to another. If the relation does not

exist it generates a new one.

Ý Att_calc (X, f, Y, A)

Arguments: - A set of attributes.

The attributes that participate in the calculation function of the derived

attribute.

- A calculation function.

- A set of attributes.

The attributes that are required for the calculation of the derived attribute.

- An attribute name.

The name for the derived attribute, including the name of the relation.

Behaviour: It adds a derived attribute to a relation.

 116

Note: The attributes required for a calculation are those without which the calculation cannot be

done.

Attributes that are included in the “group by” clause of the SQL query used for the data

load of a calculated attribute, are not considered as required. This is because if one of these

attributes is removed the only thing we have to do is the re-calculation of the instance.

Therefore it is not necessary to maintain the information of this attribute “dependency” in

the trace. We are interested only in “schema dependencies” and we assume that every time

a modification is made to the trace, the corresponding data loading processes are re-

generated.

Operations over a set of keys of a relation:

Þ Key_add (X, AttK(R))

Arguments: - A set of attributes.

- The set of keys of a relation.

Behaviour: It adds a key to a set of keys. If the set of keys does not exist it generates a new

one.

ß Key_del (X, AttK(R))

Arguments: - A set of attributes.

- The set of keys of a relation.

Behaviour: It eliminates a key from a set of keys.

à FKey_add (X, AttFK(R1,R2), AttFK(R1))

Arguments: - A set of attributes.

- The foreign key between relations R1 y R2.

- The set of foreign keys of relation R1.

Behaviour: It generates and adds a foreign key to a set of foreign keys.

á FKey_del (AttFK(R1, R2), AttFK(R1))

Arguments: - The foreign key between relations R1 y R2.

- The set of foreign keys of relation R1.

Behaviour: It eliminates a foreign key from a set of foreign keys.

 117

3. Appendix 3 - The Pr imitives in terms of Basic Operations

Primitive 1. IDENTITY

Descr iption:

It adds a relation that is the same as the source one. It removes the source one.

Input:

â source schema : R ∈ Rel
ã source instance : r

Basic Operations:

ä Rel_add (R’)
å Rel_del (R)

Primitive 2. DATA FILTER

Descr iption:

It adds a relation that is the same as the source one, except for a set of attributes that are removed. It

removes the source relation.

Input:

æ source schema : R (A1,, An) ∈ Rel
ç X ⊂ { A1,, An } ∧ X ⊂ AttD(R)
è source instance : r

Basic Operations:

é Att_cpy ({ Att(R)-X} , R, R’)
ê Rel_add (R’)
ë Rel_del (R)

Primitive 3. TEMPORALIZATION

Descr iption:

It adds a relation that is the same as the source one, except for an attribute that is included in the

relation. Optionally, it extends the key of the relation with the new attribute. It removes the source

relation.

 118

Input:

ì source schema : R (A1,, An) / ∃ X ⊂ { A1,, An } ∧ X ∈ AttK(R)
í T time attribute / DOM(T) = { c / c ⊆ { t0,, tk } set of time measures } , or

 DOM(T) = { t0,, tk } set of time measures.
î Key , boolean argument. It tells if T will be part of R’s key or not.
ï source instance : r

Basic Operations:

ð Att_cpy (Att(R), R, R’)
ñ Att_add ({ T} , R’)
ò if key then Key_add (XT, AttK(R’))
ó Rel_add (R’)
ô Rel_del (R)

Primitive 4. GROUP: KEY GENERALIZATION

Pr imitive 14.1. VERSION DIGITS

Descr iption:

It adds a relation that is the result of substituting the key attribute by another one in the source

relation. It removes the source relation.

Input:

õ source schema : R (A1,, An) ∈ RelD / A1 ∈ AttK(R)
ö source instance : r

Basic Operations:

÷ Att_cpy ({ Att(R)-A1} , R, R’)
ø Att_add ({ B} , R’)
ù Key_add ({ B} , AttK(R’))
ú Rel_add (R’)
û Rel_del (R)

Primitive 14.2. KEY EXTENSION

Descr iption:

It adds a relation that is the same as the source one, except for its key which is extended with a set of

attributes. It removes the source relation.

 119

Input:

ü source schema : R (A1,, An) ∈ RelD / ∃ X ⊂ { A1,, An } ∧ X ∈ AttK(R)
ý Y ⊂ ({ A1,, An } – X) , attributes to be added to the key
þ source instance : r

Basic Operations:

ÿ Att_cpy (Att(R), R, R’)
� Key_add (XY, AttK(R’))
� Rel_add (R’)
� Rel_del (R)

Primitive 5. FOREIGN KEY UPDATE

Descr iption:

It adds a relation that is the result of substituting a set of attributes by another one in the source

relation (the set of attributes eliminated are a foreign key in the source relation). It also defines the

new set of attributes as foreign key with respect to a set of relations. It removes the source relation.

Input:

� source schema : R (A1,, An) ∈ Rel / X ∈ AttFK(R)
� X , set of attributes to be eliminated
� Y , set of attributes which will substitute X
� { R1,, Rm } set of relations with respect to which Y will be a foreign key
� S ∈ Rel / Att(S) = X ∪ Y , auxiliary relation that contains the correspondence between the old

key and the new key
� source instance : r, s

Basic Operations:

	 Att_cpy ({ Att(R)-X} , R, R’)

 Att_add (Y, R’)
� FKey_add (Y, AttFK(R’ ,Ri), AttFK(R’)), i: 1..m
� Rel_add (R’)
 Rel_del (R)

 120

Primitive 6. GROUP: DD-ADDING

Pr imitive 14.3. DD-ADDING 1-1

Descr iption:

It adds a relation that is the same as the source one, except for a new attribute that is calculated from

others of the same relation. It removes the source relation.

Input:

� source schema : R (A1,, An) ∈ Rel
� f (A i1,, A im) / { A i1,, A im } ⊆ { A1,, An } , where f is a user-defined function
� source instance : r

Basic Operations:

� Att_cpy (Att(R), R, R’)
� Att_calc ({ R.A i1,, R.A im} , f, ∅, R’ .An+1)
� Rel_add (R’)
� Rel_del (R)

Primitive 14.4. DD-ADDING N-1

Descr iption:

It adds a relation that is the same as the source one, except for a new attribute that is calculated from

attributes that belong to another relation. It removes the source relations.

Input:

� source schema : R1 (A1,, An), R2 (B1,, Bm) ∈ Rel
� f (C1,, Ck) / { C1,, Ck } ⊆ { A1,, An } ∪{ B1,, Bm } , where f is a user-defined function
� A / A ∈ { A1,, An } ∧ A ∈ { B1,, Bm } , join attribute
� is_fk , boolean argument (declare or not An+1 as a foreign key)
� R3 ∈ Rel , relation to which An+1 is a foreign key (optional)
� source instance : r1, r2

Basic Operations:

� Att_cpy (Att(R1), R1, R’1)
� Att_calc (R1.X ∪ R2.Y, f, { A} , R’1.An+1) , where X ∪ Y = (C1,, Ck)
� if is_fk then FKey_add ({ An+1} , AttFK(R’ 1,R3), AttFK(R’ 1))
� Rel_add (R’1)
� Rel_del (R1)

 121

 Rel_del (R2)

Primitive 14.5. DD-ADDING N-N

Descr iption:

It adds a relation that is the same as the source one, except for a new attribute that is calculated from

an attribute of another relation, through an aggregate operation. It removes the source relations.

Input:

! source schema : R1 (A1,, An), R2 (B1,, Bm) ∈ Rel
" e(B) / B ∈ { B1,, Bm } , where e(B) is an aggregate expression over the attribute B
X / X ⊂ AttD(R2) , attributes by which we want to group
$ A / A ∈ { A1,, An } ∧ A ∈ { B1,, Bm } , join attribute
% source instance : r1, r2

Basic Operations:

& Att_cpy (Att(R1), R1, R’1)
' Att_calc ({ R2.B} , e, { R2.A} , R’1.An+1)
(Rel_add (R’1)
) Rel_del (R1)
* Rel_del (R2)

Note: There are some attributes of R1 that could affect the results of the calculation. These attributes

are the ones used in the “group by” clause of the SQL query that must be executed for loading

the resulting relation schema. We consider these attributes as “not required” for the calculation

because in case one of them is removed, the calculation still can be done, although perhaps

corresponding data need to be re-loaded. We find the same situation in Primitives P8 and P9.

Primitive 7. ATTRIBUTE ADDING

Descr iption:

It adds a relation that is the same as the source one, except for a set of attributes that are included in

it. It removes the source relation.

Input:

+ source schema : R (A1,, An) ∈ RelD
, { B1,, Bm } conjunto de atributos
- source instance : r

 122

Basic Operations:

. Att_cpy (Att(R), R, R’)
/ Att_add ({ B1,, Bm} , R’)
0 Rel_add (R’)
1 Rel_del (R)

Primitive 8. HIERARCHY ROLL UP

Descr iption:

It adds a relation that is the result of substituting a set of attributes by one attribute in the source

relation R1, and eliminating the foreign key defined from R1 to R2. It removes this source relation.

Optionally, it adds a relation that is the same as R2 except for a set of attributes that are eliminated,

and it defines a primary key for R2 and a foreign key from R1 to R2. Finally, it removes R2.

Input:

2 source schema :

- R1 (A1,, An) ∈ RelM / ∃ A ∈ { A1,, An } ∧ { A} = AttFK(R1, R2)

- R2 (B1,, Bn) ∈ RelJ / A ∈ { B1,, Bn } ∧ { A } ∈ AttK(R2)
3 Z set of attributes / card(Z) = k (measures)
4 B / B ∈ { B1,, Bn } ∧ B ∈ AttD(R2) (chosen hierarchy level)
5 { e1,, ek } , aggregate expressions
6 X / X ⊂ { A1,, An } ∧ X ⊂ (AttD(R1) ∪ AttM(R1)) (they have a lower grain)
7 Y / Y ⊂ { B1,, Bn } ∧ Y ⊂ AttD(R2) (they have a lower grain)
8 agg_h , boolean argument (generate a new hierarchy or not)
9 source instance : r1, r2

Basic Operations:

: Att_cpy (Att(R1), R1, R’1)
; Att_calc (R2.B, =, { R2.A, R’1.A} , R’1.B)
< Att_rem ({ A} , R’1)
= for i: 1..k do

Att_calc ({ R1.Zi} , ei, ∅, R’1.Z’ i)

Att_rem ({ Zi} , R’1)
> FKey_del (AttFK(R’ 1, R2), AttFK(R’ 1))
? Rel_add (R’1)
@ Rel_del (R1)
A if agg_h then

- Att_cpy ({ Att(R2)-Y} , R2, R’2)

- Key_add ({ B} , AttK(R’ 2))

 123

- FKey_add ({ B} , AttFK(R’ 1, R’ 2), AttFK(R’ 1))

- Rel_add (R’2)
B Rel_del (R2)

Primitive 9. AGGREGATE GENERATION

Descr iption:

It adds a relation that is the result of substituting a set of attributes X by another set Y in the source

relation. Each attribute of Y is calculated from an attribute of X. It removes the source relation.

Input:

C source schema : R (A1,, An) ∈ RelM
D Z , set of attributes / card(Z) = k (measures)
E { e1,, ek } , aggregate expressions
F Y / Y ⊂ { A1,, An } ∧ Y ⊂ (AttD(R) ∪ AttM(R)) , attributes to be removed
G source instance : r

Basic Operations:

H Att_cpy ({ Att(R)-Y} , R, R’)
I for i: 1..k do

Att_calc ({ R’ .Zi} , ei, ∅, R’ .Z’ i)

Att_rem ({ Zi} , R’)
J Rel_add (R’)
K Rel_del (R)

Primitive 10. DATA ARRAY CREATION

Descr iption:

It adds a relation that is the result of substituting a set of attributes X by another set Y in the source

relation. Each attribute of Y is calculated from an attribute of X. It removes the source relation.

Input:

L source schema : R (A1,, An) ∈ Rel / ∃ B ∈ { A1,, An } ∧

 B represents a set of predefined values
M A ∈ Att(R)
N { V1,, Vk } set of measure attributes corresponding to each value of B
O source instance : r

Basic Operations:

 124

P Att_cpy ({ Att(R)-{ A, B} } , R, R’)
Q Att_calc ({ R.A} , =, { R.B} , R’ .V1)
R ………………
S Att_calc ({ R.A} , =, { R.B} , R’ .Vk)
T Rel_add (R’)
U Rel_del (R)

Primitive 11. GROUP: PARTITION BY STABILITY

Source schema:

V R (A1,, An) ∈ RelD / X ∈ AttK(R)

Primitive 14.6. VERTICAL PARTITION

Descr iption:

It adds three relations, each of one is the result of removing a set of attributes from the source

relation. It removes the source relation.

Input:

W source schema : the source schema defined for the group
X Y ⊆ { A1,, An } , attributes which values never change
Y Z ⊆ { A1,, An } , attributes which values sometimes change
Z W ⊆ { A1,, An } , attributes which values change very frequently

W ∩ Y ∩ Z = ∅
[source instance : r

Basic Operations:

\ Att_cpy ({ Att(R)-{ Z∪W} } , R, R1)
] Att_cpy ({ Att(R)-{ Y∪W} } , R, R2)
^ Att_cpy ({ Att(R)-{ Y∪Z} } , R, R3)
_ Rel_add (R1)
` Rel_add (R2)
a Rel_add (R3)
b Rel_del (R)

Primitive 14.7. HORIZONTAL PARTITION

Descr iption:

It adds two relations that are the same as the source one. It removes the source relation.

 125

Input:

c source schema : the source schema defined for the group
d source instance : r

Basic Operations:

e Att_cpy (Att(R), R, RCur)
f Att_cpy (Att(R), R, RHis)
g Rel_add (RCur)
h Rel_add (RHis)
i Rel_del (R)

Primitive 12. GROUP: HIERARCHY GENERATION

Source schema:

j R1,, Rn / ∃ A / A ∈ AttD(Ri) , i= 1...n ∧ A is the lowest level of one hierarchy

Primitive 14.8. DE-NORMALIZED HIERARCHY GENERATION

Descr iption:

It adds a relation R’ constructed with attributes that are given in the input (J1,, Jm) and defines a

key for it. Besides it adds a set of relations that are the same as the input ones (R1, …., Rn), except

for some attributes (J1,, Jm) that are removed from them and one attribute (K) that is included in

them. This attribute is defined as foreign key with respect to R’ , in each of these relations. The

source relations are removed.

Input:

k source schema : the source schema defined for the group
l { J1,, Jm } , set of attributes that constitutes a hierarchy /

A ∈ { J1,, Jm } ∧ A is the lowest level
m K / K ∈ { J1,, Jm } key for the hierarchy
n source instance : r1,, rn

Basic Operations:

o Att_add ({ J1,, Jm} , R’)
p Key_add ({ K} , AttK(R’))
q Att_cpy ({ Att(Ri)- { J1,, Jm} } , R’ i) i: 1..n
r Att_add ({ K} , R’ i) i: 1..n
s FKey_add ({ K} , AttFK(R’ i, R’), AttFK(R’ i)) i: 1..n
t Rel_add (R’)

 126

u Rel_add (R’ i) i: 1..n
v Rel_del (Ri) i: 1..n

Primitive 14.9. SNOWFLAKE HIERARCHY GENERATION

Descr iption:

It adds a set of relations (RJ1, …., RJm-1) constructed with attributes that are given in the input (J1,,

Jm) and defines a key and a foreign key for each of them. Besides it adds a set of relations that are

the same as the input ones (R1, …., Rn), except for some attributes (J1,, Jm) that are removed from

them and one attribute (K) that is included in them. This attribute is defined as foreign key with

respect to R J1, in each of these relations. The source relations are removed.

Input:

w source schema : the source schema defined for the group
x J1,, Jm , sorted list of attributes that constitutes a hierarchy /

A ∈ { J1, J2 } ∧ A is the lowest level

y K / K ∈ { J1,, Jm } key for the hierarchy
z source instance : r1,, rn

Basic Operations:

{ Att_add ({ Ji, Ji+1} , RJi) i: 1..m-1
| Key_add ({ Ji} , AttK(RJi)) , i: 1..m-1
} FKey_add ({ Ji+1} , AttFK(RJi, RJi+1), AttFK(RJi)) , i: 1..m-1
~ Att_cpy ({ Att(Ri)-{ J1,, Jm} } , Ri, R’ i) , i: 1..n
� Att_add ({ K} , R’ i) , i: 1..n
� FKey_add ({ K} , AttFK(R’ i, RJ1), AttFK(R’ i)) , i: 1..n
� Rel_add (RJi) , i: 1..m-1
� Rel_add (R’ i) , i: 1..n
� Rel_del (Ri) , i: 1..n

Primitive 14.10. FREE DECOMPOSITION - HIERARCHY GENERATION

Descr iption:

It adds a set of relations (RJ1, …., RJm-1) constructed with attributes that are given in the input (J1,,

Jm) and defines a key for each of them. Besides it adds a set of relations that are the same as the

input ones (R1, …., Rn), except for some attributes (J1,, Jm) that are removed from them and one

attribute (K) that is included in them. This attribute is defined as foreign key with respect to R J1, in

each of these relations. The source relations are removed.

 127

Input:

� source schema : the source schema defined for the group
� J1,, Jm , set of attributes that constitutes a hierarchy /

A ∈ { J1,, Jm } ∧ A is the lowest level

� K / K ∈ { J1,, Jm } key for the hierarchy
� { RJ1,, RJh } , set of relations where the attributes of the hierarchy are distributed /

K ∈ Att(RJ1) ∧ A ∈ Att(RJ1))
� source instance : r1,, rn

Basic Operations:

� Att_add (X i, RJi) , i: 1..h
� Key_add ({ K} , AttK(RJ1))
� Att_cpy ({ Att(Ri)-{ J1,, Jm} } , Ri, R’ i) , i: 1..n
� Att_add ({ K} , R’ i) , i: 1..n
� FKey_add ({ K} , AttFK(R’ i, RJ1), AttFK(R’ i)) , i: 1..n
� Rel_add (RJi) , i: 1..m-1
� Rel_add (R’ i) , i: 1..n
� Rel_del (Ri) , i: 1..n

Primitive 13. MINIDIMENSION BREAK-OFF

Descr iption:

It adds two relations R1 and R2. R1 is the result of substituting in R, a set of attributes X by one

attribute K, and defining this attribute as foreign key to R2. R2 is a new relation which attributes are

the set of attributes X, and K is defined as its key. It removes the source relation R.

Input:

� source schema : R (A1,, An) ∈ RelD
� K , key for the new dimension
� X ⊂ { A1,, An } , set of attributes of the minidimension
� source instance : r

Basic Operations:

� Att_cpy ({ Att(R)-X} , R, R1)
� Att_add ({ K} , R1)
� FKey_add ({ K} , AttFK(R1, R2), AttFK(R1))
� Att_add ({ K} ∪X, R2)
� Key_add ({ K} , AttK(R2))
� Rel_add (R1)

 128

� Rel_add (R2)
� Rel_del (R)

Primitive 14. NEW DIMENSION CROSSING

Descr iption:

It adds a new relation, which attributes are the union of the attributes of all the source relations

minus the attributes specified in the input to be excluded. Besides, it defines the key of the new

relation as the union of the keys of all the source relations. It removes the source relations.

Input:

� source schema : R1,, Rn / Ri ∈ (RelM ∪ RelD), i = 1..n ∧

 AttK(Ri) = X i ∧

 Rj ∩ Rj+1 = A j , j = 1..n-1
� Y1,, Yn , sets of attributes to be excluded from the resulting relation / X i ⊄ Y i
� source instance : r1,, rn

Basic Operations:

 Att_add (∪i=1..n (Att(Ri) – Y i), R)
¡ Key_add (∪i=1..n X i, AttK(R))
¢ FKey_add (X i, AttFK(R,Ri), AttFK(R)), i: 1..n
£ Rel_add (R)
¤ Rel_del (Ri) , i = 1..n

 129

4. Appendix 4 - Class Diagram of the DW Design Tool

In this appendix we show the class diagram of highest level, and the class diagrams of lower levels that

are necessary to show the parts that were added in the context of the present thesis, i.e. the representation

of the Invariants and the Rules. The rest of the class diagram can be found in [Gar99].

The parts of the diagram that are marked in bold and the RuleDirectory diagram, are the parts that were

added in the present work.

The Vir tual Machine

Core

FunctionDirectory
PrimitiveDirectory

DomainDirectory

RuleDirectoryTransformationTrace

RepositorySchemaDatawarehouseSchema

contains

contains

contains

contains

contains

contains

contains

DatawarehouseSchema and RepositorySchema

RelationSeq

GeneralSchema

contains

RepositorySchemaDatawarehouseSchema

Methods for
invariants
checking

 130

Pr imitiveDirectory

Sequence

PrimtiveDirectory

<<Abstract>>

 Primitive

Method
loadRules

Attribute r ules

Method InsRules

RuleDirectory

Sequence

RuleDirectory

<<Abstract>>

 Rule

Rule11 Rule12 Rule2 Rule3

CollectableObject

<<Abstract>>
Collection

Sequence
CollectableObject

Function <<Abstract>>
Primitive

<<Abstract>>
Rule

contains

 131

BBiibbll iiooggrraapphhyy

[Abe98] R. Abella, L. Coppola, D. Olave,. Un Datawarehouse para la Facultad de Ingenieria.

Universidad de la República del Uruguay. In.Co. Proyecto de Taller 5. 1998.

[Ada98] C. Adamson, M. Venerable. Data Warehouse Design Solutions. J. Wiley & Sons, Inc.

1998

[Agr97] R. Agrawal, A. Gupta, S. Sarawagi. Modeling Multidimensional Databases. ICDE 1997

[Alc00] A. Alcarraz, M. Ayala, P. Gatto. Diseño e Implementacion de una herramienta para

evolucion de Data Warehouses. Universidad de la República del Uruguay. In.Co. Proyecto

en curso de Taller 5. 2000.

[Arz99] G. Arzua, G. Gil, S. Sharoian. Manejador de Repositorio para Ambiente CASE. Facultad

de Ingenieria. Universidad de la República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Bal98] C. Ballard. Data Modeling Techniques for Data Warehousing. SG24-2238-00. IBM Red

Book. ISBN number 0738402451. 1998.

[Ban87] J. Banerjee, W. Kim, H-J. Kim, H. F. Korth. Semantics and Implementation of Schema

Evolution in Object-Oriented Databases. In proc. of the ACM SIGMOD Int’ l Conf.

Management of Data, San Francisco, CA, May 1987.

[Bat92] Batini, Ceri, Navathe. Conceptual Database Design. An Entity-Relationship Approach. The

Benjamin/Cummings Publishing Company, Inc. 1992

[Bla99-1] M. Blaschka. FIESTA: A Framework for Schema Evolution in Multidimensional

Information Systems. Proc. of 6th. CAISE Doctoral Consortium, 1999, Heidelberg,

Germany.

[Bla99-2] M. Blaschka, C. Sapia, G. Hofling. On Schema Evolution in Multidimensional Databases.

Proc. DaWaK ’99, Florence, Italy.

[Cal99] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. (DWQ project). A

Principled Approach to Data Integration and Reconciliation in Data Warehousing. Proc.

CAISE ‘99 Workshop on Design and Management of Data Warehouses (DMDW ‘99),

1999.

[Cha97] S. Chaudhuri, U. Dayal. An overview of Data Warehousing and OLAP Technology.

SIGMOD Record 26(1). 1997.

[CSI99] Grupo CSI. Diseño y mantenimiento dinámico de Data Warehouses – Aplicación en el

contexto de la Web. V Jornadas de Informática e Investigación Operativa y VIII Encuentro

del Laboratorio de Ciencias de la Computación . Facultad de Ingenieria. Universidad de la

República del Uruguay. In.Co. Marzo ‘99.

 132

[DoC00] A. do Carmo. Aplicando Integración de Esquemas en un contexto DW-Web. Master’s

Thesis. Pedeciba. Universidad de la República del Uruguay. 2000.

[Elm00] Elmasri, Navathe. Fundamentals of Database Systems. Addison-Wesley 2000.

[Fer93] F. Ferradina, R. Zicari. Object Database Schema Evolution: are Lazy Updates always

Equivalent to Immediate Updates? Technical Report n11/93, University of Frankfurt.

Presented at OOPSLA Workshop, September 1993, Washington D.C.

[Fer94] F. Ferradina, T. Meyer, R. Zicari. Implementing Lazy Database Updates for an Object

Database System. Proc. of the 20th. International Conference on VLDB, Santiago de Chile,

September 1994.

[Fer95] F. Ferradina, T. Meyer, R. Zicari. Measuring the Performance of Immediate and Deferred

Updates in Object Database Systems. OOPSLA Workshop on Object Database Behaviour,

Benchmarks and Performance. Austin, Texas, October 15, 1995.

[Fer96] F. Ferradina, S. Lautemann. An Integrated Approach to Schema Evolution for Object

Databases. OOIS 1996, London, U.K.

[Gar99] P. Garbusi, F. Piedrabuena, G. Vazquez. Diseño e implementación de una herramienta de

ayuda en el diseño de un Data Warehouse Relacional. Facultad de Ingenieria. Universidad

de la República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Gol98] M. Golfarelli, Stefano Rizzi. A Methodological Framework for Data Warehouse Design.

DOLAP 1998.

[Hac97] M. S. Hacid, U. Sattler (DWQ project). An Object-Centered Multi-dimensional Data

Model with Hierarchically Structured Dimensions. Proc. of the IEEE Knowledge and Data

Engineering Workshop. 1997.

[Hai91] J. L. Hainaut. Entity-Generating schema transformations for Entity-Relationship models.

ER 1991: 643 – 670.

[Ham95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Yue Zhuge. The Stanford Data

Warehousing Project. Data Eng. Bulletin, 18(2), June 1995.

[Hull97] R. Hull. Managing Semantic Heterogeneity in Databases: A Theoretical Perspective.

PODS 1997.

[Hull96] R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialised

and Virtual Approaches. SIGMOD Conf., Montreal, 1996.

[Inm96] W. H. Inmon. Building the Operational Data Store. John Wiley & Sons Inc., 1996.

[K im96-1] R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons, Inc. 1996

[K im96-2] R. Kimball. Dangerous Preconceptions. The Data Warehouse Architect, DBMS Magazine,

August 1996, URL: http://www.dbmsmag.com

 133

[K im96-3] R. Kimball. Slowly Changing Dimensions. The Data Warehouse Architect, DBMS

Magazine, April 1996, URL: http://www.dbmsmag.com

[K im98] R. Kimball. The Data Warehouse Lifecycle Toolkit. J. Wiley & Sons, Inc. 1998

[Kor99] M. A. R. Kortnik, D. L. Moody. From Entities to Stars, Snowflakes, Clusters,

Constellations and Galaxies: A Methodology for Data Warehouse Design. 18th.

International Conference on Conceptual Modelling. Industrial Track Proceedings. ER’99.

[Lab97] W. J. Labio, Y. Zhuge, J. N. Wiener, H. Gupta, H. Garcia-Molina, J. Widom. Stanford

University. The WHIPS Prototype for Data Warehouse Creation and Maintenance.

SIGMOD 1997.

[Lab96] W. Labio, H. Garcia-Molina. Efficient Snapshot Differential Algorithms for Data

Warehousing. VLDB Conf., Bombay, 1996.

[Lau96] S. Lautemann. An Introduction to Schema Versioning in OODBMS. In proc. of the 7th.

Int’ l. Conf. on Database and Expert Systems Applications (DEXA), Zurich, Switzerland,

September 1996. IEEE Computer Society. Workshop Proceedings.

[Lau97] S. Lautemann. Schema Versions in Object Oriented Database Systems. In proc. of the 5th.

Int’ l. Conf. On Database Systems for Advanced Applications (DASFAA), Melbourne,

Australia, April 1997.

[Lev96] A. Y. Levy, A. Rajaraman, J. J. Ordille. Querying Heterogeneous Information Sources

Using Source Descriptions. VLDB 1996.

[L ig99] S. Ligouditianos, T. Sellis, D. Theodoratos, Y. Vassiliou. (DWQ project). Heuristic

Algorithms for Designing a Data Warehouse with SPJ Views. Proc. DaWaK ’99, Florence,

Italy

[Ngu89] G. T. Nguyen, D. Rieu. Schema Evolution in Object-Oriented Database Systems. Data &

Knowledge Engineering (DKE) , Volume 4, 1989.

[Nic98] A. Nica, A. J. Lee, E. A. Rundensteiner. The CVS Algorithm for View Syncronization in

Evolvable Large-Scale Information Systems. In Proceedings of International Conference on

Extending Database Technology (EDBT’98), Spain 1998.

[Pap96] Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina. Object Fusion in Mediator Systems.

VLDB 1996.

[Per00] V. Peralta Sobre el pasaje del esquema conceptual al esquema lógico de un Data

Warehouse. Facultad de Ingenieria. Universidad de la República del Uruguay. In.Co.

Reporte Técnico. 2000.

[Per99] V. Peralta, A. Marotta, R. Ruggia. Designing Data Warehouses through schema

transformation primitives. 18th. International Conference on Conceptual Modelling. Posters

and Demonstrations. ER’99.

 134

[Pic99] A. Picerno, M. Fontan. Un editor para CMDM. Facultad de Ingenieria. Universidad de la

República del Uruguay. In.Co. Proyecto de Taller 5. 1999.

[Qui99] C. Quix. Repository Support for Data Warehouse Evolution. Proc. CAISE ‘99 Workshop

on Design and Management of Data Warehouses (DMDW ‘99), 1999.

[Run97] E. A. Rundensteiner, A. J. Lee, A. Nica. On Preserving Views in Evolving Environments.

In Proceedings of 4th. Int. Workshop on Knowledge Representation Meets Databases

(KRDB’97). Greece 1997.

[Sil97] L. Silverston, W. H. Inmon, K. Graziano. The Data Model Resource Book. J. Wiley &

Sons, Inc. 1997

[Ska86] A. H. Skarra, S. B. Zdonik. The Management of Changing Types in an Object-Oriented

Database. OOP SLA 1986, Portland, Oregon.

[Sta90] B. Staudt Lerner, A. Nico Habermann. Beyond Schema Evolution to Database

Reorganization. ECOOP/OOPSLA 1990 Proceedings.

[Theo99-1] D. Theodoratos, T. Sellis (DWQ project). Designing Data Warehouses. DKE ‘99

[Theo99-2] D. Theodoratos, S. Ligoudistianos, T. Sellis. (DWQ project). Designing the Global Data

Warehouse with SPJ Views. Proc. CAISE ‘99, Heidelberg, Germany.

[Theo99-3] D. Theodoratos, T. Sellis. (DWQ project). Dynamic Data Warehouse Design. Proc.

DaWaK ’99, Florence, Italy

[Tho97] E. Thomsen. OLAP Solutions. Building Multidimensional Information. John Wiley & Sons,

Inc., 1997.

[Tork97] M. Tork Roth, P. Schwarz. Don’ t Scrap It, Wrap It! A Wrapper Architecture for Legacy

Data Sources. VLDB 1997.

[Vas99] P. Vassiliadis, M. Bouzeghoub, C. Quix. Towards Quality-oriented Data Warehouse

Usage and Evolution. Proc. of the 11th. Conference on Advanced Information Systems

Engineering (CAISE ‘99), Hiedelberg, Germany, 1999.

[Wid95] J. Widom. Research Problems in Data Warehousing. Int’ l Conf. On Info. And Knowledge

Management (CIKM), November 1995.

[Wie96] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System

Prototype for Warehouse View Maintenance. Workshop on Materialised Views:

Techniques and Applications, June 1996.

[Wu97] Ming-Chuan Wu, Alejandro P. Buchmann. Research Issues in Data Warehousing. BTW

German Database Conference, 1997.

[Zha99] Xin Zhang. Data Warehouse Maintenance Under Interleaved Schema and Data Updates.

A master thesis submitted to the Faculty of the Worcester Polytechnic Institute. Thesis

Advisor: Professor E. A. Rundensteiner. May 1999.

 135

[Zhou95] G. Zhou, R. Hull, R. King, J. Franchitti. Data Integration and Warehousing Using H2O.

Data Eng. Bulletin, 18(2), 1995.

[Zhu95] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom. View Maintenance in a Warehousing

Environment. SIGMOD Conf., San Jose, May 1995.

[Zhu96-1] Y. Zhuge, H. Garcia-Molina, J. Wiener. The Strobe Algorithms for Multi-source

Warehouse Consistency. PDIS, Miami Beach, 1996.

[Zhu96-2] Y. Zhuge, H. Garcia-Molina, J. Wiener. Consistency Algorithms for Multi-Source

Warehouse View Maintenance. Technical report, Stanford University, 1996.

[Zic91] R. Zicari. A Framework for Schema Updates In An Object-Oriented Database System. GIP

Altair, Politecnico di Milano, Milano, Italy, 1991.

