PEDECIBA Informatica
Instituto de Computacion — Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay

Tesis de Maestria
en Informatica

Diseno y Mantenimiento de Data Warehouse
a traves de Transformaciones de Esquema

Adriana Marotta

Octubre de 2000

Tutor: Raul Ruggia

Tribunal: Alejandro Gutiérrez
Regina Motz
Nora Szasz

Disefio y mantenimiento de Data Warehouse a través de transformaciones de esquema.
Tesis de Maestria

Marotta, Adriana

I

ISSN 0797-6410

Tesis de Maestria en Informatica

Reporte Técnico RT 01-01

PEDECIBA

Instituto de Computacién — Facultad de Ingenieria
Universidad de la Republica.

Montevideo, Uruguay, Octubre de 2000

Resumen

Un Data Warehouse (DW) es una base de datos que almacena informacion para satisfacer
requerimientos de toma de decisiones. Es una base de datos que tiene caracteristicas particulares en

cuanto a los datos que contiene y en cuanto a su utilizacion.
En este trabajo nos concentramos en disefio de DW'y evolucion de DW.

Las caracteristicas de los DWs hacen que €l proceso y las estrategias de disefio de éstos sean diferentes
de los usados para sistemas OLTP. Nosotros abordamos el problema de disefio de DW con un enfoque de
transformacion de esquemas. Proponemos un conjunto de primitivas de transformacion de esquemas, las
cuales son operaciones de alto nivel que transforman sub-esquemas relacionales en otros sub-esquemas
relacionales. Junto con ellas proveemos algunas herramientas que pueden ayudar en el proceso de
disefio de DW.: (a) latraza del disefio, (b) un conjunto de invariantes de esquema de DW, (c) un conjunto
de reglas que especifican como corregir situaciones de inconsistencia de esquemas que fueron generadas
por aplicacion de primitivas, y (d) algunas estrategias para disefiar e DW a través de aplicaciéon de
primitivas.

La evolucion de esquema de un DW puede ser generada por dos causas diferentes: (i) un cambio en €l
esquema fuente o (i) un cambio en los requerimientos del DW. En este trabajo abordamos el problema
de evolucion del esquema fuente. Separamos este problema en dos fases. (1) determinacion de los
cambios que deben ser aplicados al esquema de DWy a latraza, y (2) aplicacién de la evolucion al DW.
Para resolver (1) utilizamos la traza de la transformacion que fue generada en €l disefio. Para resolver
(2) proponemos una adaptacion de los modelos y técnicas existentes para evolucién de esquemas de
bases de datos, a evolucién de esquemas de DW, considerando las caracteristicas que diferencian a los

DWs de las bases de datos operacionales tradicionales.

Palabras clave

Data Warehouse, disefio DW, evolucién esquema DW, transformacion de esquemas, DW Relacional,

traza disefio DW

Agradecimientos

Quisiera agradecer a mi tutor, el Profesor Rall Ruggia, quien me guidé durante todo el proceso de
investigacion y escritura de esta tesis. También quisiera agradecer a los Profesores Regina Motz,
Algiandro Gutiérrez, y Nora Szasz, de quienes recibi valiosos aportes en distintas instancias de este

trabajo, y atodos losintegrantes del Grupo CSl por el apoyo que me brindaron.

Abstract

A Data Warehouse (DW) is a database that stores information oriented to satisfy decision-making

requests. It is a database with some particular features concerning the data it contains and its utilisation.
In this work we concentrate in DW design and DW evolution.

The features of DWs cause the DW design process and strategies to be different from the ones for OLTP
Systems. We address the DW Design problem through a schema transformation approach. We propose a
set of schema transformation primitives, which are high-level operations that transform relational sub-
schemas into other relational sub-schemas. We also provide some tools that can help in DW design
process. (a) the design trace, (b) a set of DW schema invariants, () a set of rules that specify how to
correct schema-inconsistency situations that were generated by applications of primitives, and (d) some

strategies for designing the DW through application of primitives.

Schema evolution in a DW can be generated by two different causes: (i) a change in the source schema or
(ii) a change in the DW requirements. In this work we address the problem of source schema evolution.
We separate this probleminto two phases: (1) determination of the changes that must be done to the DW
schema and to the trace, and (2) application of evolution to the DW. For solving (1) we use the
transformation trace that was generated in the design. In order to solve (2) we propose an adaptation of
the existing models and techniques for database schema evolution, to DW schema evolution, taking into

account the features that differentiates the DWs from traditional operational databases.

Keywords

Data Warehouse, DW design, DW schema evolution, schema transformation, Relational DW, DW design
trace

Contents

CHAPTER 1. INTRODUCTION ...ttt sttt sttt st st sttt st st 1
L. CONTEXT eeueetertenestesueeetesteneeteseeseeteseeeebeseeneebeste e ebeseeneebeseeneebe s e e meebesEeneebeeEeneebesb et et e sb et ebeseeneebeneenentens 1

b2 /o 1Y 7. T TSRS 1

3. GOAL AND PROPOSED SOLUTIONScuttiueesuearueateausesssasseesseaasesasessssusssaeesseassessesssssssessesssesssesssssnssnes 2

4, CONTRIBUTIONSceuttitesueesueasueasseaseauseausasssasseasseasesasesaessaeesseaseaaseansesaseaseenbesnsesasesneesanesaeesseansessean 3

B, OUTLINE OF THE THESIS. ..cittetteetesteseesueaaueasseaseausesusasseesseaasessesssessessaeasssanseansessssssssssesssesssesnsssanesaes 3
CHAPTER 2. EXISTING KNOWLEDGEcccoiiiieiee et 5
L. INTRODUCTION ..utititeueetesteseetesteseetessesessessesessessenessessesessessesessesseseesessensesessensesessensesessensesesseneesesseneasens 5

2. AN OVERVIEW OF DATA WAREHOUSINGoitiietiriiietesieseetesiessesessessesessessesessessesessessesessessesessessenesss 5

I B 1V = T N TSRS 8
4, SCHEMA TRANSFORMATION ...cettitineetesteeesesseeesesseeesessessesessessesessessesessensesessessenessensesessensesessessenesses 11
B, SCHEMA EVOLUTION .. .titutiattasteateetesseseesueesueesseasesseaasesssasseasseassesnsesasesaeesaeesseanseansesasesnsasseessesnsens 11

6. DWW SCHEMA EVOLUTIONucitteetertereesessueesueasueaseaseaasesssasseasseassesssessssasssaeesssassssnsssnsssssessesssesnsens 13

7. CONCLUSIONtetteteeteeueeateasteeabe e teseesaeesaeesaeesaeaseaaseaaseeaeeebe e b e anbeeabeeaeesaeesaeesaeeseamseeaneaneesbeenbeanrenn 13
CHAPTER 3. DATA WAREHOUSE LOGICAL DESIGNcooeoiierinieereneeeesie e 15
L. INTRODUCTION ..utitiieueeteseesestestenesteseesesteseesesseseesesteseesesbeseesestessesessessesessessesessensesessessesessensesessensenenes 15

2. BASICDEFINITIONS ...cottiteueetesteseetestesesteseeseeteseesessestesesseseesessessenessessenessesseneesesseneesesseneesesseneesessenensens 17

3. DWW SCHEMA INVARIANTS ...etiueeteiteseetesteseetestesestestesessesaesesteseesesseseenessessenessessenessesseneesesseneesesseneesens 18
4. THE SCHEMA TRANSFORMATION PRIMITIVES......ciittrteriteseeseesueeseeesseessessesseasseessesssessessssnessneeses 20
4.1, DesCriptionS Of PriMitIVEScceiiiirieieierese ettt s sae e eas 21

4.2, SPecifications Of PriMItiVEScoiiiiieee e e e 26

5. CONSISTENCY RULES......uttitiiitietieteeie ettt ettt e s aeesseasbe e be e beessesaeesaeesaeesae e et easesaneeneesbeanbeensenn 50
B. DESIGN STRATEGIESciueueeterteueetesteseetesteseetestesestestasesseseesestessesessessenessesseneesessenessessenessesseneesesseneasens 51

7. TRANSFORMATION TRACEc.uiuttttrteueetestesestestesestestenesseseesessessesessessenessessenessessenessessenessesseneesessenessens 65
5 TR I =Yoo=) o 14 o] 65

8. CONCLUSION. ...ucttteueetesteseetesteseetesee s besaeseebeseeseebesbeneebeseemeebesee st ebeseeneebeneeneebeseeneebeseeneebeseeneebesaenentens 68
CHAPTER 4. SOURCE SCHEMA EVOLUTION.....ccciiietiieieirieesesieseste st saeesseseesessessesensens 69
L. INTRODUCTION ...ttiteiuetiueesueasueeaseaseausesseasseaseassesssesaeesaeesaeesseaseaaseaseeaseaaseansesnsesasesaeesaeesaeesseenseannean 69

2. SOURCE EVOLUTION TAXONOMY ...oiitiieeiueeiueesueaaseaaseaseesseassessseassesssssssssaessaeessssssssssssssssssssesssesssens 71

3. DETERMINING THE CHANGES TO THE DWW ...ttt 72
3.1. Obtaining DW-Source DB dependENCIESccuerieiirierereereereseseesesesreeeesesseesee e snesresneenees 72
3.1.1. 2 E S o] o < = 0] TSRS 73

3.12. The Primitives expressed in terms of hasiC OPErationS..........cceereerieireinsesre s 74

3.1.3. Processing the transformatiON traCe..........cveieiiiiese et ene s 74

10228 =\ V/o [o) g = 0] 0 7= T =11 o I 83
3.21. Deducing the Propagation RUIES..............ooiiriiieeeee et st sae e 83

vi

TG TN O(0 0 S 1= (=0 oy Y of] 4 1= ot (0] SRR 89

4. APPLYINGEVOLUTION TOTHE DWW ...ttt ettt ettt sbara e e s s s s s sababanen e e an 91
4.1, MOl TOr DW EVOIULIONvvieiiieie ettt ettt ee st e s st s s s aae e s s s ba e e s ssane s ssanesssnbeeesannns 91
4.1.1. PrevioUS CONSIAEIALIONSceciviirieiricteecte et ettt ste st eeresteebesbeesaesbeesbesbesssesbeeasesbesssesbeensesbesnnesseeneas 91

41.2. The PropoSEd MECHBNISIMiiiieieeeeee ettt e e st a e e e seeaeeaesbesbesee e eneeneenas 93

4.2. Instance CONVErSION FUNCHIONS.ccuiiiiitiieeeeiei e ceteee s stee e s ssitee s seae e s s sbeeesssaesssssseesssnbeeesannns 94

LT O N[l I U IS0 PSSR 97
CHAPTER 5. IMPLEMENTATION ..ottt e sttt s s s ba s s eaae s s sabe e e s saranesennes 99
L. INTRODUGCTION .uutttiiiiiiiiiiurtreiessseiiissssteesssesssssssssesssssassssssssesssasssssssssesssssssssssssesssessssssseesssesssssssseesss 99

0 O O | (= 99

2 0 TC o 0] 0 1Y, o 100

2. PROTOTYPE DESCRIPTION ..eiiieteeeeiotereeesteseseissesssassesssassesssasssesssssssessassesssassssssssssssssssserssssssssssssenes 100
2.1, FUNCHONA FEAIUMNES......cceeeieeeie ettt ettt s e s e s sae e s st e s saae s sabessbae s sabessnaessnnessneeesn 101

AV ©0 (o' o1 (171 I (=S T o FO TSP 104

A T 1 10'¢ 1 01 7= 01 =1 o o OO TSR PRSRRN 104

G O | N[l I U S0) N PSRRI 105
CHAPTER 6. (O N[O 015]\ 107
1. DW DESIGN THROUGH SCHEMA TRANSFORMATIONS. TECHNIQUESAND CASE TOOLcccouveeee. 107

2. REPERCUSSION OF SOURCE SCHEMA EVOLUTION ON THE DWoveiiiiieie e 108

T O N T]| TRV 108

4, FUTURE WORK ...ciiiiiitttieiieseiiiittaetiesssessssbasssesssessssbassseassssasbassessssesassbasseesesssassbabseesssssasbsbanesesssansns 108

F AN = N O TR 111
1. APPENDIX 1 — AN APPLICATION EXAMPLE ...tttiiiiiiiiitieiies s siibirie s essabae s e s s s aabaane e s s s e saabanenea s 111

2. APPENDIX 2 — THE BASIC OPERATIONSciiitttttiieeeieiiitberiiesssssssbssssesssssssbssseessssssssbssssesssssssssssnns 115

3. APPENDIX 3 - THE PRIMITIVES IN TERMS OF BASIC OPERATIONSvvvieieteeeeereeeeeereeeeevaeeeeneeeas 117

4. APPENDIX 4 - CLASS DIAGRAM OF THE DW DESIGN TOOL ...coceeveeeeiteeeeeetee e eeeeee e sveeeeevaee e 129
LSl S I @ 2 YN = I N 131

vii

viii

CHAPTER 1. I ntroduction

1. Context

A Data Warehouse (DW) is a Database that stores information oriented to satisfy decision-making
requests. A very frequent problem in enterprises is the impossibility for accessing to corporate, complete
and integrated information of the enterprise that can satisfy decision-making requests. A paradox occurs:
data exists but information cannot be obtained. In general, a DW is constructed with the goal of storing

and providing all the relevant information that is generated along the different databases of an enterprise.

A DW is a database with some particular features. Concerning the data it contains, it is the result of
transformations, quality improvement and integration of data that comes from operational bases. Besides,
it includes indicators that are derived from operational data and give it additional value. Concerning its
utilisation, it is supposed to support complex queries (summarisation, aggregates, crossing of data), while
its maintenance does not suppose transactional load. In addition, in a DW environment end users make
queries directly against the DW through user-friendly query tools, instead of accessing information

through reports generated by specialists.

The data model considered in this work is the Relational Model, for both the DW and the source
databases.

2. Motivation

In this work we concentrate in DW design and DW evolution.

The features of DWs cause the DW design process and strategies to be different from the ones for OLTP*
Systems [Kim96-1]. For example, in DW design, the existence of redundancy in data is admitted for
improving performance of complex queries and it does not imply problems like data update anomalies,
since data is not updated on-line (DWs' maintenance is performed by means of controlled batch loads).
Another issue to be considered is that a DW design must take into account not only the DW requirements,

but also the features and existing instances of the source databases.

Evolution in a DW can be generated by two different causes. A DW schema can evolve as a consequence
of: (i) achange in the source schema or (ii) a change in the DW requirements. These two cases have to be
treated separately, since they involve different taxonomies of changes and different processes to impact
the DW schema

Source schema evolution is particularly relevant in the cases where the DW is generated from Web

sources. In this context source schema will probably change very frequently. Our research group is

L OLTP: On Line Transaction Processing

working on a project that covers the different stages that exist in a DW system which information is
extracted from Web sites [CSI99]. The present work can be seen as a module of this project, although at
the sametimeit is not specific to this context. In our work we have two main reasons to concentrate in the
problem of source schema evolution: (1) the highly evolutive context of the project [CSI99], and (2) the
important facilities for propagating schema changes from source to DW that are provided by our proposal
for DW design.

3. Goal and proposed solutions

The goal of this work is to provide a help tool that allows designing a DW starting from the source

database and propagating source schema evolution to the DW.

We address the DW Design problem through a schema transformation approach. We propose a set of
schema transformation primitives, which are high-level operations that transform relational sub-schemas
into other relational sub-schemas. The idea for the design process is that the designer, taking into account
the DW requirements and his own design criteria, applies primitives to construct a DW schema from a

source schema.

We design the primitives considering the set of schema structures that are the most used in relational
DWs and the possible existing source structures, so that there is one primitive for each one of these target

and source structures.

Having the primitives as the core of the proposal for DW design, we also provide some tools that help in
DW design process. The first is the design trace, which is generated when a DW schema is constructed
through application of primitives. The second is a set of schema invariants. Schema invariants are
properties useful to check DW schema consistency. Having these invariants, we provide a set of rules
that specify how to correct schema-inconsistency situations that were generated by applications of
primitives. Finally, we provide some strategies for designing the DW through application of primitives.

These strategies serve as guidelines for solving some common DW design problems.

We separate the problem of propagating source schema evolution to the DW schema into two phases: (1)
determination of the changes that must be done to the DW schema and to the trace, and (2) application of
evolution to the DW.

For solving (1) we use the transformation trace that was generated in the design. This trace allows us to
obtain the path that was followed by each schema element and then decide how to propagate the changes
occurred on the source schema. In some cases it is not necessary to modify the DW schema, but we
always have to modify the trace in order to maintain the connection between source and DW schema
elements. We provide a set of propagation rules that state which changes have to be done to the DW and
to the trace, depending on each case of source schema change and dependency between source and DW

schema elements.

In order to solve (2) we analyse the applicability of existing schema evolution models and techniques to
DW schema evolution. We consider DW features that affect the treatment of evolution. We adapt existing
models, mainly applying the Versioning approach (presented in Chapter 2).

In addition, we propose instance conversion functions that are necessary to convert instances from one

version of the DW to another. These functions are required for the posterior usage of the DW.

4. Contributions

Thiswork contributes in two directions: (1) DW design and (2) DW evolution.

With respect to DW design, the main contribution of this work is the proposal of a set of DW schema
design primitives. These primitives must be applied to the source schema. Together, with each primitive,
this work provides the specification of the transformation that must be applied to the source schema

instances in order to populate the generated DW.

The main interest for the definition of design primitives is twofold. First, primitives materialise design
criteria knowledge. Second, they provide a way for tracing the design. In addition, they increase
designer’s productivity by behaving as design building blocks that can be composed for building the final
schema. There is an operational prototype, which covers the functionalities of DW design through
primitive applications, and has been developed in the context of a graduate project [Gar99] and
complemented in the context of this thesis (Chapter 5).

In DW evolution we also contribute mainly in two aspects. On one hand, we present a mechanism for
deducing the changes that have to be done to the DW schema when the source schema evolves. This
mechanism is designed for the context of DW design proposed in this work. On the other hand, we
present an analysis of the applicability of database schema evolution techniques to DW schemas. Thereis
an ongoing graduate project [AlcO0], which will extend the existing prototype, including the

functionalities of source schema evolution propagation.

5. Outlineof thethesis

This thesis consists of six chapters. Chapter 2 presents an overview of the existing knowledge in the areas
that are more relevant to our work. Chapter 3 and Chapter 4 contain our proposals. in Chapter 3 we
present a solution for DW logical design and in Chapter 4 we present a solution for propagation of source
schema evolution to the DW. Chapter 5 is a brief description of the implemented prototype for DW
design. Chapter 6 presents the conclusions and future work. Finally, there are 4 appendices and the used

bibliography.

CHAPTER 2. Existing knowledge

1. Introduction

Our work is related to various sub-areas of Databases research area. It is situated mainly in the area of
DW, in particular DW Design and DW Evolution. However it aso applies techniques of Schema
Transformations and Schema Evolution. The base data model it uses is the Relational Model (for basic
definitions about databases and Relational Model, see [EIMO0]).

Existing DW design techniques were the base for the definition of the set of transformation primitives. In
addition, existing knowledge about database schema evolution was amost directly applied to the

definition of the model for DW schema evolution.

In this chapter we present an overview of the existing knowledge on the areas that are the most relevant to
our work. In Section 2 we present an overview of DW problems and how they are addressed. In Section 3
we show the existing approaches and the existing practical techniques about DW Design. In Section 4 we
enumerate some works about schema transformation. In Section 5 and Section 6 we present the existing
knowledge about schema evolution and DW schema evolution. In Section 7 we present the conclusion of

the chapter.

2. An overview of Data Warehousing

DW is a very wide research area. It has many different sub-areas and it can be treated with different

approaches. Some overviews of the research area are [Wid95][Wu97][Cha97].

The global architecture of DW systems proposed or assumed in most works is the one shown in Figure
2.1, athough there is a variant that is proposed in [Inm96]: the ODS (Operational Data Store), shown in
Figure2.2.

OLAP System

Reports

QUERIES

-

Source databases can be heterogeneous with respect to their data representation and to the dataitself. Data
integration is an important research area that attacks this problem. Some publications that concentrate on
source heterogeneity are [Pap96][Lev96], which consider in particular the web sources. In many projects

asH20, TSIMMIS, DWQ, strong attention is paid to data integration [Hull96][Hull97] [Pap96][Cal99].

In order to trandate heterogeneous data models to a common model, some authors propose the use of

wrappers [Lab97][Tork97], which encapsulate data sources and mediate between them and the rest of the

system.

Data transformation layer involves a wide range of transformations that have to be applied to source data,

for example data quality control and data cleaning, data integration, and conversions that are necessary

for adapting data to the DW structures.

Figure2.1

OLAP System Reports QUERIES

DataMart] =~ w== === = ——— DataMart Data Mart]

DW

| Data Transformation |

| Data Transformation |

Figure2.2

The ODS can be seen as an intermediate stage between the sources and the DW, athough authors also
propose that it can be used as a database for operational processing [Inm96][Kim96-2]. It contains
integrated data, but this datais at detail level and it is only current data. Therefore we can think that with
this architecture we are dividing the transformation work into two phases: in the first phase the main task

isintegration, and in the second phase the rest of the data transformation work is done.

Data Marts are proposed as logical subsets of the complete DW [Kim98]. They should be consistent in

their data representation in order to assure DW robustness.

OLAP?[Tho97] systems have been heavily developed by industry community, while research community

has not concentrated so much iniit.

The data models that are used for DWs are Multidimensional Model and Relational Model. At the
conceptual design level there is no discrepancy in choosing a multidimensional data model, since DW
requirements are in general managed with a multidimensional perspective. Some publications about
multidimensional data models are [Agr97][Gol98][Hac97]. The database system where the DW is built
can be a multidimensional or a relational one. When this system is relational the logical design can be
done applying techniques of multidimensional modelling to relational databases, as the ones presented in

[Kim96-1]. Thisisthe approach we adopted for data modelling in our work.

2 OLAP: On Line Analytical Processing

The most used approach, in research community, for definition and management of the DW is the one of
materialised views. In the WHIPS project [Lab97][Ham95][Wie96] they work mainly in definition and
maintenance of the DW [Zhu95][Lab96] and view consistency [Zhu96-1][Zhu96-2]. In the H20 project
[Zhou95] they propose the combination of materialised and virtual views and they focus on data
integration [Hull96][Hull97]. A very recent proposal about materialised views is in [Theo99-1], where
they address the problem of selecting the views to materialise. We comment more about this approach in
next section.

3. DW Design

As we have shown in Figure 2.1, in some possible architectures, a DW may be used by an OLAP front-

end or it may be queried directly by SQL statements.

We found in the literature, globally two different approaches for Relational DW design: one that applies

dimensional modelling techniques, and another that bases mainly in the concept of materialized views.

Dimensional models represent data with a “cube” structure [Kim96-1], making more compatible logical
data representation with OLAP data management. According to [Kor99], the objectives of dimensional
modelling are: (i) to produce database structures that are easy for end-users to understand and write
gueries against, and (ii) to maximise the efficiency of queries. It achieves these objectives by minimising
the number of tables and relationships between them. Normalized databases have some characteristics
that are appropriate for OLTP systems, but not for DWSs. (i) Its structure is not easy for end-users to
understand and use. In OLTP systems this is not a problem because, usually end-users interact with the
database through a layer of software. (ii) Data redundancy is minimised. This maximises efficiency of
updates, but tends to penalise retrievals. Data redundancy is not a problem in DWs because data is not

updated on-line.

The basic concepts of dimensional modelling are: facts, dimensions and measures [Bal98]. A fact is a
collection of related data items, consisting of measures and context data. It typically represents business
items or business transactions. A dimension is a collection of data that describe one business dimension.
Dimensions determine the contextual background for the facts; they are the parameters over which we
want to perform OLAP. A measure is a numeric attribute of a fact, representing the performance or

behaviour of the business relative to the dimensions.

Considering Relational context, there are two basic models that are used in dimensional modelling: (i)
star model and (ii) snowflake model. The star model is the basic structure for a dimensional model. It has
one large central table (fact table) and a set of smaller tables (dimensions) arranged in a radial pattern
around the central table. (We show an example in Figure 2.3). The snowflake model is the result of
decomposing one or more of the dimensions. The many-to-one relationships among sets of attributes of a
dimension can separate new dimension tables, forming a hierarchy. (Figure 2.4 shows an example). The

decomposed snowflake structure visualises the hierarchical structure of dimensions very well.

.
| Customer_| e ouring
Customer Location

Sdles

/ Facts

Seller

Product

Figure2.3

Other models that implement different design alternatives can be used. In [Kor99] they present a number

of them, for example, flat, terraced, star cluster.

Week Month
Region
Customer Dat\e Plant
Sdes
Facts
N Model
Sdes
/ Person
Outlet Product
Region Type
Figure2.4

Practical design techniques and methods are proposed in [Kim96-1][Kim98][Kim96-3][Bal 98], following
mainly a star-schema approach. In [Ada98], authors also present concrete solutions for different target
business. In [Sil97], they present DW models in a pattern-oriented approach, and propose techniques for
converting a corporate logical data model into the DW model. In [Kor99] authors present a method for
developing dimensional models from traditional Entity Relationship models.

In [Theo99-1] they focus on DW design, following the approach of materialised views. They address the
problem of selecting a set of views to materialise in a DW taking into account: (i) the space allocated for
materialisation, (ii) the ability of answering a set of queries (defined against the source relations) using
exclusively these views, and (iii) the combined query evaluation and view maintenance cost. In this
proposal they define a graph based on states and state transitions. They define a state as a set of views
plus a set of queries, containing an associated cost. Transitions are generated when views or queries are
changed. They demonstrate that there is always a path from an initial state to the minimal cost state. Some
other publications about this approach are [Theo99-2][Lig99]. In [Theo99-3], working with the same
model, they address the “Dynamic DW Design Problem”, where basically, they determine which

additional views have to be materialised when new queries have to be answered by the DW.

Our approach for DW design is not based on the materialisation of views. When using materialised views
each desired relation of the schema must be able to be expressed in only one SQL query. Besides, we
think that design process is easier and purer if it is done thinking only in the desired schema and not
having to construct adequate SQL queries for obtaining the desired structures. In our work we clearly
separate schema design from data loading, and we concentrate on schema design. According to our
approach a DW schema can be designed transforming the source schema through a set of primitives and
not depending on SQL expressiveness. Once the DW schema is designed, loading processes can be

constructed.

Our goal with respect to the set of primitives we designed is that they embed DW design techniques,
covering all the possible basic transformations that may be necessary for obtaining a DW schema from a
source schema. In order to achieve this goal we base on the existing bibliography about DW design

practical techniques and methods.

In general, existing work in DW design consists mainly of techniques for specific sub-models (as star or
snowflake) and design patterns for specific domain areas. Although this work constitutes a precious
knowledge base in DW design its practical application is not direct. In order to do it, designers must
incorporate this knowledge, abstract the design rules and strategies, and then apply them in particular
cases. Furthermore, this application would not be structured in well-defined design steps.

The present work intends to abstract and structure DW design techniques and strategies in the schema

transformation primitives.

10

4. Schematransformation

The use of schema transformation primitives is a classical conceptual tool in Databases area. In [Bat92],
design primitives and strategies are presented as the building blocks of conceptual design methodologies.
In [Hai91], they analyse the concept of schema transformation and generalise many of the proposed
transformations in a conceptual schema design context. In [Sta90], database schema transformations are

used and automated to perform schema evolution and reorganisation.

Our work proposes schema transformation primitives for relational DW design.

5. Schema evolution

A big amount of work has been done on schema evolution. We present in this section only the concepts

that are the most relevant and applicable to our case.

The proposals existing in the consulted bibliography about schema evolution always deal with Object
Oriented (OO) Databases. In order to apply this knowledge to our context, we will have to do a mapping
of the presented concepts and techniques, to Relational Databases.

In genera (e.g. [Zic91][Fer96][Ska86]) we found that two main aspects are taken into account with
respect to the state of a database after schema evolution: (i) structural consistency and (ii) behavioural
consistency. In [Fer96] these concepts are defined in the following manner. Structural consistency is the
consistency between the database and the schema. Behavioural consistency is to keep the consistency of
the application programs that existed before evolution. The different authors concentrate in maintaining

these properties.

On the other hand, we found two approaches for managing schema evolution: (a) Adaptational
approach [Fer93][Fer94][Fer95] and (b) Versioning approach [Ska86][Fer96][Lau96][Laud7][Ngu89].
In the adaptational approach, when the schema is modified the state of the schema before the change is
lost and the final result of evolution is an only one schema with the new structure. The existing instances
have to be adapted to the new schema and the application programs that run over the database before the
changes, aso have to be adapted. In the versioning approach, modifications to the schema are not applied
directly on the existing schema. Instead, a new version of the schemais created. In this case the existing
instances do not necessary have to be transformed to satisfy the new schema. Besides, the application
programs will continue running with the same behaviour over the previous version of the database; they

neither have to be adapted to the new schema.

When adaptational approach is chosen for managing schema evolution, another dilemma comes up: how
to manage the unavoidable update of the existing data This problem is addressed in
[Fer93][Fer94][Fer95]. There are mainly two options: (1) immediate updates and (2) lazy (deferred)
updates. In the first case, data is updated immediately after a modification is done to the schema. In the
second, data is updated at the moment it is used. These two strategies are intended to have the same final

result: the database reaches a consistent state with respect to the new schema. For the database updates

11

the designer has to provide the conversion functions. Depending on the complexity of these functions
each strategy can be better applied or not. Various algorithms are proposed for implementing lazy updates
[Fer94]. They address the problems of complex conversion functions and cycles that can be generated in
the execution of the updates. In [Fer95] benchmarks are performed in order to compare the two possible

strategies considering different contexts.

When versioning approach is used [Lau96][Lau97][Fer96] a list of schema versions with a relationship
“is-derived-from” is managed. Only the last version of the list can be modified; the other ones are
“frozen”. This mechanism allows having different schema states, which gives the possibility to go back to
a previous state if some update led to an unexpected result. In addition, with this mechanism existing
applications can continue working over previous versions. The problem that has to be solved in this case
is how to share data between the different schema versions. For this, three main concepts are defined and
managed: (i) Instance Access Scope (IAS), (ii) conversion functions, and (iii) propagation flags. (i) The
IAS of a schema version is the part of the database that is visible through this version. The IAS contains
instances that were created by this version and instances that were propagated from other versions. (ii)
Conversion functions are used to transform data to the new version of the schema. They are implemented
at class level, and there are default conversion functions. In order to share instances between versions,
two kind of conversion functions exist: forward conversion functions (f.c.f) and backward conversion
functions (b.c.f). As an example, to read old data from the new version, you have to read and then
transform (f.c.f.), to write old data from a new version you transform (b.c.f.) and then write. Many f.c.f or
b.c.f can be composed for propagating data throughout chains of versions. (iii) The propagation flags are
4 flags that the designer must define when a new version is derived. With these flags he defines which
parts of the superversion’s® database will be shared by the subversion and what kind of operations the

subversion will be able to apply over this database.

In [Fer96] an integration of the two approaches presented previously (adaptational and versioning) is
proposed. Considering the fact that using adaptational approach we might invalidate applications, which
are aready running on top of the database, and versioning approach might burden alarge overhead on the
system, they propose a new solution. The idea is to apply the schema updates (adaptational) for certain
cases, where applications are not corrupted by the updates, and to create a new schema version for the
other cases. They categorise the schema changes into extending and modifying ones, and determine

which approach should be used for each case.

In our proposal we extract some techniques from this existing work, and we adapt, combine and apply

them for the resolution of our problem.

Thereisin the literature much work about taxonomies for evolution and the effects of each operation on
the schema and its instances [Ban87][Ska86][Zic91]. However, this work is not so useful for us because it

is specific for OO databases.

% Superversion and subversion are the predecessor and successor in the derivation list of versions,

respectively.

12

Finally, in [Ban87] they define a set of invariants of an OO schema, which must be preserved throughout
the schema changes, and they define a set of rules that state how to preserve the invariants for each
schema change. In our work we use a very similar approach for preserving consistency in the DW
schema, when it is constructed (Chapter 3, Sections: 3, 5) as well as when it is modified (Chapter 4,
Section 3.3).

6. DW schema evolution

The work we have found in latest publications about DW evolution shows that this is an interesting and

important problem to address, but it has not been very much explored yet.

The EVE (Evolvable View Environments) project [Nic98][Run97] studies the problem of how to
maintain a DW under data and schema changes. When there are source schema changes they rewrite view
definitions adapting all affected materialised views. Thisis called View Sinchronization. A master thesis
related to this project [Zha99] proposes solutions to concurrent updates problems, reusing the proposal of

EVE for View Synchronization and integrating it with other solutions for View Maintenance.

In addition, we have found some work about multidimensional (MD) schema evolution and some other

work that concentrates on the impact DW evolution has on DW quality.

In the first [Bla99-1][Bla99-2], they define a conceptual model for MD schemas and instances and
present a list of evolution operations including the effects they have on the MD schema. They consider

only evolution that occurs over the DW schema as a consequence of user requirements changes.

In the second [Qui99][Vas9d9], they extend a process model for DWSs they had previously defined, with
the capability of representing DW evolution processes. In their approach, DW evolution processes that
are executed on the DW are stored in the metadata repository, and then information can be extracted for
analysing the impact that evolution operations had on the DW. They present a list of DW evolution

operations with the quality factors and schema structures they affect.

7. Conclusion

In this chapter we presented the state of the art in the areas that are related to our work.

With respect to DW in general, the most focused problems are Data Integration, Extraction and
Transformation, DW Maintenance and DW Design. For conceptual design Multidimensional data model
is used, while logical design can also be done upon a Relational model. Materialised views is the most
used approach for DW management.

In the area of DW Design we find works about how to select the views to materialise for a DW. The other

bibliography we consulted presented techniques and strategies for relational DW design.

Schema Transformation is used in some proposals as a tool for constructing or evolving database

schemas.

13

In the area of Schema Evolution there are different approaches for solving the problem of changesin a
schema. The most relevant ones are: Adaptational and Versioning approach. With respect to DW Schema

Evolution we have found work about multidimensional schema evolution and work that concentrates on

the impact DW evolution has on DW quality.

14

CHAPTER 3. Data Warehouse logical design

1. Introduction

One of the most important tasks in the construction of a DW is the logical design of its schema. This
logical design has to be done considering the particularities a DW has with respect to the information it
stores and the requirements it has to support (described in Chapter 1). The techniques that are used for
designing a database of an OLTP system are not applicable for designing a DW [Kim96-1], due to the

existing differences between these two kind of databases.

We propose atool that isintended to be of help at the time of designing a DW. Together with this tool we
provide some guidelines for its utilisation. The tool is a set of schema transformation primitives that
must be applied to a source schema in order to obtain a corresponding DW schema. The designer has to
use his own design criteria to apply the primitives, although we give him some help through a set of rules

and strategies he can use.

The primitives work with one source schema; they are not useful for performing integration of several

source schemas. In this work we assume that the design process starts from an integrated schema.

Figure 3.1 shows the basic architecture of the transformation of a source schema into a DW schema,

through the application of primitives.

relations
«

v

paeE---- 8 ow

primitives App“ (?ﬂion of
A primitives

.
cuo (]| sowcee

relations

Figure3.1

15

In our approach, DW design is a process that starts with a source database schema, applies
transformations to it, and ends with a resulting DW schema. The transformations are applied through the
primitives to the source schema and to the intermediate sub-schemas® that are generated during the
process, i.e. primitives are composed to obtain the final schema. Therefore, al the elements that constitute

the final schema, are results of primitives application to the source schema.

The primitives are high-level transformations of Relational schemas. Roughly speaking, they take as input
a sub-schema and their output is another sub-schema. Besides, they include an outline of the
transformations that have to be applied to the source instance. We group some of the primitives into
families because in some cases there are several alternatives for solving the same problem, or more than

one style of design that can be applied.

For ensuring schema consistency we provide: (i) a set of DW schema invariants, and (ii) a set of
consistency rules for application of primitives. We consider a schema consistent if it satisfies the DW
schema invariants we define. With (i) we can check the consistency of the DW schema. (ii) states the
actions that must be done on application of certain primitives in certain situations, with the form of ECA

(Event Condition Action) rules, in order to preserve schema consistency.

In addition, for assisting the designer during the design process, we provide strategies for solving typical
problems that appear in DW design. These strategies should act as guidelines for the application of the
primitives, covering many possible design alternatives for each considered design problem. Note that the
primitives themselves do not lead to some specific strategy or methodology. Moreover, their application
without well-defined design criteria, could lead to undesired results. For us, a good design should
structure data so that the DW requirements can be satisfied efficiently. DW requirements, which usually
consist on complex queries that imply large volumes of data, are the ones that determine the data

structures that are the most convenient for the DW schema.

In Section 2 we present some basic definitions about the model we use for the specification of the
primitives. In Section 3 we define a set of DW schema invariants for DW schema consistency. In Section
4 we present the schema transformation primitives. In Section 5 we propose a set of consistency rules for
application of primitives, and in Section 6 we propose a set of design strategies, which address the most
common problems that appear when designing a DW. In Section 7 we show the format and specification
of the trace that is generated when DW design is done through the primitives. Section 8 is the conclusion
of this chapter. In Appendix 1 we present an example of a complete design process through primitive

applications.

* We consider a sub-schema as a set of relations that are part of a schema.

16

2. Basc definitions

The underlying model for the proposed transformation primitives is the Relational Model. In addition, the

relational elements (relations and attributes) are classified into different sets, according to their behaviour

inaDW context. As a glance, some of the classified elements are: dimension relations, measure relations,

descriptive attributes, measure attributes.

This classification enables the primitives to perform a more refined treatment of the different situations in
DW design.

The following are the sets defined over the Relational Model:

Relation® sets:

Rel — Setof al therelations (any kind of relation).

Relp— Set of “dimension” relations. These are the relations that represent descriptive information
about real world subjects.

Relc— Set of “crossing” relations. These are the relations that represent relationships or combinations
among the elements of a group of dimensions. Usually, they contain attributes that represent
measures for the combinations.

Rely— Set of “measure” relations. These are the crossing relations that have at least one measure
attribute.

Rel; — Set of “hierarchy” relations. These are the dimension relations that contain a set of attributes
that constitute a hierarchy. The fact that there exists a hierarchy among a set of attributes, can
only be determined having into account the semantics of them.

Rel,— Set of “historical” relations. These are the relations that have historical information that

corresponds to information in other relation.
We define a function fy : Rely -> Rel , which, given a historical relation, returns the

corresponding current relation.

These sets verify the following properties:

Rely O Relc
Rel; O Relp
Rely O (Relp 0 Relc)

Attribute sets:

Att(R) — Set of al attributes of relation R.

® In this work, we use the word relation as a synonym of relation schema.

17

Atty(R) — Set of measure attributes of relation R.

Attp(R) — Set of descriptive attributes of relation R.

Attc(R) — Set of derived (calculated) attributes of relation R.

Att; — Set of setsof attributesthat represent a hierarchy.

Atty(R) — Set of sets of attributesthat are key in relation R.

Attr (R) — Set of sets of attributes that are foreign key in relation R.

Attr (R, Ro) — Set of attributes that is aforeign key in relation R, with respect to relation R..
These sets verify the following properties:

- Atty(R) O Attp(R) O Atte(R) = Att(R)

- OX/X OAtt, X O Orore Attp(R)

- Att(R) ={ e/ e= Attek(R, R) }, i=1..n, where n is the number of relations with respect to which
R hasaforeign key.

- OA/AOX and X O (Atte(R) O Attex(R)), A O Attp(R)

- IfXDOAtt(R) and Y OAtt((R),itmaybe: X nY £0

The following are some definitions that are necessary for the specifications we present in the rest of the

document.

Rel_Name — Set of relation names.
Att_Name — Set of attribute names.
Primitive_Name — Set of primitive names.

Fun_Name — Set of function names.

subst (A, B, X) — function that substitutes attribute A by attribute B in the set of attributes X.
conc (s, s2) —function that concatenates two strings.

name (A) —function that returns the name of an attribute.

3. DW schema lnvariants

Considering the classification we have defined for the elements of a DW schema, we can find some
conditions that must be satisfied by the different types of elements, in order to maintain the consistency in
the DW schema.

In this section we propose a set of DW schema invariants. They are a set of properties that must be
satisfied by arelational DW schemain order to be consistent.

18

1

Invariants:

Referential integrity :

Each declared foreign key must have a corresponding primary key in the relations it references.

Besidesit must reference to all relations with this primary key.

0 X, Rl, R2 /X = AttFK(R]_, Rz), it holds:
X O Att(Ry) [
OR/X OAtt(R), X 0 Attex(Ry, R)

Hierarchies:

Given a set of attributes X representing a hierarchy, a functional dependency must hold between
each attribute of X and all attributes of X that identify higher levelsin the hierarchy.

Let X /X OAtt; OX={Aq,....,A} O
A;<A,<.. <A,, where a<b meansthat b identifies a higher level in the hierarchy than “a’
itholds A; - A,
A, - Ag

History relations:

A history relation that corresponds to a current data relation, must include a foreign key

referencing to the corresponding current relation.

Let RH / RH 0 ReIH(R), it holdsthat OX / X = AttFK(RH,R)

M easurereations:

. If a measure relation has an attribute from some dimension relation, then it must have a foreign

key relative to thisrelation.

Let Ry, Ry / Ro O Relp O Ry O Rely
if OA/A OAW(R,) DA OAt(Ry) O OX /X = Atte(Ru,Ro)

. Measure relations must have a functional dependency, whose left-hand side is the set of

attributes that are foreign keys to dimensions and right-hand side are the rest of attributes.

Let Ry, X /Ry O Rely OX = Attex(Ry), it holds X — (Att(Ry) = X)

19

4. The Schema Transformation Primitives

In this section we propose a set of schema transformation primitives. Our goal is to provide a set of high-

level transformations that can be combined to cover a wide spectrum of DW schema designs. The idea is

that these transformations are applied to a schema in order to make it more suitable for the kind of queries
that will be submitted to it.

The kind of transformations involved by the primitives are: table partitions, table merges, attribute

addings, attribute removes, and keys and foreign keys changes.

Figure 3.2 shows a table containing the whole set of primitives proposed. In this table, the primitive

names marked with a“*” symbol correspond to groups of primitives.

Primitive Description

P2 | DataFilter Given a source relation, it generates another one where only some attributes are
preserved. Its god is to eiminate purely operational attributes.

P3 | Temporalization It adds an element of time to the set of attributes of arelation.

P4 | Key Generalization * These primitives generalize the primary key of a dimension relation, so that
more than one tuple of each element of the relation can be stored.

P5 | Foreign Key Update Through this primitive, a foreign key and its references can be changed in a
relation. Thisis useful when primary keys are modified.

P6 | DD-Adding * The primitives of this group add to a relation, an attribute that is derived from
others.

P7 | Attribute Adding It adds attributes to a dimension relation. It should be useful for maintaining in
the same tuple more than one version of an attribute.

P8 | Hierarchy Roll Up This primitive does the roll up by one of the attributes of a relation following a
hierarchy. Besides, it can generate another hierarchy relation with the
corresponding level of detail.

P9 | Aggregate Generation Given a measure relation, this primitive generates another measure relation,
where data are resumed (or grouped) by a given set of attributes.

P10 | DataArray Creation Given arelation that contains a measure attribute and an attribute that represents
a pre-determined set of values, this primitive generates a relation with a data
array structure.

P11 | Partition by Stability * These primitives partition arelation, in order to organize its history data storage.
Vertical Partition or Horizontal Partition can be applied, depending on the
design criterion used.

P12 | Hierarchy Generation* | Thisis afamily of primitives that generate hierarchy relations, having as input,
relations that include a hierarchy or a part of one.

P13 | Minidimension Break off | This primitive eliminates a set of attributes from a dimension relation,
constructing a new relation with them.

P14 | New Dimension Crossing | This primitive allows to materiaize a dimension crossing in anew relation.

20

Figure3.2

As seen, the proposed schema transformation primitives do not intend to be “complete” in the sense of
enable the design of any Relational schema, but they are intended to enable the design of DW. We find

thereis atrade-off between the level of expressiveness and the compactness of the set of primitives.

The following sub-sections present: first the description of all primitives and second the specifications of

them.

4.1. Descriptionsof primitives

This section presents a description of each primitive. These descriptions are intended to show the

usefulness of the primitives as well as their behaviour.

Primitivel. IDENTITY

This primitive is useful when we want to generate in the DW, arelation that is exactly the same as
another one. The original relation may be one existing in the source database or one that is an

intermediate result (the result of the application of a primitive).

It gives as result, a copy of the relation given asinput.

Primitive2. DATAFILTER

In operational databases, there are some attributes that are of interest for the DW system, but there
are some others that correspond to data that is purely operational and that is not useful for the kind
of analysisthat is made with the DW.

The goal of this primitive isto preserve only the useful attributes, removing the other ones.

Primitive3. TEMPORALIZATION
Many relations in operational systems do not maintain a temporal notion. For example, stock
relations use to have the current stock data, updating it with each product movement.

In DWSs, many relations need to include a temporal element, so that they can maintain historical

information.

This primitive adds an element of time to the set of attributes of arelation.

Primitive4. KEY GENERALIZATION

The real world subjects represented in dimensions, usually evolve through time. For example, a

client may change his address, a product may change its description or package size.

In some cases it is enough to maintain only the last value, but in other onesit is necessary to store all

versions of the element, so that history is maintained.

21

22

The goal of this group of primitivesis to generalize the primary key of a dimension relation, so that

more than one tuple of each subject represented in the relation, can be stored.

Two alternatives are provided to do this generalization, through the primitives: Version Digits and

Key Extension.

Primitive4.1. VERSIONDIGITS

To generalize the key, version digits are added to each value of the attribute.

Primitive4.2. KEY EXTENSION

The key is extended; new attributes of the relation are included in it.

Primitive5. FOREIGN KEY UPDATE

When the key of arelation is changed, it is necessary to make the same changes in al the foreign
keys that reference to it from other relations. For example, if an attribute is added to a key, it must
be added also to the foreign keys of the referencing relations.

This primitive is useful for updating a foreign key in a relation when its corresponding primary key
is modified.

Primitive6. DD-ADDING

In production systems, usually, data is calculated from other data at the moment of the queries, in

spite of the complexity of some calculation functions, in order to prevent any kind of redundancy.

For example, the product prices expressed in dollars are calculated from the product prices

expressed in some other currency and a table containing the dollar values.

In a DW system, sometimes it is convenient to maintain these kind of data calculated, for

performance reasons.

The primitives of this group add an attribute that is derived from others to a relation. They never

cause changes to the grain of the relation.

Primitive6.1. DD-ADDING 1-1

In this case, the calculations are made over only one relation and one tuple. For example, the total
import of a sale is calculated from the quantity sold and the unit-price, which are all in the same
relation.

Primitive6.2. DD-ADDING N-1

In this case two relations are used. A calculated attribute is added to one of the relations. This
atribute is derived from some attributes from the same relation and others from the other relation.

Thisisthe case of the example mentioned for the group of primitives (product prices).

The calculation function works over only one tuple of the relations. This tuple must be obtained

uniquely through ajoin of the two relations.
Primitive6.3. DD-ADDING N-N

This is the more complex case. Two relations and n tuples are used for the attribute calculation.
Consider the following example in a bank. There exists a relation with client data and another
relation with account data. If we want to add to the former the total amount of all the accounts for

each client, the amounts contained in the second relation must be summed for each client.

The calculation function works over a set of tuples of one of the relations. These tuples must be

obtained through ajoin of the two relations.

Primitive7. ATTRIBUTE ADDING

The real world subjects represented in dimensions usually evolve through time. For example, a

client may change his address, a product may change its description or package size.

Sometimes it is required to maintain the history of these changes in the DW. In some cases, only a
fixed number of values of certain attribute should be stored. For example, it could be useful to
maintain the current value of an attribute and the last one before it, or the current value of an

attribute and the original one.

In these cases, empty attributes are reserved in a dimension relation, for future changes. Suppose, for
instance, that when a client changes his address we want to store the new and the old addresses.
With this primitive an attribute is added to the relation, initially with a null value, to befilled in case

the client moves out.

Primitive8. HIERARCHY ROLL UP

In operational databases the information in the relations are stored at the highest level of detail that
is possible. For example, the measure relations use to have all the movements. Usually, in these

relations there is an attribute that has a hierarchy associated.

Often, when these relations are used in a DW, they are summarised by an attribute following some
hierarchy (doing a “roll-up”), for example, if dataisin adaily level and monthly totals are required.

In this case we are doing aroll-up in a hierarchy of time.

23

24

This primitive does the roll up by one of the attributes of a relation following a hierarchy. Besides, it

can generate another hierarchy relation with the corresponding level of detail.

Primitive9. AGGREGATE GENERATION

In operational systems data is managed as crossings of many dimensions. In genera, many DW
relations are constructed from these crossings, and data is grouped by some of the dimensions. Other

dimensions are removed as a consequence of this information grouping.

For example, for a salary system, may be of great importance which employee has made certain
sale. However, for analysing the sales at a global level in the DW, it is required resumed data and

not that information in particular.

This primitive removes a set of attributes from a measure relation, summarising the measures. This

operation has the effect of decreasing the number of tuples of the relation.

Primitive10. DATA ARRAY CREATION

In arelation where measures are maintained on a month-by-month basis, it can be useful, instead of
having an attribute for the month and another one for the measure, to have 12 attributes for the
measures of the 12 months respectively. With this structure comparative reports can be done more
easily and with better performance, since annual totals are calculated at a tuple level. Besides, the

number of tuples decreases.

This multiple attributes schema (data array) is useful not only for months, in fact it can be used for
any attribute whose associated set of values is finite and known (so that an attribute can be assigned

to each value).

Given a relation that contains an attribute that represents a pre-determined set of values, this

primitive generates arelation with a data array structure.

Primitive1l. PARTITION BY STABILITY

In some cases it is recommended to partition a relation, distributing its data into different relations.
This can be useful, for example, for maintaining the most recent data more accessible than the rest

of the data. It also allows organising data according to its propensity for change.

These primitives partition a relation, in order to organise its data storage. The first (Vertical
Partition) or the second primitive (Horizontal Partition) of this family, can be applied, depending on

the design criterion used.

Primitive11.1. VERTICAL PARTITION

This primitive applies a vertical partition to a dimension relation, giving several relations as result. It

distributes the attributes, so that they are grouped according to their propensity for change.

Primitive11.2. HORIZONTAL PARTITION

Two relations, one for more current data and the other for historical information, are generated from

an original one. Each resulting relation contains the same attributes as the source one.

Primitive12. HIERARCHY GENERATION
Thisisafamily of primitives that generate hierarchy relations, having as input relations that include
ahierarchy or a part of one.

In addition, they transform the original relations, so that they do not include the hierarchy any more.
Instead of this, they reference the new hierarchy relation or relations, through aforeign key.

The three primitives that compose this family implement three different design aternatives for the

generated hierarchy.

Primitive12.1. DE-NORMALISED

This primitive generates only one relation for the hierarchy.

Primitive12.2. SNOWFLAKE

This primitive generates several relations for the hierarchy, representing it in a normalised form.
Primitive12.3. FREE DECOMPOSITION

This primitive generates several relations for the hierarchy. The form (distribution of attributes) of

these relations is decided by the designer.

Primitive13. MINIDIMENSION BREAK OFF

Often, in adimension thereis a set of attributes that have alimited number of possible values.

Theideaisto code the various combinations of values of these attributes (only the combinations that
really occur) and store them in a separate relation, so that they can be referenced from other

relations. Storage space is saved using this structure.

This primitive generates two dimension relations. One is the result of eliminating a set of attributes
from a dimension relation. The other is a relation that contains only this set of attributes. Besides, it

defines a foreign key between the two relations.

25

Primitive14. NEW DIMENSION CROSSING

In many cases, we need to materialise a dimension crossing in a new relation. This can be done
through a join of some relations. For example, there is a measure relation where the product
dimension is crossed with other dimensions, and another relation where supplier is determined by
product. The supplier dimension can be added to the measure relation and the product can be
removed, obtaining a crossing between supplier and the other dimensions existing in the measure
relation.

4.2. Specifications of primitives

The following specifications present four sections. The Description specifies a natural language
description about the primitive behaviour. The Input specifies the source schema and other arguments
that are necessary for the application of the primitive. The Resulting schema is the specification of the
schema that is generated by the primitive. The Generated instance is a sketch of the transformation that

has to be applied to the instance of the source schemain order to populate the generated schema.

Primitive 1. IDENTITY

Description:
Given arelation, it generates another that is exactly the same as the source one.

Input:

= source schema: R O Rel
= source instance: r

Resulting schema:
"R ORd / R =R

Generated instance;

"= select*
fromR

26

Primitive 2. DATA FILTER

Description:

Given a source relation, it generates another one where only some attributes are

preserved. Itsgoal isto eliminate purely operational attributes.

I nput:

= source schema: R (A, ..., A,) O Rel
X O{ Ay ... Ay} OX OAttp(R)
= source instance : r

Resulting schema:

sR (A4 s) ORe T{ AL o, A} ={ Ay, ...

,An} -X

Generated instance;

= sgectA'y, ., A
fromR

Primitive 3. TEMPORALIZATION

Description:

It adds an element of time to the set of attributes of arelation.

Input:

s sourceschema: R (Ag, ..., Ay) /[OX O{ Ayg ..., Ap} OX OA(R)
» T timeattribute / DOM(T) ={ t,, t } Set of time measures 0

DOM(T)={c/cO{ 1y,, ty } set of time measures}.

= Key, Boolean argument. It tellsif T will be part of R’s key or not.

= source instance: r

Resulting schema:

"R (Ay ..., A T) /T OAty Oif key then XT O Atte(R)

Generated instance;

1’ = salect Al, ceeny An: V(t)
fromR

where V(1) is a user-function. It gives, for example, the snapshot time or snapshot

date.

27

28

Primitive 4. GROUP: KEY GENERALIZATION

Description:

These primitives generalise the primary key of a dimension relation, so that more
than one tuple of each subject represented in the relation can be stored.

Primitive4.1. VERSION DIGITS

Description:

To generalise the key, version digits are added to each value of the attribute.

Input:

= source schema: R (A, ..., Ay) ORelp /A; OAt(R)
= source instance: r

Resulting schema:

"R ORep /Att(R') = subst (A4, B, Att(R)) ,
where name(B) = conc (‘GR’, name(A,))

Generated instance:

=1’ = select concat(num_gen, Ay,, A,
fromR

where num_gen is a user-function that must generate series of numbers.

Primitive4.2. KEY EXTENSION

Description:
The key is extended; new attributes of the relation are included in it.

Input:

=sourceschema: R(Ag, ..., Ay) ORelp / OX O{ Ay, ..., Ay} OX OAt(R)
YO ({Ag ..., An} —X), atributesto be added to the key
= source instance : r

Resulting schema:
"R (Ay ..., Ay) ORelp / XY OAttk(R)

Generated instance:

i

Ir:r

Primitive5. FOREIGN KEY UPDATE

Description:

Through this primitive, a foreign key and its reference can be changed in a
relation.

I nput:

= source schema: R (Ay, ..., Ay) ORel / X O Atte(R)

= X, set of attributes to be eliminated

0 Y, set of attributes which will substitute X

"{ Ry, ..., Rn} setof relations with respect to which Y will be aforeign key

SORd / Att(S =X 0OV, auxiliary relation that contains the correspondence
between the old key and the new key

= Sourceinstance:r, s

Resulting schema:

*RORe / A(R)=Y U ({ Ay s A} =X) OY = Atte(R,R) O ...
ay = AttFK(R,,Rm)

Generated instance;

nr = sglectY O ({Ayg oo, A} —X)
fromR S
whereR.X =S.X

Primitive 6. GROUP: DD-ADDING

Description:

The primitives of this group add to a relation an attribute that is derived from
others.

In this kind of problem, four different cases can be distinguished taking into account the number of

relations and the number of tuples that participate in the calculation.

tuples

r 1 n
Ie 1 P41 P8
s n P42 | P43

In this group of primitives three primitives are proposed, which solve the cases of:

1relation, 1 tuple
nrelations, 1 tuple

nrelations, n tuples

In these cases the derived attribute has the same grain as the other attributes of the relation.

29

The case of: 1 relation, n tuples, is in essence different from the other ones because in the resulting
relation the original grain is changed, eliminating some attributes and adding others. The goal in this
case is to group information by certain attributes, which is different form the goal in the other cases.
There are two separate primitives that treat this case: Primitive 8 — Hierarchy Roll Up and
Primitive 9 — Aggregate Generation.

Primitive 6.1. DD-ADDING 1-1
Description:
Given a relation, this primitive adds an attribute that is derived from others of the
same relation.
Input:
= source schema: R(Ay, ..., A,) O Rel
f (A e, Aim) T{ Aiy oy A} O{ Ay, ..., An} , Where f is a user-defined
function

= source instance : r

Resulting schema:

"R (Ag ey Ay Aner) ORel /Ay represents f (Aigy oo Aim)

Generated instance:

=" = select Aq, oy A, f (Aily . Aim)
fromR
Example:
DETAIL

ART.NUM. | QUANTITY | UNIT_PRICE
100 20 200

105 7 115

108 32 40

We want to have the total price calculated and materialised in the relation.

Primitive 6.1 is applied, where the input is:

* R=DETAIL

* f = QUANTITY x UNIT_PRICE
= r = tuples of DETAIL

Result:

DETAIL
ART.NUM | QUANTITY |UNIT_PRICE | TOTAL_PRICE
100 20 200 4000
105 7 115 805
108 32 40 1280

Primitive 6.2. DD-ADDING N-1

Description:

This primitive adds to a relation an attribute that is derived from some attributes
from the same relation and others from the other relation. In this case the
calculation function works over only one tuple of the relations. This tuple must be
uniquely obtained through a join operation. Besides, the derived attribute can be
defined as a foreign key to another relation.

Note: This primitive works with only two relations. If participation of more than
two relationsis required, additional steps must be applied.

Input:

= source schema: Ry (Ay, ..., Ap), R (B4, ..., Byy) O Rel

f(Cp . G/ { Cpy e, &} O{ Ay, ..., A} O{ By, ..., B}, wheref isauser-
defined function

“A/AO{ A4 ... A} OADO{By,..,Bn}, joinattribute

= is fk, Boolean argument (declare A,.; as aforeign key or not)

* R; O Rel, relation to which A, isaforeign key (optional)

" sourceinstance: ry, I,

Resulting schema:
"R (A ooy An Anir) ORel [Apig representsf (Cy, ..., C¢) O
if iS_fk then Api1= AttFK(R’ 1 R3)

Generated instance;

= select Aq ..., Ap, f (Cl, . Ck)
fromR; Ry
where Ri.A = R,.A

Example:
PRODUCTS
PROD_COD |PROD_NAM |PRICE | SUPP_COD
C1 Clavos 5 P1
Cc2 Tornillos 3 P1
C3 Sillas 200 P14
SUPPLIERS

SUPP_COD | SUPP_NAM ADDRESS PHONE

P1 T&F B. Artigas 444 | 121212
P14 Muebles Garcia | G. Flores 2255 | 545454

We want to have the supplier name in the PRODUCTS relation.
Primitive 6.2 is applied, where the input is:

* R; = PRODUCTS, R;=SUPPLIERS

» f = SUPPLIERS.SUPP_NAM
* A= SUPP_COD

vis fk =FALSE
1, = tuples of PRODUCTS, r, =tuples of SUPPLIERS
Result:
PRODUCTS
PROD_COD |PROD_NAM |PRICE | SUPP_COD | SUPP_NAM
Cl Clavos 5 P1 T&F
Cc2 Tornillos 3 P1 T&F
C3 Sillas 200 P14 Muebles Garcia

Note: For totally de-normalising, apply successively this primitive in the same fashion, adding the
rest of the attributes of the relation SUPPLIERS.

¢

Primitive 6.3. DD-ADDING N-N

Description:

This primitive adds to a relation an attribute that is derived from an attribute of
another relation. In this case the calculation function works over a set of tuples of
the other relation. This set is obtained through a join operation between the two
relations.

Note: This primitive works with only two relations. If participation of more than
two relationsis required, additional steps must be applied.

Input:

= source schema: Ry (Ay, ..., Ap), R (B4, ..., Byy) O Rel

“eB) / BO{ By ..., Bn} , where gB) is an aggregate expression over the
attribute B

= X/ X OAtty(R,) , attributes by which we want to group

“A/AO{ Ay ... A} OADO{By,..,Bn}, joinattribute

" sourceinstance: ry, I,

Resulting schema:

"R (A o An Anr) ORe [Anig represents e(B) in R,

Generated instance;

= select Aq ..o, Ap, e(B)
fromR; Ry
where Ri.A = R,.A
group by Ay,, Ay, X

Example:

CUSTOMERS
SSN NAME ADDRESS PHONE | CS

2760527 | Juan Perez B. Artigas444 | 121212 | S
5321532 | MariaLopez | G. Flores2255 | 545454 |C

ACCOUNTS
SSN ACCOUNT_NUM | AMOUNT
2760527 | 15382130 5000
2760527 | 30010011 200
2760527 | 10001000 30000
5321532 | 15482122 12000
5321532 | 10001001 700

We want to have the total amount of money that each customer has in the bank.
Primitive 6.3 is applied, where the input is:

* R; = CUSTOMERS, R, = ACCOUNTS

= &(B) = SUM(AMOUNT)

= X={SSN}

= A =SSN

» r; = tuples of CUSTOMERS, r, = tuples of ACCOUNTS

Result:
CUSTOMERS
SSN NAME ADDRESS PHONE |[CS | AMOUNT

2760527 | Juan Perez B. Artigas444 | 121212 |S | 35200
5321532 | MariaLopez |G. Flores2255 | 545454 |C | 12700

33

34

Primitive 7. ATTRIBUTE ADDING

Description:

Given adimension relation, this primitive adds one or more attributesto it.

Input:

= source schema: R (Ay, ..., Ay) ORelp
*{ By,, Bn}, attribute set
= sourceinstance: r

Resulting schema:
"R (A ..., Ay, By, ..., Bn) ORelp

Generated instance;

s = sglect Aq, ..., A ‘NULL, ..., ‘NULL’
fromR

Primitive 8. HIERARCHY ROLL UP

Description:

Given a measure relation R; and a hierarchy relation R,, this primitive does a roll
up to R; by one of its attributes following the hierarchy in R, (by a foreign key
that must exist from R; to R,). Besides, it can generate another hierarchy relation
with the corresponding grain.

Input:

= source schema:
- Ri(Ay ..., A))ORey /OAO{ Ay ..., An} O {A} = Attk(Ry, R)
- Ry(By...By)ORe; /AO{By,...,B} O{A} OAt(R)

= Z set of attributes/ card(Z) = k (measures)

*B/BO{By..,B,} OBOAtty(R) (chosen hierarchy level)

={e,.., &}, aggregate expressions

s X/XO{ Ay ... Ay} OXDO(Atp(Ry) O Atty(Ry)) (they have alower grain)

Y /Y O{By..,B,} OYDOAtty(R) (theyhavealower grain)

= agg_h , Boolean argument (generate a new hierarchy or not)

= source instance: rq, ro

Resulting schema:

SR, (A o A) ORely /{A L s A} =SUSt[A, B, { Ap, oo A} =X]
0 Atteg (R 1) = Atteg(Ry) - Atteg (R, Ro)
= |f agg_hthen
R,(B'y s B'm) ORely /{ By, .. B'm} ={ By, o, Ba} =Y [0
{B} OAM(R,) O
Atte(R1, R2)={ B}

= Note: Note that the original hierarchy relation is not part of the resulting schema
in any case of application of this primitive.

Generated instance:

= SeleCt({ A'q,,A,m}' Z) O { (ST e,(}
fromR; Ry
where Ri.A = R,.A
groupby { A4, ..., A} =2

=1, = select diginct B'y,, B' 1y
from R,

35

36

Example:

SALES
CUSTOMER | SALESMAN DATE PROD CITY QUANTITY
Juan Pedro 1/1/98 25 Montevideo |2
Juan Pedro 5/1/98 25 Montevideo |3
Juan Pedro 8/1/98 Colonia 7
Juan Maria 7/2/98 Montevideo |1
Juan Laura 1/2/98 Maldonado | 5
Luis Pedro 3/1/98 100 Montevideo |2
Luis Laura 5/1/98 100 Montevideo |6
Luis Laura 8/4/98 100 Canelones 3
TIME

DATE |WEEK | MONTH | TRIMESTER | YEAR

1/1/98 | 1/98 1/98 1/98 1998

3/1/98 | 1/98 1/98 1/98 1998

5/1/98 2/98 1/98 1/98 1998

8/1/98 2/98 1/98 1/98 1998

1/2/98 | 6/98 2/98 1/98 1998

7/2/98 | 6/98 2/98 1/98 1998

8/4/98 14/98 | 4/98 2/98 1998

We want to have the sales’ information grouped by month instead of by date. We scale two levelsin

the hierarchy of time.

Primitive 8 is applied, where theinput is:

" R; = SALES, A =DATE, foreign key
* R, =TIME, A =DATE, relation key

» Z={ QUANTITY }, card(Z) = k = 1, measure attribute

= B=MONTH
s{e,..e}={ sumQUANTITY)}
=X =0
=Y ={ DATE, WEEK }
= agg_h=true
= r; = tuples of SALES, r, = tuples of TIME
Result:

MONTH_SALES
CUSTOMER | SALESMAN MONTH | PROD | CITY QUANTITY
Juan Pedro 1/98 25 Montevideo |5
Juan Pedro 1/98 Colonia 7
Juan Maria 2/98 Montevideo |1
Juan Laura 2/98 Maldonado 5
Luis Pedro 1/98 100 Montevideo |2
Luis Laura 1/98 100 Montevideo |6
Luis Laura 4/98 100 Canelones 3

TIME_MONTH
MONTH | TRIMESTER | YEAR

1/98 1/98 1998
2/98 1/98 1998
4/98 2/98 1998

Primitive9. AGGREGATE GENERATION

Description:

Given a measure relation, this primitive generates another measure relation, where
datais resumed (or grouped) by a given set of attributes.

Input:

= sourceschema: R (Ag, ..., A,) ORely

» 7, set of attributes/ card(Z) = k (measures)

»{ e, .., &}, aggregate expressons

sY/YO{ Ay, ..., A} OY O (Attp(R) O Atty(R)) , attributes to be removed
" sourceinstance: r

Resulting schema:
"R (A, .., An)ORely / { A'q, o, A} ={ AL L AY-YDOZ

Generated instance:

srp=seect ({ Ay, o, A'n}-Z2)0{ ey, ..., &}
fromR
groupby { A4, ... A'n} =2

Example:
We have arelation with the quantities sold by customer, salesman, month, product and city.

MONTH_SALES

CUSTOMER |SALESMAN |MONTH |PROD |CITY QUANTITY
Juan Pedro 1/98 25 Montevideo |5
Juan Pedro 1/98 7 Colonia 7
Juan Maria 2/98 4 Montevideo |1
Juan Laura 2/98 4 Maldonado |5
Luis Pedro 1/98 100 Montevideo |2
Luis Laura 1/98 100 Montevideo | 6
Luis Laura 4/98 100 Canelones 3

Now we want to store the quantities that were sold by each customer on each month and of each
product. Therefore we will group by CUSTOMER, MONTH, PRODUCT.

37

38

We apply primitive P9, where the input is:

* R=MONTH_SALES

» Z={ QUANTITY }, card(Z) = k = 1, the measure we want to appear
s{e,..e&}={suUm(QUANTITY)}

=Y ={ SALESMAN, CITY }

= r = tuplesof MONTH_SALES

Result:
CUST_MON_PROD SALES

CUSTOMER |MONTH | PROD | QUANTITY
Juan 1/98 25 5
Juan 1/98 7 7
Juan 2/98 4 6
Luis 1/98 100 8
Luis 4/98 100 3

Primitive 10. DATA ARRAY CREATION

Description:

The source schema considered by this primitive is a relation that includes an
attribute representing a set of predetermined values (e.g., month). The primitive
generates a relation that includes an attribute for each predetermined value.

Input:

s sourceschema: R(Ag, ..., A)ORd / OBO{ Ay, ..., Ay} O
B represents a set of predefined values
" A OAt(R)
"{Vy, .., Vi} setof atributes corresponding to each value of B
= source instance:: r

Resulting schema:
"R (A'f, ..., A)ORe /
{A AR ={AL LA -{AB}YO{Vy..,V}

Generated instance:
L a—
host variables: X, A, B
X = Att(R) - {A, B}
next (R, cursor)
while not end(cursor) do
quant_v = corresp_att (:B)
if empty (select *
fromR’
where X =:X) then
insert into R' (X, quant_v) values (:X, :A)
else
update R' set quant_v =:A where X =:X
next (R, cursor)
end.

where corresp_att is a user-defined function that given a value of attribute B, gives
the name of the corresponding attributein R.

Example:

39

40

SALES

SALESMAN CITY QUANTITY_ | YEAR
SOLD
Ana Montevideo 20 1997
Ana Canelones 3 1997
Ana Rivera 7 1997
Pedro Montevideo 44 1997
Pedro Canelones 62 1997
Pedro Rivera 9 1997
Pedro Salto 40 1997
Ana Montevideo 50 1998
Ana Canelones 32 1998
Ana Rivera 10 1998
Ana Salto 15 1998
Pedro Montevideo 112 1998
Pedro Canelones 20 1998
Pedro Rivera 9 1998
Pedro Salto 20 1998

Primitive 10 is applied, where the input is:

" R=SALES, A=QUANTITY_SOLD, B=CITY
" {Vy, ..., Vik} ={ MON_QUAN, CAN_QUAN, RIV_QUAN, SAL_QUAN }
= r = tuples of SALES

Resullt:
SALES BY_CITY
SALESMAN |YEAR | MON_QUAN |CAN_QUAN |RIV_QUAN |SAL_QUAN
Ana 1997 20 3 7 0
Ana 1998 50 32 10 15
Pedro 1997 44 62 9 40
Pedro 1998 112 20 9 20
¢
Primitive 11. GROUP: PARTITIONBY STABILITY
Description:
These primitives partition a relation, in order to organise its history data storage.
The first (Vertical Partition) or the second primitive (Horizontal Partition) of this
family, can be applied, depending on the design criterion used.
Sour ce schema:
"R(Ay ..., Ay) ORep / X O Att(R)

Primitive11.1. VERTICAL PARTITION

Description:

This primitive applies a vertical partition to a dimension relation, giving several
relations as result. It should distribute the attributes, so that they are grouped
according to their propensity for change.

Input:

= source schema : the source schema defined for the group

Y O{ Ay ..., Ay}, attributes which values never change

ZO{ Ag, Ay}, atributes which val ues sometimes change

sWO{ Ay ..., Ay}, attributes which values change very frequently
WnYnzZ=0O

= sourceinstance: r

Resulting schema:

nif Y #0 then Ry (XY) ORep /X O Atte(Ry)
if Z# 0 then R,(XZ)ORelp /X O Att(Ry)
»if W# O then Ry (XW) O Relp /X O Att(Rs)

Generated instance:
"r= I_IXY r
"= rlxzr
"= rlxzr

Primitive11.2. HORIZONTAL PARTITION

Description:

Two relations, one for more current data, and the other for historical information,
are generated from an original one. Each new relation contains the same attributes
as the source one. One relation is defined as historical with respect to the other.

Input:

= source schema : the source schema defined for the group
= sourceinstance: r

Resulting schema:

- RCur =R /X0O AttK(RCur)
* Ryis = R / X O Attx(Ruis) U Ruis 0 Rely(Rewr)

Note: The primitive assigns to Ry;s the same key as to Rc,,. However, this should
be changed when one of the primitives suitable for the problem of versioning (P3
or P4) are applied to Rys.

Generated instance:

" lew =T
" Ihis= 0

41

42

Primitive 12. GROUP: HIERARCHY GENERATION

Description:

These primitives generate hierarchy relations, having as source relations that
include a hierarchy or a part of one. In addition, they transform the original
relations, so that they do not include the hierarchy any more. Instead of this, they
reference the new hierarchy relation or relations, through aforeign key.

The three primitives that compose this family implement three different design
aternatives for the generated hierarchy. The aternatives are: de-normalized,
totally normalized (snowflake), or partitioned in a form that is given by the
designer.

Sour ce schema:

"Ry, ... Ry / OAJADA(R), i=1..n OA isthelowest level of ahierarchy

Primitive12.1. DE-NORMALIZED HIERARCHY GENERATION

Description:

This primitive generates only one relation for the hierarchy.

Input:

= Source schema : the source schema defined for the group

{J,...,dn}, set of atributes that constitutes a hierarchy /
AO{J,....Idn} OAisthelowest level

K/ KO{ ..., In} key for the hierarchy

= Source instance: rq,, Iy

Resulting schema:

*R (I oy Jn) ORely / { K} OAt(R)
sR;JARR) ={ K} O (AWR) -{ iy ooy Jn}) O{K} = Atte(R, R), iz 1.0

Generated instance;

= = foreachi: 1l.ndo
s = select Att(Ri) n {Jy, ..., I}
fromR;
s=Integrate (s, ..., S)
Insert sinto R’

For eachi:1.m/0Oj:1..n, J O Att(R) do
Fill vauesof JinR’

*r'ij= foreachtupletof r;do
if K =A then
t.Att(R) = tAtt(R)
else
t' {Att(R;) - K} =t{Att(R;) - K}
t'.K =sdect K
fromR’
whereR'.A =t.A
addt tor’;
Example:
EMPLOYEES
SSN EMP_NAM |POSITION |ADDRESS |REGION |CITY
2190882 | R. Mendez C1 Bvar. Artiga | P. Rodo | Montevideo
2233553 | S. Nunez C1 J. Herreray | Centro Montevideo
7657657 | L. Lopez C1 18 de Julio | Centro Montevideo
3476434 | M. Kiuyd Cc2 21 de Setie | Pocitos Montevideo
4567326 | S. Sanchez Cc2 Gral. Flores | Centro Montevideo
4678893 | W. Yan C3 GonzaloRa | P.Rodo | Montevideo
4888640 | B. Pitt Cc3 Bvar. Espail | Pocitos Montevideo

43

BRANCHES

BRAN_CODE |BRAN_NAME | ADDRESS |REGION |CITY COUNTRY
C1 A Bvar. Artiga | P. Rodo | Montevideo | Uruguay
Cc2 B J. Herreray | Centro Montevideo | Uruguay
Cc3 C 19 de Junio | Centro Bs. As. Argentina
c4 D CalleA 334 |Pdermo | Bs. As. Argentina

We want to have the geographic hierarchy in only one table, which can be referenced from
dimensions. This hierarchy will be extracted from the relations EMPLOY EES and BRANCHES.
We apply primitive P12.1, where the input is:

» R; = EMPLOYEES, R,=BRANCHES, A = REGION
»{J ..., Jdn} ={ GEO_COD, REGION, CITY, COUNTRY }
» K =GEO_COD

* r; = tuples of EMPLOY EES, r, = tuples of BRANCHES

Result:
GEOGRAPHICS
GEO_COD REGION |CITY COUNTRY
Go01 P. Rodo Montevideo | Uruguay
G02 Centro Montevideo | Uruguay
G03 Pocitos Montevideo | Uruguay
G04 Centro Bs. As. Argentina
G05 Palermo Bs. As. Argentina
EMPLOYEES
NSS EMP_NAM POSITION |ADDRESS GEO_COD
2190882 R. Mendez C1 Bvar. Artiga GO01
2233553 S. Nunez Cl J. Herreray G02
7657657 L. Lopez C1 18 de Julio G02
3476434 M. Kiuyd Cc2 21 de Setie GO03
4567326 S. Sanchez Cc2 Gral. Flores G02
4678893 W. Yan C3 Gonzalo Ra G01
4888640 B. Pitt C3 Bvar. Espafi G03
BRANCHES
BRAN_CODE | BRAN_NAME |ADDRESS |GEO_COD
C1 A Bvar. Artiga | GO1
c2 B J. Hereray | GO2
C3 C 19 deJdunio | GO4
c4 D CdleA 334 | GO5

Primitive 12.2. SNOWFLAKE HIERARCHY GENERATION

Description:

This primitive generates several relations for the hierarchy, representing it in a
normalised form.

I nput:

= source schema : the source schema defined for the group
= J, ..., Jn, SOrted list of attributesthat constitutes a hierarchy /
AO{J, X} OAisthelowest level

=K / K=J, key for the hierarchy
= source instance: rq, ..., Iy

Resulting schema:
*R; (3, Jna) ORel; O3 0At(Rs) O Jua = Attec(Ryi, Ryiv), 1 1.mr1
"R, JARR) ={ K} O (ALR) - { I oo dn}) O{K} = Atte(Rs, Ryp), i 1.1

Generated instance:

" Iy ey Fm =

for eachi:1..ndo

s = sdect Att(Ri) n {3, ..., Jn}

from R

s=Integrate (s, ..., S)
Insert in snowflake mode, sinto Ry, Ry,, Ryn1
foreachi:1.m/0j:1..n, J O Att(R) do

Fill values of J; in Ry, Ry, vy Rim1

=r’; = foreachtupletofr; do
if K=A then
' Att(R) = tAtt(R)
else
t {Att(R;) - K} = t.{Att(R)) — K}
t'.K =select K
from Ry
where Ry. A =t.A
addt tor’;

45

46

Primitive12.3. FREE DECOMPOSITION - HIERARCHY GENERATION

Description:

This primitive generates several relations for the hierarchy. The form (distribution
of attributes) of these relations is decided by the designer.

Input:

= source schema : the source schema defined for the group
= J, ..., Jn, Set of attributes that constitutes a hierarchy /
AO{J,...,dn} O Aisthelowest level

K /KO{ 3,, In}, key for the hierarchy

*{ Ry, ..., Rn}, setof relations where the attributes of the hierarchy
aredistributed / K O Att(Ry) O A O Att(Ryy))

= source instance: rq, ..., Iy

Resulting schema:
"Ry ORel; O {K} OAtt«(Ry)

P
fR,JAR) ={ K} O (AR) -{ I, ooy Jn}) O {K} = Atte (R, Ry), iz 1.0

Generated instance:

" Iy ey Fm =

for eachi :1..ndo

s = sdect Att(Ri) n {3, ..., I}

from R,

s=Integrate (s, ..., Sh)
Insert as corresponds, sinto Ry, Ry, ..., Ry
foreachi:l.m/0Oj:1..n, J O Att(R) do

Fill valuesof J in Ry, Ry,, Ry

sr’;= foreachtupletof r; do
if K =A then
tAtt(R;) = tAt(R;)
else
t' {Att(R;) - K} =t{Att(R;) - K}
t'.K =sdect K
from Ry
where Ry.A = t.A
addt tor’;

Primitive 13. MINIDIMENSION BREAK OFF

Description:

This primitive generates two dimension relations. Oneis the result of eliminating a
set of attributes from a dimension relation. The other is a relation that contains
only this set of attributes. Besides, it defines a foreign key between the two
relations.

Input:

= spurce schema: R (Ay, ..., Ay) ORelp

= K, key for the new dimension

s X O{ Ay ... Ay}, setof attributes of the minidimension
= source instance:: r

Resulting schema:

"Ry (A'g, s A ORelp / { A s A} ={ Ay s As =X O { K}
"R,/ At(Ry) ={ K} O X

Generated instance;

Note: For continuously valued attributes such as age or income level,
the instance must be pre-processed so that the distinct values of the
attributes are grouped into bands.

" r, = select key-gen, X
fromR

irp= sdect R.K, RA',, ..., RA",
fromR, Ry
where R.X = R,. X

where key-gen is a user-function that must provide the keys for the tuples of R.

Example:
CUSTOMERS
NAME AGE |INCOME_LEVEL |ADDRESS SEX |CITY CSs
R.Mendez |20 10000 Bvar. Artigas3 | F Mont. S
S. Nunez 30 15000 J. Herreray Ob | M Mont. C
M. Garcia |20 10000 Garzon 2125 F Sdto S
L. Lopez 50 5000 18 de Julio 643 | M Colonia |C

Primitive 13 is applied, where the input is:

» R=CUSTOMERS

» K =DEM_COD

» X ={AGE, INCOME_LEVEL, SEX, CE}
= r = tuples of CUSTOMERS

Result:

47

48

DEMOGRAPHICS

DEM_COD |AGE |INCOME_LEVEL |SEX |CE
100 20 10000 F S
200 30 15000 M C
300 50 5000 M C
CUSTOMERS

NAME ADDRESS CITY DEM_COD
R.Mendez | Bvar. Artiga Mont. 100

S. Nufiez J. Herreray Mont. 200

M. Garcia | Garzon 2125 Salto 100

L. Lopez 18 de Julio Colonia | 300

Primitive 14. NEW DIMENSION CROSSING

Description:

The source schema is composed of two relations of any type (dimension
or crossing), which have an attribute in common. Only one of the
relations can contain measure attributes. This primitive generates a
crossing relation whose attributes are the union of attribute subsets of
the source relations.

Note: If one of the source relations is a measure relation, its relationship with the
other source relation must be N:1.

Input:

= sourceschema: R, R, / (R, R, O (Relp O Rel¢) O
(RiORely OR, O (Relp ORelc))) O
AttK(R]_) = Xl 0 AttK(Rz) = X2 O
Rl N R2 =Z

=Yy, Y, setsof attributesto be excluded from the resulting relation

= N:N, Boolean argument (the relationship between the relationsis N:N or not)
" sourceinstance: ry, I,

Resulting schema:

» RORele / Att(R) = {Att(R) — Y1} O {Att(R) =Y} O
if N:N then
if Ry, R, O ReID then
AttK(R) = (Xl O XZ) O
AttFK(R, Rl) = Xl O AttFK(R, Rz) = XZ
elseif R:, R, O Relc then
At(R) = DA/ (AD (X, 0 X,) DADOR)
Atte(R) = { W/ W O (Attex(Ry) O Attr(Ry) OW O R}
dseif R0 Relc OR, 0 Relp then
At(R) = (DA/ (AOX,0ATR)) OX,
Atte(R) = X5 0 { W/ W O Atte(R) OW O R}
else //N:1

AttK(R) = Xl 0
if Ry, R, 0 Relp then
AttFK(R, R]_) = X]_ O AttFK(R, Rz) = X2
edseif Ry, R, 0 Rel¢ then
Attex(R) = { W/ W O (Atte(Ry) O Atte(Ro)) W O R}
dseif R,0Relc OR, 0 Relp then
Attex(R) = X5 0 { W/ W O Atte(Ry) OW O R}

Generated instance;

sr= sdect distinct {Att(Ry) — Y} 0 {Att(R,) - Y3}
from R; Ry
where Ri1. A1 =R,.A;

49

Example:

ACTIVITIES
STUDENT COURSE INSTRUCTORS
COURSE INSTRUCTOR
S1 Cl
S1 C2 Cl [
S1 C3 c2 [
S2 Cl c2 12
S2 C2 C3 12
S3 C1
S3 C2
S3 C3

Primitive 14 is applied, where theinput is:

= R; = ACTIVITIES, R, =INSTRUCTORS

=Y, ={COURSE}, Y,={COURSE}

= N:N = TRUE

» r; = tuples of ACTIVITIES, r, = tuples of INSTRUCTORS

Result:
STUDENT-INSTRUCTOR
STUDENT INSTRUCTOR
S1 11
S1 12
S2 11
S2 12
S3 11
S3 12
¢

5. Consistency Rules

These are some rules that should be applied always, when a DW schema is constructed through
application of the primitives. The goa of these rules is to assure that the obtained DW schema is
consistent. We consider a DW schema consistent when it satisfies the DW schema invariants (defined in
Section 3).

The rules consider the different cases of inconsistencies that can be generated by application of primitives

and state the actions that must be performed to correct them.

R1, R2 and R3 correspond to the case of invariants 11, 14 and 13 violation, respectively.
R1 - Foreign key updates

R1.1-
ON APPLICATION OF: Temporalization (adding the time attribute to the key) or Key

Generalization to R, where X = old key and Y = new key

APPLY: Foreign Key Update to all R; / Attei(R;,R) = X, obtaining Attr(R,R) =Y

50

R1.2 -

ON APPLICATION OF: Vertical Partition to R with key X, obtaining Ry, R,, Rs, with key

X for each case
APPLY: Foreign Key Update to all R; / Attr(R,R) = X, obtaining Atte(R,Ry) = X,
Altteg (R, Re) = X, Attrg(R,Rs) = X

R2 —Measurerelations correction

ON APPLICATION OF: Data Filter or Aggregate Generation to R [0 Rely, removing A O Attp(R),
obtaining relation R’

WHEN: OSORelp / Atte(R, 9 =0 OOB/B OAW(R) OB O At(S)

APPLY: Data Filter to R’ removing attribute B

R3 - History relations update

R3.1-
ON APPLICATION OF: Data Filter to R; O Rely(R), removing A O Attek(Ry,R), obtaining
Rz
APPLY: Foreign Key Update to R,, obtaining Rs, where A [0 Att(Rs) O A O Atte(Rs, R)
R3.2°-

ON APPLICATION OF: DD-Adding, Attribute Adding, Hierarchy Generation, Aggregate
Generation or Data Array Creation to R, adding A / A O
Att(R)

WHEN: OR' /R O Relu(R)

APPLY': Attribute Adding to R’, obtaining A O Att(R')

6. Design Strategies

Strategies for application of primitives are designed taking into account some typical problems of Data

Warehousing and should be useful to solve them.

The strategies proposed address design problems relative to: dimension versioning, versioning of N:1
relationships between dimensions, data summarisation and data crossing, hierarchies management, and
derived data. We select these problems basing on the literature [Kim96-1][Kim96-3][Sil97] and on our

own experience.

® Thisruleis optional. The user choosesif the ruleis active or not.

51

1. DIMENSION VERSIONING

Real-world subjects represented in dimensions, usually evolve through time. For example, a customer
may change his address, a product may change its description or package size. Sometimesiit is required
to maintain the history of these changes in the DW. In some of these cases it is necessary to store all
versions of the element so that the whole history is maintained. In other cases, only a fixed number of
values of certain attributes should be stored. For example, it could be useful to maintain the current value

of an attribute and the last one before it, or the current value and the original one.

A usual problem DW designers have to face is how to manage dimension versioning. This refers to how
dimension information must be structured when its history needs to be maintained. The ideaisto maintain

versions of each real-world subject information.

Several alternatives are provided. In all of them, a new dimension relation is generated, where historical

data about the subjects can be maintained.
The following are the possible strategies to apply:

S1) Apply Temporalization primitive (P3), such that the time attribute belongs to the key of the
relation.

S2) Generalise the key of the dimension relation through one of the primitives of Key Generalization

family (P4). The two options are:
2.1) Apply Version Digits primitive (P4.1), so that version digits are added to the key.

2.2) Apply Key Extension primitive (P4.2). In this case new attributes of the relation are included
in the key.

S3) Add new attributes, so that a small number of versions of certain data can be maintained. Do this,

applying the primitive Attribute Adding (P7).

) Generalise the key of the relation following alternatives 2.1 or 2.2, and add an attribute of time that
does not belong to the key (P4.1, P3 or P4.2, P3).

S5) Partition the relation according to its stability through one of the primitives of Partition by
Stability family (P11). Here the alternatives are:

5.1) Vertically partition the relation, according to attribute values stability, through Vertical
Partition primitive (P11.1).

5.2) Horizontally partition the relation, generating a relation for current data and another one for
historical data, through Horizontal Partition primitive (P11.2). Immediately apply
alternatives S1, S2 or $4 to the history relation generated.

52

Example:

CUSTOMERS

SSN NAME AGE |INCOME ADDRESS SEX CITY Cs
276052 R. Mendez 20 10000 Bvar. Artigas3 | F Montevideo S
342587 S. Nunez 30 15000 J. HerrerayOb | M Montevideo C
431222 M. Garcia 20 10000 Garzon 2125 F Sdto S
213438 L. Lopez 50 5000 18dedulio643 | M Colonia C

2 different

options

CUSTOMERS 1 CUSTOMERS 2

GR_SSN NAME | . SSN DATE NAME | .
01276052 R.Mendez | ...cccoene. 276052 1/1/93 R.Mendez |
01342587 S.Nunez | . 342587 23/4/97 | S.Nunez | ..o
01431222 M. Garcia | .o 431222 5/2/98 M. Garcia | .o
01213438 L.Lopez | . 213438 3/3/99 L.Lopez | .ceeenne
¢

2. VERSIONING OF N:1 RELATIONSHIPSBETWEEN DIMENSIONS

Frequently, it is necessary to maintain the history about the relationships between the elements of two

dimensions. In particular, we will treat the case where originally we have a dimension relation that has a

N:1 relationship with another dimension relation, and is referenced from a measure relation. They are

connected through foreign keys. In order to be able to maintain the history of the dimensions

relationship, some transformations in the schema has to be applied.

First of al, the designer has to make some decisions:

a) Whichisthe history he really wants to maintain and how he wantsto do it

1-

Maintain the history only in the dimension.
In this case the complete history of the relationship with the other dimension will be

maintained, and it will be accessible from the dimension.

Maintain the history through the data recorded in the measure relation that references the
dimension.

Here, it may happen that some states of the relationship between the dimensions are not
recorded. Besides, the way to obtain information about the history of the relationships of

adimension’s subject, is not direct.

53

b) Whichisthe desired design style
1- Normalised
2- De-normalised

Here we propose four different strategies that can be followed to obtain the desired design. There is a
suitable strategy for each of the possible decisions made by the designer. In the following table we show

the strategy that must be applied for each combination of type of history and type of design chosen.

d

e history

al a2
i b-1 S1 S2
g b-2 S3 S4

Possible strategies:

R, R
R1 A L

—| | 8-

Given a measure relation R; and two dimension relations R, and Rs;, where there is a N:1 relationship
between R; and R, and a N:1 relationship between R, and Rs;, which slowly changes’, the possible
applicable strategies are the following:

S1) Do aversioning of relation R,. Due to the consistency rule Ry, it also will be necessary to update
relation R; so that it referencesto R,.

The obtained schema will allow storing severa tuples corresponding to the same element of

relation R,, so that each one can reference to a different element of Ra.
R’ R’3
R, A modif B

:/%

A modif~

"“gowly change” is an expression used by R. Kimball [Kim96-1] referring to data that evolve slowly.

54

S2)

S3)

Steps:
1) Apply to R; aternatives S1), S2) or $4) of the Versioning strategies presented earlier.

2) Apply R1 consistency rule.

Modify the measure relation R, so that, in addition to referencing relation R, it references relation
Rs.

With the obtained schema, each movement of the measure relation will reference to an element of
R, and to an element of R;, and each element of R, will reference to only one of R;. The idea is

that the elements of R, reference only to the current corresponding element of Rs.
R’
’ A ,
R'1 A R

— | | &= B
—

Steps:

1) Apply to R; Primitive DD-Adding n-1 (P6.2), adding to R; the attribute that is key of Rs.

Derive this attribute from R, and declare it as foreign key to Rs.

Do aversioning of relation R,. Due to the consistency rule Ry, it also will be necessary to update
relation R; so that it references to R,. Afterwards, include the attributes of R; in R, (de-

normalising).

The obtained schema will allow storing several tuples corresponding to the same element of
relation R,, but containing different data obtained from relation Rs.

R'»
R, A modif
— / —B)
— S A
A modit -

55

Steps:
1) Apply to R, the dternatives S1), S2) or $4) of the Versioning strategies presented earlier.
2) Apply R1 consistency rule.

3) Apply to R, Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

Rs. Derive these attributes from Rs.

$4) Include the attributes of relation Rs inrelation R; and in relation R, (de-normalising).

With the obtained schema, each movement of the measure relation will reference to an element of
R, and will contain the corresponding data of Rs, and each element of R, will contain the data of
only one of Rs. The idea is that the elements of R, contain only the data of the current

corresponding element of Rs.

R’

R'1 _A
- / B \>
- _ R
A A N °
B N
= e
—

Steps:

1) Apply to R, Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

Rs. Derive these attributes from Rs.

2) Apply to R1 Primitive DD-Adding n-1 (P6.2), successively, adding the desired attributes of

Rs. Derive these attributes from Ry.

3. AGGREGATESAND DATA CROSSINGS

As a consequence of the type of requirements that in general exist over a DW, there is alarge number of
different data crossings and different level of summarisations that should be materialised in the DW.
Therefore, measure and crossing relations are the most common type of relations that are constructed
during aDW design.

The new crossing relations are constructed from existing relations that use to be dimension, hierarchy and

crossing relations.

56

The following are some general cases that may appear in this context, and the existing alternatives for

constructing the new relations through application of the primitives.

s1)

S2)

S3)

$4)

There is a measure relation where one of the attributes is part of a hierarchy that exists in another
relation. It is required to increase the level of this attribute in the measure relation, following the

hierarchy.
Two options exist for the generated sub-schema:

1.2) A new measure relation equal to the original one, except for one of its attributes, which
corresponds to a higher level in the hierarchy. The data will be at the same or higher

summarisation level.

1.3) The same measure relation as in 1.2) and in addition, a new hierarchy relation where the

lower level isthe same as the level chosen for the attribute of the measure relation.

For obtaining any of these two results, apply Primitive Hierarchy Roll Up (P8), specifying in the

input if anew hierarchy relation is wanted or not.

Given a measure relation, the designer wants to group information by some of the attributes of the
relation.

In this case a new measure relation is constructed. In this relation data will be grouped by some of
the attributes of the original relation. The attributes included in the new relation are only the ones
that correspond to the new grain. For obtaining this result apply Primitive Aggregate Generation
(P9).

It is required to obtain new data combinations structured in crossing relations, starting from

different types of relations.

The relations to be combined may be of dimension or crossing type, and only one of them can bea
measure relation. These relations must have some attributes in common so that they can be joined.
The new crossing relation will have attributes of the two original relations, filtering the attributes
of no interest for the new crossing. For obtaining this result apply Primitive New Dimension
Crossing (P14).

Combinations of the cases above.

Compose Primitives Hierarchy Roll Up, Aggregate Generation and New Dimension Crossing
(P8, P9 and P14).

57

Examples:

a) We want to construct a crossing relation combining data from a measure and a crossing relation.

Then we want to group by some attributes of the new relation.

PROD-MONTH PROD-SUP
PRODUCT |MONTH |QUANTITY PRODUCT SUPPLIER
P1 5 100 P1 PR1
P1 6 120 P2 PR1
P2 5 50 P3 PR3
P3 5 300 P4 PR4

Crossing
PROD-SUP-M ONTH
PRODUCT SUPPLIER | MONTH | QUANTITY
P1 PR1 5 100
P1 PR1 6 120
P2 PR1 5 50
P3 PR3 5 30
Group by Supplier and Month
SUP-MONTH
SUPPLIER | MONTH |QUANTITY
PR1 5 150
PR1 6 120
PR3 5 30
24

58

b) We want to construct a measure relation that combines data from two crossing relations. In this case

anew measure attribute is generated.

ACTIVITIES
STUDENT COURSE
INSTRUCTOR
El C1l COURSE INSTRUCTOR
El Cc2
El C3 Cl D1
E2 C1l Cc2 D1
E2 Cc2 C3 D2
E3 C1l
E3 Cc2
E3 C3
Crossing
STUDENT | COURSE INSTRUCTOR
El Cl D1
El Cc2 D1
El C3 D2
E2 Cl D1
E2 Cc2 D1
E3 Cl D1
E3 Cc2 D1
E3 C3 D2
Group by Instructor
INSTRUCTOR |STUD_QUANT
D1 5
D2 2
¢

59

4. |IDENTIFICATION AND SEPARATION OF HIERARCHIES

Frequently, in operational databases we can find embedded in relations sets of attributes where exists a
hierarchy relation between the attributes. Besides, in cases where the database is obtained from several

different sources, it may happen that the same hierarchy is repeated in different representations.
In general, with respect to arelation that “includes’ a hierarchy we can find two different situations:
1) All the attributes of the hierarchy belong to the relation.

2) Thereation has an attribute of the hierarchy that references to the rest of the hierarchy, which can be
distributed in several relations.

A reasonable possibility in a DW schemais that a set of attributes that semantically constitute a hierarchy
exists in the schema only once and is reused by all the relations that need to reference to it. This also
allows that relations that contain a subset of the considered hierarchy, can reference the whole hierarchy

and therefore can make new groupings of its data.

In order to perform areorganisation and cleaning of all relative to the hierarchiesin a schema, we propose

to follow these steps:
1) Select al the relations of the schemathat include a hierarchy or part of one.
2) With the selected relations, form groups of relations that correspond to the same hierarchy.

3) For each group do:
a) For eachrelation that references a hierarchy that isin other relations (situation 2)) do:
Apply Primitive New Dimension Crossing (P14) to all involved relations, obtaining only
one relation.

b) Determine the attributes of the hierarchy to be constructed and its key.

c) Apply Primitive Hierarchy Generation (P12) to all relations of the group. In this step there

are three possible design alternatives with respect to the hierarchy to be constructed:
i) De-normalised. All the attributes of the hierarchy belongs to the same relation. (P12.1)

ii) Normalised. The attributes of the hierarchy are distributed in several relations, each one
containing two attributes. (P12.2)

iii) Distributed in several relations according to some designer’s criteria. (P12.3)

Example:

Suppose we have aready done steps 1) and 2), and one of the groups of relations we obtained is
composed by relations Branches, Customers, Suppliers and Supp-Location.

60

BRANCHES

BRAN_CODE |BRAN_NAME |ADDRESS | MANAGER |CITY COUNTRY
C1 A Bvar. Artiga | Juan Perez Montevideo | Uruguay
Cc2 B J. Herreray | Pepe Diaz Montevideo | Uruguay

Cc3 C 19deJunio | MariaSuarez | Bs. As. Argentina
Cc4 D Calle A 334 | Jose Sanchez | Bs. As. Argentina

CUSTOMERS

CUST_CODE |CUST_NAME |ADDRESS |CITY REGION COUNTRY
C1 Empresa ABC | 18 de Julio 1 | Montevideo Montevideo | Uruguay

Cc2 Ramirez Hnos. | Rambla Arm | Montevideo Montevideo | Uruguay

Cc3 Daniel Kual 19deJunio |Bs. As. Bs. As. Argentina
c4 Nuvoses Caledelos |LaPlata Bs. As. Argentina

SUPPLIERS (CITY foreign key to SUPP-LOCATION)

SUPP_CODE |SUPP_NAME |ADDRESS |CITY

S1 AAAA Bvar. Artiga | Montevideo

S2 BBBB J. Herreray | Montevideo

S3 CCcC 19de Junio |Bs. As.

A DDDD CaleA 334 | LaPlata
SUPP-LOCATION

CITY REGION COUNTRY

Montevideo | Montevideo | Uruguay

Bs. As. Bs. As. Argentina

LaPlata Bs. As. Argentina

Now we will perform step 3). First we apply a) to relations Suppliers and Supp-Location and we obtain a
new relation Suppliers.

SUPPLIERS
SUPP_CODE |SUPP_NAME |ADDRESS |CITY REGION COUNTRY
S1 AAAA Bvar. Artiga | Montevideo Montevideo Uruguay
S2 BBBB J. Herreray | Montevideo Montevideo Uruguay
S3 CCcC 19de Junio |Bs. As. Bs. As. Argentina
A DDDD CaleA 334 |LaPlata Bs. As. Argentina

61

According to b) we have to determine the hierarchy we want to construct.
Hierarchy’s attributes: city, region, country Key: geo_cod

Following step c), we apply Primitive 12.1 generating new Branch, Customers and Suppliers relations
and a de-normalised hierarchy Geography.

BRANCHES
BRAN_CODE |BRAN_NAME | ADDRESS | MANAGER |GEO_COD
C1 A Bvar. Artiga | Juan Perez G01
Cc2 B J. Herreray | Pepe Diaz G01
C3 C 19de Junio | MariaSuarez | G02
c4 D CaleA 334 | Jose Sanchez | GO2
CUSTOMERS
CUST_CODE |CUST_NAME |ADDRESS |GEO_COD
C1 EmpresaABC |18 deJduliol | GO1
Cc2 Ramirez Hnos. | RamblaArm | GO1
C3 Daniel Kual 19 de Junio | G02
c4 Nuvoses Cdledelos | GO3
SUPPLIERS
SUPP_CODE |SUPP_NAME |ADDRESS |GEO_COD
S1 AAAA Bvar. Artiga | GO1
S2 BBBB J. Herreray | GO1
S3 CCccC 19 de Junio | GO2
A DDDD CdleA 334 | GO3
GEOGRAPHY
GEO_COD |CITY REGION COUNTRY
GO01 Montevideo | Montevideo | Uruguay
G02 Bs. As. Bs. As. Argentina
GO03 LaPlata Bs. As. Argentina

62

5. DERIVED DATA

In general, inaDW is useful to have attributes whose value is derived from others, which can be stored in

other relations, in order to simplify and accelerate queries.

When it is necessary to add to arelation R; an attribute that is calculated from other relations Ry, ..., R,

one of the following situations may happen:

S1) Each value of the attribute is calculated from values of attributes that belong to only one tuple
obtained fromthe R,, ..., R, join.

R2 R3
Ry _A _B
B
A é -
DD

The stepsto follow in order to generate the derived attribute in R; are the following:

a) If n>2then
Apply Primitive New Dimension Crossing (P14) to relations R, ..., R,, obtaining R’.

b) If n=2then
Apply Primitive DD-Adding n-1 (P6.2) to R; and R,.
Elseif n>2 then

Apply Primitive DD-Adding n-1 (P6.2) to R; and R’.

Example:
CUSTOMERS
SSN NAME ADDRESS PHON |PLAN |QUOTE |CURR_
E QUOTE
2760527 Juan Perez B. Artigas444 | 121212 | 100 2 490w
5321532 MariaLopez |G. Flores2255 | 545454 | 101 1 315
PLANS DISCOUNTS
PLAN QUOTE QUOTE_ PLAN DISC%
VALUE
100 1 500 100 1
100 2 495 101 10
100 3 490 102 7
101 1 350 103 3
¢

63

S2) Each value of the attribute is calculated from the composition of the aggregations of values of the
attributes belonging to the relations Ry, ..., R;.

Ro Rs
Ri _A B
_BT e
A J—
—
DD

The stepsto follow in order to generate the derived attribute in R; are the following:

a) If n=2then
Apply Primitive DD-Adding n-n (P6.3) to relations R; and R,.
Elseif n>2 then
Compose applications of Primitive DD-Adding n-n, starting from the two relations with
highest grain and then applying the primitive successively to the last result and the
following highest grain relation.

Example:
INVESTMENTS
YEAR CITY AMOUNT
1999 Montevideo | 126000
1999 Canelones | 57000
CUSTOMERS
SS NAME CITY PACK | AMOUNT PACKAGES
COD PACK | INV |AMOUNT
276057 | Juan Perez | Montevideo |P1 [57000 _COD |COoD
3435¢6 |Jorge Martin | Montevideo | P1 57000 P1 11 5000
4568899 | Luisa Kun Montevideo | P2 12000 P1 12 12000
5321532 | MariaLopez | Canedlones |P1 57000 Pl 13 40000
P2 12 12000

64

7. Transformation trace

In this section we present how we manage and specify the trace of the transformation that was applied to

a source database schema in order to obtain a DW schema.

In our proposal DW design is a subsequent application of primitives in a composition mode. The result of

this application is a schema where each relation is obtained by application of primitives.

In most cases a final sub-schema is not obtained through application of one primitive to a sub-schema of
the source schema, but it is obtained through composition of several primitives. We call this process a

sequence of primitive applications.

The subseguent primitive application generates a trace of the transformation made. Therefore, for each
element of the final schema there is a trace that can be seen as the path that was followed for obtaining
this element starting from a source element. This trace provides the information about the sequences of

primitives that were applied to the source element.

In the following section we give away to represent and specify the trace of a schema design.

7.1. Trace specification
We specify the trace of a schema design using a set of expressions with the form of function applications.

By means of this specification we can use the trace starting from elements of the final schemain order to
know their origin. We obtain a mapping that is necessary for the construction of the processes for loading

data from the source database to the constructed DW.

At the same time this specification allows us to use the trace starting from elements of the source schema.
This perspective is necessary for propagating changes that these elements have suffered to the DW

schema.

Definition: Transformation Trace T
Given a set of relations, a set of attributes, a set of functions and a set of primitives, the

Transformation Trace is represented by the following grammar:

T == <exp_set>

<exp_set>::= <rel_set> ‘=" <prim_app> | <rel_set> ‘=" <prim_app>";’ <exp_set>

<rel_set>::= ‘{’ <relations> '}’ | <relation>

<relations> ::= <relation> | <relation>*,’ <relations>

<relation>::= Rel_Name

<prim_app> ::= <primitive> ‘(" <rel_set>"*," <arg list>")" |
<primitive> ‘(" <prim_app>*,’ <arg_list>")’

<primitive> :;:= Primitive_Name

<arg_list> ::= <argument> | <argument> ‘.’ <arg_list>

<argument> ::= <rel_set> | <att_set> | <function_set> | Boolean |

<att_set>::="‘{’ <attributes> '}’ | <attribute>

65

<attributes> ::= <attribute> | <attribute> ‘" <attributes>
<attribute> ::= Att Name

<function_set>::=‘{’ <functions>‘}" | <function>
<functions> ::= <function> | <function> ‘" <functions>

<function> ::= Fun_Name
Note that this grammar does not control the validity of the arguments (quantity and types) passed to each
primitive. We complement it with the following restriction expressed in natural language:

The <prim_app> expression must respect the format of the input of the primitive, which is stated in

the specification of the primitive.

In a concrete application these expressions are complemented with the specifications of the relations.
¢

Example: The representation of part of a schemadesign trace.

{TIME_MONTH, MONTH_SALES} = P8 ({SALES, TIME}, { quantity}, month,
{sum(quantity)}, O, { date, week}, true)
CMP_SALES= P9 (MONTH_SALES, {quantity_m}, { sum(quantity_m)}, { salesman, city})
{CUSTOMERS_1, DEMOGRAPHICS} = P13 (CUSTOMERS, dem code, { age, income level,
sex, ce})
CUSTOMERS_DW = P3 (CUSTOMERS 1, date, true)

Relation schemas:

SALES (customer, salesman, date, prod, city, quantity)

TIME (date, week, month, trimester, year)

CUSTOMERS (name, age, income_level, address, sex, city, cs)
MONTH_SALES (customer, salesman, month, prod, city, quantity_m)
CUSTOMERS 1 (hame, address, city, dem_code)

CMP_SALES (customer, month, prod, quantity _cmp)
TIME_MONTH (month, trimester, year)

CUSTOMERS DW (name, date, address, city, dem_code)
DEMOGRAPHICS (dem_cod, age, income_level, ce)

¢

In addition we use a graphic representation, a directed acyclic graph G(T), which main goal isto show a
global perspective of the process. This representation facilitates the comprehension and localisation of the

trace of a certain element.

We complement this graph with textual representation of: (i) the structure of the relations, and (ii) the
input arguments of each primitive application. We do not include these specifications in the graph for
readability reasons.

66

Definition: Graph G(T).
G(T) isadirected acyclic graph composed by the following:
Nodes: Three types of nodes.
1) O - Represents the application of a primitive.
2) I:I - Represents arelation.
3) > - Representsalist of external arguments for a primitive.
Edges:

- Each edgejoins: (a) arelation with aprimitive, (b) two primitives, (c) a primitive with arelation, or (d) alist
of arguments with a primitive. The representations in each case are the following: in (a) the relation is part of
the input of the primitive, in (b) part of the output of one primitive is the input of the other one, in (c) the
relation is part of the output of the primitive, and in (d) the arguments are part of the input of the primitive.

- The edges are labelled when necessary. (Edges need to be labelled only when they are joining two
primitives). The label of an edge isthe name of arelation

¢

Example: Figure 3.3 shows the graph corresponding to the trace specified in the previous example.

>
CMP_SALES
TIME_MONTH

CUSTOMERS_DW

DEMOGRAPHICS

SALES (customer, salesman, date, prod, city, quantity)

TIME (date, week, month, trimester, year) paraml=
CUSTOMERS (name, age, income_level, address, sex, city, cs) {quantity}, month, { sum(quantity)}, U, { date, week}, true
MONTH_SALES (customer, salesman, month, prod, city, quantity) param2 = { quantity}, { sum(quantity)}, { salesman, city}

CUSTOMERS _1 (name, address, city, dem_code)
param3 = dem_code, { age, income_level, sex, ce}
CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year) param4 = date, true
CUSTOMERS_DW (name, date, address, city, dem_code)
DEMOGRAPHICS (dem_cod, age, income_level, ce)

Figure3.3

67

8. Conclusion

In this chapter we presented transformation primitives and guidelines for designing a DW schema starting
from a source schema and taking into account DW requirements. The underlying data model is the

Relational model, classifying the elements according to DW concepts.

Our proposal is based on the transformation of the source schema into a schema whose structures are
more suitable for DW requirements. The proposed approach is based on a set of transformation
primitives, which are applied to the source sub-schemas and generate new sub-schemas. The primitives
are high-level operations that allow using different design techniques and should be applied with clear
criteria. We also provided the designer some help in this direction. We defined a set of DW schema
Invariants that are consistency properties, a set of Consistency Rules that ensure the satisfaction of the
Invariants after primitives application, and some Design Strategies that act as guidelines for solving
frequent DW design problems through application of primitives. In addition, we defined and specified the
Transformation Trace, which is atool that allows obtaining all the transformations that were applied to a

schema el ement.

68

CHAPTER 4. Source schema evolution

In the previous chapter we presented a mechanism for designing a DW starting from a source database,
through application of transformations. Once the design process has finished and the DW is completely
generated, this DW remains linked to the source database through the trace that has been generated during
the design. The link between DW and source database can be exploited at least for: (i) generating data
loading processes (from source database to DW) and (ii) propagating to the DW changes occurred to the

source database schema.

In this chapter we address the problem of propagation to the DW of source schema evolution.

1. Introduction

Source database schema may change, i.e. evolve. This invalidates the links between the source structures
and the DW ones. Besides, the evolved database may have new data available that could be exploited by

the DW. Thereforeit is necessary to propagate source schema evolution to the DW.

Thetrivial solution for this problem would be re-designing all the DW. Thisimplies starting from scratch,
studying the problem and making design decisions again. However, the existence of the trace, which

contains the design decisions, gives us the possibility of applying evolution to the DW.

In fact, the whole structure, composed by: trace, loading processes, DW schema and DW instance, has to
evolve. However, we will see that evolution can involve changes over only one or some of these

components.

In the cases where DW schema is changed, DW schema invariants have to be verified. In case these
invariants are not satisfied, corrections to the schema have to be done (Consistency Corrections). After
these corrections, the DW schema will be again in a consistent state. In addition, it will exist forward and
backward conversion functions (f.c.f. and b.c.f.) (described in Chapter 2, Section 5) that are needed to

transform data between old and new DW schema structures.

In Figure 4.1 we show aglobal architecture of the evolution scenario in our context.

69

f.cf. ‘ 'nSI ency
" \\\‘ qureCtions
b.ct.

Figure4.1

A

Data loading processes are generated from the trace, thus when we apply changes to the trace the

associated data loading processes have to be re-generated.

The problem of propagating to the DW source schema evolution includes two main sub-problems: (1)
determining the changes that must be done to the DW and to the trace, and (2) applying the
corresponding changes to the DW and to the trace.

In Section 2 we present the Evolution Taxonomy of the source database, in Section 3 we present a
solution for problem (1), in Section 4 we present a solution for problem (2), and in Section 5 we present

the conclusion of this chapter. In Figure 4.2 we show the structure of the chapter.

Chapter 4: Source Schema Evolution

Introduction Source Determining the Applying Evolution
Evolution changes to the DW tothe DW
TWV\\ /\
Obtaining DW-Source Evolution Consistency Moded for DW Instance Conversion
DB dependencies Propagation corrections evolution Functions

Figure4.2

70

2. Source Evolution Taxonomy

In this section we define the taxonomy of changes that can happen to the source schema.

As we mentioned in Chapter 1, this work can be seen as a module of the project [CSI99] that is being
developed in our research group. Figure 4.3 shows the global architecture of the project. As can be seen,
this work focuses on a part of the total process considered in the project. This part takes as input an
integrated database. One of the other modules of the project [DoC00] solves the problem of propagation
of source databases evolution to the integrated database.

. EEEEEEm Webpages EEEEEEESN

Figure4.3

When there is evolution in one of the source databases, this is propagated to the integrated database, and
then it must be propagated to the DW that was constructed from it. In the whole process considered in the
project, the module that solves the problem of evolution of the integrated database would pass to our
system the changes suffered by the integrated database and our system should propagate them to the DW.
Therefore, our work should consider as the evolution taxonomy the set of schema changes that is

managed by the mentioned module.

The taxonomy we use in this work covers the changes managed by the mentioned module of the project,
presented in [DoC00]. However, it also includes some changes that are not considered in that module:
rename attribute, rename relation, and change the key of a relation. These changes are added because
they allow distinguishing more cases of change and provide more semantic to the evolution operations
set. On the other hand, this taxonomy presents basically the same operations that are presented in
taxonomies of the consulted bibliography [Zic91][Fer96][Ska86][Ban87].

71

The selected taxonomy for representing the possible changes to the source schemais the following:
1) Rename attribute
2) Add attribute
3) Remove attribute (the attribute cannot be a primary key)
4) Changethe key of arelation
5) Renamerelation
6) Add relation

7) Remove relation

3. Determining the changesto the DW

In this section we concentrate on the problem of determining the changes that must be applied to the DW

and to the trace in order to propagate source schema evolution.

In this problem we have as input the trace and the change that has been applied to the source schema, and
we have to give as solution the changes that must be applied to the DW and to the trace. The trace gives
us the dependencies that exist between the source schema el ements and the DW schema ones. We have to

process the trace in order to deduce these dependencies.
The steps we follow for solving this problem are:

(@) definition of a mechanism for abtaining the dependencies between DW elements and source
database elements

(b) analysis of the possible combinations of schema element dependencies and changes of the
taxonomy

(c) definition of a set of Propagation Rules for each combination considered

(d) definition of a set of Correction Rules to be applied to the evolved schema for assuring its

consistency

3.1. Obtaining DW-Source DB dependencies

The DW-Source DB dependencies we are most interested in are the ones between basic elements of the
schemas, i.e. between attributes. Therefore, the first step we will perform in order to give a mechanism to
deduce these dependenciesis to express the primitives in terms of basic operations (operations that apply

over basic elements of schemas).

72

Once we have de-composed the primitives into basic operations, we can process the trace by refining it,
and obtaining the corresponding detailed trace. This is the trace in function of basic operations. After
that, we can deduce the dependency expressions of a source schema element. A dependency expression
gives the information of how an element of the DW schema depends on the selected element of the source
schema. For example, an attribute of the DW schema could be a calculation from an attribute of the
source schema.

In following sub-sections we present the set of basic operations, the primitives expressed in function of
them, and the processing of the trace that is applied for obtaining the dependency expressions of the

elements.

3.1.1. Basic operations

The transformation primitives can be de-composed into smaller operations that apply over basic elements
of the sub-schemas. We define a set of Basic Operations that apply over basic elements of the data model
we use, and that cover al the changes the primitives may do over these elements. Therefore, the

primitives defined can be expressed in terms of these basic operations.
We classify the operations according to what object they are modifying.

During the schema transformation process, a set of relational elements (relations with all their properties)
is maintained. This set is the intermediate result corresponding to each step of the process. We call the
current intermediate result, the context.

The set of Basic Operationsis shown in Figure 4.4.

Applied to Operations ‘ Description

'TheContext ~ |Rel_add |Addarelation.
Rel_de Remove arelation.
A Relation Att add Add a set of attributes.
Att_rem Remove a set of attributes.
Att_cpy Copy aset of attributes from a relation.
Att cac Add a derived attribute.
A set of keys Key add Add akey.
Key del Remove akey.
A set of foreign keys | Fkey add Add aforeign key.
Fkey del Remove aforeign key.

Figure4.4

When we substitute a primitive by the sequence of basic operations, we lose the abstraction of the
primitive. This abstraction is essential at the moment of design, but it is not important when considering

the trace of the design made.
In Appendix 2 we provide the list of the basic operations with their descriptions.
Notation: Basic_operation_Name is the set of the names of the Basic Operations.

73

3.1.2. The Primitives expressed in terms of basic operations

We expressed the transformation primitives in terms of the basic operations that were previously defined.

The set of primitives specified through these operationsiis presented in Appendix 3.

3.1.3. Processing the transformation trace

The design trace of the DW schema provides a mapping between original and final schema elements. It
allows us to identify certain elements of the source schema and know the transformation they suffered

during the DW schema design.

Using the trace we can identify certain element in the source schema and know all the operations that
were applied to it during the schema transformation process, obtaining the transformation trace of the
element. Then, starting from this trace we can obtain the dependency expressions of the element (defined
later in this section), where elements of the DW schema are expressed in function of the source schema

element.

In this section we concentrate in defining a mechanism to process the design trace, with the ultimate goal

of obtaining the dependency expressions of the source elements.

Given an element of the source schema that has changed, we have to follow three steps with respect to the

design trace:

1) Extract from the design trace the transformation trace of the element in terms of primitives.
The transformation trace of the element in terms of primitives contains the set of the sequences of
primitives that were applied to the element. We consider that a sequence of primitives was applied to

an element if this element was part of the input of the first primitive of the sequence.

It does not matter if the considered element is a relation or a part of one, the extracted trace will

always be the trace of arelation, since the input schema of the primitivesis always a set of relations.

2) Obtain the detailed trace of the element.
Express the trace obtained in (1), in terms of basic operations. Extract an expression that shows only

the sequence of basic operations that were applied to the considered element.

3) Obtain the dependency expressions of the element.

From the detailed trace of the element we deduce its dependency expressions.

Following subsections present the used notation and mechanisms to obtain: the detailed trace and the

dependency expressions of an element.

74

Detailed trace of an e ement

In order to obtain the detailed trace of an element from its trace, we have to do an “explosion” of the

primitives that appear in the trace, de-composing them into the basic operations they perform.

With respect to the graphical representation of this trace, the idea is to explode each circular node
(circular nodes represent primitives) into a set of nodes that represent the basic operations performed by
the primitive. At the same time the rectangular nodes (corresponding to relations) must be exploded into
sets of nodes that represent the sets of attributes of the relations. The obtained diagram is the graphic

representation of the detailed trace of the element.

We can apply the same idea to the textual representation of the trace. The textual representation of the
trace in terms of primitives consists of functional expressions. When we explode the primitives into the
corresponding basic operations, we do not preserve this “functional format” of the expressions. We

express the detailed trace of each relation as a sequence of basic operations applications.

Definition: Detailed Trace of arelation Tp(R)
Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the

Detailed Trace of arelation is represented by the following grammar:

To(R) ::= <opapp_seq>
<opapp_seg> 1= <op_app> | <op_app>

<opapp_seq>
<op_app> ::= <operation>“(" <arg_list>")"
<operation> ::= Basic_operation_Name
<arg_list> ::= <argument> | <argument> ‘.’ <arg_list>
<argument> ::= <relation> | <att_set> | <att_set set> | <function>
<relation> ::= Rel_Name
<aft_set_set>::=‘{’ <att_sets>'}’
<aft_sets> ::= <aft_set> | <att_set>*, <att_sets>
<att_set>::=‘{’ <attributes> ‘}’
<attributes> ::= <attribute> | <attribute> *," <attributes>
<attribute> ::= Att Name

<function> ::= Fun_Name

Note that this grammar does not control the validity of the arguments (quantity and types) passed to each

basic operation. We complement it with the following restriction expressed in natural language:

The <op_app> expression must respect the format of the input of the basic operation, which is stated

in the specification of the basic operation.

75

The textual representation of the detailed trace of a relation is the representation that best allows us to
deduce the detailed trace of an attribute of the relation. Exploring this trace we can extract exactly the

sequence of basic operations that were applied to the attribute.

For the representation of the detailed trace of an attribute we define a graph G(Ty).

Definition: Detailed Trace of an attribute. Graph G(T 4).

Given a set of relations, a set of attributes, a set of functions and a set of basic operations, the
Detailed Trace of an attribute is represented by the graph G(Ty), with the following characteristics:

The nodes represent attributes or the null value. The edges represent the application of a basic
operation that transforms one attribute into the other. The edges have labels that are the names of the
corresponding operation. It exists a path between two attributes when it is possible to reach one

from the other going through the edges.

G(T4) = < Nodes, Edges, Paths >
- 0 n O Nodes, Att(n) returns the attribute represented by the node.
- Let ny, ny/ ng, n, O Nodes, (e(ny, ny) O Edges = Att(n,) = bop(Att(ny)),
bop O Basic_Operations,
- Let ng, ny/ ng, n, 0 Nodes, Op(ny, ny) O Paths =
Oe(nyg, my), e(my, my), &(my,, my), ..., e(my, n,) O Edges

¢

The general format of the graph is as follows:

<opl> <op2> <op3>
<attributel> —P <attribute2> —P ..o —» <attributen>

Weillustrate the proposed mechanisms through an example.
Example:

Consider the example trace presented in Chapter 3, Section 7.1. Suppose we are interested in the trace of
the attribute quantity of the relation SALES. The detailed trace of the relation SALES is obtained from
its transformation trace, decomposing the primitives that are part of this trace into the basic operations

they perform.

The trace of SALES:

Graphical and textual representations are shown in Figure 4.5 and Figure 4.6.

76

> CMP_SALES

SALES (customer, salesman, date, prod, city, quantity)

TIME (date, week, month, trimester, year) paraml=
{quantity}, month, { sum(quantity)}, O, { date, week}, true

MONTH_SALES (customer, salesman, month, prod, city, quantity)
param2 = { quantity}, { sum(quantity)}, { salesman, city}

CMP_SALES (customer, month, prod, quantity)
TIME_MONTH (month, trimester, year)

Figure4.5

{TIME_MONTH, MONTH_SALES} = P8 ({SALES, TIME}, {quantity}, month,
{sum(quantity)}, O, { date, week}, true)
CMP_SALES= P9 (MONTH_SALES, {quantity_m}, { sum(quantity_m)}, { salesman, city})

Relation schemas:

SALES (customer, salesman, date, prod, city, quantity)

TIME (date, week, month, trimester, year)

MONTH_SALES (customer, salesman, month, prod, city, quantity _m)
CMP_SALES (customer, month, prod, quantity _cmp)
TIME_MONTH (month, trimester, year)

Figure4.6

The detailed trace of relation SALES:

Graphical and textual representations are shown in Figure 4.7 and Figure 4.8.

As can be seen, graphical representation for detailed traces does not seem to be so practical; it becomes
difficult to manage because of the large amount of elements it has to represent. This representation may

be more manageable if it isrestricted to a small portion of the whole trace.

77

SALES montH sates (= D MONTH_SALES MONTH_SALES Gm)
customer [H——» customer [] customer []
salesman 2 @ salesman [@ salesman [@ customer
dame[}/Dj date[] date — salesman 7
prod [}/7 prod [] prod DH/§ month
city D/ cty [city prod
quantity [}/ quantity [] quantity [] cty]
month] quantity D/

TIME
date []
week []
month [}—
trimester]
year []

MONTH_SALES MONTH_SALES Cam >

CMP_SALES CMP_SALES
= = CMP_SALES
customer customer [} =
customer []
salesman slesman e month [J J—b Customer customer
month month prod] month month
prod prod /v 0

. prod
:) uantity_m [}) prod
dty [cty] / quantity_t quantity_m [} quantity omp []
quantity quantity_m [} quantity_cmp []

quantity_m [J

Figure4.7

MONTH_SALEStrace = Att_cpy ({ customer, salesman, date, prod, city, quantity}, SALES,
MONTH_SALES)
Att_calc ({TIME.month}, =, { TIME.date, MONTH_SALES.date},
MONTH_SALES.month)
Att_rem ({date}, MONTH_SALES)
Att_calc {MONTH_SALES.quantity}, sum, {},
MONTH_SALES.quantity m)
Att_rem ({ quantity}, MONTH_SALES)
CMP_SALEStrace = Att_cpy ({ customer, month, prod, quantity m}, MONTH_SALES,
CMP_SALES)
Att_calc (CMP_SALES.quantity m, sum, {},
CMP_SALES.quantity_cmp)
Att_rem ({quantity_ m, CMP_SALES)

Figure4.8

78

From the textual representation of the detailed trace of SALES we can easily extract the detailed trace
of the attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity ——» MONTH_SALES.quantity < MONTH_SALES.quantity m —p
Att_rem
I
Att_cpy Att calc
—p» CMP_SALES.quantity_m g CMP_SALES.quantity cmp
Att_rem

"
Other examples are the traces of the attributes customer and date:

Att_cpy Att_cpy
SALES.customer ——» MONTH_SALES.customer ———p CMP_SALES.customer

Att_cpy Att calc
SALES.date — % MONTH_SALESdate - MONTH_SALES.month —»

Att_rem

1
Att_cpy
—p» CMP_SALES.month

Note: In this representation, when the operation is Att_calc we also specify the calculation function that is
used. We use the word “req” when the attribute is required for the calculation although it does not
participate directly in the function.

¢

Dependency expressions of an element

The last step we have to follow in the processing of the trace of an element is to obtain the dependency

expression of the element. Thisis an expression of the final element in function of the original one.

The dependencies information required for the management of source schema evolution vary according to
the type of element considered (attribute or relation). Therefore, the dependency expressions that are

constructed for each type of element will have different formats.

If the element is an attribute, the possible operations that can have been applied to it are: a copy, a
calculation, and a remove. The dependency expression of an attribute will be deduced from its trace,
considering the combination of copies and calculations. The removes do not participate in the generation

of the dependency expressions.

79

If the element is a relation, the information needed about its dependencies is related to the dependencies
of its attributes. Thus, a dependency expression of a relation with respect to a fina relation, should
specify the number of attributes that are copied to the final relation, and the number of attributes that
participate in derivations of attributes of the final relation.

First we will present the dependency expressions for attributes and then the dependency expressions for

relations.
Dependency expression of an attribute:

Smple dependency expressions:

Trace Dep. expression
Att_cpy _
Rl-Al —> R2-A2 R2-A2 - Rl-Al
Att calc _
RLA, > R,A, Rx.A; =1 (Ri.Ay)
F

In most cases the trace of an attribute will consist of a sequence of operation applications, causing the
generation of a complex dependency expression. In these cases the dependency expression for the

attribute must be constructed composing the operation applications.
Mechanism to construct a complex dependency expression:
<left_part> = <right_part>

1) <left part>: Left part of the expression: Last element of the trace. This element belongs to the

final schema.

2) <right_part>: Right part of the expression: Follow the trace starting from the final element.
Substitute each attribute of the trace by the corresponding expression according to the simple
dependency expressions presented below, until an expression in function of the first attribute of

the trace is obtained.

Note that in the case of calculation dependencies this expression shows how a final element depends on a
source element, but it does not mean that the final element depends exclusively on this source element; it

may depend also on other attributes.

80

Examples:
Trace of attribute SALES.quantity:

Att_cpy Att_calc
SALES.quantity —» MONTH_SALES.quantity < MONTH_SALES.quantity m —»

Att_rem

/i
Att_cpy Att calc
—p» CMP_SALES.quantity_m < CMP_SALES.quantity_cmp

Att_rem
1

Dependency expression of attribute SALES.quantity:

CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Trace of attribute SALES.customer:

Att_cpy Att_cpy
SALES.customer ——» MONTH_SALES.customer ——» CMP_SALES.customer

Dependency expressions of attribute SALES.customer:

CMP_SALES.customer = SALES.customer

Trace of attribute SALES.date:

Att_cpy Att_calc
SALES.date ——® MONTH_SALES.date - MONTH_SALES.month —»

Att_rem

I
Att_cpy
—p» CMP_SALES.month

Dependency expressions of attribute SALES.date:

CMP_SALES.month = req (SALES.date)

Note: Looking at the detailed trace of SALES we can see that the attribute CMP_SALES.month also
depends on other attributes: TIME.date and TIME.month.

81

Dependency expression of a relation:
Mechanism to construct a dependency expression between a source and a final relation:

1) Make alist containing all the dependency expressions of all the attributes of the source relation

with respect to the final relation.

2) Deduce from thislist the number of attributes that are copied to the final relation and the number
of attributes that are needed for the calculation of an attribute of the final relation.

3) Construct the dependency expression of the relation with the following format:
<final_rel> = dep_cpy (<source rel>, n) [dep_calc (<source _rel>, m)

where dep_cpy is an expression that indicates that n attributes are copied from <source _rel>, and
dep_calc is an expression that indicates that m attributes of <source rel> are used for the
derivation of attributes of <final_rel>.

Obtain areduced dependency expression with the following format:

<fina_rel> = dep (<source_rel>, n+m)

Example:
Dependency expressions of the attributes of SALES:

CMP_SALES.customer = SALES.customer
CMP_SALES.month = req (SALES.date)
CMP_SALES.prod = SALES.prod
CMP_SALES.quantity_cmp = sum (sum (SALES.quantity))

Dependency expression of the relation SALES with respect to the relation CMP_SALES:
CMP_SALES = dep cpy (SALES, 2) [0 dep calc (SALES, 2)

Reduced expression:

CMP_SALES= dep (SALES, 4)

¢

82

3.2. Evolution Propagation

Now that we have proposed a solution to the problem of determining the dependencies between final and
initial schema elements (DW and source schema elements), we can focus on the problem of how changes

on the source may be propagated to the DW schema.

In this Section our goal isto provide a set of Propagation Rules that state the modifications that should be

applied to the DW schema after source schema evolution.

3.2.1. Deducing the Propagation Rules

Our goal in this section is to provide a set of Propagation Rules that give the modifications that have to
be done to the trace and, when necessary, to the DW schema, when a change has occurred to the source
schema. These modifications are stated according to: (i) the changes occurred to the source schema, and

(ii) the dependencies between elements of the source schema and elements of the DW schema.

We will start by analysing the possible combinations change-dependency, determining in each case if the
DW should be affected by the change or not. Each time the DW is affected by a change the trace will also
be affected. However, sometimes the trace will be able to make the change to the source schema

transparent to the DW. In these cases we will say that the trace “absorbs’ the changes.

Afterwards, we will present the rules that will specify the actions to be performed for each combination

change-dependency.

Analysing the “ combinations change-dependency”

In the table in Figure 4.9 we show the possible combinations between changes of the source schema and
type of dependency of the involved source element with respect to the DW schema, pointing out whether
the trace and/or the DW should be modified or not. At this stage, only the changes at attribute level are

considered.
Dependency No dependency | Copied Usedin Calc. Req. for Calc.
m
Rename attribute T T T
Add attribute T
pw [?
Remove attribute T T T
DW DW ? DW
Change key of arelation T? T
DW DW ?
Figure4.9

83

Note: In Figure 4.9, T represents the trace, a “?’ symbol means that only in some cases the DW/trace
must be modified.

If an attribute is renamed in the source schema, the trace should absorb this change. The attributes of the
DW that depends on the renamed attribute of the source schema do not need to be changed in any case of
dependency. Only the mapping between these DW attributes and the renamed attribute should be
changed.

In the case of adding an attribute to the source schema, the repercussion to the DW schema cannot be
decided automatically. The designer should participate in the decision and in the process of repercussion
in case it exists. In order to allow this, the following questions should be made to the designer: (i) Do you
want to add one (or more than one) corresponding attribute to the DW schema? (ii) Where and how do
you want to add them? (iii) Do any of the new structures substitute any structure in the DW schema?
Which one/s?

In case the answer of question (i) is “No”, nothing has to be done to the DW nor to the trace, and
questions (ii) and (iii) are not necessary. But if the answer is “Yes’, then the designer has to answer
questions (ii) and (iii). The mechanism we offer him for answering question (ii), is to apply
transformations through application of primitives to the new attribute (and, if necessary, to other
structures of the source schema), directly generating the new structures of the DW. Finally, answering
question (iii), he has to specify if the new structures are substituting any structure of the DW and in this
case which of them. If some structure is being substituted it is automatically eliminated. Obvioudly, if the
answer of question (i) is“Yes” both the trace and the DW are modified.

When an attribute is removed from the source schema the three different cases of dependency have to be
considered for deciding the repercussion this change will have. (a) If the attribute has a copy in the DW,
this attribute of the DW has to be eliminated. This elimination can be implemented in different ways, for
example not physically removing the attribute and stating a fixed null value for all its instances. Besides
the trace has to be modified, removing the connections existing between the two eliminated attributes. (b)
If the attribute is used in the calculation function of a derived attribute of the DW, then we propose two
alternatives. One is to eliminate the derived attribute from the DW, and the other is to modify the
calculation function of the derived attribute so that the removed source attribute does not participate any
more in this function. In both cases the trace is modified and only in the first case the DW is modified. (c)
If the attribute is required for the calculation of an attribute of the DW, the derived attribute must be
eliminated. This is because an attribute is defined (in the trace) as required when it behaves as a “join
attribute”, i.e. it allows two relations to join in order to derive an attribute of one relation from attributes
of the other relation. If this“join attribute” islost, the calculation will no longer be able to be done. In this
case both the trace and the DW must be modified.

84

Now we will consider the case of changing the key of arelation, combining it with some of the possible
existing dependencies between source and DW attributes. (A) When the source attribute that is the “old”
key has a dependency of copy in the DW, there are two possibilities for the corresponding DW attribute:
(i) it is key in a DW relation, and (ii) it is foreign key in a DW relation. In case (i) the DW must be
modified changing the key so that it agrees with the “new” key defined in the source schema. If the
attribute defined as “new” key does not exist in the DW relation, then it must be added. Only in case of
adding an attribute the trace must be modified. In case (ii), the attribute corresponding to the “old” key
defined as foreign key in the DW relation, must be substituted by the attribute that corresponds to the
“new” key in the source. In the trace we have to delete the path corresponding to the substituted DW
attribute and add the path corresponding to the added DW attribute. Both DW and trace must be modified.
(B) When the source attribute that corresponds to the “old” key is used in the calculation function of a
DW derived attribute, no action has to be performed, since the change should not affect the DW or the
trace. (C) When the source attribute that corresponds to the “old” key is required for the calculation of a
DW derived attribute, user participation is needed for deciding the repercussion the change will have. As
said below, an attribute is defined (in the trace) as required when it behaves as a “join attribute” with
respect to other relation. Therefore, we give two aternatives to the user: (i) eliminate the derived attribute
in the DW, and (ii) substitute in the trace the required attribute by the “new” key attribute, paying
attention to also changing the corresponding join attribute of the other relation. In (i) both the trace and
the DW are modified, whilein (ii) only the trace is modified.

Dependencies between relations

When we consider the changes of the taxonomy that affect a whole relation instead of an attribute, we can
take into account the dependency that exists between a source relation and the DW relations. The
dependency expression between two relations tells “how much” the DW relation is derived from the
source one. This information can be useful for deciding if it is worthwhile to maintain a DW relation

when the corresponding source relation was removed.

The dependency between a DW relation and a source relation is reduced to how many attributes of the
DW relation depend on the source relation. We define a parameter t, to be set by the user, that states a
threshold for this quantity. This value will be used in the corresponding Propagation Rules.

85

Propagation Rules

These rules state the actions that must be performed in each case of change to the source Database and

dependency between source and DW elements.

For specifying the actions that affect the DW we use the Basic Operations defined in Section 3.1.1, since

these operations work over a database schema and at a level that is suitable for the actions that must be

performed. In addition, the use of the Basic Operations facilitates the specification of the Consistency

Corrections for satisfying the invariants, which will be presented in next section.

R1) CHANGE:

DEPENDENCY:

ACTION:

R2) CHANGE:

DEPENDENCY:

ACTION:

R3) CHANGE:

DEPENDENCY:

ACTION:

R4) CHANGE:

DEPENDENCY:

ACTION:

R5) CHANGE:

DEPENDENCY:

ACTION:

Rename attribute: A1 -> A2, where Al, A2 0 Att_ Name
Copied, Used in calculation, or Required for calculation
- substitute in G(T,) Al by A2.

Add attribute
None
- if user wants to add sub-schema DW s to the DW schema
- user applies primitives adding DWsg
- if user wants to remove an existing DW sub-schema, DWsg'
- for eachR 0 DWgg
- Rel_del (R) // remove from DW relation R

- remove path(_,A) from G(T), where A 0 R // Remove form

trace al paths that finish on an R’ s attribute.

Remove attribute R.A

Copied. R .B=RA

- Att_rem ({B}, R") // remove from DW schema attribute B

- remove path(A,B) from G(T,) // remove from trace path(A,B)

Remove attribute R.A
Used in calculation function. R’.B = f(R.A)
- if user wantsto remove attribute R'.B
- Att_rem ({B}, R") // remove from DW schema attribute B
- remove path(A,B) from G(T,,) // remove from trace path(A,B)
-else
- remove path(A,B) from G(T,) // remove from trace path(A,B)

- user modifies the calculation function of B in the trace.

Remove attribute R.A

Required for calculation. R’.B = req(R.A)

- Att_rem ({B}, R’) // remove from DW schema attribute B

- remove path(A,B) from G(T,) // remove from trace path(A,B)

86

R6) CHANGE: Change the key of arelation R. old key = A, new key = A’.
DEPENDENCY: Copied. R'.B =R.A.
ACTION: -if Biskey in DW relation R’
-if0B'0OR,R.B'=RA’
- Key_del ({B}, Att«(R"))
-Key add ({B'}, Attk(R')) // set B’ asthekey of R’ inthe DW
-else
- Att_add ({B’}, R’) // add attribute B’ to relation R’ in the DW
- Key_del ({B}, Att«(R"))
-Key add ({B'}, Attk(R')) // set B’ asthekey of R’ inthe DW
- add path(A’,B’) to G(T,) // add path(A’,B’) to the trace
- elseif B isforeign key in DW relation R’, with respect to DW relation R"”’
- Att add ({B'}, R') // add attribute B’ to relation R’ in the DW
- FKey add ({B'}, Atte(R',R), Atte«(R')) // set B’ asforeign key to R’ in
the DW
- Att_rem ({B}, R") // remove attribute B from R’ in the DW
- remove path(A,B) from G(T,) // remove from trace path(A,B)
- add path(A’,B’) to G(T,,) // add path(A’,B’) to the trace

R7) CHANGE: Change the key of arelation R. old key = A, new key = A’.
DEPENDENCY: Required for calculation. R’.B = req(R.A)
ACTION: - if user wants to eliminate attribute B from DW
- Att_rem ({ B}, R’) // remove attribute B from R’ in the DW
- remove path(A,B) from G(T,) // remove from trace path(A,B)
- elseif user wants to change the required attribute in the trace
- substitute path(A,B) by path(A’,B) in G(Tay)
- user corrects path(_,B), updating the other required attributes.

With rules R1 to R7 we cover the changes of the Taxonomy that affect an attribute (the first four
changes). Rules R8 to R10 cover the changes over a whole relation (the last three changes of the

Taxonomy).

R8) CHANGE: Rename relation; R1 -> R2, where R1, R2 0 Rel_Name
DEPENDENCY: R=dep (R1,n),dn
ACTION: - substitute in G(T,;) R1 by R2

87

R9) CHANGE: Add relation: R
DEPENDENCY: None
ACTION: - if user wants to add sub-schema DW s to the DW schema
- user applies primitives adding DWss
- if user wants to remove an existing DW sub-schema, DWsg'
- for eachR 0 DWgd
- Rel_del (R) // remove from DW relation R
- remove path(_,A) from G(T), where A O R // Remove form
trace all paths that finish on an R’s attribute.

R10) CHANGE: Removerelation: R
DEPENDENCY: R’ =dep (R, n), wheren >t
ACTION: - Rel_del (R’) // remove from DW relation R’
- remove path(_,A) from G(T), where A 0 R’ // Remove form trace al paths that
finish on an attribute of R’.

R11) CHANGE: Removerelation: R
DEPENDENCY: R’ =dep (R, n), wheren<=t
ACTION: -foreachA/A OAtt(R) OA OAt(R)
-ifR.A=RA
- apply R3
-elseif R.A=f(RA)
- apply R4
-eseif R.A =req(R.A)
- apply R5

88

3.3. Consistency corrections

When a Database schema is modified it may happen that some property that was satisfied by the schema
before the change, is not satisfied after the change. In Chapter 3, Section 3 we have defined a set of
consistency properties that must be satisfied by a DW schema, which we called invariants.

In the previous section we proposed the Schema Propagation Rules for propagating source schema
evolution to the DW schema. However, once changes to the source schema were propagated to the DW
schema, an important task has to be carried out yet: the verification of DW schema consistency and, if
necessary, its correction. Figure 4.10 shows an example, which is explained following. In @) Salesis a
source relation, Sales DWisaDW relation (a measure relation), and Tis the trace that relates them. In b)
the schema of Sales changes. Attribute city id is removed. In ¢) schema evolution is propagated to the
DW. Attribute city id is removed form relation Sales DW and 7 is modified. However, relation
Sales DW till contains an attribute, city name, that makes it inconsistent according to the “measure
relations invariant”. In d) city name is removed and 7 is modified, so that Sales DW satisfy the

invariants.

SALES SALES DW

sale date sale_month
customer _id subtype_id
a) presentation_id T presentation_id
city_id A== =Xty id
sdle amount = [mm —— = city_name
sale_cost sale_amount
sale_qty sale_cost
sale_qty
SALES SALES DW
sale date sale_month
customer _id subtype_id
ion_id presentation_id
o s oA
Tamount T = = city_name
sale_cost sale_amount
sale_qty sale_cost
sale_qty
SALES SALES DW
sale_date modify trace sale_month
) customer _id subtype_id
C presentation_id / presentation_id
-—— - I
T APl
se_amount — F = = city_name[
sale_cost sale_amount
sale qty sde cost
sdle_qty

SALES SALES DW

g | S, | oresyues [senmn
tation_id - ation_i
o amount % / _ T TR
sale_cost S - T sale_amount
sde gty sale_cost
sde gty

Figure4.10

89

In this section we propose a mechanism to correct the DW schema in case the changes applied to it have
left it in an inconsistent state, i.e. in case the DW schema does not satisfy the DW schema invariants any
more. We provide a set of rules that intend to cover all the inconsistencies that may be generated by the

DW evolution, and give the actions that should be performed in each case.

In this case we must consider the DW schema type of each element being changed. It will be relevant if,

for example, arelation is of “measure” or of “dimension” type.
R1 - Foreign key updates

R1.1- ON APPLICATION OF: Key_del ({A}, Attk(R)) and Key_add ({A'}, Attk(R)), where A =
old key and A’ = new key
APPLY: FKey_add ({A'}, Attek(R,R), Attrk(R)) todl R/ Atte(R,R) = A

R1.2 - ON APPLICATION OF: Rel_del (R), where R O Relp
WHEN: OR’ O Rely / Atte(R', R) 20
APPLY: Primitive Aggregate Generation to R’, removing X,
whereX ={ A/ADAt(R) DA JAtt(R) }

R2 —Measurerelations correction

ON APPLICATION OF: Att_rem ({A}, R) / R O Rely,
WHEN: OSORelp / Atte(R, S =0 OOB/B OAt(R) OB O Att(S)
APPLY: Att_rem ({B}, R)

remove path(_,B) from G(T,) // remove from trace the path that finishesin B

R3—History relations update®

ON APPLICATION OF: Att_add ({A}, R), obtaining A O Att(R)
WHEN: OR’ /R’ O Rely(R)
APPLY: Att_add ({A}, R'), obtaining A O Att(R’)

8 Thisruleis optional. The user choosesif the ruleis active or not.

90

4. Applying evolution to the DW

In this section we focus on the problem of applying the corresponding changes to the DW and to the

trace.

In order to solve this problem we have to: (a) define the model we will follow for the management of DW
schema evolution, and (b) provide the Conversion Functions to be applied to the instance of the DW

schemato transform it to an instance of the evolved DW schema.

4.1. Modd for DW Evolution

In this section we define which strategy we would implement to apply evolution to the DW.

In Chapter 2, Section 5 we present an overview of the existing knowledge about schema evolution. In our
proposal we extract some techniques from this existing work, and we adapt, combine and apply them for

the resolution of our problem.

4.1.1. Previous considerations

We start enumerating the particular features of DWs, specially in the context of this work, that affect the
treatment of evolution. Afterwards, we discuss how these elements affect the possible models or

approaches considered in our work for applying evolution to the DW.

Some particular features of DWs:

* History dataisstoredinaDW.

= Applicationsthat run over the DW only query the data. They do not modify it.

= Some evolution operations that in the context of operational databases are considered that do not
corrupt existing applications using an adaptational approach [Fer96], in the context of DWs can lead
to unexpected results.

= Most of the queries that are submitted to a DW require a big range of the history of the data existing
inthe DW.

* Due to the meta-information that our system manages, some of the conversion functions for the

instances can be provided by it.

In a DW history data is relevant and it is maintained for a long time. Therefore, it would not be
reasonable to transform this data to other formats perhaps loosing some of it or some of its semantic.

Considering this aspect, a versioning approach would be a suitable solution.

91

We assume that modifications over the data only are applied in the context of loading data to the DW. For
this reason, if we use the solution of schema versioning, only the last version will be updated. It will
never exist updates over the data of other versions; this data will only be queried. This situation is
favourable for the application of versioning approach, because it will not be necessary to convert updates
to the new format of the data into updates to the old format of the data, which seems to be a nontrivial

problem.

In [Fer96] some schema update operations are classified as schema extending, and they are stated as not
affecting existing applications in the context of an adaptational approach. These operations include, for
example, “Create an attribute”. Considering the DW evolution taxonomy we define in Section 4.2, the
corresponding operation (doing a mapping between OODBs and RDBs) would be “Add attribute’. We
can show that in the specific case of adding a foreign key to a measure relation, this operation can lead to
unexpected results of queries that run on the old schema. We show an example in Figure 4.11. Taking
into account this difference, the proposal of integrating the two approaches [Fer96] does not seem to be so
applicable to DW schemas.

SALES QL .
select prod_cod, cust_cod, date, quantity
prod_cod | cust_cod | date quantity fromSALES
pl cl 1/2/00 10 prod_cod cust_cod date quantity
p2 c2 1/1/00 20 pl cl 1/1/00 10
p2 c2 2/1/00 10 p2 c2 100 20
p2 c2 2/1/00 10

Add attribute: empl_cod

SALES QL)
select prod_cod, cust_cod, date, quantity
prod_cod | cust_cod | date empl_cod quantity from SALES
pl cl 1/1/00 el 2 prod_cod cust_cod date quantity
pl cl 1/1/00 e2 8 pl cl Y100 2
p2 c2 1/1/00 e3 20 pl cl 1/1/00 8
p2 c2 2/1/00 e3 10 p2 c2 1/1/00 20
p2 c2 2/1/00 10

For obtaining the same result the query should be modified: Q% glect prod_cod, cust_cod, date, quantity
fromSALES
group by prod_cod, cust_cod, date

Figure4.11

In general, queries that are submitted to a DW refer to data across a long time period. Therefore, if we
work in a context of schema versioning, probably most of queries will require data of many different

versions. |n these cases the use of instance conversion functions will be necessary.

In this work we propose a context where a considerable amount of information about schemas and
instances is maintained. This meta-information allows us to decide, in some cases, how data should be
transformed in case of DW schema evolution. Thisis specified in Section 4.2 by the instance conversion

functions.

92

4.1.2. The proposed mechanism

Considering the characteristics of the solutions extracted from the consulted bibliography, and the
particular features studied in the previous section, we propose the following solution for applying

evolution to aDW in our context:

Management of DW evolution is based on the versioning approach. We maintain a list of schema

versions, as proposed in [Fer96]. We apply the same strategy for trace evolution.
The queries over the DW will behave according to the following guidelines:

* Queries that were already running over any version can continue running over the same version
without any modification. These queries will not have access to information stored in subversions of

that version.

= When a query is submitted to the actual (last) version, data stored in superversions is transformed
through the f.c.f., which in some cases are provided by the system and in other ones are asked to the
user. The mechanic is shown in Figure 4.12. The f.c.f are presented in Section 4.2 asi.c.f (instance

conversion functions).

Example:
DW vers.1
Query Q needs datafrom DW vers.2
version n and from version 3.
DW vers.3
\
fcf, ,ofcf, s..ofcf 5 .
0“. =T == =" 1
o~ ! transformed |
o 1 instance !
DW versin % /
Q

Figure4.12

Note: If there are some queries to a version that need to access data of a newer version, it will be

necessary to implement the b.c.f. for transforming this data.

93

4.2. |Instance Conversion Functions

When an evolution operation has been applied to the DW schema, a conversion function can be applied to
the instance of the old DW schema so that it can be seen as an instance of the evolved DW schema (see

Figure 4.13).
In this section we provide the queries that have to be done to the data existing in the old DW in order to
obtain the same data structured according to the new DW schema. We call these queries instance

conversion functions (i.c.f.).

A)
Propagation'Rules !
1 1.
and ! 1i.cf.
Consistency!Corrections |
!

,,,,,

Evolved EConverted
DW Schema g DW Instance ;

Figure4.13

In some cases of change it is not possible to determine the i.c.f. automatically. For these cases we need
the designer participation. Sometimes it is enough to ask the designer some questions, but other timesis
the designer who has to give the complete conversion function. The latter case happens when the change

involves adding of information.

For determining the i.c.f. corresponding to each case of change, we must consider the type of the DW
schema element that is being affected. In some cases, for example, the transformation of a relation

instance will be different if the relation is a dimension or a measure one.

We define another taxonomy: a DW evolution taxonomy, which includes the possible changes that can be
applied to the DW schema in our context. The changes are sub-classified according to the type of DW

schema element, only in the cases that it is necessary to deduce the i.c.f.

94

DW Evolution Taxonomy
1) Add attribute
2) Remove attribute
a) from Measure Relation
al) descriptive attribute
- foreign key
- not foreign key
a2) measure attribute
b) from Dimension Relation
b1) descriptive attribute
b2) hierarchical attribute
3) Change key of arelation

4) Changeforeign key of arelation

Instance Conversion Functions
1) Add attribute
i.c.f. 1. user-defined function
2) Remove attribute
c) from Measure Relation
al) descriptive attribute
- foreign key
i.cf.2: -RORely, A=Att(RR), By, ..., By O Atty(R)

- provided by the user: list of fi(B4), ..., fu(Bn) , where fy, ..., f, are
aggregation functions

- select { Attp(R) — A}, f1(B1), ..., fn(By)
fromR
group by { Attp(R) — A}

- not foreign key
i.cf.3 -RORey, AOAttp(R)

- select Att(R) - A
fromR

95

a2) measure attribute
i.cf.4: -RORey, AOAttuw(R)

- sdlect Att(R) - A

fromR
d) from Dimension Relation
b1) descriptive attribute
i.cf.5 -RORelp, A=Attp(R)

- sdlect Att(R) - A

fromR
b2) hierarchical attribute
i.cf.6: -RORep, A=AttyR)

- select Att(R) - A

fromR

3) Change key of arelation

i.cf.7. -RORd, {A} OAtt(R) old key, B O Att(R) new key

- The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

4) Changeforeign key of arelation

i.cf.8 -RORd, {A} OAttw«(RR) old foreign key, B 00 Att(R) new foreign key

- The instance must not be transformed

Note: It is not possible to define a conversion at this step. However, at the moment of query, the

difference with respect to the keys should be considered.

96

5. Conclusion

This chapter focuses on the whole process that starts with evolution of the source schema and finishes

with evolution of the DW schema.

We present a strategy that solves how to propagate the changes occurred on the source schema to the DW
schema, and how to manage evolution in the context of the DW. The steps that should be performed in
case of a change in the source schema are the following: 1- Identify the dependencies that exist between
the changed element and elements in the DW. This is done using the trace (in Section 3.1). 2- Apply the
Propagation Rules. Choose the appropriate rule according to the change and the dependency (in Section
3.2). Create anew schemaiif it has to be changed and a new trace. Mark them as a new version. 3- Verify
the DW schema consistency and apply consistency corrections to the new schema if it is necessary (in
Section 3.3). 4- Implement the f.c.f. for the instance, if it is possible (in Section 4.2). 5- If thereis a new
version of the schema or the trace, re-generate the loading processes. 6- Manage the queries as it is
proposed in Section 4.1.2.

With respect to the classification of schema elements into DW elements, in the propagation rules it was
not necessary to consider this classification, while in the instance conversion functions it had to be

considered.

In Section 3.1.3 we present the detailed trace of an element and we define the graph of an attribute’s
detailed trace. We do not specify the procedure to pass from the detailed trace to this graph. We describe
it, and we illustrate it with examples.

The Propagation Rules we propose state the modifications that must be done to the DW and to the trace.
Another approach for this rules that seems to be more efficient for implementation is the following: The
rules state only the modifications that must be done to the trace. At the moment of applying evolution the
affected portion of the trace is re-applied (the operations of this portion of the trace are applied),
generating the modified portion of the DW schema, which must substitute the original portion.

97

98

CHAPTER 5. | mplementation

1. Introduction

1.1. Context

We have developed a prototype of a DW Design tool, called DWDesigner, that can be combined with
other components conforming a CASE tool. These other components have been developed in the context
of students' graduate projects and a demonstration that was presented in the ER’99 Conference [Per99].
The components are the following: (1) CMDM (Conceptual Multidimensional Data Model) [Pic99], (2) A
Repository Manager for a CASE tool [Arz99], and (3) From the conceptual schema to the logic schema of
a DW [Per00].

Figure 5.1 presents an overview of the architecture of the whole CASE environment.

Source Databases

Conceptual to
logic schema <+— o

transformation

Repositor
‘ DWDesigner M‘ia?]oagery CMDM CORBA
l]
Physical
ySi
Repository
Figure5.1

DWDesigner is atool that implements the principal ideas of Chapter 3 of thisthesis (DW logical design):
transformation primitives, transformation trace, schema invariants and consistency rules. Implementation

of DW evolution, whose ideas were presented in Chapter 4, isin course.

99

1.2. Theprototype

The prototype isa DW Design tool with the following main characteristics:

. It allows the designer to design a DW schema starting form a source schema by means of Primitive

applications.
. It generates a trace of the transformation applied.
. It provides invariants checking.
. It includes consistency rules triggering.

. It has a graphical user interface.

. It is extensible. Its modular design allows adding and removing primitives without modifying or re-

compiling the existing code.

Most of this prototype was designed and programmed by a group of students in the context of their
graduate project [Gar99], during 1999. The author of the present thesis co-directed” this graduate project
and therefore participated in the analysis and design of the prototype. In addition, she developed alone
(analysis, design and implementation) invariants checking and rules triggering functionalities, which had

been left as future work in the mentioned graduate project.

Currently, we are directing a new graduate project that will implement DW evolution functionality for the

existing tool.

In Section 2 we present a brief description of the prototype and in Section 3 we present the conclusions of

this chapter.

2. Prototypedescription

In this section we pretend to give a descriptive view of the whole prototype (for a detailed description see
[Gar99]) and give more detail about the modules we developed and how they integrate with the rest of the
modules.

First we present a summarised analysis of the tool’s functional features, then we present the most relevant

aspects of the conceptual design, and by last we make some comments about the implementation.

® Together with Professor Algjandro Gutierrez.

100

2.1. Functional Features

The tool’s main features were enumerated in Section 1.2 of this Chapter.

Thetool isintended to be a DW design graphical environment. It should be useful to a DW designer who
has a source database, some DW requirements, and wants to generate a DW schema that satisfies these
two elements. With this tool the designer can apply different DW design criteria and techniques in order
to obtain the target DW schema.

Invariants checking can be invoked at any moment in the design process. It allows checking the
consistency of the schemathat is being generated.

Consistency rules are triggered by the application of certain primitives to certain elements; when these

applications put in danger the consistency of the schemathat is being generated.

The graphical interface facilitates interaction with the source database elements, application of primitives
and parameters selection, and visualisation of the design trace.

Figures5.2, 5.3, 5.4, 5.5 and 5.6 show the interface of the tool.

E DWDesigner (Design01) M=l E3

Design Edit Tools Windows Help

Repository Datawarshouse Trace Functions Domains Primitivas |AggregateGeneratmn =

Datawarehuuse

Repos'nuly _1 Datawarehouse
_4 Repogitary
=14 Dirnension
-] departamentos

] tlientes-ciudades

| subrubros
+-] ciudardes

Mom_presentacion
|d_presentacion (PK)
|d_producto

(FI - Id_producta --= DIMENSION productos
#- | productos
- rbros
-] clientes-rubros
----- # Hierachy

Figure5.2

101

& DWDesigner (Design01) =10] x|

Cesign Edit Tools Windows Help

Repaository Datawarehouse Functions Daomains Frimitives |Tempora|izat\on

KeyExtension
MinidimensionBreakof

[P T e T o o e

Temporalization Apply

_4 Schema .
E-"‘JDImEnsmn Relation to alter |pr0ductos

3 Repasitory 1 departamentas
Dimensi ") clientes-ciudades || Tine attribute |fecha

Hierachy | subrubros

| Measure] ciudades iz part of the pk? Itrue vl
Crossing] stock

LI presentaciones

Result relation name |pruductustemp

__lrubros
] clientes-rubros
- # Higrachy
t- | Measure
* Crossing
/-] Funclions

Help | QK | Cancel

Figure5.3

& DWDesigner (Design01) =[0] x|

Cesign Edit Tools Windows Help

Repaository Datawarehouse Functions Daomains Frimitives |Tempora|izat\on

KeyExtension
MinidimensionBreakof

BlenadDtive m e e e e e

Temporalization Apply

= _1 Scherma | .
Repository | 4 Dimension = Pelation to alter |pr0ductos

_1 Repository) departamentas
__| Dimensic ") clientes-ciudades || Tine attribute |fecha

Hierachy | subrubros

| Measure] ciudades iz part of the pk? Itrue vl
Crossing] stock

1 presentaciones

Result relation name |pruductustemp

__lrubros

clientes-rut n " F—)
okl mlerachy : Consistency Rules fired by Temporalization]

H-[| Measure [V 500 have chanaed a prmary kev. rou shodid Updats ail referentes i i
@ Crossing

/-] Funclions

Help | QK I Cancel

Figure5.4

102

esigner (Design01) [O]

Design Edit Windows Help
Repository Show Repository
Show Datawarehouse

Show Transfarmation Trace

Show ToolBar
Hide ToalBar

Primitives

Function Constructar
Domain Constructor

Generation

| presentacionesmod
] stock
| presentaciones
| productosternp
1 productos
[Arubros
[clientes-rubros
-4 Hierachy
H-[] Measure
-4 Crossing

& igner (Design01)
Design Edit Tools Windows Help

Primitives |Tempc|raliza1iun

tawarehouse
_4 Datawarehouse
=4 Dimension
=4 presentacionesmaod

MNom_presentacion
|d_presentacion (FK)

(FK)-- ld_producto, fecha --= DIMEMNSION productostemp
productostermp
Duracion
Familia
MNom_producto
|d_producta {Pk)
fecha (PK)
#® Hierachy
- Measure
- Zrossing

Figureb5.5

_[olx]

|
LReposwtory | Datawarehouse | Trace | Functions | Domaing |anitives |DeNormaIized

1 Dimension

4 &1 Transformation Trace

[[O] x|

~ Transfarmation flow

~ Reference

. Ini. Relations

M cetomalized

- MewDimensionCro

[ooagdingtt

| ol

Cancel |

Figureb5.6

103

2.2. Conceptual design
For the design of the tool we applied object-oriented techniques. The design language we used was UML.

The core of the tool is the Virtual Machine. This is the most important layer of the system. The main

components of the Virtual Machine are the following:
1) Toolsfor schematransformation

This is the representation of: the transformation primitives, and two sets of schema elements (called

Repository and Datawarehouse) that are the containers used during the transformation process.
2) Database concepts representation

All schema elements, relations, attributes, keys, etc. must be represented in order to be manipulated

by the user and the primitives.
3) Trace

Each applied primitive, with itsinput and output relations, is recorded in the trace.
In the context of the present thesis, the students' work was extended with:
4) Invariants

The invariants are properties that must be satisfied by the schema. Therefore we represented the

invariants as a part of the schema representation.
5) Consistency Rules

We represented the Rules as an independent entity, which is referenced and invoked from different

places.

The class diagram of the DW design tool can be seen in Appendix 4.

2.3. Implementation

The prototype was implemented in JAVA language, using the Java Development Kit version 1.2.2 (JDK

1.2.2) and Borland’ s JBuilder version 2 as the development environment.

Implementation details of the tool, excepting the parts of Invariants and Rules, can be found in [Gar99].

In this Section we briefly explain how we implemented Invariants Checking and Rules Triggering.

Invariants Checking is an option of the tool’s main menu that allows checking the consistency of the
existing DW schema. The user has the possibility of choosing between a list of invariants. We
implemented the procedures that perform the Invariants Checking as methods of the General Schema
class. When the user press OK button, we call the methods of the General Schema class that correspond

to the invariants selected by the user.

104

Rules are implemented as an abstract class Rule and a sub-class RuleXX for each existing rule (analogous
to the primitives). We defined the RuleDirectory, which is a sequence containing the existing rulesand is
initialised at start. Also at this moment, some primitives initialise the rules attribute that is a set of rules
(referencing to rules of the RuleDirectory). The rules that belong to a primitive’s set of rules are the ones
that must be triggered after the primitive application. When the user applies certain primitives, a dialog
box appears showing him what rules should be applied in the form of check boxes. The rules that are
checked by the user are applied automatically. The transformations that are made by the rules, are
applications of primitives, therefore they have the same behaviour as any primitive application (e.g. they

arereflected in the trace).

3. Conclusion

DWDesigner is a prototype of a DW Design Tool. We directed the development of this prototype and we

developed anew part of it; Invariants Checking and Rule Triggering functionalities.

The developed tool implements the principal ideas of Chapter 3 of this thesis (DW logical design):
transformation primitives, transformation trace, schema invariants and consistency rules. This tool offers
a graphical user interface that allows the designer to apply primitives to a source schema, constructing a
new schema, visualise the generated transformation trace, check schemainvariants and apply consistency

rules.

The tool can be connected with other modules, complementing each other. Altogether, they congtitute a
CASE tool for designing a DW that covers the stages of: conceptual modelling, derivation of a logical

model, management of the logical model, and persistency of the design.

105

106

CHAPTER 6. Conclusion

This thesis addresses two main issues: DW design, and the repercussion of source schema evolution on
the DW.

The obtained results consist of:
e aCASE tool for designing DWs by application of schema transformations

» techniques for repercussion of source schema evolution on the DW

1. DW design through schema transformations. techniques and
CASE tool

The help tool for DW design is a set of schema transformation primitives complemented with some
strategies and rules for their practical application. These transformation primitives enable to design a
relational DW from a source relational schema, acting as design building blocks that have DW design
knowledge embedded in their semantics. In addition, the application of these primitives provides a trace,
which will be the trace of the design. Utilisation of design building-blocks improves quality and
productivity in the design. On the other hand, the design trace is an important tool for documentation and
design process management, and it is essential for performing DW maintenance. In particular, it enables

to perform the repercussion of source schema evolution to the DW.

In our proposal schema consistency is managed through DW schema invariants and rules. While
invariants specify the consistency conditions the DW schemas must satisfy, the rules state additional

schema transformations to maintain the DW schema in a consistent state.

Concerning the scope of the proposed primitives, the presented design strategies show how a wide

spectrum of DW design problems can be solved through application of primitives.

The primitives, invariants and consistency rules were implemented in a DW design tool. The tool can be
connected with other modules, complementing each other. Altogether, they constitute a CASE tool for
designing a DW that covers the stages of: conceptual modelling, derivation of a logical model,

management of the logical model, and persistency of the design.

Some other work that was done around our proposal for DW design is. experimentation with the
primitives by applying them in real DW developments [Abe98], and presentation in ER’99 conference of
aposter and demonstration containing it [Per99].

107

2. Repercussion of source schema evolution on the DW

The solution we propose for the problem of source schema evolution is applicable to a DW that was
generated by application of the primitives, and uses the results obtained in the proposal for DW design.
We propose a mechanism for repercuting source schema changes to the DW, which basically consists on

deducing which changes have to be made to the DW and applying them.

For deducing the changes to be applied to the DW, we provide the following: (i) a taxonomy of source
schema changes, (ii) a mechanism for obtaining dependencies between source and DW schema elements,
(iii) a set of propagation rules, and (iv) a set of correction rules. For obtaining the dependencies we
propose a way to process the trace so that more detailed traces are derived. The propagation rules state
which changes must be performed on the DW and on the trace, depending on the elements’ dependencies
and the occurred source change. The correction rules assure consistency of the modified DW, being based

on the schema invariants previously proposed in this work.

For applying the changes to the DW we propose a strategy that is based on the Versioning Model for
object oriented schemas (presented in Chapter 2, Section 5). In order to make this choice, we analyse the
features of DWs and the applicability of the existing models to DW evolution. We aso propose some
instance conversion functions that are the conversions of the instance of a schema version into an instance
of another schema version. For stating these conversions we had to determine another taxonomy, a DW

evolution taxonomy.

It is important to note that for solving the evolution problem we define 2 different taxonomies. First, we
need the source evolution taxonomy, which is defined taking into account the context of the project
[CSI199]. Second, we define the DW evolution taxonomy. In this case, the changes of the taxonomy are

the ones that may be generated by the application of the propagation rules.

3. Ongoing work
At the moment, source schema evolution management is being implemented in the context of a graduate

project. Thiswill be an extension of the implemented DW design tool.

A proposal about the automatic application of the primitives, starting from the conceptual model (high
level vision about the information requirements) and the correspondences with the source schemas, is
being developed as part of a master thesis [Per00].

4. Futurework

In the future the following additional issues could be addressed:

e experimentation with the primitives in different applications and generation of new versions of the

set of primitives

108

We believe that the set of primitives can be improved in some ways. Experimentation with it shows
that correcting some parameters of some of the primitives, their application would be more flexible

and simpler.
inclusion of schema integration facilities to the primitives

We consider that this is a problem itself, which involves specific aspects like concept
correspondence specification, conflict resolution, schema merging, etc. Nevertheless we believe that

the primitives should enable to perform schema integration in some way.
completeness of the primitives

Primitive completeness could be informally shown by testing them in a wide gamma of scenarios,

applying different techniques, in different application areas, etc.

Another way to show it, is trying to apply the different design proposals that can be found in the
bibliography, through the primitives.

By last, we think that the primitives could be complemented with the basic operations (proposed in
this thesis for decomposing the primitives) at the moment of design, in case it is necessary. In
addition, we think that considering the basic operations, completeness could be formally
demonstrated, following these ideas: (a) In our context, a schema consists of relations, attributes,
and definitions of keys and foreign-keys. (b) In the basic operations set exists an operation for
adding a relation (Rel_add), an operation for adding an attribute (Att_add), and operation for
defining a key (Key_add) and an operation for defining a foreign key (FKey_add). (c) (a) and (b)
lead us to think that any schema can be constructed through application of basic operations of this
Set.

data loading and maintenance

Together with each primitive, we provide an outline of the transformation that should be done to the
existing data for populating the generated sub-schema. For solving the problem of data loading and

mai ntenance much more work must be done in this direction.
application to real cases of the proposed mechanism for managing evolution

It would be interesting to apply the proposed mechanism for source schema evolution to real cases,

as we did with the primitives.
evolution generated by changesin DW requirements

We proposed a solution for DW schema evolution that was generated by evolution of the source
schemas. DW schema evolution generated by changesin DW requirements is an important problem
that was not addressed in this work.

109

110

Appendices

1. Appendix 1—An Application Example

This is a case of a product distribution company who wants to construct a DW. The most important
requirements are related to: (i) sales evolution by product families and geographic regions, (ii) product
cost analysis, (iii) market analysis (types of clients), and (iv) geographic distribution of the sales.

The source database schema is shown in Figure 7, which is a representation of the relational schema,

where the lines represent the links between the tables through the foreign keys.

SUBTYPES

subtype_id
subtype_name
type_id

CUSTOMERS

customer _id
customer_name
LAEES customer_address

type id subtype_id
type_name city_id

sale_date PRESENTATIONS
customer_id S
presentation,_id presentation_id PRODUCTS
p— city_id P eton name product_id
sale_amount product 1 product_name
city id sale_cost Size family
city_name sde_qty expiration

region_id

REGION

region_id
region_name

Figure 7: The sour ce database schema

We suppose that, following one of the existing DW design methodologies [Kim96-1][Kor99][Bal98], we
arrived to the design presented in Figure 8. It is a star schema™, where the dimensions are Time,
Customers DW, Products DW, and Geography, and the fact table is Sales DW, where sale_amount,

sale cost and sale_qty are the measures.

10 Star Schemais defined in [Kim96-1]

111

CUSTOMERS DW

subtype_id
subtype_name
type_id

type_name

SALES DW

sale_month
subtype_id
presentation_id
city_id
sale_amount
sale_cost

sale qty

PRODUCTS DW
GEOGRAPHY presentation_id
presentation_name
product_id
product_name

size

family

expiration

city_id
city_name
region_id
region_name

Figure 8: Thetarget logical DW schema

Now, we apply the transformation primitives to the source schema in order to generate the desired DW

schema

First, we de-normalise the relations that correspond to the dimensions, generating a new relation for each
dimension of the desired schema. We use primitive P6.2 DD-Adding 1-N for adding the attributes from
one relation to the other relation.

Products DW. We apply P6.2 to relations Presentations and Products, obtaining:

PRODUCTS DW (presentation_id, presentation_name, product_id, product_name,
size, family, expiration)

Customers DW. We apply P6.2 to relations Customers, Subtypes and Types, obtaining:

CUSTOMERS DW_01 (customer _id, customer_name, customer_address, subtype id,
city_id, subtype _name, type _id, type_name)

Geography: We apply P6.2 to relations City and Region, obtaining:
GEOGRAPHY (city_id, city_name, region_id, region_name)
CUSTOMERS DW_01 has some attributes that are not relevant for this case. We apply primitive P2

Data Filter for eliminating them.

Customers DW. We apply P2 to relation Customers DW _01, obtaining:
CUSTOMERS DW_02 (customer _id, subtype_id, subtype name, type_id, type_name)

For the Time dimension we obtain the date attribute from the Sales relation. We do this through the
primitive P12.1 De-Normalized Hierarchy Generation, which generates a hierarchy relation from
relations that contain a whole hierarchy or a part of one. Then we calculate the attributes month and year
from the date, using primitive P6.1 DD_Adding 1-1.

112

Time: We apply P12.1 to Sales, obtaining:
TIME_O1 (date)

and we apply twice P6.1 to TIME_01 for adding attributes month and year:
TIME_02 (date, month)
TIME_03 (date, month, year)

For generating the fact table (measure relation) Sales with the desired granularity, which is subtype for
Customer dimension and month for Time dimension, we apply the primitive P8 Hierarchy Roll-Up. This
primitive also changes the level of detail of the dimensions. The summarisation function for each measure

must be specified to the primitive. In this case it is the sum function.

Sales DW: We apply P8 to Sales and Customers DW_02, abtaining:

SALES DW_01 (sale date, subtype id, presentation_id, city id, sale_ amount, sale _cost,
sale_qty)
and

CUSTOMERS DW (subtype_id, subtype name, type id, type name)

We apply P8to Sales DW_01 and Time_03, obtaining:

SALES DW (sale_ month, subtype id, presentation_id, city id, sale amount, sae cost,
sale_qty)
and

TIME (month, year)
Through the applied primitives we generated the desired schema, showed in Figure 8.

Now we will refine the design. Suppose we detect that the Product dimension has some attributes (size,
family) that change their values through time. According to definitions in [Kim96][Kim97] it is a Slowly
changing dimension. We decide that, for query performance reasons, we will maintain this history datain
a separate relation. For this, we follow two steps. First, we apply P11.2 Horizontal Partition to
Products DW relation for generating a new relation for the history data. Second, we apply P3
Tempor alization to the history relation adding the time attribute to the key of the relation.

Products DW _His: We apply P11.2 to Products DW, obtaining:

PRODUCTS DW_HIS 01 (presentation_id, presentation_name, product_id,
product_name, size, family, expiration)

We apply T3 to Products DW _His 01, obtaining:

PRODUCTS DW_HIS (presentation_id, change date, presentation_name,
product_id, product_name, size, family, expiration)

Finaly, aso for performance reasons, we want to add to Geography relation a calculated attribute
cust_qty, which represents the quantity of customers that belongs to each city. We do this through the
application of the primitive P6.3 DD_Adding N-N, which adds to arelation an attribute that is calculated

from the summarisation of many tuples of other relation.

Geography Cust: We apply T6.3 to Geography and Customers, obtaining:
GEOGRAPHY_CUST (city_id, city_name, region _id, region_name, cust_qty)

113

The final DW schemais shown in Figure 9.

CUSTOMERS _DW

subtype_id
subtype_name
type_id
type_name
SALES DW

sale_month
subtype_id
presentation_id
city_id
sale_amount

sale _cost
sale_qty

PRODUCTS DW
GEOGRAPHY_CUST presentation_id
presentation_name
5 product_id
city_name
region,id p_roduct_name
region_name size presentation_id
cust_qy family change date

L_(expiration presentation_name
product_id

dity_id
PRODUCTS DW_HIS

product_name
size

family
expiration

Figure 9: The obtained DW schema

The applied primitives generate a trace of the design, which is shown in Figure 10.

SUBTYPES

SALES DW

x/ TIME

GEOGRAPHY_
cust

CUSTOMERS

REGION

PRESENTATIONS

PRODUCTS DW

PRODUCTS DW_
HIS

PRODUCTS

Figure 10: The generated trace

114

2. Appendix 2—-The Basic Operations

Operations over the context:

* Rel_add (R)
Arguments. A relation.

Behaviour: It addsrelation R to the current intermediate result.

* Rel_del (R)
Arguments. A relation.

Behaviour: It eliminatesrelation R from the current intermediate result.

Operations over arelation:

= Att_add (X, R)
Arguments. - A set of attributes.
- Arelation.
Behaviour: It adds a set of attributes to a relation. If the relation does not exist it generates a

new one.

s Att_ rem (X, R)
Arguments: - A set of attributes.
- Arelation.

Behaviour: It removes a set of attributes from arelation.

= Att_cpy (X, R, R")
Arguments. - A set of attributes.
- Arelation. Thisisthe origin of the copy.
- Arelation. Thisisthe target of the copy.
Behaviour: It copies a set of attributes from one relation to another. If the relation does not

exist it generates a new one.

= Att_calc (X, f, Y, A)
Arguments. - A set of attributes.
The attributes that participate in the calculation function of the derived
attribute.
- A calculation function.
- A setof attributes.
The attributes that are required for the calculation of the derived attribute.
- Anattribute name.
The name for the derived attribute, including the name of the relation.
Behaviour: It adds aderived attribute to arelation.

115

Note: The attributes required for a calculation are those without which the calculation cannot be
done.
Attributes that are included in the “group by” clause of the SQL query used for the data
load of a calculated attribute, are not considered as required. Thisis because if one of these
attributes is removed the only thing we have to do is the re-calculation of the instance.
Therefore it is not necessary to maintain the information of this attribute “dependency” in
the trace. We are interested only in “schema dependencies’ and we assume that every time
a modification is made to the trace, the corresponding data loading processes are re-
generated.

Operations over a set of keys of arelation:

» Key_add (X, Attk(R))
Arguments: - A set of attributes.
- Theset of keys of arelation.
Behaviour: It adds a key to a set of keys. If the set of keys does not exist it generates a new
one.

* Key_dd (X, Att(R))
Arguments: - A set of attributes.
- Theset of keys of arelation.
Behaviour: It eliminates a key from a set of keys.

" FKey_add (X, Attec(Ry,Re), Attei(Ry))
Arguments. - A set of attributes.
- Theforeign key between relations R, y R,.
- Theset of foreign keys of relation R;.
Behaviour: It generates and adds a foreign key to a set of foreign keys.

* FKey_del (Attec(Ry, Ry), Attrx(Ry))
Arguments. - Theforeign key between relations R; y R,.
- Theset of foreign keys of relation R;.
Behaviour: It eliminates aforeign key from a set of foreign keys.

116

Appendix 3 - The Primitivesin terms of Basic Operations

Primitivel. IDENTITY

Description:

It adds arelation that is the same as the source one. It removes the source one.

Input:

= source schema: R O Rel
= source instance : r
Basic Operations:

*Rel_add (R)
« Rel_del (R)

Primitive2. DATAFILTER

Description:

It adds arelation that is the same as the source one, except for a set of attributes that are removed. It
removes the source relation.

Input:

= source schema: R(Ay,, A,) O Rel
X O{ Ay ... A} OX OAt(R)

= source instance : r

Basic Operations:

v Att_cpy {At(R)-X}, R, R")
* Rel_add (R)
= Rel_ddl (R)

Primitive3. TEMPORALIZATION

Description:

It adds a relation that is the same as the source one, except for an attribute that is included in the
relation. Optionally, it extends the key of the relation with the new attribute. It removes the source
relation.

117

Input:

=sourceschema: R (Ay, ..., Ay) [OX O{ Ayg, ..., Ay} OX O Attk(R)

= T time attribute / DOM(T)={c/cO{ty,, ty } set of time measures} , or
DOM(T) ={ to, ..., ty } set of time measures.

= Key , boolean argument. It tellsif T will be part of R's key or not.

= source instance : r

Basic Operations:

= Att_cpy (Att(R), R, R’)

= Att_add ({T},R)

= if key then Key_add (XT, Attk(R'))
* Rel_add (R)

*Rel_del (R)

Primitive4. GROUP: KEY GENERALIZATION

Primitive14.1. VERSIONDIGITS

Description:

It adds a relation that is the result of substituting the key attribute by another one in the source
relation. It removes the source relation.

Input:

= source schema: R (Ag, ..., Ay) ORelp /A O At(R)

= source instance : r

Basic Operations:

v Att_cpy {Att(R)-A}, R, R)
» Att_add ({B}, R")

= Key_add ({B}, Att«(R'))

* Rel_add (R')

*Rel_dd (R)

Primitive14.2. KEY EXTENSION

Description:

It adds arelation that is the same as the source one, except for its key which is extended with a set of

attributes. It removes the source relation.

118

Input:

= source schema: R (Ay, ..., Ay) ORelp / OX O{ Ay, ..., Ay} OX O Attk(R)
YO ({Ag ..., Ay} — X)), atributesto be added to the key

= source instance : r

Basic Operations:

v Att_cpy (Att(R), R, R’)
» Key_add (XY, Attk(R)))
*Rel_add (R')

*Rel_dd (R)

Primitive5. FOREIGN KEY UPDATE

Description:

It adds a relation that is the result of substituting a set of attributes by another one in the source
relation (the set of attributes eliminated are a foreign key in the source relation). It also defines the

new set of attributes as foreign key with respect to a set of relations. It removes the source relation.

Input:

= source schema: R (Ay, ..., Ay) ORel / X O Atte((R)

= X , setof attributes to be eliminated

Y , setof attributes which will substitute X

"{ Ry,, Rn} setof relations with respect to which Y will be aforeign key

SORd / Att(9 =X OY, auxiliary relation that contains the correspondence between the old
key and the new key

= sourceinstance: r, s

Basic Operations:

v Att_cpy {At(R)-X}, R, R")

» Att_add (Y, R’)

* FKey_add (Y, Atte(R'\R), Attei(R')), i: 1.m
" Rel_add (R)

*Rel_dd (R)

119

Primitive6. GROUP: DD-ADDING

Primitive14.3. DD-ADDING 1-1

Description:

It adds arelation that is the same as the source one, except for a new attribute that is calculated from

others of the same relation. It removes the source relation.

Input:

= source schema: R(Ay, ..., A,) O Rel
" f (Aigy ooy Aim) T { Aigy ooy Aim} O{ Aq, ..., Ay} , wheref is a user-defined function

= source instance : r

Basic Operations:

= Att_cpy (Att(R), R, R)

» Att_calc {RA, .o, RA T, O, R.Ap)
* Rel_add (R)

* Rel_del (R)

Primitive14.4. DD-ADDING N-1

Description:

It adds arelation that is the same as the source one, except for a new attribute that is calculated from

attributes that belong to another relation. It removes the source relations.

Input:

= source schema: Ry (Ay, ..., Ap), R (By, ..., By) ORel

f(Cp. &) /{Cyq e, &} O{ Ayq, ..., A} O{ By,, Bn}, Where f is a user-defined function
sA/AO{ A ..., A} OADO{By,..,By}, joinattribute

v is fk, boolean argument (declare or not A, as aforeign key)

* R; 0 Rel, relation to which A1 isaforeign key (optional)

= source instance: rq, ro

Basic Operations:

v Att_cpy (Att(Ry), Ry, R'y)

s Att_cac (Ri.X O RyY, f,{A}, R 1.Ans), wWhereX OY =(Cy, ..., C)
= if is_fk then FKey_add ({ Ansa}, Attex (R 1,Rs), Attek (R 1))

*Rel_add (R’y)

* Rel_del (Ry)

120

»Rel_del (R)

Primitive14.5. DD-ADDING N-N

Description:

It adds arelation that is the same as the source one, except for a new attribute that is calculated from

an attribute of another relation, through an aggregate operation. It removes the source relations.

Input:

= source schema: Ry (Ay, ..., Ap), R (By, ..., By) ORel

“gB) / BO{By,...,Bn}, wheree(B) is an aggregate expression over the attribute B
» X/ X O Attp(Ry) , attributes by which we want to group

sA/AO{ A ..., A} OADO{By,..,By}, joinattribute

" sourceinstance: rq, I,

Basic Operations:

= Att_cpy (Att(Ry), Ry, R'y)

= Att_calc ({R..B}, e {R..A}, R'1. A1)
* Rel_add (R'y)

" Rel_del (Ry)

" Rel_del (Ry)

Note: There are some attributes of R; that could affect the results of the calculation. These attributes
are the ones used in the “group by” clause of the SQL query that must be executed for loading
the resulting relation schema. We consider these attributes as “not required” for the calculation
because in case one of them is removed, the calculation still can be done, athough perhaps

corresponding data need to be re-loaded. We find the same situation in Primitives P8 and P9.

Primitive7. ATTRIBUTE ADDING

Description:

It adds a relation that is the same as the source one, except for a set of attributes that are included in
it. It removes the source relation.

Input:

= source schema: R (Ay, ..., Ay) ORelp
*{ By,, Bn} conjunto de atributos

= source instance : r

121

Basic Operations:

v Att_cpy (Att(R), R, R’)

» Att_add ({By,, Bm}, R)
*Rel_add (R)

*Rel_dd (R)

Primitive8. HIERARCHY ROLL UP

Description:

It adds a relation that is the result of substituting a set of attributes by one attribute in the source
relation Ry, and eliminating the foreign key defined from R; to R,. It removes this source relation.
Optionally, it adds a relation that is the same as R, except for a set of attributes that are eliminated,
and it defines a primary key for R, and aforeign key from R; to R,. Finally, it removes R,.

Input:

® source schema:
- Ri(Ay ., A))ORey /OATO{ Ay, ..., Ay} O {A} = Attei(Ry, Ro)
- Ry(By...By)ORe; /AO{By ..,B,} O{A} DOA(R)

» Z set of attributes/ card(Z) = k (measures)

*B/B0O{By,..,By} OBDOAtty(R,) (chosen hierarchy level)

“{e,.., &}, aggregate expressions

s XIXO{ Ay ..., An} O X0O(Attp(R) O Atty(Ry)) (they have alower grain)

Y /Y DO{By..,B,} OYOAttp(R,) (they havealower grain)

= agg_h , boolean argument (generate a new hierarchy or not)

" sourceinstance: rq, I,

Basic Operations:

v Att_cpy (Att(Ry), Ry, R'y)

* Att_calc (R».B, =, {R,.A, R'1.A}, R'1.B)

= Att rem {A},R’)

= fori: 1.k do
Att_calc ({R.Z}, e, 0,R1.Z")
Att rem ({Z}, R'1)

* FKey_del (Attex(R 1, Ry), Attek(R'1))

* Rel_add (R’y)

* Rel_del (Ry)

= if agg_hthen
- Att_cpy ({Att(R)-Y}, Ry, R')
- Key_add ({B}, Attk(R'2))

122

- FKey_add ({ B}, Att«(R'1, R'2), Attex(R'1))
- Re_add (R
« Rel_del (Ry)

Primitive9. AGGREGATE GENERATION

Description:

It adds arelation that is the result of substituting a set of attributes X by another set Y in the source

relation. Each attribute of Y is calculated from an attribute of X. It removes the source relation.

Input:

= source schema: R (Ag, ..., Ay) ORely

» 7, set of attributes/ card(Z) = k (measures)

“{e,.., &}, aggregate expressions

sY/YO{ Ay ...A} OY O(Attp(R) O Atty(R)) , attributes to be removed

= source instance : r

Basic Operations:

v Att_cpy {At(R)-Y}, R, R")

= fori: 1.k do
Att_cac({R'.Z},e,0,R.Z")
Att_rem ({Z}, R")

*Rel_add (R)

" Rel_dd (R)

Primitive 10. DATA ARRAY CREATION

Description:

It adds arelation that is the result of substituting a set of attributes X by another set Y in the source

relation. Each attribute of Y is calculated from an attribute of X. It removes the source relation.

Input:

ssourceschema: R(Ayg, ..., Ay) ORe / OBO{ Ay, ..., An} O

B represents a set of predefined values
= A OAt(R)

={Vy, .., Vi} setof measure attributes corresponding to each value of B
= source instance:: r

Basic Operations:

123

» Att_cpy {Att(R){A, B}}, R, R’)
* Att_calc ({RA}, =, {RB}, R".V)

» Att_calc (RA}, =, {RB}, R".V\)
« Rel_add (R)
« Rel_del (R)

Primitive 11. GROUP: PARTITION BY STABILITY

Sour ce schema:

s R(A ..., A)) ORelp /X OAtt(R)

Primitive14.6. VERTICAL PARTITION

Description:

It adds three relations, each of one is the result of removing a set of attributes from the source

relation. It removes the source relation.

Input:

= source schema : the source schema defined for the group

Y O{ Ay ..., Ay}, atributes which values never change

»Z0O{ A4, ..., Ay}, atributes which values sometimes change

sWO{ Ay, ..., An} , attributes which values change very frequently
WnYnzZ=0

= source instance: r

Basic Operations:

= Att_cpy {Att(R-{ZOW}}, R, Ry)
= Att_cpy {Att(R-{YOW}}, R, Ry)
= Att_cpy (Att(R-{YOZ}}, R, Ry)
* Rel_add (Ry)

* Rel_add (Ry)

* Rel_add (Ry)

* Rel_del (R)

Primitive14.7. HORIZONTAL PARTITION

Description:

It adds two relations that are the same as the source one. It removes the source rel ation.

124

Input:

= source schema : the source schema defined for the group

= source instance : r

Basic Operations:

= Att_cpy (Att(R), R, Rew)
= Att_cpy (Att(R), R, Ryis)
* Rel_add (Rew)

» Rel_add (Ruis)

*Rel_del (R)

Primitive 12. GROUP: HIERARCHY GENERATION

Sour ce schema:

" Ry..R,/ OA/ADOAt(R), i=1..n O Aisthelowest level of one hierarchy

Primitive14.8. DE-NORMALIZED HIERARCHY GENERATION

Description:

It adds arelation R’ constructed with attributes that are given in the input (Jy,, J,) and defines a
key for it. Besides it adds a set of relations that are the same as the input ones (R,, R,), except
for some attributes (J;,, J,,) that are removed from them and one attribute (K) that is included in
them. This attribute is defined as foreign key with respect to R’, in each of these relations. The

source relations are removed.

Input:

= source schema : the source schema defined for the group

={ Ji,, Jn}, Set of attributes that constitutes a hierarchy /
AO{J,...,Idn} OAisthelowest level

=K/ KO{ J, ..., Jn} key for the hierarchy

= sourceinstance: rq, ..., 'y

Basic Operations:

= Att_add ({Jy, ..., In}, R’)

* Key_add ({K}, Att(R'))

v Att_cpy {AR(R)- {1, -y It} R ir1.n
= Att_add {K},R’) i:1l.n

= FKey_add ({K}, Attex(R'i, R), Attex(R')) i 1.0
* Rel_add (R’)

125

*Rel_add (R) i: 1.n
*Rel_del (R) i:1.n

Primitive14.9. SNOWFLAKE HIERARCHY GENERATION

Description:

It adds a set of relations (Ryy, ..., Rym.1) constructed with attributes that are given in the input (Jy,,
J.) and defines a key and a foreign key for each of them. Besides it adds a set of relations that are
the same as the input ones (R,, R,), except for some attributes (J;,, J.,) that are removed from
them and one attribute (K) that is included in them. This attribute is defined as foreign key with

respect to R y, in each of these relations. The source relations are removed.

Input:

= source schema : the source schema defined for the group
"y, ..., Jm, SOrted list of attributes that congtitutes a hierarchy /
A0O{J,)} OAisthelowest level

K/ KO{ J, ..., Jn} key for the hierarchy

" sourceinstance: ry, ..., Iy

Basic Operations:

= Att_add ({3, J+1}, Ry) i:1..m-1

= Key add ({J}, Attk(Ry)) , i:1.m-1

* FKey_add ({ J.1}, Attex (Rii, Ryiva), Attex(Ry)) . 00 L.m-1
= Att_ cpy {A(R)-{J, ..., In}}, R, R), i:1l.n

» Att_add {K}, R')), ir1.n

* FKey_add ({K}, Attex(R'i, Ru), Attr(R')) i1.n

*Rel_add (R;), it 1.m-1

*Rel_add (R'), ir1.n

*Rel_del (R), ir1.n

Primitive 14.10. FREE DECOMPOSITION - HIERARCHY GENERATION
Description:

It adds a set of relations (Ryy, ..., Rym.1) constructed with attributes that are given in the input (Jy,,
Jn) and defines a key for each of them. Besides it adds a set of relations that are the same as the
input ones (Ry,, Ry), except for some attributes (J;,, J,,) that are removed from them and one
attribute (K) that isincluded in them. This attribute is defined as foreign key with respect to R 4, in

each of these relations. The source relations are removed.

126

Input:

= source schema : the source schema defined for the group
" Jy, ..., I, Set Of attributes that constitutes a hierarchy /
AO{J, ..., dn} O Aisthelowest level

K/ KO{ 3,, Jn} key for the hierarchy
"{ Ry, ..., Rn}, setof relations where the attributes of the hierarchy are distributed /
K OAtt(Ry) O A OAtt(Ry))

= sourceinstance: rq, ..., 'y

Basic Operations:

= Att_add (X;, Ry) , i: 1.h

* Key_add ({K}, Att(Ru))

v Att_cpy (A(R)-{ I, ... In}}, Ry R, ir1.n
= Att_add {K}, R%) , i:1l.n

= FKey_add ({ K}, Attex(R'i, Ry), Attec(R')) i:1l.n
= Rel_add (Ry) , i 1.m-1

= Rel_add (R%y) , i:1l.n

" Rel_del (R), i:1.n

Primitive 13. MINIDIMENSION BREAK-OFF

Description:

It adds two relations R; and R,. R; is the result of substituting in R, a set of attributes X by one
attribute K, and defining this attribute as foreign key to R,. R; is a new relation which attributes are
the set of attributes X, and K is defined asits key. It removes the source relation R.

Input:

= source schema: R (Ay, ..., Ay) ORelp
= K , key for the new dimension
s X O{ Ay ..., Ay}, setof attributes of the minidimension

= source instance: r

Basic Operations:

v Att_cpy {At(R)-X}, R, Ry)

« Att_add ({K}, Ry)

* FKey_add ({K}, Attex(Ry, Ro), Attri(Ry))
« Att_add ({K}OX, Ry)

= Key_add ({K}, Attc(Ry))

« Rel_add (Ry)

127

* Rel_add (R,)
*Rel_del (R)

Primitive 14. NEW DIMENSION CROSSING

Description:

It adds a new relation, which attributes are the union of the attributes of all the source relations
minus the attributes specified in the input to be excluded. Besides, it defines the key of the new

relation as the union of the keys of all the source relations. It removes the source relations.

Input:

s sourceschema: Ry, ..., R,/ RO(Rely O Relp), i=1.n O
Att(R) = X; O
RinR.=A, j=1.n1
"Yy, ..., Yn, setsof attributesto be excluded from the resulting relation / X; O Y;

= sourceinstance: rq, ..., 'y

Basic Operations.

v Att_add (Oj=p.n (A((R) =Y, R)

* Key_add (Oi=1.n Xi, Attk(R))

« FKey add (X;, Attec(RR), Attex(R)), i: 1.0
« Rel_add (R)

Rel_del (R), i=1.n

128

4. Appendix 4 - Class Diagram of the DW Design Tool

In this appendix we show the class diagram of highest level, and the class diagrams of lower levels that

are necessary to show the parts that were added in the context of the present thesis, i.e. the representation

of the Invariants and the Rules. The rest of the class diagram can be found in [Gar99].

The parts of the diagram that are marked in bold and the RuleDirectory diagram, are the parts that were

added in the present work.

The Virtual Machine

PrimitiveDirectory

FunctionDirectory

DomainDirectory

DatawarehouseSchema

RepositorySchema

contains .
TransformationTrace 4{ RuleDirectory |

Datawar ehouseSchema and RepositorySchema

contains

Genera Schema

DatawarehouseSchema ‘ RepositorySchema

Methods for
invariants
checking

129

PrimitiveDirectory

. : Method
PrimtiveDirectory loadRules
Attributerules
<< >>
Abstreet>>] Method I nsRules
Primitive
RuleDirectory
Sequence
RuleDirectory
<<Abstract>>
Rule
|Ruetr | |Rue2 | [Rue2 | |Rues |
CollectableObj ect
<<Abstract>>
] Collection
contains

\ 4
CollectableObject

Function

<<Abstract>>
Primitive Rule

<<Abstract>>

130

Bibliography

[Abeos]

[Adags]

[Agro7]

[AlcO0]

[Arz99]

[Balog]

[Ban87]

[Bat92]

[Blag9-1]

[B1a99-2]

[Calog]

[Cha97]

[CSI99]

R. Abella, L. Coppola, D. Olave,. Un Datawarehouse para la Facultad de Ingenieria.
Universidad de la Republicadel Uruguay. In.Co. Proyecto de Taller 5. 1998.

C. Adamson, M. Venerable. Data Warehouse Design Solutions. J. Wiley & Sons, Inc.
1998

R. Agrawal, A. Gupta, S. Sarawagi. Modeling Multidimensional Databases. |CDE 1997

A. Alcarraz, M. Ayala, P. Gatto. Disefio e Implementacion de una herramienta para
evolucion de Data Warehouses. Universidad de la Republica del Uruguay. In.Co. Proyecto
en curso de Taller 5. 2000.

G. Arzua, G. Gil, S. Sharoian. Manegjador de Repositorio para Ambiente CASE. Facultad
de Ingenieria. Universidad de la Republicadel Uruguay. In.Co. Proyecto de Taller 5. 1999.

C. Ballard. Data Modeling Techniques for Data Warehousing. SG24-2238-00. IBM Red
Book. ISBN number 0738402451. 1998.

J. Banerjee, W. Kim, H-J. Kim, H. F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. In proc. of the ACM SIGMOD Int'l Conf.
Management of Data, San Francisco, CA, May 1987.

Batini, Ceri, Navathe. Conceptual Database Design. An Entity-Relationship Approach. The
Benjamin/Cummings Publishing Company, Inc. 1992

M. Blaschka. FIESTA: A Framework for Schema Evolution in Multidimensional
Information Systems. Proc. of 6". CAISE Doctora Consortium, 1999, Heidelberg,

Germany.

M. Blaschka, C. Sapia, G. Hofling. On Schema Evolution in Multidimensional Databases.
Proc. DawakK 99, Florence, Italy.

D. Cavanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. (DWQ project). A
Principled Approach to Data Integration and Reconciliation in Data Warehousing. Proc.
CAISE ‘99 Workshop on Design and Management of Data Warehouses (DMDW ‘99),
1999.

S. Chaudhuri, U. Dayal. An overview of Data Warehousing and OLAP Technology.
SIGMOD Record 26(1). 1997.

Grupo CSl. Disefio y mantenimiento dinAmico de Data Warehouses — Aplicacion en €
contexto de la Web. V Jornadas de Informatica e Investigacién Operativay VIII Encuentro
del Laboratorio de Ciencias de la Computacion . Facultad de Ingenieria. Universidad de la

Republica del Uruguay. In.Co. Marzo ‘99.

131

[DoCO0]

[EImO0]

[Fer93]

[Fer94]

[Fer95]

[Fer96]

[Gar99]

[Golog]

[Hac97]

[Hai9l]

[Ham95]

[Hull97]

[Hull96]

[Inm9g]
[Kim96-1]

[Kim96-2]

A. do Carmo. Aplicando Integracion de Esquemas en un contexto DW-Web. Master's
Thesis. Pedeciba. Universidad de la Republica del Uruguay. 2000.

Elmasri, Navathe. Fundamentals of Database Systems. Addison-Wesley 2000.

F. Ferradina, R. Zicari. Object Database Schema Evolution: are Lazy Updates always
Equivalent to Immediate Updates? Technical Report n11/93, University of Frankfurt.
Presented at OOPSLA Workshop, September 1993, Washington D.C.

F. Ferradina, T. Meyer, R. Zicari. Implementing Lazy Database Updates for an Object
Database System. Proc. of the 20™. International Conference on VLDB, Santiago de Chile,
September 1994.

F. Ferradina, T. Meyer, R. Zicari. Measuring the Performance of Immediate and Deferred
Updates in Object Database Systems. OOPSLA Workshop on Object Database Behaviour,

Benchmarks and Performance. Austin, Texas, October 15, 1995.

F. Ferradina, S. Lautemann. An Integrated Approach to Schema Evolution for Object
Databases. OOIS 1996, London, U.K.

P. Garbusi, F. Piedrabuena, G. Vazquez. Disefio e implementacién de una herramienta de
ayuda en € disefio de un Data Warehouse Relacional. Facultad de Ingenieria. Universidad
dela Republica del Uruguay. In.Co. Proyecto de Taller 5. 1999.

M. Golfarelli, Stefano Rizzi. A Methodological Framework for Data Warehouse Design.
DOLAP 1998.

M. S. Hacid, U. Sattler (DWQ project). An Object-Centered Multi-dimensional Data
Model with Hierarchically Structured Dimensions. Proc. of the IEEE Knowledge and Data
Engineering Workshop. 1997.

J. L. Hainaut. Entity-Generating schema transformations for Entity-Relationship models.
ER 1991: 643 — 670.

J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Yue Zhuge. The Sanford Data
Warehousing Project. Data Eng. Bulletin, 18(2), June 1995.

R. Hull. Managing Semantic Heterogeneity in Databases: A Theoretical Perspective.
PODS 1997.

R. Hull, G. Zhou. A Framework for Supporting Data Integration Using the Materialised
and Virtual Approaches. SIGMOD Conf., Montreal, 1996.

W. H. Inmon. Building the Operational Data Store. John Wiley & Sons Inc., 1996.
R. Kimball. The Data Warehouse Toolkit. J. Wiley & Sons, Inc. 1996

R. Kimball. Dangerous Preconceptions. The Data Warehouse Architect, DBMS Magazine,
August 1996, URL : http://www.dbmsmag.com

132

[Kim96-3]

[Kimog]

[Kor99]

[Lab97]

[Labos]

[Lau9s6]

[Lau97]

[Levos]

[Lig9g]

[Ngu89]

[Nicog]

[Pap9g]

[Per0Q]

[Per 99]

R. Kimbal. Sowly Changing Dimensions. The Data Warehouse Architect, DBMS
Magazine, April 1996, URL: http://www.dbmsmag.com

R. Kimball. The Data Warehouse Lifecycle Toolkit. J. Wiley & Sons, Inc. 1998

M. A. R. Kortnik, D. L. Moody. From Entities to Sars, Showflakes, Clusters,
Constellations and Galaxies: A Methodology for Data Warehouse Design. 18"
International Conference on Conceptual Modelling. Industrial Track Proceedings. ER’ 99.

W. J. Labio, Y. Zhuge, J. N. Wiener, H. Gupta, H. GarciaMoalina, J. Widom. Stanford
University. The WHIPS Prototype for Data Warehouse Creation and Maintenance.
SIGMOD 1997.

W. Labio, H. GarciaMolina. Efficient Snapshot Differential Algorithms for Data
Warehousing. VLDB Conf., Bombay, 1996.

S. Lautemann. An Introduction to Schema Versioning in OODBMS. In proc. of the 7.
Int'l. Conf. on Database and Expert Systems Applications (DEXA), Zurich, Switzerland,
September 1996. IEEE Computer Society. Workshop Proceedings.

S. Lautemann. Schema Versions in Object Oriented Database Systems. In proc. of the 5™.
Int'l. Conf. On Database Systems for Advanced Applications (DASFAA), Melbourne,
Australia, April 1997.

A. Y. Levy, A. Rgjaraman, J. J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. VLDB 1996.

S. Ligouditianos, T. Sellis, D. Theodoratos, Y. Vassiliou. (DWQ project). Heuristic
Algorithms for Designing a Data Warehouse with SPJ Views. Proc. DawaK '99, Florence,
Italy

G. T. Nguyen, D. Rieu. Schema Evolution in Object-Oriented Database Systems. Data &
Knowledge Engineering (DKE) , Volume 4, 1989.

A. Nica, A. J. Lee, E. A. Rundensteiner. The CVS Algorithm for View Syncronization in
Evolvable Large-Scale Information Systems. In Proceedings of International Conference on
Extending Database Technology (EDBT’98), Spain 1998.

Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina. Object Fusion in Mediator Systems.
VLDB 1996.

V. Perdta Sobre e pasaje del esguema conceptual al esquema ldgico de un Data
Warehouse. Facultad de Ingenieria. Universidad de la Republica del Uruguay. In.Co.
Reporte Técnico. 2000.

V. Perdta, A. Marotta, R. Ruggia. Designing Data Warehouses through schema
transformation primitives. 18", International Conference on Conceptual Modelling. Posters

and Demonstrations. ER’99.

133

[Picog]

[Quigg]

[Run97]

[Sil97]

[Skas6]

[Sta90]

[Theo99-1]

[Theo99-2]

[Theo99-3]

[Tho97]

[Tork97]

[Vas9g]

[Wid95]

[Wie96]

[Wu97]

[Zhaog]

A. Picerno, M. Fontan. Un editor para CMDM. Facultad de Ingenieria. Universidad de la
Republica del Uruguay. In.Co. Proyecto de Taller 5. 1999.

C. Quix. Repository Support for Data Warehouse Evolution. Proc. CAISE 99 Workshop
on Design and Management of Data Warehouses (DMDW *99), 1999.

E. A. Rundensteiner, A. J. Lee, A. Nica. On Preserving Views in Evolving Environments.
In Proceedings of 4™ Int. Workshop on Knowledge Representation Meets Databases
(KRDB’97). Greece 1997.

L. Silverston, W. H. Inmon, K. Graziano. The Data Model Resource Book. J. Wiley &
Sons, Inc. 1997

A. H. Skarra, S. B. Zdonik. The Management of Changing Types in an Object-Oriented
Database. OOP SLA 1986, Portland, Oregon.

B. Staudt Lerner, A. Nico Habermann. Beyond Schema Evolution to Database
Reorganization. ECOOP/OOPSLA 1990 Proceedings.

D. Theodoratos, T. Sellis (DWQ project). Designing Data Warehouses. DKE ‘99

D. Theodoratos, S. Ligoudistianos, T. Sellis. (DWQ project). Designing the Global Data
Warehouse with SPJ Views. Proc. CAISE ‘99, Heidelberg, Germany.

D. Theodoratos, T. Sellis. (DWQ project). Dynamic Data Warehouse Design. Proc.
DawakK '99, Florence, Italy

E. Thomsen. OLAP Solutions. Building Multidimensional Information. John Wiley & Sons,
Inc., 1997.

M. Tork Roth, P. Schwarz. Don't Scrap It, Wrap It! A Wrapper Architecture for Legacy
Data Sources. VLDB 1997.

P. Vassiliadis, M. Bouzeghoub, C. Quix. Towards Quality-oriented Data Warehouse
Usage and Evolution. Proc. of the 11" Conference on Advanced Information Systems
Engineering (CAISE *99), Hiedelberg, Germany, 1999.

J. Widom. Research Praoblems in Data Warehousing. Int’l Conf. On Info. And Knowledge
Management (CIKM), November 1995.

J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina, J. Widom. A System
Prototype for Warehouse View Maintenance. Workshop on Materialised Views:
Techniques and Applications, June 1996.

Ming-Chuan Wu, Algjandro P. Buchmann. Research Issues in Data Warehousing. BTW
German Database Conference, 1997.

Xin Zhang. Data Warehouse Maintenance Under Interleaved Schema and Data Updates.
A master thesis submitted to the Faculty of the Worcester Polytechnic Institute. Thesis
Advisor: Professor E. A. Rundensteiner. May 1999.

134

[Zhou95] G. Zhou, R. Hull, R. King, J. Franchitti. Data Integration and Warehousing Using H20.
Data Eng. Bulletin, 18(2), 1995.

[Zhu95] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom. View Maintenance in a Warehousing
Environment. SSIGMOD Conf., San Jose, May 1995.

[Zhu96-1] Y. Zhuge, H. GarciaMolina, J. Wiener. The Strobe Algorithms for Multi-source
Warehouse Consistency. PDIS, Miami Beach, 1996.

[Zhu96-2] Y. Zhuge, H. GarciaMolina, J. Wiener. Consistency Algorithms for Multi-Source

Warehouse View Maintenance. Technical report, Stanford University, 1996.

[Zic91] R. Zicari. A Framework for Schema Updates In An Object-Oriented Database System. GIP
Altair, Politecnico di Milano, Milano, Italy, 1991.

135

