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Resumen

Una red déarea extendida (Wide Area Network- WAN) puede ser considerada como un conjunto de

sitios interconectados por lı́neas de comunicación. Topologicaḿente, una red WAN esta organizada en dos

niveles: la Red Dorsal (Backbone) y la Red de Acceso (Access Network) compuesta de un cierto número

de sub-redes de acceso locales. Cada sub-red de acceso local usualmente tiene topologı́a deárbol, teniendo

como ráız un nodo de la Red Dorsal (un sitioswitch). Los sitios terminales (o clientes) se conectan direc-

tamente al sitio dorsal correspondiente a una sub-red de acceso o bien a un sitio concentrador de la misma.

La Red Dorsal tiene usualmente topologı́a de malla y su proṕosito es permitir comunicación eficiente y

confiable entre los nodos de la Red Dorsal que actúan como puntos de entrada para las sub-redes de acceso

locales.

En esta tesis atacamos el problema del diseño de una red WAN descomponiéndolo en dos sub-problemas

interrelacionados: el diseño de la Red de Acceso (the Access Network Design Problem- ANDP) y el disẽno

de la Red Dorsal (the Backbone Network Design Problem- BNDP). En ambos modelos consideramos

solamente costos de construcción, por ejemplo, los costos de dragado para el tendido de lı́neas y la puesta

en servicio del cableado de la red.

Modelamos el ANDP como una variante del Problema de Steiner en Grafos (the Steiner Problem in

Graphs- SPG), y el BNDP en base al Problema General de Steiner en Grafos con requerimientos de nodo

conectividad (the Generalized Steiner Problem with Node-Connectivity Constraints- GSP-NC). Adeḿas,

estudiamos un caso particular del BNDP en el cuál tenemos requerimientos de 2-nodo-conectividad en-

tre pares de sitios switch fijos de la Red Dorsal. Este problema lo denominamos BND2NS (the 2-Node-

Survivable Backbone Network Design Problem). El ANDP, BNDP y BNDP2NS son problemas NP-Hard.

Nuestro objetivo fue resolver el ANDP, BNDP y BNDP2NS mediante el diseño de heuŕısticas efi-

cientes. Optamos por la meta-heurı́stica GRASP (Greedy Randomized Adaptive Search Procedure) como

base para el diseño de algoritmos a medida para estos problemas. GRASP es una metodologı́a potente

que ha demostrado ser altamente eficiente al ser aplicada en otros problemas de optimización combinato-

ria. Desarrollamos algoritmos GRASP para los tres problemas, introduciendo diferentes alternativas tanto

para la fase de construcción como para la b́usqueda local. Los algoritmos diseñados explotan fuertemente

propiedades téoricas que incluyen la descomposición topoĺogica de las soluciones factibles. Introducimos

adeḿas un modelo neural subyacente (Random Neural Network- RNN) utilizado en una de las búsquedas

locales para el ANDP.

En los tres problemas, las heurı́sticas GRASP disẽnadas fueron testeadas sobre grandes conjuntos de

instancias de prueba, con topologı́as de diferentes caracterı́sticas, incluyendo instancias con centenares de

nodos. Los resultados computacionales obtenidos fueron altamente prometedores, alcanzado en muchos

casos la optimalidad o bien soluciones factibles minimalesóptimas locales de bajo costo.
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Abstract

A wide area network (WAN) can be considered as a set of sites and a set of communication lines that

interconnect the sites. Topologically a WAN is organized in two levels: thebackbone networkand the

access networkcomposed of a certain number oflocal access networks. Each local access network usually

has a tree-like structure, rooted at a single site of the backbone, and connects users (terminal sites) either

directly to this backbone site or to a hierarchy of intermediate concentrator sites which are connected to the

backbone site. The backbone network has usually a meshed topology, and its purpose is to allow efficient

and reliable communication between the switch sites that act as connection points for the local access

networks.

In this thesis we tackled the problem of designing a WAN by breaking it down into two inter-related

sub-problems: the Access Network Design Problem (ANDP) and the Backbone Network Design Problem

(BNDP). In both models we considered only the construction costs, e.g. the costs of digging trenches and

placing a fiber cable into service.

We modeled the ANDP as a variant of theSteiner Problem in Graphs(SPG), and the BNDP on the basis

of theGeneralized Steiner Problem with Node-Connectivity Constraints(GSP-NC). In addition, we studied

the specific case of BNDP when there exist 2-node-survivability requirements between pairs of backbone

fixed nodes. We call it BNDP2NS and it is analogous to theSteiner 2-node-survivable network problem

(STNSNP). ANDP, BNDP, and BNDP2NS are NP-Hard problems.

Our goal was to attack the ANDP, BNDP, and BNDP2NS models heuristically. We opted for the GRASP

(Greedy Randomized Adaptive Search Procedure) methodology for solving them. GRASP is a powerful

method which has been used with success to find good quality solutions to many combinatorial optimiza-

tion problems. We developed GRASP algorithms for these three problems, designing different alternative

algorithms for the construction and local each phases. The algorithms exploited theoretical properties in-

cluding feasible solution decompositions. We also introduced an algorithm based on the RNN (Random

Neural Network) model, which was used in the ANDP local search phase.

For the three problems, the GRASP heuristics were tested over large testing problem sets containing

heterogenous topologies with different characteristics, including instances with hundreds of nodes. The

computational results were highly promising, accomplishing the optimality in many cases or good quality

local-optimal solutions.

Key words: topological design, metaheuristic, access network, backbone network, survivability, GRASP,

RNN.
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Chapter 1

Introduction

1.1 Motivation and General Context

Telecommunication networks have become strategic resources for private and state-owned institutions and

its economic importance continuously increases. There are series of recent tendencies that have a consid-

erable impact on the economy evolution such as growing integration of networks in the productive system,

integration of different services in the same communication system, important modifications in the tele-

phone network structure (voice and data integration, mobility, telephony development on IP platforms, etc).

Such evolutions accompany a significant growth of the design complexity of these systems. The integration

of different sorts of traffics and services, the necessity of a more accurate management of the service qual-

ity, in particular on IP platforms (but on which has not been anticipated the evolution management and the

technologies coexistence), are factors that make this type of systems very hard to design, to dimension and

therefore to optimize. This situation is complemented with a very high competitiveness context, on an area

of critical strategic importance.

In this work, we will focus on modern communication network planning. This field has considerably

developed recently mostly owing to the introduction of optic fiber technologies which have very good

performance. The planning and design of telecommunication networks is a very complex and generally

expensive task. It integrates optimization process loops, analysis activities and quantitative evaluations. The

planning team must consider the already existent or anticipated needs, the costs of the different elements

that compose the systems, the restrictions on the performance, the reliability, the evolutiveness, the service

quality, etc., besides specific restrictions on each particular system and, as a function of these, design a

network as adapted as possible to the technical and to the economic plan. In the case of small size networks,

the team may consist of a single person while in large-scale networks as wide telecommunication networks

(a WAN: Wide Area Network) the planning team may be constituted by several people working at different

9
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organization levels.

The conception of a WAN is a process in which dozens of sites with different characteristics require to be

connected in order to satisfy certain reliability and performance restrictions with minimal cost. This design

process involves the terminal sites location, the concentrators location, the backbone (central network or

kernel) design, the routing procedures, as well as the lines and nodes dimensioning. A key aspect on WAN

design is the high complexity of the problem, as much in its globality as in the principal sub-problems

in which it is necessary to decompose it. Due to the high investment levels a cost decrease of very few

percentage points while preserving the service quality results in high economic benefits.

Typically, a WAN network global topology can be decomposed into two main components: theaccess

networkand thebackbone network. These components have very different properties, and consequently

they introduce specific design problems (although they are strongly interdependent). On one hand, this

causes complicated problems (particularly algorithmic ones); on the other hand, it leads to stimulating and

difficult research problems.

A WAN access network is composed of a certain number of access sub-networks, having tree-like

topologies; and the flow concentration nodes allow to diminish the costs. These integrated flows reach the

backbone which has a meshed topology, in order to satisfy security, reliability, vulnerability, survivability

and performance criteria. Consequently, the backbone is usually formed by high capacity communication

lines such as optic fiber links. In general, this WAN topological feature is valid in the case of a datagram

based network (as in IP technology) and also in circuit commutation (as in the current telephone network

or other technologies like X25, Frame Relay o ATM).

Globally, the designing team manages an important amount of data to propose a model that fulfills the

preestablished requirements. For instance, it has information about the set of the terminal sites positions (the

company customers, the service subscribers, etc.) and about the characteristics (most of the time estimated)

of the inter-sites flows (volume, temporary behaviour, etc). Also there is information about the performance

restrictions (for example delays), about the service quality (for example of video data quality), and on

aspects such as reliability, vulnerability, connectivity, security and availability. On the network components

aspect, the designer has a list of possible components according to the involved network nature, with its

characteristics and costs. The technical nature of the considered network leads to specific routing procedures

that should be taken into account for searching efficient solutions, or if possible optimal solutions. In general

there are many other complementary data such as which sites are suitable to install a concentrator in, which

ones are not suitable for that, which backbone sites must have switch servers, special characteristics or

security restrictions for some flows, etc.

Based on this data set, the designer must specify the access network and the backbone network topolo-

gies as well as the characteristics of the different sites and connections, the traffic routing, etc. The result of

this process are specific optimization models for the design of both subnetworks and for the global WAN
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design problem. This global set of problems typically include the evaluation of performance, reliability, etc.

1.2 A general WAN Design Process

Modelling a WAN design by means of the formulation of a single mathematical optimization problem is

very intricate due to the interdependence of its large amount of parameters. Therefore the design of a WAN

is usually divided into different sub-problems. A good example of a possible decomposition approach for

the WAN design process is the following [108]:

I) Access and backbone network topologies design. Specific knowledge about the cost of laying lines

between different network sites (terminals, concentrators and backbone) is assumed. Frequently,

these costs are independent of the type of line that will effectively be installed since they model the

fixed costs (cost of digging trenches in the case of optic fiber, installing cost, placing a fiber cable

into service, etc.). A high percentage from the total construction network budget is spent in this

phase [126].

II) Dimensioning of the lines that will connect the different sites of the access and backbone networks,

and the equipment to be settled in the mentioned sites.

III) Definition of the routing strategy of the flow on the backbone network.

These three sub-problems have different types of constraints:

• for the sub-problem(I):

– The terminal sites (the clients) must be connected either directly to a backbone node, or through

a hierarchy of intermediate concentrator sites which are connected to the backbone. Usually,

there exist additional restrictions such as limiting the number of concentrators connected in

cascade, so that in the case of a trunk line cut a significative number of terminal sites will not be

affected.

– The backbone must satisfy reliability restrictions that allow it to remain operational (connected)

when failures occur in its servers or links. These reliability restrictions are often expressed in

terms of the network connectivity. For instance, telecommunication network topologies which

have proved being highly performant are the 2-node-connected optic fiber networks. Its physical

components have very low failure rates; and the network itself is resilient in the presence of a

failure in a node or link. In the same direction, 3-node-connected topologies have been used in

optic fiber networks connecting critical sites of a aircraft carrier [78, 126].
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• Once the topological structure of the WAN is designed, its components are dimensioned in order

to fulfill the performance requirements. A routing plan design and the projection of flows over the

backbone must be done so that the performance restrictions imposed be respected. In this way, it can

be noticed that(II) and(III) are not independent. Taking into account the technologies used, some

of the usual performance restrictions are:

– the traffic delay should not be greater than a certain prefixed limit. This restriction is imposed

to the access network as well as to the backbone.

– the blocking factor (the probability of a new connection to not succeed) must be lower than a

certain prefixed value.

– the packet loss rate must be relatively low. A level of10−4 constitutes the agreed maximal level

of the packet loss rate for a network normally working, for today standards.

We give below a generic WAN planning process as well as references related to other works in this

area, including topics such as hierarchical network design, multitechnology network design, etc. Taken

from [108]:

1) Backbone nodes localization. This implies producing a hypothesisH regarding the backbone sites

localization or modifying the precedent hypothesis. These hypothesis must consider the switches

installation in the core of the most dense zones.

2) Access network conception:

a) Depending on the hypothesisH, an access topology is constructed by optimally placing the

concentrator equipments. If this is not possible, at least a local optimum should be reached as

the result of applying clustering strategies.

b) Determination of the needed capacities in the access network (links and nodes).

c) Determination of the access network performances by adjusting them to the required level (spec-

ified in 2b).

d) Determination of the access network reliability by tunning corresponding parameters to meet

the required level (specified in2b).

e) Compute the access network cost.

f) Determination of the reduced matrix of point-to-point traffic between the backbone switch nodes

which are entries of the access sub-networks induced by2a. These flows must be routed over

the backbone topology once this last one has been designed.
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3) Backbone network conception:

a) Based on the hypothesisH, a backbone network topology is built adjusted to the reliability

demands.

b) A routing strategy is defined. The point-to-point flows are projected into the network designed

in 3a. Thus, the paths of the backbone on which will circulate the effective traffic are obtained.

c) Determination of the needed capacities in the backbone network (links and nodes).

d) Determination of the backbone network performance in order to check if the required levels are

fulfilled. If necessary the network of3a or the capacities of3c are redefined.

e) Determination of the backbone network reliability by adjusting it to the required level. If neces-

sary the topology computed in3a is redefined.

f) Determination of the network fairness in order to achieve some required level. If necessary the

topology computed in3a is redefined.

g) Computation of the backbone network cost.

4) Results consolidation and global balance:

a) Determination of the global performances involving the access and the backbone networks si-

multaneously. If appropriate, return to2 or 3 depending on where performance restrictions

violations happen (i.e. in the access network, the backbone, or both).

b) Determination of the global reliability involving the access and the backbone networks. If ap-

propriate, return to2 or 3 depending on where reliability restrictions violations happen (i.e. in

the access network, the backbone, or both).

c) Compute the overall cost (composed of the access network cost and the backbone network cost).

If the WAN cost is approved, the obtained topology is returned as a solution. Otherwise, return

to 1 in order to produce a new hypothesisH.

Based on performance evaluation procedures and dimensioning rules common to both network levels

(access network and backbone), in [108] each sub-problem is studied and specific algorithms to solve

them are proposed. The connections cost taking into account the geographic distances among the involved

sites and the annual connection tariffs provided by the telecom operators are estimated. For the topological

design of the access network the authors use clustering approaches regarding to the backbone switch nodes

whereas for the topological design of the backbone network they apply a variant of the Steiglitz heuristic,

denominated Hierarchical Method. Even if the testing cases presented are relatively small, the suggestedd

methodology can be useful as a reference about the way of decomposing the WAN topological planning
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process into several sub-problems. For other related works concerning the optimal design of a multi-level

hierarchical network the reader can consult the references [10, 8, 11, 81, 24, 25, 38, 79, 94, 128]. Mainly,

they are centered in network planning contemplating also several aspects of network dimensioning. Other

problems in this area can be found in [3, 16, 53, 55, 56, 107, 129], where the authors propose several

models for designing low-cost network topologies with additional constraints such as fault tolerance and

performance restrictions, considering in addition in some of them network components dimensioning.

In this thesis, we will concentrate on phase(I) of the decomposition of a WAN design process. More

precisely, we are interested in the topology planning process concerning the access network and the back-

bone network. Our motivation comes from the necessity of devising efficient approximated algorithms for

these topological design highly-combinatorial problems. Due to the NP-hard nature of the problem and

even though there exist some results, there is still room for improving industrial practices applied today.

In this sense, we believe it is of strategic importance designing powerful quantitative analysis techniques,

potentially easy to integrate into tools. We introduce combinatorial optimization models to formally define

the topological design of the access and backbone networks, and we propose different approximated algo-

rithms to solve them which are based on the well-known GRASP (Greedy Randomized Adaptive Search

Procedure) methodology [45].

1.3 Access and Backbone Network Design Problems

We will define these problems in terms of graph theory; for this purpose we introduce the following notation:

• ST is the set of terminal sites (clients) to be connected to the backbone.

• SC is the set of feasible concentrator sites of the access network. On each one of these sites, an inter-

mediate server equipment might be placed. From this one, a trunk line is laid towards the backbone

or other concentrator site.

• SD is the set of feasible switch sites of the backbone network. On each one of these sites, a powerful

server might be placed and from it, connection lines towards other backbone server equipments.

• V = ST ∪ SC ∪ SD are all the feasible sites of the WAN network.

• A = {aij}i,j∈V is a matrix which gives for any pair of sitesi, j ∈ V , the costaij ≥ 0 of laying a line

between them. When the direct connection betweeni andj is not possible, we defineaij = ∞.

• U = {(i, j)|i, j ∈ V, aij < ∞} is the set of all the feasible connections between the different sites of

the WAN network.
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• G = (V, U) is the simple graph which models every node and feasible connection of the WAN.

The General Access Network Design Problem (GANDP) consists of finding a minimum-cost subgraph

H ⊂ G such that all the sites ofST are communicated with some node of the backbone. This connection

can be direct or through intermediate concentrators. The use of terminal sites as intermediate nodes is not

allowed; this implies that they must have degree one in the solution.

We simplified the GANDP problem by collapsing the backbone into a fictitious node. We call it the

Access Network Design Problem (ANDP) and the equivalence between both problems, GANDP and ANDP,

is proved in Appendix A. The ANDP is NP-Complete (we will demonstrate it by reducing the Steiner

Problem in Graphs to it in Chapter 3).

Given a subset of switch sitesS(I)

D ⊆ SD and a non-negative integer matrixR = {rij}i,j∈S
(I)
D

, the

Backbone Network Design Problem (denoted by BNDP) consists of finding a minimum-cost subgraph

H ⊆ G(SD) such thatS(I)

D ⊂ H and∀i, j ∈ S(I)

D there exist at leastrij node-disjoint paths connecting

i with j in H. This problem can be modelled as the Generalized Steiner Problem in Graphs with Node-

Connectivity constraints (denoted by GSP-NC) which is NP-Complete in the general case [136].

For further details on the formulations of the Generalized Steiner Problem in its both versions, edge-

connectivity (denoted by GSP-EC) and node-connectivity, the reader may consult [134, 135, 136].

A particular case of the BNDP is whenrij = 2, ∀i, j ∈ S(I)

D . This is known in the literature as the

Steiner 2-node-survivable network problem (denoted by STNSNP) [6].

We callS(I)

D the set of fixed switch nodes. These will necessarily have to be integrated to the solution,

either because they are access sub-network entry points to the backbone or due to specific conception

requirements. The sites ofSD \ S(I)

D are optional (commonly named Steiner nodes) and may be use to

reduce the backbone cost.

Our aim in this thesis is the study of the ANDP and BNDP problems. For the BNDP case we study the

general case when the base model is the GSP-NC as well as the particular case when the base model is the

STNSNP, which we denote BNDP2NS (2-node-survivable BNDP). In the next subsection, we introduce a

survey of works related to the ANDP, BNDP and BNDP2NS.

1.4 Related Work

As we already mentioned when we are talking of networks in this thesis, we are interested only in their

topology, that is, we see a network as a set of sites and links that are placed between sites. Survivability

in this context means that between any two sites there exists a pre-specified number of paths (consisting of

nodes and links) that have no node or link in common. The only costs considered are costs associated with

the network topology like the cost of digging trenches in case of optic fiber. The problems ANDP, BNDP,
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and BNDP2NS correspond to this context. In practice, the topology of a network with low placement costs

is created first, and in a second optimization stage, traffic and routing costs are considered [126].

We concentrate first in the literature related to ANDP. In [2, 4, 12, 49, 57, 54, 72, 68, 96, 99, 110, 111],

the authors propose different approximate algorithms for the topological design of local and large-scale

access networks. They are based on different approaches, and consider different parameters and restric-

tions, including aspects such as: the design of the access network is restricted to specific topologies; the

number of concentrators to be placed is limited; network components dimensioning, etc. The resolution

techniques used in these works include: Lagrangian Relaxation mixed with the Sub-gradient Method [99],

Simulated Annealing [96], Linear Programming Relaxation [4], Lagrangian Heuristic, Greedy Heuris-

tics [72], Branch-and-Bound mixed with Lagrangian Relaxation, Branch-and-Bound with Benders decom-

position [110, 111], Neural Networks [2], Tabu Search [68], Genetic Algorithms, plus other specific meth-

ods.

Next we will focus on the GSP-NC and STNSNP (which are the reference models of base for our BNDP

y BNDP2NS problems) and their related survivability models like those presented in [135, 136, 126].

Winter [135, 134, 136] demonstrated that the GSP-NC can be solved in linear time if the network is

series-parallel, outerplanar or a Halin graph. Nextly, we will give a summary of the survivability problems

related to the GSP-NC and STNSNP. Gröstchel, Monma and Stoer [74] consider a particular case of the

GSP-NC working on a slightly different context. They called it the NCON problems. In [126], Stoer

gives an extensive survey for the NCON and the ECON (the version with edge-connectivity constraints),

and some particular cases. The NCON (resp. ECON) is formalized as follows. Given an undirected

graphN = (X,U) such that each edgee ∈ U has a fixed weightce representing the cost of establishing

the direct link connection. In particular, each nodei ∈ X has an associated nonnegative integerri, the

type of i (the survivability requirement or “importance” of a node is modeled by node types). LetH =

(W,F ) be a subgraph ofN . We say thatH satisfies the node-survivability conditions (also called node-

connectivity constraints or requirements), if, for each pairi, j ∈ X of distinct nodes,H contains at least

rij = min{ri, rj} node-disjoint paths communicatingi with j. Similarly, we say thatH satisfies the

edge-survivability conditions (also called edge-connectivity constraints or requirements), if, for each pair

i, j ∈ X of distinct nodes,H contains at leastrij = min{ri, rj} edge-disjoint paths communicatingi with

j. These conditions ensure that some communication path betweeni andj will survive a prespecified level

of node (or edge) failures.

Let us observe that the GSP-NC model generalizes the model given above since in the GSP-NC there

exist general survivability requirementsrij that are specified for each pairi, j of fixed nodes independently.

Nevertheless, Grötchel, Monma and Stoer [75, 77, 76, 78] introduce the use of node types to define sur-

vivability requirements based on the premise that these adequately express the relative importance placed

on maintaining connectivity between offices. They classify the different problem types according to the
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largest occurring node type and according to whether the node types represent node or edge connectivity

requirements. In this way, given a graphN = (X, U) and a vectorr = (ri)i∈X , by assuming (without loss

of generality) that there exist at least two node types of typek (which is defined as the largest node type),

they speak of thekNCON problem (resp.kECON) when the objective is to find a minimum-cost network

that satisfies the node survivability conditions (resp. the edge survivability conditions). If the highest value

of k is not specified, these problems are called NCON and ECON respectively. In particular, if all node

types have the same valuek, the problem NCON (resp. ECON) is reduced to findk-node-survivable (resp.

k-edge-survivable) networks having minimum cost.

Let us note that there exist many specializations of the survivability problems which can be formulated

by varying its parameters as follows:

• As mentioned previously, the GSP-NC and GSP-EC are more general models of survivability than

NCON and ECON, since the connectivity requirements are associated to pairs of nodes in independent

form and not necessarily involving all the nodes ofX.

• In the NCON and ECON, we haverij = min{ri, rj} for given nodes typesri, rj, which in turn may

be:

– general (kECON orkNCON problem),

– uniform (k-edge ork-node connected graphs),

– in {0, 1} (Steiner trees)

• general or euclidean or uniform costs.

There exist polynomially solvable cases of the NCON and ECON problem. They result from relaxing

the original problem with restrictions like uniform costs, 0/1 costs, restricted node types, and special under-

lying graphs such as outerplanar, series-parallel, and Halin graphs. All these particular cases are referenced

and briefly exposed in [126]. On the other hand, lower bounds and heuristics with worst-case guarantees

for kECON problems were found for restricted costs, e.g., uniform costs or costs satisfying the triangle

inequality, as well as very important results on the structure of optimal survivable networks for this cost

structure. Details of these works can be seen in [13, 34, 29, 48, 50, 69, 71, 102] and in a summarized form

in [126]. In [126], Stoer also summarizes heuristic procedures to solve generalkNCON andkECON prob-

lems. Monma and Shallcross [103] give heuristics for the 2ECON and 2NCON problems. Frederickson

and J́ajá [50] propose a heuristic for the 2NCON problem with worst-case guarantee of3/2 under costs

satisfying triangle inequality. Consider the NCON problem where instead a vectorr = (ri)i∈X we have a

matrixR = (rij)ij∈X ; this variant had been posed already in 1969 by Steiglitz, Weiner, and Kleitman [125],
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but they did not give it a specific name. They developed a simple heuristic for this problem which basi-

cally consists of a randomized starting routine and an optimizing routine where local transformations are

applied to a feasible solution. Ko and Monma [89] propose heuristics for the design ofk-edge ork-node

connected networks. Goemans and Bertsimas [69] propose a heuristic for the ECON problem with worst-

case guarantee. In addition, Goemans and Williamson [71] proposed an approximation algorithm which

can be applied to the GSP-EC (Generalized Steiner Problem with Edge-Connectivity Constraints) allowing

the use of multiple parallel edges. Khuller and Vishkin [88] propose an algorithm for thekECON problem

with a worst-case guarantee of2 and under the restriction that parallel edges are not allowed in the solution

and all types of nodes are equal. Recently, Balakrishnan, Magnanti and Mirchandani [9] presented a family

of new mixed-integer programming formulations for the GSP-EC, whose associated linear programming

relaxations can be tighter than those of the usual cutset formulation. They provide several combinatorial

heuristics for these formulations, which satisfy that the bounds on the heuristic costs relative to the optimal

values of the integer program and the linear programming relaxation of the tighter formulation are stronger

than some previously known performance bounds for combinatorial heuristics. For further details of these

works (and their performance tests) the reader may consult the cited references.

Unfortunately, there exist few exact algorithms for the NCON and ECON for general costs. Christofides

and Whitlock [36] introduce a cutting plane algorithm together with branch-and-bound for ECON problems

where instead a vectorr = (ri)i∈X we have a matrixR = (rij)ij∈X . Chopra and Gorres [33] give a cutting

plane algorithm mixed with branch-and-bound for solving 2ECON problems.

In the literature there are several works related to approximation algorithms for the GSP and different

particular cases. Next, we will introduce a survey of the main existing algorithms based on this approach.

In [112] the authors show how to obtain approximately optimal solutions to 2-edge-connected versions of

the problems addressed in [71]. Subsequent papers [70, 51, 133] extended these methods to give approx-

imation algorithms for the GSP-EC without link duplication. Agrawal, Klein and Ravi [1] developed an

algorithm for the GSP-EC with performance guarantee of2dlog2(rmax + 1)e, wherermax is the highest

requirement value. More recently Jain [83] presented a factor2 approximation algorithm for the GSP-EC.

Kortsarz, Krauthgamer and Lee [92] introduced the first strong lower bound on the approximability of the

GSP-NC when there are no Steiner nodes.

An important special case of the GSP-NC occurs when we are searching the minimum-costk-node-

connected subgraph spanning all the nodes. In first place, let us see the general case. In [29, 40, 32, 92, 93,

114, 113] the authors propose several approximation algorithms for the problem of finding a minimum-cost

k-node-connected spanning subgraph, besides they give their respective approximation ratios. Fork ≤ 7

an approximation ratio ofd(k + 1)/2e is known (see [86] fork = 2, [5] for k = 2, 3, [82] for k = 4, 5,

and [93] fork = 6, 7). Other approximations fork = 2 can be seen in [14, 39]. Furthermore, in [40], [31]

and [93] the authors respectively supply approximation algorithms for the following special cases: the graph
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has complete Euclidean topology, uniform costs, and metric costs (i.e. when the costs satisfy the triangle

inequality).

Another problem related to the GSP-NC (resp. GSP-EC) is the node-connectivity augmentation prob-

lem, where the goal is to find a minimum-cost set of edges that augments anm-node-connected (resp.

m-edge-connected) graph into ak-node-connected (resp.k-edge-connected) graph. Some of the principal

references in this area are [27, 30, 46, 52, 84, 95, 87, 104, 109, 106, 130, 132]. These papers provide

different approximation algorithms with their respective approximation ratios. Some of these works study

the particular case when the costs are uniform, which is commonly known as minimum-size connectivity

problem.

Finally, let us see works related to the STNSNP. In [6] Baı̈ou mentions different problems related di-

rectly to the STNSNP. In particular, the problems known as:

• the Steiner 2-edge-connected subgraph problem (STECSP), and

• the Steiner 2-node-connected subgraph problem (STNCSP), and

• the Steiner 2-edge-survivable network problem (STESNP).

The STNSNP (resp. STESNP) also corresponds to the problemkNCON (resp.kECON) in the case where

ri ∈ {0, 2}, ∀i ∈ X. Given a graphN = (X,U), a subsetT ⊆ X and a matrixC of connection costs

associated toU ; the objective in the STNCSP (resp. STECSP) is to find a minimum-cost 2-node-connected

(resp. 2-edge-connected) subgraph spanning the set of nodesT . If the matrixC is positive, the sets of

optimal solutions associated to the STNSNP and STNCSP are equal. Idem the sets of optimal solutions

associated to the STESNP and STECSP. If all the nodes are fixed (there are no Steiner nodes) the problems

STESNP and STECSP coincide, and also the STNSNP with the STNCSP. Moreover, it is easy to see that

all feasible solution of the STNCSP (resp. STECSP) is also feasible for the STNSNP (resp. STESNP).

In [37] the authors developed a linear algorithm to solve the STNCSP in the case of graphs withoutW4 (a

wheel graph with four nodes) and Halin graphs. The author of the present thesis has previously developed

a parallel method (of worst case exponential complexity) for the general case [23]. Other works related to

particular cases of the STNCSP, e.g. whenT = X or uniform costs, already have been mentioned above.

We find in the literature other works related to our BNDP. In [15, 26, 28, 41, 67, 66, 91, 97] the au-

thors provide different approaches for the topological design of a backbone network. Most of these works

are not only focused in the topological design, but they also consider aspects such as network dimension-

ing, routing mechanisms, etc. They are based on different optimization models which include selection of

network topology and other additional objectives. We can see these ones as network planning processes

where the goal is to find backbone topologies with lowest possible overall network price, while keeping all

requirements (such as availability, maximal number of, maximal blocking probability, etc.) satisfied. The
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resolution techniques used in these works include: Genetic Algorithms, Branch-and-Bound method mixed

with the algorithm of Ford-Fulkerson, Tabu Search, Greedy Heuristic combined with Tabu Search heuristic

as improver, Lagrangian Relaxation embedded in a sub-gradient optimization procedure, Dual-Based lower

bounding procedure incorporated in a Branch-and-Bound algorithm, Dual-Based solution procedure, Hy-

brid approach of a genetic algorithm and local search algorithms as improver, Tabu-Search heuristic with a

post-optimization algorithm, and other specific heuristics.

1.5 Manuscript Organization and Main Results

This thesis work is organized as follows. Chapter 2 introduces notation, basic definitions of graph theory,

and general descriptions of the GRASP metaheuristic and the Random Neural Network (RNN) model. In

Chapter 3 we study the ANDP problem. We propose different approximated algorithms to solve the ANDP.

These algorithms were designed based on the GRASP methodology. In particular, we provide several alter-

natives for the GRASP components: two algorithms for the construction phase and two algorithms for the

local search phase (one of these based on the RNN model). In this way, we yield four different versions of

GRASP algorithms to be applied to the ANDP. To proof practically our GRASP algorithms, we generate

a large ANDP test-set by customizing SPG instances extracted from the SteinLib library [90]. The opti-

mal costs of the original SPG instances provide lower bounds for the optimal costs of the corresponding

ANDP instances. Nevertheless, except for the cases in which we achieved the lower bound and therefore

the optimality, we do not know the optimal values for the generated ANDP instances. The experimental

results showed a good quality of the built solutions, obtaining in most of the cases optimal or near-optimal

solutions with low gaps with respect to the lower bounds. The main results presented in this chapter have

been published in [19, 20, 22, 122, 123]. In Chapter 4 we study the BNDP problem and propose different

approximated algorithms to solve it. As in the ANDP, we used GRASP methodology. We introduce an

algorithm for the construction phase as well as three algorithms for the local search phase. These three pro-

cedures are structurally different so that each of them explores a particular sub-space of neighbor solutions.

This allow to define different exploration strategies by suitably combining the local search algorithms. As

test-set for the BNDP, we used instances generated constructively with known optimum, instances gener-

ated by adding randomly Steiner nodes to TSP instances extracted from the TSPLib repository and specific

GSP instances from the literature. The algorithms obtained good results, attaining the optimum in many

cases or near-optimum solutions with low gaps (less than 0.7%) with respect to the optimum values. In

addition, for the cases without known optimal value (those derived from TSP instances), we achieved good

quality minimal feasible solutions when comparing them with tight lower bounds for the optimal 2-node-

connected solutions for the original TSP instances. The results concerning BDNP have also been published
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in [17, 18, 21]. In Chapter 5, we study our BNDP2NS. Based on specific structural properties of the 2-

node-survivable networks, we designed GRASP algorithms to solve approximately the BNDP2NS. More

precise, we introduce an algorithm for the construction phase based on a topological characterization of

2-connected graphs. Furthermore, we give other two alternative algorithms for the construction phase. As

test-set for the BNDP2NS, we used problems from the TSPLib transforming them into BNDP instances by

adding a large number of Steiner nodes (in all cases more than 29% of the total). Although we do not know

the optimum solutions (i.e. their respective optimal values) of the resulting instances, particularly for the

Euclidian BNDP2NS instances we can bound the optimal values within a interval determined by a theorem

introduced by Monma et al. [102]. This interval only depends on the optimal value corresponding to the

original TSP instance. The results obtained in the testing phase show that our GRASP algorithms find in

most cases good quality solutions. In particular, for the Euclidian BNDP2NS instances, we improved sig-

nificatively in many cases the optimal 2-node-connected solution spanning the fixed-nodes; more precisely,

we reached smaller values than the lower bounds for the latter. In Chapter 6, we give final conclusions and

some guidelines for future work. Appendix A contains the proof of ANDP NP-completeness. Appendix

B provides tables summarizing experimental results obtained for the ANDP. In Appendix C we introduce

some propositions used to build BNDP instances with known optimum cost.

1.6 List of publications issued from this thesis work

For easy lecture, we give here the list of publications related to this thesis (with the same reference number

as they are found in the Reference list at the end).
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Paz, Bolivia, October 2003.

[19] H. Cancela, F. Robledo, and G. Rubino. Finding Steiner trees with degree 1 terminal nodes.IEICE

Electronics Express (ELEX), 1(9):258–262, 2004.

[20] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with RNN based local search for de-

signing a WAN access network. InElectronic Notes in Discrete Mathematics - special issue includ-

ing the Proceedings of the Latin-American Conference on Combinatorics, Graphs and Applications

(LACGA’04), volume 18C, pages 53–58, 2004.



22 CHAPTER 1. INTRODUCTION

[21] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with tree based local search for

designing a Wide Area Network backbone.Journal of Computer Science and Technology, 4(1):52–

58, 2004.

[22] H. Cancela, F. Robledo, and G. Rubino. Designing low-cost access network topologies. InProceed-

ing of the International Network Optimization Conference (INOC’05), University of Lisbon, Portugal,

October 2005.

[122] F. Robledo. A GRASP algorithm with MST based local search for designing a WAN access network.
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Chapter 2

Background

In this chapter, we introduce basic notation and definitions that will be used in the next chapters. In addi-

tion, we give a short description of the GRASP (Greedy Randomized Adaptive Search Procedure) method-

ology [44, 45, 47] as well as a general description of the RNN (Random Neural Network) model [58, 59].

2.1 Basic Definitions

At this point, we introduce basic some definitions of graph theory and other definitions frequently used in

works related to survivability models.

Undirected Graph. An undirected graph is a pairG = (V,E) whereV is a non-empty set andE is a

part ofV × V ; thus, the elements ofE are 2-element subsets ofV . The elements ofV are the vertices (or

nodes) of the graphG, the elements ofE are its edges (or lines). A graphG is simple when there exists at

most one edge between any pair of nodes. A graphG is undirected when the edges are pairs of nodes not

ordered. From now, we use graph as a synonymous of simple and undirected graph, as a default. SetV is

denominated set of nodes andE is denominated set of edges.

Ends of an Edge.A node is incident to an edgee if v ∈ e; thene is an edge atv. The two nodes incident

to an edge are its endpoints or ends, and an edge joins (or connects) its ends. An edge{u, v} is also written

here as(u, v) or (v, u). The set of all the edges inE at a nodev is denoted byE(v).

Induced Graph. Given a graphG = (V,E), if U ⊆ V is a subset of nodes thenG(U) denotes the graph

onU whose edges are precisely the edges ofG with both ends inU .

Adjacent Node.Given a graphG = (V,E) andu ∈ V , a nodev ∈ V is adjacent (or neighbor) tov in G if

(u, v) ∈ E.

Adjacent Edge.Two edgese 6= f are adjacent if they have an end in common.

Complete Graph. If all the nodes of a graphG are pairwise adjacent, thenG is complete. A complete

23



24 CHAPTER 2. BACKGROUND

graph withn nodes is usually denoted byKn.

Neighborhood of a Node.Given a graphG = (V,E) the set of neighbors of a nodev in G is denoted by

NG(v) or more briefly byN(v).

Degree of a Node.The degreedG(v) or d(v) of a nodev is the number|E(v)| of edges atv; it is equal to

the number of neighbors ofv. A node of degree0 is said to be isolated.

Path. A path is a non-empty graphP = (V,E) of the form:

V = {v1, v2, . . . , vk}, E = {(v1, v2), (v2, v3), . . . (vk−1, vk)},

where thevi are all distinct. The nodesv1 andvk are linked byP and are called its endpoints; the nodes

v2, . . . , vk−1 are the inner nodes ofP (or internal nodes). We often refer to a path by the natural sequence

of its nodes, writing, say,P = v1v2 . . . vk, and callingP a path fromv1 to vk. We can also denote the path

by the sequence of its edges:P = e1e2 . . . ek−1, wheree1 = (v1, v2), e2 = (v2, v3), . . . , ek−1 = (vk−1, vk).

Cycle. Given a pathP = (v1 . . . vk), the graphC obtained by concatenatingP with vkv1 is called a cycle.

We often denote a cycle by its (cyclic) sequence of nodes; the above cycleC might be then written as

v1v2 . . . vkv1.

Independent Paths.We say that two pathsp1, p2 included in a graphG = (V, E) are independent if the

intersection of their sets of nodes is empty. We denotep1 ∩ p2 = ∅.
Node-disjoint Paths (with the same endpoints).Given two pathsp1, p2 including in G = (V, E) and

having the same endpointsu, v ∈ V , we say thatp1 andp2 are node-disjoint if the intersection of their sets

of internal nodes is empty. Thus,p1 ∩ p2 = {u, v}.
Subgraph. Given a graphG = (V, E), H = (V ′, E ′) is a subgraph ofG if V ′ ⊆ V , E ′ ⊆ E and

∀(u, v) ∈ E ′, we haveu, v ∈ V ′. We also writeH ⊆ G.

Connected Graph. A graphG = (V,E) is connected if for all pair of nodesu, v ∈ V there exists a path

from u to v in G.

Tree. A connected graphG = (V, E) is a tree if for all edgese ∈ E, G′ = (V, E \ {e}) is unconnected.

Forest. A forest is a graph whose connected components are trees.

Connected Component.A connected component of a graph is a subgraph that is connected and that is

maximal with respect to this property.

Spanning Tree.Given a connected graphG = (V, E), a subgraphH = (V, E ′) is a spanning tree ofG if

H is connected and for all edgee ∈ E ′, H ′ = (V, E ′ \ {e}) is unconnected.

2-Node-Connected Graph.A graphG = (V, E) is 2-node-connected if∀u, v ∈ V there exists at least two

node-disjoints paths connecting them inG.

2-Node-Connected Component.A 2-node-connected component of a graph is a subgraph that is 2-node-

connected and maximal with respect to this property.
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Nodes locallyk-node-connected.Given a graphG = (V,E), two nodesu, v ∈ V are locallyk-node-

connected if there exists at leastk-node-disjoints paths connecting them inG.

k-Node-Connectivity. A graphG = (V,E) is k-node-connected if∀u, v ∈ V there exists at leastk-node-

disjoints paths connecting them inG.

k-Node-Survivability. Given a graphG = (V, E) and a subsetT ⊆ V , G is k-node-survivable with respect

to T if ∀u, v ∈ T there exists at leastk-node-disjoints paths connecting them inG.

2-Node-Survivable Component.Given a graphG = (V, E), a subsetT ⊆ V andT1 ⊂ T , a 2-node-

survivable component with respect toT1 is a subgraph ofG that is 2-node-survivable spanningT1.

Bridge. Given a graphG = (V, E), an edgee ∈ E is bridge if the graphG′ = (V,E \ {e}) has more

connected components thanG.

Articulation Set. Given a graphG = (V,E), we call Z ⊂ V an articulation set ofG, if the induced

subgraphG(V \ Z) has more connected components thanG. Synonymously, we say thatZ is aseparating

setin G.

Articulation Node. Given a graphG = (V, E), we call a single nodez ∈ V an articulation node ofG, if

the induced subgraphG(V \ {z}) has more connected componentes thanG.

2.2 Notation

Now, we will introduce some additional notation that will be used in the following chapters.

• Given two graphsG = (V,E) andG′ = (V ′, E ′), we denoteG ∪G′ = (V ∪ V ′, E ∪ E ′), G ∩G′ =

(V ∩ V ′, E ∩ E ′) andG \G′ = (V \ V ′, E \ E ′).

• Given a graphG and a pathp we denoteG∪{p} (or G∪ p) the resulting graph when adding toG the

pathp. More generally, ifP is a set of paths,G∪P denotes the resulting graph of adding toG all the

paths fromP .

• Analogously, ifp has its endpoints inG, the graphG \ p denotes the resulting graph when removing

from G all the edges and nodes ofp except its endpoints. Moreover, ifP is a set of paths having the

same endpoints inG, thenG \ P is the graph obtained by removing fromG all the the edges and

nodes belonging to paths ofP except its endpoints.

• Given two pathsp1 andp2 such that the endpoints ofp2 are inp1, p1 \ p2 is the subgraph obtained

when removing fromp1 all the edges and nodes ofp2 except its endpoints.



26 CHAPTER 2. BACKGROUND

• Given a graphG = (V, E) and a cost functionC associated withE (C : E → R̄+), we introduce the

operatorCOST(·) defined by:

COST(H) =
∑

∀(i,j)∈H

ci,j, ∀H ⊆ G,

wherecij = C((i, j)) andH is a subgraph ofG. In addition, ifA is another cost function onE, we

denoteCOST|A(H) in order to distinguish this operation from other cost functions.

• Given a graphH, we introduce the following operators:

– NODES(H) is the set of nodes ofH,

– EDGES(H) is the set of edges ofH,

– given a pathp, INTERNAL NODES(p) is the set of nodes ofp except its endpoints.

2.3 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a well known metaheuristic, which has

been applied for solving many hard combinatorial optimization problems with very good results [42, 47,

100, 98, 105, 124, 116, 117, 119]. Extensive surveys of the associated literature are given in [45, 118, 47].

Before describing the main ideas of GRASP, we formulate a generic combinatorial optimization prob-

lem based on the description introduced in [118]. Let us consider:

i) N = {n1, . . . , nm} is the finite basic set containing the potential elements which will be able to

integrate a feasible solution.

ii) F denotes the set of feasible solutions satisfying:F ⊆ 2N .

iii) f : 2N → R is the objective function. Without losing generality, we will assume the minimization

version, i.e. the aim is to find a global optimal solutionS∗ ∈ F such thatf(S∗) ≤ f(S), ∀S ∈ F .

These points will be determined, when specifying the optimization problem to be studied. For example, in

the case of the Minimum Vertex Covering Problem:

• N = {v1, . . . , vn} is the set of nodes to be considered,

• E is the set of edges connecting the nodes ofN ,

• F is composed of all the subsets ofN such that ifS ∈ F any edge inE has at least one endpoint in

S,
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• f(S) is the number of nodes belonging toS.

A GRASP is an iterative process, where each iteration consists of two phases: construction and local

search. The construction phase builds a feasible solution, whose neighborhood (in some sense to be defined

when adapting the method to each specific problem) is explored during the second phase, looking for an

improvement. The best solution over all GRASP iterations is returned as the result.

We describe now a generic GRASP implementation, whose pseudo-code can be seen in Figure 2.1. This

generic implementation serves as a template to be mapped into the problems introduced in Chapters 3, 4,

and 5 where specific GRASP methods customized to our problems are proposed.

The GRASP heuristic has three main parameters: the number of iterationsMaxIter, the candidate list

sizeListSize, and a third implicit parameter, the initial seedSeed for the pseudo-random number generator.

The first parameter corresponds to the number of iterations in the outer loop of the algorithm. The second

parameter will be seen in more detail when explaining the construction phase, but roughly speaking, it is a

measure of how many alternatives will be taken into account at each constructive step.

In some GRASP versions the size of the restricted candidate list is recomputed dynamically (i.e. the

value ofListSize is not fixed), being used in this case a threshold parameter denoted byα. Later, we will

explain in detail both variants.

Looking again at the pseudo-code, it can be seen that GRASP iterations are carried out in lines 2-8.

Each GRASP iteration consists of the construction phase (line 3), the local search phase (line 4) and, if

necessary, the solution update (lines 5-7).

Procedure GRASP( ListSize,MaxIter,Seed);

1 Read Input Instance();

2 for k = 1 to MaxIter do

3 InitialSolution ← Construct Greedy Randomized Solution(ListSize, Seed);

4 LocalSearchSolution ← Local Search(InitialSolution);

5 if cost(LocalSearchSolution) < cost(BestSolutionFound) then

6 Update Solution(BestSolutionFound, LocalSearchSolution);

7 end if;

8 end for;

9 return BestSolutionFound;

Figure 2.1: GRASP pseudo-code.

In the construction phase, a feasible solution is built. Figure 2.2 shows a generic pseudo-code for the

construction phase. The solution is usually represented as a set of elements (the precise meaning of these

elements depends on the specific problem); the construction phase starts from an empty set and iteratively

adds an element until the set corresponds to a feasible solution. At each step of the construction phase, a

restricted candidate list (denoted by RCL) is determined by ordering all non already selected elements with
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respect to a greedy function that measures the (myopic) benefit of including them in the partial solution. In

general, this function evaluates the incremental increase in the cost functionf(·) when incorporating each

new element into the solution under construction. Specifically, by applying this function, we build the RCL

containing those elements whose addition to the current partial solution induce the smallest incremental

costs (this is the greedy component of GRASP). The next element to be included into the partial solution

is randomly chosen (uniformly or in some biased form) from the RCL (this is the probabilistic component

of GRASP). In this way, GRASP allows for different solutions to be obtained at each GRASP iteration.

When the chosen element is added to the partial solution, the benefits associated with every element not yet

added to the partial solution are updated in order to reflect the change induced by the insertion of the new

element. Thus, the heuristic recomputes the RCL and reevaluates the incremental costs (this is the adaptive

component of GRASP). Once the construction phase is finished, the solution built is returned.

Procedure Construct Greedy Randomized Solution( ListSize,Seed);

1 Solution ← ∅;
2 Incremental costs evaluation for the candidate elements;

3 while not feasible(Solution) do;

4 RCL ← the restricted candidate list;

5 s ← select randomly an element from the RCL;

6 Solution ← Solution ∪ {s};
7 Incremental costs reevaluation;

8 end while;

9 return Solution;

Figure 2.2: ConstructGreedyRandomizedSolution pseudo-code.

The solutions generated by the construction phase are not guaranteed to be locally optimal with respect

to simple neighborhood definitions. Hence, it can be beneficial to apply a local search to attempt to improve

each constructed solution. A local search algorithm works in an iterative fashion by successively replacing

the current solution by a better one taken from its neighborhood. It finalizes once there is no better solution

found in the neighborhood. Figure 2.3 shows a generic pseudo-code for the local search phase. It has as

input a feasible solutionSolution and searches for a better solution within a neighborhoodN(Solution)

previously defined. In most of the cases, the local search phase takes as entry the feasible solutionSolution

delivered by the construction phase, but for certain applications, we could have several local search phases

working in a combined form by exploring different neighborhoods, implying thus that their entries are not

necessarily the solutions given by the construction phase.

The success when applying the local search phase is strongly related with the following points:

• the suitable choice of a neighborhood structure,
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Procedure Local Search( Solution);

1 while not locally optimal(Solution) do;

2 Find Neighbor Solution ∈ N(Solution) satisfying f(Neighbor Solution) < f(Solution);

3 Solution ← Neighbor Solution;

4 end while;

5 return Solution;

Figure 2.3: LocalSearch pseudo-code.

• efficient neighborhood search techniques,

• easy evaluation of the cost function when exploring the neighborhood,

• the quality of the starting solution.

The construction phase plays an important role with respect to this last point, since it must produce good

starting solutions for this local search sub-procedure. Depending on the problem, the used neighborhoods

are generally not complex. There exist two basic different strategies to explore a neighborhood, which are:

best-improvement: all neighbors are investigated and the current solution is (possibly) replaced by the

best neighbor.

first-improvement: when finding the first better neighbor solution (i.e. whose cost value is smaller than

that of the current solution), the current solution is replaced by this one.

In [118], the authors mention that empirically (when applying both strategies on many applications), in

most of the cases, both strategies reach the same final solution, but in general thefirst-improvementtakes

a smaller computational time. Besides, they observe that is more frequent the premature convergence to a

non-global local optimum by usingbest-improvementthanfirst-improvement.

One important characteristic of GRASP is its low parametrization; few parameters need to be set and

tuned. This implies that the main effort can be focused on implementing efficient data structures to obtain

fast iterations. Let us analyze the influence of the GRASP parameters and the RCL construction.

A GRASP algorithm finalizes once performedMaxIter iterations. Clearly, the probability of finding

a new solution improving the currently best one decreases with the number of iterations already computed,

the quality of the best solution found may only improve with the latter. In general, the computation times

from iteration to iteration are relatively similar, therefore the total computation time depends linearly on

MaxIter. Thus, when increasingMaxIter, the global computation time will be increased as well as the

probability of finding better solutions.
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At any GRASP iteration, let us denote byc(e) the incremental cost associated with the insertion of

elemente ∈ E into the solution under construction and bycmin and cmax the smallest and the largest

incremental costs respectively. There are two main variants to compute the RCL used in the construction

phase. Next, we will describe both approaches.

i) Given a positive integerListSize, the RCL is composed of theListSize elements ofE with the best

(i.e. smallest) incremental costs. In this case, we say that the RCL is cardinality-based. The size of

the RCL can be smaller thanListSize since, depending on the instance, we could not get to compute

exactly theListSize best elements.

ii) The second variant uses a threshold parameter denoted byα ∈ [0, 1]. In this case the size of the RCL

is dynamically adapted according to the quality of the elements to be added (we say that the RCL is

value-based). Fixedα, the RCL is formed by all “feasible” elementse ∈ E which can be inserted

into the partial solution under construction without losing feasibility and whose quality is superior to

the threshold value; that is to say:

e ∈ RCL ⇔ c(e) ∈ [cmin, cmin + α(cmax − cmin)].

If we set α = 0 the resulting algorithm is purely greedy, and withα = 1 we obtain a random

construction. Hence, we can infer thatα regulates the amounts of greediness and randomness in the

construction phase.

For further details of GRASP the reader may consult the references [42, 44, 45, 98, 118, 119], which

provide an extensive analysis of the GRASP metaheuristic based on many applications. Topics discussed

include: successful implementation techniques, parameter tuning strategies, alternative solution construc-

tion mechanisms, techniques to speed up the local search, reactive GRASP, cost perturbations, bias func-

tions, memory and learning, local search on partially constructed solutions, hashing, filtering, implemen-

tation strategies of memory-based intensification and post-optimization techniques using path-relinking,

hybridizations with other metaheuristics and parallelization strategies.

2.4 Random Neural Network

The Random Neural Network (RNN) is a novel model introduced by Gelenbe [58, 59, 64]; it can be applied

in optimization as well as learning settings. The RNN differs substantially from the existing connexionist

models. The main different with respect to other existing models is that it can be solved numerically (by

computing a fixed point equation) very easily and without using step-by-step Monte Carlo simulations.

Specifically, in optimization problems, the RNN has been shown to be efficient and computationally very
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fast compared to the classical existing models [61, 60, 65, 62, 63]. In particular, the RNN model has already

been applied to the following NP-Hard combinatorial optimization problems:

• Traveling Salesman Problem(TSP). In this case, it has been shown in [63] that dynamical RNN

obtains optimal or near-optimal solutions in most of the benchmark instances tested.

• Minimum Vertex Covering Problem(MVCP). In [65], the authors compare the performances of RNN,

the conventional Greedy Algorithm, the Hopfield network, and Simulated Annealing, when applied

to the MVCP; the results reveal that the results obtained by RNN heuristic are significantly superior

to the others in terms of overall optimization.

• Steiner Problem in Graphs(SPG). In [62], the authors use RNN as improver of solutions delivered by

the classical SPG heuristics:Minimum Spanning Tree Heuristic(MSTH) and theAverage Distance

Heuristic (ADH) applied to a test set composed of randomly generated graphs. They report that the

obtained solutions have a better quality than the corresponding starting heuristic, attaining a difference

in cost of less that one or two percentage points away from the optimal.

The RNN model works in the following way. Signals in the form of impulses (or spikes) of unit ampli-

tude circulate among the neurons. Positive signals represent excitation, whereas negative signals represent

inhibition of the receiving neuron. In this way, an excitatory impulse is interpreted as a “+1” signal, while

an inhibitory impulse is interpreted as a “-1” signal. Each neuroni has associated a stateki(t), which is its

potential at timet, represented by a non-negative integer. The state of then-neuron network at timet, is

represented by the vector of non-negative integersk(t) = (k1(t), . . . , kn(t)). The values of the state vector

and thei−th neuron’s state are usually denoted byk andki respectively. By definition, a neuroni is excited

iff its potential is strictly positive. If a neuroni is excited it can transmit impulses to other neurons or out of

the network (we say neuroni “fires”). The neuron’s potential is increased when an excitation signal arrives

to the neuron and is decreased when an inhibition signal arrives. Neural potential also decreases when the

neuron fires. If a neuroni emits an impulse, whether it be an excitation or an inhibition, it will lose potential

by one unit, going from the state whose value iski to the state of valueki − 1.

Each neuroni, if it is excited, emits impulses at random, separated by intervals distributed as an expo-

nential distribution with constant rate. That is to say, the impulses will be sent out as a Poisson process

with rate ri, with independent, identical exponentially distributed inter-impulse intervals. The impulses

transmitted will arrive at neuronj as excitation signals with probabilityp+
ij, and as inhibitory signals with

probabilityp−ij. A neuron’s transmitted impulse may also leave the network with probabilitydi, therefore

di +
∑n

j=1(p
+
ij +p−ij) = 1. Let i andj be two neurons, the excitatory firing rate fromi to j and the inhibitory

firing rate fromi to j are given by:%+
ij = rip

+
ij and%−ij = rip

−
ij respectively. Thus, the firing rate of neuron

i is ri =
∑n

j=1(%
+
ij + %−ij). The matricesW+ = {%+

ij} andW− = {%−ij} can be viewed as being analogous
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to the synaptic weights in connectionist models, although they specifically represent rates of excitatory and

inhibitory impulse emission. Let us note that they are non-negative since their values are products of rates

and probabilities.

Moreover, exogenous excitatory and inhibitory signals arrive at neuroni according to Poisson processes

with ratesαi andβi respectively. Let us notice that this is a recurrent network model, i.e. a network which

is allowed to have feedback loops, and the network has an arbitrary topology. Figure 2.4 shows a typical

neuron in the RNN using the model parameters that have been exposed above. In the figure, only the

transitions to and from a single neuroni are considered. Symmetrically, any other neuron has the same

model thati.

Next, we summarize the dynamics of the RNN model by considering the possible state transitions. The

neuron’s stateki(t) can be modified when occurring certain transitions, more precisely:

i) The potentialki(t) of a neuron will decrease by one whenever it fires an excitation signal or an

inhibition signal. Also, when an exogenous inhibitory signal arrives from outside the network to

neuroni, its potential diminishes toki(t) − 1. In addition, neuroni will decrease its potentialki(t)

by one whenever it receives an inhibitory impulse from another neuronj.

ii) When arriving an exogenous excitatory signal from outside, or an excitatory impulse from another

neuron within the network will result in incrementing the neuron potential by one, obtaining thus

ki(t) + 1.

iii) The value ofi− th neuron’s state remains unchanged when none of the previous events occur.

In addition, there are two boundary conditions which prevent some of the transitions from occurring; these

are:

• A neuron can fire only when it has positive potential (as mentioned previously).

• When the neuron has a potential of zero, the arrival the new inhibitory signals does not decrease its

value further.

The analysis of the RNN model is focused on two measures: the probability distribution of network

statep(k, t) = Pr[k(t) = k] and the marginal probability that neuroni is excitedqi(t) = Pr[ki(t) >

0]. The behavior of the model is described by an infinite system of Chapman-Kolmogorov equations for

discrete state-space continuous time Markovian systems. The information in the RNN is represented by

the frequency at which the signals travel. The neurons may be considered asfrequency modulators and

demodulators. Intuitively, each neuron of this model is also a frequency modulator, since neuroni sends

out excitatory and inhibitory signals at rates (or frequencies)qi(t)rip
+
ij, qi(t)rip

−
ij to any neuronj. In this
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way, when neuroni is excited, it will send signals to neuronj at a frequency%ij = %+
ij + %−ij. These signals

will be emitted at exponentially distributed random intervals. In turn, each neuron behaves as a non-linear

frequency demodulator since it transforms the incoming excitatory and inhibitory signal trains’ rates into

an “amplitude”, which isqi(t), the probability that neuroni is excited at timet.

The asymptotic analysis of the RNN model consists of computing the stationary probability distribution,

i.e. the limits:

p(k) = lim
t→+∞

p(k, t),

qi = lim
t→+∞

qi(t), ∀i ∈ (1, . . . , n).

Gelenbe proves the following theorem and introduces equations which provide the way to iteratively

compute the stationary probability distribution for the RNN model.

Theorem 2.4.1 The vectorq = (q1, . . . , qn) satisfies the system of nonlinear equations:

qi =
λ+

i

ri + λ−i
, ∀i ∈ 1, . . . , n. (2.1)

whereλ+
i andλ−i satisfy the following simultaneous equations:

λ+
i =

∑
j

qj%
+
ji + αi, (2.2)

λ−i =
∑

j

qj%
−
ji + βi. (2.3)

In addition, another theorem introduced by Gelenbe guarantees the vectorq computation, sinceλ+
i and

λ−i can always be computed. By replacingλ+
i andλ−i in equation(2.1), we obtain a fixed point equation

F (q) = q, whose explicit expression is given by:

qi =

∑
j,j 6=i(qj%

+
ji + αi)

ri +
∑

j,j 6=i(qj%
−
ji + βi)

, ∀i ∈ 1, . . . , n.

When iteratively solving the equationF (q) = q, if in certain iteration we get a valueqi > 1, then

we forceqi = 1 until the convergence (we say neuroni is saturated). Empirically, in most of the cases

convergence is reached in few iterations. Furthermore, let us notice that the fixed point equationF (q) = q

can be solved in parallel, allowing thus to reduce significantly the computation time. For further details of

RNN, the reader may consult the references [7, 58, 59, 64].
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Figure 2.4: Representation of a neuron in the RNN model.



Chapter 3

The Access Network Design Problem

3.1 Introduction

A wide area network (WAN) can be seen as a set of sites and a set of communication lines that interconnect

the sites. A typical WAN is organized as a hierarchical structure integrating two levels: thebackbone

networkand theaccess networkcomposed of a certain number oflocal access networks[108]. Figure 3.1

shows an example of a WAN topology. Each local access network usually has a tree-like structure, rooted

at a single site of the backbone, and connects users (terminal sites) either directly to this backbone site or

to a hierarchy of intermediate concentrator sites which are connected to the backbone site. The backbone

network has usually a meshed topology, and its purpose is to allow efficient and reliable communication

between the switch sites that act as connection points for the local access networks.

Assume the backbone network fixed. LetSC be the set of sites where concentrator equipment can be

installed in order to diminish the cost of the access network andST the set of terminal sites (the clients).

Informally, if we consider the network of feasible connections on the WAN as a weighted (by costs), undi-

rected graph, the Access Network Design Problem (denoted by ANDP) consists of finding a subgraph of

minimum cost such that∀st ∈ ST there exists a path fromst to the backbone network. In Appendix A, we

prove the equivalence between the problem of designing the global access topology when considering all

the switch nodes, and the problem of designing the global access topology where the backbone network is

shrunk to a simple fictitious node. To simplify the presentation, the analysis and the algorithms, we collapse

the backbone into a single fixed nodez. We will focus over this last model. We introduce the notation used

to formalize the problem:

• S = ST ∪ SC ∪ {z} is the set of all nodes.

• C = {cij}i,j∈S is the matrix which gives for any pair of sites ofS, the cost of laying a line between

them. When the direct connection betweeni andj is not possible, we setcij = ∞.

35
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• E = {(i, j);∀i, j ∈ S such thatcij < ∞} is the set of feasible connections between sites ofS.

• GA = (S,E) is the graph of feasible connections on the Access Network.

Definition 3.1.1 (Access Network Design Problem - ANDP)We define the Access Network Design Prob-

lem ANDP(GA(S, E), C) as the problem of finding a subgraphT ⊂ GA of minimum cost such that∀st ∈ ST

there exists a unique path fromst to nodez and such that terminal sites can not be used as intermediate

nodes (they must thus have degree 1 in the solution). We will denote byΓANDP the space of feasible solu-

tions associated with the problem.

This problem belongs to the NP-Hard class, this will be proved (in the next section) by reducing the

Steiner Problem in Graphs to it.

In this chapter we propose several polynomial time heuristics based on the GRASP methodology for

approximately solving the ANDP. In Section 3.2 we introduce the proof of NP-completeness for ANDP.

In Section 3.3 we give two different alternative algorithms for the construction phase. In Section 3.4 we

provide two algorithms for the local search phase. In particular, we present a RNN model which is used in

a hybrid way GRASP-RNN, more precisely, the RNN approach is suitably customized in order to work as a

variant of local search. Section 3.5 presents the GRASP metaheuristics yielded by combining the construc-

tion algorithms with the local search algorithms. Section 3.6 includes computational results obtained on a

large test-set of problem instances, including topologies with hundreds of nodes. Discussions, conclusions

and future work are the purpose of Section 3.7.

3.2 ANDP NP-Completeness

Before introducing the demonstration of ANDP NP-completeness, we will define formally theSteiner Prob-

lem in Graphs.

Definition 3.2.1 Let G = (V, E) be a connected undirected graph, whereV is the set of nodes andE

denotes the set of edges. Given a non-negative weight functionC : E → R associated with its edges and

a subsetT ⊆ V of terminal nodes, the Steiner problemSPG(V, E, C, T ) consists in finding a minimum

weighted connected subgraph ofG spanning all terminal nodes inT .

Proposition 3.2.2 (ANDP NP-completeness)The ANDP belongs to the NP-Complete class.

Proof. We will demonstrate that the ANDP is NP-Complete by reducing the Steiner Problem in Graphs

(SPG) to it.

Let SPG(V, E, T, C) be a Steiner Problem instance. For this, we build an ANDP instance as follows.
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Figure 3.1: A WAN topology.

1) we select randomly a terminalt̂ ∈ T and we associate with it the nodez in the ANDP.

2) each terminali ∈ (T \{t̂}) has associated two sites in the ANDP: a terminal sitesi
t and a concentrator

sitesi
c. We introduce an edge with zero cost betweensi

t andsi
c in the ANDP.

3) each Steiner nodei ∈ (V \ T ) has associated a concentrator sites̄i
c in the ANDP.

4) an edge(i, j) ∈ E, with i, j ∈ (T \{t̂}), has associated an edge betweensi
c andsj

c with the same cost

in the ANDP.

5) an edge(i, j) ∈ E, with i ∈ (T \ {t̂}) andj ∈ (V \ T ), has associated an edge betweensi
c and s̄j

c

with the same cost in the ANDP.

6) an edge(i, j) ∈ E, with i, j ∈ (V \ T ), has associated an edge betweens̄i
c ands̄j

c with the same cost

in the ANDP.

7) an edge(i, t̂) ∈ E, with i ∈ T , has associated an edge betweensi
c andz with the same cost in the

ANDP.

8) an edge(i, t̂) ∈ E, with i ∈ (V \ T ), has associated an edge betweens̄i
c andz with the same cost in

the ANDP.
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In the resulting ANDP instance we have two classes of concentrators: those associated with the terminal

nodes and those associated with the Steiner nodes, denoted byWC andS̄C respectively. The set of terminal

sites, the set of feasible connections and the matrix of costs on the access network are denoted byST , U

andA respectively. We have thenANDP (ST ∪WC ∪ S̄C ∪{z}, U, A). Clearly, the transformation process

is polynomially computable. Now, we must prove that any minimal feasible solution of the SPG induces a

minimal feasible solution of the corresponding ANDP (having the same cost) and reciprocally.

(⇒) Let T be a minimal feasible solution of the SPG. LetH be the network built by applying the transfor-

mations1− 8 to T . Then,

i) it is easy to see that, by construction, the networkH is a minimal feasible solution for the ANDP

(deleting an edge ofH the feasibility is lost). Figure 3.2 illustrates this correspondence; for the first

graph, the black nodes represent the terminal nodes in the SPG whereas the white nodes represent

Steiner nodes. In the corresponding ANDP instance, the greatest black node is the fixed sitez, the

other black nodes are terminal sites, the white and round nodes are concentrator sites and the square

nodes are concentrator sites introduced when applying step3 of the previous transformation process.

t
^

fixed site z

0 0

0

0

0

0

0

0

0 0

Figure 3.2: A SPG minimal feasible solution and its corresponding ANDP topology.

ii) COST(T ) = COST(H) since the new connections introduced by the transformation (step 2) have all

cost zero,

concluding therefore the direct.

(⇐) Let H be a minimal feasible solution of the ANDP. We built the corresponding minimal feasible

solution of the SPG by means of the inverse transformation process:

a) z has associated a unique terminal nodet̂ ∈ T in the SPG.
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b) each edge(si
t, s

i
c) ∈ H, with si

t ∈ ST andsi
c ∈ WC , has associated in the SPG a unique terminal node

i ∈ T . Notice that the edge(si
t, s

i
c) necessarily belongs to any feasible solution of the ANDP sincesi

c

is the unique adjacent site tosi
t in the networkG = (ST ∪WC ∪ S̄C ∪ {z}, U) .

c) each sitēsi
c ∈ H, with s̄i

c ∈ S̄C , has associated in the SPG a unique Steiner nodei ∈ (V \ T ).

d) each edge(si
c, s

j
c) ∈ H, with si

c, s
j
c ∈ WC , has associated in the SPG a unique edge(i, j) ∈ E,

i, j ∈ T .

e) each edge(si
c, s̄

j
c) ∈ H, with si

c ∈ WC , s̄j
c ∈ S̄C , has associated in the SPG a unique edge(i, j) ∈ E,

i ∈ T , j ∈ (V \ T ).

f) each edge(s̄i
c, s̄

j
c) ∈ H, with s̄i

c, s̄
j
c ∈ S̄C , has associated in the SPG a unique edge(i, j) ∈ E,

i, j ∈ (V \ T ).

g) each edge(si
c, z) ∈ H, with si

c ∈ WC , has associated in the SPG a unique edge(i, t̂) ∈ E, i ∈ T .

h) each edge(s̄i
c, z) ∈ H, with s̄i

c ∈ S̄C , has associated in the SPG a unique edge(i, t̂) ∈ E, i ∈ (V \T ).

Let T be the resulting network of the inverse transformation by applying stepsa− h. This is clearly a

feasible and minimal solution for the SPG. Figure 3.3 illustrates this transformation. In the access topology

the sites are labeled in the following way:z is the fixed site modeling the backbone network, a labelsc

indicates a concentrator site belonging toS̄C , and the black (and square) nodes represent the pairs of sites

(si
t, s

i
c), with si

t ∈ ST andsj
c ∈ WC . For the corresponding SPG instance, we have that the black nodes

represent the terminal nodes whereas the white nodes represent Steiner nodes. LetB = {(si
t, s

i
c) ∈ H|si

t ∈

sc

Z
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sc

sc

sc sc
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Figure 3.3: An ANDP minimal feasible solution and its corresponding SPG topology.

ST , si
c ∈ WC} be the set of edges inH associated with the terminal nodes inT . Since the setB has cost

zero and the other edges ofH have the same cost that their corresponding ones inT , we have the relation:

COST(T ) = COST(H)− COST(B) = COST(H),
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as required and completing the reciprocal.

Finally, since Karp proved [85] that SPG is NP-Complete, therefore ANDP is also NP-Complete.

QED

In the following sections, we will customize the different GRASP components to design different algo-

rithms for solving approximately the ANDP. In particular, we design two path-based construction phases, a

minimum spanning tree based local search phase and a RNN (Random Neural Network) based local search

phase. Combining these two construction phases with the two local search phases yields four versions of

GRASP for the ANDP. Next, we present the construction phase with the two proposed strategies.

3.3 ANDP Construction Phase Algorithms

Here, we introduce two construction phases for the ANDP. Both approaches are path-based but the used

methodologies are structurally different. The proposed algorithms are calledANDP ConstPhase1 and

ANDP ConstPhase2 and they will be described below in detail.

3.3.1 Algorithm ANDP ConstPhase1

TheANDP ConstPhase1 is a greedy randomized algorithm which works by iteratively choosing a terminal

site and connecting it to the current partial solution by means of one ofk shortest paths.

More in detail, the algorithm (shown in Figure 3.4) takes as inputs the networkGA of feasible connec-

tions on the access network, the matrix of connection costsC and the GRASP parameterk (the candidate

list size). In order to introduce randomness in the selection process of the terminal sites to be added to the

current solution, we assign (in line 1) a unique identifiernt to each terminal sitest ∈ ST . Line 2 initializes

the current solutionTsol with the nodez (recall thatz models the backbone). The setY containing the

terminal sites already added toTsol is initialized empty. Iteratively the construction phase adds new terminal

sites to the current solutionTsol. On each iteration, the algorithm chooses randomly (in line 4) a terminal

site s̄t not yet included inTsol and computes (in line 5) thek shortest paths from̄st to Tsol using an algo-

rithm proposed by Yen [137]. We remark that when computing these paths, terminal sites are not taken into

account as intermediate nodes since they must have degree one in the solution. Line 5 stores these paths in

a restricted candidate listLp. A pathp is randomly (and uniformly) selected fromLp in line 6 and added to

Tsol in line 7. This process is repeated until all the terminal sites have been added; then the feasible solution

Tsol is returned in line 9.

Let us observe that every feasible solution built by theANDP ConstPhase1 has a tree topology and

therefore is minimal (deleting an edge the feasibility is lost). The following proposition formalizes this



3.3. ANDP CONSTRUCTION PHASE ALGORITHMS 41

Procedure ANDP ConstPhase1;

Input: GA = (S, E), C, k;

1 ∀st ∈ ST a unique identifier nt is assigned;

2 Tsol ← {z}; Y ← ∅;
3 while (Y \ ST ) 6= ∅ do

4 s̄t ← ArgMax{nt|st ∈ (ST \ Y )};
5 Lp ← the k shortest valid paths from s̄t to Tsol;

6 p ← Select Random(Lp);

7 Tsol ← Tsol ∪ {p}; Y ← Y ∪ {s̄t};
8 end while;

9 return Tsol;

end ANDP ConstPhase1;

Figure 3.4: ANDPConstPhase1 pseudo-code.

point.

Proposition 3.3.1 If ΓANDP is not empty, then the algorithmANDP ConstPhase1 builds a minimal fea-

sible solution for the ANDP.

Proof. Consider an ANDP instance such thatΓANDP 6= ∅. We will demonstrate the proposition by induction

in |Y |. For this, we prove that in each iteration a new terminal site is added toTsol and the resulting network

has tree topology having as endpoints sites ofST .

Basic Step:|Y | = 0. We compute lines 1-2. The networkTsol is composed of the isolated nodez, satisfying

thus the property.

Induction Step:0 < |Y |. As inductive hypothesis (I.H.) we have that if|Y | < k ≤ |ST |, then executing

lines 4-7 the resulting networkTsol will have tree topology, fulfilling the previous conditions and containing

a new terminal site. As inductive thesis the property is satisfied when|Y | = k for certain iteration.

Let us suppose that in some iteration we have|Y | = k. We will analyze the following cases.

Case 1. |Y | = k < |ST |. In this case, the condition in line 3 is TRUE and therefore the algorithm will

execute the lines 4-7. In the previous iteration, we had|Y | < k and by I.H. after executing lines 4-7 the

networkTsol has tree topology. In the current iteration, line 4 selects a terminal sites̄t not yet added toTsol

and lines 5-6 compute a pathp from s̄t to Tsol. Line 7 addsp to the treeTsol. We remark that the candidate

list Lp is computed (in line 5) of way of not using other terminal sites as intermediate nodes. Hence, it is

easy to see that the terminal sites are endpoints in the current treeTsol. Thus, the resulting network has tree

topology. In addition the setY is updated by adding to it the sitēst.

Case 2.|Y | = |ST |. In the previous iteration we had|Y | < |ST | and by I.H. after executing lines 4-7 the

networkTsol has tree topology. In the current iteration, the condition in line 3 is FALSE and thereforeTsol

is a tree containingz and having the setST as endpoints, as required and completing the proof.
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QED

Figure 3.5 illustrates a ANDPConstPhase1 iteration.

• The first network models the current solutionTsol and a new terminal sitēst to be added to it. The

broken lines with origin in̄st are the edges of thek non-disjoint shortest paths from̄st to Tsol. One of

them will be selected in order to connects̄t to Tsol.

• The second network showsTsol with a path belonging to the restrict candidate listLp. Observe that

(in this case) when adding this path, we introduce a new concentrator site to the solution.

• The third network shows another path from̄st to Tsol. In this case, the path is a simple edge and

therefore we do not introduce any concentrator site.

3.3.2 Algorithm ANDP ConstPhase2

TheANDP ConstPhase2 is an alternative algorithm for the ANDP construction phase. We design this al-

gorithm based on the idea of Takahashi-Matsuyama algorithm [127], which is different from theANDP ConstPhase1

algorithm in the way in which the restricted candidate list is built.

TheANDP ConstPhase2 uses an auxiliary structureP in which are stored all the shortest paths from

sites of(ST ∪ {z}) to sites inS without using terminal sites as intermediate nodes. Figure 3.6 shows the

preprocessing of this structure. Line 1 computes the subgraph induced by(SC ∪ {z}), which is denoted

byH. Lines 2-5 compute for all pairs of sitesi, j ∈ (ST ∪ {z}) the shortest path connecting them inGA

so that the terminal sites are not used as intermediate sites. For this, we compute in line 3 the auxiliary

networkG = H ∪ GA(N(i) ∪ N(j)), and the shortest path communicatingi with j on G is computed in

line 4. Similarly, in lines 6-9 we compute for all pair of sitesi ∈ (ST ∪ {z}) andj ∈ SC the shortest

path connecting them without using intermediate terminal sites. Again, we compute in line 7 an auxiliary

networkG = H∪GA(N(i)), and the shortest path communicatingi with j onG is computed in line 8. The

matrix of computed pathsP is returned in line 10.

The algorithmANDP ConstPhase2 (shown in Figure 3.4) takes as inputs the networkGA of feasible

connections on the access network, the matrix of connection costsC, the GRASP parameterk (the candidate

list size), and the matrix of pathsP computed byPreprocessing Algorithm. Lines 1-2 select randomly (and

uniformly) a site from(ST ∪ {z}) as initial network. The solution in construction is denoted byTsol and

the auxiliary setY ⊆ (ST ∪ {z}) denotes the sites already included to the current solutionTsol. Let us note

that all the sites of(ST ∪ {z}) necessarily must be in the solution. Iteratively the construction phase adds

new sites of(ST ∪ {z}) to the current solutionTsol. Each iteration works of the following way. In line 4

the algorithm searches for thek nodes of(ST ∪ {z}) \ Y which are nearest to the current solutionTsol; the
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Figure 3.5: Example of ANDPConstPhase1 iteration.

corresponding shortest paths are extracted fromP and stored in a restricted candidate listLp. A pathp is

randomly (and uniformly) selected fromLp in line 6. Letu be the endpoint ofp such thatu 6∈ Tsol. In line

7, we addp to the current solutionTsol and the setY is updated by addingu to it. This process is repeated

until all the sites of(ST ∪ {z}) have been added toTsol. The built feasible solutionTsol is returned in line 9

(unless the space of feasible solutions is empty, in which case at least one terminal site will not be able to

be connected with the solution in construction).

The construction phase algorithmANDP ConstPhase2 also builds a minimal feasible solution for the

ANDP. The following proposition demonstrates this property.

Proposition 3.3.2 If ΓANDP is not empty the algorithmANDP ConstPhase2 builds a minimal feasible

solution for the ANDP.
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Preprocessing Algorithm;

Input: GA = (S, E), C;

1 H ← GA(SC ∪ {z});
2 for each i, j ∈ (ST ∪ {z}) do

3 G ← H∪GA(N(i) ∪N(j));

4 Pi,j ← the shortest path from i to j in G;

5 end for each;

6 for each i ∈ (ST ∪ {z}) and j ∈ SC do

7 G ← H∪GA(N(i));

8 Pi,j ← the shortest path from i to j in G;

9 end for each;

10 return P;

end Preprocessing Algorithm;

Figure 3.6: Computation of setP.

Procedure ANDP ConstPhase2;

Input: GA = (S, E), C, k, P;

1 v ← SelectRandom(ST ∪ {z});
2 Tsol ← {v}; Y ← {v};
3 while Y \ (ST ∪ {z}) 6= ∅ do

4 Lp ← the shortest paths from the k nearest sites of (ST ∪ {z}) \ Y to Tsol using P ;

5 p ← Select Random(Lp);

6 u ← the endpoint of p non-belonging to Tsol;

7 Tsol ← Tsol ∪ {p}; Y ← Y ∪ {u};
8 end while;

9 return Tsol;

end ANDP ConstPhase2;

Figure 3.7: ANDPConstPhase2 pseudo-code.

Proof. Again, let us consider an ANDP instance such thatΓANDP 6= ∅. We will demonstrate the proposition

by induction in|Y | (that is to say, on the number of sites fromST ∪{z} already added toTsol). Specifically,

we will prove that on each iteration a site belonging toST ∪ {z} is added toTsol and the resulting network

has tree topology having as endpoints sites ofST .

Basic Step:|Y | = 0. In lines 1-2, we select randomly a site ofST ∪ {z} in order to initializeTsol. In

addition, in the same line, the setY is initialized with the selected site.

Induction Step:1 < |Y |. The induction step is presented as follows. As inductive hypothesis we have that

the property is fulfilled when|Y | < k ≤ |ST | + 1 for certain iteration. As inductive thesis the property is

fulfilled when|Y | = k for certain iteration. Let us analyze the following cases.

Case 1.|Y | = k < |ST | + 1. In this case, the condition in line 3 is TRUE and therefore the algorithm will

execute the lines 4-7. In the previous iteration, we had|Y | < k and by I.H. after executing lines 4-7 the
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networkTsol has tree topology having as endpoints sites ofST . In the current iteration, line 4 computes the

k shortest paths from(ST ∪ {z}) \ Y to Tsol without using terminal sites as intermediate nodes. For this,

we use the matrixP which contains the shortest paths fromST ∪ {z} to sites inS not using intermediate

terminal sites. Line 5 selects randomly one of them (which is denoted byp) and line 6 computes its endpoint

non-belonging toTsol (which is denoted byu). Clearly, if z ∈ Tsol the siteu is a terminal, otherwiseu can

be a terminal orz. In any case, we addp to Tsol in line 7, in additionY is updated addingu to it. By

construction, the resulting network has tree topology containingz and all its leaves are terminal sites.

Case 2.|Y | = |ST |+ 1. The condition in line 3 is FALSE. In the previous iteration we had|Y | = |ST | and

by I.H. after executing lines 4-7 the resulting networkTsol is a tree whose endpoints are the sites ofST .

QED

Figure 3.8 illustrates a ANDPConstPhase2 iteration.

• The first network models the current solutionTsol. Let us note that (in this case) the fixed sitez was

not yet added toTsol.

• The second network showsTsol when adding to it a new terminal site. Notice that the path connecting

this terminal withTsol contains the fixed sitez. Thus, for the next iterations, when computing the

shortest paths from the terminal sites not yet added to the current solution, we must also consider the

fixed sitez.

• The third network showsTsol when adding to it a new terminal site by means of a simple edge.

3.4 ANDP Local Search Phase Algorithms

Generally the feasible solution built by the construction phase algorithm is not even a local optimum. In

this way, the GRASP metaheuristic applies a local search phase in order to improve this solution. For the

ANDP we designed two different local search phases. One based on minimum spanning tree approach and

the other on Random Neural Network approach. In this section, we give a detailed description for both

approaches. Before describing the first local search phase, we introduce some notation, a proposition, and

a suitable structure for the neighborhood.

Notation 3.4.1 Given a networkH and the matrix of connection costsC, we denote byMST(H, C) a

minimum spanning tree for the networkH.
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Figure 3.8: Example of ANDPConstPhase2 iteration.

Proposition 3.4.2 Let S̄C ⊆ SC be a subset of concentrator sites andH ⊂ G the sub-network induced

by ({z} ∪ S̄C). The best feasible solution havinḡSC as set of concentrator sites is given by the network:

G = U ∪ TMST , whereTMST is a minimum spanning tree forH andU is the set of edges that connects the

set of terminal sitesST to TMST with minimum cost.

Proof. Trivial, the setU is the same for any other sub-networkĜ ⊂ H spanning the sites({z} ∪ S̄C).

QED

Let us notice that the networkG (defined above) can be computed in polynomial time. In the following,

solutions of theANDP (GA(S, E), C) will be characterized by the associated set of concentrator sites and

one of the corresponding minimum spanning trees. Accordingly, the search for the optimal access network

will be reduced to search for the optimal setS(opt)

C of concentrator sites.
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Definition 3.4.3 (Neighborhood Structure) Let S̄C ⊆ SC be a subset of concentrator sites associated

with a feasible solution of theANDP (GA(S,E), C). The neighbors of a solution characterized by its set

S̄C of concentrator sites are defined by all the sets of concentrator sites which can be obtained by adding

to S̄C a new concentrator site, or by eliminating from̄SC one of its concentrator sites.

According to this definition; given a feasible solutionT whose set of concentrator sites isS̄C , and given

a concentrator sitesc ∈ (SC \ S̄C) we can compute the following neighbor solutions.

i) Let us denote byH1 ⊂ GA the sub-network induced by{z} ∪ S̄C ∪ {sc}. Let T1 be a minimum

spanning tree forH1. The neighbor solution produced by the insertion ofsc is the networkT = T1∪U ,

whereU is the set of edges that connect the set of terminal sitesST to the networkT1 with minimum

cost. To computeT1 we use an algorithm proposed by Minoux [101] which hasO(|S|−|ST |) average

time and the setU is computed in timeO(|ST | · |S̄C |). Thus, we reduce significantly the running times

in comparison with the classic algorithms used to compute minimum spanning trees, such as Prim or

Kruskal algorithms.

ii) Let us denote byH2 ⊂ GA the sub-network induced by{z} ∪ (S̄C \ {sc}). SinceH2 cannot be

connected, in order to guarantee feasibility, we only consider the connected componentĤ ⊆ H2 such

thatz ∈ Ĥ. Clearly, the concentrator sites non-belonging toH2 cannot be used since they can induce

a non-feasible solution. LetT2 be a minimum spanning tree for̂H. The neighbor solution produced

by the elimination ofsc is the networkT = T2 ∪ U , whereU is the same that in(i). To computeT2

we use the Prim algorithm which hasO(|Ē|+ |S̄C | log(|S̄C |) time-complexity, being|Ē| the number

of edges inH2.

Next, we present the descriptions of both strategies which we will use in combined form in the MST

based local search phase.

3.4.1 Neighborhood Strategy by concentrator site insertion

The algorithm (shown in Figure 3.9) takes as inputs the networkGA, the matrixC, the current solutionTsol

and its set of concentrator sites̄SC . TheInsertion Neighborhood searches for a better solution by means

of the insertion of a new concentrator site intoS̄C . In line 1 we initialize the best neighbor solution with

the current solutionTsol. Lines2 − 10 searches for the best neighbor solution adding a new concentrator

sitesc ∈ (SC \ S̄C) into S̄C . In line 3, the sub-networkH induced by the set of sites({z} ∪ S̄C ∪ {sc}) is

computed. Notice that, this network includes all the possible topologies that have as set of concentrator sites

a subset of̄SC ∪{sc}. In line4 the minimum spanning tree for this network is computed using an algorithm

by Minoux [101]. In line5, we connect toT (computed in line 4) all the terminal sites ofST by means
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of edges of minimum cost fromST to T . Clearly, the built network is feasible for the ANDP. Iteratively,

the pendant concentrators are removed in line 6. In line 7, we compare whether the cost of the resulting

network is smaller than the cost of the current best neighbor. If the new neighbor solution improves the

best cost, then in line8 the best cost, the best set of concentrator sites, and the best neighbor solution are

updated. Once all the possible insertions of a new concentrator site have been considered, the procedure

Insertion Neighborhood returns the best found neighbor solution, its cost, and its set of concentrator sites.

Procedure Insertion Neighborhood;

Input: GA = (S, E), C, Tsol, S̄C ;

1 best ← COST(Tsol); ŜC ← S̄C ; Tbest ← Tsol;

2 for all sc ∈
�
SC \ S̄C

�
do

3 H ← sub-network induced by ({z} ∪ S̄C ∪ {sc});
4 T ← MST computed by Minoux Algorithm(H, C);

5 Compute ∀st ∈ ST :

e ← the edge of minimum cost from st to T ;

T ← T ∪ {e};
6 Iteratively remove all concentrators from T with

degree 1;

7 if (COST(T ) < best) then

8 best ← COST(T ); ŜC ← S̄C ∪ {sc}; Tbest ← T ;

9 end if;

10 end for;

11 return best, ŜC , Tbest;

end Insertion Neighborhood;

Figure 3.9: Neighborhood by insertion moves.

Proposition 3.4.4 (Insertion Neighborhood correctness) LetTsol be a feasible solution for the ANDP and

S̄C its set of concentrator sites. The algorithmInsertion Neighborhood builds the best neighbor solution

whose set of concentrator sites belongs toA = {S̄C ∪ {sc}|sc ∈ SC \ S̄C}.

Proof. When runningInsertion Neighborhood, for each concentrator sitesc ∈ SC \S̄C loop 2-10 computes

the following:

i) H is the subnetwork induced by{z} ∪ S̄C ∪ {sc}.

ii) T is the minimum spanning tree forH.

iii) line 5 connects the sites ofST to T by means of edges the minimum cost. By Proposition 3.4.2, the

resulting network is the best feasible solution havingŜC ∪ {sc} as set of concentrators. In this way,

once finalized loop 2-10, we have computed the best feasible solution belonging to the set:

{T ∈ ΓANDP |such thatCONCENTRATORS(T ) ∈ A} .
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In addition, in line 6 each computed feasible solution is improved by removing the pendant concen-

trators; the best of them is assigned toTbest in lines 7-9, and returned in line 11.

QED

Figure 3.10 is an example of a insertion move computed byInsertion Neighborhood.

• The first network is the graph of feasible connections on the access network.

• The second network models a small access networkTsol. This one is composed of ten concentrator

sites (which are labeled withsc) and sixteen terminal sites (the black nodes).

• The third network represents the solutionTsol without the terminal sites, and a new concentrator site

(non-belonging toTsol) with its feasible connections (modeled by the broken lines) towardsz and the

other concentrator sites belonging toTsol.

• The fourth network represents a minimal spanning tree for the networkH (defined in 3.9). This tree

can be computed by applying Minoux algorithm, which reuses efficiently the current topology in

order to find the new spanning tree.

• The fifth network represents the new neighbor solution obtained by reconnecting with minimum

cost the terminal sites to the computed minimum spanning tree. Note that there exists a redundant

concentrator site (having degree 1) which can be removed preserving the feasibility. Moreover, two

terminal sites were reassigned to another concentrator site.

3.4.2 Neighborhood Strategy by concentrator site elimination

The algorithm (shown in Figure 3.11) takes as inputs the networkG, the matrixC, the current solution

Tsol and its set of concentrator sites̄SC . The procedure denominatedElimination Neighborhood (shown

in Figure 3.11) tries to find a better solution by means of the elimination of a concentrator site belonging

to S̄C . As in the previous procedure, the best neighbor solution is initialized with the current solutionTsol.

The lines2− 11 search for the better neighbor feasible solution eliminating a concentrator sitesc ∈ S̄C . In

line 3 the sub-networkH induced by the set of sites({z} ∪ (S̄C \ {sc})) is computed. Since this network

can be unconnected, we compute in line 4 the connected componentĤ ⊆ H containing the fixed node

z (which models the backbone network). It is easy to see that the concentrator sites not belonging toĤ
cannot be considered since they can induce a non-feasible solution for the ANDP. A minimum spanning

tree forĤ is computed in line 5. In line 6, we connect toT (computed in line 5) all the terminal sites of

ST by means of edges of minimum cost fromST to T . The resulting topology is feasible for the ANDP.
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Figure 3.10: Example of InsertionNeighborhood iteration.

The pendant concentrators are iteratively removed in line 7. In line 8, we compare whether the cost of the

resulting network is smaller to the cost of the current best neighbor. If we found a better solution, in line

9 the best cost, the best set of concentrator sites, and the best solution are updated. Once all the possible

eliminations of concentrator sites have been considered, the procedureElimination Neighborhood returns

the best found neighbor solution, its cost, and its set of concentrator sites.

Proposition 3.4.5 (Elimination Neighborhood correctness) LetTsol be a feasible solution for the ANDP

and S̄C its set of concentrator sites. The algorithmElimination Neighborhood builds the best neighbor

solution whose set of concentrator sites belongs toB = {S̄C \ {sc}|sc ∈ S̄C}.
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Procedure Elimination Neighborhood;

Input: GA = (S, E), C, Tsol, S̄C ;

1 best ← COST(Tsol); ŜC ← S̄C ; Tbest ← Tsol;

2 for all sc ∈ S̄C do

3 H ← sub-network induced by ({z} ∪ (S̄C \ {sc}));
4 Ĥ ← connected comp. of H such that z ∈ Ĥ;

5 T ← MST(Ĥ, C);

6 Compute ∀st ∈ ST :

e ← the edge of minimum cost from st to T ;

T ← T ∪ {e};
7 Iteratively remove all concentrators from T with

degree 1;

8 if (COST(T ) < best) then

9 best ← COST(T ); ŜC ← (S̄C \ {sc}); Tbest ← T ;

10 end if;

11 end for;

12 return best, ŜC , Tbest;

end Elimination Neighborhood;

Figure 3.11: Neighborhood by elimination moves.

Proof. When runningElimination Neighborhood, for each concentrator sitesc ∈ S̄C loop 2-11 computes

the following:

i) H is the subnetwork induced by{z} ∪ (S̄C \ {sc}).

ii) T is the minimum spanning tree for the connected componentĤ ⊆ H such thatz ∈ Ĥ.

iii) line 6 connects toT the sites ofST by means of edges the minimum cost. Let us notice that the

concentrator sites non-belonging tôH cannot be considered since when connecting a terminal site to

one of them, we obtain a non-feasible solution (in the resulting network there are no paths connecting

it with the nodez). In this way, once finalized loop 2-11, we have computed the best feasible solution

belonging to the set:

{T ∈ ΓANDP |such thatCONCENTRATORS(T ) ∈ B} .

In addition, in line 7 each computed feasible solution is improved by removing the pendant concen-

trators; the best of them is assigned toTbest in lines 8-10 and returned in line 12.

QED

Figure 3.12 is an example of a elimination move computed byElimination Neighborhood.

• The first network is the same access network presented previously.
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• The second network represents the solutionTsol without one of its concentrators and without all the

terminal sites. In addition, the broken lines represent all the possible feasible connections reconnect-

ing the isolated concentrators (which appear when removing the concentrator site) to the fixed sitez

and other concentrators present in the solution. We suppose here that it is possible to reconnect the

isolated concentrator.

• The third network represents a minimal spanning tree for the networkĤ (defined in 3.11). This tree

can be computed by applying Prim algorithm.

• Again, the fourth network represents the new neighbor solution obtained by reconnecting with min-

imum cost the terminal sites to the computed minimum spanning tree. Note that a terminal site was

reassigned to another concentrator site.
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Figure 3.12: Example of EliminationNeighborhood iteration.

3.4.3 MST based local search

Now, we will present the description of our MST based local search, which was designed by combining

suitably the strategies exposed above.
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Given a feasible solutionTsol, the algorithm tries to find a better neighbor solution computing minimum

spanning trees on insertions and eliminations of concentrator sites to/from the current solution. For this,

we use in combined form the local search strategies described above. The proposed algorithm is called

ANDP MST Local Search and its pseudo-code is shown in Figure 3.13. The algorithm has as input the

networkGA = (S, E) of feasible connections on the access network, the matrix of connection costsC, and

a feasible solutionTsol.

In line 1, we compute the set of concentrator sites belonging toTsol; this is denoted bȳSC . In line 2 the

cost ofTsol is assigned tocost sol. In line 3, we call the procedureInsertion Neighborhood in order to find

for neighbor solutions with smaller cost. As we mentioned previously, this procedure searches for a better

neighbor solution by means of the insertion of a new concentrator site not belonging toS̄C . In line 4 we

compare the cost of the current solution with the cost of the solution delivered byInsertion Neighborhood.

If a neighbor solution with smaller cost has been found byInsertion Neighborhood, then the local search

resumes from this new current solution executing from line 2. If no neighbor solution of better cost is

found byInsertion Neighborhood, then in line 5 we call the procedureElimination Neighborhood, which

evaluates the search of neighbor solutions with smaller cost by means of the elimination of a concentrator

site belonging to the current solution. In line 6 we compare the cost of the current solution with the cost

of the solution found byElimination Neighborhood. Again, if a neighbor solution with smaller cost has

been found byElimination Neighborhood, then the local search resumes from this new current solution

executing from line 2. If no neighbor solution of better cost is found byElimination Neighborhood, then

the best found neighbor feasible solution and its set of concentrator sites are returned in line 7.

Observe that theGRASP ANDP uses first the local search strategy based on concentrator site insertions

and the local search strategy based on concentrator site eliminations is performed only when there are no im-

provements by insertions. This is motivated in the fact that the time complexity ofInsertion Neighborhood

is smaller than the time complexity ofElimination Neighborhood.

Procedure ANDP MST Local Search;

Input: GA = (S, E), C, Tsol;

1 S̄C ← Concentrators(Tsol);

2 cost sol ← COST(Tsol);

3 [best, S̄C , Tsol] ← Insertion Neighborhood(G, C, S̄C , Tsol);

4 if (best < cost sol) then goto line 2;

5 [best, S̄C , Tsol] ← Elimination Neighborhood(G, C, S̄C , Tsol);

6 if (best < cost sol) then goto line 2;

7 return S̄C , Tsol;

end ANDP MST Local Search;

Figure 3.13: MST based Local Search Algorithm.
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Proposition 3.4.6 Let Tsol be the feasible solution returned by the algorithmANDP MST Local Search

andS̄C its set of concentrator sites. Then, the following points are fulfilled:

i) 6 ∃sc ∈ S̄C such that the feasible solution induced byS̄C \ {sc} improvesTsol.

ii) 6 ∃sc ∈ SC \ S̄C such that the feasible solution induced byS̄C ∪ {sc} improvesTsol.

Proof. By construction, when runningANDP MST Local Search, it easy to see that the delivered solution

Tsol satisfies the following points:

a) Tsol could not be improved byInsertion Neighborhood, i.e. condition in line 4 is FALSE.

b) Tsol could not be improved byElimination Neighborhood, i.e. condition in line 6 is FALSE.

By Proposition 3.4.4, we have thatTsol is better than any feasible solution with set of concentrator sites

belonging to:A = {S̄C ∪ {sc}|sc ∈ SC \ S̄C}, implying thus(i). In addition, by Proposition 3.4.5Tsol

is better than any feasible solution whose set of concentrator sites belongs to:B = {S̄C \ {sc}|sc ∈ S̄C},
implying thus(ii), as required and completing the proof.

QED

3.4.4 RNN based local search

We propose a local search which differs substantially from the classic local searches. We use a RNN

model in the local search phase with the aim of capturing global connectivity information about the access

network and to determine the order in which the concentrator sites non-present in the solution delivered by

the construction phase are chosen one at time in order to try improve the solution delivered by the greedy

construction phase. We denominate asANDP RNN Local Search to the designed algorithm. Next, we

give a detailed description for the underlaying neural network used and the corresponding algorithm.

The underlying RNN is defined as follows. There exists a neuron for each node ofS. The values for the

excitatory and inhibitory rates are defined as:

• %+
ij = c̄

cij
if (i, j) ∈ E, wherec̄ is the average edge cost in the graphGA,

• %−ij = 1 if (i, j) /∈ E and

• ri =
∑

j(%
+
ij + %−ij),

The other rates are zero and exogenous signals do not exist. The goal from these setting is to obtain

information inherent to the access network global connectivity. With the neural network customized in
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this manner, if a neuron is excited and has low connection costs with their neighboring neurons (i.e. high

excitatory rates), it will have a greater excitatory influence on its neighborhood (the adjacent neurons).

For the nodes that necessarily will integrate the solution (these areST ∪ {z}) the associated neurons are

artificially excited at each local search iteration by means of the assignmentqi = 1,∀i ∈ ST ∪ {z},
this guarantees to solve the fixed point equation given by the Gelenbe theorem (which provides explicit

equations for the stationary probability distribution associated with the RNN model). The idea on this

customization is iteratively to choose as candidates to improve the current solution those concentrator sites

(not yet considered) whose associated neurons have highest excitation stationary probability. It is to say,

we select sequentially neurons that have not been analyzed previously with greatest value ofq.

The algorithm takes as inputs the matricesW+ andW− of excitatory and inhibitory rates respectively

(which will be used by the RNN model), the solutionTsol (computed in the Construction Phase), the network

GA of feasible connections on the access network and the matrix of connection costsC. The algorithm

(shown in Figure 3.14) searches a better solution using the underlying neural network with the objective

to determine iteratively the order in which to analyze each concentrator node non-present inTsol and to

evaluate the benefit of its inclusion in the current solution.

In line 1, we compute the setI of concentrator sites belonging toTsol. In addition the setJ containing

the sites whose associated neurons are artificially excited is initialized with the setST ∪ {z}. We will

consecutively add toJ the concentrator sites chosen at each iteration. Line 2 initializes the best neighbor

solutionTbest with Tsol. Iteratively, the concentrator node (non belonging toTsol and that has not been

analyzed previously) selected as potential improver will be that one whose associated neuron has greater

value ofqj (asymptotically the most excited). For this, each iteration works as follows.

In line 4, we excite artificially all the neurons associated with sites ofJ by assigningqs = 1, ∀s ∈ J .

This implies that their potentials are always positive being able to excite other neurons without losing

potential. Line 5 computes the vector of asymptotic probabilitiesq = (q1, . . . , qn) by solving the fixed

point equation given by Gelenbe theorem. In line 6 we select the concentrator site non-belonging toJ (i.e.

not yet analyzed) whose associated neuron has highest value ofqj. This is the neuron asymptotically most

excited. Letsc denote the selected site. In the same line the setJ is updated by adding the sitesc to it. In

line 7, we check ifsc does not belong toI (since clearly only concentrator sites that do not belong to the

original solution can diminish the cost of the current solution). If it is the case in lines 8-14 we evaluate

the benefit of including the sitesc as potential improver of the best neighbor solution. We compute in line

8 the setŜC containing the concentrator sites ofJ (that is to sayŜC = SC ∩ J). Notice thatsc ∈ ŜC .

Line 9 computes the network induced by the setI ∪ ŜC ∪ {z}. Line 10 computes the connected component

Ĥ ⊆ H such thatz ∈ Ĥ. Clearly, the concentrator sites non-belonging toĤ cannot be considered when

computing a neighbor solution since they can induce a non-feasible topology. Thus, line 11 computes a

minimum spanning tree for̂H, which is denoted byT . In line 12, we connect toT the terminal sites of
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ST by means of edges of minimum cost. Iteratively, the pendant concentrators (i.e. concentrators with

degree 1) are deleted fromT in line 13. Line 14 compares whether the cost of the resulting networkT is

smaller than the cost of the current best neighborTbest. If this is the case, the current best neighbor solution

is updated withT . Once all the concentrators non belonging toTsol have been evaluated, the best solution

foundTbest is returned in line 17.

Procedure ANDP RNN Local Search;

Input: W+ = {%+
ij}, W− = {%−ij}, GA = (S, E), C, Tsol;

1 I ← CONCENTRATORS(Tsol); J ← ST ∪ {z};
2 Tbest ← Tsol;

3 while (I ∪ J) 6= S do

4 qs ← 1,∀s ∈ J ;

5 Compute the solution of the equation:

F (q) = q given by the Gelenbe Theorem;

6 sc ← ArgMax{qs|s ∈ (SC \ J)}; J ← J ∪ {sc};
7 if (sc 6∈ I) then

8 ŜC ← CONCENTRATORS(J);

9 H ← subgraph induced by (I ∪ ŜC ∪ {z});
10 Ĥ ← connected comp. of H such that z ∈ Ĥ;

11 T ← minimal spanning tree for Ĥ;

12 Compute ∀st ∈ ST :

e ← the edge of minimum cost from st to T ;

T ← T ∪ {e};
13 Iteratively remove all concentrator sites

from T with degree 1;

14 if COST(T ) < COST(Tbest) then Tbest ← T ;

15 end if;

16 end while;

17 return Tbest;

end ANDP RNN Local Search;

Figure 3.14: RNN based Local Search Algorithm.

Notation 3.4.7 Let Tsol be the input solution ofANDP RNN Local Search and I its set of concentrator

sites. We will denote byV [1..m] (with m = |SC \ I|) to a vector containing the sites ofSC \ I which are

sequentially analyzed (one at a time) according to the order determined by the underlaying RNN. That is to

say, inV [·] we have the concentrator sites ofJ \ I sorted by insertion order.

Proposition 3.4.8 LetTsol be the input solution ofANDP RNN Local Search andI its set of concentrator

sites. The feasible solutionTbest returned byANDP RNN Local Search satisfies the following points:

a) If qj is the associated asymptotic probability when computingV [j], then:

qj > qs, ∀s ∈ SC \ (I ∪ V [1..j − 1]), ∀j ∈ 1 . . .m.
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b) COST(Tbest) ≤ COST(Tk), ∀k ∈ 1 . . . m, whereTk is the feasible solution characterized by the set of

concentrator sitesI ∪ V [1..k].

Proof. Point(a) is trivially deduced from lines 4-6. We will prove(b) by induction ink (the number of sites

of SC \ I already added toJ). Initially Tbest = Tsol (line 2).

Basic Step:k = 0. This case corresponds when the algorithm did not yet execute lines 7-15.

Induction Step:0 < k ≤ m. In certain iteration condition in line 7 is TRUE and therefore the algorithm

executes the following:

i) lines 8-9 compute the subnetworkH induced byI ∪ V [1..k] ∪ {z}.

ii) lines 10-11 compute a minimum spanning treeT for the connected component̂H ⊆ H such that

z ∈ Ĥ. Notice that the concentrator sites non-belonging toĤ cannot be considered since they induce

non-feasible solutions.

iii) line 12 connects toT the sites ofST by means of edges the minimum cost.

By Proposition 3.4.2, the computed networkT is the feasible solution characterized by the set of concen-

trator sitesI ∪ V [1..k]. On the other hand, by inductive hypothesis, we have that networkTbest satisfies:

COST(Tbest) ≤ COST(Tj), ∀j ∈ 1 . . . k − 1.

Line 13 removes iteratively fromT the pendant concentrators since they are redundant in the solution. If

the resulting networkT is better thanTbest, this is updated in line 14. Hence, once executed line 15 the

following inequality is reached:

COST(Tbest) ≤ min (COST(T ), min{COST(Tj), ∀j ∈ 1 . . . k − 1}) = min{COST(Tj), ∀j ∈ 1 . . . k},

as required and completing the proof.

QED

The algorithm basically buildsnC − |I| neighbor solutions and selects the best among these. As men-

tioned above, the RNN is used to determine the order in which we must consider the concentrator sites from

SC \ I to improve the current solution.

3.5 The GRASP algorithms for the ANDP

We now describe the general GRASP algorithm for approximately solving the ANDP. Figure 3.15 shows

the corresponding pseudo-code. The generic proceduresConstruction Phase andLocal Search can be

instanced of the following way:
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• Construction Phase: by ANDP ConstPhase1 or ANDP ConstPhase2.

• Local Search: by ANDP MST Local Search or ANDP RNN Local Search.

In the following,Construction Phase will reference indifferently toANDP ConstPhase1 orANDP ConstPhase2,

and in the same wayLocal Search will reference toANDP MST Local Search orANDP RNN Local Search.

Next, we introduce a detailed description of the algorithmGRASP ANDP.

Procedure GRASP ANDP;

Input: GA, k, seed, MaxIter;

1 P ← Preprocessing Algorithm(GA, C);

2 Compute the RNN parameters: W+ = {%+
ij}; W− = {%−ij};

3 min cost ←∞;

4 for i = 1, . . . , MaxIter do

5 Tsol ← Construction Phase(GA, C, k);

6 Tsol ← Local Search(GA, C, Tsol);

7 cost sol ← COST(Tsol);

8 if (cost sol < min cost) then

9 T (opt) ← Tsol; min cost ← cost sol;

10 end if;

11 end for;

12 return T (opt);

end GRASP ANDP;

Figure 3.15: General Version of the algorithmGRASP ANDP.

The algorithm takes as inputs the graphGA of feasible connections on the access network, the matrix

of connection costsC, the GRASP parametersk (used in the construction phase), a seed for the pseudo

random number generatorseed and the number of iterationsMaxIter to be performed. Line 1 calls

Preprocessing Algorithm in order to compute the auxiliary structureP (used byANDP ConstPhase2).

Line 2 computes the RNN parametersW+ andW− (as presented above, they are the matrices of exci-

tatory and inhibitory rates respectively, which are used byANDP RNN Local Search). The cost of the

best found feasible solution is initialized with the value infinite (∞) in line 3. The algorithm is repeated

MaxIter times exploring the space of feasible solutions and searching for the optimal feasible solution for

the ANDP. Each iteration works as follows.

In line 5, a greedy randomized feasible solutionTsol is built using the algorithmConstruction Phase

(i.e. ANDP ConstPhase1 orANDP ConstPhase2). Line 6 callsLocal Search (i.e. ANDP MST Local Search

or ANDP RNN Local Search) in order to find for better neighbor feasible solutions. Depending on the

chosen algorithm, it searches for a better neighbor feasible solution by applying one of the following ap-

proaches:
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i) a local search which consists in finding minimum spanning trees that integrate potential optimal

topologies for the ANDP.

ii) a local search based on a RNN model which uses a customized underlaying neural network to improve

the current solution.

In line 7 we compute the cost of the neighbor solutionTsol found in line 6. In line 8, we compare the cost

of the current solution with the one delivered byLocal Search. If a neighbor solution with smaller cost has

been found byLocal Search, then, we update in line 9 the best found feasible solution and the minimum

cost. Once finalized the loop 4-11, the best found feasible solutionT (opt) is returned in line 12. Fig-

ures 3.16 and 3.17 show the execution diagrams corresponding to the generic algorithmGRASP ANDP,

when choosing the MST based local search or the RNN based local search respectively.
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Figure 3.16:GRASP ANDP execution diagram with MST based local search.
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Figure 3.17:GRASP ANDP execution diagram with RNN based local search.

3.6 Performance Tests

We present here the experimental results obtained with theGRASP ANDP algorithm by using the different

combinations of algorithms for the construction phase and the local search phase. The algorithms were

implemented in ANSI C. The experiments were made on a Pentium IV with 1.7 GHz, and 1 Gbytes of RAM,

running under Windows XP. In a first phase the candidate list sizek was chosen in the set{5, 10, 15, 20, 30},
and the maximum number of iterationsMaxIter in the interval[50..500]. These values were chosen from

GRASP reference literature. In particular, we tuned the value for the candidate list size of the following

way. We considered a reduced group of ANDP instances with different topological characteristics and over

it we ran ourGRASP ANDP considering its four possible versions and varying the value ofk. We selected

k = 10 as the value with better results since it outperformed in all the cases the results obtained with the

other values.

In a second phase we tested theGRASP ANDP on widely diverse ANDP classes. We used a large

test set, by modifying the Steiner Problem in Graphs (SPG) instances from SteinLib [90]. This library

contains many problem classes of widely different graph topologies. We extracted most of the problems in

the classes: C, MC, X, PUC, I080, I160, I320, I640, P6E, P6Z, WRP3 and WRP4. We customized the SPG

problems, transforming them into ANDP instances by means of the following changes. For each considered

problem:
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i) we selected the terminal node with greatest degree as thez node (modelling the backbone),

ii) the Steiner nodes model the concentrator sites, and the terminal nodes model the terminal sites,

iii) all the edges between terminal sites were deleted (as they are not allowed in feasible ANDP solutions).

Moreover, if the resulting topology was unconnected, the problem instance was discarded. If the result-

ing topology was connected, we ran theConstruction Phase (i.e. one of the construction phase algorithms)

in order to discard the instance if its space of feasible solutions was empty. By this process, we obtained

210 ANDP instances having nonempty space of feasible solutions.

Let us notice that since in the ANDP the terminals cannot be used as intermediate nodes (which implies

also that edges between pairs of terminals are not allowed), the cost of a SPG optimum is a lower bound for

the optimum of the corresponding ANDP.

Tables 3.1 to 3.4 show a summary of computational results obtained by applyingGRASP ANDP to the

customized SteinLib classes, they correspond to the combinations:

Heuristic H1: ANDP ConstPhase1 andANDP MST Local Search,

Heuristic H2: ANDP ConstPhase2 andANDP MST Local Search,

Heuristic H3: ANDP ConstPhase1 andANDP RNN Local Search,

Heuristic H4: ANDP ConstPhase2 andANDP RNN Local Search.

The results shown in these tables were obtained with the combination of parametersk = 10 and

MaxIter = 100. In each one of them the first column contains the names of the original SteinLib classes

and the entries from left to right are:

• the number of customized instances (NI),

• the size of the selected instances in terms of number of nodes and edges respectively,

• the number of instances where the lower bound was obtained reaching therefore the optimum (NOPT),

• the average of the improvement of the results of the local search phase over the construction phase

(Avg. LSI),

• the average running time per iteration (Avg. secs/itr),

• and the average of the gap of the GRASP solution with respect to the lower bound (Avg. LBGAP).
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The average improvement is computed as Avg. LSI=
∑

p∈Set LSI(p)/NI, where for problemp,

LSI(p) =
100

MaxIter
×

(
MaxIter∑

i=1

(CCi − LCi)

CCi

)
,

CCi andLCi being the costs of the solutions delivered in iterationi by the Construction Phase and the

Local Search Phase respectively. The average gap is Avg. LBGAP=
∑

p∈Set LB GAP(p)/NI, where for

problemp,

LB GAP(p) = 100× Best Cost Found− Lower Bound

Lower Bound
,

andLower Bound is the optimum value corresponding to the original SPG instance.

Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 18.17% 13.83 0.43%

MC 3 97-150 4656-11175 1 21.56% 5.01 3.33%

X 2 52-58 1326-1653 - 15.13% 1.43 52.33%

PUC 4 64-128 192-750 2 19.65% 2.47 0.14%

I080 70 80 120-3160 15 18.87% 1.42 7.58%

I160 22 160 240-2544 7 21.31% 3.02 3.57%

I320 15 320 480-10208 3 22.54% 11.27 2.57%

I640 15 640 960-4135 2 22.06% 34.08 3.71%

P6E 10 100-200 180-370 2 22.12% 1.98 17.08%

P6Z 5 100-200 180-370 1 20.36% 1.54 27.33%

WRP3 27 84-925 149-1800 7 20.22% 22.42 0.00032%

WRP4 31 110-938 188-1869 4 24.16% 32.09 0.00786%

ALL 210 - - 44 20.75% 12.30 5.37%

Table 3.1: Results withANDP ConstPhase1 andANDP MST Local Search (HeuristicH1).

Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 14.83% 11.27 0.32%

MC 3 97-150 4656-11175 1 17.96% 4.17 3.33%

X 2 52-58 1326-1653 - 14.25% 1.46 34.32%

PUC 4 64-128 192-750 2 18.42% 1.82 0.14%

I080 70 80 120-3160 17 14.27% 1.03 4.42%

I160 22 160 240-2544 7 18.98% 2.98 3.28%

I320 15 320 480-10208 3 17.63% 9.12 2.35%

I640 15 640 960-4135 2 16.59% 29.83 3.01%

P6E 10 100-200 180-370 2 17.65% 1.78 14.78%

P6Z 5 100-200 180-370 1 17.02% 1.24 18.64%

WRP3 27 84-925 149-1800 7 16.76% 19.64 0.00031%

WRP4 31 110-938 188-1869 5 18.44% 26.91 0.00723%

ALL 210 - - 47 16.47% 10.47 3.73%

Table 3.2: Results withANDP ConstPhase2 andANDP MST Local Search (HeuristicH2).
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Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 19.95% 12.13 0.41%

MC 3 97-150 4656-11175 1 23.34% 3.14 6.64%

X 2 52-58 1326-1653 - 11.00% 0.73 39.56%

PUC 4 64-128 192-750 2 21.04% 1.27 0.14%

I080 70 80 120-3160 13 18.22% 1.49 10.71%

I160 22 160 240-2544 7 23.82% 4.03 3.86%

I320 15 320 480-10208 2 21.12% 10.14 2.89%

I640 15 640 960-4135 2 20.59% 29.63 4.67%

P6E 10 100-200 180-370 2 23.75% 1.83 16.49%

P6Z 5 100-200 180-370 1 22.01% 1.10 23.22%

WRP3 27 84-925 149-1800 7 20.18% 20.32 0.00323%

WRP4 31 110-938 188-1869 3 25.14% 28.25 0.00513%

ALL 210 - - 40 20.91% 11.07 6.33%

Table 3.3: Results withANDP ConstPhase1 andANDP RNN Local Search (HeuristicH3).

Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 15.17% 10.12 0.27%

MC 3 97-150 4656-11175 1 19.33% 4.43 3.69%

X 2 52-58 1326-1653 - 8.12% 0.52 32.27%

PUC 4 64-128 192-750 2 17.32% 1.02 0.11%

I080 70 80 120-3160 17 13.21% 0.57 6.73%

I160 22 160 240-2544 7 17.14% 3.09 3.08%

I320 15 320 480-10208 3 16.12% 9.03 2.12%

I640 15 640 960-4135 2 17.69% 26.96 2.56%

P6E 10 100-200 180-370 2 16.11% 1.54 14.02%

P6Z 5 100-200 180-370 1 16.42% 1.03 19.12%

WRP3 27 84-925 149-1800 8 15.76% 16.83 0.00096%

WRP4 31 110-938 188-1869 5 17.84% 20.05 0.00132%

ALL 210 - - 48 15.54% 8.68 4.39%

Table 3.4: Results withANDP ConstPhase2 andANDP RNN Local Search (HeuristicH4).

In Appendix B, we introduce tables which summarize the best results obtained for each customized

instance. Before comparing the different GRASP heuristics for the ANDP, we define the average of the

difference between the best solution cost obtained byHi, i ∈ 1..4, with respect to the obtained one byHj,

j ∈ 1..4, j 6= i, as:

Avg. DCOSTij =
100

NI
×

( ∑
p∈Set

(CHi(p)− CHj(p))

CHj(p)

)
,

where for problemp, CHi(p) andCHj(p) are the costs of the solutions delivered byHi andHj respectively.

In addition, we introduce the notation:

• NLBij is the number of instances where the lower bound was attained by the heuristicHi but not by

the heuristicHj,



64 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

• NOij the number of instances where the heuristicHi overcame the heuristicHj.

Based on these definitions, we provide the following comparison tables. In Tables 3.5 and 3.6 we com-

pare the construction phase algorithms when the local search algorithms are the same; Table 3.5 compares

the heuristicsH1 andH2 whereas Table 3.6 compares the heuristicsH3 andH4. Tables 3.7 and 3.8 compare

the local search algorithms when the construction phase algorithms are the same; Table 3.7 compares the

heuristicsH1 andH3 whereas Table 3.8 compares the heuristicsH2 andH4. Finally, Tables 3.9 and 3.10

compare the heuristicsH1 with H4, andH2 with H3 respectively.

Testset NLB12 NLB21 NO12 NO21 Avg. DCOST12 Avg. DCOST21

C - - 0 2 0.09% -0.07%

MC 0 0 0 0 0.0% 0.0%

X - - 0 1 15.12% -14.53%

PUC 0 0 0 0 0.0% 0.0%

I080 0 2 2 6 2.46% -2.25%

I160 0 0 1 4 0.24% -0.19%

I320 0 0 0 3 0.18% -0.16%

I640 0 0 0 3 0.58% -0.53%

P6E 0 0 0 2 1.86% -1.73%

P6Z 0 0 0 2 6.95% -6.24%

WRP3 0 0 1 6 0.0000086% -0.0000075%

WRP4 0 1 0 5 0.00051% -0.00047%

Total 0 3 4 34 1.30% -1.19%

Table 3.5: Comparison betweenH1 andH2.

Testset NLB34 NLB43 NO34 NO43 Avg. DCOST34 Avg. DCOST43

C - - 0 2 0.11% -0.10%

MC 0 0 0 1 2.38% -2.28%

X - - 0 1 6.23% -5.78%

PUC 0 0 0 1 0.021% -0.020%

I080 0 4 0 8 3.32% -3.06%

I160 0 0 0 2 0.67% -0.61%

I320 0 0 0 3 0.63% -0.57%

I640 0 0 0 2 1.72% -1.64%

P6E 0 0 0 2 2.14% -1.96%

P6Z 0 0 0 1 3.52% -3.23%

WRP3 0 1 0 5 0.0017% -0.0016%

WRP4 0 2 0 6 0.0029% -0.0019%

Total 0 7 0 36 1.62% -1.50%

Table 3.6: Comparison betweenH3 andH4.

Considering the possible combinations of algorithms for the construction phase and the local search

phase, the results show that the four resulting heuristics find in most cases good quality solutions. Next, we

will discuss the obtained results.
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Testset NLB13 NLB31 NO13 NO31 Avg. DCOST13 Avg. DCOST31

C - - 1 1 0.017% -0.017%

MC 0 0 1 0 -2.55% 2.75%

X - - 0 1 10.72% -8.75%

PUC 0 0 0 0 0% 0%

I080 2 0 4 0 -2.01% 2.63%

I160 0 0 3 0 -0.18% 0.24%

I320 1 0 2 0 -0.23% 0.26%

I640 0 0 2 0 -0.64% 0.71%

P6E 0 0 0 2 0.45% -0.38%

P6Z 0 0 0 2 3.73% -2.68%

WRP3 0 0 3 1 -0.00186% 0.00237%

WRP4 1 0 2 2 0.00219% -0.00117%

Total 4 0 18 9 -0.57% 0.84%

Table 3.7: Comparison betweenH1 andH3.

Testset NLB24 NLB42 NO24 NO42 Avg. DCOST24 Avg. DCOST42

C - - 0 2 0.039% -0.033%

MC 0 0 1 0 -0.17% 0.28%

X - - 0 1 1.63% -1.45%

PUC 0 0 0 1 0.024% -0.022%

I080 0 0 4 3 1.52% -2.08%

I160 0 0 0 2 0.17% -0.14%

I320 0 0 0 3 0.20% -0.18%

I640 0 0 0 3 0.43% -0.28%

P6E 0 0 0 2 0.68% -0.54%

P6Z 0 0 1 2 0.26% -0.31%

WRP3 0 1 2 2 0.00047% -0.00062%

WRP4 0 0 2 6 0.00338% -0.00101%

Total 0 1 10 27 0.62% -0.78%

Table 3.8: Comparison betweenH2 andH4.

The heuristicH4 reached the lower bound and therefore the optimality in 48 instances, followed in order

byH2,H1 andH3 with 47, 44 and 40 instances respectively. With respect to the 210 instances considered,

these values correspond to22% of the cases using the heuristicsH4 andH2, more than20% usingH1, and

more than19% usingH3. In general, the gaps related to the lower bounds were low in the four heuristics,

and did not surpass the5% in 7 out of 12 classes. Even though we do not know the global optimal solution

costs of the ANDP instances generated, some of the feasible solutions found might eventually be globally

optimal if we consider the low gaps obtained as well as the percentage of cases in which we reached the

lower bound.

We also notice that the percentages of local search improvement strongly depend on which solution

construction algorithm is applied. For example, when setting the algorithmANDP MST Local Search as

local search and comparing the heuristicsH1 andH2, we notice that in every class the average improvement
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Testset NLB14 NLB41 NO14 NO41 Avg. DCOST14 Avg. DCOST41

C - - 0 2 0.13% -0.09%

MC 0 0 1 0 -0.28% 0.33%

X - - 0 1 15.21% -15.08%

PUC 0 0 0 1 0.03% -0.02%

I080 0 2 3 7 0.64% -0.48%

I160 0 0 1 4 0.32% -0.27%

I320 0 0 0 3 0.30% -0.20%

I640 0 0 0 4 0.85% -0.65%

P6E 0 0 0 3 2.01% -1.12%

P6Z 0 0 0 1 6.05% -5.14%

WRP3 0 1 3 2 -0.00031% 0.00052%

WRP4 0 1 1 6 0.00601% -0.00213%

Total 0 4 9 34 0.71% -0.56%

Table 3.9: Comparison betweenH1 andH4.

Testset NLB23 NLB32 NO23 NO32 Avg. DCOST23 Avg. DCOST32

C - - 2 0 -0.05% 0.08%

MC 0 0 2 0 -2.01% 3.22%

X - - 1 0 -3.11% 3.87%

PUC 0 0 0 0 0% 0%

I080 4 0 9 4 -3.07% 4.32%

I160 0 0 3 1 -0.31% 0.47%

I320 1 0 4 1 -0.28% 0.38%

I640 0 0 4 0 -0.78% 0.93%

P6E 0 0 2 0 -0.71% 1.11%

P6Z 0 0 2 0 -1.92% 2.54%

WRP3 0 0 3 2 -0.00141% 0.00217%

WRP4 2 0 4 2 -0.0007% 0.0018%

Total 7 0 36 10 -1.27% 1.78%

Table 3.10: Comparison betweenH2 andH3.

of the local search phase (Avg.LSI) was lower inH2 than inH1. This shows that the feasible solution con-

structed byANDP ConstPhase2 is generally of better quality (i.e. closest to a local optimum) than the one

built by ANDP ConstPhase1. Moreover, computing the weighted averages of Avg.LSI over all the classes

we have a20.75% and16.47% of average improvement inH1 andH2 respectively. This observations are

also valid when comparing the heuristicsH3 andH4 which use the algorithmANDP RNN Local Search

as local search. In this last case the weighted average of Avg.LSI over all the classes are of20.91% and

15.54% of average improvement forH3 andH4 respectively.

On the other hand, when setting the algorithmANDP ConstPhase1 as construction of the solution and

comparing the heuristicsH1 andH3, we notice that in seven classes the average improvement of the local

search phase was bigger inH3 than inH1. However, both heuristics had very similar values considering

the weighted average per class. In the same way, when setting the algorithmANDP ConstPhase2 as
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construction of the solution and comparing the heuristicsH2 andH4, we notice that in 9 classes the average

improvement of the local search phase was bigger inH2 than inH4 and its weighted averages with a

difference lower to1%. Therefore, we are able to say that independently of the construction used, both

local search algorithms significantly improved the feasible solutions constructed, being this improvement

on average always superior to8% and superior to14% in 11 classes.

Let us analyze now the execution times. When measuring the heuristicsH2 andH4 execution times

we considered the pre-processing time of the paths matrixP used by the algorithmANDP ConstPhase2,

in order to compare them to the execution times of the heuristicsH1 andH3. Considering the average

execution times over all classes, we obtained that the heuristic with best times wasH4 followed byH2,

H3 andH1. Notice that those average values do not differ in more than 4 seconds per iteration. Besides

it should be noticed that the execution times strongly depend on the class to which the problem belongs.

Comparing any two of the heuristics used, we found in every case situations where an algorithm has better

average time than the other one for a certain class and inversely. For example:H2 andH3 have for class

C average time by iteration of 12.13 seconds and 10.12 seconds respectively, whereas for class MC have

average time by iteration of 3.14 seconds and 4.43 seconds respectively.

Let us analyze the comparisons between heuristics.

• Table 3.5 shows that the heuristicH2 improves on average1.19% the solution delivered by the heuris-

tic H1. In every instance whereH1 reached the lower bound,H2 also reached it. MoreoverH2

reached the lower bound in three ANDP instances whereH1 could not reach it. Nevertheless, it is to

be noticed that in four instancesH1 obtained better feasible solutions thanH2, what makes impossible

stating thatH2 overcomesH1.

• Table 3.6 shows that the heuristicH4 improves on average1.5% the solution delivered by the heuristic

H3. In every case whereH3 reached the lower bound,H4 also reached it. BesidesH4 achieved the

lower bound in seven ANDP instances whereH3 could not achieve it. In 36 instancesH4 found better

solutions thanH3 whereasH3 did not overcameH4 at any instance.

• Table 3.7 shows that the heuristicH1 improves on average0.57% the solution delivered by the heuris-

tic H3. In every case whereH3 reached the lower bound,H1 reached it too. MoreoverH1 achieved

the lower bound in four ANDP instances whereH3 could not achieve them. However, in nine in-

stancesH3 obtained better feasible solutions thanH1 while in 18 instancesH1 overcameH3.

• Table 3.8 shows that the heuristicH4 improves on average0.78% the solution delivered byH2. In

every case whereH2 reached the lower bound,H4 reached it too. In additionH4 succeed in reaching

the lower bound in an ANDP instance whereH2 could not reach it. On the other hand, in ten instances

H2 obtained better feasible solutions thanH4 while in 27 instancesH4 overcameH2.
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• Table 3.9 shows that the heuristicH4 improves on average0.56% the solution delivered by the heuris-

ticH1. In every case whereH1 reached the lower bound,H4 also reached it. Besides thisH4 reached

the lower bound in four ANDP instances whereH1 did not succeed in achieving it. In nine instances

H1 obtained better feasible solutions thanH4 whereas in 34 instancesH4 overcameH1.

• Table 3.10 shows that the heuristicH2 improves on average1.27% the best solution found by the

heuristicH3. In every case whereH3 reached the lower bound,H2 reached it too. In addition to

thisH2 achieved the lower bound in seven ANDP instances whereH3 could not reach them. In ten

instancesH3 obtained better feasible solutions thanH2 while in 36 instancesH2 overcameH3.

To conclude the comparison we can say that the four heuristics produced good results. All of them

reached optimal solutions in more than20% of test cases and attaining on average low gaps with respect

to their lower bounds. In addition, from the empirical data, we also notice that some of the heuristics are

incomparable since there are ANDP instances where one heuristic beats the other and inversely. At last, it

is worth mentioning the good performance of the RNN model as optimizer of feasible topologies.

3.7 Conclusions

By modelling the access network design problem as a variant of the Steiner problem in graphs, we were

able to develop four Greedy Randomized Search Adaptive Procedures which can give a good quality ap-

proximate solution. The implementation of our algorithms was tested on a number of different problems

with heterogeneous characteristics. In particular, we built a set of ANDP instances transforming 210 SPG

instances (extracted from SteinLib) to our problem. The optimal values for the selected SPG instances are

lower bounds for the corresponding ANDP.

The four versions of GRASP algorithms found good quality feasible solutions, reaching the optimum in

40, 44, 47, and 48 cases in a total of 210 instances (over20% of the test-set in all the cases). Even though

we only know the lower bounds given by the optimal values of the SPG original problems, when computing

the weighted average over all the classes, the average gaps of the solutions obtained related to this bounds

were lower than7%. It is reasonable supposing that the gaps related to the global optimums of the ANDP

instances be even lower since the feasible solutions of a ANDP are also feasible solutions of the original

SPG, but not reciprocally. In this sense, remember that in any ANDP instances generated, all the edges

between terminal nodes pairs were eliminated (because in our ANDP such connections are not allowed)

having the additional constraint that the terminal nodes must have degree one in the solution.

On the other hand, as above exposed, the local search algorithms notably improved the solutions deliv-

ered by the construction algorithms, strongly varying the percentage of improvement according to the SPG
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class of problem from which the ANDP instance comes. In addition to this, such improvements are strongly

attached to the quality of the solution delivered by the construction phase.

We noticed that, as expected, the execution times of the proposed algorithms are strongly dependant on

the number of sites, edges, and the terminal sites.

To sum up, as far as we are concerned, the results obtained with the GRASP algorithms proposed are

very good as we consider that computing the global optimal solution of an ANDP is a NP-hard problem.

Actually, our ANDP model has some limitations; for instance, we have not considered constraints re-

lated to the depth of the resulting topology. As future work, it is possible to incorporate these restrictions

with the aim of producing access networks topologically more reliable by limiting the amount of chained

concentrator nodes. Moreover, it is possible to search for new methods which improve either the initial

construction or the local search phases of the GRASP.
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Chapter 4

The Backbone Network Design Problem

4.1 Introduction

In general, a typical WAN backbone network has a meshed topology, and its purpose is to allow efficient

and reliable communication between the switch sites of the network that act as connection points for the

local access networks (eventually incorporating other switch sites for efficiency purposes).

The topological design of a Backbone network basically consists of finding a minimum cost topology

which satisfies some additional requirements, generally chosen to improve the survivability of the network

(that is, its capacity to resist the failures of some of its components). One way to do this is to specify a

connectivity level, and to search for topologies which have at least this number of disjoint paths (either

edge disjoint or node disjoint) between pairs of switch sites. In the most general case, the connectivity level

can be fixed independently for each pair of switch sites (heterogeneous connectivity requirements). This

problem can be modelled as aGeneralized Steiner Problem with Node-Connectivity(denoted by GSP-NC)

and it is an NP-Complete problem [125, 135, 136]. Some references in this area are [1, 6, 9, 33, 69, 78, 89].

As we mentioned in Section 1.4, most of these works are either focused on the edge-disjoint flavor of the

problem, or on the exploration of particular cases, for example, when it is required to have two disjoint paths

between all pairs of distinguished switch sites, which is called the 2-survivability problem [6]. In [126], an

extensive survey (1992) over high survivability models is introduced.

Topologies verifying edge-disjoint path connectivity constraints assure that the network can survive to

failures in the connection lines; whereas node-disjoint path constraints assure that the network can sur-

vive to failures both in switch sites as well as in the connection lines. In this chapter we discuss several

customizations of the GRASP methodology for finding a low cost Backbone network topology that satis-

fies connection requirements on the number of node-disjoint paths, working upon the Generalized Steiner

Problem with Node-Connectivity model.

71
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The remainder of this chapter is organized as follows. Section 4.2 introduces the notation, the auxiliary

definitions to be used and the formal definition of our Backbone Network Design Problem (denoted by

BNDP). In Section 4.3 we introduce an algorithm for the construction phase plus a slight variant of it. In

Section 4.4 we provide three different alternative algorithms for the local search phase. These methods

were designed with the goal of working in a combined form, allowing thus the exploration of different

neighborhood structures. Hence, by combining them suitably, we obtain different versions of GRASP.

Section 4.5 discuss the combinations of the previous construction and local search phases within the GRASP

methodology for approximately solving the BNDP. Section 4.6 presents experimental results obtained when

applying the GRASP algorithms on an extensive test-set of BNDP instances, containing problems with

distinctive topological characteristics. Finally, we conclude with a discussion in Section 4.7, which includes

some guidelines for future work.

4.2 Notation, Problem Formalization and Auxiliary Definitions

We introduce the notation used to formalize the problem:

• SD is the set of sites where the switch equipments can be installed; these sites also will be called

potential switch sites or backbone sites. The number of the switch sites is given bynD = |SD|.

• S(I)

D is a distinguished subset of switch sites, which will always be included in the backbone network

topology (usually because they are the access points for some local access subnetworks). We usually

call these thefixed sitesof the backbone. The nodes inSD \S(I)

D are called Steiner nodes or non-fixed

sites.

• C = {cij}i,j∈SD
is the matrix which gives for any pair of sites ofSD, the (non-negative) cost of laying

a line between them. When the direct connection betweeni andj is not possible, we takecij = ∞.

• R = {rij}i,j∈S
(I)
D

is an integer matrix of requirements of connection between pairs of sites ofS(I)

D .

We will requirerij node disjoint paths between fixed sitesi andj, whererij usually is strictly greater

than 1.

• E = {(i, j); ∀i, j ∈ SD such thatcij < ∞}, this is the set of feasible connections between switch

sites belonging toSD.

• GB = (SD, E) is the undirected simple graph modeling the feasible connections on the Backbone

Network.



4.2. NOTATION, PROBLEM FORMALIZATION AND AUXILIARY DEFINITIONS 73

Definition 4.2.1 (Backbone Network Design Problem-BNDP)We define the Backbone Network Design

ProblemBNDP (SD, E, C,R) as the problem of finding a subgraphHB of GB of minimum cost such that

the nodes ofHB include those inS(I)

D andHB satisfies the connection requirements specified inR. We will

denote byΓBNDP the space of feasible solutions associated with the problem.

Let us observe that this definition is equivalent to the GSP-NC definition presented in Appendix C.

We introduce some supplementary auxiliary definitions here which will be used in the descriptions of the

proposed algorithms.

Definition 4.2.2 (key-node)Given a BNDP instance and a feasible solutionGsol ∈ ΓBNDP , we define a

key-nodeas a non-fixed site (that is, a site inSD \ S(I)

D ) with degree at least three inGsol.

Definition 4.2.3 (key-path) Given a BNDP instance and a feasible solutionGsol ∈ ΓBNDP , we define a

key-pathas a path inGsol such that all its intermediate sites are non-fixed sites with degree two inGsol, and

whose endpoints are either fixed sites or key-nodes.

Notation 4.2.4 LetGsol ∈ ΓBNDP be a feasible solution. If each edge ofGsol belongs to some path between

two fixes switch sites, then it is possible to decomposeGsol in key-paths (i.e, there is a set of key-paths such

that every edge ofGsol belongs to one and only one key-path). We will denote byK(Gsol) = (p1, . . . , ph) the

decomposition ofGsol in key-paths, ordered by decreasing cost.

Definition 4.2.5 (key-tree) Given a BNDP instance, a feasible solutionGsol ∈ ΓBNDP and a key-node

v ∈ Gsol, we define thekey-treeassociated withv as the tree inGsol which is conformed by all the key-paths

that havev as one of its endpoints. Topologically, we can see it as a set of chains havingv as endpoint in

common (the key-nodev).

The previous definitions are inspired on key-path and key-node definitions used in [131] in the context

of SPG. We present a small instance example, based on the network shown in Figure 4.2. In this network

there are six fixed switch sites, colored black and labeleds1, s2, s3, s4, s5 ands6, and four non-fixed switch

sites, colored white. The connections that can be used to build a solution are shown in the figure, annotated

with their costs. The connection requirements are the following (supposing theR elements ordered by their

index number):

This corresponds to asking for three node-disjoint paths betweens2 ands3, three node-disjoint paths

betweens2 ands4, and two node-disjoint paths between a node of{s1, s5, s6} with any other fixed site.

Figure 4.3 presents a minimal feasible solution (of cost 29) to this problem instance. As it can be

seen, not all non-fixed sites are needed in order to satisfy the connection requirements. Observe that in the

solution there are two key-nodes and therefore two key-trees.
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Figure 4.1: Connection requirement matrix.
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Figure 4.2: Example of a BNDP instance.

To apply GRASP to the BNDP, it is necessary to customize the different GRASP components described

in Section 2.3. In the next two sections, we propose a path based construction phase and three local searches

which are based on different neighborhood definitions. By combining suitably these local searches, we yield

a series of GRASP versions which will be explained in detail in Section 4.5. Firstly, we will present the

construction phase algorithms.

4.3 BNDP Construction Phase Algorithms

For this phase, the method proposed can be seen as an extension of the Takahashi-Matsuyama algo-

rithm [127], which is a heuristic for computing a (low cost) Steiner tree, and works by searching for shortest

paths between pairs of nodes not already connected. Our extension has a quite different objective, as we

need to efficiently computek low-cost node-disjoint paths fromi to j, with i, j ∈ S(I)

D . The construction
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Figure 4.3: A solution to the graph example given in Figure 4.2.

phase algorithm is denominatedConstPhase. In addition we give a slight variant of this one, to which we

denominatedConstPhase∗. Both algorithms are described below.

4.3.1 Algorithm ConstPhase

The algorithm builds iteratively a network satisfying the matrixR = {rij}i,j∈S
(I)
D

of connection require-

ments between fixed sites, i.e. giveni, j ∈ S(I)

D there existsrij node-disjoint paths connecting them in the

network.

The algorithm (shown in Figure 4.4) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connection costsC, the matrix of connection requirementsR, and the GRASP

parameterk. In line 1 we initialize:

• the current solutionGsol with the sites ofS(I)

D and an empty set of links,

• the matrixM = {mij}i,j∈S
(I)
D

(indicating the connection requirements not yet satisfied between fixed

sites) withmij = rij, ∀i, j ∈ S(I)

D ,

• the setP = {Pij}i,j∈S
(I)
D

(used to store therij computed paths between two fixed sitesi, j ∈ S(I)

D )

with Pij = ∅, ∀i, j ∈ S(I)

D ,
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Procedure ConstPhase( GB ,C,R,k);

1 Gsol ← (S
(I)
D , ∅); mij ← rij ∀i, j ∈ S

(I)
D ; Pij ← ∅ ∀i, j ∈ S

(I)
D ; Aij ← 0 ∀i, j ∈ S

(I)
D ;

2 while ∃mij > 0 such that Aij < MAX ATTEMPT do

3 Let i, j ∈ S
(I)
D be a randomly chosen pair of fixed switch sites such that mij > 0 ;

4 Ḡ ← (GB \ Pij);

5 Let C̄ be the matrix given by: c̄uv ←
(

0 if (u, v) ∈ Gsol,

cuv if (u, v) ∈ (Ḡ \ Gsol).
;

6 Lp ← the k shortest paths from i to j on Ḡ, considering the matrix C̄;

7 if Lp = ∅ then Aij ← Aij + 1; Pij ← ∅; mij ← rij ;

8 else

9 if ∃p̂ ∈ Lp such that COST|C̄(p̂) = 0 then p ← p̂;

10 else p ← Select Random(Lp); Gsol ← Gsol ∪ {p};
11 Pij ← Pij ∪ {p}; mij ← mij − 1;

12 [P, M ] ← General Update Matrix(Gsol,P, M, p, i, j);

13 end if;

14 end while;

15 return Gsol, P;

end ConstPhase;

Figure 4.4: ConstPhase pseudo-code.

• and the auxiliary matrixA = {Aij}i,j∈S
(I)
D

(used to record when there has not been found a path

between two fixed sites) withAij = 0, ∀i, j ∈ S(I)

D .

Loop 2-14 is repeated until all the fixed sites have satisfied their connection requirements or for a cer-

tain pair of fixed sitesi, j ∈ S(I)

D have not been foundrij node-disjoint paths connecting them after

MAX ATTEMPT attempts.

Each iteration works of the following way. Line 3 selects randomly (and uniformly) a pairi, j ∈ S(I)

D

such thatmij > 0 (there exists at least one requirement not yet computed among them). Line 4 computes

the networkḠ = (GB \ Pij). Note that this network does not contain any edge and node ofPij excepting

i andj; therefore, every path communicatingi with j in Ḡ will be node-disjoint with respect to the paths

already added toPij. Line 5 computes an auxiliary matrix̄C of connection costs where any connection

(u, v) ∈ Gsol has cost zero. This allows to reuse the already existing edges inGsol (without considering their

costs), when computing new node-disjoint paths between two fixed sites. Line 6 computes thek shortest

paths fromi to j on Ḡ using the matrixC̄. These paths are stored in the restricted candidate listLp. Line 7

checks ifLp is empty. If this is the case (assuming thatGB satisfies the matrixR, that is to say, the space

of feasible solutions is non-empty), we re-initializePij andmij sincePij contains a separating set between

i andj on GB and therefore there does not exist a path fromi to j in Ḡ, they are in different connected

components. Otherwise, ifi andj are in the same connected component inḠ, in order to not increase the

cost ofGsol, in line 9 we search a patĥp ∈ Lp such thatCOST|C̄(p̂) = 0 (its cost with respect tōC). If this

is successful, we assign top the found path. Otherwise, line 10 selects randomly (and uniformly) a pathp
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fromLp and it is added toGsol in the same line. Since in both cases we obtained a new pathp node-disjoint

with respect to the paths inPij, in line 11 the setPij is updated by adding the pathp to it andmij is

decremented by one. On the other hand, when adding this new path, new node-disjoint paths can have been

introduced between some pairs of fixed sites, the auxiliary procedureGeneral Update Matrix is called in

line 12 in order to update some connection requirements of the fixed sites belonging top and the setP. The

description of this procedure (given in Sub-Section 4.3.1) explains in detail the introduced updates.

Once finalized the loop 2-14, the built feasible solutionGsol is returned in line 16. Figure 4.5 illustrates

when a new node-disjoint path is added between two fixed switch sitesi, j ∈ S(I)

D . Let us note that by

construction the new pathp connectingi andj is node-disjoint with respect to the set of pathsPij already

present inGsol.

i

j

P
i j

p
Gsol

G
B

the new
node-disjoint path

i

j

P
i j

| |+1node-disjoint paths

p

Figure 4.5: Computation of a new node-disjoint path between the fixed sitesi andj.

General Update Matrix description

The algorithm (shown in Figure 4.6) receives as input the current solution (in construction)Gsol, the matrix

P of computed paths, the matrixM indicating the requirements not yet satisfied, two fixed sitesi andj, and

the pathp computed among them. The loop 1-15 analyzes each fixed site belonging to the pathp in order

to update certain connection requirements with other fixed sites. More specifically, the algorithm iteratively

analyzes eachk ∈ S(I)

D , k 6= i, j such thatk ∈ p and it checks if in the computed pathp there exists a

sub-path connectingk with i (resp.j) node-disjoint with respect to the already present inPik (resp.Pkj). If

this is the case, the setPik (resp.Pkj) is updated by addingp(i,k) (resp.p(k,j)) to it, andmik andmki (resp.

mkj andmjk) are decremented by one.
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Procedure General Update Matrix( Gsol,P ,M ,p,i,j);

1 for each k ∈ S
(I)
D , k 6= i, j such that k ∈ p do

2 if mik > 0 then

3 if (NODES(Pik) ∩ NODES(p(i,k)) = {i, k}) then

4 Pik ← Pik ∪ {p(i,k)};
5 mik ← mik − 1; mki ← mki − 1;

6 end if;

7 end if;

8 if mkj > 0 then

9 if (NODES(Pkj) ∩ NODES(p(k,j)) = {k, j}) then

10 Pkj ← Pkj ∪ {p(k,j)};
11 mkj ← mkj − 1; mjk ← mjk − 1;

12 end if;

13 end if;

14 end for each;

15 return P , M ;

end General Update Matrix;

Figure 4.6: GeneralUpdateMatrix pseudo-code.

Proposition 4.3.1 Once the algorithmGeneral Update Matrix finalizes the following points are satisfied

∀i, j ∈ S(I)

D :

i) Pij = ∅ iff mij = rij.

ii) If mij = k (with k ∈ 0..rij) then there exist at leastrij − k node-disjoint paths fromi to j in Gsol.

iii) The relation|Pij| = rij −mij is satisfied in eachConstPhase iteration.

Proof. Firstly, let us assume that whenGeneral Update Matrix is called in line 12 ofConstPhase, P and

M satisfy pointsi− iii.

Let i, j ∈ S(I)

D be the input fixed switch sites andp the path connectingi with j computed byConstPhase.

Loop 1-14 analyzes∀k ∈ S(I)

D , k ∈ p, k 6= i, j the following cases.

Case 1: Lines 2-7.If mik > 0 we know that there exitrij −mij node-disjoint paths communicatingi andj

in Gsol. In addition, ifmij = rij we have thatPij = ∅. If conditionNODES(Pik) ∩ NODES(p(i,k)) = {i, k} is

true, the sub-pathp(i,k) is added toPik (in line 4) since it is node-disjoint with respect to the already present

in Pik. The values ofmik andmki are decremented by one in line 5 preserving thus the pointsi− iii.

Case 2: Lines 8-13.Idem to the previous case.

QED

The following proposition demonstrates the constructive correctness of the algorithmConstPhase.
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Proposition 4.3.2 If Aij < MAX ATTEMPT, ∀i, j ∈ S(I)

D then the graph returned byConstPhase is a

feasible solution for the BNDP satisfying the matrix of connection requirementsR.

Proof. In the proof, we assume that there exists a subnetworkGsol ⊆ GB satisfying the matrixR.

In line 1 the algorithm initializes:

• Gsol with the set of fixed switch sitesS(I)

D and an empty set of links,

• the auxiliary matrixM (indicating connections that we know satisfies networkGsol) with mij = rij,

∀i, j ∈ S(I)

D ,

• the matrixP (which will store the computed paths fromi to j onGsol, ∀i, j ∈ S(I)

D ) with empty.

Suppose that for certain iteration the condition in line2 is TRUE. In line 3 we choose randomly a pair

i, j ∈ S(I)

D of fixed switch sites such thatmij > 0. Line 4 computes the auxiliary network̄G = (GB \ Pij).

Notice that, if there exits a path fromi to j in Ḡ, this one is node-disjoint with respect to the paths of

Pij. In addition, line 5 computes an auxiliary cost matrixC̄ associated with̄G, by assigning cost zero to

the connections that already are inGsol. Knowing thatGeneral Update Matrix preserves the condition:

|Pij| = rij −mij, lines 5-13 searches for a new path fromi to j onGsol consideringC̄. Let us analyze the

following situations.

Case 1: 6 ∃p ⊂ Ḡ connectingi with j. In this case, line 7 re-initializesPij andmij sincePij contains a

separating set betweeni andj onGB. The construction is resumed from line 2.

Case 2:∃p ⊂ Ḡ. In this case, we differentiate the following subcases:

i) If there exits a patĥp ⊂ Ḡ such thatp̂ ⊂ Gsol then p̂ will be select as the new node-disjoint path

betweeni andj (line 9). This allows to satisfy a new node-connectivity requirement betweeni andj,

without increasing the cost of the current solution.

ii) Otherwise, in line 9 we select a pathp from the list of pathsLp (computed in line 7). Asp 6⊂ Gsol the

current solutionGsol is updated in line 9.

In both cases (2.i and2.ii), the indicatormij is decremented by one in line 11.

Based on the construction process described above, it easy to see that once finalized loop 2-14, if

mij = 0, ∀i, j ∈ S(I)

D (i.e. Aij < MAX ATTEMPT, ∀i, j ∈ S(I)

D ) then the built solutionGsol satisfies the

matrixR.

QED

It is possible to consider a variant ofConstPhase where we select randomly (and uniformly) a path

from Lp without checking if there already exists a pathp̂ contained inLp such thatCOST|C̄(p̂) = 0 (line 9
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Procedure ConstPhase*( GB ,C,R,k);

1 Gsol ← (S
(I)
D , ∅); mij ← rij ∀i, j ∈ S

(I)
D ; Pij ← ∅ ∀i, j ∈ S

(I)
D ; Aij ← 0 ∀i, j ∈ S

(I)
D ;

2 while ∃mij > 0 such that Aij < MAX ATTEMPT do

3 Let i, j ∈ S
(I)
D be a randomly chosen pair of fixed switch sites such that mij > 0 ;

4 Ḡ ← (GB \ Pij);

5 Let C̄ be the matrix given by: c̄uv ←
(

0 if (u, v) ∈ Gsol,

cuv if (u, v) ∈ (Ḡ \ Gsol).
;

6 Lp ← the k shortest paths from i to j on Ḡ, considering the matrix C̄;

7 if Lp = ∅ then Aij ← Aij + 1; Pij ← ∅; mij ← rij ;

8 else

9 p ← Select Random(Lp); Gsol ← Gsol ∪ {p};
10 Pij ← Pij ∪ {p}; mij ← mij − 1;

11 [P, M ] ← General Update Matrix(Gsol,P, M, p, i, j);

12 end if;

13 end while;

14 return Gsol, P;

end ConstPhase*;

Figure 4.7: ConstPhase* pseudo-code.

of ConstPhase pseudo-code). This variant is shown in Figure 4.7. This way, we can reduce the execution

time for theConstPhase, the tradeoff being that we may lose opportunities for using zero cost paths.

Proposition 4.3.3 If Aij < MAX ATTEMPT, ∀i, j ∈ S(I)

D then the graph returned byConstPhase∗ is a

feasible solution for the BNDP satisfying the matrix of connection requirementsR.

Proof. It is similar to the proof for theConstPhase with the difference that we do not check if∃p̂ ∈ Lp

such thatCOST|C̄(p̂) = 0. Directly, a path fromLp is selected randomly and uniformly (line 9).

QED

4.4 BNDP Local Search Phase Algorithms

Usually the solution built by the construction phase is not even a local optimum. For this reason the GRASP

metaheuristic applies a local search phase in order to improve this solution. We propose three local search

algorithms for the BNDP, which are based on different neighborhood structures. Specifically, we designed

a key-path based local search, a path based local search and a tree based local search, which can work in

complementary form, running in combined way. We will give in Section 4.5 the GRASP algorithms that can

be obtained by combining these local search algorithms. Next, we describe a key-path based local search

algorithm for the BNDP. We call itLocalSearch1.
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4.4.1 Algorithm LocalSearch1

We start by defining a Neighborhood Structure which will be used by theLocalSearch1 algorithm.

Definition 4.4.1 (key-path based Neighborhood Structure)Let Gsol be a feasible solution satisfying the

matrix of connection requirementsR. Given a key-pathp ⊂ Gsol, we define a neighbor solution ofGsol

as: Ĝsol = (Gsol \ p) ∪ p̂, wherep̂ is another key-path connecting the endpoints ofp and maintaining the

feasibility in the new network̂Gsol.

The Key-Path Neighborhood ofGsol is composed of the neighbor solutions obtained by applying the

previous operation to each of the different key-paths inK(Gsol) = (p1, . . . , ph).

The LocalSearch1 algorithm builds iteratively neighbor solutions by replacing key-paths from the

current solution by other key-paths which have the same endpoints. As we will see in Proposition 4.4.2,

the feasibility of the built neighbor solution is preserved in each iteration. The process is repeated until the

key-path replacements do not induce a better feasible solution.

Procedure LocalSearch1( GB ,C,Gsol);

1 improve ← TRUE;

2 while improve do

3 improve ← FALSE;

4 K(Gsol) ← the decomposition in key-paths of Gsol;

5 while not(improve) and ∃ key-paths not yet analyzed do

6 Let p ∈ K(Gsol) be a key-path not yet analyzed with ends u and v;

7 Ĥ ← the subgraph induced by NODES(p) ∪ (SD \ NODES(Gsol));

8 p̂ ← the shortest path from u to v on Ĥ;

9 if COST(p̂) < COST(p) then

10 Gsol ← (Gsol \ p) ∪ p̂;

11 improve ← TRUE;

12 end if;

13 end while;

14 end while.

15 return Gsol;

end LocalSearch1;

Figure 4.8: LocalSearch1 pseudo-code.

The algorithm (shown in Figure 4.8) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connection costsC, and the current feasible solutionGsol. In line 1 we initialize

with TRUE the indicator variableimprove used to indicate improvements obtained by the key-path re-

placements. Loop 2-13 searches for neighbor solutions analyzing each key-path in the current solutionGsol

and replacing this by another key-path in order to improve its cost without losing the feasibility.
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Each iteration works of the following way. In line 3improve is set toFALSE. Line 4 computes the

decomposition in key-paths ofGsol, which we denote byK(Gsol). The internal loop 5-13 analyzes one at

a time the key-paths fromK(Gsol) with the aim of finding a new key-path of smaller cost to replace the

corresponding original key-path. Line 6 selects randomly (and uniformly) a key-pathp ∈ K(Gsol) not yet

analyzed. We denote byu andv the ends of the selected key-pathp. In line 7 we compute the sub-network

induced by the set of sitesNODES(p) ∪ (SD \ NODES(Gsol)), which is denoted bŷH. Notice that inĤ there

are no sites from(Gsol \ p) exceptingu andv. Therefore, all path connectingu with v in Ĥ reestablishes the

feasibility of (Gsol \ p). Consequently, line 8 computes the shortest path fromu to v onĤ, which is denoted

by p̂. Line 9 compares the costs ofp̂ andp. If p̂ has cost smaller thanp, in line 10 the current key-path

p is replaced bŷp in Gsol and in line 11 the indicatorimprove is set toTRUE to restart the local search

from line 2. Otherwise, if̂p has cost greater thanp, the loop 5-13 continues with another key-path not yet

analyzed or it finalizes since there are no more key-paths to analyze.

Once there are no more improvements by key-path replacements the loop 2-14 finalizes and the best

neighbor solution found is returned in line 15.

Figure 4.9 illustrates a typical key-path replacement made byLocalSearch1. The black nodes model

the fixed switch sites whereas the white nodes the non-fixed switch sites. The broken lines represent paths

between nodes. Note that the new key-path can have sites ofp as well as ofSD \ NODES(Gsol).

The following proposition demonstrates the feasibility preservation in eachLocalSearch1 iteration.

Proposition 4.4.2 Given a feasible solutionGsol for the BNDP satisfying the matrix of connection re-

quirementsR, the algorithmLocalSearch1 preserves the feasibility, returning a neighbor feasible solution

satisfyingR.

Proof. Let us suppose thatLocalSearch1 does not preserve the feasibility. Necessarily, in certain iteration

we would have:

• the current solutionGsol is feasible,

• the pathp̂ computed in lines 7-8 satisfies:COST(p̂) < COST(p), wherep ∈ K(Gsol) is the current

key-path. Hence, line 10 will be computed.

• the network: Ĝ = (Gsol \ p) ∪ p̂ is not feasible, i.e.∃i, j ∈ S(I)

D such that inĜ there are norij

node-disjoint paths connecting them.

By construction, this would imply:INTERNAL NODES(p̂)∩NODES(Gsol\p) 6= ∅, which is a contradiction since

NODES(p̂) ⊆ (NODES(p) ∪ (SD \ NODES(Gsol)). Therefore the network̂G is feasible satisfying the matrix of

connection requirementsR, and completing thus the proof.
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Figure 4.9: A generic key-path replacement computed byLocalSearch1.

QED

The solutions delivered byConstPhase andConstPhase∗ not necessarily are minimal. If the con-

structed solution is minimal, the minimality will be preserved byLocalSearch1. The following proposition

demonstrates the minimality preservation in eachLocalSearch1 iteration.

Proposition 4.4.3 If the algorithmLocalSearch1 receives as input a minimal feasible solution, the re-

turned solution preserves the minimality.

Proof. Let us denoteG the solution delivered byLocalSearch1. Again, by contradiction, let us suppose that

G is not minimal. Necessarily, in certain iteration we would have that the current solutionGsol is minimal

and by executing lines 6-10 the resulting networkĜ = (Gsol \ p) ∪ p̂ is not minimal. This implies that there

exists an edgee ∈ Ĝ such thatĜ \ {e} is feasible. We have the following cases:

i) e ∈ p̂. We reach a contradiction, sincêp is a new key-path replacing top in Gsol, i.e. (Gsol \ p) ∩ p̂ =

{u, v} (beingu, v the ends ofp); therefore removing any edge from̂p the feasibility is lost.
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ii) e 6∈ p̂. As the connection requirements when removingp are reestablished by the key-pathp̂, it is

easy to see that if̂G \ {e} is feasible thenGsol \ {e} also would be feasible, contradicting thus its

minimality.

In this way,(i) and(ii) imply thatG is a minimal feasible solution.

QED

Now, we propose a local search strategy based in key-paths replacement which is more complex than

LocalSearch1 but more flexible since when replacing a key-path we can use a set of switch sites that con-

tains the set used byLocalSearch1. Hence, we can see this new strategy as a generalization ofLocalSearch1.

It is based on a path-based approach where iteratively, key-paths belonging to the current solution are re-

placed by other paths suitably constructed preserving the feasibility.

4.4.2 Algorithm LocalSearch2

Before describing in detail the local search algorithm, we introduce a suitable structure for the neighborhood

and some auxiliary definitions.

Definition 4.4.4 (path based Neighborhood Structure)Let Gsol be a feasible solution satisfying the ma-

trix of connection requirementsR. Given a key-pathp ⊂ Gsol, we define a neighbor solution ofGsol as:

Ĝsol = (Gsol \ p) ∪ p̂, wherep̂ is another path connecting the endpoints ofp and maintaining the feasibility

in the new network̂Gsol. The substitute pathp is not necessarily a key-path and it can contain nodes and

edges belonging toGsol whenever the feasibility is preserved.

The Path Neighborhood ofGsol is composed of the neighbor solutions obtained by applying the previous

operation to each of the different key-paths inK(Gsol) = (p1, . . . , ph).

Definition 4.4.5 Let p be a key-path belonging to the feasible solutionGsol andP = {Pij}i,j∈S
(I)
D

the set

of node-disjoint paths between fixed switch sites (initially computed byConstPhase or ConstPhase∗). We

define:

Vp(P) =
{
(i, j) ∈ S(I)

D × S(I)

D |∃p̂ij ∈ Pij, such thatp ⊆ p̂ij

}
.

This is the set of pairs of fixed switch sites ofS(I)

D which “depend on” key-pathp, that is to say,p is part of

at least one patĥpij in the setPij of the node-disjoint paths connectingi andj.

Notation 4.4.6 Given a key-pathp ∈ Gsol andi, j ∈ S(I)

D such that(i, j) ∈ Vp(P) we will denote bŷpij the

path ofPij containingp.
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Definition 4.4.7 Given a key-pathp ⊂ Gsol and the setP, we define the following set:

Xp(P) =
⋃

∀(i,j)∈Vp(P)

NODES(Pij \ p̂ij),

wherep̂ij ∈ Pij (as above) denotes the path containingp. This is the union over every pair of fixed sitesi,

j which depend on key-pathp, of all the nodes belonging to paths inPij which do not containp.

Based on these definitions, we design a path-based local search algorithm for the BNDP, which we call

LocalSearch2. Notice that, by definition, the space of feasible solutions induced by the Path Neighborhood

Structure includes the space of feasible solutions induced by the Key-Path Neighborhood Structure defined

previously. In particular, the proposed algorithm is used in combined way with the key-tree based local

search algorithmLocalSearch3 (presented in Sub-Section 4.4.3) since both are designed on structurally

different neighborhoods. Next, we give a detailed description ofLocalSearch2 and some topological prop-

erties satisfied by the constructed neighbor solutions.

The algorithm builds iteratively neighbor solutions by replacing key-paths from the current solution by

other paths suitably designed so that the feasibility is preserved (these paths are not necessarily key-paths

since they can introduce new key-nodes). This process is repeated until the key-path replacements do not

induce a better feasible solution.

In more detail, the algorithm (shown in Figure 4.10) takes as inputs the graphGB of feasible connec-

tions on the backbone network, the matrix of connection costsC, the current feasible solutionGsol and the

setP = {Pij}i,j∈S
(I)
D

which contains all the computed paths between fixed switch sites. In line 1 we ini-

tialize withTRUE the indicator variableimprove used to indicate improvements obtained by the key-path

replacements. In line 2 we compute the decomposition in key-paths ofGsol, denoted byK(Gsol). Loop

3-17 searches for neighbor solutions by analyzing each key-path inK(Gsol) and replacing (if it is possible)

these ones by other paths in order to improve its cost without losing the feasibility. When we reach a better

feasible solution by a key-path replacement the local search resumes from this new feasible solution.

Each iteration works of the following way. In line 4 the indicatorimprove is set toFALSE. The internal

loop 5-16 analyzes each key-pathp ∈ K(Gsol) and using an auxiliary network searches for a substitute path

which must preserve the feasibility when performing the replacement. Letp be the current key-path and

u, v its ends. Let us consider the set of sites:Ŝ = NODES(p) ∪ (SD \ Xp(P)); by definition ofXp(P), in

the set(SD \ Xp(P)) there are no sites of paths belonging toP that do not contain top. That is to say,

any site of(SD \ Xp(P)) belongs to some path fromP containingp, or does not belong toP. Therefore,

if Ĥ is the subnetwork induced bŷS in GB, any path connectingu andv in Ĥ is a potential substitute for

p, since (as we will see in Proposition 4.4.8) this one preserves the feasibility. In lines 6-7 we compute the

networkĤ and the auxiliary matrix of connection costsĈ (in Ĉ we assign costs zero to the edges belonging

to Ĥ∩ (Gsol \p), in order to reuse them, without considering their costs, in the computation of the substitute
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Procedure LocalSearch2( GB ,C,Gsol,P);

1 improve ← TRUE;

2 K(Gsol) ← the decomposition in key-paths of Gsol;

3 while improve do

4 improve ← FALSE;

5 for each key-path p ∈ K(Gsol) with ends u, v do

6 Ĥ ← the subgraph induced by NODES(p) ∪ (SD \ Xp(P));

7 Compute Ĉ where ĉij =

(
0 if (i, j) ∈ (Gsol \ p),

cij otherwise ,

8 p̄ the shortest path from u to v on Ĥ, considering Ĉ;

9 if COST|Ĉ(p̄) < COST(p) then

10 Gsol ← (Gsol \ p) ∪ p̄;

11 P is updated as follows: ∀p̂ ∈ P such that p ⊆ p̂, we have: p̂ ← (p̂ \ p) ∪ p̄;

12 improve ← TRUE;

13 if ∃s ∈ p̄, s 6= u, v such that degree(s) ≥ 3 in Gsol then

14 K(Gsol) ← the decomposition in key-paths of Gsol;

15 end if;

16 end if;

17 end for each;

18 end while.

19 return Gsol, P;

end LocalSearch2;

Figure 4.10: LocalSearch2 pseudo-code.

path). UsingĈ line 8 computes the shortest path fromu to v on Ĥ, which is denoted bȳp. As p̄ can have

edges in(Gsol \ p), in line 9 we compare only the costs ofp̄ \ (Gsol \ p) andp. If p has cost greater than

p̄ \ (Gsol \ p), in line 10 the current solutionGsol is updated replacingp by p̄. In addition, considering setP,

every patĥp ∈ P such thatp ⊆ p̂ is updated by replacingp by p̄ in line 11. In this way, let us note thatGsol

andP are suitably updated in each iteration. The indicatorimprove is set toTRUE in line 12. If the path̄p

introduces a new key-node inGsol, we recompute the key-paths decomposition in lines 13-15, and the local

search is resumed from line 5 with this newly built neighbor solution. On the other hand, if the condition

in line 9 isFALSE (i.e. p̄ is not better thanp), another key-path fromK(Gsol) will be analyzed by internal

loop 5-17.

Once there are no more improvements by key-tree replacements the current solutionGsol and the setP
are returned in line 19.

The following proposition demonstrates the feasibility preservation in eachLocalSearch2 iteration.

Proposition 4.4.8 If LocalSearch2 receives as input a feasible solutionGsol satisfying the matrix of con-

nection requirementsR, the feasibility is preserved at any time.
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Proof. Let us suppose thatLocalSearch2 does not preserve the feasibility. Necessarily, in certain iteration

we would have:

i) the current solutionGsol is feasible,

ii) the pathp̂ computed in lines 6-8 satisfies:COST(p̄ \ (Gsol \ p)) < COST(p), wherep ∈ K(Gsol) is the

current key-path, and therefore line 10 is computed.

iii) the resulting network:̂G = (Gsol \ p)∪ p̂ is not feasible, i.e.∃i, j ∈ S(I)

D such that inĜ there are norij

node-disjoint paths connecting them.

Let p̂ij ∈ Pij be such thatp ⊆ p̂ij. We define the pathpaux = (p̂ij \ p) ∪ p̄. Since the nodes ofXp(P) are

excluded fromĤ (line 6) and therefore in̂H there are no nodes of(Pij \ p̂ij), we have that:

INTERNAL NODES(paux) ∩ INTERNAL NODES(pij) = ∅, ∀pij ∈ (Pij \ p̂ij),

which contradicts(iii). Hence, the network̂G computed in line 10 is feasible satisfying the matrix of

connection requirementsR. To complete the proof, notice that:

• all the pathŝp ∈ P containingp are updated in line 10 replacingp by p̄, and accordingly there arerij

node-disjoints paths inPij connectingi with j, ∀i, j ∈ S(I)

D ,

• lines 13-15 recompute the decomposition in key-paths ofGsol (which was updated in line 10 bŷG) if

a new key-node was introduced.

In this way, the feasibility of the current topology is guaranteed in each local search iteration.

QED

Like LocalSearch1, when the algorithmLocalSearch2 receives as input a minimal feasible solution,

the solution computed by it will be also minimal. The following proposition demonstrates the minimality

preservation in eachLocalSearch2 iteration.

Proposition 4.4.9 If the algorithmLocalSearch2 receives as input a minimal feasible solution, the re-

turned solution preserves the minimality.

Proof. Let us suppose thatLocalSearch2 does not preserve the minimality. Necessarily, for certain iteration

we have:

• the current solutionGsol is minimal.

• there exists a path̄p replacing a key-pathp ∈ K(Gsol), and moreover:
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i) we haveCOST(p̄ \ (Gsol \ p)) < COST(p) and therefore the algorithm computes the network

Ĝ = (Gsol \ p) ∪ p̄ (line 10). In this proof, we will denote byGsol to the current solution before

its update.

ii) Ĝ is not minimal (but it is feasible by Proposition 4.4.8).

Therefore, there exits an edgee ∈ Ĝ such thatĜ \ {e} is feasible. We will analyze the following cases.

Case A.e ∈ Gsol. Let us consider the network̄G = (Ĝ \ {e}) \ p̄. Since inp̄ (by construction ofĤ) there are

no nodes fromXp(P), applyingXp(P) definition, inḠ we lose only one level of node-connectivity between

pairs of sites ofVp(P). The other pairs of fixed sites are not affected in their levels of node-connectivity. On

the other hand, asp 6⊂ Ḡ andp∩Xp(P) = ∅, in the networkḠ ∪p the lost node-connectivity levels between

fixed sites fromVp(P) are reestablished, implying therefore its feasibility. We have then the equality:

Ḡ ∪ p = (Ĝ \ {e}) \ p̄ = ((Gsol \ p) ∪ p̄) \ {e}) \ p̄ = Gsol \ {e},

contradicting thus the minimality ofGsol.

Case B.e 6∈ Gsol. Firstly, it is easy to see that does not exist a pathp2 ⊂ Gsol from u to v such that

p2 ∩ Xp(P) = ∅; otherwise, considerinĝC, p2 would be the shortest path fromu to v in Ĥ since it satisfies

COST|Ĉ(p2)

by Ĉ def.

↑
= 0, contradicting thus̄p being the shortest path in̂H. Hence, byGsol minimality andĜ \{e}

feasibility, it must exist a pathp2 ⊂ (Gsol ∪ (p̄ \ {e})) such thatp2 ∩ (p̄ \ {e}) 6= ∅ andp2 ∩Xp(P) = ∅. By

Ĉ definition, we have then:

COST|Ĉ(p2)

(p2 \ Gsol) ⊂ p̄

↑
< COST|Ĉ(p̄),

which is a contradiction.

To conclude, cases A and B imply thatĜ \ {e} is non-feasible.

QED

We will compare the neighborhood structures associated withLocalSearch1 andLocalSearch2. Before,

we introduce the following notation.

Given a feasible solutionG for a BNDP instance and a key-pathp ⊂ G, let us denote by:

• N1(G, p) the sub-space of neighbor solutions considered byLocalSearch1 when carrying out the

replacement ofp.

• N2(G, p) the sub-space of neighbor solutions considered byLocalSearch2 when carrying out the

replacement ofp.
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Property 4.4.10 LetH be a feasible solution andp ⊂ H a key-path. Let us suppose thatLocalSearch1

andLocalSearch2 will analyze the replacement ofp onH. Then, the following inequality is satisfied:

COST(G2

best) ≤ COST(G1

best),

beingG1
best andG2

best the resulting networks once computed the key-path replacement byLocalSearch1 and

LocalSearch2 respectively.

Proof. By definition ofXp(P) (seeLocalSearch1 description), we have thatN1(H, p) ⊆ N2(H, p). More-

over, since by constructionLocalSearch1 and LocalSearch2 attain the best feasible solutionsH1
best ∈

N1(H, p) andH2
best ∈ N2(H, p) respectively, we obtain the relation:

COST(H2

best) ≤ COST(H1

best),

as required, and completing the proof.

QED

Next, we provide a third local search strategy which is structurally different with respect to the local

search algorithms exposed above.

4.4.3 Algorithm LocalSearch3

Before introducing the local search strategy based on key-trees replacement, we define a suitable structure

for the neighborhood.

Definition 4.4.11 (key-tree based Neighborhood Structure)LetGsol be a feasible solution satisfying the

matrix of connection requirementsR. Given a key-nodev ∈ Gsol and its associated key-treeTv ⊂ Gsol,

we define a neighbor solution ofGsol as: Ĝsol = (Gsol \ Tv) ∪ T , whereT is another key-tree spanning the

endpoints ofTv and maintaining the feasibility in the new networkĜsol.

The Key-Tree Neighborhood ofGsol is composed of the neighbor solutions obtained by applying itera-

tively the previous operation to each of the different key-trees inGsol.

Based on this neighborhood structure, we design another local search algorithm for the BNDP, which we

calledLocalSearch3. The proposed algorithm differs substantially fromLocalSearch1 andLocalSearch2

since this one is based on key-tree replacements and the others on key-path replacements. However, we can

use them running in combined form, exploiting thus the potentialities of both strategies. Next, we intro-

duce a detailed description ofLocalSearch3 and some topological properties satisfied by the constructed

neighbor solutions.
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Procedure LocalSearch3( GB ,C,Gsol);

1 improve ← TRUE;

2 while improve do

3 improve ← FALSE;

4 Let X be the set of key-nodes in Gsol;

5 S̄ ← SD \ NODES(Gsol);

6 while not(improve) and ∃ key-nodes not yet analyzed do

7 Let v ∈ X be not yet analyzed;

8 [Gsol, improve] ← General RecConnect(GB , C,Gsol, v, S̄);

9 end while;

10 end while;

11 return Gsol;

end LocalSearch3;

Figure 4.11: LocalSearch3 pseudo-code.

The algorithm builds iteratively neighbor solutions by replacing key-trees from the current solution by

other key-trees which are suitably designed so that the feasibility is preserved. This process is repeated until

the key-tree replacements do not induce a better feasible solution.

The algorithm (shown in Figure 4.11) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connection costsC, and the current feasible solutionGsol. In line 1 we initialize

with FALSE the indicator variableimprove used to indicate improvements obtained by the key-tree re-

placements. Loop 2-10 searches for neighbor solutions analyzing each key-node in the current solution

Gsol and replacing (if it is possible) their respective key-trees by other key-trees in order to improve its cost

without losing the feasibility. When we reach a better feasible solution by a key-tree replacement the local

search resumes from this new feasible solution.

Each iteration works of the following way. In line 3improve is set toFALSE. Line 4 computes the

setX of key-nodes ofGsol. Line 5 computes the set̄S of non-fixed switch sites non-belonging toGsol.

The internal loop 6-9 analyzes one at a time the key-nodes fromX with the aim of finding a suitable

key-tree of smaller cost to replace the corresponding key-tree. Line 7 selects a sitev ∈ X randomly (and

uniformly). In line 8 we execute the algorithm calledGeneral RecConnect in order to find a substitute key-

tree for the key-tree associated withv, so that it has smaller cost than this one and preserves the feasibility

(we give below a detailed description of this algorithm and Proposition 4.4.12 proves that it preserves the

feasibility). If this search is successful, theGeneral RecConnect delivers a better neighbor solution and the

current solutionGsol is updated with it in the same line. In addition,improve is set toTRUE, to restart the

local search from line 2. Otherwise, ifGeneral RecConnect cannot find a substitute key-tree, the loop 6-9

considers another key-node not yet analyzed or it finalizes since there are no more key-nodes to analyze.
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Once there are no more improvements by key-tree replacements the current solutionGsol is returned in

line 11.

General RecConnect description

The algorithmGeneral RecConnect is an auxiliary procedure used by the algorithmLocalSearch2. Given

the current solutionGsol and a key-nodev ∈ Gsol, General RecConnect tries to build a better key-tree

T spanning the endpoints ofTv, whereTv is the key-tree associated av. To preserve the feasibility, the

substitute key-treeT is built using only sites ofTv and the non-fixed switch sites non-belonging toGsol. In

addition the edges between the endpoints ofTv are not considered.

Procedure General RecConnect( GB ,C,Gsol,v,S̄);

1 cost ← Cost Key Tree(v,Gsol);

2 Y ← Nodes Key Tree(v,Gsol);

3 Z ← Ends Key Tree(v,Gsol);

4 Ŝ ← (Y \ Z) ∪ S̄;

5 U ← {(i, j) ∈ GB |i ∈ Z, j ∈ Ŝ};
6 Ĥ ← the subgraph induced by Ŝ in GB ; Ĥ ← Ĥ ∪ U ;

7 T ← {v};
8 while ∃u ∈ Z such that u /∈ T do

9 u ← Select Random(X) where X = {u ∈ Z|u /∈ T };
10 H ← Ĥ \ (Z \ {u});
11 p ← the shortest path from u to T considering H;

12 T ← T ∪ p;

13 end while;

14 Iteratively remove all s ∈ Ŝ from T with degree 1;

15 if (COST(T ) < cost) then

16 Gsol ← (Gsol \ (Y \ Z)) ∪ T ;

17 improve ← TRUE;

18 else improve ← FALSE;

19 return Gsol, improve;

end General RecConnect;

Figure 4.12: GeneralRecConnect pseudo-code.

The algorithm (shown in Figure 4.12) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connection costsC, the current feasible solutionGsol, the current key-nodev,

and the set̄S of non-fixed switch sites non-belonging toGsol. Let Tv be the key-tree associated withv.

Line 1 computes the cost ofTv. Line 2 computes the setY of sites belonging toTv. Line 3 computes the

setZ ⊂ Y of endpoints ofTv. Line 4 computes the set of siteŝS = (Y \ Z) ∪ S̄, which includes all the

non-fixed sites non-belonging toGsol and all sites ofTv excepting their endpoints. In line 5 we compute the
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setU containing all the connections fromGB which have an end inZ and the other in̂S. Clearly inU there

are no connections between sites ofZ. Let Ĥ be the sub-network induced bŷS in Gsol. Line 6 adds toĤ
the setU . Let us notice that any spanning tree computed onĤ is a potential substitute forTv in Gsol since,

when replacingTv by this one the feasibility is preserved. In line 7 we initialize the substitute key-treeT
with the fixed sitev. Loop 8-13 builds iteratively a new key-tree by adding one at a time the nodes ofZ to

T . Line 9 selects randomly (and uniformly) a siteu ∈ Z not yet added toT . In line 10 we consider the

auxiliary networkH = Ĥ \ (Z \ u) to compute a path fromu to T . The sites of(Z \ u) are not considered

when connectingu to T , since (as we will see in Proposition 4.4.12) these must be endpoints inT . Line 11

computes the shortest path fromu to T onH. Let p be this path, in line 11 we addp to T . Once all sites of

Z have been added toT , loop 8-13 finalizes, and the pendant Steiner nodes are removed fromT in line 14.

Let us note that these are not necessary to guarantee the feasibility. Besides, it is easy to see that a substitute

key-tree can be always constructed sinceTv ⊆ Ĥ. In line 15 we compare the costs ofT andTv. If T is a

better key-tree, the current solutionGsol is updated in line 16 by replacingTv by T . The indicatorimprove

is set toTRUE in line 17 (this is used byLocalSearch2 to know if a new neighbor solution has been built).

Otherwise, ifT has greater cost thanTv, improve is set toFALSE in line 18. The indicatorimprove and

the solutionGsol are returned in line 19.

Figure 4.13 illustrates a generic key-tree replacement computed byGeneral RecConnect algorithm.

Again, the black nodes represent fixed switch sites whereas the white nodes represent the non-fixed switch

sites. The broken lines are paths between sites.

• The first graph is the current feasible solutionGsol into which we will replace the key-treeTv by

another key-tree constructed byGeneral RecConnect.

• The second graph is the result of replacing inGsol the key-treeTv by another key-tree. Notice that the

substitute key-tree has again the non-fixed sitev as a key-node.

• The third graph is also obtained when replacing the key-treeTv by another key-tree. In this case,v is

not a key-node for the resulting network.

Let us note that the key-node corresponding to the substitute key-tree can be different since when remov-

ing the pendant concentrators in line 14 the original key-node could be deleted. The following proposition

demonstrates the constructive correctness of the algorithmGeneral RecConnect.

Proposition 4.4.12 Given a feasible solutionGsol for the BNDP satisfying the matrix of connection require-

mentsR, the setS̄ of non-fixed switch sites not including inGsol, and a key-nodev ∈ Gsol. The algorithm

General RecConnect builds a neighbor solution by replacing the key-tree associated withv by another tree

which preserves the feasibility.



4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 93

v

Gsol

v

key-tree Tv

key-node

Set of endpoints

A connection
between endpoints

non-fixed site with
degree 2 A key path

Set of sites S
^

v
_

v

Gsol-Tv

v
_

v

substitute key-tree

Set of sites S
^

v
_

v

Gsol-Tv

substitute key-tree

new key-node

u

v
_

u

Figure 4.13: A generic key-tree replacement.

Proof. Let Tv be the key-tree associated withv. Lines 1-5 compute: the cost ofTv, the setY of nodes inTv,

the setZ ⊂ Tv of endpoints, the set̂S = (Y \ Z) ∪ S̄, and the setU = {(i, j) ∈ GB|i ∈ Z, j ∈ Ŝ}. Line 6

computes the network:̂H = U ∪GB(Ŝ). Line 7 initializesT (the key-tree substitute) with the nodev. It is

easy to see that, by construction, once finalized loop8 − 13 and line 14, the networkT has tree topology

and furthermore:

i) Z ⊂ T ,

ii) the endpoints ofT are exactly the nodes ofZ,

iii) NODES(T ) ∩ NODES(Gsol) = Z ∪ J , with J ⊆ (Y \ Z),

iv) there exists a nodês ∈ Ŝ being root of the treeT (not necessarilŷs = v).
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If the condition in line 15 is true, the algorithm computes the network:Ĝ = (Gsol \ Tv) ∪ T in line 16.

Pointsi− iv induce the feasibility of the network̂G since replacing the key-treeTv by T the lost node-

connectivity requirements in(Gsol \ Tv) are reestablished when addingT . Hence, the network returned in

line 19 is feasible for the BNDP satisfying the matrixR.

QED

Based on the previous proposition, the following proposition demonstrates the feasibility preservation

in eachLocalSearch3 iteration.

Proposition 4.4.13 If LocalSearch3 receives as input a feasible solutionGsol satisfying the matrix of con-

nection requirementsR, the feasibility is preserved during all the iterations of the algorithm.

Proof. By contradiction, for certain iteration we have thatGsol is feasible fulfilling the matrixR, X is its

set of key-nodes, and there exists a key-nodeu ∈ X such thatGeneral RecConnect returns a non-feasible

solution. This contradicts Proposition 4.4.12. Hence, the algorithm preserves the feasibility at any time.

QED

As we mentioned previously, the solutions built byConstPhase or ConstPhase∗ are not necessarily

minimal. Anyway, if we reached a minimal topology in the construction phase or by another local search

algorithm, the minimality preservation is guaranteed when runningLocalSearch3. The following proposi-

tion demonstrates that the minimality is preserved in eachLocalSearch3 iteration.

Proposition 4.4.14 If the algorithmLocalSearch3 receives as input a minimal feasible solution, the re-

turned solution preserves the minimality.

Proof. Let us denoteG the solution delivered byLocalSearch3. Again, by contradiction, let us suppose that

G is not minimal. Necessarily, in certain iteration we would have that the current solutionGsol is minimal

and by executing lines 7-8 the resulting network is not minimal. LetĜ be this solution, there exists an edge

e ∈ Ĝ such thatĜ \ {e} is feasible. Let us denoteTv andT the replaced key-tree and the new key-tree

computed in line 8. Letu be the key-node root ofT . We have the following cases:

i) e ∈ T . ConsiderT \ {e}; there exists a nodez ∈ Z (whereZ is the set of endpoints ofTv)

disconnected to the other sites belonging toZ \ {z} and therefore its node-connectivity level with

respect to these ones will be decreased by one inĜ \ {e} losing thus the feasibility.

ii) e 6∈ T . Clearly, the feasibility ofĜ \ {e} would imply the feasibility ofGsol \ {e}, which is a

contradiction.

Points(i) and(ii) imply thatG is a minimal feasible solution.

QED
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4.5 The GRASP algorithms for the BNDP

We now describe the general GRASP algorithm for approximately solving the BNDP. Figure 4.14 shows

the corresponding pseudo-code. The generic proceduresConstruction Phase andLocal Search can be

instanced of the following way:

• Construction Phase: by ConstPhase or ConstPhase∗.

• Local Search: by LocalSearch1 or LocalSearch2.

In the local search phase, the idea is to apply first key-path replacement moves (by runningLocalSearch1

or LocalSearch2 for key-paths replacements) and the evaluation of key-tree replacement moves is per-

formed only if there are no improving key-path replacement moves. Thus, we explore structurally different

neighborhoods in combined form and the search is resumed from the beginning whenever we find one better

neighbor feasible solution.

In the following,Construction Phase will reference indifferently toConstPhase or ConstPhase∗, and

in the same wayLocal Search will reference toLocalSearch1 or LocalSearch2. Next, we introduce a

detailed description of the algorithmGRASP BNDP.

Procedure GRASP BNDP;

Input: GB , C, R, k, seed, MaxIter;

1 min cost ←∞;

2 for i = 1, . . . , MaxIter do

3 [Gsol,P] ← Construction Phase(GB , C, R, k);

4 cost sol ← COST(Gsol);

5 Gsol ← Local Search(GB , C,Gsol,P);

6 best ← COST(Gsol);

7 if (best < cost sol) then goto line 4;

8 Gsol ← LocalSearch3(GB , C,Gsol);

9 best ← COST(Gsol);

10 if (best < cost sol) then goto line 4;

11 if (cost sol < min cost) then

12 G(opt) ← Gsol; min cost ← cost sol;

13 end if;

14 end for;

15 return G(opt);

end GRASP BNDP;

Figure 4.14: General Version of the algorithmGRASP BNDP.

The algorithm takes as inputs the graphGB of feasible connections on the backbone network, the matrix

of connection costsC, the matrix of connection requirementsR, the GRASP parametersk (used in the

construction phase), a seed for the pseudo random number generatorseed and the number of iterations
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MaxIter to be performed. The cost of the best found feasible solution is initialized with the value infinite

(∞) in line 1. The algorithm is repeatedMaxIter times exploring the space of feasible solutions and

searching for the optimal feasible solution for the BNDP. Each iteration works of the following way.

In line 3, a greedy randomized feasible solutionGsol is built using the algorithmConstruction Phase

(i.e. ConstPhase or ConstPhase∗). In addition, it is also returned the setP of node-disjoint paths between

fixed sites computed when building the solution. In line 4 the cost ofGsol is assigned to variablecost sol.

In line 5 we callLocal Search (i.e. LocalSearch1 or LocalSearch2) in order to find for neighbor feasible

solutions with smaller cost. Depending on the algorithm, it searches for a better neighbor feasible solution

by means of key-path replacement moves. In line 6 we compute the cost of the neighbor solutionGsol found

in line 5. Line 7 compares the cost of the current solution with the one delivered byLocal Search. If a

neighbor solution with smaller cost has been found byLocal Search, then the local search resumes from

this new current solution executing from line 4. Otherwise, if no neighbor solution of better cost is found

by Local Search, then in line 8 we call the algorithmLocalSearch3, which searches for neighbor solutions

with smaller cost by applying key-tree replacement moves. In line 9 we compute the cost of the solution

delivered byLocalSearch3 in line 8. Again, if a neighbor feasible solution with smaller cost has been

found byLocalSearch3, then the local search resumes from this new current solution executing from line 4.

Otherwise, if no neighbor solution with better cost is found byLocalSearch3, then, if the solution found at

the end of the local search phase is better than the best solution so far (line 11), we update in line 12 the

best found feasible solution and the minimum cost. Once finalized the loop 2-14, the best found feasible

solutionG(opt) is returned in line 15. Figure 4.15 is the execution diagram corresponding to the algorithm

GRASP BNDP.

4.6 Performance Tests

We present here the experimental results obtained with theGRASP BNDP algorithm in its different ver-

sions (depending on which construction phases and local search algorithms be instanced). The algorithms

were implemented in ANSI C. The experiments were made on a Pentium IV with 1.7 GHz, and 1 Gbytes

of RAM, running under Windows XP. In the performance testing phase all used instances were solved with

the same GRASP parameter settings. In a previous tuning phase the candidate list sizek was chosen in the

set{10, 15, 20, 30}. We tuned the value for the candidate list size by considering a reduced group of BNDP

instances. As result of this tuning phase, we selectedk = 20 as the value with better results since in the

worse cases, it obtained the same solution costs that were obtained with the other values, beating them in

many cases. In this way, we fixedk = 20 andMaxIter = 300 when running all the performance testing

problems.
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Figure 4.15: Execution Diagram associated withGRASP BNDP.

4.6.1 BNDP test-set description

To our best knowledge, no library containing benchmark instances related to the BNDP (i.e. to the GSP-

NC) exists. Nevertheless, there exist in the literature some related works where real problems with high

survivability requirements are solved by means of the application of polyhedral algorithms [75, 78, 126].

We obtained some of these problems which were included in our test set.

The test-set for theGRASP BNDP is composed of two sub-groups of instances: ones having known

optimal cost (or at least a known lower bound) and others without known optimal solution nor lower bound.

Altogether, we selected twenty-nine test problems as experimental suite, to investigate the effectiveness

of the proposed method. For nine of them optimal solutions were known (or at least the optimal value),

implying thus that the corresponding GRASP results could be more properly evaluated (i.e. we can compute

the gaps with respect to the optimum costs). The other instances were generated by customizingTraveling
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Salesman Problems(TSP) into BNDP instances. We describe in Table 4.1 the main characteristics of the

twenty-nine problem instances. Figures 4.16 and 4.17 show the topologies associated with the test cases

having a known optimal solution.

Problem Nodes Fixed Steiner Edges Survivability

instance nodes nodes requirements

Instances with known optimal value

Network 1 120 33 87 286 2-node-survivability

Network 2 83 22 61 262 4-node-survivability

Network 3 79 41 38 365 heterogeneous (2 and 3 node connectivity)

Network 4 109 41 68 383 heterogeneous (2, 3 and 4 node connectivity)

Network 5 121 27 94 386 2-node-survivability

Network 6 71 38 33 301 heterogeneous (2 and 3 node connectivity)

Network 7 64 9 55 124 3-node-survivability

Network 8 38 38 0 71 heterogeneous (1 and 2 node connectivity)

Network 9 116 116 0 173 heterogeneous (1 and 2 node connectivity)

Instances without known optimal value nor tight lower bound

Networks 10-14 150 100 50 11175 heterogeneous (2 and 3 node connectivity)

Network 15 76 51 25 2850 heterogeneous (2 and 3 node connectivity)

Network 16 114 76 38 6441 heterogeneous (2 and 3 node connectivity)

Network 17 151 101 50 11325 heterogeneous (2 and 3 node connectivity)

Network 18 114 76 38 6441 heterogeneous (2 and 3 node connectivity)

Network 19 160 107 53 12720 heterogeneous (2 and 3 node connectivity)

Network 20 186 124 62 17205 heterogeneous (2 and 3 node connectivity)

Network 21 204 136 68 20706 heterogeneous (2 and 3 node connectivity)

Network 22 216 144 72 23220 heterogeneous (2 and 3 node connectivity)

Network 23 129 29 100 8256 3-node-survivability

Network 24 129 29 100 8256 3-node-survivability

Network 25 126 26 100 7875 3-node-survivability

Network 26 116 16 100 6670 3-node-survivability

Network 27 122 22 100 7381 3-node-survivability

Network 28 162 127 35 13041 2-node-survivability

Network 29 140 105 35 9730 2-node-survivability

Table 4.1: Characteristics of the test cases.

In the following, due to the analogy between the BNDP and the GSP-NC, we will talk indifferently

of Steiner nodes as non-fixed switch sites and fixed nodes as fixed switch sites. Next, we provide the

description of each BNDP instance used in the performance testing phase.

Network 1 is a 2-node-survivability problem for which an optimal solution has been found by a back-

tracking algorithm [121]. Since there are few GSP-NC instances with connectivity requirements greater

than two in the literature, we generated four instances having higher connectivity requirements (Networks

2, 3, 4 and 6) which were designed constructively in order to preserve a known optimal solution. Moreover,

we generated one instance (Network 5, also with optimal feasible known solution) with a high number of

Steiner nodes and a high density of edges on which we wanted to find a 2-node-survivable sub-network

spanning the set of fixed nodes. We created this test instance with the aim of studying a relatively “dense”
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network where the quotient between the number of Steiner nodes and the number of fixed nodes is higher

than three. In Appendix C we give a detailed description of these six problem instances, with information

about known optimal solutions, and their construction when relevant.

Network 7 represents a simplified version of a HSODTN (High Speed Optical Data Transmission Net-

work) connecting different parts of a war ship. The reduced topology has 9 fixed switch sites (modelling

strategic point in an aircraft carrier), 55 Steiner nodes (non-fixed switch sites) and 124 edges. A link be-

tween Steiner nodes has cost 1, a link between a Steiner node and a fixed node has cost 2, and a link

between two fixed nodes has cost 4. The objective is to find a 3-node-survivable subnetwork with minimal

cost (all connection requirement between fixed nodes are equal to 3). These model and other variants can be

found in [78, 121, 126]. An optimal solution has been found by an exact parallel-distributed backtracking

algorithm in [120].

Networks 8 and 9 are test cases respectively called LATA5S and LATADL; based on real networks from

Bell Communications Research (later Bellcore, now Telcordia Technologies) [126]. Link costs are defined

as geographical distances between nodes. The LATA5S problem has 38 nodes and 71 edges, and the

LATADL problem has 116 nodes and 173 edges. In these problems, there are two classes of nodes: nodes

of type 1, shown as circles in Figure 4.17, and nodes of type 2, shown as small squares. The connectivity

requirements are that between two nodes of type 2 there must be two node-disjoint paths; and between a

node of type 2 and a node of type 1, or between two nodes of type 1, there must be at least one path. For

both instances, optimal solutions have been published in [126], with costs 4739 and 7400 respectively.

Networks 10 to 14 are BNDP instances built based on the TSP problems: kroA100, kroB100, kroC100,

kroD100, and kroE100, extracted from TSPLIB. Specifically, we added iteratively fifty Steiner nodes to

each one of the euclidian graphs associated with these instances. Starting from the original TSP graph

(whose nodes will model the fixed sites), each Steiner node is added to the current graph one at a time,

in addition its connection costs (with respect to the nodes already present in the graph in construction) are

randomly chosen in the interval% · [cmin, cmax]; wherecmin, cmax are the minimum and maximum distances

between two nodes of the original TSP graph, and% is a prefixed parameter. In particular, we set% = 1
8
.

The purpose of this parameter setting is potentially to generate Steiner nodes with lower connection costs

(regarding their adjacent nodes) in comparison with the already existing links connecting the fixed nodes.

Intuitively, when reducing the interval of possible costs for the new connections, in this way, we increase the

probability that a Steiner node be a potential improver of feasible solutions. The resulting BNDP topology

is a complete graph. We selected randomly eight fixed nodes, to which we associated 3-node-survivability

requirements among them, and 2-node-survivability with respect to the other fixed nodes. These last ones

have associated 2-node-survivability requirements among them.

Networks 15 to 22 are BNDP instances built based on the TSP problems: eil51, eil76, eil101, pr76,

pr107, pr124, pr136, and pr144, extracted from TSPLIB. In the same way, by applying the process exposed
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above, we generated BNDP instances by adding to these TSP instances: 25, 38, 50, 38, 53, 62, 68, and

72 Steiner nodes respectively. Let us note that in each resulting instance the number of fixed nodes is at

least twice the number of Steiner nodes. On each resultant BNDP instance, we selected randomly six fixed

nodes, to which we associated 3-node-survivability requirements among them, and 2-node-survivability

with respect to the other fixed nodes. In addition, we established 2-node-survivability requirements among

the other fixed nodes.

Networks 23 to 27 are BNDP instances built based on the TSP problems: bayg29, bays29, fri26,

ulysses16, and ulysses22. Again, by using the same process that in the previous cases (but setting% = 1
3
),

we generated BNDP instances by adding to these problems 100 Steiner nodes. Let us notice that, in these

designed networks, the number of Steiner nodes is at least three times the number of fixed nodes. For each

resultant BNDP instance, the objective is to find a minimum-cost 3-node-survivable subnetwork spanning

the fixed nodes.

Networks 28 and 29 are BNDP instances built based on the TSP problems bier127 and lin105. To each

one of these cases, we added to it 35 Steiner nodes so that the resulting BNDP topology is a complete graph

fulfilling the triangular inequality among its nodes (in Section 5.6.1, we explain in detail as generate an

euclidian BNDP instance having Steiner nodes). Observe that, in the constructed networks, the number of

fixed nodes is at least three times the number of Steiner nodes. The requirement for both BNDP instances

is to find a minimum-cost 2-node-survivable subnetwork spanning the fixed nodes.

4.6.2 Numerical Results

Let us turn now to the study of the computational results. By combining the alternative algorithms for the

construction phase and the local search phase, four versions of GRASP for the BNDP are yielded. We will

distinguish them by means of the following notation:

Heuristic H1: it is theGRASP BNDP when instancingConstruction Phase with ConstPhase andLocal Search

with LocalSearch1,

Heuristic H2: it is theGRASP BNDP when instancingConstruction Phase with ConstPhase andLocal Search

with LocalSearch2,

Heuristic H3: it is the GRASP BNDP when instancingConstruction Phase with ConstPhase∗ and

Local Search with LocalSearch1,

Heuristic H4: it is the GRASP BNDP when instancingConstruction Phase with ConstPhase∗ and

Local Search with LocalSearch2.
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As a result of the runs performed on the testing set, we noticed that the heuristicsH1 andH2 overcame

the results obtained by the heuristicsH3 andH4 respectively. In other words, when usingConstPhase∗, in

no caseH3 obtained better results thanH1 and eitherH4 in relation toH2. Furthermore, when comparing

the GRASP results,H1 andH2 improved the topologies obtained byH3 andH4 in five and eleven BNDP

instances respectively (improving them in average more than3.16% and3.37%). Hence, in the following,

we will concentrate in the analysis of the results obtained byH1 andH2.

In Tables 4.2 and 4.3 we show a summary of computational results obtained by applying the heuristics

H1 andH2 on the Networks 1 to 9 (those with known optimal solution). These tables show some data about

the performance of our GRASP algorithms for the mentioned instances and the structural characteristics of

the optimal (or near-optimal) solutions it found. The column entries are from left to right:

• the average running time per iteration (secs./itr),

• the GRASP iteration number where the best feasible solution was found (IT),

• the optimum cost (COPT),

• the cost of the best feasible solution found by the GRASP algorithm (BCF),

• theGAP = 100× BCF−COPT
COPT

(=percent relative error),

• the average of the improvement of the results of the local search phase over the construction phase

(LSI),

• the number of Steiner nodes and key-nodes of the best solution found by GRASP (SN andKN re-

spectively),

• the number of edges of the best solution found by GRASP (Edges).

Topology secs./itr IT COPT BCF GAP LSI SN KN Edges

Network 1 0.52 4 145 145 0.0% 2.12% 34 1 68

Network 2 1.17 12 680 692 1.76% 2.23% 56 42 143

Network 3 1.14 16 1848 1875 1.46% 3.12% 15 10 65

Network 4 2.13 20 3980 4057 1.93% 2.07% 24 12 91

Network 5 1.97 17 2393 2438 1.88% 3.17% 21 9 55

Network 6 1.08 21 3031 3111 2.64% 2.43% 12 7 62

Network 7 0.77 7 74 74 0.0% 1.87% 31 8 49

Network 8 1.23 18 4739 4739 0.0% - - - 41

Network 9 2.12 24 7400 7574 2.35% - - - 120

Average 1.33% 2.43%

Table 4.2: Results associated with the best solutions found byH1 for the instances 1 to 9.
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Figure 4.16: Topology of Networks 1, 2, 3, 4, 5, and 6.
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Figure 4.17: Topology of Networks 7, 8, and 9.
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Topology secs./itr IT COPT BCF GAP LSI SN KN Edges

Network 1 0.78 2 145 145 0.0% 2.21% 34 1 68

Network 2 2.48 5 680 680 0.0% 5.32% 54 40 139

Network 3 2.57 7 1848 1848 0.0% 4.85% 13 10 62

Network 4 3.23 9 3980 3980 0.0% 5.43% 22 11 89

Network 5 2.45 5 2393 2393 0.0% 5.34% 18 8 52

Network 6 2.91 6 3031 3031 0.0% 5.43% 9 7 58

Network 7 0.98 2 74 74 0.0% 6.16% 31 8 49

Network 8 1.75 4 4739 4739 0.0% 3.12% - - 41

Network 9 3.01 14 7400 7445 0.6% 4.47% - - 118

Average 0.06% 4.70%

Table 4.3: Results associated with the best solutions found byH2 for the instances 1 to 9.

Moreover, in Tables 4.4 and 4.5, we summarize the computational results obtained by applying the

heuristicsH1 andH2 on the Networks 10 to 29. These tables have the same entries that the previous tables,

excepting the entries corresponding toCOPT andGAP, since we do not know their optimum costs nor

tight lower bounds. However, we introduce another entries, denoted byGAPTSP andGAP2NC, which

are:

• the gap between the best solution found by GRASP with respect to the optimal TSP solution. That is,

GAPTSP = 100× (BCF−COPT TSP)
COPT TSP

, whereCOPT TSP is the optimum TSP cost.

• the relative distance between the cost of the best solution found by GRASP and the tight lower bound

proved in [102] for the optimal 2-node-connected solution spanning the set of fixed nodes that does

not contain Steiner nodes. This lower bound isLB2NC = 3
4
COPT TSP and thereforeGAP2NC =

100× (BCF−LB2NC)
LB2NC

. We will provide more information on this lower bound in Chapter 5.

Next, we will discuss the computational results, focusing us firstly in the comparison of performance of

both heuristics.

When analyzing the best costs found by the heuristicsH1 andH2, we noticed that, in most of the

BNDP instances, the heuristicH2 improved in significant form the quality of the solutions delivered by

H1, excepting for Networks 1, 7, and 8, where both algorithms attained the optimality, and also Networks

26 and 27 where they achieved the same solution costs. In order to compare them, let us introduce the

following notation:

- BCFj
i is the best cost found by heuristicHi (i ∈ 1..2) when solving Networkj (j ∈ 1..|Set|).

- GAPBCF is the relative improvement of the heuristicH2 with respect to the heuristicH1. That is,

GAPBCF =
100

|Set| ×
∑
j∈Set

|BCFj
2 − BCFj

1|
BCFj

1

.
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Figure 4.18: Optimal solutions for instances 1, 2, 3, 4, 5 and 6.
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Figure 4.19: Optimal solutions for instances 7, 8, and 9.
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Topology secs./itr IT BCF GAPTSP GAP2NC LSI SN KN Edges

BNDP INSTANCES WITH 2 AND 3 NODE-SURVIVABILITY

Network 10 7.42 38 16223 -23.77% 1.64% 7.19% 6 - 118

Network 11 7.35 43 16568 -25.17% -0.23% 6.32% 7 - 119

Network 12 7.65 27 16603 -19.98% 6.69% 5.17% 6 1 118

Network 13 7.63 65 15840 -25.61% -0.82% 6.12% 7 1 120

Network 14 7.52 71 15975 -27.61% -3.48% 6.24% 7 - 119

Network 15 4.82 24 387 -9.15% 21.13% 6.37% 6 2 67

Network 16 6.02 39 556 3.35% 37.79% 5.12% 8 1 94

Network 17 8.11 56 448 -28.78% -5.03% 3.98% 7 1 118

Network 18 6.21 61 83258 -23.02% 2.64% 5.96% 8 - 94

Network 19 8.46 52 34752 -21.56% 4.59% 6.56% 4 2 121

Network 20 9.18 48 43658 -26.04% -1.39% 6.65% 6 - 140

Network 21 10.36 67 71214 -26.41% -1.88% 4.21% 5 1 151

Network 22 12.12 72 42325 -27.70% -3.59% 5.60% 6 - 160

Average -21.65% 3.46% 5.80%

BNDP INSTANCES WITH 3-NODE-SURVIVABILITY

Network 23 3.84 27 2458 52.67% 103.56% 17.68% 9 - 59

Network 24 3.83 26 3223 59.55% 112.74% 15.24% 12 2 62

Network 25 3.07 30 1634 74.39% 132.52% 14.33% 11 2 57

Network 26 2.98 19 9422 37.17% 82.89% 19.56% 9 - 35

Network 27 3.29 18 10224 45.79% 94.38% 18.54% 13 3 44

Average 53.91% 105.22% 17.07%

BNDP INSTANCES WITH 2-NODE-SURVIVABILITY

Network 28 8.40 53 91189 -22.91% 2.79% 5.76% 2 2 136

Network 29 7.69 48 11056 -23.11% 2.52% 6.03% 2 2 114

Average -23.01% 2.66% 5.90%

Table 4.4: Results associated with the best solutions found byH1 for the instances 10 to 29.

- LSIji is the local search average improvement when executing heuristicHi (i ∈ 1..2) to solve the

instancej (j ∈ 1..|Set|).

- DIFLSI is the average of the difference between the local search improvement inH2 and the local

search improvement inH1. It is computed by:

DIFLSI =
1

|Set| ×
∑
j∈Set

(LSIj2 − LSIj1).

Considering all the test-set, we haveGAPBCF = 7.22% percent of improvement ofH2 onH1, which

is an important reduction of design costs if we taken into account the real costs that appear when optimizing

topologies associated with problems arising in practice. Besides, in 18 instances (out of 29)H2 improved

more than8% the best solutions built byH1. In particular, when computingGAPBCF for Networks 10 to

29, we obtainGAPBCF = 9.91%, which confirms thatH2 overcomes considerably the heuristicH1.

On the other hand, when comparing the improvement of the local searches, we haveDIFLSI = 4.6%

(beingLSIj2 ≥ LSIj1, ∀j ∈ 1 . . . 29). Since both heuristics use the same algorithm for the construction
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Topology secs./itr IT BCF GAPTSP GAP2NC LSI SN KN Edges

BNDP INSTANCES WITH 2 AND 3 NODE-SURVIVABILITY

Network 10 9.49 17 14782 -30.54% -7.39% 14.34% 5 1 117

Network 11 9.68 14 15104 -31.78% -9.04% 13.45% 4 1 117

Network 12 9.64 17 15132 -27.07% -2.76% 16.12% 4 1 117

Network 13 9.84 14 14439 -32.19% -9.59% 15.01% 5 - 118

Network 14 9.78 13 14554 -34.05% -12.07% 12.33% 5 - 118

Network 15 6.47 19 309 -27.46% -3.29% 9.63% 6 2 63

Network 16 8.06 22 422 -21.56% 4.58% 9.20% 6 - 88

Network 17 10.37 27 416 -33.89% -11.82% 14.12% 5 2 112

Network 18 8.14 25 75845 -29.88% -6.50% 10.25% 7 2 89

Network 19 10.83 27 31668 -28.52% -4.69% 8.56% 6 - 118

Network 20 12.02 26 39773 -32.62% -10.16% 9.65% 6 1 136

Network 21 13.12 33 64885 -32.95% -10.60% 10.41% 5 2 148

Network 22 14.97 32 38551 -34.14% -12.19% 8.55% 5 1 155

Average -30.51% -7.39% 11.66%

BNDP INSTANCES WITH 3-NODE-SURVIVABILITY

Network 23 4.48 12 2244 39.36% 85.81% 20.56% 7 - 53

Network 24 4.76 9 2935 45.28% 93.71% 20.77% 7 - 52

Network 25 4.52 15 1487 58.74% 111.66% 22.53% 6 - 46

Network 26 3.92 13 9422 37.17% 82.89% 23.11% 7 1 34

Network 27 4.22 12 10224 45.79% 94.38% 22.60% 8 1 43

Average 45.26% 93.69% 21.91%

BNDP INSTANCES WITH 2-NODE-SURVIVABILITY

Network 28 10.58 38 85067 -28.08% -4.11% 9.44% 2 2 131

Network 29 9.61 33 10277 -28.53% -4.70% 10.03% 3 3 111

Average -28.30% -4.41% 9.73%

Table 4.5: Results associated with the best solutions found byH2 for the instances 10 to 29.

phase, this result indicates that, in average, the algorithmLocalSearch2 obtains better neighbor solutions

than the obtained ones byLocalSearch1. As discussed in Subsection 4.4.2, the explanation of this fact is

that when performing a key-path replacement, the set of Steiner nodes considered (as potential improvers)

by LocalSearch1 is totally included in the set of nodes considered byLocalSearch2, and therefore the

substitute path computed byLocalSearch2 will have lower cost (or at the most the same) than the key-path

computed byLocalSearch1.

Let us note in addition that in all BNDP instances the number of GRASP iterations until reaching the

best feasible solution was smaller inH2 than inH1. Specifically, on average, the heuristicH1 needed 35

GRASP iterations to achieve its best solution whereasH2 needed 16 GRASP iterations to obtain its best

solution. This indicates that, in average,H1 required 19 iterations more thanH2 until accomplishing its

best local optimal solution.

Summarizing the comparison betweenH1 andH2, as conclusion of the exposed previously, we can

say that in most cases, the topologies obtained byH2 were of a superior quality than the ones found by

H1, beating them in many cases. Nevertheless, as the running times corroborate, the fact of finding better
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feasible solutions is linked to the design of more complex algorithms as well as more complex data structure,

which in general means higher execution times. Such is the case of our heuristicH2 with respect to the

heuristicH1, where on average the execution times per iteration ofH2 were28.82% percent superior than

the ones obtained byH1. In addition, it can be seen from Tables 4.2, 4.3, 4.4, and 4.5, the running times

gaps vary according to the considered topology. In the next section, we will only focus in the analysis of

the computational results obtained byH2.

4.6.3 Performance Analysis for the GRASP heuristicH2

Firstly, for the instances with known optimum value, the heuristicH2 reached the optimality in Networks

1 to 8, and attaining a near-optimal solution for the Network 9 with a very small gap (below0.61%) with

respect to the optimal value. In addition, for these nine cases, we have4.7% percent of average of the local

search improvement (and always over2% average improvement). Another interesting point was that for

Networks 1, 7, and 8, in certain GRASP iterations, we obtained gap zero implying thus that the optimality

was achieved in the construction phase. Figures 4.18 and 4.19 show known optimal solutions for BNDP

instances 1 to 9. In particular, the shown topologies associated with Networks 1 to 8 were obtained by the

GRASP heuristicH2. We remark that a known optimal topology for Network 9 (shown in Figure 4.19) was

obtained by Gr̈otschel et al. [126] by applying a cutting plane algorithm.

Let us observe that for Network 6 the topology of the optimal solution found satisfies that for all pair of

terminals belonging to the set{v1, v2, v3, w1, w2, w3} there exist three node-disjoint paths communicating

them. This implies a better structure of the solution found with respect to the “primary optimal” solution

(the one from which the test case was constructed, and which does not fulfill the mentioned property; this

is discussed in Appendix C). Similarly, for Network 5, the topological structure of the solution found is

not a cycle, contrary to its primary optimal solution. It has several key-nodes and therefore several internal

cycles. This could be beneficial since if a fault in a link or node occurs, some nodes will maintain 2-node-

connectivity among them.

Now, let us turn to the results obtained for the Networks 10 to 29, analyzing them according to their

node-survivability requirements. Before, we remark that since we do not have tight lower bounds for

these instances, we will compare them with the optimum TSP values and the lower bounds provided for

the optimal 2-node-connected topologies spanning the fixed nodes without using Steiner nodes (their op-

timum costs will be denoted byCOPT2NC). In fact, in relation to this latter, we noticed that in previous

works [6, 102, 126] some important particular cases of the BNDP such as the 2NCON and STNSNP also

were compared (from a theoretical point-of-view and also numerically) with the optimal TSP values and

the lower boundLB2NC.

• Instances 10 to 22.We noticed that in all cases the gaps between the best GRASP solution with
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respect to the optimal TSP solution were smaller than−20% having an average gap of−30.51%

percent. Furthermore, in most cases (except for Network 16) the gaps between the best GRASP

solution and theLB2NC value were smaller to−2% having an average gap of−7.39% percent. Taken

into account that in these instances there exist relatively few fixed nodes with node-survivability

requirements greater than two, (eight nodes in Networks 10 to 14 and six nodes in Networks 15

to 22, having all of them 2-3 node-survivability requirements) we think that even though we are

comparing costs related to problems with different node-connectivity restrictions, theCOPT TSP

andLB2NC values are particularly useful to measure the influence of introducing Steiner nodes as

potential enhancers of the quality of 2-node-survivable feasible solutions. In this sense, let us notice

that the costs of the best found solutions were significantly smaller than the optimum TSP values and

in 12 instances (out of 13) they were inferior than theCOPT2NC values. In all cases the local search

phase improved more than8% the solution delivered by the construction phase; over10% average

improvement for most problem instances (and always over8.5% average improvement). On the other

hand, by inspecting manually the best found GRASP solutions, we observed that each one of them

was topologically minimal (i.e. when deleting an edge, we lose the feasibility), satisfying thus a

necessary condition to be potentially a global optimal solution. Besides, all of them contain Steiner

nodes, in particular, at least four key-nodes in each case.

• Instances 23 to 27.Let us note firstly that in these instances the node-survivability requirements are

considerably higher with respect to the previous cases (here, we demand at least three node-disjoint

paths between every pair of fixed nodes). Hence, it is reasonable to suppose that theCOPT TSP

andCOPT2NC values will be relatively distant of the optimal BNDP costs, and as a consequence

the gapsGAPTSP andGAP2NC will not provide us relevant information that allows to analyze

the efficiency of our GRASP algorithm when applying it on these instances. As we can see from

Tables 4.3 and 4.4, the values of these gaps corroborate numerically this fact. Anyway, we will

concentrate in analyzing the qualitative improvements introduced by the local search.

We noted that, in all cases, the local search phase improved more than20% the solution built by

the construction phase and over21.5% average improvement. These are interesting results since

they show the potentiality of the local search algorithms to enhance in considerable way the quality

of the starting feasible solutions. On the other hand, when doing a structural analysis of the best

solutions produced by our GRASP algorithm, we noticed that the attained solutions were minimal.

In particular, we easily corroborated the minimality of the best found solutions, by considering the

number of Steiner nodes present in their topologies conjointly with the aid of a Lemma proved by

Harary [80] (which establishes that the minimum number of edges in ak-node-connected graph onn

nodes without parallel edges isdkn
2
e).
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• Instances 28 and 29.These two BNDP instances are particularly interesting because they are more

closely linked to TSP problems; more exactly they are STNSNP instances. Let us recall that all

feasible solution of a TSP instance also is feasible for a STNSNP instance derived from the TSP

instance by adding Steiner nodes; but non conversely.

Next, let us see some particular properties related to these BNDP instances. On the one hand, for

these instances, we have that the optimum TSP values associated with the original problems provide

upper bounds for the optimum BNDP values. This property is useful to analyze how well is our

GRASP heuristic when building feasible solutions exploiting the existence of Steiner nodes as po-

tential improvers. On the other hand, as we mentioned in Chapter 5, Monma et al. [102] proved that

theLB2NC value is a good lower bound for theCOPT2NC value. In this way, since in these BNDP

instances our goal is to find an optimal Steiner 2-node-connected solution spanning the fixed nodes

and taken into account that the 2-node-connected topologies without Steiner nodes are also feasible

for these BNDP instances, we can deduce that the optimum BNDP values are smaller (or equal in the

worst case) than theCOPT2NC values and moreover potentially inferior than theLB2NC values.

Even though this fact is a disadvantage, since we do not know a priori if the optimum BNDP value

is greater or smaller than theLB2NC value, even so to compute the gap between the best GRASP

solution with respect to theLB2NC value will allow us to investigate how efficient is the GRASP

algorithm using optional nodes with the objective of improving (if it is possible) the quality of the

optimal 2-node-connected topologies non-containing Steiner nodes. In particular, if we reach a neg-

ative value forGAP2NC, this implies that we have improved the optimal 2-node-connected solution

spanning the fixed nodes that does not contain Steiner nodes.

Now, let us centre on the numerical results. We noticed that in both instances the gaps between the

best GRASP solution with respect to the optimal TSP solution were smaller than−28% having an

average gap of−28.30% percent. In addition, in both cases the gaps between the best GRASP solution

and theLB2NC value were smaller than−4.0% having an average gap of−4.41% percent. These

results imply that the feasible solutions attained by GRASP overcame in quality (i.e. with smaller

costs) the corresponding optimal TSP solutions as well as the optimal 2-node-connected solutions

that does not contain Steiner nodes. Concerning the structure of the best solutions achieved by the

GRASP heuristic, both local-optimal topologies were minimal (corroborating manually this property

by means of a rigorous inspection on the topology). Moreover, as one can see from Table 4.5, the

GRASP solution associated with Network 28 has two Steiner nodes, being both key-nodes of degree

three; and the GRASP solution associated with Network 29 has three Steiner nodes, being the three

key-nodes of degree three. These topological characteristics are very important since a necessary

optimality condition for a problem BNDP2NS satisfying triangular inequality is that any Steiner
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node used in an optimal network is of degree three [102]. In this way, the feasible solutions reached

for Networks 28 and 29 comply with necessary conditions for global optima.

In all cases the local search phase improved more than8.5% the solution constructed by the construc-

tion phase; over9.7% average improvement when considering both problem instances and over9.4%

average improvement in each one of them.

To conclude the performance analysis of the GRASP heuristicH2, we can say that the runs performed

on the testing set proved to be successful, the optimal solution being obtained for the first eight instances,

attaining a very near-optimal solution for Network 9, and reaching local-optimal minimal feasible solutions

for Networks 10 to 29 (whose optimum costs are not known). In special, for these latter, the gaps used

like comparative reference (namelyGAPTSP andGAP2NC) varied depending on the node-survivability

requirements associated with each BNDP instance; occurring the greatest values for Networks 23 to 27,

followed in decreasing order by the sub-sets composed of Networks 28 to 29, and Networks 10 to 22,

respectively. Even if the connectivity requirements were stronger for Networks 10 to 22 than for Net-

works 28 to 29, interestingly enough, the gaps values for the former were smaller to those of the latter. This

fact possibly happens due to two reasons:

i) Networks 10 to 27 have approximately50% percent of Steiner nodes whereas Networks 28 and 29

have33% and27% percent of Steiner nodes respectively. Potentially the space of feasible solutions

associated with Networks 10 to 27 could be increased in a bigger proportion with respect to Networks

28 and 29.

ii) When building Networks 10 to 27, the costs of the new connections were chosen randomly based on

the intervals of the original TSP costs, reduced by a factor of1
8
. Clearly, when reducing the size of

these intervals, increases the possibility that the Steiner nodes be components of good quality feasible

solutions.

Let us note that, when averaging over all the testing set, we have14.43% average improvement. These

are very good results, showing the potential of the local search phase in improving the starting solution.

Besides, notice that most of the best GRASP solutions (except for Network 8 and 9) contain Steiner nodes.

In addition in 18 instances (out of 29) the best GRASP topologies are also integrated by key-nodes. Partic-

ularly, whenS(I)

D 6= ∅ (nonempty set of Steiner nodes), our algorithm tries to exploit intensely the existence

of key-nodes (and therefore of key-paths with at least one key-node as an endpoint) as components of a

global optimal solution, and as above, to find minimal local-optimal topologies (as close as possible to the

global optimal) with better possible survivability properties. Otherwise, whenS(I)

D = ∅, the GRASP local

search pores over each link from the current solution, replacing it by a path that (as far as possible) contain
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edges already present in the solution and trying to minimize the cost of introducing (if necessary) new edges

to reestablish the connectivity.

4.7 Conclusions

By modelling the backbone network design problem (BNDP) with heterogeneous survivability require-

ments based on the Generalized Steiner Problem with node-connectivity requirements, we were able to

develop several Greedy Randomized Search Adaptive Procedures designed to solve the BNDP. As a result

of the performance testing phase, we concluded that, in particular, one of the yielded GRASP versions

overcame the others with respect to the quality of the built solutions, beating them in many cases, and

giving low-cost approximate solutions. This latter GRASP algorithm, denotedH2, is obtained instancing

Construction Phase with ConstPhase andLocal Search with LocalSearch2.

The implementation of our algorithms was tested on a number of different problems with heteroge-

neous survivability requirements. In all cases,H2 was shown to find good quality solutions within few

iterations; in all cases, except one, with known optimum value an optimal solution was found, and for the

other instances minimal feasible solutions were reached improving in many cases the quality of optimal so-

lutions corresponding to other related survivability problems such as TSP and 2NCON (this last one without

considering Steiner nodes).

On the other hand, as discussed in Subsection 4.6.3, we can say that the local search phase enhances

considerably the quality of the solutions constructed by the construction phase, varying the percentage

of improvement according to the topological characteristics of each instance and also depending on the

connectivity requirements. In relation to this, we noted that such improvements are linked to the quality

of the solution delivered by the construction phase. More precisely, a good initial solution enhances the

performance of the GRASP algorithm, because the local search phase will require less computational effort

until accomplishing a local optimal feasible topology.

Globally, these are very promising results considering that to compute the best BNDP solution is a NP-

Hard problem [126, 136]; in particular, the known exact algorithms have worst case computing time which

grows exponentially with the number of terminal nodes and edges. The execution time of the proposed

GRASP method is also dependent on the number of nodes, edges, and the connection requirements, but

increases much slower.

These are (up to our knowledge) the first results on the use of a GRASP metaheuristic as topology

planning method for designing a large-scale backbone network with high node-survivability constrains

applicable to general graph classes.

As future work, it is possible to search for new methods which improve either the initial construction or
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the local search phases of the GRASP. In addition, we are looking for more BNDP instances with known

optimal costs, with the aim of comparing them with the costs associated with the solutions delivered by our

GRASP algorithm.



Chapter 5

The 2-Node-Survivable Backbone Network

Design Problem

5.1 Introduction

In this chapter, we will focus on a particular case of the BNDP: the design of 2-node-survivable backbone

networks, which we will denote by BNDP2NS. Precisely, this has important applications in the problem

of designing High Speed Optical Data Transmission Networks (HSODTN) to be robust to a single link or

node failure.

Typically, in the design of large optical fiber networks, where there is high bandwidth and highly reliable

links, the need of adding communication redundancy to the network comes up in order to increase its

survivability, i.e., its capacity to resist failures. The survivability of a network is closely linked to its degree

of connectivity, which is the minimum number of disjoint paths that exist between any pair of the nodes of

the network; this connection measure may be given in terms of node-disjoint paths. Even if point to point

links are highly reliable, due to the type of service provided by optical fiber, the consequences of failures of

just one component may be disastrous. It is then necessary to obtain a higher degree of connectivity in the

design of the optical fiber network, in order to increase its survivability. In the design of metropolitan optical

fiber networks, a commonly applied requirement is to ensure the existence of at least two node-disjoint-

paths between pairs of distinguished nodes of the network. In this way, when a failure occur in some

component of the network (link or node), the network will remain in operational state, i.e. the resulting

network is connected. The problem of finding a network topology verifying this restriction is known as

theSteiner 2-Node-Survivable Network Problem(denoted by STNSNP) which is NP-Hard [6, 102]. Some

reference in this area are [6, 37, 35, 102, 112, 125].

Our interest in the BNDP2NS is motivated by the need of finding low cost backbone topologies in the

115
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general case within reasonable execution times. That is to say, the goal is to design efficient approximated

algorithms for the BNDP2NS applicable to the most general class of graphs. As a result, we introduce

several algorithms based on the GRASP methodology for finding a low cost 2-node-survivable Backbone

network topology, working upon the STNSNP model.

The remainder of this chapter is organized as follows. Section 5.2 introduces the notation, the auxil-

iary definitions to be used and the formal definition of the 2-Node-Survivable Backbone Network Design

Problem (BNDP2NS). In Section 5.3 we propose three different alternative algorithms for the construction

phase. Section 5.4 provide two different algorithms for the local search phase. Like in the general case

BNDP, the local search algorithms for the BNDP2NS were designed with the aim of complementing each

other, allowing the search for better solutions within different neighborhood structures. Combining these

options, yields different versions of GRASP. In Section 5.5 we propose several polynomial time heuristics

based on GRASP methodology for approximately solving the BNDP2NS. Section 5.6 introduces a survey

of the experimental results obtained by running the GRASP algorithms on a test-set of BNDP2NS instances,

containing problem instances with different topological characteristics. Finally, in Section 5.7, we conclude

with a discussion, including conclusions and future work.

5.2 Notation, Problem Definition and Auxiliary Definitions

We will use the same notation that in the previous chapter, but here we do not have a matrix of connection

requirementsR since the goal is to design a low cost 2-node-survivable backbone network spanning the

fixed switch sites fromS(I)

D .

Definition 5.2.1 (Backbone Network Design Problem with 2-Node-Survivable Topology - BNDP2NS)

We define the 2-Node-Survivable Backbone Network Design ProblemBNDP2NS(SD, E, C) as the prob-

lem of finding a subgraphHB of GB of minimum cost such thatHB is 2-node-survivable with respect to

the set of fixed sitesS(I)

D . We will denote byΓBNDP2NS the space of feasible solutions associated with the

problem.

We present a small BNDP2NS instance example, based on the network shown in Figure 5.1. In this

network there are five fixed switch sites, colored black and labeleds1, s2, s3, s4, ands5 and eight non-fixed

switch sites, colored white. The connections that can be used to build a solution are shown, annotated with

their costs.

Figure 5.2 presents a minimal 2-node-survivable feasible solution (of cost 22) to this problem instance.

There are five non-fixed sites integrating the solution. Let us note that the solution is not a cycle, having a

key-node and therefore a key-tree.
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Figure 5.1: Example of a BNDP2NS instance.
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Figure 5.2: A solution to the graph example given in Figure 5.1.

We introduce some auxiliary definitions which will be used in the descriptions of the proposed algo-

rithms.

Definition 5.2.2 (H-path) Given a graphH, we call a pathp anH − path if p is non-trivial and meetsH

exactly in its ends. In particular, the edge of anyH − path of length 1 is never an edge ofH .

The following proposition is a characterization of the 2-connected graphs, a proof can be found in [43].

Proposition 5.2.3 A graph is 2-connected if and only if it can be constructed from a cycle by successively

addingH − paths to graphsH already constructed.

Notice that any minimal 2-node-survivable feasible solution belonging toΓBNDP2NS is also 2-node-

connected and 2-connected and therefore it has a decomposition inH − paths. In this way, we give the

following definition.
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Definition 5.2.4 (H-paths decomposition)Given a 2-node-connected networkG. We define anH−paths

decomposition forG as a pair (P,H), whereP = (p1, . . . , pk) is a sequence ofH − paths andH =

(H1, . . . , Hk) is a sequence of networks such thatH0 = C, withC a cycle,Hj = Hj−1 ∪ pj, ∀j ∈ 1..K, and

Hk = G.

Figure 5.3 illustrates anH−paths decomposition associated with a 2-node-connected graphG. In each

subgraphHi, i ∈ 0..4, the path with broken lines models the addedH − path.

H0 H1

H2 H3

H4

Initial Cycle

G

Figure 5.3: AnH − paths decomposition for the graphG.

In the previous chapter, we introduced a GRASP algorithm for designing a backbone network with

different node-survivability requirements between fixed sites fromS(I)

D . As mentioned above, an important

particular case is when the aim is to design a 2-node-survivable backbone. Now, we introduce GRASP

algorithms for approximately solving the BNDP2NS.

5.3 BNPD2NS Construction Phase Algorithms

In this point we will introduce the different construction phase algorithms designed as building blocks of a

general GRASP algorithm for the BNDP (which will be presented in Section 5.5).

Firstly, we propose a construction phase algorithm, which based on Proposition 5.2.3, builds 2-node-

survivable topologies spanningS(I)

D . A second option for the construction phase is also proposed, which

is a variant of the algorithmConstPhase presented in 4.3. Furthermore, we introduce a third construction
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phase algorithm, which is a minor variant for this latter, in particular the node-requirements between fixed

nodes are computed in different order.

5.3.1 Algorithm ConstPhase12NS

Based on Proposition 5.2.3, the algorithm builds iteratively a 2-node-survivable network spanning the fixed

switch sites ofS(I)

D . The feasible solution is computed building initially a cycle containing two sites ofS(I)

D

and by successively addingGsol − paths (containing a site ofS(I)

D not belonging toGsol) to networksGsol

already built until reaching feasibility.

Procedure ConstPhase1 2NS(GB ,C,k);

1 ∀si
w ∈ S

(I)
D a unique identifier ni is assigned;

2 v ← Select Random(S
(I)
D );

3 Y ← {v}; Gsol ← {v};
4 while Y 6= S

(I)
D do

5 sw ← ArgMax{ni|si
w /∈ Gsol};

6 L1 ← the k shortest paths from sw to Gsol;

7 p1 ← Select Random(L1);

8 K1 ← the fixed switch sites of p1;

9 N ← Gsol ∪ (p1 \ sw);

10 H ← GB \N ;

11 L2 ← the k shortest paths from sw to Gsol on H;

12 p2 ← Select Random(L2);

13 K2 ← the fixed switch sites of p2;

14 Gsol ← Gsol ∪ {p1, p2};
15 Let u, v be the endpoints of p1 and p2 in Gsol;

16 if (|Y | > 1) and (∃ a key-path p̄ from u to v on Gsol) then

Gsol ← Gsol \ (p̄ \ {u, v});
17 Y ← Y ∪K1 ∪K2 ∪ {sw};
18 end while;

19 return Gsol;

end ConstPhase1 2NS;

Figure 5.4: ConstPhase12NS pseudo-code.

The algorithm (shown in Figure 5.4) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connections costC, and the GRASP parameterk. In order to introduce ran-

domness in the selection process of the sites to be added to the current solution, we assign (in line 1) a

unique identifierni to each fixed switch sitesi
w ∈ S(I)

D . Line 2 selects randomly (and uniformly) one of

them. Line 3 initializes the current solutionGsol and the setY of fixed sites already added toGsol, with the

selected fixed site. The loop from line 4 to 18 adds iterativelyGsol − paths to Gsol until Y = S(I)

D , i.e. to

reach the feasibility.
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Each iteration works of the following way. Line 5 selects the fixed site not belonging toGsol with greatest

value of identifier. Letsw be this site. Thek-shortest paths fromsw to Gsol are computed in line 6 using

the Yen algorithm [137]. They are stored in the restricted candidate listL1. In the same line, we check if

L1 is empty, in which case the algorithm finalizes since we will not be able to construct a feasible solution.

Line 7 selects a pathp1 ∈ L1 randomly (and uniformly). In line 8 the setK1 of fixed sites belonging top1 is

computed. Lines 9-10 compute an auxiliary network:H = GB \ (Gsol ∪ (p1 \ sw)). Notice that this network

does not have nodes and edges ofGsol nor of (p1 \ sw), which allows to compute a new node-disjoint path

(with respect top1) from sw toGsol onH. Line 11 computes thek-shortest paths fromsw toGsol onH (which

are stored in the restricted candidate listL2). Line 12 selects a pathp2 ∈ L2 randomly (and uniformly) and

its set of fixed sitesK2 is computed in line 13. Let us observe that the pathp1 ∪ p2 is aGsol − path. Line

14 updatesGsol by adding the pathsp1 andp2. ConsideringGsol, let u andv be the endpoints ofp1 andp2

respectively. As we will see in Proposition 5.3.1, if inGsol a key-path fromu to v has been induced, it can

be removed preserving the 2-node-survivability. Hence, if this is the case, this key-path will be removed to

improve the cost of the current solution. Line 16 is incorporated with that purpose. Finally, the setY of

fixed sites already added toGsol is updated in line 17.

Once all fixed sites have been added, the built solutionGsol is returned in line 19. Figure 5.5 shows the

adding of a new fixed switch site to the current solutionGsol.

solG

s
w

fixed site
p

1

p
2

v

u

endpoint of p
1

endpoint of p
2

Figure 5.5: Example of a ConstPhase12NS iteration.

We present in Figure 5.6 the possible situations when a new fixed switch site is added to the current

solution by the algorithmConstPhase1 2NS. The black nodes represent the fixed sites whereas the white

nodes represent the non-fixed switch sites.

• In the first two graphs there does not exist any key-path betweenu andv in Gsol since in any path
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connecting them there are other key-nodes or fixed sites.

• In the third graph there exists a key-path connectingu with v in Gsol, and the fourth graph is the result

of deleting it. The obtained solution will be 2-node-survivable with respect to the fixed sites already

added.

Gsol

p p1
2

u v

(a) Graph 1

Gsol

p p1
2

u v

(b) Graph 2

Gsol

p p1
2

u v

(c) Graph 3

Gsol

p p1
2

u v

(d) Graph 4

Figure 5.6: The insertion of a fixed switch site.

The following proposition demonstrates the constructive correctness of the algorithmConstPhase1 2NS.

Proposition 5.3.1 If the algorithmConstPhase1 2NS returns a graph this will be a 2-node-survivable

solution for the BNDP2NS.

Proof. By induction in|Y |, we will demonstrate that at any time we have a 2-node-survivable network with

respect to the subset of fixed switch sitesY .

Basic Step:|Y | = 1. In lines2− 3, the current solutionGsol and the setY of nodes already added toGsol are

initialized with a fixed switch sites ∈ S(I)

D . By convention, a simple node is a 2-node-survivable network.
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Induction Step:1 < |Y |. The inductive step is presented of the following way.

As inductive hypothesis we have that if|Y | < k ≤ |S(I)

D | for certain iteration, then executing lines5−17 the

resulting networkGsol will be 2-node-survivable. As inductive thesis the property is fulfilled when|Y | = k

for certain iteration.

Let us suppose that in certain iteration we have|Y | = k. Let us analyze the following cases.

Case 1.|Y | = k < |S(I)

D |. The condition in line 4 is TRUE and therefore the algorithm will execute the

lines5− 17. In the previous iteration we had|Y | < k and by I.H. we know that after executing lines5− 17

the networkGsol is 2-node-survivable. In the current iteration, in line 5 we select a fixed switch sitesw not

yet added toGsol (that one with greater value of identifier). Lines6− 13 computes two node-disjoint paths

from sw to Gsol. Let p1, p2 be these paths. Clearly, the networkH = Gsol ∪ {p1, p2} is 2-node-survivable.

Let u, v be the endpoints ofp1 andp2 in H. If |Y | = 1 the networkH is a cycle and therefore minimal.

If |Y | > 1 and there exists a key-path̄p from u to v in H, we can delete this path fromH (exceptu and

v) preserving the 2-node-survivability and obtaining a better solution (lines 14-16). Notice that once added

the pathsp1 andp2 at most one redundant key-path is introduced. Hence, the updated solutionGsol will be

2-node-survivable when finalizing the current iteration. The setY is updated by adding to itsw and the

fixed switch sites present inp1 andp2 (line 17).

Case 2.|Y | = |S(I)

D |. In the previous iteration we had|Y | < |S(I)

D | and by I.H. we know that after executing

lines5− 17 the networkGsol is 2-node-survivable. In the current iteration, the condition in line 4 is FALSE

and thereforeGsol is 2-node-survivable and spanning the setS(I)

D .

QED

The following result will be useful to demonstrate certain topological properties related to the con-

structed solutions. A proof can be found in [102].

Lemma 5.3.2 (Monma, Munson and Pulleyblank) LetG = (V, E) be a two-connected graph withG′ =

(V ′, E ′) a subgraph ofG induced byV ′. Then replacingE ′ by any collection of edgesE ′′ defined onV ′,

whereG′′ = (V ′, E ′′) is two-node-connected, results in aG∗ = (V, (E \E ′)∪E ′′) which is two-connected.

Let us observe that, by construction, the solutionGsol delivered byConstPhase1 2NS has at least one

fixed switch site with degree two. We introduce the following structural Lemma to show that a minimal

2-node-survivable solution must have at least one fixed switch site of degree two, or equivalently, that there

do not exist minimal feasible solutions such that all the fixed sites have degree greater to two.

Lemma 5.3.3 If Gsol is a minimal 2-node-survivable network then there exists inGsol at least one fixed

switch site of degree two.
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Proof. By contradiction, let us suppose that inGsol all the fixed switch sites have degree greater to two. Let

u, v ∈ S(I)

D be two fixed switch sites. Letp1, p2 be two node-disjoint paths connectingu andv in Gsol. We

denoteC the cycle conformed by{p1, p2}. Let us consider{x1, x2} and{y1, y2} the adjacent nodes tou and

v respectively. In addition, letx3, y3 /∈ C be two adjacent nodes tou andv respectively. Considering the path

p = ((x3, u), p1, (v, y3)), asGsol is 2-node-connected (matrixC is positive), there exists a pathp3 connecting

x3 andy3 in Gsol so thatp3 ∩ p = {x3, y3}. We will denote bȳp to the path̄p = ((u, x3), p3, (y3, v)). Let us

analyze the following cases.

Case 1.p2 ∩ p3 = ∅.
A) If ∃k ∈ S(I)

D such thatk ∈ p2, k 6= u, v, let k̂ be the closest tou onp2. Since by hypothesiŝk has degree

greater to 2 inGsol, there exists a nodês adjacent tôk in Gsol such that̂s /∈ p2 (it is easy to see that if̂s ∈ Gsol

then it is not optimal). Let̂k2 ∈ S(I)

D be the next fixed switch closest tou on p2 (eventuallyk̂2 = v). Let

us denote byp4 the path conformed by:p4 = ((ŝ, k̂), p2(k̂,u)), wherep2(k̂,u) ⊂ p2 is the sub-path connecting

k̂ with u. As Gsol is 2-node-connected, there exists necessarily a pathp̂ ⊂ Gsol from ŝ to k̂2 such that:

p̂ ∩ p4 = {ŝ}. Figure 5.7 illustrates this situation. Let us consider the network:
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Figure 5.7: Cases 1.A and 2.A respectively.

Ĥ =
(
p1 ∪ p2 ∪ p̄ ∪ p̂ ∪ {(k̂, ŝ)}

)
\ p2(k̂,k̂2),

wherep2(k̂,k̂2) ⊂ p2 is the sub-path connectinĝk with k̂2. Notice that the network̂H is 2-node-connected.

If we denoteH = p1 ∪ p2 ∪ p̄, applying Lemma 5.3.2, we have that:

• Ḡsol = (Gsol \H)∪Ĥ is 2-node-connected (i.e. a 2-node-survivable feasible solution) and in addition,
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• COST(Ḡsol) < COST(Gsol),

contradicting therefore the optimality ofGsol.

B) If 6 ∃k ∈ S(I)

D such thatk ∈ p2, k 6= u, v, clearly the network̄Gsol = Gsol \ EDGES(p2) would be a better

feasible solution thanGsol, which contradicts its optimality.

Case 2.p2 ∩ p3 6= ∅.
A) It is similar to the previous case(1.A). Again, if ∃k ∈ S(I)

D such thatk ∈ p1, k 6= u, v, let k̂ be the

closest tou on p1. Since by hypothesiŝk has degree greater to 2 inGsol, there exists a nodês adjacent to

k̂ in Gsol such that̂s /∈ p1 (as above, if̂s ∈ Gsol this is not optimal). Let̂k2 ∈ S(I)

D be the next fixed switch

closest tou on p1 (eventuallyk̂2 = v). Let us denote byp4 the path conformed by:p4 = ((ŝ, k̂), p1(k̂,u)),

wherep1(k̂,u) ⊂ p1 is the sub-path connectinĝk with u. AsGsol is 2-node-connected, there exists necessarily

a pathp̂ ⊂ Gsol from ŝ to k̂2 such that:p̂ ∩ p4 = {ŝ}. Figure 5.7 illustrates this situation. Let us consider

the network:

Ĝ =
(
{(k̂, ŝ)} ∪ p̂ ∪ p1 ∪ p2 ∪ p̄

)
\ p1(k̂,k̂2),

wherep1(k̂,k̂2) ⊂ p1 is the sub-path connectinĝk with k̂2. Let us observe that the network̂G is 2-node-

connected. DenotingG = p1 ∪ p2 ∪ p̄ and applying Lemma 5.3.2, we have that:

• Ḡsol = (Gsol \ G) ∪ Ĝ is 2-node-connected (i.e. a 2-node-survivable feasible solution) and in addition,

• COST(Ḡsol) < COST(Gsol),

contradicting the optimality ofGsol.

B) Finally, if 6 ∃k ∈ S(I)

D such thatk ∈ p3, k 6= u, v, then the network̄Gsol = Gsol \ EDGES(p3) would be a

better feasible solution thanGsol, contradicting thus its optimality.

QED

We will prove that any minimal feasible solution can be built by the algorithmConstPhase1 2NS. Let

us notice that, by construction, if there exists a minimal feasible solution with cycle topology, it is possible to

find it, for example ifS(I)

D ⊂ (p1∪p2) in step 14 of the first iteration. Nevertheless, we cannot trivially deduce

this property when the minimal feasible topologies are not cycles. In this way, given a BNDP2NS instance,

the following theorem and its respective corollary prove that by applying the algorithmConstPhase1 2NS

it is possible to reach any minimal feasible solution belonging to the space of feasible solutions. More

precisely, ifGsol is a minimal feasible solution, there exists a decomposition inH − paths for Gsol such that

this one can iteratively be constructed byConstPhase1 2NS.

Theorem 5.3.4 Consider a minimal 2-node-survivable solutionGsol which is not a cycle. There exists a

decomposition inH − paths for Gsol fulfilling the following points:
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A) The initial cycleC has at least two fixed switch sites.

B) If P = (p1, . . . , pk) is the sequence ofH − paths andH = (H1, . . . , Hk) is the sequence of the

resulting networks such thatH0 = C, Hj = Hj−1 ∪ pj, ∀j ∈ 1..K, andHk = Gsol, we have that

∀p ∈ P there exists a fixed sitesw ∈ S(I)

D such thatsw ∈ INTERNAL NODES(p).

Proof. Initially, we choose a cycleC ⊂ Gsol containing al least two fixed sites. Iteratively, we build networks

H and theH − paths of the following way:

1) We initializeH = C.

2) If S(I)

D \ FIXED SITES(H) 6= ∅, let sw be one of them. Let us consider two pathsp1 andp2 from sw to

H so that:

• p1, p2 ⊂ Gsol, p1∩H = {u}, p2∩H = {v} beingu andv the endpoints ofp1 andp2 respectively,

• p1 ∩ p2 = {sw}.

Necessarily these paths must exist, otherwiseGsol would not be 2-node-survivable.

3) Notice that the pathp = p1 ∪ p2 is anH − path onH. The current network is updated byH = H ∪ p

and the construction is resumed from(2).

This process finalized once all the fixed sites ofS(I)

D have been added toH. Let us suppose that the resulting

networkH is a subgraph ofGsol, i.e. Gsol \ H 6= ∅. By Proposition 5.2.3 we have thatH is a 2-node-

survivable network spanning the setS(I)

D . This contradicts the minimality ofGsol. Hence,H = Gsol. To

complete the proof, let us note that the sequence of paths computed in(2) as well as the sequence of

networks computed in(3) satisfy(A) and(B).

QED

Corollary 5.3.5 Consider a minimal 2-node-survivable solutionGsol which is not a cycle. LetP = (p1, . . . , pk)

andH = (H1, . . . , Hk) be a decomposition inH − paths for Gsol satisfying points(A) and(B) of the pre-

vious theorem. Then, when adding a pathpj to Hj−1, for all j ∈ 2..K, in the resulting networkHj there

does not exist any key-path connecting the endpoints ofpj.

Proof. By contradiction, let us suppose that∃pj ∈ P such that inHj = Hj−1 ∪ pj there exists a key-path

between the endpoints ofpj. Let us denote bŷp this key-path andu, v its endpoints, i.e. the endpoints ofpj

onHj. Firstly, let us notice that:

1) If p̂ is also a key-path inGsol then, by construction,Gsol \ p̂ is 2-node-survivable, which contradicts

the minimality ofGsol.
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2) By removing a connection from̂p the resulting network preserves the node-survivability levels be-

tween fixed sites whose associatedH−paths have an endpoint non-belonging top̂ or their endpoints

areu andv.
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G sol
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G sol
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G sol
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Figure 5.8: Situations(1) and(2).

Figure 5.8 shows these situations. Now, let us analyze theH − paths whose endpoints are in̂p and one of

them belongs toINTERNAL NODES(p̂). In this way, we define the set:

Xp̂ = {p ∈ P |p has both endpoints in̂p and one of them belongs toINTERNAL NODES(p̂)} .

Let us denote bŷG the subnetwork integrated by the set of pathsXp̂ ∪ {p̂}. Let us define the set:

Y =
{
p̂(s1,s2) ⊂ p̂|∀pi ∈ Xp̂ with endpointss1, s2

}
.

We chose a pathq ∈ Y such that does not existp ∈ Y such thatp ⊂ q. Let C ⊂ Hj−1 be a cycle such that

p̂ ⊂ C. In Figure 5.9, we illustrate this case. Lete ∈ q be an edge. It is easy to see that the subnetwork

H = C ∪ (Ĝ \ {e}) is 2-node-connected. Therefore, by Lema 5.3.2, by replacing inGsol the subnetwork

C ∪ Ĝ byH the resulting network is 2-node-survivable. This contradicts the minimality ofGsol, implying

thus the nonexistence of a key-path connectingu andv in Hj, as required, and completing the proof.

QED
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Figure 5.9: Networks:C ∪ Ĝ andC ∪ (Ĝ \ {e}).

5.3.2 Algorithm ConstPhase22NS

We also propose another alternative algorithm for the BNDP2NS construction phase which we callConstPhase2 2NS.

In particular, we can see it as a variant ofConstPhase (introduced in 4.3) customized for designing 2-node-

survivable networks. The proposed algorithm builds iteratively feasible solutions by reusing suitably the

connections already present in the current solution, with the aim of minimizing the cost of adding new

connections to satisfy (in each iteration) certain connection requirement between two fixed switch sites. It

differs fromConstPhase1 2NS by the fact that the 2-node-survivability (with respect to the already added

fixed sites) is not guaranteed once finalized each iteration (except for the last iteration, where the constructed

solution will be necessarily 2-node-survivable). Anyway, as we will show in Section 5.6, when using this

algorithm in the GRASP construction phase we obtain good feasible topologies which are improved by

the local search algorithms eliminating in certain cases redundant edges. Next, we introduce a detailed

description for this algorithm.

The algorithm builds iteratively a 2-node-survivable network spanning the fixed switch sites ofS(I)

D .

In more detail, the algorithm (shown in Figure 5.10) takes as inputs the graphGB of feasible connections

on the backbone network, the matrix of connections costC, and the GRASP parameterk. In line 1 we
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Procedure ConstPhase2 2NS(GB ,C,k);

1 Gsol ← (S
(I)
D , ∅); mij ← 2 ∀i, j ∈ S

(I)
D ; Pij ← ∅ ∀i, j ∈ S

(I)
D ; Aij ← 0 ∀i, j ∈ S

(I)
D ;

2 while ∃mij > 0 such that Aij < MAX ATTEMPT do

3 Let i, j ∈ S
(I)
D be a randomly chosen pair of fixed switch sites such that mij > 0 ;

4 Ḡ ← (GB \ Pij);

5 Let C̄ be the matrix given by: c̄uv ←
(

0 if (u, v) ∈ Gsol,

cuv if (u, v) ∈ (Ḡ \ Gsol).
;

6 Lp ← the k shortest paths from i to j on Ḡ, considering the matrix C̄;

7 if Lp = ∅ then Aij ← Aij + 1; Pij ← ∅; mij ← 2;

8 else

9 if ∃p̂ ∈ Lp such that COST|C̄(p̂) = 0 then p ← p̂;

10 else p ← Select Random(Lp); Gsol ← Gsol ∪ {p};
11 if mij = 2 then Pij ← p;

12 mij ← mij − 1;

13 [P, M ] ← Update Matrix(Gsol,P, M, p, i, j);

14 end if;

15 end while;

16 return Gsol;

end ConstPhase2 2NS;

Figure 5.10: ConstPhase22NS pseudo-code.

initialize:

• the current solutionGsol with the sites ofS(I)

D without connections among them,

• the matrixM = {mij}i,j∈S
(I)
D

(indicating the connection requirements not yet satisfied between fixed

sites) withmij = 2, ∀i, j ∈ S(I)

D ,

• the auxiliary matrixP = {Pij}i,j∈S
(I)
D

(used to store paths between fixed sites) withPij = ∅, ∀i, j ∈
S(I)

D ,

• and the auxiliary matrixA = {Aij}i,j∈S
(I)
D

(used to record when has not been found a path between

two fixed sites) withAij = 0, ∀i, j ∈ S(I)

D .

Loop 2-15 is repeated until all the fixed sites have satisfied their connection requirements (i.e. the resulting

network is 2-node-survivable) or for certain pair of fixed sites have not been found two node-disjoint paths

connecting them afterMAX ATTEMT attempts.

Each iteration works in the following way. Line 3 selects randomly (and uniformly) a pairi, j ∈ S(I)

D

such thatmij > 0 (i.e. there exists at least one requirement not yet fulfilled among them). Line 4 computes

the networkḠ = (GB \ Pij). Note that this network does not contain any edge and node ofPij excepting

i andj; therefore, all path communicatingi with j in Ḡ will be node-disjoint with respect toPij. Line

5 computes an auxiliary matrix̄C of connections cost such that all connections(u, v) ∈ Gsol have cost
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zero. This will allow to reuse already existing edges inGsol (without considering their costs) when new

node-disjoint paths are computed. Line 6 computes thek shortest paths fromi to j on Ḡ using the matrix

C̄. These paths are stored in the restricted candidate listLp. Line 7 checks ifLp is empty. If this is the case

(assuming thatGB is 2-node survivable), we re-initializePij andmij sincePij contains a separating set

betweeni andj on GB and therefore does not exist a path fromi to j in Ḡ, they are in different connected

components. Otherwise, ifi andj are in the same connected component inḠ, in order to not increase the

cost ofGsol, in line 9 we search a patĥp ∈ Lp such thatCOST|C̄(p̂) = 0 (its cost with respect tōC). If this

is successful, we assign top the found path. Otherwise, line 10 selects randomly (and uniformly) a path

p from Lp which is added toGsol in the same line. Line 11 checks if for the pairi, j there is no computed

path among them. In such a case, we assign toPij the pathp computed in lines 9-10. In this way, the next

computed path for the pairi, j will be node-disjoint to the pathPij. Line 13 calls the auxiliary procedure

Update Matrix to update the matrixP andM . The description of this procedure explains in detail the

introduced updates.

Once the loop 2-15 finalized the built feasible solutionGsol is returned in line 16. Figure 5.11 shows an

example of a new node-disjoint path being added between two fixed switch sites.

i

j

i j
ppath

p
Gsol

G
B

the new
node-disjoint path

i

j

p

two node-disjoints

paths

Figure 5.11: Computation of a new node-disjoint path between the fixed sitesi andj.

Update Matrix description

The algorithm (shown in Figure 5.12) receives as inputs the current solution in constructionGsol, the matrix

P of computed paths between fixed sites, the matrixM indicating the requirements not yet satisfied between

fixed sites, two fixed sitesi andj, and the pathp computed among them. The loop 1-18 analyzes each fixed
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site belonging to the pathp in order to update certain connection requirements with other fixed sites.

Each iteration woks of the following way. Lett ∈ p, t 6= i, j be a fixed site. In line 2, we check if

mtj = 2. If this is the case, since the algorithmConstPhase preserves the condition:Puv = ∅ iff muv = 2,

∀u, v ∈ S(I)

D , we have thenPtj = ∅. Line 3 assigns toPtj the sub-pathp(t,j) connectingt with j in p. The

update ofmtj depends on the number of paths already computed between the sitesi andj. If mij = 1 then

mtj is decremented by one (line 4). Otherwise, ifmij = 2 this implies the existence of a cycle included

in Gsol containingt andj, i.e. there exist two node-disjoint paths fromt to j in Gsol, and thereforemtj is

decremented by two (line 5). Similarly, we updatemit in lines 7-11. The internal loop 12-17 analyzes each

fixed sitet̄ ∈ S(I)

D , t̄ 6∈ p such thatmt̄t = 2. Line 13 checks if a path fromi or j to t̄ has been computed in

a previous iteration. If this is the case, there exists a path fromt̄ to t in Gsol and thenmt̄t is decremented by

one in line 14. In addition to satisfy the condition exposed above, as nowmt̄t = 1, in line 15 we assign to

Pt̄t the shortest path from̄t to t onGsol.

Once finalized the loop 1-18 the matrixP andM are returned in line 19.

Procedure Update Matrix( Gsol,P,M ,p,i,j);

1 for each t ∈ p/t ∈ S
(I)
D do

2 if t 6= i, j and mtj = 2 then

3 Ptj ← p(t,j);

4 if mij = 1 then mtj ← mtj − 1;

5 else mtj ← mtj − 2;

6 end if;

7 if t 6= i, j and mit = 2 then

8 Pit ← p(i,t);

9 if mij = 1 then mit ← mit − 1;

10 else mit ← mit − 2;

11 end if;

12 for each t̄ ∈ S
(I)
D /t̄ /∈ p, t̄ 6= i, j such that mtt̄ = 2 do

13 if mit̄ < 2 or mjt̄ < 2 then

14 mtt̄ ← mtt̄ − 1;

15 Ptt̄ ← shortest path from t to t̄ on Gsol;

16 end if;

17 end for each;

18 end for each;

19 return P,M ;

end Update Matrix;

Figure 5.12: UpdateMatrix pseudo-code.

The updates onM andP must preserve the data coherence with respect to the solution in construction

Gsol and furthermore to guarantee that this one will be feasible once finalizedConstPhase2 2NS. For

example, themij value must be decremented by one only if we found a new node-disjoint path between
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the fixed sitesi andj, and moreoverPij 6= 0 only if it is a path connectingi andj in the current solution

Gsol. Thus, we designedUpdate Matrix so that it satisfies certain properties which guarantee in each

ConstPhase2 2NS iteration, the data consistency inherent to the current networkGsol, the matrix of paths

P and the matrixM . We introduce these properties in the following proposition.

Proposition 5.3.6 Once the algorithmUpdate Matrix finalizes the following points are satisfied∀i, j ∈
S(I)

D :

i) Pij = ∅ iff mij = 2.

ii) If mij = 0 then there exist two node-disjoint paths fromi to j in Gsol.

iii) If mij = 1 then there exists a path fromi to j in Gsol.

Proof. Firstly, let us assume that whenUpdate Matrix is called in line 11 ofConstPhase2 2NS, P andM

satisfy these conditions.

Let i, j ∈ S(I)

D be the input fixed switch sites andp the path connectingi with j computed byConstPhase2 2NS.

Loop 1-18 analyze∀t ∈ S(I)

D , t ∈ p, t 6= i, j the following cases.

Case 1: Lines 2-6.If mtj = 2 then we know thatPtj = ∅, therefore we assign toPtj the sub-pathp(t,j) ⊂ p

connectingt with j in p (line 4). If mij = 1, we decrement by one tomtj (line 4), but ifmij = 2 then there

exists a cycle inGsol containingt and therefore we can decrementmtj by two. Clearly, once finalized lines

2-6mtj satisfies pointsi− iii.

Case 2: Lines 7-11.It is similar to the previous case but for the sitej.

Case 3: Lines 12-17.For all t̄ ∈ S(I)

D , t̄ 6∈, t̄ 6= i, j, such thatmtt̄ = 2 we check ifmit̄ < 2 or mjt̄ < 2

in order to know if there already exists a path communicatingi or j with t̄ in Gsol. If this condition is true,

mtt̄ is decremented by one since there exists a path connectingt with t̄ in Gsol. In addition,Ptt̄ is setting

with the shortest path connecting them inGsol, guaranteeing therefore the fulfillment of conditionsi− iii

for these pairs of fixed switch sites.

QED

Based on the previous proposition, the following proposition demonstrates the constructive correctness

of the algorithmConstPhase2 2NS.

Proposition 5.3.7 If Aij < MAX ATTEMPT, ∀i, j ∈ S(I)

D then the graph returned byConstPhase2 2NS

is a 2-node-survivable feasible solution for the BNDP2NS.

Proof. In line 1 the algorithm initializes:
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• Gsol with the set of fixed switch sitesS(I)

D without edges among them,

• the auxiliary matrixM (indicating connections that we know satisfies networkGsol) with mij = 2,

∀i, j ∈ S(I)

D ,

• the matrixP (which will store a path fromi to j onGsol, ∀i, j ∈ S(I)

D ) with empty sets,

• the auxiliary matrixA (indicating the unsuccessful attempts to find a new path between two nodes

from S(I)

D ) with Aij = 0, ∀i, j ∈ S(I)

D .

Suppose that for a certain iteration the condition in line2 is TRUE. In line 3 we choose randomly a pair

i, j ∈ S(I)

D of fixed switch sites such thatmij > 0. Line 4 computes the network̄G = (GB \Pij). Depending

on Update Matrix, assuming that it preserves the condition:Pij = ∅ iff mij = 2, we have the following

possible cases:

A) There does not exist a path fromi to j in Ḡ sincePij contains a separating set betweeni andj onGB.

B) There exists a path fromi to j in Ḡ. In this case, we have the following possibilities:

i) mij = 2 and there exist already two node-disjoint paths fromi to j in Gsol,

ii) mij = 2, there exists a path fromi to j in Gsol but there do not exist two node-disjoint paths

from i to j in Gsol,

iii) mij = 2 and there does not exist a path fromi to j in Gsol,

iv) mij = 1 and there exists a path fromi to j in (Gsol \ Pij),

v) mij = 1 and there does not exist a path fromi to j in (Gsol \ Pij).

Let us analyze each case.

Case A.In this case, line 7 re-initializesPij andmij, and the construction is resumed from line 2. This line

is executed at the mostMAX ATTEMPT times for any pair of fixed switch site, after which the search is

finalized.

Case B.i.In this casePij = ∅ and by definition ofC̄, after line 6 is computed, in line 7 we found a path

p̂ ∈ Lp such thatCOST(p̂) = 0. Line 9 addŝp toPij andmij is decremented in line 10.

Case B.ii.Similar to casei.

Case B.iii. We havePij = ∅ and by definition ofC̄, after line 6 is computed, in line 8 we found a path

p ∈ Lp such thatCOST(p) > 0. Sincep contains some edges that are not inGsol, the current solution is

updated in the same line. Line 9 addsp toPij andmij is decremented in line 10.

Case B.iv.In this casePij 6= ∅ and by definition ofC̄, after line 6 is computed, in line 7 we found a path

p̂ ∈ Lp such thatCOST(p̂) = 0. Line 10 decrementsmij.



5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 133

Case B.v.We havePij 6= ∅ and by definition ofC̄, after line 6 is computed, in line 8 we find a pathp ∈ Lp

such thatCOST(p) > 0. Sincep contains some edges that are not inGsol, Gsol is updated in the same line.

Line 10 decrementsmij.

Notice that:

• new edges are added only when inGsol there are not two node-disjoint paths betweeni andj,

• if mij = 1 thenPij ∩ p = {i, j}.

Line 11 callsUpdate Matrix in order to updateM . As loop2− 12 is repeated untilmij = 0,∀i, j ∈ S(I)

D ,

by construction, the networkGsol returned in line 13 is 2-node-survivable.

QED

5.3.3 Algorithm ConstPhase32NS

Next, we introduce a third algorithm to build feasible solutions for a BNDP2NS instance. We can see it

as a variant of the algorithm exposed previously but with the difference that this one satisfies the 2-node-

survivability requirement for a different pair of fixed switch sites at each iteration.

Given a BNDP2NS instance, iteratively the algorithm selects a pair of fixed switch sites not yet analyzed

and builds two node-disjoint paths connecting them, i.e. a cycle. In addition, when adding these paths to

the current partial solution, the algorithm updates the 2-node-survivability requirements between the fixed

switch sites belonging to the built cycle. Once all the pairs of fixed switch sites are analyzed, the resulting

network is 2-node-survivable finalizing thus the algorithm.

In more detail, the algorithm (shown in Figure 5.13) takes as inputs the graphGB of feasible connections

on the backbone network, the matrix of connections costC, and the GRASP parameterk. In line 1 we

initialize:

• the current solutionGsol with the sites ofS(I)

D without connections among them,

• the matrixM = {mij}i,j∈S
(I)
D

(indicating the node-survivability requirements not yet satisfied be-

tween fixed sites) withmij = FALSE, ∀i, j ∈ S(I)

D .

Loop 2-16 is repeated until all the fixed sites have satisfied their connection requirements (i.e. the

resulting network is 2-node-survivable).

Each iteration works in the following way. Line 3 selects randomly (and uniformly) a pairi, j ∈ S(I)

D

such thatmij = FALSE (i.e. a pair not yet analyzed). Line 4 computes an auxiliary matrixC̄ of connections

cost such that every connection(u, v) ∈ Gsol has cost zero. This will allow the algorithm to reuse already

existing edges inGsol (without considering their costs), when computing two node-disjoint paths connecting
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Procedure ConstPhase3 2NS(GB ,C,k);

1 Gsol ← (S
(I)
D , ∅); mij ← FALSE ∀i, j ∈ S

(I)
D ;

2 while ∃i, j ∈ S
(I)
D such that mij = FALSE do

3 Let i, j ∈ S
(I)
D be a randomly chosen pair of fixed switch sites such that mij = FALSE;

4 Let C̄ be the matrix given by: c̄uv ←
(

0 if (u, v) ∈ Gsol,

cuv if (u, v) ∈ (GB \ Gsol).
;

5 L1
p ← the k shortest paths from i to j on GB , considering the matrix C̄;

6 if ∃p̂ ∈ L1
p such that COST|C̄(p̂) = 0 then p1 ← p̂;

7 else p1 ← Select Random(L1
p); Gsol ← Gsol ∪ {p1};

8 Ḡ ← (GB \ p1);

9 Let C̄2 be the matrix given by: c̄uv ←
(

0 if (u, v) ∈ Gsol,

cuv if (u, v) ∈ (Ḡ \ Gsol).
;

10 L2
p ← the k shortest paths from i to j on Ḡ, considering the matrix C̄2;

11 if ∃p̂ ∈ L2
p such that COST|C̄2

(p̂) = 0 then p2 ← p̂;

12 else p2 ← Select Random(L2
p); Gsol ← Gsol ∪ {p2};

13 mij ← TRUE;

14 M ← Update Matrix 2(Gsol, M, p1, p2);

15 Gsol ← Remove Internal KeyPaths(p1, p2,Gsol);

16 end while;

17 return Gsol;

end ConstPhase3 2NS;

Figure 5.13: ConstPhase32NS pseudo-code.

i andj. Line 5 computes thek shortest paths fromi to j onGB using the matrixC̄. These paths are stored

in the restricted candidate listL1
p. In line 6 we search a patĥp ∈ L1

p such thatCOST|C̄(p̂) = 0 (its cost with

respect toC̄). If this is successful, we assign top1 the found path. Notice that, in this case, the cost of the

current partial solution is not increased. Otherwise, line 7 selects randomly (and uniformly) a pathp1 from

L1
p and it is added toGsol in the same line. Line 8 computes the auxiliary networkḠ = (GB \ p1). Let us

note that any path connectingi with j in Ḡ will be node-disjoint with respect top1. In line 9, we compute

another auxiliary matrix̄C2 so that every connection(u, v) ∈ Gsol has cost zero. Thus, when computing a

new path fromi to j on Ḡ, we can reuse the connections already present inGsol without considering their

costs. Line 10 computes thek shortest paths fromi to j on Ḡ using the matrixC̄2. The computed paths

are stored in the restricted candidate listL2
p. Line 11 searches for a patĥp ∈ L2

p such thatCOST|C̄2
(p̂) = 0

(its cost with respect tōC2). If such paths exist, line 11 selects one of them. Otherwise, line 12 selects

randomly (and uniformly) a pathp2 fromL2
p which is added toGsol in the same line. Since now inGsol there

exist two node-disjoint paths communicatingi with j, the indicatormij is set toTRUE in line 13. Line 14

calls the auxiliary procedureUpdate Matrix 2 to update the matrixM . The description of this procedure

explains in detail the introduced updates. In line 15, we remove fromGsol every key-pathpk ⊂ Gsol whose

endpoints are inp1 ∪ p2 and moreover:

EDGES(pk) ∩ EDGES(p1 ∪ p2) = ∅.
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In this way, when deleting these key-paths, the local 2-node-survivability with respect to the pairs of fixed

switch sites already added is preserved. Below, we will prove it formally.

Once the loop 2-16 is finalized the built feasible solutionGsol is returned in line 17. Figure 5.14 shows

when the algorithm computes two node-disjoint paths connecting two fixed switch sites not yet analyzed.

fixed switch site i

fixed switch site j

G sol
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fixed switch site j
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1
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2
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internal
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Figure 5.14: A typical ConstPhase32NS iteration.

We remark that in lines 6 and 10, we check ifL1
p orL2

p are empty, in which case the algorithm finalizes

since we will not be able to construct a feasible solution.

The procedureUpdate Matrix 2 updates the matrixM by setting toTRUE the 2-node-survivability

requirements between the fixed switch sites belonging to the connected component that contains the cycle

computed byConstPhase3 2NS in each iteration.

Given a cycleH ⊆ Gsol conformed by two node-disjoint paths with the same endpoints, the auxil-
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Procedure Update Matrix 2(Gsol,M ,p1,p2);

1 Let Ĝ ⊆ Gsol be the connected component such that (p1 ∪ p2) ⊆ Ĝ;

2 for each u, v ∈ S
(I)
D such that u, v ∈ Ĝ do

3 muv ← TRUE;

4 end for each;

5 return M ;

end Update Matrix 2;

Figure 5.15: UpdateMatrix 2 pseudo-code.

Procedure Remove Internal KeyPaths( p1,p2,Gsol);

1 H ← p1 ∪ p2;

2 while ∃ Internal KeyPaths(H,Gsol) do

3 p ← a key-path not included in H, with endpoints in H;

4 Gsol ← Gsol \ p;

5 end while;

6 return M ;

end Remove Internal KeyPaths;

Figure 5.16: RemoveInternalKeyPaths pseudo-code.

iary procedureRemove Internal KeyPaths deletes fromGsol all the key-paths not included inH whose

endpoints belong toH (denominated internal key-paths); since they are redundant in the current partial

solution.

The following proposition demonstrates the constructive correctness of the algorithmConstPhase3 2NS.

Proposition 5.3.8 If the algorithmConstPhase3 2NS returns a graph this will be a 2-node-survivable

solution for the BNDP2NS.

Proof. By induction on the number of iterations already computed, we will prove that the connected com-

ponents that integrate the current partial solutionGsol preserve the 2-connectedness.

In line 1 the algorithm initializes:

• Gsol with the set of fixed switch sitesS(I)

D without edges among them,

• the auxiliary matrixM (indicating the pairs of fixed switch sites already analyzed, i.e. for which we

known that the local 2-node-survivability is satisfied) withmij = FALSE, ∀i, j ∈ S(I)

D .

Let us suppose that for certain iteration the condition in line 2 isTRUE. In line 3 we choose randomly a

pair i, j ∈ S(I)

D of fixed switch sites such thatmij = FALSE. By construction, we have that:
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i) lines 4-7 compute thek shortest paths fromi to j onGB so that the costs of the edges belonging to the

partial solutionGsol are not considered, and one of them is chosen randomly. Letp1 be the selected

path,Gsol is updated by addingp1 to it.

ii) lines 8-12 compute thek shortest paths fromi to j onGB \ p1 so that the costs of the edges belonging

to the partial solutionGsol are not considered, and one of them is chosen randomly. Letp2 be the

selected path,Gsol is updated by addingp2 to it.

Line 13 setsmij to TRUE, sincei andj are locally 2-node-connected. It is easy to see that the computed

pathsp1 andp2 are node-disjoint. Let us denote byH to the cycle conformed byp1∪p2. Let Ĝ ⊆ Gsol be the

connected component containingH. By inductive hypothesis,̂G is 2-node-connected. ConsiderĤ ⊆ Ĝ the

subgraph conformed byH union all the key-paths whose endpoints belong toH. By Lema 5.3.2 (modelling

these key-paths as simple edges), the network(Ĝ \ Ĥ) ∪ H is 2-node-connected. Thus, when removing

from Gsol the internal key-paths ofH (line 12), in the resulting network all the connected component will

preserve the 2-connectedness. In addition, in line 11, we update the indicator matrixM by using the

procedureUpdate Matrix 2.

Inductively, the algorithm finalizes once there are no pairi, j ∈ S(I)

D /mij = FALSE, i.e. the built network

Gsol is 2-node-survivable, as required and completing the proof.

QED

5.4 BNDP2NS Local Search Phase Algorithms

As mentioned in Chapter 2, since the solution produced by the construction phase is not necessarily a local

optimum, local search can be applied to improve it. In this section we propose two local search strategies

for the BNDP2NS, one based in key-path replacements and the other in key-tree replacements which can

work in complementary form by running in combined way.

The first step towards the implementation of a local search algorithm consists in identifying an appropri-

ate neighborhood definition. In this way, before describing each local search algorithm, we will introduce

the neighborhood structure on which the algorithm is based. Next, we present the local search based on

key-path replacements.

5.4.1 Algorithm LocalSearch12NS

Definition 5.4.1 (key-path based Neighborhood Structure)Let Gsol be a 2-node-survivable feasible so-

lution. Given a key-pathp ⊂ Gsol, we define a neighbor solution ofGsol as: Ĝsol = (Gsol \ p) ∪ p̂, wherep̂ is

another key-path connecting the endpoints ofp and maintaining the feasibility in the new networkĜsol.
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The Key-Path Neighborhood ofGsol is composed of the neighbor solutions obtained by applying the

previous operation to each of the different key-paths inK(Gsol) = (p1, . . . , ph).

Notice that it is structurally equal to the key-path Neighborhood Structure defined in Chapter 4, but here

it is defined on the BNDP2NS.

We propose a local search algorithm for the BNDP2NS which is based on the key-path Neighborhood

Structure. We called itLocalSearch1 2NS. Next, we introduce a detailed description ofLocalSearch1 2NS

and some topological properties satisfied by the constructed neighbor solutions.

The algorithm builds iteratively neighbor solutions by replacing each key-path from the current solution

by another key-path which preserves the feasibility and has smaller cost.

Procedure LocalSearch1 2NS(GB ,C,Gsol);

1 K(Gsol) ← the decomposition in key-paths of Gsol;

2 Hsol ← Gsol;

3 for each key-path p ∈ K(Gsol) with ends u, v do

4 Ĥ ← the subgraph induced by NODES(p) ∪ (SD \ NODES(Hsol));

5 p̂ the shortest path from u to v on Ĥ;

6 Hsol ← (Hsol \ p) ∪ p̂;

7 end for each;

8 return Hsol;

end LocalSearch1 2NS;

Figure 5.17: LocalSearch12NS pseudo-code.

In more detail, the algorithm (shown in Figure 5.17) takes as inputs the graphGB of feasible connec-

tions on the backbone network, the matrix of connections costC, and the current feasible solutionGsol. In

line 1 we compute the decomposition in key-paths ofGsol, denoted byK(Gsol). Line 2 initialize the network

Hsol with the current solution. Loop 3-7 is repeated exactly|K(Gsol)| times. In each iteration a key-path

p ∈ K(Gsol) not yet analyzed is selected randomly. Letu, v be the ends of the current key-pathp. In line 4

we compute the subgrapĥH induced byNODES(p) ∪ (SD \ NODES(Hsol)). Clearly, any path connectingu

with v in Ĥ can replacep in Hsol and to preserve the feasibility. Accordingly, in line 5 we compute the

shortest path fromu to v on Ĥ, which is denoted bŷp. Line 6 updatesHsol by replacingp by p̂. Once all

the key-paths fromK(Gsol) have been analyzed the feasible solutionHsol is returned in line 8.

We illustrate in Figure 5.18 the replacement of a key-path on the current neighbor solutionHsol.

• The first graph showsHsol and the subgraph induced by the set of sitesSD \ NODES(Hsol). The

substitute key-patĥp will have nodes ofNODES(p) ∪ (SD \ NODES(Hsol)) preserving thus the 2-node-

survivability, i.e. the feasibility.
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• The second graph shows networkHsol already updated.
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Hsol

p
p^

G (S \Hsol)
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new key-path

p̂
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Figure 5.18: A key-path replacement.

When the construction phase delivers a minimal feasible solution, depending on the neighborhood com-

putation complexity, the preservation of the minimality is a good property for the local search phase since

the search of the global optimum is focused only on a subspace of feasible solutions that contains it. The

following proposition demonstrates the minimality preservation in eachLocalSearch1 2NS iteration.

Proposition 5.4.2 If LocalSearch1 2NS receives as input a minimal feasible solutionGsol, the local search

preserves the minimality at any time.

Proof. By backward induction in the number of key-paths not yet analyzed (denoted bynk), we will demon-

strate that the networkHsol is minimal at any time.

Basic Step:nk = |K(Gsol)|. In line 2 the networkHsol is initialized with the networkGsol which is minimal.
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Inductive Step:nk < |K(Gsol)|. The inductive step is presented as the following way.

As inductive thesis we have that if0 < nk = m ≤ |K(Gsol)| the networkHsol is feasible and minimal. As

inductive thesis the property is fulfilled whennk = m− 1.

Suppose that in certain local search iteration we havenk = m. Let us analyze the following cases.

Case 1. m > 0. By I.H. the networkHsol resulting of the previous iteration is 2-node-survivable and

minimal. Asm > 0 the algorithm will execute loop3 − 7. Let p ∈ K(Gsol) be a key-path not yet an-

alyzed with endsu, v. Line 5 computes a patĥp which is the shortest path fromu to v on the network

Ĥ = GB(NODES(p) ∪ (SD \ NODES(Hsol)). This path satisfies:

i) p̂ ∩ (Hsol \ I) = {u, v}, with I the internal nodes ofp,

ii) COST(p̂) ≤ COST(p),

therefore the network̂H = (Hsol \ p) ∪ p̂ is a minimal feasible solution satisfyingCOST(Ĥ) ≤ COST(Hsol).

Line 6 updates the current solutionHsol with Ĥ.

Case 2. m = 0. By I.H. the networkHsol resulting of the previous iteration is 2-node-survivable and

minimal. In the current iteration the loop3 − 6 is not executed since all the key-paths fromK(Gsol) have

already been analyzed, finalizing thus the local search.

QED

5.4.2 Algorithm LocalSearch22NS

Before introducing another local search algorithm for the BNDP2NS, we define a new Neighborhood Struc-

ture based on the substitution of key-trees by other trees (not necessarily key-trees) which preserve the

feasibility.

Definition 5.4.3 (tree based Neighborhood Structure)LetGsol be a 2-node-survivable feasible solution.

Given a key-nodev ∈ Gsol and its associated key-treeTv ⊂ Gsol, we define a neighbor solution ofGsol as:

Ĝsol = (Gsol \ Tv)∪ T , whereT is a tree spanning the endpoints ofTv and maintaining the feasibility in the

new networkĜsol.

The Tree Neighborhood ofGsol is composed of the neighbor solutions obtained by applying iteratively

the previous operation to each of the different key-trees inGsol.

We propose another local search algorithm for the BNDP2NS which is based on the tree Neighborhood

Structure. We called itLocalSearch2 2NS. Next, we introduce a detailed description ofLocalSearch2 2NS

and some topological properties satisfied by the constructed neighbor solutions.
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The algorithm builds iteratively neighbor solutions by replacing key-trees from the current solution by

other trees which are suitably designed so that the 2-node-survivability (i.e. the feasibility) is preserved.

This process is repeated until the key-tree replacements do not induce a better feasible solution.

Procedure LocalSearch2 2NS(GB ,C,Gsol);

1 improve ← TRUE;

2 while improve do

3 improve ← FALSE;

4 Let X be the set of key-nodes in Gsol;

5 S̄ ← SD \ NODES(Gsol);

6 while not(improve) and ∃ key-nodes not yet analyzed do

7 Let v ∈ X be not yet analyzed;

8 [Gsol, improve] ← RecConnect(GB , C,Gsol, v, S̄);

9 end while;

10 end while;

11 return Gsol;

end LocalSearch2 2NS;

Figure 5.19: LocalSearch22NS pseudo-code.

The algorithm (shown in Figure 5.19) takes as inputs the graphGB of feasible connections on the back-

bone network, the matrix of connections costC, and the current feasible solutionGsol. In line 1 we initialize

with FALSE the indicator variableimprove used to indicate improvements obtained by the key-tree re-

placements. Loop 2-10 searches for neighbor solutions analyzing each key-node in the current solutionGsol

and replacing their respective key-trees by trees in order to improve its cost without losing the feasibility.

Each iteration works of the following way. In line 3improve is set toFALSE. Line 4 computes the

setX of key-nodes ofGsol. Line 5 computes the set̄S of non-fixed switch sites non-belonging toGsol. The

internal loop 6-9 analyzes the sites fromX one at a time with the aim of finding a suitable tree of smaller

cost to replace the corresponding key-tree. Line 7 selects a sitev ∈ X randomly (and uniformly). In

line 8 we execute the algorithm calledRecConnect in order to replace the key-tree associated withv for a

substitute tree which has a smaller cost and maintains the 2-node-survivability (we give in 5.4.3 a detailed

description for this algorithm and Proposition 5.10 proves that it preserves the feasibility). If this search is

successful, theRecConnect delivers a better neighbor solution and the current solutionGsol is updated with

it in the same line. In addition,improve is setTRUE, to restart the local search. Otherwise, ifRecConnect

does not find a substitute tree, another key-node not yet analyzed will be considered.

Once there are no more improvements by key-tree replacements the current solutionGsol is returned in

line 11.
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5.4.3 RecConnect description

The algorithmRecConnect is an auxiliary procedure used by the algorithmLocalSearch2 2NS. Given the

current solutionGsol and a key-nodev ∈ Gsol, RecConnect tries to build a treeT spanning the endpoints of

Tv (beingTv the key-tree associated av). To preserve the feasibility, the substitute treeT is built using only

the sites ofTv and the non-fixed switch sites non-belonging toGsol.

Procedure RecConnect( GB ,C,Gsol,v,S̄);

1 Y ← Nodes Key Tree(v,Gsol);

2 Z ← Ends Key Tree(v,Gsol);

3 cost ← Cost Key Tree(v,Gsol);

4 H ← subgraph induced by (Y ∪ S̄) in GB ; H← H \ EDGES(Gsol(Z));

5 T ← Z; value ← 0;

6 mij ← FALSE, ∀i, j ∈ Z;

7 while (∃i, j ∈ Z such that mij = FALSE) and (value < cost) do

8 Let i, j ∈ Z be a randomly chosen pair of nodes such that mij = FALSE;

9 Compute C̄ where c̄uk =

(
0 if (u, k) ∈ T ,

cuk otherwise ,

10 [val, pij ] ← the shortest path from i to j in H using C̄;

11 T ← T ∪ pij ;

12 value ← value + val;

13 Let Ĥ ⊆ T be the connected component containing i;

14 muk ← TRUE, ∀u, k ∈ (Ĥ ∩ Z);

15 end while;

16 if (value < cost) then

17 Gsol ← (Gsol \ (Y \ Z)) ∪ T ;

18 improve ← TRUE;

19 else improve ← FALSE;

20 return Gsol, improve;

end RecConnect;

Figure 5.20: RecConnect pseudo-code.

The algorithm (shown in Figure 5.20) takes as inputs the graphGB of feasible connections on the

backbone network, the matrix of connections costC, the current feasible solutionGsol, the current key-node

v, and the set̄S of non-fixed switch sites non-belonging toGsol. Let us denote byTv the key-tree associated

with v. Line 1 computes the setY of sites belonging toTv. Line 2 computes the setZ of endpoints of

Tv. Line 3 computes the cost ofTv. Line 4 computes the subnetworkH induced by the sitesY ∪ S̄.

Furthermore, in the resulting network the edges belonging toEDGES(Gsol(Z)) are removed. In line 5 we

initialize the substitute treeT with the set of sitesZ and its cost with zero. Line 6 initialize an indicator

matrix M = {mij}i,j∈Z used to indicate the existence of a path fromi to j in T . Loop 7-15 compute

shortest paths between pairs of sites ofZ not yet connected inT , which are successively added toT . The

second condition in line 7 controls that at any moment the cost ofT does not exceed the cost ofTv.
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Each iteration works in the following way. Line 8 selects randomly (and uniformly) a pairi, j ∈ Z such

thatmij = FALSE, i.e. they are not connected inT . Line 9 computes an auxiliary matrix̄C of connections

cost such that all connection(u, k) ∈ T has cost zero. The objective is to reuse (if it is possible) the already

existing connections inT whenever new paths between pairs of sites ofZ are computed. Line 10 computes

the shortest path fromi to j onH using the matrixC̄. Let pij be this path, the line 11 updates the treeT
addingpij to it. The cost ofT is updated in line 12. Sinei andj could have been in different connected

components the matrixM must be updated with respect to the fixed sites of these; therefore in lines 13-14

muk is set toTRUE for all pair of fixed sites belonging to the connected component ofT containingi and

j. The loop 7-15 finalizes once all the nodes ofZ are connected (i.e.T is a tree spanningZ) or when

the cost ofT is greater to the cost ofTv. In lines 16-19 we check whether the treeT improves the cost of

the current key-pathTv. If this is the case, the current solutionGsol is updated replacingTv by T and the

indicatorimprove is set toTRUE in line 18. Both are returned in line 20. If no improving tree is found the

indicatorimprove is set toFALSE in line 19 and returned in line 20.

In order to clarify howRecConnect works, we exemplify in Figure 5.21 the replacement of a key-tree

on the current neighbor solutionGsol.

• In the first graph, we can see a key-nodev ∈ Gsol and its corresponding key-treeTv.

• The second graph shows one of the possible substitute trees for the key-treeTv. Observe that in this

case a new key-node has been introduced to the solution and furthermore the number of endpoints for

the corresponding key-tree is smaller (eventually,v is again a key-node).

• The third graph shows another substitute tree. In this case the substitute tree does not have a key-node.

In additionGsol has a key-node (and a key-tree) less than before.

• The fourth graph is a substitute tree with a simple path topology connecting the endpoints ofTv. As

above,Gsol has a key-node (and a key-tree) less than before.

In all cases, the solution obtained after the key-tree replacement preserves the 2-node-survivability.

Next, we present two auxiliary propositions relative to some topological properties satisfied by a key-

tree belonging to certain feasible solution.

Proposition 5.4.4 Given a minimal 2-node-survivable networkGsol, let s ∈ Gsol be a key-node andTs the

key-tree associated withs with set of endpointsZ. Then, no pair of nodes of Z are adjacent inGsol.

Proof. Let us suppose that∃u, v ∈ Z such that(u, v) ∈ Gsol. Let k ∈ Z, k 6= u, v be another endpoint and

pu, pv, pk ⊆ Ts the key-paths connectings with u, v, andk respectively. AsGsol is 2-node-survivable, there
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Figure 5.21: A key-tree replacement.

exists a path̄p from k to v (or u) and not containings. Without loss of generality, we assume thatu /∈ p̄ (if

u ∈ p̄, consider the sub-path̄p(k,u) ⊂ p̄). Let us define the sub-networkH = pu ∪ pv ∪ pk ∪ p̄ ∪ {(u, v)}.
Notice that this network is 2-node-connected but non-minimal. LetI be the nodes frompv with degree 2.

Consider the network̄H = H \ I, this is 2-node-connected and minimal. (Ifpv is a simple edge, consider

H̄ = H \ pv). Moreover, if we see the key-pathspu, pv, andpk as “super” edges, applying Lema 5.3.2, we

have that:Ḡsol = (Gsol \ EDGES(H)) ∪ EDGES(H̄) is 2-node-connected (i.e. 2-node-survivable); Figure 5.22

illustrates this situation. This contradicts the minimality ofGsol. Hence,6 ∃u, v ∈ Z such that(u, v) ∈ Gsol.

QED

Proposition 5.4.5 Given a minimal 2-node-survivable networkGsol, let s ∈ Gsol be a key-node,Ts the

key-tree associated withs with set of endpointsZ, andI the set of internal nodes ofTs. Then, by replacing

in Gsol the key-treeTs by a treeT verifying:

i) Z ⊂ T and the endpoints ofT are a subset of nodesX ⊆ Z,

ii) NODES(T ) ∩ NODES(Gsol) = Z ∪ J , with J ⊆ I (eventuallyJ = ∅),
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Figure 5.22: Example associated with Proposition 5.4.4.

we obtain a network̄Gsol which is 2-node-survivable.

Proof. Let Ḡsol be the network obtained by replacing inGsol the key-treeTs byT . By the 2-node-survivability

properties, it is easy to see that∀u, v ∈ Z there exists a pathp from u to v such thatp ⊂ (Gsol\I). In

addition, pointsi− ii guarantee the 2-node-survivability of networkḠsol since the lost node-connectivity

requirements in(Gsol \ Ts) will be satisfied again when addingT .

QED

This last proposition in not true when the solutionGsol is non-minimal. Thus, ifGsol is not minimal, the

following Proposition introduces an additional restriction to preserve the 2-node-survivability.

Proposition 5.4.6 Given a 2-node-survivable networkGsol fulfilling pointsi− ii of Proposition 5.4.5 and

moreover:

EDGES(Gsol) ∩ EDGES(T ) = ∅,

then, when replacing the key-treeTs by the treeT we obtain a 2-node-survivable network̄Gsol.

Proof. If Gsol is minimal, by Proposition 5.4.5 the resulting network is minimal.

If Gsol is not minimal, since the substitute treeT does not have any edge belonging toGsol, when removing

from Ḡsol the internal nodes ofTs the lost node-connectivity levels are reestablished by addingT .

QED
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Based on the previous proposition, the following proposition demonstrates the constructive correctness

of the algorithmRecConnect.

Proposition 5.4.7 Given a 2-node-survivable networkGsol, the setS̄ of non-fixed switch sites not included

in Gsol, and a key-nodev ∈ Gsol, the algorithmRecConnect builds a better neighbor solution by replacing

the key-tree associated withv by another tree which preserves the feasibility.

Proof. Let Tv be the key-tree associated withv. Lines 1-6 computes: the setY of nodes inTv, the set

Z ⊂ Tv of endpoints, and the subgraphH = GB(Y ∪ S̄). Line 5 initializesT with the nodes ofZ without

edges among them. Line 6 initializes an auxiliary matrix which indicates at any time the pairs of nodes of

Z not yet connected inT . It is easy to see that, by construction, once finalized loop7 − 15 and supposing

that at any timeCOST(T ) < COST(Tv), the networkT has tree topology and furthermore:

• Z ⊂ T ,

• the endpoints ofT are a subsetX ⊆ Z,

• NODES(T ) ∩ NODES(Gsol) = Z ∪ J , with J ⊆ (Y \ Z) (eventuallyJ = ∅),

• EDGES(Gsol) ∩ EDGES(T ) = ∅.

By Proposition 5.4.6, the resulting network is 2-node-survivable. The networkGsol is updated in line 17 and

returned in line 20. Since this is a better solution, the indicator variableimprove is set toTRUE in line 18

and also returned in line 20.

Notice that if in a given iterationCOST(T ) > COST(Tv), then the loop finalizes,improve is set toFALSE in

line 19 and it is returned in line 20.

QED

Now, we introduce a small example which shows the application ofRecConnect when replacing a

key-tree by a suitable tree to obtain a neighbor feasible solution. Figure 5.23 includes the following graphs.

• The first graph corresponds to the graph of feasible connections on the backbone networkGB. The

black nodes represent the fixed switch sites whereas the white nodes represent the non-fixed switch

sites.

• The second graph corresponds to a minimal 2-node-survivable topology spanning the fixed sites. This

feasible solution has two key-nodes, one of them labeled withv. The associated key-treeTv has three

endpoints: one non-fixed site and two fixed sites.
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• The other three graphs are all the possible neighbor feasible solutions that we can obtain by replacing

the key-treeTv by another tree spanning their endpoints. In each case, the broken lines represent the

edges of the substitute tree. Depending on the connection costs, any of them can be computed by the

algorithmRecConnect. Notice that two of them maintainv as a key-node whereas the other consists

of a simple path connecting the endpoints ofTv. In addition the three topologies are minimal (when

removing an edge the feasibility is lost).

v
v

key-tree associated to v

Tv

key-nodes

key-node key-node

key-node

Figure 5.23: A feasible solution and its neighbor solutions built by replacingTv.

In this example all possible neighbor solutions obtained by applyingRecConnect are minimal, but it

could happen that the network resulting after the key-tree replacement loses the minimality. In addition, as

in the fifth graph, a new neighbor solution can have a key-node less than before. We introduce the following

proposition to prove formally these properties.
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Proposition 5.4.8 A neighbor feasible solution constructed byRecConnect can be non-minimal and more-

over it can have a key-node less than the original solution.

Proof. Let us consider the networks shown in Figure 5.24. The black nodes model fixed switch sites and
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Figure 5.24: Networks:GB, Gsol andĜsol respectively.

the white nodes model non-fixed switch sites. The graphs from left to right are: the graphGB of feasible

connections on the backbone network, the current solutionGsol, and the grapĥGsol delivered byRecConnect

when running with these inputs. Network̂Gsol was built of the following way. Firstly, according to the

RecConnect pseudo-code, it easy to see thatZ = {s1, s2, s3}. When executing lines 7-15, the pairs(s1, s2)

and(s2, s3) were selected (in that order), obtaining as result the feasible solutionĜsol. Clearly,Ĝsol is non-

minimal since by deleting the edge(s2, s4) ∈ Ĝsol the resulting graph is 2-node-survivable. In addition, in

Ĝsol there are no key-nodes, completing thus the proof.

QED

In the example introduced in the previous proposition a redundant edge appears when adding connec-

tions between the endpoints ofTv. The sitess2 ands4 are adjacent having degree three in the new solution.

As we saw above, by deleting the connection between both sites the 2-node-survivability is preserved. For

other BNDP2NS instances this action could induce the loss of the feasibility depending on the solution

topology. To prove it, we introduce the following proposition.

Proposition 5.4.9 LetG be a 2-node-connected network such that there exist two adjacent nodesu, v ∈ G
with degree(u) ≥ 3 anddegree(v) ≥ 3, and moreover when removing the edge(u, v) fromG at most one

articulation node is introduced. Then, the networkḠ = G\{(u, v)} is 2-edge-connected but not necessarily

2-node-connected.

Proof. In order to demonstrate that̄G = G \ {(u, v)} could be non 2-node-connected, we introduce in

Figure 5.25 a 2-node-connected network so that by removing an edge between nodes with degree greater to
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e

Figure 5.25: By deletinge the network loses the 2-node-connectivity.

two the 2-node-connectivity is lost.

Now, we will prove thatḠ is 2-edge-connected. By the 2-node-connectivity, there exists a pathp ⊂ G from

u to v such that the edge(u, v) 6∈ p. Let x1, x2 ∈ p be the adjacent sites tou andv respectively. Since
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Figure 5.26: Cases:p ∩ p̄ = ∅, p ∩ p̄ 6= ∅ and subgraph̄H.

degree(u) ≥ 3 anddegree(v) ≥ 3 there exist two sitesy1, y2 ∈ G, y1 6= x1, x2, y2 6= x1, x2 adjacent tou

andv respectively. Again, by the 2-node-connectivity there exists a pathp̄ ⊂ G connectingy1 andy2 such

that(u, v) 6∈ p̄. We have the following cases:p∩ p̄ = ∅ or p∩ p̄ 6= ∅, Figure 5.26 illustrates these situations.

Let us define the subgraphs̄H = p ∪ p̄ ∪ {(u, y1), (v, y2)} andH = H̄ ∪ {(u, v)}. It easy to see that̄H is

2-edge-connected; therefore by replacingH by H̄ in G and applying Lemma 5.3.2, we have thatḠ is also

2-edge-connected.

QED

Proposition 5.4.9 is also valid whenG is 2-node-connected,u andv have degree greater than three and in

addition they are connected by means of a key-path. In both cases, these results are very useful to eliminate

redundant edges and key-paths from a solution, as long as the feasibility is preserved. In particular, given

a 2-node-survivable feasible solution we can remove key-paths and edges whose endpoints have degree

greater to three and to apply suitably the well-known DFS algorithm (Depth First Search) to determine

the presence of articulation nodes [73]. That is, under these hypothesis, we can iteratively eliminate edges
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and key-paths and simultaneously control the feasibility of the resulting solution, obtaining thus a feasible

solution with smaller cost.

The following proposition demonstrates the feasibility preservation in eachLocalSearch2 2NS itera-

tion.

Proposition 5.4.10 If LocalSearch2 2NS receives as input a 2-node-survivable feasible solutionGsol, the

local search preserves the feasibility at any time.

Proof. By contradiction, for certain iterationGsol is 2-node-survivable with set of key-nodesX and there

existsu ∈ X such thatRecConnect delivers a non-feasible solution. This contradicts Proposition 5.4.7.

Hence, the algorithm preserves the feasibility on each iteration.

QED

5.5 The GRASP algorithms for the BNDP2NS

We now describe the general GRASP algorithm for approximately solving the BNDP2NS. Figure 5.27

shows the corresponding pseudo-code. The algorithmGRASP BNDP2NS has two generic procedures

which can be instanced by different designed algorithms for the construction phase and local search phase.

More precisely, the proceduresConstruction Phase andLocal Search can be instantiated of the following

way:

• Construction Phase: by ConstPhase1 2NS, ConstPhase2 2NS, or ConstPhase3 2NS.

• Local Search: by LocalSearch1 2NS or LocalSearch1 (used byGRASP BNDP).

Let us notice that, given a feasible solutionGsol the algorithmLocalSearch1 2NS replaces each key-path

from Gsol exactly one time, whereas the algorithmLocalSearch1 resumes the key-path replacement process

whenever it finds a better neighbor feasible solution when replacing a certain key-path by other key-path.

Therefore, we can seeLocalSearch1 as a generalization ofLocalSearch1 2NS. Each of these algorithms are

used in combined way with the algorithmLocalSearch2 2NS which works based on key-tree replacement

moves.

The local search phase applies first key-path replacement moves (by runningLocalSearch1 2NS or

LocalSearch1 for key-paths replacements) and the evaluation of key-tree replacement moves is performed

only if there are no improving key-path replacement moves. In this way, we can explore structurally dif-

ferent neighborhoods in combined form and the search is resumed from the beginning whenever we find a
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better neighbor feasible solution. The local search phase finalizes once no better neighbors are found when

exploring the neighborhoods.

In order to present the different versions of the GRASP for solving the BNDP2NS, we will refer-

ence byConstruction Phase indifferently to the algorithmsConstPhase1 2NS, ConstPhase2 2NS and

ConstPhase3 2NS, and similarly byLocal Search to the algorithmsLocalSearch1 2NS andLocalSearch1.

Next, we give a detailed description of the algorithmGRASP BNDP2NS.

Procedure GRASP BNDP2NS;

Input: GB , C, R, k, seed, MaxIter;

1 min cost ←∞;

2 for i = 1, . . . , MaxIter do

3 [Gsol] ← Construction Phase(GB , C, k);

4 cost sol ← COST(Gsol);

5 Gsol ← Local Search(GB , C,Gsol);

6 best ← COST(Gsol);

7 if (best < cost sol) then goto line 4;

8 Gsol ← LocalSearch2 2NS(GB , C,Gsol);

9 best ← COST(Gsol);

10 if (best < cost sol) then goto line 4;

11 if (cost sol < min cost) then

12 G(opt) ← Gsol; min cost ← cost sol;

13 end if;

14 end for;

15 return G(opt);

end GRASP BNDP2NS;

Figure 5.27: General Version of the algorithmGRASP BNDP2NS.

The algorithm takes as inputs the graphGB of feasible connections on the backbone network, the matrix

of connection costsC, the GRASP parametersk (used in the construction phase), a seed for the pseudo

random number generatorseed and the number of iterationsMaxIter to be performed. The cost of the

best found feasible solution is initialized with the value infinity (∞) in line 1. The algorithm is repeated

MaxIter times exploring the space of feasible solutions and searching for the optimal feasible solution for

the BNDP2NS. Each iteration works in the following way.

In line 3, a greedy randomized feasible solutionGsol is built using the algorithmConstruction Phase

(i.e. ConstPhase1 2NS, ConstPhase2 2NS or ConstPhase3 2NS). In line 4 the cost ofGsol is assigned to

variablecost sol. In line 5 we callLocal Search (i.e. LocalSearch1 2NS or LocalSearch1) in order to find

neighbor feasible solutions with smaller cost. In any case the local search algorithm builds better neighbor

feasible solutions by means of key-path replacement moves. Line 6 computes the cost of the neighbor

solutionGsol built in line 5. Line 7 compares the cost of the current solution with the one returned by

Local Search. If a neighbor solution with smaller cost has been computed byLocal Search, then, the local
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search resumes from this new current solution executing from line 4. Otherwise, if no neighbor solution

of better cost is found byLocal Search, then, in line 8 we call the algorithmLocalSearch2 2NS, which

searches for neighbor solutions with smaller cost by applying key-tree replacement moves. As mentioned

previously, theLocalSearch2 2NS computes neighbor solutions by replacing key-trees by other trees which

are not necessarily key-trees. Line 9 computes the cost of the solution delivered in line 8. Again, if a

neighbor feasible solution with smaller cost has been found byLocalSearch2 2NS, then the local search

resumes from this new current solution executing from line 4. Otherwise, if no neighbor solution with better

cost is found byLocalSearch2 2NS, then, if the solution found at the end of the local search phase is better

than the best solution so far (line 11), we update in line 12 the best found feasible solution and the minimum

cost. Let us remark that the local search phase is conformed by the key-path replacement moves as well as

the key-tree replacement moves; this corresponds to lines5 − 10 in the pseudo-code. Once finalized the

loop 2-14, the best found feasible solutionG(opt) is returned in line 15.

5.6 Performance Tests

In this section we introduce the experimental results obtained when applying the different combinations of

algorithms for the construction phase and the local search phase. All the algorithms were implemented in

ANSI C. The experiments were obtained on a Pentium IV with 1.7 GHz, and 1 Gbytes of RAM, running

under Windows XP. In the performance testing phase all instances were solved with the same GRASP para-

meter settings. In a previous tuning phase the candidate list sizek was chosen in the set{5, 10, 15, 20, 30}
and the maximum number of iterationsMaxIter in the set{50, 100, 300, 500}. We tuned the value for the

candidate list size by considering a reduced group of BNDP2NS instances. As result of the tuning phase, we

selectedk = 20 andk = 30 as the values with better results since they obtained at least the same solution

costs that the other parameter combinations, and better ones in many cases. Thus, we fixedk = 20 and

MaxIter = 300 when running all the performance testing problems. Next, we will describe the BNDP2NS

instances used in the testing phase.

5.6.1 BNDP2NS test-set description

As far as we known, there is no benchmark library neither for the STNSNP nor for the STESNP. Usually,

in other works related to the BNDP2NS the authors generate random graphs to perform the computational

testing. For instance in [6], cases from the Travelling Salesman Problem (TSP) extracted from the TSPLIB

library [115] are used (without adding them Steiner nodes) with the aim of studying the efficiency of a

polyhedral algorithm specially designed for the STESNP.

Let us notice that, if we use TSP instances as BNDP2NS instances, the feasible solutions of the TSP
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will also be feasible in the BNDP2NS, but the optimal solutions of the TSP will not necessarily be optimal

for the BNDP2NS. A particularity of these cases is that the optional nodes presence is not considered to

reduce the network designing costs, what considerably restricts the performance analysis of our GRASP

algorithms. In particular, we would not be able to study feasible solutions containing key-trees and key-

nodes as topological components. For these reasons, we focus on the generation of test cases based on TSP

instances, containing besides non-fixed switch sites. In what follows, we will indifferently refer to Steiner

nodes as non-fixed switch sites, owing to the analogy between the BNDP2NS and the STNSNP problem

cited in [6, 102, 126].

We generated a test-set using Traveling Salesman Problem (TSP) instances extracted from the well-

known TSPLIB library [115] and customized (by adding to them certain amount of Steiner nodes) to our

BNDP2NS. The TSPLIB contains many problem classes related to the TSP. In particular, we are interested

only in the Symmetric Traveling Salesman Problems (denoted simply by TSP) since the other classes in-

cluding in the TSPLIB are not applicable or directly customizable to our BNDP2NS. Below, we describe

the transformation process used to customize the TSP instances to our BNDP2NS.

Given a TSP instance from the TSPLIB and a non-negative integerm (the number of Steiner nodes to

be added), we generate a BNDP2NS instance as follows:

i) We will denote byG andĜ the graphs associated with the original TSP instance and its corresponding

BNDP2NS instance (to be constructed) respectively.

ii) All the nodes ofG will be considered fixed switch sites in̂G. In this way, initially we have:̂G = G.

iii) We distinguish the following cases:

a) If G is an implicit Euclidian graph (i.e. in the input TSP file each node has associated a position

with respect to a system of geographic coordinates inR2), then, iteratively we addedm Steiner

nodes (one node at a time) by selecting randomly their positions in the range to which belongs

the nodes ofG. The resulting BNDP2NS instance is modelling by a complete graphĜ having

all the original nodes of the TSP instance and them added Steiner nodes. The connection costs

are given by the Euclidian distances.

b) If G is an explicit Euclidian graph (i.e. the input TSP file provides explicitly the matrix of

geographic distances between the nodes), then, iteratively we added toĜ m Steiner nodes (one

node at a time) so that at each iteration we generate a connection between the new Steiner

node and each node already present inĜ. These connections have associated costs which are

randomly chosen in the interval% · [cmin, cmax], wherecmin and cmax are the minimum and

maximum euclidian distances between two nodes inG, and% ∈ (0, 1) is a prefixed parameter.
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Clearly, the final topology will be a complete graph but their costs not necessarily satisfy the

triangular inequality.

Once finalized this process, the resulting graphĜ models a new BNDP2NS instance.

The TSP instances used to build BNDP2NS instances were: att48, berlin52, brazil58, dantzing42, eil51,

eil76, gr48, gr96, hk48, kroA100, kroB100, kroC100, kroD100, kroE100, pr76, rat99, rd100, st70, and

swiss42. The numbers that appear in their names indicate the number of nodes of the problem. Table 5.1

indicates for each of these TSP instances the main characteristics of the BNDP2NS instances generated by

applying the process exposed above. The first column contains the names of the original TSP instances and

the entries from left to right are:

• the format type of the input TSP file depending on if this one contains or not in explicit form the

matrix of geographic distances between the nodes (EXP or IMP denoting Explicit or Implicit form

respectively),

• the number of Steiner nodes added to the original graph (we used the values:per=25%, 45%, and

65% percent of the number of nodes in the TSP instance),

• the total number of nodes in the resulting BNDP2NS instance (TNODES),

• the type of graph associated with the generated BNDP2NS instances (EUC or G denoting an euclidian

graph or a general graph respectively),

• and the number of generated instances (NI).

Most of the BNDP2NS instances generated by us, satisfy the triangular inequality between its nodes

(45 out of 57 instances). This property is particularly important since, as we will see, we will be able to

compute (by means of the application of theoretical results present in the literature) lower and upper bonds

for the optimal costs of such instances; and in this way bound the relative distance of GRASP solution costs

to the optimal costs. Obviously, low values with respect to the lower bounds will involve good quality sub-

optimal solutions or reaching the optimality. Lower bounds will be useful as long as they be relatively close

to the optimal values (tight lower bounds), otherwise, relatively high gaps could be obtained and, despite

this, being very close to the optimal global cost or achieving the optimality.

On the other hand, based on four explicit format of TSP instances, we generated twelve BNDP2NS in-

stances with Steiner nodes whose connections to other nodes not necessarily satisfy the triangular inequality

among costs. More precisely, for the cases where the input TSP file is given in explicit format, when adding

new connections we choose% = 1/6 with the aim of generating Steiner nodes with connection costs to-

wards its adjacent nodes much lower when comparing them to the connection costs between fixed switch
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TSP problem Input TSP file per TNODES Graphs NI

att48 IMP 25%, 45%, 65% 60, 69, 79 EUC 3

berlin52 IMP 25%, 45%, 65% 65, 75, 85 EUC 3

brazil58 EXP 25%, 45%, 65% 72, 84, 95 G 3

dantzing42 EXP/IMP 25%, 45%, 65% 52, 60, 69 EUC 3

eil51 IMP 25%, 45%, 65% 63, 73, 84 EUC 3

eil76 IMP 25%, 45%, 65% 95, 110, 125 EUC 3

gr48 EXP 25%, 45%, 65% 60, 69, 79 G 3

gr96 IMP 25%, 45%, 65% 120, 139, 158 EUC 3

hk48 EXP 25%, 45%, 65% 60, 69, 79 G 3

kroA100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

kroB100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

kroC100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

kroD100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

kroE100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

pr76 IMP 25%, 45%, 65% 95, 110, 125 EUC 3

rat99 IMP 25%, 45%, 65% 123, 143, 163 EUC 3

rd100 IMP 25%, 45%, 65% 125, 145, 165 EUC 3

st70 IMP 25%, 45%, 65% 87, 101, 115 EUC 3

swiss42 EXP 25%, 45%, 65% 52, 60, 69 G 3

Table 5.1: Test-set for the BNDP2NS.

sites. In this way, when integrating new optional nodes, we will increase the chances of these of being

potential improvers of 2-node-survivable feasible solutions. Intuitively, the lower the value of%, the larger

the probability that the global optimal solutions of a generated BNDP2NS instance has Steiner nodes in its

topologies.

Moreover, if we observe the design of our local search algorithms, we will be able to notice that these

are strongly related to the analysis of feasible solutions which have Steiner nodes as network components

(for example key-nodes, or Steiner nodes belonging to key-paths or to key-trees). As a result of this we are

interested in having test instances available with considerably large amounts of Steiner nodes (more than

29% out of the totality of fixed switch nodes), and therefore in analyzing our algorithms performance and

studying the impact on the optimal cost reduction when we increasingly add more Steiner nodes to the TSP

instance taken as basis.

5.6.2 Auxiliary topological properties

Before introducing the results obtained in the testing phase, we will give two theorems which can be used

in order to compute a lower bound for the optimum cost of an Euclidian BNDP2NS instance. This lower

bound depends on the optimum value of the original TSP instance.

Let us place in the following context. Consider a set of nodesV with a nonnegative, symmetricdistance

function(or metric) d(·) defined onV ×V which satisfies the triangle inequality. Let us calld(u, v) thecost
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or lengthof the edge(u, v). A subset of edgesU ⊆ V × V defines a graphH = (V, U) whose cost is given

by d(U) =
∑

(u,v)∈U d(u, v). Given a subset of special nodesD ⊆ V , we letCopt(D) denote an optimal

cycle spanningD (without using nodes ofV \ D) and TCopt(D) denote an optimal 2-node-connected

solution spanningD (without using nodes ofV \D) of costd(Copt(D)) andd(TCopt(D)) respectively. In

addition, let us denote an optimal Steiner 2-node-connected solution spanningD by STCopt(D, V ) with

costd(STCopt(D, V )) (in this case the nodes ofV \D may be used if they help reduce the overall cost). In

this context, Monma, Munson and Pulleyblank [102] proved that a minimum-cost traveling salesman tour

may be a good approximation to a minimum-cost 2-node-connected graph, more exactly they establish that:

Theorem 5.6.1 (Monma, Munson and Pulleyblank) For any set of nodesV , D ⊆ V and a distance

functiond(·),
3

4
d(Copt(D)) ≤ d(TCopt(D)) ≤ d(Copt(D)).

Furthermore, they provide [102] a relation between an optimal 2-node-connected solution spanningD

and a Steiner 2-node-connected solution spanningD.

Theorem 5.6.2 (Monma, Munson and Pulleyblank) For any set of nodesV , D ⊆ V and a distance

functiond(·),
3

4
d(TCopt(D)) ≤ d(STCopt(D,V )) ≤ d(TCopt(D)).

In this way, by combining both results, we have the relation:
9

16
d(Copt(D)) ≤ d(STCopt(D, V )) ≤ d(Copt(D)),

obtaining thus a lower bound and an upper bound for thed(STCopt(D, V )), which only depend ond(Copt(D)).

Let us note that, since in most cases our BNDP2NS instances are Euclidian graphs, these bounds are useful

in practice to approximate the gap between the solution found by the algorithmGRASP BNDP2NS and

the corresponding optimal solution. In the same context, Monma, Munson and Pulleyblank proved [102]

an important structural theorem related to optimal two-node-connected solutions, whose wording is the

following.

Theorem 5.6.3 (Monma, Munson and Pulleyblank) For any set of nodesV with distance functiond(·)
on V × V , there exists a minimum-weight two-connected networkH = (V, U) satisfying the following

conditions:

a) every node ofH has degree 2 or 3.

b) deleting any edge or pair of edges inH leaves a bridge in one of the resulting connected components

of H.

Later, we will use this theorem to analyze comparatively certain solutions delivered by our GRASP heuris-

tics.
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5.6.3 Numerical Results

Let us turn now to the study of the computational results.

Table 5.2 shows for each original TSP instance:

• the optimum value of the original TSP instance (denoted byCOPT TSP),

• the valueLB1 = 3
4
COPT TSP which is a lower bound for the cost of a feasible solution which does

not have Steiner nodes,

• the valueLB2 = 9
16

COPT TSP which is a lower bound for the optimal BNDP2NS solution. It is easy

to see that if all the optimal solutions of a BNDP2NS instance have Steiner nodes, the valueLB1 can-

not be used as lower bound for the solutions delivered by the algorithmGRASP BNDP2NS. In this

sense the valueLB2 provides us a lower bound when the best solution found byGRASP BNDP2NS

has Steiner nodes.

TSP problem COPT TSP LB1 LB2

att48 10628 7971 5978.25

berlin52 7542 5656.5 4242.4

brazil58 25395 - -

dantzing42 699 524.25 393.18

eil51 426 319.5 239.62

eil76 538 403.5 302.62

gr48 5046 - -

gr96 55209 41406.75 31055.06

hk48 11461 - -

kroA100 21282 15961.5 11971.12

kroB100 22141 16605.75 12454.31

kroC100 20749 15561.75 11696.62

kroD100 21294 15970.5 11671.31

kroE100 22068 16551 12413.25

pr76 108159 81119.25 60839.43

rat99 1211 908.25 681.18

rd100 7910 5932.5 4449.37

st70 675 506.25 379.68

swiss42 1273 - -

Table 5.2: Comparative values for the generated BNDP2NS instances.

Let us notice that even thoughLB2 was deduced by the combination of inequalities derived from the

worst case ratios inherent to structurally different feasible topologies, we cannot a-priori know the approx-

imation degree which provides us such bound with respect to the optimal values of the BNDP2NS. In

relation to this latter, if we analyze the bounding interval present in theorem 5.6.1 and the bounding interval
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resultant of relating theorems 5.6.1 and 5.6.2, we can at once infer that this last one is1.75 times higher

than the first one (that is1.75 = 1−9/16
1−3/4

).

In a first stage, we tested all the combinations of construction phase algorithms with local search search

algorithms. Since in this testing phase the experimental results obtained when using the local search

LocalSearch1 surpassed qualitatively or at least obtained solutions of the same quality than the ones found

when using the local searchLocalSearch1 2NS (probably, this could be explained by the fact that the local

searchLocalSearch1 may be seen as a generalization ofLocalSearch1 2NS owing to the way in which the

key-paths present in the solution to improve are replaced), from here on we will summarize the computa-

tional results obtained by the GRASP algorithms that used toLocalSearch1 in the local search phase. In

order to present the results, we will introduce the following notation.

Heuristic H1: GRASP BNDP2NS instantiated withConstPhase1 2NS, LocalSearch1 andLocalSearch2 2NS,

Heuristic H2: GRASP BNDP2NS instantiated withConstPhase2 2NS, LocalSearch1 andLocalSearch2 2NS,

Heuristic H3: GRASP BNDP2NS instantiated withConstPhase3 2NS, LocalSearch1 andLocalSearch2 2NS,

In Tables 5.3 to 5.5 we show a summary of computational results obtained by applying the algorithm

GRASP BNDP2NS to the test-set presented in Table 5.1. More precisely, they correspond to the perfor-

mance tests of the heuristicsH1,H2 andH3.

In each table, the first column contains the names of the original TSP instances and the entries from left

to right are:

• an indicator if the best solution found by our heuristic has Steiner nodes (SNI),

• an indicator if the best solution found by our heuristic has cycle topology (CTI),

• the cost of the best solution found byGRASP BNDP2NS (denoted byBCF),

• the valueGAP 1, where:GAP 1
def
= 100× (BCF−LB1)

LB1
. This is the gap with respect to the lower bound

provided by theorem 5.6.1 inherent to optimal 2-node-connected solutions (without using Steiner

nodes),

• the valueGAP 2, where:GAP 2
def
= 100× (BCF−LB2)

LB2
. This is the gap with respect to the lower bound

introduced by combining theorems 5.6.1 and 5.6.2, inherent to optimal Steiner 2-node-connected

solutions. Let us notice that ifSNI = FALSE, the valueLB1 is a lower bound for the solution

delivered by the GRASP algorithm.

• the valueUB GAP
def
= 100× |BCF−COPT TSP|

COPT TSP
; this is the gap with respect to the optimum TSP value,
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• the average of the improvement of the results of the local search phase over the construction phase

(LSI),

• the running time per iteration (secs./itr).

For the instances derived from cases brazil58, gr48, hk48 and swiss42, we did not compute the values of

GAP 1 andGAP 2 because their costs could not satisfy the triangular inequality and therefore we cannot

apply the theorems 5.6.1 and 5.6.2. Table 5.6 shows certain topological characteristics of the best solutions

found by the heuristicsH1,H2 andH3; specifically, for each BNDP2NS instance we provide:

• the number of Steiner nodes of the best solution found (denoted byNS),

• the number of edges in the best solution found (Edges).

In addition, in Table 5.7, we introduce only the best cost found for each one of the generated instances as

well as the heuristics that attained these values.

In what follows, we will discuss the computational results obtained by the GRASP heuristics. In Ta-

bles 5.3, 5.4, and 5.5 the costs corresponding to the best feasible solutions found by the heuristicsH1, H2

andH3 are in bold letters. For each instance we indicate which of the three heuristics produced the lowest

cost solution. Let us notice in many cases the same cost was reached by more than one heuristic.

The heuristicH3 was the one which found in a larger number of BNDP2NS instances the best feasible

solutions, followed in order byH2 andH1. Specifically, out of 57 instances, when comparing the costs of

the solutions returned by the three heuristics we have:

• H3 found 50 best solutions, being 41 of them not equalled in cost by the other heuristics and from the

eight remaining, six were also reached byH2 and five byH1.

• H2 found 8 best solutions, being all of them equalled byH1 and/orH3. To be more precisely, four of

them were equalled in cost byH1 and seven of them were equalled in cost byH3.

• H1 found 12 best solutions, 6 of them not equalled by the other heuristics. Of the remaining, four of

them were equalled in quality byH2 and other five byH3.

As can be seen in Tables 5.3, 5.4, and 5.5, in no case the feasible topologies returned by the GRASP

heuristics were cycles. In addition to this, in most cases the best solutions found had at least a Steiner node

as part of its topology, excepting four instances forH1, three instances forH2 and an instance forH3 .We

noticed that interestingly, two of these feasible solutions without Steiner nodes (corresponding to Euclidian

instances), fulfilled points(a) and(b) from theorem 5.6.3. Another important point to emphasize is that the

best GRASP solutions found were minimal (i.e. by removing an edge the feasibility is lost).
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att48
×

X
X

×
×
×

9491,8696,6828
19.07%

,9.10%
,-14.34%

58.76%
,45.46%

,14.21%
10.70%

,18.18%
,35.75%

3.39%
,3.12%

,6.82%
3.95,4.92,6.23

berlin52
X

X
X

×
×
×

6759,6161,4875
19.49%

,8.92%
,-13.82%

59.32%
,45.23%

,14.91%
10.38%

,18.31%
,35.36%

3.12%
,4.04%

,4.36%
4.18,5.05,6.40

brazil58
X

X
X

×
×
×

22360,20660,16065
-

-
11.95%

,18.65%
,36.74%

4.35%
,4.62%

,6.29%
4.55,5.42,6.53

dantzing42
X

X
X

×
×
×

649,586,473
23.80%

,11.78%
,-9.78%

65.06%
,49.04%

,20.30%
7.15%

,16.17%
,32.33%

5.01%
,5.56%

,7.33%
3.73,4.36,5.51

eil51
X

X
X

×
×
×

387,397,357
21.13%

,16.08%
,4.39%

61.50%
,54.78%

,39.18%
9.15%

,12.94%
,21.71%

5.69%
,6.96%

,7.68%
3.97,4.78,5.95

eil76
X

X
X

×
×
×

470,448,382
16.48%

,11.03%
,-5.33%

55.31%
,48.04%

,26.23%
12.64%

,16.73%
,29.0%

7.24%
,7.85%

,9.02%
5.18,6.51,8.17

gr48
×

X
X

×
×
×

4450,4107,3269
-

-
11.81%

,18.61%
,35.2%

6.56%
,8.52%

,7.25%
3.62,4.27,5.11

gr96
X

X
X

×
×
×

48314,44858,34974
16.68%

,8.33%
,-15.54%

55.58%
,44.45%

,12.62%
12.49%

,18.75%
,36.65%

4.12%
,4.56%

,6.12%
6.30,7.53,9.28

hk48
×

X
X

×
×
×

10182,9346,7291
-

-
11.16%

,18.45%
,36.38%

5.22%
,6.83%

,7.96%
3.81,4.89,6.06

kroA
100

X
X

X
×
×
×

18746,17295,13488
17.45%

,8.35%
,-15.50%

56.59%
,44.47%

,12.67%
11.92%

,18.73%
,35.42%

4.52%
,5.13%

,7.23%
6.95,8.33,9.78

kroB
100

X
X

X
×
×
×

19393,18003,14324
16.78%

,8.41%
,-13.74%

55.71%
,44.55%

,15.01%
12.41%

,18.69%
,34.31%

4.23%
,6.93%

,6.01%
7.11,8.18,9.66

kroC
100

X
X

X
×
×
×

18347,16938,12717
17.90%

,8.84%
,-18.28%

57.20%
,45.13%

,8.96%
11.58%

,18.37%
,38.71%

3.97%
,5.02%

,7.85%
6.65,7.80,9.36

kroD
100

X
X

X
×
×
×

20214,17347,15454
26.57%

,8.62%
,-3.23%

68.76%
,44.83%

,29.02%
5.07%

,18.54%
,27.43%

4.10%
,4.07%

,8.23%
7.23,8.88,10.52

kroE
100

X
X

X
×
×
×

19470,17936,17002
17.64%

,8.37%
,2.72%

56.85%
,44.49%

,36.97%
11.77%

,18.72%
,22.96%

4.08%
,5.86%

,9.71%
6.82,8.41,9.94

pr76
X

X
X

×
×
×

97413,94472,68443
20.09%

,16.46%
,-15.63%

60.11%
,55.28%

,12.50%
9.94%

,12.65%
,36.72%

5.63%
,7.23%

,6.94%
5.20,6.14,7.20

rat99
X

X
X

×
×
×

1235,1173,782
35.98%

,29.15%
,-13.90%

81.30%
,72.20%

,14.80%
1.98%

,3.14%
,35.43%

2.92%
,6.14%

,7.50%
6.99,8.08,9.79

rd100
X

X
X

×
×
×

7450,7019,6224
27.10%

,18.31%
,4.91%

69.46%
,57.75%

,39.88%
4.68%

,11.26%
,21.31%

4.07%
,5.96%

,8.01%
7.18,8.58,10.12

st70
X

X
X

×
×
×

663,637,520
30.96%

,25.83%
,2.72%

74.62%
,67.77%

,36.95%
1.78%

,5.63%
,22.96%

2.23%
,4.79%

,7.23%
5.41,6.75,8.21

sw
iss42

X
X

X
×
×
×

1254,1237,864
-

-
1.49%

,2.83%
,32.13%

2.10%
,5.65%

,9.34%
3.93,4.63,5.75

A
verage

21.71%
,13.72%

,-7.80%
62.27%

,51.62%
,22.93%
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×

X
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×
×

9297,8205,6424
16.64%

,2.94%
,-19.41%

55.51%
,37.25%

,7.46%
12.52%

,22.80%
,39.56%

3.29%
,5.28%

,6.17%
4.63,6.08,7.56

berlin52
X

X
X

×
×
×

6087,5863,4523
7.61%

,3.65%
,-20.04%

43.48%
,38.20%

,6.61%
19.29%

,22.26%
,40.03%

4.23%
,5.20%

,6.12%
5.06,6.54,8.02
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X
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×
×
×
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-

-
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,22.85%
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3.62%
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5.54,7.12,8.33
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×
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,41.66%
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,20.31%
,27.47%

4.29%
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4.61,5.57,6.72
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×
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-

-
12.90%

,22.42%
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4.33%
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,7.37%
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,43.16%
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,39.18%

4.37%
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16767,15712,12211
7.74%

,0.97%
,-21.53%

43.66%
,34.62%
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,24.28%
,41.15%

3.86%
,4.69%
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8.24,9.86,11.63
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X
×
×
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19514,15886,15002
22.19%

,-0.53%
,-6.06%

62.92%
,32.63%

,25.25%
8.36%

,25.40%
,29.55%

3.67%
,6.85%

,6.83%
8.42,10.08,11.42

kroE
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X
X

X
×
×
×

19470,17019,14245
17.64%

,2.83%
,-13.93%

56.85%
,37.10%

,14.76%
11.77%

,22.88%
,35.45%

4.43%
,4.77%

,4.95%
8.01,10.28,12.00

pr76
X

X
X

×
×
×

88237,94472,63806
8.77%

,16.46%
,-21.34%

45.03%
,55.28%

,4.88%
18.42%

,12.65%
,41.01%

2.75%
,4.49%

,5.23%
7.00,8.47,9.85

rat99
X

X
X

×
×
×

1071,1173,818
17.92%

,29.15%
,-9.94%

57.23%
,72.20%

,20.08%
11.56%

,3.14%
,32.45%

4.64%
,5.36%

,4.44%
7.80,9.31,11.52

rd100
X

X
X

×
×
×

7472,6448,5806
25.95%

,8.69%
,-2.13%

67.93%
,44.92%

,30.49%
5.54%

,18.48%
,26.60%

3.38%
,6.17%

,5.65%
8.12,10.02,11.87

st70
X

X
X

×
×
×

593,637,542
17.14%

,25.83%
,7.06%

56.18%
,67.77%

,42.75%
12.15%

,5.63%
,19.70%

2.93%
,5.01%

,7.37%
6.52,8.16,9.53

sw
iss42

X
X

X
×
×
×

1116,932,870
-

-
12.33%

,26.79%
,31.66%

4.07%
,5.07%

,7.02%
4.12,5.21,6.65

A
verage

15.96%
,9.43%

,-11.54%
54.61%

,45.91%
,17.94%

13.44%
,19.16%

,34.12%
3.91%

,5.22%
,5.88%

6.56,8.11,9.61
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Solutions of theH1 heuristic Solutions of theH2 heuristic Solutions of theH3 heuristic

TSP problem NS Edges NS Edges NS Edges

att48 0, 2, 5 51, 54, 58 4, 3, 4 55, 56, 57 4, 4, 5 55, 57, 59

berlin52 3, 3, 6 58, 59, 62 4, 3, 5 59, 58, 61 5, 4, 5 61, 60, 60

brazil58 4, 7, 9 65, 69, 72 4, 6, 8 65, 69, 72 3, 4, 7 64, 66, 69

dantzing42 3, 4,6 49, 50,53 3, 4, 5 48, 52, 54 3, 4, 5 48, 49, 51

eil51 5, 4, 8 59, 59, 65 2, 3,4 55, 57,59 5, 3, 5 59, 58, 61

eil76 6, 6,5 86, 87,84 5, 4, 5 84, 83, 85 6, 6, 7 86,88, 87

gr48 0, 3, 7 51, 55, 59 4, 3, 5 55, 54, 57 4, 4, 5 58, 57, 58

gr96 4, 5, 5 105, 106, 104 4, 5, 5 103, 105, 105 4, 6, 5 105, 108, 106

hk48 0, 5, 9 51, 56, 62 3, 4, 6 54, 55, 58 3, 6, 6 56, 59, 62

kroA100 4, 7, 11 108, 111, 117 5, 6, 8 111, 111, 114 4, 5, 7 111, 113, 116

kroB100 4, 5, 10 108, 110, 116 5, 6, 5 109,113, 112 5, 6, 9 113, 113, 116

kroC100 3, 6, 11 107, 110, 118 5, 4, 7 110, 109, 113 4, 6, 8 112, 111, 114

kroD100 2, 6, 8 106, 109, 112 5, 6, 8 111, 112, 114 5, 6, 8 111, 112, 114

kroE100 4, 8, 9 109, 112, 114 4, 7, 7 109, 112, 113 4, 7, 9 109, 112, 119

pr76 4, 6, 7 84,85, 88 3, 6, 5 86,85, 85 4, 6, 5 88, 85, 89

rat99 3, 5, 8 106,107, 112 4, 4, 6 108, 107, 110 6, 5, 6 109, 107, 111

rd100 5, 5, 10 110, 109, 117 5, 5, 7 110, 113, 115 5, 6, 7 110,109, 114

st70 2, 4, 6 76,79, 83 2, 4, 5 76,79, 79 3, 4, 6 79, 79, 79

swiss42 1, 4,9 45, 49,57 1, 3, 7 47, 51, 55 2, 6, 6 47, 51, 54

Amount of 12 8 50

best solutions (6 of them not overcome) (also all computed byH1 and/orH3) (41 of them not overcome)

Table 5.6: Features of the solutions found by the GRASP algorithms.

When analyzing the topological structure of the best GRASP solutions for the 57 instances (the best

comparing the three heuristics), we noticed that the best solutions corresponding to the 45 Eucledian in-

stances did not have a Steiner node of degree 2 as network component. This is particularly important since

in those instances where the triangular inequality among costs is satisfied, the existence of degree 2 Steiner

nodes in a feasible solution implies that this is not globally optimal. More precisely, for the Eucledian

instances, we noticed that all the Steiner nodes of the best solutions were of degree three. With this, for

the BNDP2NS Eucledian instances, our best GRASP solutions satisfied this necessary optimality condi-

tion [102]. According to this, from Table 5.6, we can state that the amount of key-nodes (and therefore

key-trees) present on each of the 45 best GRASP solutions (indicated in bold letters) corresponding to the

Eucledian instances, goes from 3 up to 9 Steiner nodes of degree higher than 2. With respect to the non-

Eucledian BNDP2NS instances, their best solutions had in several cases key-paths with Steiner nodes of

degree 2, what do not discard its potential optimality.

Let us analyze now the values of the gapsGAP 1 andGAP 2. Notice that for the three heuristics (as

Tables 5.3, 5.4, and 5.5 show), given a TSP instance, when increasing the number of Steiner nodes present

in the generated BNDP2NS instance, the relative distance between the best feasible solution cost and the

value 3
4
COPT TSP significantly diminishes until the point in which (when we add the65% of Steiner



164 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

T
S

P
problem

C
O

P
T

T
S
P

p
er

=
2
5
%

H
eu

ristics
p
er

=
4
5
%

H
eu

ristics
p
er

=
6
5
%

H
eu

ristics

att48
10628

9297
H

3
8205

H
3

6424
H

3

berlin52
7542

6087
H

3
5863

H
3

4523
H

3

brazil58
25395

20463
H

3
19592

H
3

15871
H

3

dantzing42
699

638
H

2 H
3

557
H

3
473

H
1

eil51
426

387
H

1 H
3

384
H

3
319

H
2 H

3

eil76
538

470
H

1
441

H
3

382
H

1

gr48
5046

4280
H

3
3880

H
3

3121
H

3

gr96
55209

46939
H

3
42587

H
3

32473
H

3

hk48
11461

9982
H

3
8892

H
3

7328
H

3

kroA
100

21282
18214

H
3

16845
H

3
13117

H
3

kroB
100

22141
18343

H
3

17829
H

2 H
3

13467
H

3

kroC
100

20749
16767

H
3

15712
H

3
12211

H
3

kroD
100

21294
19514

H
3

15886
H

3
15002

H
2 H

3

kroE
100

22068
19470

H
1 H

2 H
3

17019
H

3
14245

H
3

pr76
108159

88237
H

3
94472

H
1 H

2
63806

H
3

rat99
1211

1071
H

3
1173

H
1 H

3
782

H
1

rd100
7910

7450
H

1 H
2

6448
H

3
5806

H
3

st70
675

593
H

3
637

H
1 H

2 H
3

542
H

1

sw
iss42

1273
1116

H
3

932
H

3
864

H
1

Table
5.7:

B
estcosts

found
for

each
B

N
D

P
2N

S
instance.



5.6. PERFORMANCE TESTS 165

nodes) the value of the best GRASP solution found is under the value ofLB1, except for a few cases. This

is a completely expected result since when increasing the amount of optional nodes, the space of feasible

solutions is expanded, and the probability of finding Steiner 2-node-survivable feasible solutions whose

costs improve the cost of the best 2-node-connected solution (which does not use Steiner nodes) grows. Let

us observe that in the three heuristics, the average values ofGAP 1 corroborate these tendency as well.

Computing the average (over the heuristics) of the value ofGAP 1 with respect to the instances generated

with 45% of Steiner nodes, we obtain10.17% of average relative distance between the GRASP solution

found and the lower bound supplied for the best feasible solution not containing Steiner nodes (LB1).

In accordance with the mentioned above, when analyzing the values ofGAP 2, we notice that in most

cases as the number of Steiner nodes is increased in a generated BNDP2NS instance, the relative distance

between the best solution found and the lower bound given by9
16

COPT TSP considerably diminishes,

what also was supposed to happen since the sub-space of feasible solutions that contain Steiner nodes ex-

ponentially expands, and consequently the possibility of finding every time better feasible solutions grows.

Note that theLB2 = 9
16

UB GAP, this means that the gap betweenLB2 andUB GAP is of the order

of 78% therefore a value ofGAP 2 which is relatively high does not necessarily implies a great distance

with respect to the global optimal value. This is to say, eventually, the case in which the cost of our best

feasible solution is very close (or is the same) to the optimal and at the same time is relatively far of the

lower bound, might happen.

Considering the BNDP2NS Eucledian instances generated by adding a65% of Steiner nodes, when

averaging the values ofGAP 2 over the three heuristics, we obtain an average relative distance with respect

to the lower boundLB2 equal to21.38%. Nevertheless, considering only the best GRASP solutions found

and calculating the average ofGAP 2 for these solutions, we have an average relative distance with respect

to the lower boundLB2 equal to12.73%, which is not necessarily a “bad value” since we do not know how

tight the inferred bound is. Practical evidence suggests that testing applied to other BNDP2NS instances

with grater number of Steiner nodes would lead to smaller gaps.

Let us analyze now the values ofUB GAP. As expected, when increasing the number of Steiner nodes

added to the TSP original instances, almost in every case, the values ofUB GAP were higher (the only

three exceptions happened when applying the heuristicH3 on the instances generated from the problems

pr76, rat99 and st70, in particular when passing from the25% to the45% of Steiner nodes to be added).

The reason for this is that in presence of more Steiner nodes, the space of BNDP2NS feasible solutions

significantly grows. In particular, there exists more feasible solutions having Steiner nodes as topological

components. Then the probability of finding any Steiner 2-node-survivable solution beating the optimal

TSP solution grows. Let us notice that, for the three heuristics, the average values ofUB GAP corroborate

the mentioned observation.

Let us see now the behaviour of the values ofLSI. In every case, the value ofLSI was higher than
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2% and lower than10%. For the three GRASP heuristics, in most of cases, as we increased the number

of Steiner nodes added to the original TSP instance, the values ofLSI were higher (there existed some

exceptions for the three heuristics which can be seen in Tables 5.3, 5.4, and 5.5). Let us recall that the

design of our strategies of local search is strongly linked to the presence of Steiner nodes as components

of the starting feasible solution, and therefore its performance will be influenced in a certain way by the

amount of Steiner nodes existing in the solution delivered by the construction phase. When analyzing each

of the BNDP2NS instances generated, as we compare them we find that there did not exist any relevant

differences in the values ofLSI corresponding to the three heuristics (these differences are always lower

than4 percentage points and in93% of cases lower than2.5 percentage points). The average values ofLSI

for each of the heuristics were higher than3.5%, 5% y 5.5% whenper = 25%, per = 45% andper = 65%

respectively. Besides, they were comparatively very similar, being at less than1 percentage point of distance

between them.

Finally, when analyzing the execution times of every one of the heuristics, we conclude that on average

the fastest per iteration was the heuristicH1 followed in order byH3 andH2.

Making a global balance of the obtained results, we have that even when the heuristicH3 was the one

which achieved the best solution in a higher number of instances, it was beat byH1 in six occasions. Fur-

thermore, over the 57 instances,H3 achieved the87.7% of the best solutions found, whileH1 achieved

the21.1% of the best solutions found. Often, in the literature, in these kinds of situations (where an algo-

rithm beats the other and inversely) it is said that both algorithms are incomparable. On the other hand, the

execution times ofH1 were lower than the ones ofH3 in every case, having an average difference of1.5

seconds by GRASP iteration and in percentageH1 was18.17% faster thanH3. The heuristicH2 achieved

the14.03% percent over the total of best solutions found, however, the topologies found in these cases were

equalled in quality (i.e. in cost) eitherH1 orH3, but they were not beaten byH1 or byH3 if we compare

separatelyH2 with H1 andH2 with H3. When comparing the average execution times,H2 had2.32 more

seconds per iteration compared toH1 and0.82 more seconds per iteration compared toH3. In percentage,

H1 andH3 were26.03% and9.2% faster thanH2 respectively.

Let us notice that the number of Steiner nodes added to a BNDP2NS instance has a great impact on the

cost of the feasible solutions found. We see that a large number of Steiner nodes lead to smaller costs, this

can be explained in part by the fact that the local search algorithms designed take great advantage of the

presence of Steiner nodes as potential enhancers of the current solution.
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5.7 Conclusions

We investigated the design of 2-node-survivable backbone network topologies from the heuristic point of

view, with the aim of developing GRASP algorithms to solve problems which arise in practice. Such prob-

lem is a particular case of the BNDP introduced in Chapter 4, and we denominate it BNDP2NS. Our main

motivation for studying this problem comes from the great applicability of the 2-node-connected models in

real problems of design of High Speed Optical Data Transmission Networks (HSODTN) cores. We were

able to develop several GRASP algorithms which can give a good quality 2-node-survivable solution. We

designed three construction phase algorithms and two local search algorithms, and by combining them suit-

ably with one of the local search algorithm used in the BNDP, we yielded six GRASP heuristics for the

BNDP2NS. The implementation of the algorithms was tested on a number of different problems with het-

erogeneous characteristics. In particular, we built a set of 57 BNDP2NS instances by transforming 19 TSP

instances (extracted from TSPLIB). By means of the application of certain theoretical results introduced

in [102], we deduce lower bounds for 45 of the BNDP2NS instances generated.

Considering the best solutions found for the 57 instances (over the set of better solutions achieved by

H1,H2, andH3), we notice that:

• For the instances generated withper = 25%, the best solutions found were of better quality than the

feasible solution of the TSP. In particular, the relative average gap with respect to the TSP optimal

values was of−13.47%, what indicates a significant improvement compared with the optimal TSP

solutions. Considering only the BNDP2NS Eucledian instances, the average value ofGAP 1 was

of 10.55%, which measures the relative distance to the lower bound of the best feasible solution that

does not contain Steiner nodes.

• In the same way, for the instances generated withper = 45% andper = 65% the relative average gaps

with respect to the TSP optimal values were of−19.16% and−34.60% respectively. Furthermore, in

all these cases the cost of the feasible solution found was considerably lower than the cost of the TSP

optimal solution. The average values ofGAP 1 were of7.45% and−9.73% for the valuesper = 45%

andper = 65% respectively. Withper = 45%, for the corresponding instance for the case kroD100,

we achieved a solution with lower cost than the value ofLB1, and withper = 65% almost all the

solutions had costs sensibly lower than this bound (less than−17% gap in 7 over 15 instances).

• When analyzing the non-Eucledian instances, even though we did not have lower bounds, we observe

that the quality (i.e. the cost) of the achieved solutions was greatly superior than the TSP optimal

solutions. In particular, the relative distance between the best solutions found for these instances and

the TSP optimal solutions was on average of−24.9% percent (and always lower than−14.0%).
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Even if we have lower bounds for the optima of the BNDP2NS Eucledian cases, the real interval

[ 9
16

COPT TSP, COPT TSP] generated between the lower and upper bound for the optimal value is1.75

times more greater than the interval introduced by theorem 5.6.2, in a way, if the cost of our best solution

is in that interval, we will not be able to estimate with more precision its location unless it be very close to

the lower bound.

We noticed that, as expected, the execution times of the proposed algorithms are strongly dependant on

the number of fixed sites and Steiner nodes (non-fixed sites).

To summarize, we think that the results obtained by means of the application of the GRASP meta-

heuristic to solve the BNDP2NS are good since we obtained minimal feasible topologies of low cost if

we compare it to the best TSP solutions and to the value ofLB1, reaching in many cases solutions which

significantly beat the quality of the best 2-node-connected feasible solution that does not contain Steiner

nodes.

As future work, it is possible to search for new methods which improve either the initial construction

or the local search phases of the GRASP. Moreover, we are focusing on getting BNDP2NS instances with

known optimal costs or more tight lower bounds in order to compare them to the solutions found by our

algorithms.
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Conclusions

In this thesis we have studied the topological design of a WAN (Wide Area Network) considering only the

construction costs, for instance the costs of digging trenches and placing a fiber cable into service [126].

The reason for this following approach is that construction costs have the largest share in the overall cost

of a WAN planning and design stage. Let us point out that even a very small reduction in this cost may

represent many million dollars of savings for, say, telephone companies.

We tackled the problem of designing a WAN by breaking it down into two inter-related sub-problems:

the Access Network Design Problem (ANDP) and the Backbone Network Design Problem (BNDP).

We modeled the ANDP as a variant of theSteiner Problem in Graphs(SPG), and the BNDP on the basis

of theGeneralized Steiner Problem with Node-Connectivity Constraints(GSP-NC) [1, 126]. Furthermore,

we studied the specific case of BNDP when there exist 2-node-survivability requirements between pairs of

backbone fixed switch nodes (which we called BNDP2NS). BNDP2NS is equivalent to theSteiner 2-node-

survivable network problem(STNSNP) [6, 102, 126]. The reason for focusing on BNDP2NS is that it can

be widely applied to the design of high-speed optic fiber networks, where the network is usually required

to remain in operation in case of a single link or node failure. Moreover, the topological features of the

2-node-connected networks enable us to design customized algorithms taking advantage of their structure.

ANDP, BNDP and BNDP2NS are all NP-Hard problems. This means that applying exact algorithms in

order to solve them calls for prohibitive (that is to say, exponential) computational time even for small or

medium-sized networks.

Hence, we studied the ANDP, BNDP and BNDP2NS problems heuristically, opting for the Greedy

Randomized Adaptive Search Procedure (GRASP) for solving them. The first reason for this approach is

that the GRASP methodology has proved both powerful and efficient in other combinatorial optimization

problems [47]. The second one is that GRASP appears as very flexible and potentially adaptable to the

specific problem to solve. It offers a general framework where the analyst can carefully tune the global

scheme for the problem at hand. Saying this differently, GRASP naturally forces the user to take advantage

169
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of the specificities of the problem, and this can be extremely efficient. Observe that we got good results for

both families of problemas, for the ANDP and for the BNDP classes.

We now provide a summary of the experimental results obtained for each one of the problems referred

to above.

For ANDP we designed two algorithms for the feasible solution construction phase and two algorithms

for the local search phase, the two components of a GRASP procedure. The two construction algorithms

work by connecting one terminal at a time to a partial solution; one of them selects randomly a terminal

and chooses among thek-shortest paths to connect it, while the other chooses among thek nearest termi-

nals, and always uses the shortest path for the connection. Both local search algorithms use Steiner node

insertion and deletion moves and Minimum Spanning Tree algorithms, but while one uses a traditional

neighborhood, the other one is based on a Random Neural Network model (RNN) [58, 59], which makes

it radically different from the usual local searches applied to similar problems. RNN models have also

proved remarkably effective when applied to other NP-Hard optimization problems [61, 62, 65, 63]. The

numerical experiments were done on a testing set containing 210 SPG instances extracted from the SteinLib

repository and customized for ANDP. The optimal values of the SPG instances provided lower bounds for

the optimal values of ANDP. The experimental results obtained for the four combinations were successful.

While in many cases they reached the value of the lower bound, that is, optimality, in many others there

were relatively small gaps with respect to the lower bounds. Although the results of all the GRASP vari-

ants were very close, the construction method which only uses pre-computed shortest paths and the RNN

based local search obtained in average the best results. Considering that in the ANDP generation process

all the connections with terminal nodes were eliminated, and further that ANDP’s feasible solution space is

more restrictive than that of SPG, the fact that we obtained small gaps in average shows the potential of the

GRASP methodology for finding good-quality solutions.

As to BNDP, we designed an algorithm for the construction of feasible solutions and three neighborhood

definitions, two based on substitutingk-paths byk-paths or general paths respectively, and one based on

substitutingk-trees. We tried out two local phase algorithms, combining each of thek-paths neighborhoods

with thek-trees neighborhood. As testing set for this part of the thesis we used instances extracted from

specialized literature, instances generated constructively and with known optimums, and instances gener-

ated by transforming TSP problems taken from the TSPLIB repository (adding to them a certain number

of Steiner nodes which model non fixed switch sites). The full testing set consisted of a total of 29 BNDP

instances. Connectivity requirements varied widely according to each specific problem. The results ob-

tained were extremely promising. The results show that the variant using the second local search obtains

better results. This can be explained as the paths neighborhood includes thek-paths neighborhood, lead-

ing then to a more flexible search. With this variant, we achieved optimality in almost all instances with

known optima (except for only one case where there was a gap of less than 0.7 per cent with respect to
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the global optimum) and found good-quality minimal feasible solutions in those cases where we did not

know the global optimum. The latter were compared to the optimal values of the TSP and with lower

bounds provided for the minimum-cost 2-node-connected network spanning problem [102]. Again, our

GRASP algorithms proved highly efficient in constructing minimal feasible solutions, taking advantage of

the presence of Steiner nodes as potential enhancers of the solutions.

With regard to BNDP2NS we tested three feasible solution construction algorithms and three neighbor-

hood definitions, which were combined like in BNDP to obtained two local search methods. One of the

construction algorithms was similar to the one used for BNDP, the other two were designed using properties

of the BNDP2NS (one uses a characterization of its minimal solutions, and the other employs substitutions

of subgraphs preserving 2-node connectedness). As testing set for the performance test phase we generated

BNDP2NS instances by transforming TSP problems extracted from the TSPLIB repository (adding differ-

ent numbers of Steiner nodes). Specifically, for each TSP problem selected we generated three BNDP2NS

problems by adding 25, 45, and 65 per cent of Steiner nodes. The complete test set consisted of a total of

57 BNDP2NS instances. The results showed that among the local search algorithms (based on using the

key-paths and key-tree substitution neighborhoods), one produced much better results than the rest. All

the experiments using the three construction algorithms with this local search had very good results; if we

compare the construction algorithms by pairs, there are cases in which each one beats the other. In fact, the

best solutions found were good-quality minimal topologies which in many cases outperformed significantly

the optimal 2-node-connected topology spanning the set of fixed nodes without using Steiner nodes (this is

inferred when attaining solutions with costs smaller than the lower bound for these ones). As is the case

of the general BNDP problem, the local search algorithms of BNDP2NS take advantage of the presence of

Steiner nodes as enhancers of the starting solution. We therefore observed that as the number of Steiner

nodes added to the original TSP problem increased, the best feasible solutions found are significantly less

costly.

This thesis work divides the WAN network topological design problem into two separate parts: back-

bone (Chapters 4 and 5) and access network (Chapter 3).

Future research, based on this line of work, could investigate means for combining adequately the pro-

posed optimization methodologies. In this sense, we propose a possible scheme for designing the overall

topological architecture of a WAN by means of the combined use of the algorithms designed for the ANDP

and BNDP sub-problems. Figure 6.1 shows a pseudocode of the iterative algorithm proposed. The algo-

rithm would work as follows. In Phase 1 a feasible solution for ANDP is constructed by applying one

of the construction algorithms proposed (that is, no local search is applied here, just a feasible solution is

built). The resulting access network induces a set of fixed switch sites on the backbone network. In Phase

2, assuming that those backbone sites connected with access sub-networks are fixed, we apply one of the

GRASP algorithms proposed for BNDP -or BNDP2NS- optimizing the backbone topology as much as pos-
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sible. In Phase 3, considering only the switch sites that integrates the backbone network delivered by Phase

2, we suitably apply one of the local search algorithms proposed for ANDP in order to re-optimize the

overall access network. Once the main loop has been finalized, the best WAN topology found is returned.

Procedure WAN DESIGN;

0 for i = 1 to MaxIter do

1 AccessNetwork ← ANDP Construction;

2 BackboneNetwork ← GRASP BNDP(AccessNetwork);

3 AccessNetwork ← ANDP Improver(BackboneNetwork, AccessNetwork);

4 end for;

5 return AccessNetwork, BackboneNetwork;

Figure 6.1: A model for designing a WAN topology.

Regarding the problem definition itself extensions can consider both topological restrictions to current

problem definition and considering new variables.

New topological restrictions can be introduced in the problem, like maximum number of incident links

at concentrator nodes. It is also worth minimizing the impact of failures on the access network, as there is

no redundancy in its topology. It might be relevant limiting the depth of cascaded concentrators connected

to a single switch or balancing the number of subscribers per switch.

Other analysis variables could be introduced in the model. State of-the-art imposes limitations in the

length of links, both in the trunks (backbone) and in the access network. Bandwidth constraints should be

considered mainly while designing the access network.
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Equivalent formulations for ANDP

In this chapter we will demonstrate the equivalence between the general formulation of the access network

design problem and the problem of designing the global access topology when modelling the backbone as

a single fixed node. As introduced in Section 1.3, we use the following notation:

• V = ST ∪ SC ∪ SD,

• A = {aij}i,j∈S is the matrix which gives for any pair of sites ofV , the cost of laying a line between

them. When the direct connection betweeni andj is not possible, we takeaij = ∞,

• U = {(i, j); ∀i, j ∈ V such thataij < ∞}, is the set of feasible connections between sites ofV ,

• H = (V, U) is the graph of feasible connections.

Definition A.0.1 (General Access Network Design Problem - GANDP)We define the General Access Net-

work Design ProblemGANDP (V, U,A) as the problem of finding a subgraphT ⊂ H of minimum cost

such that∀st ∈ ST there exists a unique path fromst to some fixed switch sitesw ∈ SD and such that

terminal sites can not be used as intermediate nodes (they must have degree 1 in the solution).

The problem ANDP defined in Chapter 3 is derived from GANDP model by applying the following

points:

A) The set of switch sitesSD is modelled by a single fixed nodez. The total set of nodes considered in

the ANDP isS = ST ∪ SC ∪ {z}.

B) The set of edgesE used in the problem ANDP satisfies the following points:

i) Given a sites ∈ ST ∪ SC , there exists the edge(s, z) ∈ E iff there exists an edge(s, sw) ∈ U

such thatsw ∈ SD. Moreover, we define:

C(s, z) = min
{
a(s,sw)|sw ∈ SD

}
.
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ii) The feasible connections between pairs of sites ofST ∪ SC are the same in both problems and

their costs are equal.

Theorem A.0.2 (GANDP-ANDP relation) Given an instanceGANDP (V, U,A) and its respective in-

stanceANDP (S, E,C), the optimal solutions for both problems have the same cost.

Proof. Let Hopt andTopt be global optimal solutions for the GANDP and ANDP respectively. It is easy

to see that the networkHopt has a forest topology where each tree that composes it has a unique switch

site like root. LetT̂ be the resultant network of modelling the set of switch sites ofHopt as a single node.

ClearlyCOST(T̂ ) = COST(Hopt) and moreover̂T is feasible for the ANDP. Hence, we have the inequality:

COST(Hopt) = COST(T̂ )

optimality ofTopt

↑
≥ COST(Topt).

On the other hand, let us consider a networkĤ so that∀(s, z) ∈ Topt, Ĥ includes an edge(s, sw) fulfilling:

(s, sw) = arg min
{
a(s,v)|∀v ∈ SD

}
,

and the other edges of̂H are those edges ofTopt whose two endpoints belong toST ∪ SC . In this way, by

construction, we have that the networkĤ is feasible for the GANDP and furthermore satisfies the inequality:

COST(Topt)

by def. ofC(·)
↑
= COST(Ĥ)

optimality ofHopt

↑
≥ COST(Hopt),

But this implies thatCOST(Topt) = COST(Hopt), as required, and completing the proof.

QED
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ANDP test cases

We include here the information on the 210 ANDP instances generated from SteinLib library by the method

discussed in Chapter 3. Tables B.1 to B.7 show for each generated ANDP instance, the cost of the best

feasible solution found and its respective gap with respect to the lower bound. In the first column we have

the names of the original SPG instances and in the second column their topological characteristics (number

of nodes, number of edges, and number of terminals). We remark that in most cases the best solutions were

reached by more than two heuristics. The cases marked with “∗” indicate ANDP instances where the lower

bound was only reached with two different heuristics whereas the cases marked with “+” indicate ANDP

instances where the lower bound was reached by only one heuristic.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class C

c03 500 625 83 756 0.27%

c04 500 1000 125 1082 0.28%

c05 500 1000 250 1584 0.32%

c08 500 1000 83 510 0.20%

c10 500 2500 250 1094 0.09%

Class MC

mc13 150 11175 80 92 OPT

mc2 120 71140 60 73 2.82%

mc3 97 4656 45 49 4.26%

Class X

berlin52 52 1326 16 1379 32.09%

brazil58 58 1653 25 18093 32.50%

Class PUC

cc3-4p 64 288 8 2340 0.09%

cc3-5p 125 750 13 3666 0.14%

cc3-5u 125 750 13 36 OPT

hc7p 128 448 64 7905 OPT

Class P6E

P6E1 100 180 5 8810 17.70%

P6E2 100 180 5 10065 15.08%

P6E3 100 180 5 10251 17.99%

P6E4 100 180 10 15972 OPT

P6E5 100 180 10 22990 17.92%

P6E6 100 180 20 23870 17.90%

P6E7 100 180 20 27220 17.95%

P6E8 100 180 20 26360 17.96%

P6E12 200 370 10 26125 OPT

P6E13 200 370 20 46019 17.80%

Class P6Z

P6Z1 100 180 5 9618 18.99%

P6Z2 100 180 5 5976 19.00%

P6Z4 100 180 10 12423 19.97%

P6Z12 200 370 10 18429 OPT

P6Z13 200 370 20 32458 19.00%

Table B.1: Best found solutions for instances derived from classes C, MC, X, PUC, P6E, and P6Z.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class I080

I080-001 80 120 6 1843 3.13%

I080-002 80 120 6 1666 3.67%

I080-003 80 120 6 1829 6.77%

I080-004 80 120 6 1987 6.48%

I080-005 80 120 6 1918 7.15%

I080-011 80 350 6 1579 6.76%

I080-012 80 350 6 1484 OPT

I080-013 80 350 6 1470 6.44%

I080-014 80 350 6 1412 1.07%

I080-015 80 350 6 1503 0.54%

I080-021 80 3160 6 1258 7.06%

I080-022 80 3160 6 1244 5.60%

I080-023 80 3160 6 1174 OPT∗ (H2 andH4)

I080-024 80 3160 6 1161 OPT

I080-025 80 3160 6 1247 7.31%

I080-031 80 160 6 1613 2.74%

I080-032 80 160 6 2214 6.03%

I080-033 80 160 6 1794 OPT

I080-034 80 160 6 1812 7.35%

I080-035 80 160 6 1903 2.20%

I080-041 80 632 6 1276 OPT

I080-042 80 632 6 1302 1.17%

I080-043 80 632 6 1383 6.80%

I080-044 80 632 6 1463 7.10%

I080-045 80 632 6 1384 5.65%

I080-101 80 120 8 2775 6.40%

I080-102 80 120 8 2566 6.78%

I080-103 80 120 8 2684 3.11%

I080-104 80 120 8 2651 6.64%

I080-105 80 120 8 2349 6.63%

I080-111 80 350 8 2051 OPT

I080-112 80 350 8 2018 7.06%

I080-113 80 350 8 2022 7.32%

I080-114 80 350 8 1895 OPT∗ (H2 andH4)

Table B.2: Best found solutions for instances derived from class I080.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class I080

I080-115 80 350 8 1997 6.91%

I080-121 80 3160 8 1643 5.25%

I080-122 80 3160 8 1604 2.75%

I080-123 80 3160 8 1569 OPT

I080-124 80 3160 8 1667 7.20%

I080-125 80 3160 8 1572 OPT

I080-131 80 160 8 2377 4.07%

I080-132 80 160 8 2328 6.79%

I080-133 80 160 8 2388 5.62%

I080-134 80 160 8 2207 6.62%

I080-135 80 160 8 2184 3.90%

I080-141 80 632 8 1788 OPT

I080-142 80 632 8 1788 4.68%

I080-143 80 632 8 1889 6.90%

I080-144 80 632 8 1843 4.01%

I080-145 80 632 8 1884 6.92%

I080-211 80 350 16 3631 OPT

I080-212 80 350 16 3677 OPT

I080-213 80 350 16 3912 6.36%

I080-214 80 350 16 3847 3.03%

I080-215 80 350 16 3784 2.80%

I080-221 80 3160 16 3158 OPT

I080-222 80 3160 16 3141 OPT

I080-223 80 3160 16 3270 3.61%

I080-224 80 3160 16 3187 0.89%

I080-225 80 3160 16 3150 OPT

I080-241 80 632 16 3778 6.78%

I080-321 80 3160 20 4123 4.86%

I080-322 80 3160 20 4019 2.08%

I080-323 80 3160 20 3946 OPT

I080-324 80 3160 20 4199 6.79%

I080-325 80 3160 20 4190 6.78%

I080-342 80 632 20 4337 OPT

I080-343 80 632 20 4533 6.76%

I080-344 80 632 20 4480 3.94%

I080-345 80 632 20 4637 6.82%

Table B.3: Best found solutions for instances derived from class I080.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class I160

I160-011 160 812 7 1743 3.94%

I160-012 160 812 7 1827 OPT

I160-013 160 812 7 1722 3.67%

I160-014 160 812 7 1848 3.93%

I160-015 160 812 7 1845 4.36%

I160-031 160 320 7 2240 3.23%

I160-032 160 320 7 2432 OPT

I160-033 160 320 7 2183 3.91%

I160-034 160 320 7 2174 OPT

I160-035 160 320 7 2195 4.37%

I160-041 160 2544 7 1552 3.88%

I160-042 160 2544 7 1551 4.37%

I160-043 160 2544 7 1617 4.39%

I160-044 160 2544 7 1543 OPT

I160-045 160 2544 7 1622 4.38%

I160-111 160 812 12 2985 4.04%

I160-112 160 812 12 3052 OPT

I160-113 160 812 12 2965 3.45%

I160-114 160 812 12 3120 4.38%

I160-115 160 812 12 3061 4.22%

I160-141 160 2544 12 2661 OPT

I160-142 160 2544 12 2674 OPT

Class I320

I320-003 320 480 8 3042 2.36%

I320-004 320 480 8 2986 2.79%

I320-005 320 480 8 3074 2.77%

I320-011 320 1845 8 2053 OPT

I320-033 320 640 8 2769 OPT

I320-042 320 10208 8 1729 2.79%

I320-043 320 10208 8 1771 2.79%

I320-111 320 1845 17 4392 2.78%

I320-112 320 1845 17 4330 2.78%

I320-113 320 1845 17 4322 2.78%

I320-142 320 10208 17 3654 2.44%

I320-143 320 10208 17 3660 2.78%

I320-144 320 10208 17 3512 OPT

I320-241 320 10208 34 7212 2.63%

I320-242 320 10208 34 7140 0.96%

Table B.4: Best found solutions for instances derived from classes I160 and I320.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class I640

I640-011 640 4135 9 2432 1.67%

I640-012 640 4135 9 2543 3.16%

I640-013 640 4135 9 2410 0.46%

I640-014 640 4135 9 2234 2.90%

I640-015 640 4135 9 2347 OPT

I640-031 640 1280 9 3382 3.17%

I640-032 640 1280 9 3223 1.13%

I640-033 640 1280 9 3364 3.19%

I640-034 640 1280 9 3047 3.18%

I640-035 640 1280 9 3298 0.18%

I640-102 640 960 25 9420 3.41%

I640-103 640 960 25 9101 3.20%

I640-105 640 960 25 9623 OPT

I640-111 640 4135 25 6364 3.19%

I640-113 640 4135 25 6432 2.93%

Table B.5: Best found solutions for instances derived from class I640.

SPG problem |V | |E| |T | ANDP BCF LB GAP

Class WRP3

WRP3-11 128 227 11 1100365 0.000363%

WRP3-12 84 149 12 1200247 0.000833%

WRP3-13 311 613 13 1300500 0.000230%

WRP3-14 128 247 14 1400255 0.000357%

WRP3-15 138 257 15 1500428 0.000399%

WRP3-16 204 374 16 1600208 OPT

WRP3-17 177 354 17 1700448 0.000352%

WRP3-20 245 454 20 2000271 OPT

WRP3-21 237 444 21 2100530 0.000380%

WRP3-22 233 431 22 2200560 0.000136%

WRP3-25 246 468 25 2500540 OPT

WRP3-26 402 780 26 2600494 0.000384%

WRP3-27 370 721 27 2700512 0.000370%

WRP3-28 307 559 28 2800379 OPT

WRP3-30 467 896 30 3000581 0.000399%

WRP3-31 323 592 31 3100700 0.002096%

WRP3-33 437 838 33 3300515 0.000060%

WRP3-36 435 818 36 3600624 0.000388%

WRP3-38 603 1207 38 3800656 OPT

WRP3-39 703 1616 39 3900450 OPT+ (H4)

WRP3-42 705 1373 42 4200598 OPT

WRP3-48 925 1738 48 4800571 0.000395%

WRP3-49 886 1800 49 4900901 0.000387%

WRP3-52 701 1352 52 5200845 0.000384%

WRP3-53 775 1471 53 5300868 0.000396%

WRP3-75 729 1395 75 7501020 OPT

WRP3-88 743 1409 88 88001527 0.000399%

Table B.6: Best found solutions for instances derived from class WRP3.
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SPG problem |V | |E| |T | ANDP BCF LB GAP

Class WRP4

WRP4-11 123 233 11 1100197 0.001636%

WRP4-13 110 188 13 1300816 0.001383%

WRP4-14 145 283 14 1400308 0.001285%

WRP4-15 193 369 15 1500408 0.000199%

WRP4-17 223 404 17 1700548 0.001352%

WRP4-18 211 380 18 1801501 0.002053%

WRP4-19 119 206 19 1901472 0.001367%

WRP4-21 529 1032 21 2103312 0.001378%

WRP4-22 294 568 22 2200394 OPT

WRP4-23 257 515 23 2300376 OPT

WRP4-24 493 963 24 2403365 0.001373%

WRP4-27 243 497 27 2700508 0.002481%

WRP4-28 272 545 28 2800507 0.001464%

WRP4-29 247 505 29 2900573 0.003068%

WRP4-31 290 786 31 3100603 0.002483%

WRP4-32 311 632 32 3200720 0.005186%

WRP4-33 304 571 33 3300704 0.001484%

WRP4-34 314 650 34 3400572 0.001382%

WRP4-35 471 954 35 3500650 0.001399%

WRP4-36 363 750 36 3600596 OPT

WRP4-37 522 1054 37 3700663 0.000432%

WRP4-38 294 618 38 3800662 0.001473%

WRP4-39 802 1553 39 3903734 OPT∗ (H2 andH4)

WRP4-42 552 1131 42 4200759 0.001380%

WRP4-44 398 788 44 4401565 0.001385%

WRP4-45 388 815 45 4500791 0.001399%

WRP4-46 632 1287 46 4600756 OPT

WRP4-52 547 1115 52 5201161 0.001538%

WRP4-56 839 1617 56 5602377 0.001392%

WRP4-59 904 1806 59 5901674 0.001389%

WRP4-75 938 1869 75 7501817 0.001399%

Table B.7: Best found solutions for instances derived from class WRP4.
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Appendix C

Properties used for generating BNDP test cases

We introduce here some properties used to build the test cases for the BNDP problem denoted Networks

2 to 6 and introduced in Chapter 4. We remark that the properties will be proved in the context of the

Generalized Steiner Problem with node-connectivity constraints(denoted by GSP-NC) which is the model

on which the BNDP is based. Next, we give its definition, some notation and auxiliary definitions.

Definition C.0.3 We define the GSP-NC as follows. Given a non-directed simple graphG = (V,E), a

matrixC = {cij}i,j∈V of nonnegative edge-costs, a subsetT ⊆ V called “set of terminal nodes”, a matrix

R = {rij}i,j∈T of required local node-connectivities between any pair of different nodes inT (for any

i, j ∈ T , rij is a non-negative integer number), the goal is to find a subgraphGT of G with minimal cost so

that for every pair of nodesi, j ∈ T, i 6= j, there are at leastrij node-disjoint paths connectingi andj in

GT . The nodes inV \T are usually called Steiner nodes. We will denote byΓGSPNC the space of feasible

solutions associated with the problem.

Notation C.0.4 Given a non-directed simple graphG and a nodev ∈ G, we denote bydG(v) the degree of

v in G.

Notation C.0.5 Given a GSP-NC instance we will denote byΓGSPNC to the space of feasible solutions.

Notation C.0.6 Given a path or a treeH, we callu an endpoint ofH if dH(u) = 1.

Definition C.0.7 Given a non-directed simple graphH, we callpH an H − path if pH is a (non-trivial)

path, which meetsH exactly in its endpoints (i.e., the endpoints ofpH are in H, and if pH is not a simple

edge, the other nodes appearing inpH are not inH).

Definition C.0.8 We define au − tree on a graphG as a treeT rooted inu which meetsG exactly in its

endpoints (the endpoints ofT are in G) and the other nodes appearing inT are not inG and have degree

2, exceptu which may have larger degree. We will call a pendant to a pathp(u,v) ⊂ T such thatv is an

endpoint.

183
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The following property introduces “splitting” and “merging” operations.

Proposition C.0.9

1) (Splitting) Let (vi, vj) be any edge ofG, with costcij. Splitting this edge corresponds to adding a

new (non-terminal) nodevk, and replacing edge(vi, vj) by two edges{(vi, vk), (vk, vj)}. If the costs

of these new edges verify thatcik > 0, ckj > 0 andcik + ckj = cij; and if Gopt is an optimal solution

of the original problem, then the graph̄Gopt resulting of applying this splitting operation onGopt is an

optimal solution of the modified problem.

2) (Merging) Let vi, vk, vj be three nodes ofG, such thatvk 6∈ T , there is an edge(vi, vk) of costcik,

there is an edge(vk, vj) of costcjk, there is no edge betweenvi andvj, anddG(vk) = 2. Merging

edges(vi, vk) and (vk, vj) corresponds to deleting nodevk, and replacing edges{(vi, vk), (vk, vj)}
by a new edge(vi, vj). If the cost of the new edge verifies thatcij = cik + ckj, andGopt is an optimal

solution of the original problem, then the graph̄Gopt resulting of applying this merging operation on

Gopt is an optimal solution of the modified problem.

Proof. 1) Trivial. The set of feasible solutions which do not contain edge(vi, vj) is the same for the original

problem and for the problem modified after the splitting operation. There is a bijection between the set of

feasible solutions which contain edge(vi, vj) in the original problem and the set of feasible solutions wich

contain edges(vi, vk) and(vk, vj) after the splitting operations; and the costs of the corresponding solutions

are identical. If there are new feasible solutions which only have edge(vi, vk) or edge(vk, vj), they are

not minimal (the edge can be deleted preserving feasibility, ask 6∈ T ). Then, both sets will have optimal

solutions of the same value.

2) Similar to part 1.

QED

It is clear that splitting and merging operations can be applied as many times as needed. Then, it is

possible to substitute an edge(vi, vj) by anH − path with endpointsvi andvj, and fix the costs of the new

edges so that the optimal solutions are preserved. The following property is useful to modify the costs of

existing edges.

Proposition C.0.10 LetGopt be an optimal solution of the original GSPNC instance, and let(vi, vj) be an

edge ofG with costcij.

1) If (vi, vj) ∈ Gopt, if we modify the problem by assigning this edge a new costc̄ij < cij, thenGopt is

still an optimal solution of the new problem instance.
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2) If (vi, vj) 6∈ Gopt, if we modify the problem by assigning this edge a new costc̄ij > cij, thenGopt is

still an optimal solution of the new problem instance.

Proof. 1) Given an edgee = (vi, vj) ∈ Gopt, let us consider the following notation.

• Γ
(e)
opt is the subspace of optimal solutions containing the edgee,

• Γ
(\e)
opt is the subspace of optimal solutions not containing the edgee,

• Γ
(e)
nonopt is the subspace of feasible solutions (non-optimal) containing the edgee.

If the cost of the edgee ∈ Gopt is diminished, then the cost ofGopt and of all solutions inΓ(e)
opt is also

diminished and by the same amountcij − c̄ij.

The costs of the solutions inΓ(\e)
opt do not change, so these solutions are no longer optimal in the modified

instance.

We will prove (by contradiction) that in addition the feasible solutions inΓ
(e)
nonopt are not optimal for

the new instance. Let us suppose that a networkH ∈ Γ
(e)
nonopt is optimal for the new instance. Then, the

following relation is satisfied:

COST(Ĥ) ≤ COST(Ĝopt),

whereĤ andĜ are the networksH andG respectively but with the new cost fore. This inequality implies:

COST(H) + ∆e ≤ COST(Gopt) + ∆e,

and thereforeCOST(H) ≤ COST(Gopt), which is a contradiction sinceH is not optimal for the original

instance.

Then, the optimal solutions for the new instance are those inΓ
(e)
opt.

2) Similar to part 1.

QED

We now look at some new operations, which we callH − path insertions andu− tree insertions.

Proposition C.0.11 (H − path insertions) Let Gopt be an optimal solution of the original GSPNC in-

stance.

1) Assumingrij ≥ 2, ∀i, j ∈ T ; if on G we add anH − path pH with endpoints two nodesvi, vj ∈ Gopt

so thatCOST(pH) ≥ COST(pl(i,j)), wherepl(i,j) is the longest path fromvi to vj in Gopt, thenGopt is an

optimal solution for the new instance.
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2) If on G we add anH − path pH with endpoints two adjacent nodesvi, vj ∈ Gopt, where at least one

of them is a Steiner node and so that:

COST(pH) ≥ cij,

thenGopt is an optimal solution for the new instance.

3) If on G we add anH − path pH with endpoints two adjacent terminal nodesvi, vj ∈ Gopt satisfying

COST(pH) ≥ COST(p) for all pathp where:

i) p is a path fromvi to vj onG \ EDGES(Gopt) and(Gopt \ {(vi, vj)}∪ p) is feasible for the original

instance (the existence of at least one path in these conditions is assumed),

ii) or p is a path fromvi to vj onG \ NODES(Gopt \ T ),

thenGopt is an optimal solution for the new instance.

4) Assumingrij ≥ 2, ∀i, j ∈ T , |T | > 2; if on G we add anH − path pH with endpoints two adjacent

nodesvi, vj ∈ G such thatCOST(pH) ≥ cij, thenGopt is an optimal solution for the new instance.

5) If on G we add anH − path pH with endpoints two adjacent nodesvi, vj ∈ Gopt such that:

COST(pH) ≥ max{cij, COST(p(i,j))},

for all path p(i,j) ⊂ Gopt \ {(vi, vj)} integrated by Steiner nodes of degree 2 communicatingvi with

vj, thenGopt is an optimal solution for the new instance.

Proof. We will prove in order each one of the previous points.

1) Let us suppose thatGopt is not optimal for the new instance. Necessarily, ifHopt is a global optimal

solution for the new instance, thenpH ⊂ Hopt (otherwiseHopt would be a better solution thanGopt for the

original instance). SinceGopt is a feasible solution for the new instance, we haveCOST(Hopt) < COST(Gopt).

Let us consider the network̄H = Hopt \ pH . By minimality of Hopt, H̄ is not feasible for the original

instance. On the other hand, asrij ≥ 2, ∀i, j ∈ T , there exists a pathp ⊂ Gopt from vi to vj such that

the networkĤ = H̄ ∪ p is a feasible solution for the original instance. AsGopt is optimal for the original

instance, we know:

COST(Gopt) ≤ COST(Ĥ).

We define the following sets of edges:

• A = {e ∈ p|e ∈ Hopt} = {e ∈ p|e ∈ Gopt ∩Hopt},

• B = {e ∈ p|e 6∈ Hopt}.
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Clearly,EDGES(p) = A ∪B and moreover:

COST(pH)

by hyp.
↑
≥ COST(p) = COST(A) + COST(B) ≥ COST(B).

Let us analyze the cost of̂H:

COST(Ĥ) = COST(Hopt)− COST(pH) + COST(B) ≤ COST(Hopt),

implying COST(Gopt) ≤ COST(Hopt), which is a contradiction.

2) Again, by contradiction, let us suppose thatGopt is not optimal for the new instance. LetHopt be an

optimal solution for the new instance. As in the previous case, it is easy to see thatpH must satisfypH ⊂
Hopt. Now, let us suppose that(vi, vj) 6∈ Hopt, then the networkH̄ = (Hopt \ pH) ∪ {(vi, vj)} would be

feasible for the new instance and in addition:

COST(H̄) = COST(Hopt)− COST(pH) + cij

by hyp.
↑
≤ COST(Hopt),

implying the optimality ofH̄ with pH 6⊂ H̄, which is a contradiction. Hence, necessarily the edge(vi, vj) ∈
Hopt. We define the network:̂H = (Hopt\pH). Since the requirements are of node connectivity, considering

inHopt the edge(vi, vj) and the pathpH , only one of them can contribute to satisfy a connection requirement

between a pair of terminal nodes (except for{vi, vj} if both are terminals). Thus,̂H is feasible for the

original instance and besides:

COST(Ĥ) = COST(Hopt)− COST(pH) < COST(Hopt)

by optimality
↑
< COST(Gopt),

implying the optimality ofĤ for the original instance, which is a contradiction.

3.i) Sincevi andvj are terminal nodes,(vi, vj) ∈ Gopt and the requirements are of node connectivity, the

inclusion of theH−path pH would result in an improvement in the connectivity level only for the terminal

nodesvi andvj (in the new instance, any other pair of terminal nodes would use in an excluding way the

pathpH or the edge(vi, vj) to satisfy one of their connection requirements). Let us suppose thatGopt is not

optimal for the new instance. It is easy to prove that there exists an optimal solution for the new instance

whose topology is given by:Hopt = (Gopt ∪ pH) \ p(i,j), wherep(i,j) is a path fromvi to vj onGopt. Let p

be a path in the hypothesis of the Proposition. Let us denoteH̄ = (Gopt \ {(vi, vj)} ∪ p). As H̄ is feasible

for the original instance, it is easy to see that the networkĤ = (Hopt \ pH) ∪ p is feasible for the original

instance and therefore for the new instance. By optimality ofHopt, we have:

COST(Hopt) ≤ COST(Ĥ).
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If COST(Hopt) = COST(Ĥ) thenĤ would be an optimal solution for the new instance and not containingpH ,

which is a contradiction. IfCOST(Hopt) < COST(Ĥ), then:

COST(Hopt) < COST(Hopt)− COST(pH) + COST(p),

implying COST(pH) < COST(p), which also is a contradiction. Hence,Gopt is an optimal solution for the

new instance.

3.ii) Let us suppose thatGopt is not optimal for the new instance. Like(3.i), necessarily there exists an

optimal solution for the new instance given by a network:Hopt = (Gopt ∪ pH) \ p(i,j), wherep(i,j) is a path

from vi to vj onGopt. Letp be a path in the hypothesis of the Proposition (we assume that it exists, otherwise

(3.ii) is fulfilled emptily). Let us define the network̂H = (Hopt \ pH) ∪ p; clearly this network is feasible

for the new instance and the original instance. Then,

COST(Hopt) ≤ COST(Ĥ).

As above, the equality induces a contradiction and the strict inequality would implyCOST(pH) < COST(p),

which also is a contradiction. ThereforeGopt is globally optimal for the new instance.

4) Let us suppose thatGopt is not optimal for the new instance. LetHopt be an optimal solution for the new

instance. NecessarilypH ⊂ Hopt. Let us consider the network̄H = (Hopt \ pH) ∪ {(vi, vj)} (since|T | > 2

the edge(vi, vj) 6∈ Hopt). The networkH̄ is a feasible solution for the original instance and moreover:

COST(H̄) = COST(Hopt)− COST(pH) + cij ≤ COST(Hopt)

optimality ofHopt

↑
< COST(Gopt),

and therefore:COST(H̄) < COST(Gopt). This contradicts the optimality ofGopt, henceGopt is a global optimal

solution for the new instance.

5) Let us suppose thatGopt is not optimal for the new instance. As in the previous case, ifHopt is an

optimal solution for the new instance, this must satisfypH ⊂ Hopt. Let P be the set of paths including in

Gopt\{(vi, vj)} integrated by Steiner nodes of degree 2 communicatingvi with vj. If (P∪{(vi, vj)}) ⊂ Hopt

the networkH̄ = Hopt \ pH is a feasible solution for the original instance and therefore:

COST(H̄) ≥ COST(Gopt).

Let us analyze its cost:

COST(H̄) = COST(Hopt)− COST(pH) ≤ COST(Hopt)

optimality ofHopt

↑
< COST(Gopt),

which is a contradiction.

If there existsp ∈ (P ∪ {(vi, vj)}) such thatp 6⊂ Hopt, considering the network̂H = (Hopt \ pH) ∪ p, this
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is feasible for the new instance and moreover:

COST(Ĥ) = COST(Hopt)− COST(pH) + COST(p)

by hyp.
↑
≤ COST(Hopt).

If the relation is satisfied by means of the equality:COST(Ĥ) = COST(Hopt), thenĤ would be an optimal

solution for the new instance and in addition not containing to the pathpH . If the relation is satisfied by

means of the strict inequality,̂H would be a better feasible solution thanHopt for the new instance, which

is a contradiction.

QED

Proposition C.0.12 (u− tree insertion) Let Gopt be an optimal solution of the original instance. If on

an edge(vi, vj) ∈ G we apply consecutivelyk splitting operations preserving the optimality ofḠopt (with

Gopt = Ḡopt if (vi, vj) /∈ Gopt or Ḡopt is Gopt transformed by the splitting operations if(vi, vj) ∈ Gopt),

creating thus a setK of new Steiner nodes, and posteriorly we add au− tree T connectingu with a subset

W ⊆ K (the endpoints ofT ) of nodes such that∀w1, w2 ∈ W :

COST(p(u,w1)) + COST(p(u,w2)) ≥ c(w1,w2)

sp ,

wherec(w1,w2)
sp is the cost fromw1 to w2 on (vi, vj) after splitting operations andp(u,w1), p(u,w2) ⊂ T are the

paths fromu to w1 andw2 respectively; then̄Gopt (or Gopt if (vi, vj) /∈ Gopt) is an optimal solution for the

new instance.

Proof. Without loss of generality, we will analyze the case(vi, vj) ∈ Gopt (the other case is analogous). Let

us suppose that̄Gopt is not optimal for the new instance. Then, a subset of nodes{x1, x2} ⊆ W will have

to integrate an optimal solutionHopt for the new instance. LetA be the set of new edges resulting of the

splitting operations on(vi, vj). Let us considerB ⊆ A the set of edges belonging toHopt. We have the

following relation:

COST(Hopt) = COST(Ḡopt) + COST(p(u,x1)) + COST(p(u,x2)) + COST(B)− COST(A \B)

= COST(Ḡopt) + COST(p(u,x1)) + COST(p(u,x2))− c(x1,x2)

sp

nonoptimality ofḠopt

↑
< COST(Ḡopt),

this implies,

COST(p(u,x1)) + COST(p(u,x2)) < c(x1,x2)

sp ,

which is a contradiction; hencēGopt is globally optimal for the new instance.
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QED

Proposition C.0.13 Let Gopt be an optimal solution and letpH be anH − path added toG with one

endpoint a nodeu 6∈ Gopt. Let us denote byTu a graph such thatpH ⊂ Tu and there exists a set of edges

U ⊆ EDGES(Gopt) satisfying:Tu ∪ (Gopt \ U) is a minimal network belonging toΓGSPNC . If we assign a

cost topH so that:

COST(pH) ≥ COST(U)− COST(Tu \ pH), ∀Tu, ∀U,

thenGopt is optimal solution for the new instance.

Proof. Let us suppose thatGopt is not optimal for the new instance. Necessarily, there exists an optimal

solutionHopt for the new instance, a sub-graphTu and a set of edgesU ⊆ EDGES(Gopt) so thatpH ⊂ Tu ⊂
Hopt andHopt = Tu ∪ (Gopt \ U). Then, we have the following relation:

COST(Hopt) < COST(Gopt),

and moreover,

COST(Hopt) = COST(Tu) + COST(Gopt)− COST(U)

= COST(Tu \ pH) + COST(pH) + COST(Gopt)− COST(U) < COST(Gopt),

implying: COST(Tu \ pH) + COST(pH) − COST(U) < 0, which is a contradiction. Hence,Gopt is globally

optimal for the new instance.

QED

Proposition C.0.14 LetGopt be an optimal solution of the original instance. LetT be au− tree added to

G. If we assign costs toT so that∀U ⊆ EDGES(Gopt) and∀T̄ ⊆ T such thatT̄ ∪ (Gopt \U) ∈ ΓGSPNC and

minimal, we have the inequality:

COST(T̄ ) ≥ COST(U),

thenGopt is globally optimal for the new instance.

Proof. Let us suppose thatGopt is not optimal for the new instance. Necessarily, theu− tree T introduces

new paths so that there exists an optimal solutionHopt for the new instance, a set̄U ⊆ EDGES(Gopt) and a

graphT̄ ⊆ T such thatHopt = (Gopt \ Ū) ∪ T̄ . SinceGopt is feasible for the new instance but not optimal,

we have:

COST(Hopt) < COST(Gopt).
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Then,

COST(Hopt) = COST(Gopt)− COST(Ū) + COST(T̄ ) < COST(Gopt),

implying: COST(T̄ ) − COST(Ū) < 0, which is a contradiction. ThereforeGopt is globally optimal for the

new instance.

QED

The following Proposition is particularly useful to assign costs to the original graph preserving as global

optimal solution a known feasible topology having minimum number of edges.

Proposition C.0.15 (minimal topology) LetG be a feasible solution of the GSPNC instance such that for

any other feasible solutionH we have:

1) |EDGES(G)| ≤ |EDGES(H)| and moreover,

2) for any edgee ∈ G and for any edgēe ∈ (G \ EDGES(G)), ce ≤ cē,

thenG is a global optimal solution.

Proof. Let us suppose thatG is not optimal. Then, there exists a feasible solutionḠ such thatCOST(Ḡ) <

COST(G). We define the following sets of edges:

• A = {e ∈ G|e ∈ Ḡ} andB = {e ∈ G|e 6∈ Ḡ},

• Ā = {e ∈ Ḡ|e ∈ G} andB̄ = {e ∈ Ḡ|e 6∈ G}.

Clearly,EDGES(G) = A ∪B, EDGES(Ḡ) = Ā ∪ B̄ andA = Ā. On the other hand, it is easy to see that:

COST(G) ≤ COST(A) + c(G)

max · |B|,

wherec(G)
max = max{ce|e ∈ G}. If |B̄| ≥ |B| we have:

COST(G) ≤ COST(A) + c(G)

max · |B̄|
by hyp. 2)

↑
≤ COST(A) + COST(B̄) = COST(Ḡ),

which is a contradiction. Otherwise, if|B̄| < |B| we would have the relation:

|EDGES(Ḡ)| = |A ∪ B̄| = |A|+ |B̄| < |A|+ |B| = |A ∪B| = |EDGES(G)|,

which contradicts hypothesis(1). Hence,G is globally optimal.

QED
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Now, let us place in the context of the BNDP. We describe below the main characteristics of the six

first problem instances presented in Chapter 4. Figure 4.16 shows the topologies associated with these test

cases. The black nodes represent the fixed nodes, while the white nodes represent the Steiner nodes, which

may or may not be included in the solution.

• Network 1 has a double grid structure, with 33 fixed nodes, 87 Steiner nodes and 286 edges. The

link costs were chosen so that a link between Steiner nodes has cost 1, a link between a Steiner node

and a fixed node has cost 2 and a link between two fixed nodes has cost 4. The objective is to find

a 2-node-survivable subnetwork with minimal cost (all connection requirement between fixed nodes

are equal to 2). One optimal solution for this problem of cost 140 (shown in Figure 4.18) was found

by an exact parallel-distributed backtracking algorithm [121].

• Network 2 has been constructed in the following way. Taking as basis a network 4-node-connected,

we applied iteratively splitting operations followed by the substitution of four edges by four 2-

octahedron topologies (this topology can be seen in [43]); and posteriorly we appliedH − path

insertions until forming the topology associated to Network 2. We chose 22 nodes as fixed nodes.

From the original topology, we deleted edges in order to have a minimal 4-node-survivable network

spanningS(I)

D (we employ Menger’s theorem, cited in [43], to guarantee the feasibility), and assigned

costs of the edges obtaining a minimal feasible solution of cost 680. The edges that were deleted

were re-inserted into the network and the costs were selected carefully by means of the application

of properties like the exposed above and other properties related to edges satisfying the triangular

inequality, so that the optimum cost is preserved. However, other optimal solutions may come up.

The resulting instance has 22 fixed nodes, 61 Steiner nodes and 262 edges. The links have costs in

the interval[1, 200]. The objective is to find a 4-node-survivable subnetwork spanning the fixed nodes

setS(I)

D (all connection requirement between fixed nodes are equal to 4).

• Network 3 has 41 fixed nodes, 38 Steiner nodes and 364 edges. This network was designed taking

as basis two dodecahedron topologies connected through a fixed node and other connections. Fig-

ure C.1 shows the initial network from which applying splitting operations andH − path insertions

we obtained our testing instance. Our aim is to find a minimum cost network which must be 2-

node-survivable for all pair of fixed nodes and 3-node-survivable for the square fixed nodes. From

the original network, we eliminated some of the edges to have a unique feasible solution, and fixed

arbitrarily the edge values; obtaining a solution of cost 1848 which is shown in Figure C.1 and which

we will call “primary optimal solution”. Then the edges which were eliminated were re-inserted into

the network, with costs chosen in order to preserve the optimality of the primary optimal solution.

Afterwards new Steiner nodes and new connections (and the costs associated with these connections)
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were added by splitting operations andH − path insertions, also verifying the conditions of propo-

sitions C.0.9, C.0.10, C.0.11 and C.0.13 in order to preserve the optimality of the known optimal

topology. Furthermore, we applied someu − tree insertions verifying the conditions of Proposi-

tion C.0.12 and guaranteeing therefore the preservation of the optimality of the primary solution. In

these operations we systematically apply suitable controls to the triangles and cycles formed each

time we add anH − path, a u − tree or two new edges are created by a splitting operation so that

optimality in this solution is maintained (typically, using the propositions C.0.12, C.0.13 and C.0.14).

The “primary optimal” solution is preserved, and new optimal solutions may also come up. All the

edge costs were selected within the[10, 200] range.

Figure C.1: Initial network for Network 3 and the primary optimal solution.

• Network 4 has 41 fixed nodes, 68 Steiner nodes and 383 edges. This network was designed taking

as basis four Brinkman sub-graphs (Four Brinkman graphs with two edges less on each one) inter-

connected according to Figure 4.16. The Brinkman graph is 4-regular, 4-connected and of girth at

least 5. In Figure 4.16 we show the built topology; the edges of the Brinkman sub-graphs are repre-

sented by continue lines and the other connections are represented by broken lines. This instance was

formulated as aNCON(·) problem [78, 126], which is a particular case of the GSP-NC, where each

fixed nodei ∈ S(I)

D is labeled with a positive integer numberri, and the aim is to find a minimum cost

sub-network so that for every pair of fixed nodesi, j ∈ S(I)

D there exists at leastrij = min{ri, rj}
node-disjoint paths. We have 10 fixed nodes withri = 4, 13 fixed nodes withri = 3 and 18 fixed

nodes withri = 2. We know a global optimal solution of cost 3980 which is shown in Figure C.2

and we will call it the “primary optimal solution”. Taking as basis the primary solution and applying

H − path andu − tree insertions, we “rebuilt” the topology of the original instance, and like in

the previous instance we assigned costs to the edges in order to keep the optimality of the primary
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solution. For this, we used the propositions C.0.10, C.0.11, C.0.13 and C.0.14. In the assignment cost

process of the edges, new optimal feasible solutions may eventually come up. The edge costs were

selected within the[1, 200] range.
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Figure C.2: Brinkman graph and the primary solution for Network 4.

• Network 5 has 27 fixed nodes, 94 Steiner nodes and 386 edges. The design of this instance was made

from a great cycle having only the set of fixed nodes. Then, applying splitting operations on this

cycle we obtained another cycle which contains some Steiner nodes (specifically 24 Steiner nodes),

we call this network; as in the previous case; the “primary optimal solution”. Figure C.3 shows

its topology. On a second phase, we iteratively added differentH − paths andu − trees on the

network in construction; in this way new Steiner nodes and new edges were inserted. Our goal is to

find a 2-node-survivable sub-network spanning the fixed nodes. The costs associated with the primary

solution edges as well as the costs associated with the other edges were suitably selected (according to

the properties enunciated above) in order to preserve the optimality of the “primary solution”, which

has cost 2393. In particular, for this instance, we applied the propositions C.0.9, C.0.11, C.0.12

and C.0.13. Once more, after the edge cost assignment process is finished, new optimal feasible

solutions may eventually come up. The edge costs were selected within the[1, 300] range.

• Network 6 has 38 fixed nodes, 33 Steiner nodes and 301 edges. We built this problem from the topol-

ogy shown in Figure C.4 which only has the fixed nodes. By means of consecutive splitting operations

we obtain the topology shown in Figure C.4, which we will take as the “primary optimal solution”

and has 16 Steiner nodes. On this network, we iteratively apply someu− tree insertions followed of

H − path insertion a certain number of times until Network 6 is formed. In this way, the new Steiner
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Figure C.3: Primary optimal solution for Network 5.

nodes could be considered in the optimal solution search for the instance. The resultant network is

shown in Figure 4.16. There are six square nodes: the set{v1, v2, v3} and the set{w1, w2, w3}. Our

objective is to find a minimum cost sub-network whit the following properties:

– there exist at least 3-node-disjoint paths between the fixed nodesvi andwi, i ∈ 1..3;

– there exist at least 2-node-disjoint paths between any pair of fixed nodes.

As in the other previous cases, the costs assigned to the network edges satisfy the presented properties

guaranteeing therefore the optimality non-loss of the “primary solution”, of cost 3041. This process

does not restrict the appearance of new optimal feasible topologies for this instance. Particularly, we

used the propositions C.0.9, C.0.11, C.0.12, C.0.13 and C.0.14. The costs were selected within the

range of[10, 200].

For the instances 3, 4, 5 and 6, we also created other test cases having the same topologies but with other

edge costs (selected within more restricted value ranges), preserving always the the optimum values and

the optimal primary solutions discussed above. The computational experiments with these additional test

cases were similar to those shown in Section 4.6, as the proposed GRASP algorithm found a global optimal

solution in every case.
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Figure C.4: Initial network for Network 6 and the primary solution.
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[120] F. Robledo. Disẽno topoĺogico de redes; casos de estudio: the Generalized Steiner Problem and the

Steiner 2-Edge-Connected Subgraph Problem (text in Spanish). Master Thesis, Universidad de la
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