PEDECIBA Informatica
Instituto de Computacion — Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay

Tesis de Doctorado
en Informatica

GRASP heuristics for Wide Area Network
design

Franco Robledo Amoza

Febrero 2005

Tutor: Héctor Cancela (FI-UDELAR),
Gerardo Rubino (IRISA-INRIA)

GRASP heuristics for Wide Area Network design
Franco Robledo Amoza

ISSN 0797-6410

Tesis de Doctorado en Informatica

Reporte Técnico RT 05-01

PEDECIBA

Instituto de Computacién — Facultad de Ingenieria
Universidad de la Republica.

Montevideo, Uruguay, febrero de 2005

Resumen

Una red dearea extendidaWide Area Network WAN) puede ser considerada como un conjunto de
sitios interconectados pdnkas de comunicami. Topologicarénte, una red WAN esta organizada en dos
niveles: la Red DorsaBackbongy la Red de Accesa/ccess Netwolkcompuesta de un ciertaimero
de sub-redes de acceso locales. Cada sub-red de acceso local usualmente tiena tgéohng, teniendo
como raz un nodo de la Red Dorsal (un siswitch. Los sitios terminales (o clientes) se conectan direc-
tamente al sitio dorsal correspondiente a una sub-red de acceso o bien a un sitio concentrador de la misn
La Red Dorsal tiene usualmente topdiegle malla y su pragsito es permitir comunica@n eficiente y
confiable entre los nodos de la Red Dorsal quéattomo puntos de entrada para las sub-redes de acceso
locales.

En esta tesis atacamos el problema delfdiste una red WAN descomp@midolo en dos sub-problemas
interrelacionados: el dige de la Red de Accesthge Access Network Design Proble®NDP) y el diséio
de la Red Dorsaltlie Backbone Network Design ProblenBNDP). En ambos modelos consideramos
solamente costos de constru@ti por ejemplo, los costos de dragado para el tendidindad y la puesta
en servicio del cableado de la red.

Modelamos el ANDP como una variante del Problema de Steiner en Gth®o$Sieiner Problem in
Graphs- SPG), y el BNDP en base al Problema General de Steiner en Grafos con requerimientos de nod
conectividad the Generalized Steiner Problem with Node-Connectivity Constrai@SP-NC). Aderas,
estudiamos un caso particular del BNDP en élldenemos requerimientos de 2-nodo-conectividad en-
tre pares de sitios switch fijos de la Red Dorsal. Este problema lo denominamos BND2NSNode-
Survivable Backbone Network Design ProbJefEl ANDP, BNDP y BNDP2NS son problemas NP-Hard.

Nuestro objetivo fue resolver el ANDP, BNDP y BNDP2NS mediante elfdisge helisticas efi-
cientes. Optamos por la meta-histica GRASP Greedy Randomized Adaptive Search Procedaoeno
base para el di$® de algoritmos a medida para estos problemas. GRASP es una metadqumtente
gue ha demostrado ser altamente eficiente al ser aplicada en otros problemas de oftiroi@abinato-
ria. Desarrollamos algoritmos GRASP para los tres problemas, introduciendo diferentes alternativas tant
para la fase de construéci como para lalsqueda local. Los algoritmos disslos explotan fuertemente
propiedades faricas que incluyen la descomposigitopobgica de las soluciones factibles. Introducimos
aden@s un modelo neural subyacenRafdom Neural NetworkRNN) utilizado en una de lasisquedas
locales para el ANDP.

En los tres problemas, las h&ticas GRASP digedas fueron testeadas sobre grandes conjuntos de
instancias de prueba, con topolag de diferentes caracigticas, incluyendo instancias con centenares de
nodos. Los resultados computacionales obtenidos fueron altamente prometedores, alcanzado en mucl
casos la optimalidad o bien soluciones factibles minimaggsnas locales de bajo costo.

Palabras Claves:topological design, access network, backbone network, survivability, GRASP, RNN.

Abstract

A wide area network (WAN) can be considered as a set of sites and a set of communication lines tha
interconnect the sites. Topologically a WAN is organized in two levels:b#ekbone networland the
access networkomposed of a certain numberlotal access network&ach local access network usually
has a tree-like structure, rooted at a single site of the backbone, and connects users (terminal sites) eitf
directly to this backbone site or to a hierarchy of intermediate concentrator sites which are connected to th
backbone site. The backbone network has usually a meshed topology, and its purpose is to allow efficier
and reliable communication between the switch sites that act as connection points for the local acces
networks.

In this thesis we tackled the problem of designing a WAN by breaking it down into two inter-related
sub-problems: the Access Network Design Problem (ANDP) and the Backbone Network Design Probler
(BNDP). In both models we considered only the construction costs, e.g. the costs of digging trenches an
placing a fiber cable into service.

We modeled the ANDP as a variant of theeiner Problem in Graph$SPG), and the BNDP on the basis
of the Generalized Steiner Problem with Node-Connectivity Constr§®&P-NC). In addition, we studied
the specific case of BNDP when there exist 2-node-survivability requirements between pairs of backbon
fixed nodes. We call it BNDP2NS and it is analogous to $teiner 2-node-survivable network problem
(STNSNP). ANDP, BNDP, and BNDP2NS are NP-Hard problems.

Our goal was to attack the ANDP, BNDP, and BNDP2NS models heuristically. We opted for the GRASP
(Greedy Randomized Adaptive Search Procedure) methodology for solving them. GRASP is a powerfu
method which has been used with success to find good quality solutions to many combinatorial optimiza
tion problems. We developed GRASP algorithms for these three problems, designing different alternative
algorithms for the construction and local each phases. The algorithms exploited theoretical properties in
cluding feasible solution decompositions. We also introduced an algorithm based on the RNN (Randon
Neural Network) model, which was used in the ANDP local search phase.

For the three problems, the GRASP heuristics were tested over large testing problem sets containin
heterogenous topologies with different characteristics, including instances with hundreds of nodes. Thi
computational results were highly promising, accomplishing the optimality in many cases or good quality
local-optimal solutions.

Key words: topological design, metaheuristic, access network, backbone network, survivability, GRASP,
RNN.

Contents

1 Introduction 9
1.1 Motivation and General Context 9
1.2 Ageneral WAN DesSIgn Process o i i i it e e s e 11
1.3 Access and Backbone Network Design Problems 14
1.4 RelatedWork e 15
1.5 Manuscript Organizationand MainResults 20
1.6 List of publications issued from this thesiswork 21
2 Background 23
2.1 BasicDefinitions 23
2.2 Notation L 25
2.3 Greedy Randomized Adaptive Search Procedure 26
2.4 Random Neural Network e 30
3 The Access Network Design Problem 35
3.1 Introduction L e e 35
3.2 ANDP NP-Completeness e 36
3.3 ANDP Construction Phase Algorithms 40
3.3.1 Algorithm ANDPConstPhasel 40
3.3.2 Algorithm ANDPConstPhase2 42
3.4 ANDP Local Search Phase Algorithms 45
3.4.1 Neighborhood Strategy by concentrator site insertion 47
3.4.2 Neighborhood Strategy by concentrator site elimination 49
3.43 MSThbhasedlocalsearch 52
3.44 RNNbasedlocalsearch, 54
3.5 The GRASP algorithmsforthe ANDP 57
3.6 Performance Tests. e 60

3.7 Conclusions

The Backbone Network Design Problem
Introduction
Notation, Problem Formalization and Auxiliary Definitions
BNDP Construction Phase Algorithms
4.3.1 Algorithm ConstPhase
BNDP Local Search Phase Algorithms
4.4.1 Algorithm LocalSearchl
4.4.2 Algorithm LocalSearch2
4.4.3 Algorithm LocalSearch3
The GRASP algorithms for the BNDP
Performance Tests
4.6.1 BNDP test-set description
4.6.2 Numerical Results
4.6.3 Performance Analysis for the GRASP heurigtic
4.7 Conclusions

The 2-Node-Survivable Backbone Network Design Problem
Introduction
Notation, Problem Definition and Auxiliary Definitions
BNPD2NS Construction Phase Algorithms
5.3.1 Algorithm ConstPhaseANS
5.3.2 Algorithm ConstPhaseZNS
5.3.3 Algorithm ConstPhased\S
BNDP2NS Local Search Phase Algorithms
5.4.1 Algorithm LocalSearch2NS
5.4.2 Algorithm LocalSearch2NS
5.4.3 RecConnect description
The GRASP algorithms for the BNDP2NS
Performance Tests
5.6.1 BNDP2NS test-set description
5.6.2 Auxiliary topological properties
5.6.3 Numerical Results
Conclusions

CONTENTS

CONTENTS

6 Conclusions

A Equivalent formulations for ANDP
B ANDP test cases

C Properties used for generating BNDP test cases

169

173

175

183

Chapter 1

Introduction

1.1 Motivation and General Context

Telecommunication networks have become strategic resources for private and state-owned institutions ar
its economic importance continuously increases. There are series of recent tendencies that have a cons
erable impact on the economy evolution such as growing integration of networks in the productive system
integration of different services in the same communication system, important modifications in the tele-
phone network structure (voice and data integration, mobility, telephony development on IP platforms, etc)
Such evolutions accompany a significant growth of the design complexity of these systems. The integratio
of different sorts of traffics and services, the necessity of a more accurate management of the service quz
ity, in particular on IP platforms (but on which has not been anticipated the evolution management and the
technologies coexistence), are factors that make this type of systems very hard to design, to dimension at
therefore to optimize. This situation is complemented with a very high competitiveness context, on an are:
of critical strategic importance.

In this work, we will focus on modern communication network planning. This field has considerably
developed recently mostly owing to the introduction of optic fiber technologies which have very good
performance. The planning and design of telecommunication networks is a very complex and generall
expensive task. It integrates optimization process loops, analysis activities and quantitative evaluations. Tr
planning team must consider the already existent or anticipated needs, the costs of the different elemen
that compose the systems, the restrictions on the performance, the reliability, the evolutiveness, the servi
guality, etc., besides specific restrictions on each particular system and, as a function of these, design
network as adapted as possible to the technical and to the economic plan. In the case of small size networl
the team may consist of a single person while in large-scale networks as wide telecommunication network
(a WAN: Wide Area Network) the planning team may be constituted by several people working at different

9

10 CHAPTER 1. INTRODUCTION

organization levels.

The conception of a WAN is a process in which dozens of sites with different characteristics require to be
connected in order to satisfy certain reliability and performance restrictions with minimal cost. This design
process involves the terminal sites location, the concentrators location, the backbone (central network c
kernel) design, the routing procedures, as well as the lines and nodes dimensioning. A key aspect on WA
design is the high complexity of the problem, as much in its globality as in the principal sub-problems
in which it is necessary to decompose it. Due to the high investment levels a cost decrease of very fey
percentage points while preserving the service quality results in high economic benefits.

Typically, a WAN network global topology can be decomposed into two main componentscebss
networkand thebackbone networkThese components have very different properties, and consequently
they introduce specific design problems (although they are strongly interdependent). On one hand, thi
causes complicated problems (particularly algorithmic ones); on the other hand, it leads to stimulating an
difficult research problems.

A WAN access network is composed of a certain number of access sub-networks, having tree-like
topologies; and the flow concentration nodes allow to diminish the costs. These integrated flows reach th
backbone which has a meshed topology, in order to satisfy security, reliability, vulnerability, survivability
and performance criteria. Consequently, the backbone is usually formed by high capacity communicatiol
lines such as optic fiber links. In general, this WAN topological feature is valid in the case of a datagram
based network (as in IP technology) and also in circuit commutation (as in the current telephone networl
or other technologies like X25, Frame Relay o ATM).

Globally, the designing team manages an important amount of data to propose a model that fulfills the
preestablished requirements. For instance, it has information about the set of the terminal sites positions (it
company customers, the service subscribers, etc.) and about the characteristics (most of the time estimat:
of the inter-sites flows (volume, temporary behaviour, etc). Also there is information about the performance
restrictions (for example delays), about the service quality (for example of video data quality), and on
aspects such as reliability, vulnerability, connectivity, security and availability. On the network components
aspect, the designer has a list of possible components according to the involved network nature, with it
characteristics and costs. The technical nature of the considered network leads to specific routing procedur
that should be taken into account for searching efficient solutions, or if possible optimal solutions. In genera
there are many other complementary data such as which sites are suitable to install a concentrator in, whi
ones are not suitable for that, which backbone sites must have switch servers, special characteristics
security restrictions for some flows, etc.

Based on this data set, the designer must specify the access network and the backbone network topo
gies as well as the characteristics of the different sites and connections, the traffic routing, etc. The result ¢
this process are specific optimization models for the design of both subnetworks and for the global WAN

1.2. A GENERAL WAN DESIGN PROCESS 11

design problem. This global set of problems typically include the evaluation of performance, reliability, etc.

1.2 A general WAN Design Process

Modelling a WAN design by means of the formulation of a single mathematical optimization problem is
very intricate due to the interdependence of its large amount of parameters. Therefore the design of a WAI
is usually divided into different sub-problems. A good example of a possible decomposition approach for
the WAN design process is the following [108]:

I) Access and backbone network topologies design. Specific knowledge about the cost of laying line:
between different network sites (terminals, concentrators and backbone) is assumed. Frequentl
these costs are independent of the type of line that will effectively be installed since they model the
fixed costs (cost of digging trenches in the case of optic fiber, installing cost, placing a fiber cable
into service, etc.). A high percentage from the total construction network budget is spent in this
phase [126].

[I) Dimensioning of the lines that will connect the different sites of the access and backbone networks,
and the equipment to be settled in the mentioned sites.

[Il) Definition of the routing strategy of the flow on the backbone network.

These three sub-problems have different types of constraints:

e for the sub-problenfl):

— The terminal sites (the clients) must be connected either directly to a backbone node, or througt
a hierarchy of intermediate concentrator sites which are connected to the backbone. Usually
there exist additional restrictions such as limiting the number of concentrators connected in
cascade, so that in the case of a trunk line cut a significative number of terminal sites will not be
affected.

— The backbone must satisfy reliability restrictions that allow it to remain operational (connected)
when failures occur in its servers or links. These reliability restrictions are often expressed in
terms of the network connectivity. For instance, telecommunication network topologies which
have proved being highly performant are the 2-node-connected optic fiber networks. Its physical
components have very low failure rates; and the network itself is resilient in the presence of a
failure in a node or link. In the same direction, 3-node-connected topologies have been used ir
optic fiber networks connecting critical sites of a aircraft carrier [78, 126].

12 CHAPTER 1. INTRODUCTION

e Once the topological structure of the WAN is designed, its components are dimensioned in order
to fulfill the performance requirements. A routing plan design and the projection of flows over the
backbone must be done so that the performance restrictions imposed be respected. In this way, it ce
be noticed thatII) and(III) are not independent. Taking into account the technologies used, some
of the usual performance restrictions are:

— the traffic delay should not be greater than a certain prefixed limit. This restriction is imposed
to the access network as well as to the backbone.

— the blocking factor (the probability of a new connection to not succeed) must be lower than a
certain prefixed value.

— the packet loss rate must be relatively low. A level6f* constitutes the agreed maximal level
of the packet loss rate for a network normally working, for today standards.

We give below a generic WAN planning process as well as references related to other works in this
area, including topics such as hierarchical network design, multitechnology network design, etc. Taker
from [108]:

1) Backbone nodes localization. This implies producing a hypothésiegarding the backbone sites
localization or modifying the precedent hypothesis. These hypothesis must consider the switche:
installation in the core of the most dense zones.

2) Access network conception:

a) Depending on the hypothesi$, an access topology is constructed by optimally placing the
concentrator equipments. If this is not possible, at least a local optimum should be reached a:
the result of applying clustering strategies.

b) Determination of the needed capacities in the access network (links and nodes).

c) Determination of the access network performances by adjusting them to the required level (spec
ified in 2b).

d) Determination of the access network reliability by tunning corresponding parameters to meet
the required level (specified itb).

e) Compute the access network cost.

f) Determination of the reduced matrix of point-to-point traffic between the backbone switch nodes
which are entries of the access sub-networks inducezibyrhese flows must be routed over
the backbone topology once this last one has been designed.

1.2. A GENERAL WAN DESIGN PROCESS 13

3) Backbone network conception:

a) Based on the hypothesig, a backbone network topology is built adjusted to the reliability
demands.

b) A routing strategy is defined. The point-to-point flows are projected into the network designed
in 3a. Thus, the paths of the backbone on which will circulate the effective traffic are obtained.

c) Determination of the needed capacities in the backbone network (links and nodes).

d) Determination of the backbone network performance in order to check if the required levels are
fulfilled. If necessary the network @t or the capacities dic are redefined.

e) Determination of the backbone network reliability by adjusting it to the required level. If neces-
sary the topology computed Bu is redefined.

f) Determination of the network fairness in order to achieve some required level. If necessary the
topology computed i3a is redefined.

g) Computation of the backbone network cost.
4) Results consolidation and global balance:

a) Determination of the global performances involving the access and the backbone networks si-
multaneously. If appropriate, return ®or 3 depending on where performance restrictions
violations happen (i.e. in the access network, the backbone, or both).

b) Determination of the global reliability involving the access and the backbone networks. If ap-
propriate, return t@ or 3 depending on where reliability restrictions violations happen (i.e. in
the access network, the backbone, or both).

c) Compute the overall cost (composed of the access network cost and the backbone network cost
If the WAN cost is approved, the obtained topology is returned as a solution. Otherwise, return
to 1 in order to produce a new hypothegis

Based on performance evaluation procedures and dimensioning rules common to both network level
(access network and backbone), in [108] each sub-problem is studied and specific algorithms to solv
them are proposed. The connections cost taking into account the geographic distances among the involv
sites and the annual connection tariffs provided by the telecom operators are estimated. For the topologic
design of the access network the authors use clustering approaches regarding to the backbone switch not
whereas for the topological design of the backbone network they apply a variant of the Steiglitz heuristic,
denominated Hierarchical Method. Even if the testing cases presented are relatively small, the suggeste«
methodology can be useful as a reference about the way of decomposing the WAN topological planning

14 CHAPTER 1. INTRODUCTION

process into several sub-problems. For other related works concerning the optimal design of a multi-leve
hierarchical network the reader can consult the references [10, 8, 11, 81, 24, 25, 38, 79, 94, 128]. Mainly
they are centered in network planning contemplating also several aspects of network dimensioning. Othe
problems in this area can be found in [3, 16, 53, 55, 56, 107, 129], where the authors propose sever:
models for designing low-cost network topologies with additional constraints such as fault tolerance anc
performance restrictions, considering in addition in some of them network components dimensioning.

In this thesis, we will concentrate on phad¢ of the decomposition of a WAN design process. More
precisely, we are interested in the topology planning process concerning the access network and the bac
bone network. Our motivation comes from the necessity of devising efficient approximated algorithms for
these topological design highly-combinatorial problems. Due to the NP-hard nature of the problem anc
even though there exist some results, there is still room for improving industrial practices applied today.
In this sense, we believe it is of strategic importance designing powerful quantitative analysis techniques
potentially easy to integrate into tools. We introduce combinatorial optimization models to formally define
the topological design of the access and backbone networks, and we propose different approximated alg
rithms to solve them which are based on the well-known GRASP (Greedy Randomized Adaptive Searcl
Procedure) methodology [45].

1.3 Access and Backbone Network Design Problems
We will define these problems in terms of graph theory; for this purpose we introduce the following notation:
e Sy isthe set of terminal sites (clients) to be connected to the backbone.

e Sc is the set of feasible concentrator sites of the access network. On each one of these sites, an inte
mediate server equipment might be placed. From this one, a trunk line is laid towards the backbone
or other concentrator site.

e Sp is the set of feasible switch sites of the backbone network. On each one of these sites, a powerfL
server might be placed and from it, connection lines towards other backbone server equipments.

e V =S57US-USp are all the feasible sites of the WAN network.

o A ={a;;}ijev is a matrix which gives for any pair of sitésj € V, the costu;; > 0 of laying a line
between them. When the direct connection betwieamd j is not possible, we defing; = oc.

o U={(i,7)]1,7 € V,a;; < oo} is the set of all the feasible connections between the different sites of
the WAN network.

1.4. RELATED WORK 15
e G = (V,U) is the simple graph which models every node and feasible connection of the WAN.

The General Access Network Design Problem (GANDP) consists of finding a minimum-cost subgraph
H C @ such that all the sites df; are communicated with some node of the backbone. This connection
can be direct or through intermediate concentrators. The use of terminal sites as intermediate nodes is n
allowed; this implies that they must have degree one in the solution.

We simplified the GANDP problem by collapsing the backbone into a fictitious node. We call it the
Access Network Design Problem (ANDP) and the equivalence between both problems, GANDP and ANDP
is proved in Appendix A. The ANDP is NP-Complete (we will demonstrate it by reducing the Steiner
Problem in Graphs to it in Chapter 3).

Given a subset of switch site%j? C Sp and a non-negative integer matrix = {rij}mesgh the
Backbone Network Design Problem (denoted by BNDP) consists of finding a minimum-cost subgraph
H C G(Sp) such thatSyy C H andVi,j € S} there exist at least;; node-disjoint paths connecting
1 with j in H. This problem can be modelled as the Generalized Steiner Problem in Graphs with Node-
Connectivity constraints (denoted by GSP-NC) which is NP-Complete in the general case [136].

For further details on the formulations of the Generalized Steiner Problem in its both versions, edge-
connectivity (denoted by GSP-EC) and node-connectivity, the reader may consult [134, 135, 136].

A particular case of the BNDP is when, = 2, Vi,j € S§,. This is known in the literature as the
Steiner 2-node-survivable network problem (denoted by STNSNP) [6].

We call S})) the set of fixed switch nodes. These will necessarily have to be integrated to the solution,
either because they are access sub-network entry points to the backbone or due to specific conceptit
requirements. The sites ¢fy \ S}, are optional (commonly named Steiner nodes) and may be use to
reduce the backbone cost.

Our aim in this thesis is the study of the ANDP and BNDP problems. For the BNDP case we study the
general case when the base model is the GSP-NC as well as the particular case when the base model is
STNSNP, which we denote BNDP2NS (2-node-survivable BNDP). In the next subsection, we introduce &
survey of works related to the ANDP, BNDP and BNDP2NS.

1.4 Related Work

As we already mentioned when we are talking of networks in this thesis, we are interested only in their
topology, that is, we see a network as a set of sites and links that are placed between sites. Survivabilit
in this context means that between any two sites there exists a pre-specified number of paths (consisting
nodes and links) that have no node or link in common. The only costs considered are costs associated wi
the network topology like the cost of digging trenches in case of optic fiber. The problems ANDP, BNDP,

16 CHAPTER 1. INTRODUCTION

and BNDP2NS correspond to this context. In practice, the topology of a network with low placement costs
is created first, and in a second optimization stage, traffic and routing costs are considered [126].

We concentrate first in the literature related to ANDP. In [2, 4, 12, 49, 57, 54, 72, 68, 96, 99, 110, 111],
the authors propose different approximate algorithms for the topological design of local and large-scale
access networks. They are based on different approaches, and consider different parameters and rest
tions, including aspects such as: the design of the access network is restricted to specific topologies; tf
number of concentrators to be placed is limited; network components dimensioning, etc. The resolutior
techniques used in these works include: Lagrangian Relaxation mixed with the Sub-gradient Method [99]
Simulated Annealing [96], Linear Programming Relaxation [4], Lagrangian Heuristic, Greedy Heuris-
tics [72], Branch-and-Bound mixed with Lagrangian Relaxation, Branch-and-Bound with Benders decom-
position [110, 111], Neural Networks [2], Tabu Search [68], Genetic Algorithms, plus other specific meth-
ods.

Next we will focus on the GSP-NC and STNSNP (which are the reference models of base for our BNDP
y BNDP2NS problems) and their related survivability models like those presented in [135, 136, 126].

Winter [135, 134, 136] demonstrated that the GSP-NC can be solved in linear time if the network is
series-parallel, outerplanar or a Halin graph. Nextly, we will give a summary of the survivability problems
related to the GSP-NC and STNSNP.6Gichel, Monma and Stoer [74] consider a particular case of the
GSP-NC working on a slightly different context. They called it the NCON problems. In [126], Stoer
gives an extensive survey for the NCON and the ECON (the version with edge-connectivity constraints),
and some particular cases. The NCON (resp. ECON) is formalized as follows. Given an undirectec
graphN = (X, U) such that each edgec U has a fixed weight, representing the cost of establishing
the direct link connection. In particular, each nade X has an associated nonnegative integethe
type of ¢ (the survivability requirement or “importance” of a node is modeled by node types)H Let
(W, F) be a subgraph oN. We say that/ satisfies the node-survivability conditions (also called node-
connectivity constraints or requirements), if, for each pajre X of distinct nodesH contains at least
r;; = min{r;,7;} node-disjoint paths communicatingwith j. Similarly, we say that{ satisfies the
edge-survivability conditions (also called edge-connectivity constraints or requirements), if, for each pair
i,j € X of distinct nodesH contains at least;; = min{r;, 7;} edge-disjoint paths communicatingvith
j. These conditions ensure that some communication path betveaely will survive a prespecified level
of node (or edge) failures.

Let us observe that the GSP-NC model generalizes the model given above since in the GSP-NC thel
exist general survivability requirementg that are specified for each pair; of fixed nodes independently.
Nevertheless, @Gtchel, Monma and Stoer [75, 77, 76, 78] introduce the use of node types to define sur-
vivability requirements based on the premise that these adequately express the relative importance plac
on maintaining connectivity between offices. They classify the different problem types according to the

1.4. RELATED WORK 17

largest occurring node type and according to whether the node types represent node or edge connectiv
requirements. In this way, given a graph= (X, U) and a vector = (7;);cx, by assuming (without loss
of generality) that there exist at least two node types of typehich is defined as the largest node type),
they speak of th& NCON problem (resp£ECON) when the objective is to find a minimum-cost network
that satisfies the node survivability conditions (resp. the edge survivability conditions). If the highest value
of k£ is not specified, these problems are called NCON and ECON respectively. In particular, if all node
types have the same valiethe problem NCON (resp. ECON) is reduced to firdode-survivable (resp.
k-edge-survivable) networks having minimum cost.

Let us note that there exist many specializations of the survivability problems which can be formulated
by varying its parameters as follows:

e As mentioned previously, the GSP-NC and GSP-EC are more general models of survivability than
NCON and ECON, since the connectivity requirements are associated to pairs of nodes in independer
form and not necessarily involving all the nodesXof

¢ In the NCON and ECON, we have; = min{r;, r;} for given nodes types;, r;, which in turn may
be:

— general EECON orkNCON problem),
— uniform (k-edge ork-node connected graphs),

— in {0, 1} (Steiner trees)
e general or euclidean or uniform costs.

There exist polynomially solvable cases of the NCON and ECON problem. They result from relaxing
the original problem with restrictions like uniform costs, 0/1 costs, restricted node types, and special under
lying graphs such as outerplanar, series-parallel, and Halin graphs. All these particular cases are referenc
and briefly exposed in [126]. On the other hand, lower bounds and heuristics with worst-case guarantee
for kECON problems were found for restricted costs, e.g., uniform costs or costs satisfying the triangle
inequality, as well as very important results on the structure of optimal survivable networks for this cost
structure. Details of these works can be seen in [13, 34, 29, 48, 50, 69, 71, 102] and in a summarized forr
in [126]. In [126], Stoer also summarizes heuristic procedures to solve gémMdC&N andkECON prob-
lems. Monma and Shallcross [103] give heuristics for the 2ZECON and 2NCON problems. Frederickson
and &ja [50] propose a heuristic for the 2NCON problem with worst-case guarant&& afnder costs
satisfying triangle inequality. Consider the NCON problem where instead a veetafr;);c x we have a
matrix R = (r;;);jex; this variant had been posed already in 1969 by Steiglitz, Weiner, and Kleitman [125],

18 CHAPTER 1. INTRODUCTION

but they did not give it a specific name. They developed a simple heuristic for this problem which basi-
cally consists of a randomized starting routine and an optimizing routine where local transformations are
applied to a feasible solution. Ko and Monma [89] propose heuristics for the desigedie ork-node
connected networks. Goemans and Bertsimas [69] propose a heuristic for the ECON problem with worst
case guarantee. In addition, Goemans and Williamson [71] proposed an approximation algorithm whict
can be applied to the GSP-EC (Generalized Steiner Problem with Edge-Connectivity Constraints) allowing
the use of multiple parallel edges. Khuller and Vishkin [88] propose an algorithm faiE&®©N problem

with a worst-case guaranteed&nd under the restriction that parallel edges are not allowed in the solution
and all types of nodes are equal. Recently, Balakrishnan, Magnanti and Mirchandani [9] presented a famil
of new mixed-integer programming formulations for the GSP-EC, whose associated linear programming
relaxations can be tighter than those of the usual cutset formulation. They provide several combinatoria
heuristics for these formulations, which satisfy that the bounds on the heuristic costs relative to the optima
values of the integer program and the linear programming relaxation of the tighter formulation are strongel
than some previously known performance bounds for combinatorial heuristics. For further details of these
works (and their performance tests) the reader may consult the cited references.

Unfortunately, there exist few exact algorithms for the NCON and ECON for general costs. Christofides
and Whitlock [36] introduce a cutting plane algorithm together with branch-and-bound for ECON problems
where instead a vector= (r;);cx we have a matrix = (r;;);;ex. Chopra and Gorres [33] give a cutting
plane algorithm mixed with branch-and-bound for solving 2ECON problems.

In the literature there are several works related to approximation algorithms for the GSP and different
particular cases. Next, we will introduce a survey of the main existing algorithms based on this approach
In [112] the authors show how to obtain approximately optimal solutions to 2-edge-connected versions of
the problems addressed in [71]. Subsequent papers [70, 51, 133] extended these methods to give appr
imation algorithms for the GSP-EC without link duplication. Agrawal, Klein and Ravi [1] developed an
algorithm for the GSP-EC with performance guarante@|dfg, (... + 1)], wherer,,.. is the highest
requirement value. More recently Jain [83] presented a facémproximation algorithm for the GSP-EC.
Kortsarz, Krauthgamer and Lee [92] introduced the first strong lower bound on the approximability of the
GSP-NC when there are no Steiner nodes.

An important special case of the GSP-NC occurs when we are searching the minimukapomis-
connected subgraph spanning all the nodes. In first place, let us see the general case. In [29, 40, 32, 92,
114, 113] the authors propose several approximation algorithms for the problem of finding a minimum-cost
k-node-connected spanning subgraph, besides they give their respective approximation ratios. For
an approximation ratio of(k + 1)/2] is known (see [86] fok = 2, [5] for k = 2,3, [82] for k = 4,5,
and [93] fork = 6, 7). Other approximations fak = 2 can be seen in [14, 39]. Furthermore, in [40], [31]
and [93] the authors respectively supply approximation algorithms for the following special cases: the grapt

1.4. RELATED WORK 19

has complete Euclidean topology, uniform costs, and metric costs (i.e. when the costs satisfy the triangl
inequality).

Another problem related to the GSP-NC (resp. GSP-EC) is the node-connectivity augmentation prob:
lem, where the goal is to find a minimum-cost set of edges that augmenisrade-connected (resp.
m-~-edge-connected) graph intdcanode-connected (resp-edge-connected) graph. Some of the principal
references in this area are [27, 30, 46, 52, 84, 95, 87, 104, 109, 106, 130, 132]. These papers provic
different approximation algorithms with their respective approximation ratios. Some of these works study
the particular case when the costs are uniform, which is commonly known as minimum-size connectivity
problem.

Finally, let us see works related to the STNSNP. In [6]damentions different problems related di-
rectly to the STNSNP. In particular, the problems known as:

e the Steiner 2-edge-connected subgraph problem (STECSP), and
¢ the Steiner 2-node-connected subgraph problem (STNCSP), and
¢ the Steiner 2-edge-survivable network problem (STESNP).

The STNSNP (resp. STESNP) also corresponds to the prodMBON (resp.AECON) in the case where

r; € {0,2}, Vi € X. Given a graphV = (X,U), a subsefl” C X and a matrixC' of connection costs
associated t&’; the objective in the STNCSP (resp. STECSP) is to find a minimum-cost 2-node-connected
(resp. 2-edge-connected) subgraph spanning the set of ilodéshe matrix C' is positive, the sets of
optimal solutions associated to the STNSNP and STNCSP are equal. Idem the sets of optimal solutior
associated to the STESNP and STECSP. If all the nodes are fixed (there are no Steiner nodes) the proble
STESNP and STECSP coincide, and also the STNSNP with the STNCSP. Moreover, it is easy to see th
all feasible solution of the STNCSP (resp. STECSP) is also feasible for the STNSNP (resp. STESNP)
In [37] the authors developed a linear algorithm to solve the STNCSP in the case of graphs With@ut
wheel graph with four nodes) and Halin graphs. The author of the present thesis has previously develope
a parallel method (of worst case exponential complexity) for the general case [23]. Other works related tc
particular cases of the STNCSP, e.g. whliea X or uniform costs, already have been mentioned above.

We find in the literature other works related to our BNDP. In [15, 26, 28, 41, 67, 66, 91, 97] the au-
thors provide different approaches for the topological design of a backbone network. Most of these works
are not only focused in the topological design, but they also consider aspects such as network dimensiol
ing, routing mechanisms, etc. They are based on different optimization models which include selection o
network topology and other additional objectives. We can see these ones as network planning process
where the goal is to find backbone topologies with lowest possible overall network price, while keeping all
requirements (such as availability, maximal number of, maximal blocking probability, etc.) satisfied. The

20 CHAPTER 1. INTRODUCTION

resolution techniques used in these works include: Genetic Algorithms, Branch-and-Bound method mixe
with the algorithm of Ford-Fulkerson, Tabu Search, Greedy Heuristic combined with Tabu Search heuristic
as improver, Lagrangian Relaxation embedded in a sub-gradient optimization procedure, Dual-Based lowe
bounding procedure incorporated in a Branch-and-Bound algorithm, Dual-Based solution procedure, Hy
brid approach of a genetic algorithm and local search algorithms as improver, Tabu-Search heuristic with
post-optimization algorithm, and other specific heuristics.

1.5 Manuscript Organization and Main Results

This thesis work is organized as follows. Chapter 2 introduces notation, basic definitions of graph theory
and general descriptions of the GRASP metaheuristic and the Random Neural Network (RNN) model. Ir
Chapter 3 we study the ANDP problem. We propose different approximated algorithms to solve the ANDP.
These algorithms were designed based on the GRASP methodology. In particular, we provide several alte
natives for the GRASP components: two algorithms for the construction phase and two algorithms for the
local search phase (one of these based on the RNN model). In this way, we yield four different versions o
GRASP algorithms to be applied to the ANDP. To proof practically our GRASP algorithms, we generate
a large ANDP test-set by customizing SPG instances extracted from the SteinLib library [90]. The opti-
mal costs of the original SPG instances provide lower bounds for the optimal costs of the corresponding
ANDP instances. Nevertheless, except for the cases in which we achieved the lower bound and therefol
the optimality, we do not know the optimal values for the generated ANDP instances. The experimenta
results showed a good quality of the built solutions, obtaining in most of the cases optimal or near-optimal
solutions with low gaps with respect to the lower bounds. The main results presented in this chapter hav
been published in [19, 20, 22, 122, 123]. In Chapter 4 we study the BNDP problem and propose differen
approximated algorithms to solve it. As in the ANDP, we used GRASP methodology. We introduce an
algorithm for the construction phase as well as three algorithms for the local search phase. These three pr
cedures are structurally different so that each of them explores a particular sub-space of neighbor solution
This allow to define different exploration strategies by suitably combining the local search algorithms. As
test-set for the BNDP, we used instances generated constructively with known optimum, instances gene
ated by adding randomly Steiner nodes to TSP instances extracted from the TSPLib repository and specif
GSP instances from the literature. The algorithms obtained good results, attaining the optimum in man
cases or near-optimum solutions with low gaps (less than 0.7%) with respect to the optimum values. Ir
addition, for the cases without known optimal value (those derived from TSP instances), we achieved goo
quality minimal feasible solutions when comparing them with tight lower bounds for the optimal 2-node-

connected solutions for the original TSP instances. The results concerning BDNP have also been publishe

1.6. LIST OF PUBLICATIONS ISSUED FROM THIS THESIS WORK 21

in [17, 18, 21]. In Chapter 5, we study our BNDP2NS. Based on specific structural properties of the 2-
node-survivable networks, we designed GRASP algorithms to solve approximately the BNDP2NS. More
precise, we introduce an algorithm for the construction phase based on a topological characterization c
2-connected graphs. Furthermore, we give other two alternative algorithms for the construction phase. A
test-set for the BNDP2NS, we used problems from the TSPLib transforming them into BNDP instances by
adding a large number of Steiner nodes (in all cases more than 29% of the total). Although we do not knov
the optimum solutions (i.e. their respective optimal values) of the resulting instances, particularly for the
Euclidian BNDP2NS instances we can bound the optimal values within a interval determined by a theoren
introduced by Monma et al. [102]. This interval only depends on the optimal value corresponding to the
original TSP instance. The results obtained in the testing phase show that our GRASP algorithms find i
most cases good quality solutions. In particular, for the Euclidian BNDP2NS instances, we improved sig-
nificatively in many cases the optimal 2-node-connected solution spanning the fixed-nodes; more precisel
we reached smaller values than the lower bounds for the latter. In Chapter 6, we give final conclusions an
some guidelines for future work. Appendix A contains the proof of ANDP NP-completeness. Appendix

B provides tables summarizing experimental results obtained for the ANDP. In Appendix C we introduce
some propositions used to build BNDP instances with known optimum cost.

1.6 List of publications issued from this thesis work

For easy lecture, we give here the list of publications related to this thesis (with the same reference numbe
as they are found in the Reference list at the end).

[17] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm for designing a Wide Area Network
backbone. IfProceedings of the International Network Optimization Conference (INOCjz®)es
138-143, Evry/Paris, France, October 2003.

[18] H. Cancela, F. Robledo, and G. Rubino. Network design with node connectivity constraints. In
Proceedings of the IFIP/ACM Latin America Networking Conference (LANCi@&jes 13-20, La
Paz, Bolivia, October 2003.

[19] H. Cancela, F. Robledo, and G. Rubino. Finding Steiner trees with degree 1 terminal Hokfs.
Electronics Express (ELEX)(9):258-262, 2004.

[20] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with RNN based local search for de-
signing a WAN access network. HElectronic Notes in Discrete Mathematics - special issue includ-
ing the Proceedings of the Latin-American Conference on Combinatorics, Graphs and Applications
(LACGA’04) volume 18C, pages 53-58, 2004.

22 CHAPTER 1. INTRODUCTION

[21] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with tree based local search for
designing a Wide Area Network backbondournal of Computer Science and Technologfl):52—
58, 2004.

[22] H. Cancela, F. Robledo, and G. Rubino. Designing low-cost access network topologrrecded-
ing of the International Network Optimization Conference (INOC,@H)iversity of Lisbon, Portugal,
October 2005.

[122] F. Robledo. A GRASP algorithm with MST based local search for designing a WAN access network.
In Proceedings of the 8me Jour@es Doctorales Informatique eéReau (JDIR’04)-France@lecom
R&D, Lannion, France, November 2004.

[123] F. Robledo, R. Maba, I. Manzo, and D. Nachman. Using GRASP for designing low-cost ac-
cess topologies. Ilinternational Conference on Industrial Logistics (ICIL'Q3)niversidad de la
Replblica-Facultad de Ingenier, Montevideo, Uruguay, February 2005.

Chapter 2
Background

In this chapter, we introduce basic notation and definitions that will be used in the next chapters. In addi-
tion, we give a short description of the GRASP (Greedy Randomized Adaptive Search Procedure) methoc
ology [44, 45, 47] as well as a general description of the RNN (Random Neural Network) model [58, 59].

2.1 Basic Definitions

At this point, we introduce basic some definitions of graph theory and other definitions frequently used in
works related to survivability models.

Undirected Graph. An undirected graph is a paff = (V, E) whereV is a non-empty set anfl is a

part of IV x V; thus, the elements df are 2-element subsets Bf The elements o¥ are the vertices (or
nodes) of the grapty, the elements of are its edges (or lines). A gragghis simple when there exists at
most one edge between any pair of nodes. A gi@ph undirected when the edges are pairs of nodes not
ordered. From now, we use graph as a synonymous of simple and undirected graph, as a defduft. Set
denominated set of nodes afAds denominated set of edges.

Ends of an Edge.A node is incident to an edgeif v € ¢; thene is an edge at. The two nodes incident

to an edge are its endpoints or ends, and an edge joins (or connects) its ends. An,edde also written
here agu, v) or (v, u). The set of all the edges ifi at a node» is denoted byF (v).

Induced Graph. Given a graphG = (V, E), if U C V is a subset of nodes th&nU') denotes the graph
on U whose edges are precisely the edge& o¥ith both ends ifU.

Adjacent Node. Given a graplG = (V, E) andu € V, anodev € V' is adjacent (or neighbor) toin G if
(u,v) € E.

Adjacent Edge. Two edges: # f are adjacent if they have an end in common.

Complete Graph. If all the nodes of a graplr are pairwise adjacent, ther is complete. A complete

23

24 CHAPTER 2. BACKGROUND

graph withn nodes is usually denoted l#y,,.

Neighborhood of a Node.Given a graphG = (V, E) the set of neighbors of a noden G is denoted by
N¢(v) or more briefly byN (v).

Degree of a NodeThe degreel;(v) or d(v) of a nodev is the numbefE(v)| of edges at; it is equal to
the number of neighbors of A node of degreé is said to be isolated.

Path. A path is a non-empty grapR = (V, E') of the form:

V =A{v1,v9,...,0c}, E={(v1,v2), (v2,v3), ... (Vk—1,0k)},

where they; are all distinct. The nodes andwv, are linked byP and are called its endpoints; the nodes
va, ..., U,_1 are the inner nodes @ (or internal nodes). We often refer to a path by the natural sequence
of its nodes, writing, sayP’ = vivs . . . v, and callingP a path fromw; to v,. We can also denote the path

by the sequence of its edgeB:= eje; ... ex_1, Wheree; = (v, v2), €2 = (v, v3), ..., €51 = (Vk_1, Vk).

Cycle. Given a pathP = (v; ...vy), the graphC' obtained by concatenating with v,v; is called a cycle.

We often denote a cycle by its (cyclic) sequence of nodes; the above Cycight be then written as
V1V . .. VpVUq.

Independent Paths.We say that two pathg,;, p, included in a graplt = (V, E') are independent if the
intersection of their sets of nodes is empty. We depgte p, = (.

Node-disjoint Paths (with the same endpoints).Given two paths;, p, including inG = (V, E) and
having the same endpoinisv € V, we say thap; andp, are node-disjoint if the intersection of their sets
of internal nodes is empty. Thus, N py = {u, v}.

Subgraph. Given a graphG = (V,E), H = (V',E’) is a subgraph o7 if V/ C V, ' C F and
V(u,v) € E', we haveu,v € V'. We also writeH C G.

Connected Graph. A graphG = (V, E) is connected if for all pair of nodes, v € V' there exists a path
fromutovin G.

Tree. A connected graply = (V, E) is a tree if for all edges € E, G’ = (V, E \ {e}) is unconnected.

Forest. A forest is a graph whose connected components are trees.

Connected Component.A connected component of a graph is a subgraph that is connected and that is
maximal with respect to this property.

Spanning Tree. Given a connected gragh = (V,), a subgrapi{ = (V, E’) is a spanning tree af if

H is connected and for all edgec E’, H' = (V, E' \ {e}) is unconnected.

2-Node-Connected GraphA graphG = (V, E) is 2-node-connected ¥fu, v € V there exists at least two
node-disjoints paths connecting thentin

2-Node-Connected ComponentA 2-node-connected component of a graph is a subgraph that is 2-node-
connected and maximal with respect to this property.

2.2. NOTATION 25

Nodes locallyk-node-connected.Given a graphz = (V, E), two nodesu,v € V are locallyk-node-
connected if there exists at ledgshode-disjoints paths connecting thenn

k-Node-Connectivity. A graphG = (V, E) is k-node-connected ifu, v € V there exists at leagtnode-
disjoints paths connecting themdn

k-Node-Survivability. Given a graplz = (V, E') and a subsét' C V, G is k-node-survivable with respect
to T if Yu,v € T there exists at leagtnode-disjoints paths connecting them(in

2-Node-Survivable Component.Given a graphz = (V, E), a subsefl’ C V and7; C T, a 2-node-
survivable component with respectiis a subgraph ofr that is 2-node-survivable spannifg.

Bridge. Given a graphG = (V, E), an edgee € E is bridge if the graptG’ = (V, E \ {e}) has more
connected components thah

Articulation Set. Given a graphG = (V, E), we callZ C V an articulation set of7, if the induced
subgraphG(V \ Z) has more connected components tharSynonymously, we say that is aseparating
setin G.

Articulation Node. Given a graphG = (V, E), we call a single node € V' an articulation node of7, if
the induced subgrapBR(V \ {z}) has more connected componentes than

2.2 Notation

Now, we will introduce some additional notation that will be used in the following chapters.

e Given two graph&y = (V, E) andG’ = (V', E’), we denote UG’ = (VUV' FUE"),GNG =
VNV ENE)YandG\ G = (V\V' E\E).

e Given a grapltz and a pathp we denote> U {p} (or G U p) the resulting graph when addingdbthe
pathp. More generally, ifP is a set of paths; U P denotes the resulting graph of addingiall the
paths frompP.

e Analogously, ifp has its endpoints ity, the graphZ \ p denotes the resulting graph when removing
from G all the edges and nodes pExcept its endpoints. Moreover, i is a set of paths having the
same endpoints i, thenG \ P is the graph obtained by removing frofh all the the edges and
nodes belonging to paths éfexcept its endpoints.

e Given two pathg,; andp, such that the endpoints of are inp;, p; \ ps is the subgraph obtained
when removing fronp; all the edges and nodes pf except its endpoints.

26 CHAPTER 2. BACKGROUND

e Given a graplG = (V, E) and a cost functiod’ associated wittk (C' : E — R*), we introduce the
operatorcost(-) defined by:

cosT(H) = Z ¢ij, VH C G,

V(i,5)eH

wherec;; = C((i,7)) andH is a subgraph ofs. In addition, if A is another cost function of’, we
denotecost 4 (H) in order to distinguish this operation from other cost functions.

e Given a graph, we introduce the following operators:

— NopEes(H) is the set of nodes o,
— epces(H) is the set of edges df,

— given a pathp, INTERNAL NODES(p) IS the set of nodes gf except its endpoints.

2.3 Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) is a well known metaheuristic, which ha
been applied for solving many hard combinatorial optimization problems with very good results [42, 47,
100, 98, 105, 124, 116, 117, 119]. Extensive surveys of the associated literature are given in [45, 118, 47]

Before describing the main ideas of GRASP, we formulate a generic combinatorial optimization prob-
lem based on the description introduced in [118]. Let us consider:

i) N = {ny,...,n,} is the finite basic set containing the potential elements which will be able to
integrate a feasible solution.

i) F denotes the set of feasible solutions satisfyifigc 27 .

i) f:2Y — R is the objective function. Without losing generality, we will assume the minimization
version, i.e. the aim is to find a global optimal soluti§he £ such thatf (S*) < f(S), VS € F.

These points will be determined, when specifying the optimization problem to be studied. For example, in
the case of the Minimum Vertex Covering Problem:

e N ={uvy,...,v,} is the set of nodes to be considered,
e [is the set of edges connecting the noded/of

e F'is composed of all the subsets 8fsuch that ifS € F' any edge inF has at least one endpoint in
S,

2.3. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 27

e f(5) is the number of nodes belongingto

A GRASP is an iterative process, where each iteration consists of two phases: construction and loce
search. The construction phase builds a feasible solution, whose neighborhood (in some sense to be defir
when adapting the method to each specific problem) is explored during the second phase, looking for a
improvement. The best solution over all GRASP iterations is returned as the result.

We describe now a generic GRASP implementation, whose pseudo-code can be seen in Figure 2.1. Th
generic implementation serves as a template to be mapped into the problems introduced in Chapters 3,
and 5 where specific GRASP methods customized to our problems are proposed.

The GRASP heuristic has three main parameters: the number of iterafienster, the candidate list
sizeListSize, and a third implicit parameter, the initial se€ekd for the pseudo-random number generator.
The first parameter corresponds to the number of iterations in the outer loop of the algorithm. The secon:
parameter will be seen in more detail when explaining the construction phase, but roughly speaking, it is :
measure of how many alternatives will be taken into account at each constructive step.

In some GRASP versions the size of the restricted candidate list is recomputed dynamically (i.e. the
value of ListSize is not fixed), being used in this case a threshold parameter denotedlater, we will
explain in detail both variants.

Looking again at the pseudo-code, it can be seen that GRASP iterations are carried out in lines 2-¢
Each GRASP iteration consists of the construction phase (line 3), the local search phase (line 4) and,
necessary, the solution update (lines 5-7).

Procedure GRASP(ListSize,MaxzIter,Seed);

1 Read_Input_Instance();

2 for k =1to MaxIter do

3 InitialSolution «— Construct-Greedy-Randomized_Solution(ListSize, Seed);
4 LocalSearchSolution «— Local_Search(Initial Solution);

5 if cost(LocalSearchSolution) < cost(BestSolutionFound) then

6 Update_Solution(BestSolution Found, Local SearchSolution);

7 end _if;

8 end_for;

9 return BestSolutionFound,

Figure 2.1: GRASP pseudo-code.

In the construction phase, a feasible solution is built. Figure 2.2 shows a generic pseudo-code for th
construction phase. The solution is usually represented as a set of elements (the precise meaning of the
elements depends on the specific problem); the construction phase starts from an empty set and iterative
adds an element until the set corresponds to a feasible solution. At each step of the construction phase
restricted candidate list (denoted by RCL) is determined by ordering all non already selected elements witl

28 CHAPTER 2. BACKGROUND

respect to a greedy function that measures the (myopic) benefit of including them in the partial solution. Ir
general, this function evaluates the incremental increase in the cost fugi¢tjomhen incorporating each

new element into the solution under construction. Specifically, by applying this function, we build the RCL
containing those elements whose addition to the current partial solution induce the smallest increments
costs (this is the greedy component of GRASP). The next element to be included into the partial solutior
is randomly chosen (uniformly or in some biased form) from the RCL (this is the probabilistic component
of GRASP). In this way, GRASP allows for different solutions to be obtained at each GRASP iteration.
When the chosen element is added to the partial solution, the benefits associated with every element not y
added to the partial solution are updated in order to reflect the change induced by the insertion of the ne\
element. Thus, the heuristic recomputes the RCL and reevaluates the incremental costs (this is the adapt
component of GRASP). Once the construction phase is finished, the solution built is returned.

Procedure Construct _Greedy Randomized _Solution(ListSize,Seed);

Solution < 0;
Incremental costs evaluation for the candidate elements;
while not_feasible(Solution) do;
RCL « the restricted candidate list;
s « select randomly an element fromthe RCL;
Solution «— Solution U {s};
Incremental costs reevaluation;
end _while;

© 00 N O Ok WDN PP

return Solution;

Figure 2.2: ConstrucGreedyRandomizedSolution pseudo-code.

The solutions generated by the construction phase are not guaranteed to be locally optimal with respe
to simple neighborhood definitions. Hence, it can be beneficial to apply a local search to attempt to improve
each constructed solution. A local search algorithm works in an iterative fashion by successively replacing
the current solution by a better one taken from its neighborhood. It finalizes once there is no better solutior
found in the neighborhood. Figure 2.3 shows a generic pseudo-code for the local search phase. It has
input a feasible solutiowolution and searches for a better solution within a neighborh§d8olution)
previously defined. In most of the cases, the local search phase takes as entry the feasibleSsoiuttion
delivered by the construction phase, but for certain applications, we could have several local search phas
working in a combined form by exploring different neighborhoods, implying thus that their entries are not
necessarily the solutions given by the construction phase.

The success when applying the local search phase is strongly related with the following points:

¢ the suitable choice of a neighborhood structure,

2.3. GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE 29

Procedure Local _Search(Solution);

1 while not_locally_optimal(Solution) do;

2 Find Neighbor_Solution € N(Solution) satisfying f(Neighbor_Solution) < f(Solution);
3 Solution < Neighbor_Solution,

4 end_while;

5

return Solution;

Figure 2.3: LocalSearch pseudo-code.

¢ efficient neighborhood search techniques,
e easy evaluation of the cost function when exploring the neighborhood,
¢ the quality of the starting solution.

The construction phase plays an important role with respect to this last point, since it must produce goo
starting solutions for this local search sub-procedure. Depending on the problem, the used neighborhooc
are generally not complex. There exist two basic different strategies to explore a neighborhood, which are

best-improvement: all neighbors are investigated and the current solution is (possibly) replaced by the
best neighbor.

first-improvement: when finding the first better neighbor solution (i.e. whose cost value is smaller than
that of the current solution), the current solution is replaced by this one.

In [118], the authors mention that empirically (when applying both strategies on many applications), in
most of the cases, both strategies reach the same final solution, but in gendirat-ihgprovementakes
a smaller computational time. Besides, they observe that is more frequent the premature convergence tc
non-global local optimum by usingest-improvemerthanfirst-improvement

One important characteristic of GRASP is its low parametrization; few parameters need to be set an
tuned. This implies that the main effort can be focused on implementing efficient data structures to obtair
fast iterations. Let us analyze the influence of the GRASP parameters and the RCL construction.

A GRASP algorithm finalizes once performédaxIter iterations. Clearly, the probability of finding
a new solution improving the currently best one decreases with the number of iterations already computec
the quality of the best solution found may only improve with the latter. In general, the computation times
from iteration to iteration are relatively similar, therefore the total computation time depends linearly on
MaxIter. Thus, when increasingf/axIter, the global computation time will be increased as well as the
probability of finding better solutions.

30 CHAPTER 2. BACKGROUND

At any GRASP iteration, let us denote bye) the incremental cost associated with the insertion of
elemente € FE into the solution under construction and by;, andc,,.. the smallest and the largest
incremental costs respectively. There are two main variants to compute the RCL used in the constructio
phase. Next, we will describe both approaches.

i) Given a positive integekistSize, the RCL is composed of thiistSize elements off with the best
(i.e. smallest) incremental costs. In this case, we say that the RCL is cardinality-based. The size o
the RCL can be smaller thanstSize since, depending on the instance, we could not get to compute
exactly theListSize best elements.

ii) The second variant uses a threshold parameter denoted:hjy, 1]. In this case the size of the RCL
is dynamically adapted according to the quality of the elements to be added (we say that the RCL i
value-based). Fixed, the RCL is formed by all “feasible” element¢se E which can be inserted
into the partial solution under construction without losing feasibility and whose quality is superior to
the threshold value; that is to say:

e c RCL = C(e) S [Cmina Cmin + Ck(cmax - szn)]

If we seta = 0 the resulting algorithm is purely greedy, and with= 1 we obtain a random
construction. Hence, we can infer thategulates the amounts of greediness and randomness in the
construction phase.

For further details of GRASP the reader may consult the references [42, 44, 45, 98, 118, 119], whicf
provide an extensive analysis of the GRASP metaheuristic based on many applications. Topics discusse
include: successful implementation techniques, parameter tuning strategies, alternative solution constru
tion mechanisms, techniques to speed up the local search, reactive GRASP, cost perturbations, bias fur
tions, memory and learning, local search on partially constructed solutions, hashing, filtering, implemen:-
tation strategies of memory-based intensification and post-optimization techniques using path-relinking
hybridizations with other metaheuristics and parallelization strategies.

2.4 Random Neural Network

The Random Neural Network (RNN) is a novel model introduced by Gelenbe [58, 59, 64]; it can be applied
in optimization as well as learning settings. The RNN differs substantially from the existing connexionist
models. The main different with respect to other existing models is that it can be solved numerically (by
computing a fixed point equation) very easily and without using step-by-step Monte Carlo simulations.
Specifically, in optimization problems, the RNN has been shown to be efficient and computationally very

2.4. RANDOM NEURAL NETWORK 31

fast compared to the classical existing models [61, 60, 65, 62, 63]. In particular, the RNN model has alread
been applied to the following NP-Hard combinatorial optimization problems:

e Traveling Salesman ProbleTSP). In this case, it has been shown in [63] that dynamical RNN
obtains optimal or near-optimal solutions in most of the benchmark instances tested.

e Minimum Vertex Covering Proble(MVCP). In [65], the authors compare the performances of RNN,
the conventional Greedy Algorithm, the Hopfield network, and Simulated Annealing, when applied
to the MVCP; the results reveal that the results obtained by RNN heuristic are significantly superior
to the others in terms of overall optimization.

e Steiner Problem in Graph$SPG). In [62], the authors use RNN as improver of solutions delivered by
the classical SPG heuristicMinimum Spanning Tree Heurist{81STH) and theAverage Distance
Heuristic (ADH) applied to a test set composed of randomly generated graphs. They report that the
obtained solutions have a better quality than the corresponding starting heuristic, attaining a differenc
in cost of less that one or two percentage points away from the optimal.

The RNN model works in the following way. Signals in the form of impulses (or spikes) of unit ampli-
tude circulate among the neurons. Positive signals represent excitation, whereas negative signals repres
inhibition of the receiving neuron. In this way, an excitatory impulse is interpreted as a “+1” signal, while
an inhibitory impulse is interpreted as a “-1” signal. Each neurbas associated a stdtgt), which is its
potential at timef, represented by a non-negative integer. The state of-theuron network at time, is
represented by the vector of non-negative integéts= (k,(¢), ..., k,(t)). The values of the state vector
and thei —th neuron'’s state are usually denotedidogndk; respectively. By definition, a neuraris excited
iff its potential is strictly positive. If a neuronis excited it can transmit impulses to other neurons or out of
the network (we say neurarifires”). The neuron’s potential is increased when an excitation signal arrives
to the neuron and is decreased when an inhibition signal arrives. Neural potential also decreases when t
neuron fires. If a neuronemits an impulse, whether it be an excitation or an inhibition, it will lose potential
by one unit, going from the state whose valué;iso the state of valug; — 1.

Each neuron, if it is excited, emits impulses at random, separated by intervals distributed as an expo-
nential distribution with constant rate. That is to say, the impulses will be sent out as a Poisson proces
with rater;, with independent, identical exponentially distributed inter-impulse intervals. The impulses
transmitted will arrive at neurop as excitation signals with probabilip{;, and as inhibitory signals with
probability p;;. A neuron’s transmitted impulse may also leave the network with probabjlittherefore
di+2" (p;+p;;) = 1. Leti and;j be two neurons, the excitatory firing rate froto j and the inhibitory
firing rate fromi to ;5 are given by:gjj = ripjj ando,; = r;p;; respectively. Thus, the firing rate of neuron
iisri = Y (0f; + 0;;)- The matricesV* = {o;} andW~ = {g;;} can be viewed as being analogous

32 CHAPTER 2. BACKGROUND

to the synaptic weights in connectionist models, although they specifically represent rates of excitatory an
inhibitory impulse emission. Let us note that they are non-negative since their values are products of rate
and probabilities.

Moreover, exogenous excitatory and inhibitory signals arrive at neiaooording to Poisson processes
with ratesa; andj; respectively. Let us notice that this is a recurrent network model, i.e. a network which
is allowed to have feedback loops, and the network has an arbitrary topology. Figure 2.4 shows a typice
neuron in the RNN using the model parameters that have been exposed above. In the figure, only th
transitions to and from a single neuromre considered. Symmetrically, any other neuron has the same
model that.

Next, we summarize the dynamics of the RNN model by considering the possible state transitions. The
neuron’s staté;(¢) can be modified when occurring certain transitions, more precisely:

i) The potentialk;(¢) of a neuron will decrease by one whenever it fires an excitation signal or an
inhibition signal. Also, when an exogenous inhibitory signal arrives from outside the network to
neuroni, its potential diminishes té;(¢) — 1. In addition, neuron will decrease its potentidl; ()
by one whenever it receives an inhibitory impulse from another negiron

i) When arriving an exogenous excitatory signal from outside, or an excitatory impulse from another
neuron within the network will result in incrementing the neuron potential by one, obtaining thus
ki(t) + 1.

iii) The value ofi — th neuron’s state remains unchanged when none of the previous events occur.

In addition, there are two boundary conditions which prevent some of the transitions from occurring; these
are:

e A neuron can fire only when it has positive potential (as mentioned previously).

e When the neuron has a potential of zero, the arrival the new inhibitory signals does not decrease it
value further.

The analysis of the RNN model is focused on two measures: the probability distribution of network
statep(k,t) = Prlk(t) = k] and the marginal probability that neurens excitedg;(t) = Prlk;(t) >
0]. The behavior of the model is described by an infinite system of Chapman-Kolmogorov equations for
discrete state-space continuous time Markovian systems. The information in the RNN is represented b
the frequency at which the signals travel. The neurons may be considefedjasncy modulators and
demodulators Intuitively, each neuron of this model is also a frequency modulator, since négerds
out excitatory and inhibitory signals at rates (or frequenc}qs)rip;;, qi(t)rip;; to any neurory. In this

2.4. RANDOM NEURAL NETWORK 33

way, when neuronis excited, it will send signals to neurgrat a frequency;; = g;.;. + 0;;- These signals
will be emitted at exponentially distributed random intervals. In turn, each neuron behaves as a non-linea
frequency demodulator since it transforms the incoming excitatory and inhibitory signal trains’ rates into
an “amplitude”, which igy;(t), the probability that neurohis excited at time.

The asymptotic analysis of the RNN model consists of computing the stationary probability distribution,
i.e. the limits:

p(k) = lim p(k,).

t——+o00

¢ = lim ¢(t), Vie (1,...,n).

t—+4o0

Gelenbe proves the following theorem and introduces equations which provide the way to iteratively
compute the stationary probability distribution for the RNN model.

Theorem 2.4.1 The vectoly = (¢, - . -, q,) Satisfies the system of nonlinear equations:
AT
P = ! ,Viel,... n. 2.1
¢ ri + A ! " D

where)” and \; satisfy the following simultaneous equations:
A= giof + i, 2.2)
j

A= g0+ B (2.3)
J

In addition, another theorem introduced by Gelenbe guarantees the yectmputation, since;” and
)\; can always be computed. By replacihg and \; in equation(2.1), we obtain a fixed point equation
F(q) = q, whose explicit expression is given by:
Zj,j;éi(QJ'Q;ri + a;)

qi = - ,Viel, ... n.
T+ Zj,jﬁ(qj@ji + 53i)

When iteratively solving the equatiof(q) = ¢, if in certain iteration we get a valug > 1, then
we forceq; = 1 until the convergence (we say neurpis saturated). Empirically, in most of the cases
convergence is reached in few iterations. Furthermore, let us notice that the fixed point egiafienq
can be solved in parallel, allowing thus to reduce significantly the computation time. For further details of
RNN, the reader may consult the references [7, 58, 59, 64].

34

CHAPTER 2. BACKGROUND

1
1
I
’
’
’
’
’
.
.
.
.
-
-

Figure 2.4: Representation of a neuron in the RNN model.

Chapter 3

The Access Network Design Problem

3.1 Introduction

A wide area network (WAN) can be seen as a set of sites and a set of communication lines that interconne
the sites. A typical WAN is organized as a hierarchical structure integrating two leveldatikone
networkand theaccess networkomposed of a certain numberlotal access networ408]. Figure 3.1
shows an example of a WAN topology. Each local access network usually has a tree-like structure, roote
at a single site of the backbone, and connects users (terminal sites) either directly to this backbone site ¢
to a hierarchy of intermediate concentrator sites which are connected to the backbone site. The backbol
network has usually a meshed topology, and its purpose is to allow efficient and reliable communicatior
between the switch sites that act as connection points for the local access networks.

Assume the backbone network fixed. L%t be the set of sites where concentrator equipment can be
installed in order to diminish the cost of the access network&nthe set of terminal sites (the clients).
Informally, if we consider the network of feasible connections on the WAN as a weighted (by costs), undi-
rected graph, the Access Network Design Problem (denoted by ANDP) consists of finding a subgraph o
minimum cost such thats, € Sy there exists a path from to the backbone network. In Appendix A, we
prove the equivalence between the problem of designing the global access topology when considering &
the switch nodes, and the problem of designing the global access topology where the backbone network
shrunk to a simple fictitious node. To simplify the presentation, the analysis and the algorithms, we collaps
the backbone into a single fixed nogdeWe will focus over this last model. We introduce the notation used
to formalize the problem:

e S =57rUScU{z}isthe set of all nodes.

o (' = {cl-j}ijes is the matrix which gives for any pair of sites §f the cost of laying a line between
them. When the direct connection betweéemd; is not possible, we set; = oc.

35

36 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

o E={(i,7);Vi,j € Ssuchthat;; < oo} is the set of feasible connections between siteS. of

e G, = (S, F) is the graph of feasible connections on the Access Network.

Definition 3.1.1 (Access Network Design Problem - ANDPWe define the Access Network Design Prob-
lem ANDRG (S, E), C) as the problem of finding a subgraghc G, of minimum cost such thak,; € Sr
there exists a unique path from to nodez and such that terminal sites can not be used as intermediate
nodes (they must thus have degree 1 in the solution). We will dendtgbyr the space of feasible solu-
tions associated with the problem.

This problem belongs to the NP-Hard class, this will be proved (in the next section) by reducing the
Steiner Problem in Graphs to it.

In this chapter we propose several polynomial time heuristics based on the GRASP methodology fol
approximately solving the ANDP. In Section 3.2 we introduce the proof of NP-completeness for ANDP.
In Section 3.3 we give two different alternative algorithms for the construction phase. In Section 3.4 we
provide two algorithms for the local search phase. In particular, we present a RNN model which is used ir
a hybrid way GRASP-RNN, more precisely, the RNN approach is suitably customized in order to work as a
variant of local search. Section 3.5 presents the GRASP metaheuristics yielded by combining the construt
tion algorithms with the local search algorithms. Section 3.6 includes computational results obtained on :
large test-set of problem instances, including topologies with hundreds of nodes. Discussions, conclusior
and future work are the purpose of Section 3.7.

3.2 ANDP NP-Completeness

Before introducing the demonstration of ANDP NP-completeness, we will define formalBténeer Prob-
lem in Graphs

Definition 3.2.1 Let G = (V, E) be a connected undirected graph, whéfeis the set of nodes anfl
denotes the set of edges. Given a non-negative weight furctto” — R associated with its edges and
a subsefl” C V of terminal nodes, the Steiner proble$®G(V, E,C,T') consists in finding a minimum
weighted connected subgraph®fspanning all terminal nodes i#.

Proposition 3.2.2 (ANDP NP-completeness)The ANDP belongs to the NP-Complete class.

Proof. We will demonstrate that the ANDP is NP-Complete by reducing the Steiner Problem in Graphs
(SPG) to it.
Let SPG(V, E, T, C) be a Steiner Problem instance. For this, we build an ANDP instance as follows.

3.2. ANDP NP-COMPLETENESS 37

. Terminal Site

@ Concentrator Site

A local access network
. Switch Site e

Backbone“\
Network

Figure 3.1: A WAN topology.

1) we select randomly a terminak T and we associate with it the nodén the ANDP.

2) eachterminal € (T'\ {t}) has associated two sites in the ANDP: a terminalsitend a concentrator
site s’. We introduce an edge with zero cost betwegands’ in the ANDP.

3) each Steiner nodec (V' \ T') has associated a concentrator sjten the ANDP.

4) an edgdi, j) € E,withi,j € (T\ {t}), has associated an edge betweeands’ with the same cost
in the ANDP.

5) an edge(i,j) € E, withi € (T'\ {t}) andj € (V \ T), has associated an edge betwegand 3’
with the same cost in the ANDP.

6) an edgdi,j) € E, withi,j € (V \ T), has associated an edge betwgeands’ with the same cost
in the ANDP.

7) an edge(i,t) € E, with i € T, has associated an edge betwggand » with the same cost in the
ANDP.

8) an edgdi,t) € E, withi € (V' \ T, has associated an edge betwegeand » with the same cost in
the ANDP.

38 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

In the resulting ANDP instance we have two classes of concentrators: those associated with the termin:
nodes and those associated with the Steiner nodes, denot&d bpd S, respectively. The set of terminal
sites, the set of feasible connections and the matrix of costs on the access network are defgtdd by
and A respectively. We have thetN D P(SrUW¢ U Sc U {z}, U, A). Clearly, the transformation process
is polynomially computable. Now, we must prove that any minimal feasible solution of the SPG induces a
minimal feasible solution of the corresponding ANDP (having the same cost) and reciprocally.

(=) Let 7 be a minimal feasible solution of the SPG. Z¢tbe the network built by applying the transfor-
mationsl — 8 to 7. Then,

i) it is easy to see that, by construction, the netwafks a minimal feasible solution for the ANDP
(deleting an edge df{ the feasibility is lost). Figure 3.2 illustrates this correspondence; for the first
graph, the black nodes represent the terminal nodes in the SPG whereas the white nodes represe
Steiner nodes. In the corresponding ANDP instance, the greatest black node is the fixethsite
other black nodes are terminal sites, the white and round nodes are concentrator sites and the sque
nodes are concentrator sites introduced when applying3stéthe previous transformation process.

Figure 3.2: A SPG minimal feasible solution and its corresponding ANDP topology.

ii) cost(7) = cost(H) since the new connections introduced by the transformation (step 2) have all
cost zero,

concluding therefore the direct.
(<) Let H be a minimal feasible solution of the ANDP. We built the corresponding minimal feasible
solution of the SPG by means of the inverse transformation process:

a) z has associated a unique terminal nodeT” in the SPG.

3.2. ANDP NP-COMPLETENESS 39

b) each edgés;, s') € H, with s; € Sy ands’. € W, has associated in the SPG a unique terminal node
i € T. Notice that the edgési, s°) necessarily belongs to any feasible solution of the ANDP sifice
is the unique adjacent site tbin the networkG = (Sy U W U Sc U {2},U) .

c) each sites? € H, with 5. € S, has associated in the SPG a unique Steiner had@/ \ T').

d) each edgé€s’, s!) € H, with s',s? € W, has associated in the SPG a unique edgg¢) € F,
i,jeT.
e) each edgés’, 57) € ‘H, with s € W, 5/ € S¢, has associated in the SPG a unique gdgg € E,

c)“c

ieT,je(V\T).

f) each edgds, 57) € H, with 5¢,57 € S, has associated in the SPG a unique edgg) € F,

c)Tc

g) each edgés’, z) € H, with s € W, has associated in the SPG a unique gdge € E,i € T.
h) each edgé¢s:, ») € H, with 5% € S, has associated in the SPG a unique gdge € E,i € (V\T).

Let 7 be the resulting network of the inverse transformation by applying step&. This is clearly a
feasible and minimal solution for the SPG. Figure 3.3 illustrates this transformation. In the access topolog)
the sites are labeled in the following way:is the fixed site modeling the backbone network, a label
indicates a concentrator site belongingSte, and the black (and square) nodes represent the pairs of sites
(si,s'), with st € Sy ands/ € W. For the corresponding SPG instance, we have that the black nodes
represent the terminal nodes whereas the white nodes represent Steiner notles. {(8f, s') € H|s! €

Figure 3.3: An ANDP minimal feasible solution and its corresponding SPG topology.

Sr, st € Wc} be the set of edges iH associated with the terminal nodesZn Since the seB has cost
zero and the other edgesHfhave the same cost that their corresponding on&s iwe have the relation:

cosT(7) = cost(H) — cost(B) = cost(H),

40 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

as required and completing the reciprocal.
Finally, since Karp proved [85] that SPG is NP-Complete, therefore ANDP is also NP-Complete.

QED

In the following sections, we will customize the different GRASP components to design different algo-
rithms for solving approximately the ANDP. In particular, we design two path-based construction phases, ¢
minimum spanning tree based local search phase and a RNN (Random Neural Network) based local sear
phase. Combining these two construction phases with the two local search phases yields four versions
GRASP for the ANDP. Next, we present the construction phase with the two proposed strategies.

3.3 ANDP Construction Phase Algorithms

Here, we introduce two construction phases for the ANDP. Both approaches are path-based but the us:
methodologies are structurally different. The proposed algorithms are caNé&oP_ConstPhasel and
ANDP _ConstPhase2 and they will be described below in detail.

3.3.1 Algorithm ANDP_ConstPhasel

The ANDP _ConstPhasel is a greedy randomized algorithm which works by iteratively choosing a terminal
site and connecting it to the current partial solution by means of okeshbrtest paths.

More in detail, the algorithm (shown in Figure 3.4) takes as inputs the net@owf feasible connec-
tions on the access network, the matrix of connection cd0saed the GRASP parameter(the candidate
list size). In order to introduce randomness in the selection process of the terminal sites to be added to tf
current solution, we assign (in line 1) a unique identifieto each terminal site; € Sr. Line 2 initializes
the current solutior?,,, with the nodez (recall thatz models the backbone). The Sétcontaining the
terminal sites already added1q, is initialized empty. Iteratively the construction phase adds new terminal
sites to the current solutiof,,,. On each iteration, the algorithm chooses randomly (in line 4) a terminal
site 5, not yet included irnZ,,, and computes (in line 5) thee shortest paths frorg; to 7., using an algo-
rithm proposed by Yen [137]. We remark that when computing these paths, terminal sites are not taken int
account as intermediate nodes since they must have degree one in the solution. Line 5 stores these path:
a restricted candidate ligl,. A pathp is randomly (and uniformly) selected frof), in line 6 and added to
7., inline 7. This process is repeated until all the terminal sites have been added; then the feasible solutio
7., is returned in line 9.

Let us observe that every feasible solution built by 88€DP_ConstPhasel has a tree topology and
therefore is minimal (deleting an edge the feasibility is lost). The following proposition formalizes this

3.3. ANDP CONSTRUCTION PHASE ALGORITHMS 41

Procedure ANDP _ConstPhasel;
Input: Ga = (S,E), C, k;

1 Vst € St aunique identifier ny is assigned,;

2 Tiq — {2z} Y <0

3 while (Y \ St) # 0 do

4 5+ ArgMax{n¢|st € (ST \Y)};

5 Ly < the k shortest valid paths from 5; to T,.;
6 p < Select_Random(Ly);

7 T —TaU{ph Y —«YU{s}

8 end_while;

9 return 7..;;

end ANDP _ConstPhasel,;

Figure 3.4: ANDPConstPhasel pseudo-code.

point.

Proposition 3.3.1 If I'yypp is not empty, then the algorithNDP_ConstPhasel builds a minimal fea-
sible solution for the ANDP.

Proof. Consider an ANDP instance such thatypp # (). We will demonstrate the proposition by induction
in |Y'|. For this, we prove that in each iteration a new terminal site is add&g, tand the resulting network
has tree topology having as endpoints site§-af

Basic Step]Y’| = 0. We compute lines 1-2. The netwadfk, is composed of the isolated nodesatisfying
thus the property.

Induction Step:0 < |Y'|. As inductive hypothesis (I.H.) we have thai¥f| < £ < |Sr|, then executing
lines 4-7 the resulting network ,, will have tree topology, fulfilling the previous conditions and containing
a new terminal site. As inductive thesis the property is satisfied Wher- £ for certain iteration.

Let us suppose that in some iteration we hgve= k. We will analyze the following cases.

Case 1.|Y| = k < |Sr|. In this case, the condition in line 3 is TRUE and therefore the algorithm will
execute the lines 4-7. In the previous iteration, we fad< k& and by |.H. after executing lines 4-7 the
network7,,, has tree topology. In the current iteration, line 4 selects a terminad,sitet yet added t@._,,

and lines 5-6 compute a pattfrom s, to 7_,,. Line 7 adds to the tree7,,,. We remark that the candidate
list £, is computed (in line 5) of way of not using other terminal sites as intermediate nodes. Hence, it is
easy to see that the terminal sites are endpoints in the currerf jre€hus, the resulting network has tree
topology. In addition the sét is updated by adding to it the site

Case 2.]Y| = |Sr|. In the previous iteration we hgd’| < |Sy| and by I.H. after executing lines 4-7 the
network7,,, has tree topology. In the current iteration, the condition in line 3 is FALSE and ther&fpre
is a tree containing and having the sef as endpoints, as required and completing the proof.

42 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

QED
Figure 3.5 illustrates a ANDE onstPhasel iteration.

e The first network models the current soluti@n, and a new terminal sitg to be added to it. The
broken lines with origin irs; are the edges of thenon-disjoint shortest paths fromto 7.,,. One of
them will be selected in order to connegto 7.

sol*

e The second network shovi&,, with a path belonging to the restrict candidate fist Observe that
(in this case) when adding this path, we introduce a new concentrator site to the solution.

e The third network shows another path frognto 7_,,. In this case, the path is a simple edge and
therefore we do not introduce any concentrator site.

3.3.2 Algorithm ANDP_ConstPhase2

The ANDP _ConstPhase2 is an alternative algorithm for the ANDP construction phase. We design this al-
gorithm based on the idea of Takahashi-Matsuyama algorithm [127], which is different frettNib& _ConstPhase
algorithm in the way in which the restricted candidate list is built.

The ANDP_ConstPhase2 uses an auxiliary structur@ in which are stored all the shortest paths from
sites of(Sr U {z}) to sites inS without using terminal sites as intermediate nodes. Figure 3.6 shows the
preprocessing of this structure. Line 1 computes the subgraph inducgti-hy {z}), which is denoted
by H. Lines 2-5 compute for all pairs of sités; € (Sy U {z}) the shortest path connecting themdn
so that the terminal sites are not used as intermediate sites. For this, we compute in line 3 the auxiliar
networkG = H U G,(N (i) U N(j)), and the shortest path communicatingith j on G is computed in
line 4. Similarly, in lines 6-9 we compute for all pair of sitesc (Sy U {z}) andj € S¢ the shortest
path connecting them without using intermediate terminal sites. Again, we compute in line 7 an auxiliary
networkG = ‘H U G ,(N (7)), and the shortest path communicatingith j on G is computed in line 8. The
matrix of computed path® is returned in line 10.

The algorithmANDP _ConstPhase2 (shown in Figure 3.4) takes as inputs the netwGrkof feasible
connections on the access network, the matrix of connectionCoste GRASP parametér(the candidate
list size), and the matrix of patl® computed byPreprocessing_Algorithm. Lines 1-2 select randomly (and
uniformly) a site from(Sr U {z}) as initial network. The solution in construction is denotedZby and
the auxiliary set” C (S U {z}) denotes the sites already included to the current soldfignLet us note
that all the sites ofSr U {z}) necessarily must be in the solution. Iteratively the construction phase adds
new sites of(Sy U {z}) to the current solutiof,,. Each iteration works of the following way. In line 4
the algorithm searches for tiienodes of(Sr U {z}) \ Y which are nearest to the current solutify; the

3.3. ANDP CONSTRUCTION PHASE ALGORITHMS 43

the k non-disjoint shortest paths

fixed site modeling // N et
the backbone LN S
\ S AN A
[S oy

terminal site
to be added

Figure 3.5: Example of ANDEConstPhasel iteration.

corresponding shortest paths are extracted ffband stored in a restricted candidate list A pathp is
randomly (and uniformly) selected frog), in line 6. Letu be the endpoint of such that: ¢ 7.,,. In line
7, we addp to the current solutioff,,, and the set” is updated by adding to it. This process is repeated

until all the sites of Sy U {z}) have been added th,,. The built feasible solutio,,, is returned in line 9
(unless the space of feasible solutions is empty, in which case at least one terminal site will not be able t

be connected with the solution in construction).
The construction phase algorithANDP _ConstPhase2 also builds a minimal feasible solution for the

ANDP. The following proposition demonstrates this property.

Proposition 3.3.2 If I'yypp IS not empty the algorithmMANDP _ConstPhase2 builds a minimal feasible

solution for the ANDP.

44 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

Preprocessing _Algorithm;
Input: Ga = (S,E), C;

1 H— Ga(ScU{z});

2 foreach i,j € (ST U{z})do

3 G—HUGA(N@E)UN(®G)):

4 Pi,; < the shortest path from i to jin G;
5 end _for _each;

6 foreach ¢ e (SprU{z})and j € Sc do

7 G — HUGA(N(®));

8 Pi,; < the shortest path from i to jin G;
9 end _for _each;

10 return P;

end Preprocessing _Algorithm;

Figure 3.6: Computation of sét.

Procedure ANDP _ConstPhase2;
Input: Ga = (S,E),C, k, P,

1 v < SelectRandom(St U {z});

2 Toor —{v} Y « {v}

3 while Y\ (Sr U{z}) #0do

4 Lp — the shortest paths from the k nearest sites of (St U {z})\ Y to 7., using P;
5 p < Select_Random(Lp);

6 u < the endpoint of p non-belongingto 7;,;;

7 Teot — Tea U{p}, Y — Y U {u};

8 end_while;

9 return T,.;

end ANDP _ConstPhase2;

Figure 3.7: ANDPConstPhase?2 pseudo-code.

Proof. Again, let us consider an ANDP instance such thatppr # 0. We will demonstrate the proposition
by induction in|Y| (that is to say, on the number of sites fréinU {2} already added t@.,,). Specifically,

we will prove that on each iteration a site belongingstou {z} is added tdZ,, and the resulting network
has tree topology having as endpoints site§af

Basic Step:|Y| = 0. In lines 1-2, we select randomly a site §f U {z} in order to initialize7,,. In
addition, in the same line, the s¥tis initialized with the selected site.

Induction Step:l < |Y|. The induction step is presented as follows. As inductive hypothesis we have that
the property is fulfilled whenY'| < k£ < |Sr| + 1 for certain iteration. As inductive thesis the property is
fulfilled when|Y'| = k for certain iteration. Let us analyze the following cases.

Case 1.|Y| = k < |Sr| + 1. In this case, the condition in line 3 is TRUE and therefore the algorithm will
execute the lines 4-7. In the previous iteration, we fad< k& and by |.H. after executing lines 4-7 the

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 45

network7,,, has tree topology having as endpoints siteS@afIn the current iteration, line 4 computes the

sol
k shortest paths fromiSy U {z}) \ Y to 7_,, without using terminal sites as intermediate nodes. For this,
we use the matri® which contains the shortest paths fréfp U {2} to sites inS not using intermediate
terminal sites. Line 5 selects randomly one of them (which is denotgdldnyd line 6 computes its endpoint
non-belonging tdZ,,, (which is denoted by:). Clearly, if z € 7,,, the siteu is a terminal, otherwise can

be a terminal orz. In any case, we addto 7, in line 7, in additionY” is updated adding to it. By
construction, the resulting network has tree topology containiagd all its leaves are terminal sites.

Case 2|Y| = |Sr| + 1. The condition in line 3 is FALSE. In the previous iteration we te&d = | S| and

by I.H. after executing lines 4-7 the resulting netw@t is a tree whose endpoints are the sites'pf
QED
Figure 3.8 illustrates a ANDE onstPhase?2 iteration.

e The first network models the current soluti@y,. Let us note that (in this case) the fixed sitevas
not yet added t@.,,.

e The second network shows, when adding to it a new terminal site. Notice that the path connecting
this terminal with7Z,, contains the fixed site. Thus, for the next iterations, when computing the
shortest paths from the terminal sites not yet added to the current solution, we must also consider th
fixed sitez.

e The third network showg_,, when adding to it a new terminal site by means of a simple edge.

3.4 ANDP Local Search Phase Algorithms

Generally the feasible solution built by the construction phase algorithm is not even a local optimum. In
this way, the GRASP metaheuristic applies a local search phase in order to improve this solution. For th
ANDP we designed two different local search phases. One based on minimum spanning tree approach a
the other on Random Neural Network approach. In this section, we give a detailed description for both
approaches. Before describing the first local search phase, we introduce some notation, a proposition, al
a suitable structure for the neighborhood.

Notation 3.4.1 Given a networkH{ and the matrix of connection costs we denote bWIST(H,C) a
minimum spanning tree for the netwdtk

46 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

ory

.: \‘,'\'a’d-ded path

Figure 3.8: Example of ANDEConstPhase? iteration.

Proposition 3.4.2 Let S~ C Sc be a subset of concentrator sites ahdC G the sub-network induced
by ({z} U S¢). The best feasible solution haviisg as set of concentrator sites is given by the network:
G = U U 7,5, WhereT,,.- is @a minimum spanning tree f@¢ and U is the set of edges that connects the
set of terminal site$7 to 7,,5, With minimum cost.

Proof. Trivial, the setl/ is the same for any other sub-netwetkc H spanning the site 2z} U S¢).

QED

Let us notice that the netwokk (defined above) can be computed in polynomial time. In the following,
solutions of theAN DP(G4(S, E), C') will be characterized by the associated set of concentrator sites and
one of the corresponding minimum spanning trees. Accordingly, the search for the optimal access networ
will be reduced to search for the optimal st of concentrator sites.

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 47

Definition 3.4.3 (Neighborhood Structure) Let S C S be a subset of concentrator sites associated
with a feasible solution of thd NDP (G, (S, E), C'). The neighbors of a solution characterized by its set

Sc of concentrator sites are defined by all the sets of concentrator sites which can be obtained by adding
to S a new concentrator site, or by eliminating fro$a one of its concentrator sites.

According to this definition; given a feasible solutiBrwhose set of concentrator sitesSis, and given
a concentrator site. € (S¢ \ S¢) we can compute the following neighbor solutions.

i) Let us denote by, C G, the sub-network induced bj:} U S¢ U {s.}. Let7; be a minimum
spanning tree fat{;. The neighbor solution produced by the insertiorn a8 the networkl” = 7;UU,
whereU is the set of edges that connect the set of terminal sitet® the networkZ; with minimum
cost. To computéd; we use an algorithm proposed by Minoux [101] which b&&S| — | Sr|) average
time and the st is computed in time&(|Sy|-|S¢|). Thus, we reduce significantly the running times
in comparison with the classic algorithms used to compute minimum spanning trees, such as Prim o
Kruskal algorithms.

ii) Let us denote by, C G, the sub-network induced bjz} U (S¢ \ {s.}). SinceH, cannot be
connected, in order to guarantee feasibility, we only consider the connected comfoaeht, such
thatz € H. Clearly, the concentrator sites non-belonging#tocannot be used since they can induce
a non-feasible solution. L&k, be a minimum spanning tree fét. The neighbor solution produced
by the elimination ofs.. is the networkl” = 7, U U, whereU is the same that ii). To computeZ;
we use the Prim algorithm which héX|E| + |S¢|log(|Sc|) time-complexity, beind£| the number
of edges irH,.

Next, we present the descriptions of both strategies which we will use in combined form in the MST
based local search phase.

3.4.1 Neighborhood Strategy by concentrator site insertion

The algorithm (shown in Figure 3.9) takes as inputs the netwrkhe matrixC, the current solutiorT,,
and its set of concentrator sit€s. TheInsertion_Neighborhood searches for a better solution by means

of the insertion of a new concentrator site irffg. In line 1 we initialize the best neighbor solution with

the current solutior?,,,. Lines2 — 10 searches for the best neighbor solution adding a new concentrator
sites. € (S¢ \ S¢) into Se. In line 3, the sub-network{ induced by the set of sitd§2} U S¢ U {s.}) is
computed. Notice that, this network includes all the possible topologies that have as set of concentrator site
a subset o U {s.}. In line 4 the minimum spanning tree for this network is computed using an algorithm

by Minoux [101]. In line5, we connect td/ (computed in line 4) all the terminal sites 8f by means

48 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

of edges of minimum cost frord to 7. Clearly, the built network is feasible for the ANDP. Iteratively,

the pendant concentrators are removed in line 6. In line 7, we compare whether the cost of the resultin
network is smaller than the cost of the current best neighbor. If the new neighbor solution improves the
best cost, then in lin8 the best cost, the best set of concentrator sites, and the best neighbor solution are
updated. Once all the possible insertions of a new concentrator site have been considered, the procedt
Insertion_Neighborhood returns the best found neighbor solution, its cost, and its set of concentrator sites.

Procedure Insertion _Neighborhood;
Input: G4 = (S, E), C, T.o1, Sc;
1 best «— cosT(Teor); S+ Sci Toest — Toot;
2 forall s € Sc\Sc do
3 'H + sub-network induced by ({z} U Sc U {s¢});
4 T «— MST computed by Minoux-Algorithm(H, C);
5 Compute Vst € St:
e «— the edge of minimum cost from s; to 7;

T — T U{e};
6 Iteratively remove all concentrators from T with
degree 1;
7 if (coST(7) < best) then
8 best — cosT(T); S¢ — Sc U {sc}; Toest — T;
9 end_if;
10 end_for;

11 return best, S¢, Tpest;
end Insertion _Neighborhood;

Figure 3.9: Neighborhood by insertion moves.

Proposition 3.4.4 {nsertion_Neighborhood correctness) Let7,,, be a feasible solution for the ANDP and
Sc its set of concentrator sites. The algoritHmsertion_Neighborhood builds the best neighbor solution
whose set of concentrator sites belongsite= {S¢ U {s.}|s. € S¢ \ Sc}-

Proof. When runningnsertion_Neighborhood, for each concentrator site € S¢\ S¢ loop 2-10 computes
the following:

i) H is the subnetwork induced Hy:} U S U {s.}.
i) 7 is the minimum spanning tree f@t.

iii) line 5 connects the sites 6f to 7 by means of edges the minimum cost. By Proposition 3.4.2, the
resulting network is the best feasible solution haviigu {s.} as set of concentrators. In this way,
once finalized loop 2-10, we have computed the best feasible solution belonging to the set:

{T € I' 4npp|such thatoncenTrATORS(T) € A}.

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 49

In addition, in line 6 each computed feasible solution is improved by removing the pendant concen-
trators; the best of them is assignedriq, in lines 7-9, and returned in line 11.

QED

Figure 3.10 is an example of a insertion move computethbytrtion Neighborhood.
e The first network is the graph of feasible connections on the access network.

e The second network models a small access net@Wqrk This one is composed of ten concentrator
sites (which are labeled wit)) and sixteen terminal sites (the black nodes).

e The third network represents the solutidy, without the terminal sites, and a new concentrator site
(non-belonging td/,,,) with its feasible connections (modeled by the broken lines) towaedsl the
other concentrator sites belongingZg,.

e The fourth network represents a minimal spanning tree for the neti¥qdefined in 3.9). This tree
can be computed by applying Minoux algorithm, which reuses efficiently the current topology in
order to find the new spanning tree.

e The fifth network represents the new neighbor solution obtained by reconnecting with minimum
cost the terminal sites to the computed minimum spanning tree. Note that there exists a redundar
concentrator site (having degree 1) which can be removed preserving the feasibility. Moreover, two
terminal sites were reassigned to another concentrator site.

3.4.2 Neighborhood Strategy by concentrator site elimination

The algorithm (shown in Figure 3.11) takes as inputs the netwrihe matrixC', the current solution

7., and its set of concentrator sit€s. The procedure denominatédimination_Neighborhood (shown

in Figure 3.11) tries to find a better solution by means of the elimination of a concentrator site belonging
to Sc. As in the previous procedure, the best neighbor solution is initialized with the current sdlytion

The lines2 — 11 search for the better neighbor feasible solution eliminating a concentratef sitS.. In

line 3 the sub-network{ induced by the set of sitd§2} U (S¢ \ {s.})) is computed. Since this network

can be unconnected, we compute in line 4 the connected compfheéhtH containing the fixed node

z (which models the backbone network). It is easy to see that the concentrator sites not beloriging to
cannot be considered since they can induce a non-feasible solution for the ANDP. A minimum spanning
tree for’H is computed in line 5. In line 6, we connectTo(computed in line 5) all the terminal sites of

St by means of edges of minimum cost fro$a to 7. The resulting topology is feasible for the ANDP.

50 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

concentrator

Figure 3.10: Example of InsertioNeighborhood iteration.

The pendant concentrators are iteratively removed in line 7. In line 8, we compare whether the cost of the
resulting network is smaller to the cost of the current best neighbor. If we found a better solution, in line
9 the best cost, the best set of concentrator sites, and the best solution are updated. Once all the possi
eliminations of concentrator sites have been considered, the prodéldmi@ation Neighborhood returns

the best found neighbor solution, its cost, and its set of concentrator sites.

Proposition 3.4.5 Elimination_Neighborhood correctness) Let7,,, be a feasible solution for the ANDP
and S its set of concentrator sites. The algoritibhmination_Neighborhood builds the best neighbor
solution whose set of concentrator sites belong8 te {S¢ \ {s.}|s. € Sc}.

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 51

Procedure Elimination _Neighborhood;
Input: Ga = (S, E), C, T.o1, Sc;
1 best « coST(Zs01); Sc — 8¢; Toest — Toots
2 forall s. € Sc do
3 H « sub-network induced by ({z} U (Sc \ {sc}));
4 H «— connected comp. of H suchthat z € H;
5 T« MST(H,C);
6 Compute Vs € St
e < the edge of minimum cost from s; to 7;

T — T U{e};
7 Iteratively remove all concentrators from T with
degree 1;
8 if (cosT(7) < best) then
9 best — cosT(T); S¢ — (S \ {s¢}); Toest — T;
10 end _if;
11 end_for;

12 return best, S¢, Toeet;
end Elimination _Neighborhood;

Figure 3.11: Neighborhood by elimination moves.

Proof. When runningElimination_Neighborhood, for each concentrator site € S loop 2-11 computes
the following:

i) H is the subnetwork induced Hy:} U (Sc \ {s.}).
i) 7 is the minimum spanning tree for the connected compoheat H such that: € H.

lii) line 6 connects t& the sites ofS: by means of edges the minimum cost. Let us notice that the
concentrator sites non-belongingtbcannot be considered since when connecting a terminal site to
one of them, we obtain a non-feasible solution (in the resulting network there are no paths connecting
it with the nodez). In this way, once finalized loop 2-11, we have computed the best feasible solution
belonging to the set:

{T € I'anpp|such thatoncenTrATORS(T) € B} .

In addition, in line 7 each computed feasible solution is improved by removing the pendant concen-
trators; the best of them is assignedrifq, in lines 8-10 and returned in line 12.

QED

Figure 3.12 is an example of a elimination move compute@lwination_Neighborhood.

e The first network is the same access network presented previously.

52 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

e The second network represents the solufignwithout one of its concentrators and without all the
terminal sites. In addition, the broken lines represent all the possible feasible connections reconnec
ing the isolated concentrators (which appear when removing the concentrator site) to the fixed site
and other concentrators present in the solution. We suppose here that it is possible to reconnect tf
isolated concentrator.

e The third network represents a minimal spanning tree for the netiofdkefined in 3.11). This tree
can be computed by applying Prim algorithm.

e Again, the fourth network represents the new neighbor solution obtained by reconnecting with min-
imum cost the terminal sites to the computed minimum spanning tree. Note that a terminal site was
reassigned to another concentrator site.

Figure 3.12: Example of EliminatioNeighborhood iteration.

3.4.3 MST based local search

Now, we will present the description of our MST based local search, which was designed by combining
suitably the strategies exposed above.

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 53

Given a feasible solutiofd,,,, the algorithm tries to find a better neighbor solution computing minimum
spanning trees on insertions and eliminations of concentrator sites to/from the current solution. For this
we use in combined form the local search strategies described above. The proposed algorithm is calle
ANDP_MST _Local _Search and its pseudo-code is shown in Figure 3.13. The algorithm has as input the
networkG, = (S,) of feasible connections on the access network, the matrix of connection‘tcestsl
a feasible solutiorT,,,.

In line 1, we compute the set of concentrator sites belongiri,tpthis is denoted bys. In line 2 the
cost of 7, is assigned taost_sol. In line 3, we call the proceduld@sertion_Neighborhood in order to find
for neighbor solutions with smaller cost. As we mentioned previously, this procedure searches for a bette
neighbor solution by means of the insertion of a new concentrator site not belongtag ta line 4 we
compare the cost of the current solution with the cost of the solution delivereddyion Neighborhood.

If a neighbor solution with smaller cost has been foundibyrtion_Neighborhood, then the local search
resumes from this new current solution executing from line 2. If no neighbor solution of better cost is
found byInsertion_Neighborhood, then in line 5 we call the proceduF&imination_Neighborhood, which
evaluates the search of neighbor solutions with smaller cost by means of the elimination of a concentratc
site belonging to the current solution. In line 6 we compare the cost of the current solution with the cost
of the solution found byElimination_Neighborhood. Again, if a neighbor solution with smaller cost has
been found byElimination_Neighborhood, then the local search resumes from this new current solution
executing from line 2. If no neighbor solution of better cost is foundthynination _Neighborhood, then

the best found neighbor feasible solution and its set of concentrator sites are returned in line 7.

Observe that th&RASP_ANDP uses first the local search strategy based on concentrator site insertions
and the local search strategy based on concentrator site eliminations is performed only when there are no ir
provements by insertions. This is motivated in the fact that the time complexiig@tion_Neighborhood
is smaller than the time complexity &flimination_Neighborhood.

Procedure ANDP _MST _Local _Search;
Input: Ga = (S, E), C, Tsoi;

1 5S¢« Concentrators(Zso);

2 cost_sol « cOST(Zs01);

3 [best,Sc, Tso1] « Insertion_Neighborhood(G, C, 8¢, Tsor);

4 if (best < cost_sol) then goto line 2;

5 [best, Sc, Ts01] < Elimination_Neighborhood(G, C, Sc, Too1);
6 if (best < cost_sol) then goto line 2;

7 return So, Taor;

end ANDP _MST _Local _Search;

Figure 3.13: MST based Local Search Algorithm.

54 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

Proposition 3.4.6 Let 7., be the feasible solution returned by the algoritAdNDP_MST _Local _Search
and S its set of concentrator sites. Then, the following points are fulfilled:

i) As. € Sc such that the feasible solution induced$y\ {s.} improvesz.,,.

i) As. € Sc '\ Se such that the feasible solution induced$yu {s.} improvesT,,,.

Proof. By construction, when runningNDP_MST _Local_Search, it easy to see that the delivered solution
7.., satisfies the following points:

a) 7., could not be improved binsertion_Neighborhood, i.e. condition in line 4 is FALSE.
b) 7... could not be improved b¥limination_Neighborhood, i.e. condition in line 6 is FALSE.

By Proposition 3.4.4, we have thdj,, is better than any feasible solution with set of concentrator sites
belonging to: A = {Sc U {s.}|s. € Sc \ Sc}, implying thus(i). In addition, by Proposition 3.4.3_,

is better than any feasible solution whose set of concentrator sites belor§std:S¢c \ {s.}|s. € Sc},
implying thus(i), as required and completing the proof.

QED

3.4.4 RNN based local search

We propose a local search which differs substantially from the classic local searches. We use a RNI
model in the local search phase with the aim of capturing global connectivity information about the acces:t
network and to determine the order in which the concentrator sites non-present in the solution delivered b
the construction phase are chosen one at time in order to try improve the solution delivered by the greed
construction phase. We denominateAaSDP_RNN _Local_Search to the designed algorithm. Next, we

give a detailed description for the underlaying neural network used and the corresponding algorithm.

The underlying RNN is defined as follows. There exists a neuron for each nstieTok values for the

excitatory and inhibitory rates are defined as:

° o5 = = if (i,j) € E, wherec is the average edge cost in the graph
e o, =1if (i,j) ¢ £ and

= + 4o
® 7= Zj(Qij + 0;5),

The other rates are zero and exogenous signals do not exist. The goal from these setting is to obta
information inherent to the access network global connectivity. With the neural network customized in

3.4. ANDP LOCAL SEARCH PHASE ALGORITHMS 55

this manner, if a neuron is excited and has low connection costs with their neighboring neurons (i.e. higk
excitatory rates), it will have a greater excitatory influence on its neighborhood (the adjacent neurons)
For the nodes that necessarily will integrate the solution (thesg&are{z}) the associated neurons are
artificially excited at each local search iteration by means of the assignment1,v: € S U {z},
this guarantees to solve the fixed point equation given by the Gelenbe theorem (which provides explici
equations for the stationary probability distribution associated with the RNN model). The idea on this
customization is iteratively to choose as candidates to improve the current solution those concentrator site
(not yet considered) whose associated neurons have highest excitation stationary probability. It is to sa
we select sequentially neurons that have not been analyzed previously with greatest yalue of

The algorithm takes as inputs the matrid®#s and)V~ of excitatory and inhibitory rates respectively
(which will be used by the RNN model), the soluti@p, (computed in the Construction Phase), the network
G, of feasible connections on the access network and the matrix of connection’to3tse algorithm
(shown in Figure 3.14) searches a better solution using the underlying neural network with the objective
to determine iteratively the order in which to analyze each concentrator node non-pre$gnamd to
evaluate the benefit of its inclusion in the current solution.

In line 1, we compute the sétof concentrator sites belonging 1,,. In addition the set/ containing
the sites whose associated neurons are artificially excited is initialized with thg-set{z}. We will
consecutively add td the concentrator sites chosen at each iteration. Line 2 initializes the best neighbor
solution7Z,,,, with 7. Iteratively, the concentrator node (non belongingZtg and that has not been
analyzed previously) selected as potential improver will be that one whose associated neuron has great
value ofg; (asymptotically the most excited). For this, each iteration works as follows.

In line 4, we excite artificially all the neurons associated with site$ by assigning;, = 1, Vs € J.
This implies that their potentials are always positive being able to excite other neurons without losing
potential. Line 5 computes the vector of asymptotic probabilisies (qi,...,q,) by solving the fixed
point equation given by Gelenbe theorem. In line 6 we select the concentrator site non-belong(ng.to
not yet analyzed) whose associated neuron has highest vajueTdfis is the neuron asymptotically most
excited. Lets, denote the selected site. In the same line the/sstupdated by adding the sitg to it. In
line 7, we check ifs. does not belong té@ (since clearly only concentrator sites that do not belong to the
original solution can diminish the cost of the current solution). If it is the case in lines 8-14 we evaluate
the benefit of including the site. as potential improver of the best neighbor solution. We compute in line
8 the setS. containing the concentrator sites f(that is to say5- = S N J). Notice thats, € Sc.
Line 9 computes the network induced by the BetS. U {z}. Line 10 computes the connected component
H C 'H such that: € H. Clearly, the concentrator sites non-belongingt@annot be considered when
computing a neighbor solution since they can induce a non-feasible topology. Thus, line 11 computes
minimum spanning tree fak, which is denoted byZ". In line 12, we connect td the terminal sites of

56 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

St by means of edges of minimum cost. Iteratively, the pendant concentrators (i.e. concentrators witl
degree 1) are deleted fromin line 13. Line 14 compares whether the cost of the resulting net@oisk
smaller than the cost of the current best neighihgy. If this is the case, the current best neighbor solution

is updated withZ". Once all the concentrators non belongind’ig have been evaluated, the best solution

found,.., is returned in line 17.

Procedure ANDP _RNN_Local _Search;
Input: Wt = {g;;-}, W™ ={o;;}, Ga = (5, E), C, Too;

1 I < CONCENTRATORS(7.0); J < Sp U{z};
2 Tpest < Tsor;
3 while (U J) # S do
4 gs — 1,Vs € J;
5 Compute the solution of the equation:
F(q) = q given by the Gelenbe Theorem;
sc «— ArgMax{qgs|s € (Sc \ J)}; J — JU {sc};
if (sc ¢ I)then

S¢ « CONCENTRATORS(J);

H «— subgraph induced by (I U S¢ U {z});
10 H « connected comp. of H suchthat z € H;
11 7T — minimal spanning tree for ~ H;

12 Compute Vst € St:
e « the edge of minimum cost from s; to 7;
T — T U{e};

13 Iteratively remove all concentrator sites
from 7 with degree 1;

14 if cosT(7T) < cOST(Thest) then Typeoy — T,

15 end.if;

16 end _while;

17 return Tpese;

end ANDP _RNN_Local _Search;

Figure 3.14: RNN based Local Search Algorithm.

Notation 3.4.7 Let 7_,, be the input solution oANDP_RNN _Local _Search and I its set of concentrator

sites. We will denote by [1..m] (with m = |S¢ \ I]) to a vector containing the sites 6% \ I which are
sequentially analyzed (one at a time) according to the order determined by the underlaying RNN. That is tc
say, inV[-] we have the concentrator sites.bf| I sorted by insertion order.

Proposition 3.4.8 Let7,,, be the input solution cANDP_RNN _Local_Search and[its set of concentrator
sites. The feasible solutidf,., returned byANDP_RNN_Local_Search satisfies the following points:

a) If ¢; is the associated asymptotic probability when computing, then:

¢ >qs, Vs € Se \({UVIl.j—1]),Vjel...m.

3.5. THE GRASP ALGORITHMS FOR THE ANDP 57

b) cost(7Z,...) < cost(7Zy), Vk € 1...m, where7,, is the feasible solution characterized by the set of
concentrator siteg U V'[1..k].

Proof. Point(a) is trivially deduced from lines 4-6. We will prov@) by induction ink (the number of sites

of S¢ \ I already added td). Initially 7,.,, = 7., (line 2).

Basic Stepk = 0. This case corresponds when the algorithm did not yet execute lines 7-15.

Induction Step:0 < k£ < m. In certain iteration condition in line 7 is TRUE and therefore the algorithm
executes the following:

i) lines 8-9 compute the subnetwokkinduced byl U V'[1..k] U {z}.

i) lines 10-11 compute a minimum spanning tfEdor the connected componeht C H such that
~ € H. Notice that the concentrator sites non-belonging{tcannot be considered since they induce
non-feasible solutions.

iii) line 12 connects t@ the sites of5; by means of edges the minimum cost.

By Proposition 3.4.2, the computed netwdfkis the feasible solution characterized by the set of concen-
trator sites/ U V'[1..k]. On the other hand, by inductive hypothesis, we have that netWoylsatisfies:

cost(7,..,) < cost(7;), Vjel...k—1.

Line 13 removes iteratively frorff the pendant concentrators since they are redundant in the solution. If
the resulting network is better thart,..,, this is updated in line 14. Hence, once executed line 15 the
following inequality is reached:

00ST(7,..;) < min (cost(7), min{cosr(7;),Vj € 1...k — 1}) = min{cost(7;), Vj € 1... k},
as required and completing the proof.
QED

The algorithm basically builds- — |I| neighbor solutions and selects the best among these. As men-
tioned above, the RNN is used to determine the order in which we must consider the concentrator sites fror
Sc '\ I to improve the current solution.

3.5 The GRASP algorithms for the ANDP

We now describe the general GRASP algorithm for approximately solving the ANDP. Figure 3.15 shows
the corresponding pseudo-code. The generic procedisesruction_Phase and Local_Search can be
instanced of the following way:

58 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM
e Construction_Phase: by ANDP_ConstPhasel or ANDP_ConstPhase2.
e Local Search: by ANDP_MST Local _Search or ANDP_RNN _Local Search.

In the following, Construction_Phase will reference indifferently ttANDP _ConstPhasel or ANDP_ConstPha
and in the same walyocal _Search will reference ttANDP_MST Local _Search or ANDP_RNN_Local _Search.
Next, we introduce a detailed description of the algoritdiASP_ANDP.

Procedure GRASP _ANDP;
Input: Ga, k, seed, MaxIter;

P — Preprocessing-Algorithm (G 4, C);
Compute the RNN parameters: W+ = {gi*].}; W— = {g;j};
min_cost < oo,
fori=1,..., MazxIter do
T.01 < Construction_Phase(G 4, C, k);
T.01 < Local_Search(Ga, C, T:01);
cost_sol «— coST(Z501);
if (cost_sol < min_cost) then

© 00 N O O~ WN PP

T©Pt) T i min_cost «— cost_sol;
10 end.f;

11 end _for;

12 return 7 (op®);

end GRASP _ANDP;

Figure 3.15: General Version of the algorittiiR ASP_ANDP.

The algorithm takes as inputs the grag@h of feasible connections on the access network, the matrix
of connection costg’, the GRASP parametefs(used in the construction phase), a seed for the pseudo
random number generateeed and the number of iterationd/ax/ter to be performed. Line 1 calls
Preprocessing_Algorithm in order to compute the auxiliary structufé(used byANDP _ConstPhase2).

Line 2 computes the RNN parametengt and)V~ (as presented above, they are the matrices of exci-
tatory and inhibitory rates respectively, which are usedAtNDP _RNN _Local_Search). The cost of the

best found feasible solution is initialized with the value infinite)(in line 3. The algorithm is repeated
MazxIter times exploring the space of feasible solutions and searching for the optimal feasible solution for
the ANDP. Each iteration works as follows.

In line 5, a greedy randomized feasible solutifp is built using the algorithnConstruction_Phase
(i.,e. ANDP _ConstPhasel or ANDP_ConstPhase2). Line 6 callsL.ocal_Search (i.e. ANDP_MST _Local_Search
or ANDP_RNN _Local_Search) in order to find for better neighbor feasible solutions. Depending on the
chosen algorithm, it searches for a better neighbor feasible solution by applying one of the following ap-
proaches:

3.5. THE GRASP ALGORITHMS FOR THE ANDP 59

i) a local search which consists in finding minimum spanning trees that integrate potential optimal
topologies for the ANDP.

i) alocal search based on a RNN model which uses a customized underlaying neural network to improv
the current solution.

In line 7 we compute the cost of the neighbor solutigp found in line 6. In line 8, we compare the cost
of the current solution with the one delivered bycal Search. If a neighbor solution with smaller cost has
been found byl.ocal Search, then, we update in line 9 the best found feasible solution and the minimum
cost. Once finalized the loop 4-11, the best found feasible soldtion is returned in line 12. Fig-
ures 3.16 and 3.17 show the execution diagrams corresponding to the generic algaritt® ANDP,
when choosing the MST based local search or the RNN based local search respectively.

4| Construction_Phase|

improvement?

ANDP_MST_Local_Search

it improves the
best solution?

Best Solution
Update

no

iter<MaxIter?

| The Best Solution is Returned |

Figure 3.16:GRASP_ANDP execution diagram with MST based local search.

60 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

iter=0

4| Construction_Phase|

| ANDP_RNN_Local_Search |

no it improves the
best solution?

yes

Best Solution
Update

no

iter<MaxIter?

yes

| The Best Solution is Returned |

Figure 3.17:.GRASP_ANDP execution diagram with RNN based local search.

3.6 Performance Tests

We present here the experimental results obtained wittith&SP_ANDP algorithm by using the different
combinations of algorithms for the construction phase and the local search phase. The algorithms wer
implemented in ANSI C. The experiments were made on a Pentium IV with 1.7 GHz, and 1 Gbytes of RAM,
running under Windows XP. In a first phase the candidate listisizas chosen in the séb, 10, 15, 20, 30},

and the maximum number of iterationgaxIter in the interval[50..500]. These values were chosen from
GRASP reference literature. In particular, we tuned the value for the candidate list size of the following
way. We considered a reduced group of ANDP instances with different topological characteristics and ove
it we ran ourtGRASP_ANDP considering its four possible versions and varying the value b¥e selected

k = 10 as the value with better results since it outperformed in all the cases the results obtained with the
other values.

In a second phase we tested tHRASP_ANDP on widely diverse ANDP classes. We used a large
test set, by modifying the Steiner Problem in Graphs (SPG) instances from SteinLib [90]. This library
contains many problem classes of widely different graph topologies. We extracted most of the problems ir
the classes: C, MC, X, PUC, 1080, 1160, 1320, 1640, P6E, P6Z, WRP3 and WRP4. We customized the SPC
problems, transforming them into ANDP instances by means of the following changes. For each considere
problem:

3.6. PERFORMANCE TESTS 61
i) we selected the terminal node with greatest degree asribde (modelling the backbone),
i) the Steiner nodes model the concentrator sites, and the terminal nodes model the terminal sites,
iii) allthe edges between terminal sites were deleted (as they are not allowed in feasible ANDP solutions

Moreover, if the resulting topology was unconnected, the problem instance was discarded. If the result
ing topology was connected, we ran thenstruction_Phase (i.e. one of the construction phase algorithms)
in order to discard the instance if its space of feasible solutions was empty. By this process, we obtaine
210 ANDP instances having nonempty space of feasible solutions.

Let us notice that since in the ANDP the terminals cannot be used as intermediate nodes (which implie
also that edges between pairs of terminals are not allowed), the cost of a SPG optimum is a lower bound fc
the optimum of the corresponding ANDP.

Tables 3.1 to 3.4 show a summary of computational results obtained by apGIRA§P _ANDP to the
customized SteinLib classes, they correspond to the combinations:

Heuristic H,: ANDP_ConstPhasel andANDP_MST _Local_Search,
Heuristic H,: ANDP_ConstPhase2 andANDP_MST _Local_Search,
Heuristic H3: ANDP_ConstPhasel andANDP_RNN _Local_Search,
Heuristic H,: ANDP_ConstPhase2 and ANDP_RNN _Local_Search.

The results shown in these tables were obtained with the combination of parameters0 and
MaxIter = 100. In each one of them the first column contains the names of the original SteinLib classes
and the entries from left to right are:

e the number of customized instances (NI),
¢ the size of the selected instances in terms of number of nodes and edges respectively,
e the number of instances where the lower bound was obtained reaching therefore the optimum (NOPT

e the average of the improvement of the results of the local search phase over the construction phas
(Avg. LSI),

e the average running time per iteration (Avg. secsl/itr),

¢ and the average of the gap of the GRASP solution with respect to the lower bound (AVGAPR

62 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

The average improvement is computed as Avg.:LﬂpeSd LSI(p) /NI, where for problenp,

MaxIter
100 (CC, — LCy)
LSI(p) = MaxIter % ; CC; ’

CC; and LC; being the costs of the solutions delivered in iteratidoy the Construction Phase and the
Local Search Phase respectively. The average gap is AvgGRB= }_ _. . LB_.GAP(p)/NI, where for

problemp,
Best_Cost_Found — Lower_Bound

Lower_Bound

Y

LB_GAP(p) = 100 x

and Lower_Bound is the optimum value corresponding to the original SPG instance.

Testset‘ NI ‘ Nodes Edges ‘ NOPT ‘ Avg. LSI ‘ Avg. secs/itr‘ Avg. LB_GAP
C 6 500 625-2500 - 18.17% 13.83 0.43%
MC 3 97-150 4656-11175 1 21.56% 5.01 3.33%
X 2 52-58 1326-1653 - 15.13% 143 52.33%
PUC 4 64-128 192-750 2 19.65% 2.47 0.14%
1080 70 80 120-3160 15 18.87% 1.42 7.58%
1160 22 160 240-2544 7 21.31% 3.02 3.57%
1320 15 320 480-10208 3 22.54% 11.27 2.57%
1640 15 640 960-4135 2 22.06% 34.08 3.71%
P6E 10 100-200 180-370 2 22.12% 1.98 17.08%
P6z 5 100-200 180-370 1 20.36% 1.54 27.33%
WRP3 | 27 84-925 149-1800 7 20.22% 22.42 0.00032%
WRP4 | 31 | 110-938 188-1869 4 24.16% 32.09 0.00786%
ALL 210 - - 44 20.75% 12.30 5.37%

Table 3.1: Results witANDP_ConstPhasel andANDP_MST _Local _Search (HeuristicH;).

Testset| NI | Nodes Edges | NOPT | Avg.LSI | Avg. secslitr | Avg. LB_GAP
c 6 500 625-2500 | - 14.83% 11.27 0.32%
MC 3 | 97-150 4656-11175 1 17.96% 4.17 3.33%
X 2 | 5258 1326-1653| - 14.25% 1.46 34.32%
PUC 4 | 64-128 192-750 2 18.42% 1.82 0.14%
1080 70 80 120-3160 | 17 | 14.27% 1.03 4.42%
1160 22 | 160 240-2544 | 7 18.98% 2.98 3.28%
1320 15 | 320 480-10208| 3 17.63% 9.12 2.35%
1640 15 | 640 960-4135 | 2 16.59% 29.83 3.01%
P6E 10 | 100-200 180-370 2 17.65% 178 14.78%
P6Z 5 | 100200 180-370 1 17.02% 1.24 18.64%
WRP3 | 27 | 84-925 149-1800 | 7 16.76% 19.64 0.00031%
WRP4 | 31 | 110-938 188-1869 | 5 18.44% 26.91 0.00723%
ALL | 210 - - 47 | 16.47% 10.47 3.73%

Table 3.2: Results witANDP_ConstPhase2 and ANDP_MST _Local _Search (HeuristicHs).

3.6. PERFORMANCE TESTS 63

Testset ‘ NI ‘ Nodes Edges ‘ NOPT ‘ Avg. LSI | Avg. secslitr | Avg. LB_GAP
Cc 6 500 625-2500 - 19.95% 12.13 0.41%
MC 3 97-150 4656-11175 1 23.34% 3.14 6.64%
X 2 52-58 1326-1653 - 11.00% 0.73 39.56%
PUC 4 64-128 192-750 2 21.04% 1.27 0.14%
1080 70 80 120-3160 13 18.22% 1.49 10.71%
1160 22 160 240-2544 7 23.82% 4.03 3.86%
1320 15 320 480-10208 2 21.12% 10.14 2.89%
1640 15 640 960-4135 2 20.59% 29.63 4.67%
P6E 10 | 100-200 180-370 2 23.75% 1.83 16.49%
P6Z 5 100-200 180-370 1 22.01% 1.10 23.22%
WRP3 | 27 84-925 149-1800 7 20.18% 20.32 0.00323%
WRP4 | 31 | 110-938 188-1869 3 25.14% 28.25 0.00513%
ALL 210 - - 40 20.91% 11.07 6.33%

Table 3.3: Results witA NDP _ConstPhasel andANDP_RNN _Local _Search (HeuristicH3).

Testset‘ NI ‘ Nodes Edges ‘ NOPT ‘ Avg. LSI ‘ Avg. secs/itr‘ Avg. LB_GAP
Cc 6 500 625-2500 - 15.17% 10.12 0.27%
MC 3 97-150 4656-11175 1 19.33% 4.43 3.69%
X 2 52-58 1326-1653 - 8.12% 0.52 32.27%
PUC 4 64-128 192-750 2 17.32% 1.02 0.11%
1080 70 80 120-3160 17 13.21% 0.57 6.73%
1160 22 160 240-2544 7 17.14% 3.09 3.08%
1320 15 320 480-10208 3 16.12% 9.03 2.12%
1640 15 640 960-4135 2 17.69% 26.96 2.56%
P6E 10 | 100-200 180-370 2 16.11% 1.54 14.02%
P62 5 100-200 180-370 1 16.42% 1.03 19.12%
WRP3 | 27 84-925 149-1800 8 15.76% 16.83 0.00096%
WRP4 | 31 | 110-938 188-1869 5 17.84% 20.05 0.00132%
ALL 210 - - 48 15.54% 8.68 4.39%

Table 3.4: Results witA NDP _ConstPhase2 and ANDP_RNN _Local _Search (HeuristicH,).

In Appendix B, we introduce tables which summarize the best results obtained for each customizec
instance. Before comparing the different GRASP heuristics for the ANDP, we define the average of the
difference between the best solution cost obtainedthyi € 1..4, with respect to the obtained one b,

jel.4,j+#1,as:

100 CH,(p) — CH,
Z((p) (p))

Avg. DCOST;; = —
vg. DCOST,; = = x CH) ,

pESet

where for problenp, C H;(p) andC H;(p) are the costs of the solutions deliveredisyand? ; respectively.
In addition, we introduce the notation:

e NLB;; is the number of instances where the lower bound was attained by the hekfistit not by
the heuristicH;,

64 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

e NO;; the number of instances where the heurigticovercame the heuristit;.

Based on these definitions, we provide the following comparison tables. In Tables 3.5 and 3.6 we com
pare the construction phase algorithms when the local search algorithms are the same; Table 3.5 compal
the heuristicg{; andH, whereas Table 3.6 compares the heuristigand?,. Tables 3.7 and 3.8 compare
the local search algorithms when the construction phase algorithms are the same; Table 3.7 compares t
heuristicsH; andH3; whereas Table 3.8 compares the heuristicsandH,. Finally, Tables 3.9 and 3.10
compare the heuristidq; with H,, andH, with H3 respectively.

Testset | NLBi NLBzi NO12 NOgi | Avg. DCOSTi2 | Avg. DCOST2;

C - - 0 2 0.09% -0.07%
MC 0 0 0 0 0.0% 0.0%

X 0 1 15.12% -14.53%
PUC 0 0 0 0 0.0% 0.0%
1080 0 2 2 6 2.46% -2.25%
1160 0 0 1 4 0.24% -0.19%
1320 0 0 0 3 0.18% -0.16%
1640 0 0 0 3 0.58% -0.53%
P6E 0 0 0 2 1.86% -1.73%
P6Z 0 0 0 2 6.95% -6.24%
WRP3 0 0 1 6 0.0000086% -0.0000075%
WRP4 0 1 0 5 0.00051% -0.00047%
Total 0 3 4 34 1.30% -1.19%

Table 3.5: Comparison betwe&fy andH..

Testset| NLBgs NLBys NOss NOus | Avg. DCOSTss | Avg. DCOSTus

c 0 2 0.11% -0.10%
MC 0 0 0 1 2.38% -2.28%
X - - 0 1 6.23% -5.78%
PUC 0 0 0 1 0.021% -0.020%
1080 0 4 0 8 3.32% -3.06%
1160 0 0 0 2 0.67% -0.61%
1320 0 0 0 3 0.63% -0.57%
1640 0 0 0 2 1.72% -1.64%
P6E 0 0 0 2 2.14% -1.96%
P6Z 0 0 0 1 3.52% -3.23%
WRP3 0 1 0 5 0.0017% -0.0016%
WRP4 0 2 0 6 0.0029% -0.0019%
Total 0 7 0 36 1.62% -1.50%

Table 3.6: Comparison betweéty and,.

Considering the possible combinations of algorithms for the construction phase and the local searcl
phase, the results show that the four resulting heuristics find in most cases good quality solutions. Next, w
will discuss the obtained results.

3.6. PERFORMANCE TESTS 65

Testset ‘ NLB13 NLB3; NOi3 NO3; AVg. DCOSTi3 Avg. DCOST3;

C - - 1 1 0.017% -0.017%
MC 0 0 1 0 -2.55% 2.75%

X 0 1 10.72% -8.75%
PUC 0 0 0 0 0% 0%
1080 2 0 4 0 -2.01% 2.63%
1160 0 0 3 0 -0.18% 0.24%
1320 1 0 2 0 -0.23% 0.26%
1640 0 0 2 0 -0.64% 0.71%
P6E 0 0 0 2 0.45% -0.38%
P6Z 0 0 0 2 3.73% -2.68%
WRP3 0 0 3 1 -0.00186% 0.00237%
WRP4 1 0 2 2 0.00219% -0.00117%
Total 4 0 18 9 -0.57% 0.84%

Table 3.7: Comparison betweéfy ands.

Testset| NLBys NLBjz NOzs NOusp | Avg. DCOSTas | Avg. DCOST4z

Cc - - 0 2 0.039% -0.033%
MC 0 0 1 0 -0.17% 0.28%

X 0 1 1.63% -1.45%
PUC 0 0 0 1 0.024% -0.022%
1080 0 0 4 3 1.52% -2.08%
1160 0 0 0 2 0.17% -0.14%
1320 0 0 0 3 0.20% -0.18%
1640 0 0 0 3 0.43% -0.28%
P6E 0 0 0 2 0.68% -0.54%
P6Z 0 0 1 2 0.26% -0.31%
WRP3 0 1 2 2 0.00047% -0.00062%
WRP4 0 0 2 6 0.00338% -0.00101%
Total 0 1 10 27 0.62% -0.78%

Table 3.8: Comparison betweéty and,.

The heuristicH, reached the lower bound and therefore the optimality in 48 instances, followed in order
by H., H1 andH3 with 47, 44 and 40 instances respectively. With respect to the 210 instances considered
these values corresponda®% of the cases using the heuristitls and’,, more thare0% using’,, and
more thanl9% using’Hs. In general, the gaps related to the lower bounds were low in the four heuristics,
and did not surpass thi#% in 7 out of 12 classes. Even though we do not know the global optimal solution
costs of the ANDP instances generated, some of the feasible solutions found might eventually be globall
optimal if we consider the low gaps obtained as well as the percentage of cases in which we reached tr
lower bound.

We also notice that the percentages of local search improvement strongly depend on which solutiot
construction algorithm is applied. For example, when setting the algodtNinP_MST Local Search as
local search and comparing the heuristttsandH,, we notice that in every class the average improvement

66 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

Testset| NLBiy NLByi NOis NOsi | Avg. DCOSTi4 | Avg. DCOST4

C - - 0 2 0.13% -0.09%
MC 0 0 1 0 -0.28% 0.33%
X 0 1 15.21% -15.08%
PUC 0 0 0 1 0.03% -0.02%
1080 0 2 3 7 0.64% -0.48%
1160 0 0 1 4 0.32% -0.27%
1320 0 0 0 3 0.30% -0.20%
1640 0 0 0 4 0.85% -0.65%
P6E 0 0 0 3 2.01% -1.12%
P6Z 0 0 0 1 6.05% -5.14%
WRP3 0 1 3 2 -0.00031% 0.00052%
WRP4 0 1 1 6 0.00601% -0.00213%
Total 0 4 9 34 0.71% -0.56%

Table 3.9: Comparison betweéfy andH,,.

Testset| NLBys NLBjz NOps NOsp | Avg. DCOSTas | Avg. DCOSTsy

Cc - - 2 0 -0.05% 0.08%
MC 0 0 2 0 -2.01% 3.22%
X 1 0 -3.11% 3.87%
PUC 0 0 0 0 0% 0%
1080 4 0 9 4 -3.07% 4.32%
1160 0 0 3 1 -0.31% 0.47%
1320 1 0 4 1 -0.28% 0.38%
1640 0 0 4 0 -0.78% 0.93%
P6E 0 0 2 0 -0.71% 1.11%
P6Z 0 0 2 0 -1.92% 2.54%
WRP3 0 0 3 2 -0.00141% 0.00217%
WRP4 2 0 4 2 -0.0007% 0.0018%
Total 7 0 36 10 -1.27% 1.78%

Table 3.10: Comparison betwe@fy andH;.

of the local search phase (AvgSI) was lower inH, than inH;. This shows that the feasible solution con-
structed byANDP _ConstPhase2 is generally of better quality (i.e. closest to a local optimum) than the one
built by ANDP_ConstPhasel. Moreover, computing the weighted averages of Avgl over all the classes
we have &0.75% and16.47% of average improvement i; andH, respectively. This observations are
also valid when comparing the heuristitls andH, which use the algorithmMANDP_RNN _Local_Search

as local search. In this last case the weighted average ofIf8igover all the classes are 86.91% and
15.54% of average improvement f@; andH, respectively.

On the other hand, when setting the algoritAlNDP_ConstPhasel as construction of the solution and
comparing the heuristic; and’H3, we notice that in seven classes the average improvement of the local
search phase was biggerty than inH;. However, both heuristics had very similar values considering
the weighted average per class. In the same way, when setting the algarti?_ConstPhase2 as

3.6. PERFORMANCE TESTS 67

construction of the solution and comparing the heuristieendH,, we notice that in 9 classes the average
improvement of the local search phase was biggek{inthan inH, and its weighted averages with a
difference lower tol%. Therefore, we are able to say that independently of the construction used, both
local search algorithms significantly improved the feasible solutions constructed, being this improvemen
on average always superior&t and superior td4% in 11 classes.

Let us analyze now the execution times. When measuring the heuftsfiesid 7, execution times
we considered the pre-processing time of the paths mRtsed by the algorithmANDP_ConstPhase2,
in order to compare them to the execution times of the heurigticeand 5. Considering the average
execution times over all classes, we obtained that the heuristic with best time§ waowed by H,,
Hs and’H;. Notice that those average values do not differ in more than 4 seconds per iteration. Beside:
it should be noticed that the execution times strongly depend on the class to which the problem belongs
Comparing any two of the heuristics used, we found in every case situations where an algorithm has bette
average time than the other one for a certain class and inversely. For exaped7?; have for class
C average time by iteration of 12.13 seconds and 10.12 seconds respectively, whereas for class MC ha
average time by iteration of 3.14 seconds and 4.43 seconds respectively.

Let us analyze the comparisons between heuristics.

e Table 3.5 shows that the heuristit; improves on average19% the solution delivered by the heuris-
tic H;. In every instance wherg{; reached the lower bound@{, also reached it. Moreovek,
reached the lower bound in three ANDP instances wh&reould not reach it. Nevertheless, it is to
be noticed that in four instancés, obtained better feasible solutions tHdr, what makes impossible
stating thatH, overcomesH;.

e Table 3.6 shows that the heuristit; improves on average5% the solution delivered by the heuristic
Hs. In every case wherg(; reached the lower bound{, also reached it. Besidég$, achieved the
lower bound in seven ANDP instances whetgcould not achieve it. In 36 instances found better
solutions thart{; whereasH; did not overcamé{, at any instance.

e Table 3.7 shows that the heuristif§ improves on average57% the solution delivered by the heuris-
tic Hs3. In every case wherg/; reached the lower boun®{; reached it too. Moreovek; achieved
the lower bound in four ANDP instances whef§ could not achieve them. However, in nine in-
stanced+{; obtained better feasible solutions tHEpn while in 18 instance${; overcameHs.

e Table 3.8 shows that the heurisfit; improves on average 78% the solution delivered b§{,. In
every case wherg(/, reached the lower bound{, reached it too. In additiof, succeed in reaching
the lower bound in an ANDP instance whéte could not reach it. On the other hand, in ten instances
‘H, obtained better feasible solutions than while in 27 instance${, overcameH.,.

68 CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

e Table 3.9 shows that the heuristi; improves on average56% the solution delivered by the heuris-
tic H;. In every case wher#; reached the lower boun#, also reached it. Besides tifit, reached
the lower bound in four ANDP instances whéte did not succeed in achieving it. In nine instances
‘H, obtained better feasible solutions th&n whereas in 34 instancés, overcameH ;.

e Table 3.10 shows that the heuristi;, improves on average.27% the best solution found by the
heuristicHs. In every case where(; reached the lower boun@{, reached it too. In addition to
this H, achieved the lower bound in seven ANDP instances whé&reould not reach them. In ten
instances; obtained better feasible solutions tHeR while in 36 instance®{, overcameHs.

To conclude the comparison we can say that the four heuristics produced good results. All of them
reached optimal solutions in more thad%, of test cases and attaining on average low gaps with respect
to their lower bounds. In addition, from the empirical data, we also notice that some of the heuristics are
incomparable since there are ANDP instances where one heuristic beats the other and inversely. At last,
is worth mentioning the good performance of the RNN model as optimizer of feasible topologies.

3.7 Conclusions

By modelling the access network design problem as a variant of the Steiner problem in graphs, we wer:
able to develop four Greedy Randomized Search Adaptive Procedures which can give a good quality af
proximate solution. The implementation of our algorithms was tested on a number of different problems
with heterogeneous characteristics. In particular, we built a set of ANDP instances transforming 210 SPC
instances (extracted from SteinLib) to our problem. The optimal values for the selected SPG instances at
lower bounds for the corresponding ANDP.

The four versions of GRASP algorithms found good quality feasible solutions, reaching the optimum in
40, 44, 47, and 48 cases in a total of 210 instances (@/grof the test-set in all the cases). Even though
we only know the lower bounds given by the optimal values of the SPG original problems, when computing
the weighted average over all the classes, the average gaps of the solutions obtained related to this bour
were lower tharv%. It is reasonable supposing that the gaps related to the global optimums of the ANDP
instances be even lower since the feasible solutions of a ANDP are also feasible solutions of the origine
SPG, but not reciprocally. In this sense, remember that in any ANDP instances generated, all the edge
between terminal nodes pairs were eliminated (because in our ANDP such connections are not allowec
having the additional constraint that the terminal nodes must have degree one in the solution.

On the other hand, as above exposed, the local search algorithms notably improved the solutions deliy
ered by the construction algorithms, strongly varying the percentage of improvement according to the SP(

3.7. CONCLUSIONS 69

class of problem from which the ANDP instance comes. In addition to this, such improvements are strongly
attached to the quality of the solution delivered by the construction phase.

We noticed that, as expected, the execution times of the proposed algorithms are strongly dependant «
the number of sites, edges, and the terminal sites.

To sum up, as far as we are concerned, the results obtained with the GRASP algorithms proposed a
very good as we consider that computing the global optimal solution of an ANDP is a NP-hard problem.

Actually, our ANDP model has some limitations; for instance, we have not considered constraints re-
lated to the depth of the resulting topology. As future work, it is possible to incorporate these restrictions
with the aim of producing access networks topologically more reliable by limiting the amount of chained
concentrator nodes. Moreover, it is possible to search for new methods which improve either the initial
construction or the local search phases of the GRASP.

70

CHAPTER 3. THE ACCESS NETWORK DESIGN PROBLEM

Chapter 4

The Backbone Network Design Problem

4.1 Introduction

In general, a typical WAN backbone network has a meshed topology, and its purpose is to allow efficient
and reliable communication between the switch sites of the network that act as connection points for the
local access networks (eventually incorporating other switch sites for efficiency purposes).

The topological design of a Backbone network basically consists of finding a minimum cost topology
which satisfies some additional requirements, generally chosen to improve the survivability of the network
(that is, its capacity to resist the failures of some of its components). One way to do this is to specify a
connectivity level, and to search for topologies which have at least this number of disjoint paths (either
edge disjoint or node disjoint) between pairs of switch sites. In the most general case, the connectivity leve
can be fixed independently for each pair of switch sites (heterogeneous connectivity requirements). Thi
problem can be modelled aszeneralized Steiner Problem with Node-Connectifdgnoted by GSP-NC)
and itis an NP-Complete problem [125, 135, 136]. Some references in this area are [1, 6, 9, 33, 69, 78, 89
As we mentioned in Section 1.4, most of these works are either focused on the edge-disjoint flavor of the
problem, or on the exploration of particular cases, for example, when it is required to have two disjoint paths
between all pairs of distinguished switch sites, which is called the 2-survivability problem [6]. In [126], an
extensive survey (1992) over high survivability models is introduced.

Topologies verifying edge-disjoint path connectivity constraints assure that the network can survive to
failures in the connection lines; whereas node-disjoint path constraints assure that the network can su
vive to failures both in switch sites as well as in the connection lines. In this chapter we discuss severa
customizations of the GRASP methodology for finding a low cost Backbone network topology that satis-
fies connection requirements on the number of node-disjoint paths, working upon the Generalized Steine
Problem with Node-Connectivity model.

71

72 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

The remainder of this chapter is organized as follows. Section 4.2 introduces the notation, the auxiliary
definitions to be used and the formal definition of our Backbone Network Design Problem (denoted by
BNDP). In Section 4.3 we introduce an algorithm for the construction phase plus a slight variant of it. In
Section 4.4 we provide three different alternative algorithms for the local search phase. These methoc
were designed with the goal of working in a combined form, allowing thus the exploration of different
neighborhood structures. Hence, by combining them suitably, we obtain different versions of GRASP.
Section 4.5 discuss the combinations of the previous construction and local search phases within the GRAS
methodology for approximately solving the BNDP. Section 4.6 presents experimental results obtained whel
applying the GRASP algorithms on an extensive test-set of BNDP instances, containing problems witt
distinctive topological characteristics. Finally, we conclude with a discussion in Section 4.7, which includes
some guidelines for future work.

4.2 Notation, Problem Formalization and Auxiliary Definitions
We introduce the notation used to formalize the problem:

e Sp is the set of sites where the switch equipments can be installed; these sites also will be callec
potential switch sites or backbone sites. The number of the switch sites is givenby.Sp|.

e 59 is a distinguished subset of switch sites, which will always be included in the backbone network
topology (usually because they are the access points for some local access subnetworks). We usua
call these thédixed sitef the backbone. The nodes$i \ S}D” are called Steiner nodes or non-fixed
sites.

o C = {cy}, jcq, Is the matrix which gives for any pair of sites 8§, the (non-negative) cost of laying
a line between them. When the direct connection betweel;j is not possible, we takg; = oc.

o R = {Tij}ijes“) IS an integer matrix of requirements of connection between pairs of sitég)of
g D
We will requirer;; node disjoint paths between fixed sitendyj, wherer;; usually is strictly greater
than 1.

e £ = {(1,7);Vi,j € Sp such that;; < oo}, this is the set of feasible connections between switch
sites belonging t&p.

e G; = (Sp, E) is the undirected simple graph modeling the feasible connections on the Backbone
Network.

4.2. NOTATION, PROBLEM FORMALIZATION AND AUXILIARY DEFINITIONS 73

Definition 4.2.1 (Backbone Network Design Problem-BNDPWe define the Backbone Network Design
ProblemBNDP(Sp, E, C, R) as the problem of finding a subgrapty of G; of minimum cost such that
the nodes of{ include those irﬂg) andH g satisfies the connection requirements specifiefl.iftVe will
denote by s pp the space of feasible solutions associated with the problem.

Let us observe that this definition is equivalent to the GSP-NC definition presented in Appendix C.
We introduce some supplementary auxiliary definitions here which will be used in the descriptions of the
proposed algorithms.

Definition 4.2.2 (key-node) Given a BNDP instance and a feasible solut@y, € I'sypp, We define a
key-nodeas a non-fixed site (that is, a site) \ S)’) with degree at least three i@,

Definition 4.2.3 (key-path) Given a BNDP instance and a feasible solut@p, € I'gsypp, We define a
key-pathas a path inG,,, such that all its intermediate sites are non-fixed sites with degree t@g,irand
whose endpoints are either fixed sites or key-nodes.

Notation 4.2.4 LetG,,, € I'gnpp be a feasible solution. If each edgedf, belongs to some path between
two fixes switch sites, then it is possible to decomgsen key-paths (i.e, there is a set of key-paths such
that every edge @.,, belongs to one and only one key-path). We will denot&ty..,) = (p1,. .., pn) the
decomposition of.., in key-paths, ordered by decreasing cost.

Definition 4.2.5 (key-tree) Given a BNDP instance, a feasible solutign, € I'sypp and a key-node
v € G,,,, we define th&ey-treeassociated with as the tree irg,,, which is conformed by all the key-paths
that havev as one of its endpoints. Topologically, we can see it as a set of chains haagmgndpoint in
common (the key-nodg.

The previous definitions are inspired on key-path and key-node definitions used in [131] in the context
of SPG. We present a small instance example, based on the network shown in Figure 4.2. In this networ
there are six fixed switch sites, colored black and labglesh, s3, s4, s5 andsg, and four non-fixed switch
sites, colored white. The connections that can be used to build a solution are shown in the figure, annotate
with their costs. The connection requirements are the following (supposirg¢tements ordered by their
index number):

This corresponds to asking for three node-disjoint paths betwgeand s3, three node-disjoint paths
betweens, ands,, and two node-disjoint paths between a nodé«%f ss, sq} with any other fixed site.

Figure 4.3 presents a minimal feasible solution (of cost 29) to this problem instance. As it can be
seen, not all non-fixed sites are needed in order to satisfy the connection requirements. Observe that in tl
solution there are two key-nodes and therefore two key-trees.

74 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

- 2 2 2 2

2 - 3 3 2 2

2 3 - 2 2 2
R =

2 3 2 - 2 2

2 2 2 2 - 2

2 2 2 2 2 -

Figure 4.1: Connection requirement matrix.

Figure 4.2: Example of a BNDP instance.

To apply GRASP to the BNDP, it is necessary to customize the different GRASP components describec
in Section 2.3. In the next two sections, we propose a path based construction phase and three local searcl
which are based on different neighborhood definitions. By combining suitably these local searches, we yiel
a series of GRASP versions which will be explained in detail in Section 4.5. Firstly, we will present the
construction phase algorithms.

4.3 BNDP Construction Phase Algorithms

For this phase, the method proposed can be seen as an extension of the Takahashi-Matsuyama alg
rithm [127], which is a heuristic for computing a (low cost) Steiner tree, and works by searching for shortest
paths between pairs of nodes not already connected. Our extension has a quite different objective, as v
need to efficiently computé low-cost node-disjoint paths fromto j, with i, 7 € S}’. The construction

4.3. BNDP CONSTRUCTION PHASE ALGORITHMS 75

key-node key-node

S
key-tree
associated to v

S

@

S,

key-tree
associated to u

S

Ss

Figure 4.3: A solution to the graph example given in Figure 4.2.

phase algorithm is denominatéthnstPhase. In addition we give a slight variant of this one, to which we
denominatedConstPhasex. Both algorithms are described below.

4.3.1 Algorithm ConstPhase

The algorithm builds iteratively a network satisfying the mathix= {rz»j}mesg) of connection require-
ments between fixed sites, i.e. given € S}’ there exists;; node-disjoint paths connecting them in the
network.

The algorithm (shown in Figure 4.4) takes as inputs the graplof feasible connections on the back-
bone network, the matrix of connection coétsthe matrix of connection requirements and the GRASP
parametek. In line 1 we initialize:

e the current solutio,,, with the sites ofS};’ and an empty set of links,

e the matrixM = {mij}ijesm (indicating the connection requirements not yet satisfied between fixed
» D
SiteS) Wlthm” = Tij, \V/Z,j S Sg),

e the setP = {Pij}ij csth (used to store the;; computed paths between two fixed siteg € S
with P;; = 0, Vi, j € S%,

76 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Procedure ConstPhase(Gg,C,R,k);

1 Goor « (S90,0); myj 745 Vi, j € SO Pij — O Vi, j € SU)5 Azj « 0Vi,j € S,

2 while Im;; > 0suchthat A;; < MAX_ATTEMPT do

3 Leti,j € Sg) be a randomly chosen pair of fixed switch sites such that mi; >0
4 G — (G \ Pij);

0 if (u,v) € Gsor, .

cur i (u,0) € (G\ Gaot).

6 L, < the k shortest paths from i to 5 on G, considering the matrix C,
7 L, =0then Aj; — Aij +1; Pij — 0; myj — riy;

8 else
9

5 Let C be the matrix given by: Gy, «—

if 3p € L, such that COSTlé(ﬁ) = 0then p — p;

10 else p «— Select_Random(L,); Gsot <+ Gso1 U {p};

11 Pij « Pij U{p} mij < mi; — 1;

12 [P, M] < General_Update_Matrix(Gso1, P, M, p, %, j);
13 end.if;

14 end _while;

15 return G.oi, P;

end ConstPhase;

Figure 4.4: ConstPhase pseudo-code.

e and the auxiliary matrixd = {Aij}ijesu) (used to record when there has not been found a path
» D
between two fixed sites) witH,; = 0, Vi, j € S5.

Loop 2-14 is repeated until all the fixed sites have satisfied their connection requirements or for a cer:
tain pair of fixed sites,j € S5’ have not been found;; node-disjoint paths connecting them after
MAX_ATTEMPT attempts.

Each iteration works of the following way. Line 3 selects randomly (and uniformly) aipaie S¢;
such thatn;; > 0 (there exists at least one requirement not yet computed among them). Line 4 computes
the networkG = (G \ P;;). Note that this network does not contain any edge and nod®;afxcepting
i andj; therefore, every path communicatingvith j in G will be node-disjoint with respect to the paths
already added t®;;. Line 5 computes an auxiliary matriX of connection costs where any connection
(u,v) € G,,, has cost zero. This allows to reuse the already existing edd@gs ifwithout considering their
costs), when computing new node-disjoint paths between two fixed sites. Line 6 computeshtbréest
paths fromi to j on G using the matrixC. These paths are stored in the restricted candidat€ Jistine 7
checks ifC, is empty. If this is the case (assuming tliaf satisfies the matrix, that is to say, the space
of feasible solutions is non-empty), we re-initialiZg andm,; since’P;; contains a separating set between
i andj on G, and therefore there does not exist a path frot j in G, they are in different connected
components. Otherwise,fand; are in the same connected componer jrn order to not increase the
cost ofG,,,, in line 9 we search a pahe L, such thatostz(p) = 0 (its cost with respect t@)). If this
is successful, we assign tathe found path. Otherwise, line 10 selects randomly (and uniformly) aypath

4.3. BNDP CONSTRUCTION PHASE ALGORITHMS 77

from £, and it is added tg,,, in the same line. Since in both cases we obtained a newppatke-disjoint

with respect to the paths i®;;, in line 11 the setP; is updated by adding the pathto it andm,; is
decremented by one. On the other hand, when adding this new path, new node-disjoint paths can have be
introduced between some pairs of fixed sites, the auxiliary procéekireral Update_Matrix is called in

line 12 in order to update some connection requirements of the fixed sites belongiagddhe seP. The
description of this procedure (given in Sub-Section 4.3.1) explains in detail the introduced updates.

Once finalized the loop 2-14, the built feasible solutifp is returned in line 16. Figure 4.5 illustrates
when a new node-disjoint path is added between two fixed switchisites S})’. Let us note that by
construction the new pathconnecting and; is node-disjoint with respect to the set of pafhs already
presenting,,,.

the new 4\—» H
node-disjoint path | \

Figure 4.5: Computation of a new node-disjoint path between the fixed sites;.

General Update_Matrix description

The algorithm (shown in Figure 4.6) receives as input the current solution (in construgtjonhe matrix

‘P of computed paths, the matri¥ indicating the requirements not yet satisfied, two fixed sitasl;, and

the pathp computed among them. The loop 1-15 analyzes each fixed site belonging to theipatider

to update certain connection requirements with other fixed sites. More specifically, the algorithm iteratively
analyzes each € S\ k # i,j such thatt € p and it checks if in the computed paghthere exists a
sub-path connecting with ¢ (resp.;) node-disjoint with respect to the already preser®jn(resp.Py;). If

this is the case, the s&;, (resp.Py;) is updated by adding;) (resp.p ;) to it, andm;;, andm;, (resp.

my; andm;,) are decremented by one.

78 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Procedure General _Update _Matrix(Gsoi,P,M,p,i,7);

1 foreach k € S$)),k #i,j such that k € p do
if m; > 0then
if (NODES(P;) N NODES(p(; 1)) = {7, k}) then
Pir — Pir, U{pgi, 1) 1
Mg < My — 1, Mgy < my; — 15
end _if;
end _if;
if my; > 0then
if (NODES(Py;) N NODES(p(x,;)) = {k,3}) then
Prj — Prj U{pk,jt
11 My My — 1 Mg — myjp — 15
12 end _if;
13 end.f;
14 end _for _each;
15 return P, M,
end General _Update _Matrix;

© 00 N O O b~ WN

=
o

Figure 4.6: GenerdUpdateMatrix pseudo-code.

Proposition 4.3.1 Once the algorithn@zeneral_Update_Matrix finalizes the following points are satisfied
Vi,j € Sy

|) Pij - @ |ff mij = Tz‘j-
ii) If m;; =k (with k£ € 0..r;;) then there exist at least; — £ node-disjoint paths fromto j in G,,,.

i) The relation|P;;| = r;; — m,; is satisfied in eacld'onst Phase iteration.

Proof. Firstly, let us assume that whéfeneral Update_Matrix is called in line 12 ofConstPhase, P and

M satisfy pointg — 7.

Leti,j € S& be the input fixed switch sites apdhe path connectingwith j computed byConstPhase.
Loop 1-14 analyzesk € S\, k € p, k # i, j the following cases.

Case 1: Lines 2-7If m;;, > 0 we know that there exit;; — m;; node-disjoint paths communicatin@nd

in G.,.. In addition, ifm,; = r;; we have tha®,;; = (. If condition NobEs(P;,) N NODES(p(ix)) = {7, k} iS
true, the sub-path; ;) is added tdP;;, (in line 4) since it is node-disjoint with respect to the already present
in P;.. The values ofn;, andm,; are decremented by one in line 5 preserving thus the pointsi.

Case 2: Lines 8-13dem to the previous case.

QED

The following proposition demonstrates the constructive correctness of the alg@fitistPhase.

4.3. BNDP CONSTRUCTION PHASE ALGORITHMS 79

Proposition 4.3.2 If A;; < MAX_ATTEMPT, V4,j € Sy then the graph returned bonstPhase is a
feasible solution for the BNDP satisfying the matrix of connection requirenients

Proof. In the proof, we assume that there exists a subnet@qQrkC GG satisfying the matrixz.
In line 1 the algorithm initializes:

e G., with the set of fixed switch siteS)’ and an empty set of links,

e the auxiliary matrix}/ (indicating connections that we know satisfies netw@rk) with m;; = r;;,
Vi, j €Sy,

e the matrix? (which will store the computed paths franto j onG.,,, Vi, j € S%’) with empty.

Suppose that for certain iteration the condition in lihes TRUE. In line 3 we choose randomly a pair
i,j € Sy, of fixed switch sites such that;; > 0. Line 4 computes the auxiliary netwotk= (G5 \ P;;).
Notice that, if there exits a path fromto j in G, this one is node-disjoint with respect to the paths of
P;;. In addition, line 5 computes an auxiliary cost maifiassociated witlj, by assigning cost zero to
the connections that already aredn,. Knowing thatGeneral Update_Matrix preserves the condition:
|P;;| = ri; — mj, lines 5-13 searches for a new path fromo j ong.,, consideringC. Let us analyze the
following situations.

Case 1: Ap C G connecting: with j. In this case, line 7 re-initialize®;; andm,; since’P;; contains a
separating set betweeémand;j on G ;. The construction is resumed from line 2.

Case 2:3p C G. In this case, we differentiate the following subcases:

i) If there exits a patlp C G such thatp C G.., thenp will be select as the new node-disjoint path
between andj (line 9). This allows to satisfy a new node-connectivity requirement betwaed,
without increasing the cost of the current solution.

i) Otherwise, in line 9 we select a pattirom the list of pathsC, (computed in line 7). A® ¢ G, the
current solutiorg,,, is updated in line 9.

In both casesXi and2.i¢), the indicatonn,; is decremented by one in line 11.

Based on the construction process described above, it easy to see that once finalized loop 2-14,
my; =0, Vi, j € S5 (i.e. A;; < MAX_ATTEMPT, Vi, j € S5,) then the built solutiorg,,, satisfies the
matrix R.

QED

It is possible to consider a variant QoonstPhase where we select randomly (and uniformly) a path
from £, without checking if there already exists a pathontained inZ, such thatcost - (p) = 0 (line 9

80 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Procedure ConstPhase*(Gg,C,R,k);

1 Goor « (S90,0); myj 745 Vi, j € SO Pij — O Vi, j € SU)5 Azj « 0Vi,j € S,

2 while Im;; > 0suchthat A;; < MAX_ATTEMPT do

3 Leti,j € Sg) be a randomly chosen pair of fixed switch sites such that mi; >0
4 G — (G \ Pij);

0 if (u,v) € Gsor, .

cur i (u,0) € (G\ Gaot).

6 L, < the k shortest paths from i to 5 on G, considering the matrix C,
7 L, =0then Aj; — Aij +1; Pij — 0; myj — riy;

8 else

9 p «— Select_Random(L,); Gsor < Gso1 U {p};

10 Pij — Pij U{p}; mij «— my; — 1;

11 [P, M] — General_Update_Matrix(Gso, P, M, p,,7);

12 end.if;

13 end _while;

14 return G.o1, P;

end ConstPhase*;

5 Let C be the matrix given by: Gy, «—

Figure 4.7: ConstPhase* pseudo-code.

of ConstPhase pseudo-code). This variant is shown in Figure 4.7. This way, we can reduce the execution
time for theConstPhase, the tradeoff being that we may lose opportunities for using zero cost paths.

Proposition 4.3.3 If A;; < MAX_ATTEMPT, Vi, j € S}, then the graph returned bjfonstPhasex is a
feasible solution for the BNDP satisfying the matrix of connection requirenients

Proof. It is similar to the proof for the&ConstPhase with the difference that we do not checkdp € £,
such thatost#(p) = 0. Directly, a path fromZ, is selected randomly and uniformly (line 9).

QED

4.4 BNDP Local Search Phase Algorithms

Usually the solution built by the construction phase is not even a local optimum. For this reason the GRASF
metaheuristic applies a local search phase in order to improve this solution. We propose three local seart
algorithms for the BNDP, which are based on different neighborhood structures. Specifically, we designec
a key-path based local search, a path based local search and a tree based local search, which can worl
complementary form, running in combined way. We will give in Section 4.5 the GRASP algorithms that can
be obtained by combining these local search algorithms. Next, we describe a key-path based local sear
algorithm for the BNDP. We call iLocalSearchl.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 81

4.4.1 Algorithm LocalSearchl

We start by defining a Neighborhood Structure which will be used by.thealSearch1 algorithm.

Definition 4.4.1 (key-path based Neighborhood Structure)Let G,,, be a feasible solution satisfying the
matrix of connection requiremen#s. Given a key-pathh C G.,,, we define a neighbor solution ¢f,,
as: G, = (G... \ p) U p, wherep is another key-path connecting the endpointg ahd maintaining the
feasibility in the new networ. .

The Key-Path Neighborhood ¢, is composed of the neighbor solutions obtained by applying the
previous operation to each of the different key-pathgi9..,) = (p1,...,pn)-

The LocalSearchl algorithm builds iteratively neighbor solutions by replacing key-paths from the
current solution by other key-paths which have the same endpoints. As we will see in Proposition 4.4.2
the feasibility of the built neighbor solution is preserved in each iteration. The process is repeated until the
key-path replacements do not induce a better feasible solution.

Procedure LocalSearchl(Gg,C,Gsol);

1 improve «— TRUE;

2 while improve do

3 improve «— FALSE;

4 K(Gso1) < the decomposition in key-paths of G,.i;

5 while not(improve) and 3 key-paths not yet analyzed do

6 Let p € K(Gso1) be a key-path not yet analyzed with ends « and v;
7 H — the subgraph induced by NODES(p) U (Sp \ NODES(Gs01));
8 p — the shortest path from w to v on H;

9 if cosT(p) < cosT(p) then

10 Gsot < (Gsor \ P) U P;
11 improve < TRUE;
12 end _if;

13 end.while;

14 end _while.

15 return Gsor;

end LocalSearchil;

Figure 4.8: LocalSearchl pseudo-code.

The algorithm (shown in Figure 4.8) takes as inputs the gt@plof feasible connections on the back-
bone network, the matrix of connection coétsand the current feasible solutiéh,,. In line 1 we initialize
with TRUE the indicator variablémprove used to indicate improvements obtained by the key-path re-
placements. Loop 2-13 searches for neighbor solutions analyzing each key-path in the current@glution
and replacing this by another key-path in order to improve its cost without losing the feasibility.

82 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Each iteration works of the following way. In line@prove is set toFALSE. Line 4 computes the
decomposition in key-paths @f.,;, which we denote byC(G.,,). The internal loop 5-13 analyzes one at
a time the key-paths fronC(g.,,) with the aim of finding a new key-path of smaller cost to replace the
corresponding original key-path. Line 6 selects randomly (and uniformly) a keyppat#C(G..,) not yet
analyzed. We denote hyandv the ends of the selected key-pathin line 7 we compute the sub-network
induced by the set of sitespes(p) U (Sp \ Nobes(G.,,)), which is denoted bg. Notice that in¥{ there
are no sites froniG.., \ p) exceptingu andv. Therefore, all path connectingwith v in { reestablishes the
feasibility of (G.., \ p). Consequently, line 8 computes the shortest path ftdow on H, which is denoted
by p. Line 9 compares the costs pfandp. If p has cost smaller tham in line 10 the current key-path
p is replaced by in G,,, and in line 11 the indicatoimprove is set toTRUE to restart the local search
from line 2. Otherwise, i has cost greater than the loop 5-13 continues with another key-path not yet
analyzed or it finalizes since there are no more key-paths to analyze.

Once there are no more improvements by key-path replacements the loop 2-14 finalizes and the be
neighbor solution found is returned in line 15.

Figure 4.9 illustrates a typical key-path replacement madédalSearchl. The black nodes model
the fixed switch sites whereas the white nodes the non-fixed switch sites. The broken lines represent patl
between nodes. Note that the new key-path can have sifeaivell as ofSp, \ Nopes(G.,,).

The following proposition demonstrates the feasibility preservation in BachiSearch1 iteration.

Proposition 4.4.2 Given a feasible solutiog,,, for the BNDP satisfying the matrix of connection re-
quirementsRk, the algorithmLocalSearch1 preserves the feasibility, returning a neighbor feasible solution
satisfyingR.

Proof. Let us suppose thdtocalSearch1 does not preserve the feasibility. Necessarily, in certain iteration
we would have:

e the current solutio.,, is feasible,

e the pathp computed in lines 7-8 satisfiesost(p) < cost(p), wherep € K(G.,,) is the current
key-path. Hence, line 10 will be computed.

e the network:G = (G.., \ p) U p is not feasible, i.e.3i,j € S% such that inG there are no;
node-disjoint paths connecting them.

By construction, this would implyinter~NarL NobEs(p) NNopEs(G..,, \ p) # @, which is a contradiction since
Nopes(p) C (nopes(p) U (Sp \ Nopes(G...)). Therefore the network is feasible satisfying the matrix of
connection requiremen#s, and completing thus the proof.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 83

key-path p

new key-path

Figure 4.9: A generic key-path replacement computeddaalSearchl.

QED

The solutions delivered b¢onstPhase and ConstPhasex not necessarily are minimal. If the con-
structed solution is minimal, the minimality will be preservedllyalSearch1. The following proposition
demonstrates the minimality preservation in ehohalSearchl iteration.

Proposition 4.4.3 If the algorithmLocalSearchl receives as input a minimal feasible solution, the re-
turned solution preserves the minimality.

Proof. Let us denotg; the solution delivered blsocalSearch1. Again, by contradiction, let us suppose that
G is not minimal. Necessarily, in certain iteration we would have that the current solggtjois minimal
and by executing lines 6-10 the resulting netwgrk (G... \ p) Upis not minimal. This implies that there
exists an edge € G such thag \ {¢} is feasible. We have the following cases:

i) e € p. We reach a contradiction, singas a new key-path replacing oin G.,,, i.e. (G.,, \p) Np =
{u,v} (beingu, v the ends op); therefore removing any edge frofithe feasibility is lost.

84 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

i) e € p. As the connection requirements when removingre reestablished by the key-paihit is
easy to see that f \ {e} is feasible therg.,, \ {¢} also would be feasible, contradicting thus its
minimality.

In this way, (7) and(iz) imply thatG is a minimal feasible solution.
QED

Now, we propose a local search strategy based in key-paths replacement which is more complex tha
LocalSearch1 but more flexible since when replacing a key-path we can use a set of switch sites that con-
tains the set used yocalSearch1. Hence, we can see this new strategy as a generalizatianafSearch].

It is based on a path-based approach where iteratively, key-paths belonging to the current solution are r
placed by other paths suitably constructed preserving the feasibility.

4.4.2 Algorithm LocalSearch2

Before describing in detail the local search algorithm, we introduce a suitable structure for the neighborhoot
and some auxiliary definitions.

Definition 4.4.4 (path based Neighborhood Structure)Let G,,, be a feasible solution satisfying the ma-
trix of connection requirement8. Given a key-pathh C G,.,, we define a neighbor solution ¢f,, as:
G, = (G... \ p) U p, wherep is another path connecting the endpointe@ind maintaining the feasibility
in the new networlg..,. The substitute patp is not necessarily a key-path and it can contain nodes and
edges belonging tg,., whenever the feasibility is preserved.

The Path Neighborhood ¢f,,, is composed of the neighbor solutions obtained by applying the previous

operation to each of the different key-pathsifG.,,) = (p1,...,pn)-

Definition 4.4.5 Let p be a key-path belonging to the feasible solution andP = {Pl-j}ijesm the set
of node-disjoint paths between fixed switch sites (initially computédbhytPhase or ConstPhasex). We
define:

‘/;7(73) = {(Z,j) c Sg) X Sg>|3]§2] c Pij; such tha@) C ﬁ”} .
This is the set of pairs of fixed switch sitesS§f which “depend on” key-patlp, that is to sayp is part of

at least one patlp;; in the setP;; of the node-disjoint paths connectingnd .

Notation 4.4.6 Given a key-patlp € G.,, andi, j € S}’ such that(i, j) € V,(P) we will denote by);; the
path ofP;; containingp.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 85

Definition 4.4.7 Given a key-patlp C G,,, and the sefP, we define the following set:

XP(P) = U NODES(,PZ‘j \ﬁij),

V(i,5)€Vn(P)
wherep;; € P;; (as above) denotes the path containingrhis is the union over every pair of fixed sites
J which depend on key-path of all the nodes belonging to paths’; which do not containp.

Based on these definitions, we design a path-based local search algorithm for the BNDP, which we ca
LocalSearch2. Notice that, by definition, the space of feasible solutions induced by the Path Neighborhood
Structure includes the space of feasible solutions induced by the Key-Path Neighborhood Structure define
previously. In particular, the proposed algorithm is used in combined way with the key-tree based local
search algorithmiLocalSearch3 (presented in Sub-Section 4.4.3) since both are designed on structurally
different neighborhoods. Next, we give a detailed descriptidnoehlSearch2 and some topological prop-
erties satisfied by the constructed neighbor solutions.

The algorithm builds iteratively neighbor solutions by replacing key-paths from the current solution by
other paths suitably designed so that the feasibility is preserved (these paths are not necessarily key-pat
since they can introduce new key-nodes). This process is repeated until the key-path replacements do n
induce a better feasible solution.

In more detail, the algorithm (shown in Figure 4.10) takes as inputs the grapif feasible connec-
tions on the backbone network, the matrix of connection cOsthe current feasible solutiah,,, and the
setpP = {Pij}i,jesg)
tialize with TRUE the indicator variablémprove used to indicate improvements obtained by the key-path
replacements. In line 2 we compute the decomposition in key-patlys, ofdenoted bykC(G.,,). Loop

which contains all the computed paths between fixed switch sites. In line 1 we ini-

3-17 searches for neighbor solutions by analyzing each key-patdn,) and replacing (if it is possible)

these ones by other paths in order to improve its cost without losing the feasibility. When we reach a bette

feasible solution by a key-path replacement the local search resumes from this new feasible solution.
Each iteration works of the following way. In line 4 the indicatorprove is set toFALSE. The internal

loop 5-16 analyzes each key-pattE K(G.,,) and using an auxiliary network searches for a substitute path

which must preserve the feasibility when performing the replacementp betthe current key-path and

u, v its ends. Let us consider the set of sité€s= ~opgs(p) U (Sp \ &,(P)); by definition of X,(P), in

the set(Sp \ X,(P)) there are no sites of paths belongingRahat do not contain tp. That is to say,

any site of(Sp \ A,(P)) belongs to some path frof containingp, or does not belong t®. Therefore,

if 7 is the subnetwork induced by in G, any path connecting andv in 7 is a potential substitute for

p, since (as we will see in Proposition 4.4.8) this one preserves the feasibility. In lines 6-7 we compute the

network’{ and the auxiliary matrix of connection cogts(in C' we assign costs zero to the edges belonging

to H N (G... \p), in order to reuse them, without considering their costs, in the computation of the substitute

86 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Procedure LocalSearch2(G5,C,Gs01,P);

1 improve «— TRUE;

2 K(Gsor) < the decomposition in key-paths of G..1;

3 while improve do

4 improve «— FALSE;

5 for each key-path p € K(G.o:) with ends w, v do

6 H — the subgraph inducemtby NODES(p) U (Sp \ Xp(P));
0 if(i,5) € (Gsor \ D),

7 Compute C where é&;; =)
c;j otherwise ,
8 P the shortest path from « to v on ‘A, considering C;
9 if COST‘C,(;E) < cosT(p) then
10 Geot — (Gsot \ P) UP;
11 ‘P is updated as follows: Vp € P such that p C p, we have: p — (p\ p) Up;
12 improve «— TRUE;
13 if s € p, s # u,v such that degree(s) > 3in G, then
14 K(Gso1) < the decomposition in key-paths of Ggr;
15 end _if;
16 end _if;
17 end for _each;
18 end_while.

19 return Gso1, P;
end LocalSearch2;

Figure 4.10: LocalSearch2 pseudo-code.

path). UsingC' line 8 computes the shortest path franto v on %, which is denoted by. As p can have
edges in(G.,; \ p), in line 9 we compare only the costs pf\ (G.,, \ p) andp. If p has cost greater than
P\ (G... \ p), in line 10 the current solutiog.,, is updated replacing by p. In addition, considering sév,
every pathp € P such thap C p is updated by replacingby p in line 11. In this way, let us note thét,,
andP are suitably updated in each iteration. The indicatoprove is set toTRUE in line 12. If the patlp
introduces a new key-node &h,,, we recompute the key-paths decomposition in lines 13-15, and the local
search is resumed from line 5 with this newly built neighbor solution. On the other hand, if the condition
in line 9 iIsFALSE (i.e. p is not better thamp), another key-path fronC(G.,,) will be analyzed by internal
loop 5-17.

Once there are no more improvements by key-tree replacements the current sp|ytao the seP
are returned in line 19.

The following proposition demonstrates the feasibility preservation in BachiSearch?2 iteration.

Proposition 4.4.8 If LocalSearch2 receives as input a feasible solutigi, satisfying the matrix of con-
nection requirements®, the feasibility is preserved at any time.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 87

Proof. Let us suppose thdtocalSearch2 does not preserve the feasibility. Necessarily, in certain iteration
we would have:

i) the current solutio,,, is feasible,

ii) the pathp computed in lines 6-8 satisfiesost(p \ (G... \ p)) < cost(p), wherep € K(G.,,) is the
current key-path, and therefore line 10 is computed.

lii) the resulting networké = (G... \ p) Upis not feasible, i.edi, j € s;; such that ing there are no;;
node-disjoint paths connecting them.

Letp;; € P;; be such thap C p;;. We define the path,,. = (p;; \ p) U p. Since the nodes of,(P) are
excluded fromA (line 6) and therefore itl there are no nodes 6P;; \ ;;), we have that:

INTERNAL-NODES (Pguz) N INTERNAL.NODES(p;;) = 0, Vpi; € (Pij \ Dij)s

which contradicts(iii). Hence, the network; computed in line 10 is feasible satisfying the matrix of
connection requiremeni3. To complete the proof, notice that:

e all the pathg € P containingp are updated in line 10 replacipgy p, and accordingly there arg;
node-disjoints paths i®;; connecting with j, Vi, j € Sy,

e lines 13-15 recompute the decomposition in key-pathg,gf(which was updated in line 10 k) if
a new key-node was introduced.

In this way, the feasibility of the current topology is guaranteed in each local search iteration.
QED

Like LocalSearchl, when the algorithmiocalSearch2 receives as input a minimal feasible solution,
the solution computed by it will be also minimal. The following proposition demonstrates the minimality
preservation in eachocalSearch? iteration.

Proposition 4.4.9 If the algorithmLocalSearch2 receives as input a minimal feasible solution, the re-
turned solution preserves the minimality.

Proof. Let us suppose thdtocalSearch2 does not preserve the minimality. Necessarily, for certain iteration
we have:

e the current solutio.,, is minimal.

e there exists a pathreplacing a key-patp € K(G..,), and moreover:

88 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

i) we havecost(p \ (G.. \ p)) < cost(p) and therefore the algorithm computes the network

G = (G.,, \ p) Up (line 10). In this proof, we will denote b¥.,, to the current solution before
its update.

i) G is not minimal (but it is feasible by Proposition 4.4.8).

Therefore, there exits an edge G such thalG \ {e} is feasible. We will analyze the following cases.

Case Ae € G.,,. Let us consider the netwotk = (G \ {e}) \ p. Since inp (by construction of{) there are

no nodes fromi,,(P), applyingX,(P) definition, inG we lose only one level of node-connectivity between
pairs of sites o¥/,(P). The other pairs of fixed sites are not affected in their levels of node-connectivity. On
the other hand, gs ¢ G andpN X, (P) = 0, in the networkG U p the lost node-connectivity levels between
fixed sites fromV,(P) are reestablished, implying therefore its feasibility. We have then the equality:

GUp=(G\{e)\Dp= (G \P)UD) \ {e}) \ P =G\ {e},

contradicting thus the minimality &, ,.
Case B.e ¢ G,,. Firstly, it is easy to see that does not exist a pathc G.,, from « to v such that
p2 N X,(P) = 0; otherwise, consideriné, p2 would be the shortest path fromto v in H since it satisfies

by C def.
cosqé(pQ) L 0, contradicting thug being the shortest path #f. Hence, byg.., minimality andg \ {e}
feasibility, it must exist a path, C (G..,, U (p \ {e})) such thap, N (p\ {e}) # 0 andp, N X, (P) = 0. By
C definition, we have then:

(P2 \ Gso1) C P

A
COST|(p2) < cosT|(D),

which is a contradiction.

To conclude, cases A and B imply th@t {¢} is non-feasible.

QED

We will compare the neighborhood structures associatedlwithlSearch1 andLocalSearch2. Before,
we introduce the following notation.
Given a feasible solutiog for a BNDP instance and a key-pathc G, let us denote by:

e Ni(G,p) the sub-space of neighbor solutions considered.tyalSearchl when carrying out the
replacement op.

e Ny(G,p) the sub-space of neighbor solutions considered.tyalSearch2 when carrying out the
replacement op.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 89

Property 4.4.10 Let 'H be a feasible solution ang C ‘H a key-path. Let us suppose tHatcalSearchl
and LocalSearch2 will analyze the replacement pfon . Then, the following inequality is satisfied:

cost(G,.,,) < cost(G,...),

beingG; andg’

best best

the resulting networks once computed the key-path replaceméntdaySearch1 and
LocalSearch2 respectively.

Proof. By definition of X,(P) (seeLocalSearchl description), we have tha\;(H, p) C Ny(H,p). More-
over, since by constructiohocalSearchl and LocalSearch? attain the best feasible solutioftg; , €
Ni(H,p) andH;

best

€ Ny(H, p) respectively, we obtain the relation:
cost(H;,,,) < cost(H,,.,),
as required, and completing the proof.
QED

Next, we provide a third local search strategy which is structurally different with respect to the local
search algorithms exposed above.

4.4.3 Algorithm LocalSearch3

Before introducing the local search strategy based on key-trees replacement, we define a suitable structt
for the neighborhood.

Definition 4.4.11 (key-tree based Neighborhood Structure) etg.,, be a feasible solution satisfying the
matrix of connection requiremenfs. Given a key-node € G, and its associated key-treg C G..,,
we define a neighbor solution gf,, as: G = (G... \ 7,) U T, whereT is another key-tree spanning the
endpoints of7, and maintaining the feasibility in the new netwark, .

The Key-Tree Neighborhood 6f,, is composed of the neighbor solutions obtained by applying itera-
tively the previous operation to each of the different key-tre€k.in

Based on this neighborhood structure, we design another local search algorithm for the BNDP, which we
calledLocalSearch3. The proposed algorithm differs substantially frémcalSearch1 andLocalSearch2
since this one is based on key-tree replacements and the others on key-path replacements. However, we ¢
use them running in combined form, exploiting thus the potentialities of both strategies. Next, we intro-
duce a detailed description dbcalSearch3 and some topological properties satisfied by the constructed
neighbor solutions.

90 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Procedure LocalSearch3(Gg,C,Gso1);

1 improve «— TRUE;

2 while improve do

3 improve «— FALSE;

4 Let X be the set of key-nodes in G;;

5 S« Sp\NODES(Gsor);

6 while not(improve) and 3 key-nodes not yet analyzed do
7 Let v € X be not yet analyzed,;

8 [Gso1, improve] < General RecConnect(G g, C, Gsor,v, S);
9 end _while;

10 end_while;

11 return Gooi;

end LocalSearch3;

Figure 4.11: LocalSearch3 pseudo-code.

The algorithm builds iteratively neighbor solutions by replacing key-trees from the current solution by
other key-trees which are suitably designed so that the feasibility is preserved. This process is repeated un
the key-tree replacements do not induce a better feasible solution.

The algorithm (shown in Figure 4.11) takes as inputs the g€apbf feasible connections on the back-
bone network, the matrix of connection coétsand the current feasible solutiéh,,. In line 1 we initialize
with FALSE the indicator variablémprove used to indicate improvements obtained by the key-tree re-
placements. Loop 2-10 searches for neighbor solutions analyzing each key-node in the current solutio
g.., and replacing (if it is possible) their respective key-trees by other key-trees in order to improve its cost
without losing the feasibility. When we reach a better feasible solution by a key-tree replacement the loca
search resumes from this new feasible solution.

Each iteration works of the following way. In line@prove is set toFALSE. Line 4 computes the
set X of key-nodes ofG.,,. Line 5 computes the set of non-fixed switch sites non-belonging @.,.
The internal loop 6-9 analyzes one at a time the key-nodes fxomith the aim of finding a suitable
key-tree of smaller cost to replace the corresponding key-tree. Line 7 selects assiterandomly (and
uniformly). In line 8 we execute the algorithm call&dneral RecConnect in order to find a substitute key-
tree for the key-tree associated withso that it has smaller cost than this one and preserves the feasibility
(we give below a detailed description of this algorithm and Proposition 4.4.12 proves that it preserves the
feasibility). If this search is successful, theneral RecConnect delivers a better neighbor solution and the
current solutiorg,,, is updated with it in the same line. In additiomprove is set toTRUE, to restart the
local search from line 2. Otherwise,#eneral_RecConnect cannot find a substitute key-tree, the loop 6-9
considers another key-node not yet analyzed or it finalizes since there are no more key-nodes to analyze.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 91

Once there are no more improvements by key-tree replacements the current sglyti®neturned in
line 11.

General RecConnect description

The algorithmGeneral RecConnect is an auxiliary procedure used by the algorithpralSearch2. Given
the current solutiorg,,, and a key-node < G.,, General RecConnect tries to build a better key-tree
7T spanning the endpoints @f,, where7Z, is the key-tree associatedva To preserve the feasibility, the
substitute key-tre& is built using only sites of,, and the non-fixed switch sites non-belongingjtg. In
addition the edges between the endpointg,odre not considered.

Procedure General _RecConnect(G5,C,Gs01,v,5);

cost «— Cost_Key_Tree(v, Gso1);
Y < Nodes_Key_Tree(v, Gso1);
Z « Ends Key_Tree(v,Gso1);
S—(Y\2)us;
U« {(4,5) € Gplic Z,j € S};
H — the subgraph induced by Sin Gp; H — HUU;
T — {v};
while Ju € Z such that w ¢ 7 do
u «— Select_Random(X) where X = {u € Z|u ¢ T};
10 H—H\(Z\{u});
11 p « the shortest path from w« to 7 considering H;
12 T —TuUp;
13 end_while;
14 Iteratively remove all s € S from 7 with degree 1;
15 if (cosT(T) < cost) then
16 Gsot — (Gsar \ (Y \ 2))UT;
17 improve «— TRUE;
18 else improve <« FALSE;
19 return Gso1, improve;

© 00 N O Ok WDN PP

end General _RecConnect;

Figure 4.12: GenerdRecConnect pseudo-code.

The algorithm (shown in Figure 4.12) takes as inputs the g€apbf feasible connections on the back-
bone network, the matrix of connection coétsthe current feasible solutiaf,,, the current key-node,
and the sefS of non-fixed switch sites non-belonging ¢,,. Let 7, be the key-tree associated with
Line 1 computes the cost @f,. Line 2 computes the séf of sites belonging t@,. Line 3 computes the
setZ C Y of endpoints of7,. Line 4 computes the set of sités= (Y \ Z) U S, which includes all the
non-fixed sites non-belonging &, and all sites of7, excepting their endpoints. In line 5 we compute the

92 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

setU containing all the connections fro6i, which have an end i and the other it5. Clearly inU there
are no connections between sitesfLet H be the sub-network induced Isyin G..,.. Line 6 adds td+{
the setl/. Let us notice that any spanning tree computed-ois a potential substitute fdF, in G.., since,
when replacingZ, by this one the feasibility is preserved. In line 7 we initialize the substitute key#ree
with the fixed sitev. Loop 8-13 builds iteratively a new key-tree by adding one at a time the nodésmf
7. Line 9 selects randomly (and uniformly) a sitec Z not yet added t@ . In line 10 we consider the
auxiliary networkH = 1 \ (Z \ v) to compute a path from to 7. The sites of Z \ u) are not considered
when connecting to 7, since (as we will see in Proposition 4.4.12) these must be endpoiftslime 11
computes the shortest path framio 7 onH. Letp be this path, in line 11 we addto 7. Once all sites of
Z have been added B, loop 8-13 finalizes, and the pendant Steiner nodes are removedTiarine 14.
Let us note that these are not necessary to guarantee the feasibility. Besides, it is easy to see that a substit
key-tree can be always constructed sigeC H. In line 15 we compare the costsdfand?,. If 7 is a
better key-tree, the current solutign,, is updated in line 16 by replacirif, by 7. The indicatorimprove

is set toTRUE in line 17 (this is used bYy.ocalSearch2 to know if a new neighbor solution has been built).
Otherwise, if7 has greater cost thah,, improve is set toFALSE in line 18. The indicatoimprove and
the solutiong.,, are returned in line 19.

Figure 4.13 illustrates a generic key-tree replacement computeeehyral RecConnect algorithm.
Again, the black nodes represent fixed switch sites whereas the white nodes represent the non-fixed swit
sites. The broken lines are paths between sites.

e The first graph is the current feasible solutign, into which we will replace the key-treg&, by
another key-tree constructed byneral RecConnect.

e The second graph is the result of replacingin the key-tree7,, by another key-tree. Notice that the
substitute key-tree has again the non-fixed siés a key-node.

e The third graph is also obtained when replacing the key4drd®y another key-tree. In this caseis
not a key-node for the resulting network.

Let us note that the key-node corresponding to the substitute key-tree can be different since when remo
ing the pendant concentrators in line 14 the original key-node could be deleted. The following proposition
demonstrates the constructive correctness of the algofithimral RecConnect.

Proposition 4.4.12 Given a feasible solutiog,,, for the BNDP satisfying the matrix of connection require-
mentsR, the setS of non-fixed switch sites not including ¢h,,, and a key-node € G.,,. The algorithm
General_RecConnect builds a neighbor solution by replacing the key-tree associatedmbthanother tree
which preserves the feasibility.

4.4. BNDP LOCAL SEARCH PHASE ALGORITHMS 93

substitute key-tree

non-fixed site with
degree 2 A key path T

key-tree

~—key-node

o

L[®hw

Set of éﬁdpoints

: A connection
1 between endpoints

Set of sites § substitute key-tree

new key-node LA @
O O |5 o
o O

Figure 4.13: A generic key-tree replacement.

Proof. Let 7, be the key-tree associated withLines 1-5 compute: the cost j, the sety” of nodes inZ,,
the setZ C 7, of endpoints, the sef = (Y \ Z) U S, and the se = {(i,j) € G,|i € Z,j € S}. Line 6
computes the network{ = U U GB(S). Line 7 initializes7 (the key-tree substitute) with the nodelt is
easy to see that, by construction, once finalized I®ep13 and line 14, the networl{ has tree topology
and furthermore:

) ZCT,
i) the endpoints of are exactly the nodes df,
iii) NopEes(7) NNopEes(G.,,) = Z U J,with J C (Y \ 2),

iv) there exists a nodec S being root of the tre€” (not necessarily = v).

94 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

If the condition in line 15 is true, the algorithm computes the netweiks= (Geot \ 7,) U T in line 16.
Pointsi — iv induce the feasibility of the networ since replacing the key-tre®, by 7 the lost node-
connectivity requirements ifG.,,, \ 7,) are reestablished when addifig Hence, the network returned in
line 19 is feasible for the BNDP satisfying the matfix

QED

Based on the previous proposition, the following proposition demonstrates the feasibility preservation
in eachLocalSearch3 iteration.

Proposition 4.4.13 If LocalSearch3 receives as input a feasible solutigp, satisfying the matrix of con-
nection requirement&, the feasibility is preserved during all the iterations of the algorithm.

Proof. By contradiction, for certain iteration we have tlgat, is feasible fulfilling the matrixk, X is its
set of key-nodes, and there exists a key-nede X such thatGeneral RecConnect returns a non-feasible
solution. This contradicts Proposition 4.4.12. Hence, the algorithm preserves the feasibility at any time.

QED

As we mentioned previously, the solutions built ©gnstPhase or ConstPhasex are not necessarily
minimal. Anyway, if we reached a minimal topology in the construction phase or by another local search
algorithm, the minimality preservation is guaranteed when runhinglSearch3. The following proposi-
tion demonstrates that the minimality is preserved in dagfalSearch3 iteration.

Proposition 4.4.14 If the algorithmLocalSearch3 receives as input a minimal feasible solution, the re-
turned solution preserves the minimality.

Proof. Let us denot; the solution delivered biiocalSearch3. Again, by contradiction, let us suppose that
G is not minimal. Necessarily, in certain iteration we would have that the current solijois minimal
and by executing lines 7-8 the resulting network is not minimal.d_be this solution, there exists an edge
e € G such thatG \ {e} is feasible. Let us denot& and7 the replaced key-tree and the new key-tree
computed in line 8. Let, be the key-node root &f . We have the following cases:

i) e € 7. Consider7 \ {e}; there exists a node € Z (whereZ is the set of endpoints df,)
disconnected to the other sites belongingZtq {2} and therefore its node-connectivity level with
respect to these ones will be decreased by orgg\ife} losing thus the feasibility.

i) e ¢ T. Clearly, the feasibility ofG \ {e} would imply the feasibility ofG.,, \ {e}, which is a
contradiction.

Points(i) and(i7) imply thatG is a minimal feasible solution.

QED

4.5. THE GRASP ALGORITHMS FOR THE BNDP 95
4.5 The GRASP algorithms for the BNDP

We now describe the general GRASP algorithm for approximately solving the BNDP. Figure 4.14 shows
the corresponding pseudo-code. The generic procedisesruction_Phase and Local_Search can be
instanced of the following way:

e Construction_Phase: by ConstPhase or ConstPhasex.
e Local Search: by LocalSearchl or LocalSearch2.

In the local search phase, the idea is to apply first key-path replacement moves (by funrfaiSgarch1
or LocalSearch2 for key-paths replacements) and the evaluation of key-tree replacement moves is per-
formed only if there are no improving key-path replacement moves. Thus, we explore structurally different
neighborhoods in combined form and the search is resumed from the beginning whenever we find one bett
neighbor feasible solution.

In the following, Construction_Phase will reference indifferently tdConstPhase or ConstPhasex, and
in the same wayl.ocal_Search will reference toLocalSearchl or LocalSearch2. Next, we introduce a
detailed description of the algorithGRASP_BNDP.

Procedure GRASP _BNDP;
Input: Gg, C, R, k, seed, MaxIter,

min_cost < oo,

fori=1,..., MaxIter do
[Gso1, P] « Construction_Phase(Gp, C, R, k);
cost_sol «— COST(Gso1);
Gsot — Local_Search(Gg, C, Gso1, P);
best < COST(Gso1);
if (best < cost_sol) then goto line 4;
Gsor < LocalSearch3(Gg, C, Gso1);
best «— COST(Gso1);
if (best < cost_sol) then goto line 4;
if (cost_sol < min_cost) then

© 00 N O 0o~ WN P

R e =
N B O

G©rPt) G..1: min_cost < cost_sol,;

=
w

end _if;
end _for;
15 return Glort);
end GRASP BNDP;

=
N

Figure 4.14: General Version of the algorittiiR ASP_BNDP.

The algorithm takes as inputs the gragh of feasible connections on the backbone network, the matrix
of connection costg’, the matrix of connection requiremenis the GRASP parametefs(used in the
construction phase), a seed for the pseudo random number generat@and the number of iterations

96 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

MaxIter to be performed. The cost of the best found feasible solution is initialized with the value infinite
(o) in line 1. The algorithm is repeatetf axlter times exploring the space of feasible solutions and
searching for the optimal feasible solution for the BNDP. Each iteration works of the following way.

In line 3, a greedy randomized feasible soluti@ypy is built using the algorithnConstruction_Phase
(i.e. ConstPhase or ConstPhasex). In addition, it is also returned the setof node-disjoint paths between
fixed sites computed when building the solution. In line 4 the cost gfis assigned to variable st _sol.
In line 5 we callL.ocal_Search (i.e. LocalSearch1 or LocalSearch2) in order to find for neighbor feasible
solutions with smaller cost. Depending on the algorithm, it searches for a better neighbor feasible solutior
by means of key-path replacement moves. In line 6 we compute the cost of the neighbor $hlut@mmd
in line 5. Line 7 compares the cost of the current solution with the one deliveréaddy Search. If a
neighbor solution with smaller cost has been found.byal Search, then the local search resumes from
this new current solution executing from line 4. Otherwise, if no neighbor solution of better cost is found
by Local_Search, then in line 8 we call the algorithmocalSearch3, which searches for neighbor solutions
with smaller cost by applying key-tree replacement moves. In line 9 we compute the cost of the solution
delivered byLocalSearch3 in line 8. Again, if a neighbor feasible solution with smaller cost has been
found byLocalSearch3, then the local search resumes from this new current solution executing from line 4.
Otherwise, if no neighbor solution with better cost is foundloyalSearch3, then, if the solution found at
the end of the local search phase is better than the best solution so far (line 11), we update in line 12 th
best found feasible solution and the minimum cost. Once finalized the loop 2-14, the best found feasible
solutionG®r¥ is returned in line 15. Figure 4.15 is the execution diagram corresponding to the algorithm
GRASP_BNDP.

4.6 Performance Tests

We present here the experimental results obtained witli:tka SP_BNDP algorithm in its different ver-

sions (depending on which construction phases and local search algorithms be instanced). The algorithn
were implemented in ANSI C. The experiments were made on a Pentium IV with 1.7 GHz, and 1 Gbytes
of RAM, running under Windows XP. In the performance testing phase all used instances were solved witt
the same GRASP parameter settings. In a previous tuning phase the candidate#istaszehosen in the
set{10, 15,20, 30}. We tuned the value for the candidate list size by considering a reduced group of BNDP
instances. As result of this tuning phase, we selekted 20 as the value with better results since in the
worse cases, it obtained the same solution costs that were obtained with the other values, beating them
many cases. In this way, we fixéd= 20 and MazIter = 300 when running all the performance testing
problems.

4.6. PERFORMANCE TESTS 97

| Construction Phase |

Local Search by key-path
replacement moves

es .
L Y > improvement?

no

Local Search by key-tree
replacement moves

improvement?

no

no it improves the
best solution?

yes

Best Solution
Update

no

[The Best Solution is returned |

Figure 4.15: Execution Diagram associated vitRASP_BNDP.

4.6.1 BNDP test-set description

To our best knowledge, no library containing benchmark instances related to the BNDP (i.e. to the GSP
NC) exists. Nevertheless, there exist in the literature some related works where real problems with higf
survivability requirements are solved by means of the application of polyhedral algorithms [75, 78, 126].
We obtained some of these problems which were included in our test set.

The test-set for thé&xRASP_BNDP is composed of two sub-groups of instances: ones having known
optimal cost (or at least a known lower bound) and others without known optimal solution nor lower bound.
Altogether, we selected twenty-nine test problems as experimental suite, to investigate the effectivenes
of the proposed method. For nine of them optimal solutions were known (or at least the optimal value),
implying thus that the corresponding GRASP results could be more properly evaluated (i.e. we can comput
the gaps with respect to the optimum costs). The other instances were generated by cusioaveiinty

98 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Salesman Problem@SP) into BNDP instances. We describe in Table 4.1 the main characteristics of the
twenty-nine problem instances. Figures 4.16 and 4.17 show the topologies associated with the test cas
having a known optimal solution.

Problem Nodes Fixed Steiner Edges| Survivability
instance nodes nodes requirements
Instances with known optimal value

Network 1 120 33 87 286 | 2-node-survivability
Network 2 83 22 61 262 | 4-node-survivability
Network 3 79 41 38 365 | heterogeneous (2 and 3 node connectivity)
Network 4 109 41 68 383 | heterogeneous (2, 3 and 4 node connectivity)
Network 5 121 27 94 386 | 2-node-survivability
Network 6 71 38 33 301 | heterogeneous (2 and 3 node connectivity)
Network 7 64 9 55 124 | 3-node-survivability
Network 8 38 38 0 71 heterogeneous (1 and 2 node connectivity)
Network 9 116 116 0 173 | heterogeneous (1 and 2 node connectivity)

Instances without known optimal value nor tight lower bound
Networks 10-14| 150 100 50 11175| heterogeneous (2 and 3 node connectivity)
Network 15 76 51 25 2850 | heterogeneous (2 and 3 node connectivity)
Network 16 114 76 38 6441 | heterogeneous (2 and 3 node connectivity)
Network 17 151 101 50 11325| heterogeneous (2 and 3 node connectivity)
Network 18 114 76 38 6441 | heterogeneous (2 and 3 node connectivity)
Network 19 160 107 53 12720 heterogeneous (2 and 3 node connectivity)
Network 20 186 124 62 17205| heterogeneous (2 and 3 node connectivity)
Network 21 204 136 68 20706| heterogeneous (2 and 3 node connectivity)
Network 22 216 144 72 23220| heterogeneous (2 and 3 node connectivity)
Network 23 129 29 100 8256 | 3-node-survivability
Network 24 129 29 100 8256 | 3-node-survivability
Network 25 126 26 100 7875 | 3-node-survivability
Network 26 116 16 100 6670 | 3-node-survivability
Network 27 122 22 100 7381 | 3-node-survivability
Network 28 162 127 35 13041| 2-node-survivability
Network 29 140 105 35 9730 | 2-node-survivability

Table 4.1: Characteristics of the test cases.

In the following, due to the analogy between the BNDP and the GSP-NC, we will talk indifferently
of Steiner nodes as non-fixed switch sites and fixed nodes as fixed switch sites. Next, we provide th
description of each BNDP instance used in the performance testing phase.

Network 1 is a 2-node-survivability problem for which an optimal solution has been found by a back-
tracking algorithm [121]. Since there are few GSP-NC instances with connectivity requirements greater
than two in the literature, we generated four instances having higher connectivity requirements (Network:
2, 3, 4 and 6) which were designed constructively in order to preserve a known optimal solution. Moreover,
we generated one instance (Network 5, also with optimal feasible known solution) with a high number of
Steiner nodes and a high density of edges on which we wanted to find a 2-node-survivable sub-networ
spanning the set of fixed nodes. We created this test instance with the aim of studying a relatively “dense

4.6. PERFORMANCE TESTS 99

network where the quotient between the number of Steiner nodes and the number of fixed nodes is highs
than three. In Appendix C we give a detailed description of these six problem instances, with information
about known optimal solutions, and their construction when relevant.

Network 7 represents a simplified version of a HSODTN (High Speed Optical Data Transmission Net-
work) connecting different parts of a war ship. The reduced topology has 9 fixed switch sites (modelling
strategic point in an aircraft carrier), 55 Steiner nodes (non-fixed switch sites) and 124 edges. A link be-
tween Steiner nodes has cost 1, a link between a Steiner node and a fixed node has cost 2, and a li
between two fixed nodes has cost 4. The objective is to find a 3-node-survivable subnetwork with minimal
cost (all connection requirement between fixed nodes are equal to 3). These model and other variants can
found in [78, 121, 126]. An optimal solution has been found by an exact parallel-distributed backtracking
algorithm in [120].

Networks 8 and 9 are test cases respectively called LATA5S and LATADL; based on real networks from
Bell Communications Research (later Bellcore, now Telcordia Technologies) [126]. Link costs are defined
as geographical distances between nodes. The LATA5S problem has 38 nodes and 71 edges, and |
LATADL problem has 116 nodes and 173 edges. In these problems, there are two classes of nodes: nod
of type 1, shown as circles in Figure 4.17, and nodes of type 2, shown as small squares. The connectivit
requirements are that between two nodes of type 2 there must be two node-disjoint paths; and between
node of type 2 and a node of type 1, or between two nodes of type 1, there must be at least one path. F
both instances, optimal solutions have been published in [126], with costs 4739 and 7400 respectively.

Networks 10 to 14 are BNDP instances built based on the TSP problems: kroA100, kroB100, kroC100,

kroD100, and kroE100, extracted from TSPLIB. Specifically, we added iteratively fifty Steiner nodes to
each one of the euclidian graphs associated with these instances. Starting from the original TSP grag
(whose nodes will model the fixed sites), each Steiner node is added to the current graph one at a tim
in addition its connection costs (with respect to the nodes already present in the graph in construction) ar
randomly chosen in the interval [¢,,in, Crmaz]; WhErec i, Cmae are the minimum and maximum distances
between two nodes of the original TSP graph, and a prefixed parameter. In particular, we set %
The purpose of this parameter setting is potentially to generate Steiner nodes with lower connection cos
(regarding their adjacent nodes) in comparison with the already existing links connecting the fixed nodes
Intuitively, when reducing the interval of possible costs for the new connections, in this way, we increase the
probability that a Steiner node be a potential improver of feasible solutions. The resulting BNDP topology
is a complete graph. We selected randomly eight fixed nodes, to which we associated 3-node-survivabilit
requirements among them, and 2-node-survivability with respect to the other fixed nodes. These last one
have associated 2-node-survivability requirements among them.

Networks 15 to 22 are BNDP instances built based on the TSP problems: eil51, eil76, eill01, pr76,
prl07, pr124, pr136, and prl44, extracted from TSPLIB. In the same way, by applying the process expose

100 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

above, we generated BNDP instances by adding to these TSP instances: 25, 38, 50, 38, 53, 62, 68, a
72 Steiner nodes respectively. Let us note that in each resulting instance the number of fixed nodes is
least twice the number of Steiner nodes. On each resultant BNDP instance, we selected randomly six fixe
nodes, to which we associated 3-node-survivability requirements among them, and 2-node-survivability
with respect to the other fixed nodes. In addition, we established 2-node-survivability requirements among
the other fixed nodes.

Networks 23 to 27 are BNDP instances built based on the TSP problems: bayg29, bays29, fri26
ulysses16, and ulysses22. Again, by using the same process that in the previous cases (bpjt@(%t)ing
we generated BNDP instances by adding to these problems 100 Steiner nodes. Let us notice that, in the
designed networks, the number of Steiner nodes is at least three times the number of fixed nodes. For ea
resultant BNDP instance, the objective is to find a minimum-cost 3-node-survivable subnetwork spanning
the fixed nodes.

Networks 28 and 29 are BNDP instances built based on the TSP problems bier127 and lin105. To eac
one of these cases, we added to it 35 Steiner nodes so that the resulting BNDP topology is a complete gra
fulfilling the triangular inequality among its nodes (in Section 5.6.1, we explain in detail as generate an
euclidian BNDP instance having Steiner nodes). Observe that, in the constructed networks, the number «
fixed nodes is at least three times the number of Steiner nodes. The requirement for both BNDP instance
is to find a minimum-cost 2-node-survivable subnetwork spanning the fixed nodes.

4.6.2 Numerical Results

Let us turn now to the study of the computational results. By combining the alternative algorithms for the
construction phase and the local search phase, four versions of GRASP for the BNDP are yielded. We wil
distinguish them by means of the following notation:

Heuristic H;: itisthe GRASP_BNDP when instancingonstruction_Phase with ConstPhase andLocal_Search
with LocalSearchl,

Heuristic H,: itistheGRASP_BNDP when instancing’onstruction_Phase with Const Phase andLocal_Search
with LocalSearch?2,

Heuristic H3: it is the GRASP_BNDP when instancingConstruction_Phase with ConstPhasex and
Local_Search with LocalSearchl,

Heuristic H,4: it is the GRASP_BNDP when instancingConstruction_Phase with ConstPhasex and
Local_Search with LocalSearch?.

4.6. PERFORMANCE TESTS 101

As a result of the runs performed on the testing set, we noticed that the heuristioslH, overcame
the results obtained by the heuristids andH, respectively. In other words, when usi@gnstPhasex, in
no caseH; obtained better results tha#, and eitherH, in relation toH,. Furthermore, when comparing
the GRASP resultsk{; andH, improved the topologies obtained s andH, in five and eleven BNDP
instances respectively (improving them in average more 3hei% and3.37%). Hence, in the following,
we will concentrate in the analysis of the results obtaine@hyandH..

In Tables 4.2 and 4.3 we show a summary of computational results obtained by applying the heuristic:
'H, and’H, on the Networks 1 to 9 (those with known optimal solution). These tables show some data about
the performance of our GRASP algorithms for the mentioned instances and the structural characteristics ¢
the optimal (or near-optimal) solutions it found. The column entries are from left to right:

¢ the average running time per iteration (secs./itr),

the GRASP iteration number where the best feasible solution was foind (
e the optimum costCOPT),
¢ the cost of the best feasible solution found by the GRASP algorith@t(,

e theGAP = 100 x BEE-LOPT (=percent relative error),

¢ the average of the improvement of the results of the local search phase over the construction phas
(LSD),

e the number of Steiner nodes and key-nodes of the best solution found by GRASEhG KN re-
spectively),

¢ the number of edges of the best solution found by GRAGR;(s).

Topology | secs/itr IT COPT BCF GAP LS | SN KN Edges

Network 1 0.52 4 145 145 0.0% 2.12% 34 1 68
Network 2 1.17 12 680 692 1.76% 2.23% 56 42 143
Network 3 1.14 16 1848 1875 1.46% 3.12% 15 10 65
Network 4 2.13 20 3980 4057 1.93% 2.07% 24 12 91

Network5 | 1.97 17 2393 2438 1.88% 3.17%21 9 55

Network6 | 1.08 21 3031 3111 2.64% 2.43% 12 7 62

Network7 | 0.77 7 74 74 00% 1.87% 31 8 49

Network 8 1.23 18 4739 4739 0.0% - - - 41

Network9 | 212 24 7400 7574 2.35% - - - 120
Average | 1.33% | 2.43%

Table 4.2: Results associated with the best solutions fourid;dpr the instances 1 to 9.

102 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

103

4.6. PERFORMANCE TESTS

i

..... Y @Vhﬂ N G
ANE v o

Figure 4.17: Topology of Networks 7, 8, and 9.

104 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Topology | secs/itr IT COPT BCF GAP LSI | SN KN Edges
Network1| 078 2 145 145 0.0% 2.21% 34 1 68

Network 2 248 5 680 680 0.0% 5.32% 54 40 139
Network 3 2,57 7 1848 1848 0.0% 4.85% 13 10 62
Network 4 3.23 9 3980 3980 0.0% 5.43% 22 11 89
Network 5 245 5 2393 2393 0.0% 5.34% 18 8 52
Network 6 291 6 3031 3031 0.0% 543% 9 7 58
Network 7 0.98 2 74 74 0.0% 6.16% 31 8 49
Network 8 1.75 4 4739 4739 0.0% 3.12% - - 41
Network 9 3.01 14 7400 7445 0.6% 4.47% - - 118
Average | 0.06% | 4.70%

Table 4.3: Results associated with the best solutions fourfd,tpr the instances 1 to 9.

Moreover, in Tables 4.4 and 4.5, we summarize the computational results obtained by applying the
heuristicsH; andH, on the Networks 10 to 29. These tables have the same entries that the previous tables
excepting the entries corresponding@@PT and GAP, since we do not know their optimum costs nor
tight lower bounds. However, we introduce another entries, denotédARTSP and GAP2NC, which
are:

¢ the gap between the best solution found by GRASP with respect to the optimal TSP solution. That is

GAPTSP = 100 x BE_COPTIS) ' \vhereCOPT_TSP is the optimum TSP cost.

¢ the relative distance between the cost of the best solution found by GRASP and the tight lower bounc
proved in [102] for the optimal 2-node-connected solution spanning the set of fixed nodes that does

not contain Steiner nodes. This lower bound.iE2NC = %COPT,TSP and thereforés AP2NC =

100 x (BCE-LB2NC)

mane - We will provide more information on this lower bound in Chapter 5.

Next, we will discuss the computational results, focusing us firstly in the comparison of performance of
both heuristics.

When analyzing the best costs found by the heuristigsand H,, we noticed that, in most of the
BNDP instances, the heuristi¢, improved in significant form the quality of the solutions delivered by
'H,, excepting for Networks 1, 7, and 8, where both algorithms attained the optimality, and also Networks
26 and 27 where they achieved the same solution costs. In order to compare them, let us introduce tt
following notation:

- BCF! is the best cost found by heuristit; (i € 1..2) when solving Networkj (j € 1..|Set]).

- GAPBCEF is the relative improvement of the heuristic with respect to the heuristi;. That is,

GAPBCF =

100 3 IBCF}, —B‘CF{\'
| Set| BCF!

j€ESet

ALy,

B
S

106 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Figure 4.19: Optimal solutions for instances 7, 8, and 9.

4.6. PERFORMANCE TESTS 107

Topology ‘secs./itr IT BCF GAPTSP GAP2NC LSI SN KN Edges

BNDP INSTANCES WITH2 AND 3 NODE-SURVIVABILITY

Network10 | 7.42 38 16223 -23.77% 1.64% 7.19% 6 118
Network11 | 7.35 43 16568 -25.17% -0.23% 6.32% 7 119
Network12 | 7.65 27 16603 -19.98% 6.69% 517% 6 1 118
Network 13| 7.63 65 15840 -25.61% -0.82% 6.12% 7 1 120
Network 14 | 7.52 71 15975 -27.61% -3.48% 6.24% 7 119
Network 15| 4.82 24 387 -9.15% 2113% 6.37% 6 67
Network16 | 6.02 39 556 3.35% 37.79% 5.12% 8 94
Network17 | 811 56 448 -28.78% -5.03% 3.98% 7 1 118
Network 18 | 6.21 61 83258 -23.02% 2.64% 5.96% 8 94
Network 19| 846 52 34752 -21.56% 4.59% 6.56% 4 2 121
Network 20| 9.18 48 43658 -26.04% -1.39% 6.65% 6 140
Network 21 | 10.36 67 71214 -26.41% -1.88% 421% 5 1 151
Network 22 | 12.12 72 42325 -27.70% -3.59% 5.60% 6 160

Average -21.65% 3.46% 5.80%

BNDP INSTANCES WITH 3-NODE-SURVIVABILITY

Network 23 | 3.84 27 2458 52.67% 103.56% 17.68(6 9 - 59
Network 24 | 3.83 26 3223 59.55% 112.74% 15240612 2 62
Network 25| 3.07 30 1634 74.39% 132.52% 14.33%11 2 57
Network26 | 2.98 19 9422 37.17% 82.89% 19.56% 9 - 35
Network27 | 3.29 18 10224 4579% 9438% 1854%13 3 44

Average 53.91% | 105.22% | 17.07%

BNDP INSTANCES WITH 2-NODE-SURVIVABILITY

Network 28 | 840 53 91189 -22.91% 2.79% 5.76% 2 2 136
Network29 | 7.69 48 11056 -23.11% 2.52% 6.03% 2 2 114

Average | -23.01% | 266% | 5.90%

Table 4.4: Results associated with the best solutions fourfd,dypr the instances 10 to 29.

- LSI{ is the local search average improvement when executing heukist{¢c € 1..2) to solve the
instancej (j € 1..|Set]).

- DIFLSI is the average of the difference between the local search improvemgfiatamd the local
search improvement iH; . It is computed by:

DIFLSI =

x Y (LSH — LSE).

jeSet

|Set|

Considering all the test-set, we ha¥e\PBCF = 7.22% percent of improvement df, on H;, which
is an important reduction of design costs if we taken into account the real costs that appear when optimizin
topologies associated with problems arising in practice. Besides, in 18 instances (outtfigg)roved
more thar8% the best solutions built by;. In particular, when computing APBCF for Networks 10 to
29, we obtainGAPBCF = 9.91%, which confirms that{, overcomes considerably the heuriskig.
On the other hand, when comparing the improvement of the local searches, wBlidv = 4.6%
(being LS, > LSE, Vj € 1...29). Since both heuristics use the same algorithm for the construction

108 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

Topology secs.fitr IT BCF GAPTSP GAP2NC LSI ‘SN KN Edges

BNDP INSTANCES WITH2 AND 3 NODE-SURVIVABILITY

Network 10 | 9.49 17 14782 -30.54% 7.39% 14.34% 5 1 117
Network11 | 9.68 14 15104 -31.78% -9.04% 13.45% 4 1 117
Network 12 | 9.64 17 15132 -27.07% 2.76% 16.12% 4 1 117
Network 13 | 9.84 14 14439 -32.19% -9.59% 15.01% 5 118
Network 14 | 9.78 13 14554 -34.05% -12.07% 12.33% 5 118
Network 15| 6.47 19 309 -27.46% -3.29% 9.63% 6 2 63
Network 16 | 8.06 22 422 -21.56% 4.58% 9.20% 6 88
Network 17 | 1037 27 416 -33.89% -11.82% 14.12% 5 112
Network 18 | 814 25 75845 -29.88% -6.50% 10.25% 7 89
Network 19 | 10.83 27 31668 -28.52% -4.69% 8.56% 6 118
Network20 | 12.02 26 39773 -32.62% -10.16% 9.65% 6 136
Network21 | 13.12 33 64885 -32.95% -10.60% 10.41p6 5 148
Network 22 | 14.97 32 38551 -34.14% -12.19% 855% 5 155

Average -30.51% -7.39% 11.66%

BNDP INSTANCES WITH 3-NODE-SURVIVABILITY

Network 23 | 4.48 12 2244 39.36% 85.81% 20.56% 7 53
Network 24 | 4.76 9 2935 45.28% 93.71% 20.77% 7 52
Network25 | 452 15 1487 58.74% 111.66% 22.536 6 46
Network26 | 3.92 13 9422 37.17% 82.89% 23.11% 7 1 34
Network27 | 4.22 12 10224 45.79% 94.38% 22.60% 8 1 43

Average 45.26% 93.69% | 21.91%

BNDP INSTANCES WITH 2-NODE-SURVIVABILITY

Network 28 | 10.58 38 85067 -28.08% -4.11% 9.44% 2 2 131
Network29 | 9.61 33 10277 -28.53% -4.70% 10.03% 3 3 111

Average | -2830% | -441% [9.73%

Table 4.5: Results associated with the best solutions fourfd.dypr the instances 10 to 29.

phase, this result indicates that, in average, the algorithealSearch2 obtains better neighbor solutions
than the obtained ones liycalSearchl. As discussed in Subsection 4.4.2, the explanation of this fact is
that when performing a key-path replacement, the set of Steiner nodes considered (as potential improver
by LocalSearchl is totally included in the set of nodes consideredllyalSearch2, and therefore the
substitute path computed by calSearch2 will have lower cost (or at the most the same) than the key-path
computed byl.ocalSearch1.

Let us note in addition that in all BNDP instances the number of GRASP iterations until reaching the
best feasible solution was smaller#, than in?H,. Specifically, on average, the heuristi needed 35
GRASRP iterations to achieve its best solution wherdasheeded 16 GRASP iterations to obtain its best
solution. This indicates that, in averagé; required 19 iterations more thai, until accomplishing its
best local optimal solution.

Summarizing the comparison betwegfs andH,, as conclusion of the exposed previously, we can
say that in most cases, the topologies obtained{bywvere of a superior quality than the ones found by
H., beating them in many cases. Nevertheless, as the running times corroborate, the fact of finding bette

4.6. PERFORMANCE TESTS 109

feasible solutions is linked to the design of more complex algorithms as well as more complex data structure
which in general means higher execution times. Such is the case of our hetistith respect to the
heuristicH,, where on average the execution times per iteratigh pivere 28.82% percent superior than

the ones obtained bit;. In addition, it can be seen from Tables 4.2, 4.3, 4.4, and 4.5, the running times
gaps vary according to the considered topology. In the next section, we will only focus in the analysis of
the computational results obtained Hy.

4.6.3 Performance Analysis for the GRASP heuristié+

Firstly, for the instances with known optimum value, the heurigticreached the optimality in Networks

1 to 8, and attaining a near-optimal solution for the Network 9 with a very small gap (letaé) with
respect to the optimal value. In addition, for these nine cases, wellid¥gercent of average of the local
search improvement (and always ot average improvement). Another interesting point was that for
Networks 1, 7, and 8, in certain GRASP iterations, we obtained gap zero implying thus that the optimality
was achieved in the construction phase. Figures 4.18 and 4.19 show known optimal solutions for BNDF
instances 1 to 9. In particular, the shown topologies associated with Networks 1 to 8 were obtained by th
GRASP heuristid{,. We remark that a known optimal topology for Network 9 (shown in Figure 4.19) was
obtained by Gatschel et al. [126] by applying a cutting plane algorithm.

Let us observe that for Network 6 the topology of the optimal solution found satisfies that for all pair of
terminals belonging to the s¢by, vy, v3, w1, wo, w3} there exist three node-disjoint paths communicating
them. This implies a better structure of the solution found with respect to the “primary optimal” solution
(the one from which the test case was constructed, and which does not fulfill the mentioned property; thi:
is discussed in Appendix C). Similarly, for Network 5, the topological structure of the solution found is
not a cycle, contrary to its primary optimal solution. It has several key-nodes and therefore several interna
cycles. This could be beneficial since if a fault in a link or node occurs, some nodes will maintain 2-node-
connectivity among them.

Now, let us turn to the results obtained for the Networks 10 to 29, analyzing them according to their
node-survivability requirements. Before, we remark that since we do not have tight lower bounds for
these instances, we will compare them with the optimum TSP values and the lower bounds provided fo
the optimal 2-node-connected topologies spanning the fixed nodes without using Steiner nodes (their of
timum costs will be denoted by OPT2NC). In fact, in relation to this latter, we noticed that in previous
works [6, 102, 126] some important particular cases of the BNDP such as the 2NCON and STNSNP als
were compared (from a theoretical point-of-view and also numerically) with the optimal TSP values and
the lower bound.B2NC.

e Instances 10 to 22.We noticed that in all cases the gaps between the best GRASP solution with

110

CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

respect to the optimal TSP solution were smaller th&0% having an average gap ef30.51%
percent. Furthermore, in most cases (except for Network 16) the gaps between the best GRAS
solution and thé. B2NC value were smaller te-2% having an average gap ef7.39% percent. Taken

into account that in these instances there exist relatively few fixed nodes with node-survivability
requirements greater than two, (eight nodes in Networks 10 to 14 and six nodes in Networks 15
to 22, having all of them 2-3 node-survivability requirements) we think that even though we are
comparing costs related to problems with different node-connectivity restriction§;Qfa’_TSP
andLB2NC values are particularly useful to measure the influence of introducing Steiner nodes as
potential enhancers of the quality of 2-node-survivable feasible solutions. In this sense, let us notice
that the costs of the best found solutions were significantly smaller than the optimum TSP values anc
in 12 instances (out of 13) they were inferior than @@PT2NC values. In all cases the local search
phase improved more tha¥ the solution delivered by the construction phase; awét average
improvement for most problem instances (and always 8Vt average improvement). On the other
hand, by inspecting manually the best found GRASP solutions, we observed that each one of ther
was topologically minimal (i.e. when deleting an edge, we lose the feasibility), satisfying thus a
necessary condition to be potentially a global optimal solution. Besides, all of them contain Steiner
nodes, in particular, at least four key-nodes in each case.

Instances 23 to 27Let us note firstly that in these instances the node-survivability requirements are

considerably higher with respect to the previous cases (here, we demand at least three node-disjoi
paths between every pair of fixed nodes). Hence, it is reasonable to suppose tHaxrheTSP

and COPT2NC values will be relatively distant of the optimal BNDP costs, and as a consequence

the gapsGAPTSP and GAP2NC will not provide us relevant information that allows to analyze

the efficiency of our GRASP algorithm when applying it on these instances. As we can see from
Tables 4.3 and 4.4, the values of these gaps corroborate numerically this fact. Anyway, we will
concentrate in analyzing the qualitative improvements introduced by the local search.

We noted that, in all cases, the local search phase improved mor&@tathe solution built by

the construction phase and ov&r.5% average improvement. These are interesting results since
they show the potentiality of the local search algorithms to enhance in considerable way the quality
of the starting feasible solutions. On the other hand, when doing a structural analysis of the bes
solutions produced by our GRASP algorithm, we noticed that the attained solutions were minimal.
In particular, we easily corroborated the minimality of the best found solutions, by considering the
number of Steiner nodes present in their topologies conjointly with the aid of a Lemma proved by
Harary [80] (which establishes that the minimum number of edgesin@de-connected graph an

nodes without parallel edgesfi&:]).

4.6. PERFORMANCE TESTS 111

¢ Instances 28 and 29These two BNDP instances are particularly interesting because they are more
closely linked to TSP problems; more exactly they are STNSNP instances. Let us recall that all
feasible solution of a TSP instance also is feasible for a STNSNP instance derived from the TSF
instance by adding Steiner nodes; but non conversely.

Next, let us see some particular properties related to these BNDP instances. On the one hand, f
these instances, we have that the optimum TSP values associated with the original problems provid
upper bounds for the optimum BNDP values. This property is useful to analyze how well is our
GRASP heuristic when building feasible solutions exploiting the existence of Steiner nodes as po-
tential improvers. On the other hand, as we mentioned in Chapter 5, Monma et al. [102] proved that
the LB2NC value is a good lower bound for tli@OPT2NC value. In this way, since in these BNDP
instances our goal is to find an optimal Steiner 2-node-connected solution spanning the fixed node
and taken into account that the 2-node-connected topologies without Steiner nodes are also feasib
for these BNDP instances, we can deduce that the optimum BNDP values are smaller (or equal in th
worst case) than th€OPT2NC values and moreover potentially inferior than thB2NC values.

Even though this fact is a disadvantage, since we do not know a priori if the optimum BNDP value
is greater or smaller than tHe€B2NC value, even so to compute the gap between the best GRASP
solution with respect to theB2NC value will allow us to investigate how efficient is the GRASP
algorithm using optional nodes with the objective of improving (if it is possible) the quality of the
optimal 2-node-connected topologies non-containing Steiner nodes. In particular, if we reach a neg
ative value forGAP2NC, this implies that we have improved the optimal 2-node-connected solution
spanning the fixed nodes that does not contain Steiner nodes.

Now, let us centre on the numerical results. We noticed that in both instances the gaps between th
best GRASP solution with respect to the optimal TSP solution were smallerth& having an
average gap of28.30% percent. In addition, in both cases the gaps between the best GRASP solution
and theLB2NC value were smaller than4.0% having an average gap ef4.41% percent. These
results imply that the feasible solutions attained by GRASP overcame in quality (i.e. with smaller
costs) the corresponding optimal TSP solutions as well as the optimal 2-node-connected solution
that does not contain Steiner nodes. Concerning the structure of the best solutions achieved by tt
GRASP heuristic, both local-optimal topologies were minimal (corroborating manually this property
by means of a rigorous inspection on the topology). Moreover, as one can see from Table 4.5, the
GRASP solution associated with Network 28 has two Steiner nodes, being both key-nodes of degre
three; and the GRASP solution associated with Network 29 has three Steiner nodes, being the thre
key-nodes of degree three. These topological characteristics are very important since a necessa
optimality condition for a problem BNDP2NS satisfying triangular inequality is that any Steiner

112 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

node used in an optimal network is of degree three [102]. In this way, the feasible solutions reachec
for Networks 28 and 29 comply with necessary conditions for global optima.

In all cases the local search phase improved more&t#h the solution constructed by the construc-
tion phase; ove?.7% average improvement when considering both problem instances angél giier
average improvement in each one of them.

To conclude the performance analysis of the GRASP heuritjave can say that the runs performed
on the testing set proved to be successful, the optimal solution being obtained for the first eight instance:
attaining a very near-optimal solution for Network 9, and reaching local-optimal minimal feasible solutions
for Networks 10 to 29 (whose optimum costs are not known). In special, for these latter, the gaps use
like comparative reference (hameBAPTSP and GAP2NC) varied depending on the node-survivability
requirements associated with each BNDP instance; occurring the greatest values for Networks 23 to 2
followed in decreasing order by the sub-sets composed of Networks 28 to 29, and Networks 10 to 22
respectively. Even if the connectivity requirements were stronger for Networks 10 to 22 than for Net-
works 28 to 29, interestingly enough, the gaps values for the former were smaller to those of the latter. Thi:
fact possibly happens due to two reasons:

i) Networks 10 to 27 have approximatelg% percent of Steiner nodes whereas Networks 28 and 29
have33% and27% percent of Steiner nodes respectively. Potentially the space of feasible solutions
associated with Networks 10 to 27 could be increased in a bigger proportion with respect to Networks
28 and 29.

i) When building Networks 10 to 27, the costs of the new connections were chosen randomly based ol
the intervals of the original TSP costs, reduced by a factdg. dClearly, when reducing the size of
these intervals, increases the possibility that the Steiner nodes be components of good quality feasib
solutions.

Let us note that, when averaging over all the testing set, we ha¥g% average improvement. These

are very good results, showing the potential of the local search phase in improving the starting solution
Besides, notice that most of the best GRASP solutions (except for Network 8 and 9) contain Steiner node:
In addition in 18 instances (out of 29) the best GRASP topologies are also integrated by key-nodes. Partic
ularly, whensS{) # () (nonempty set of Steiner nodes), our algorithm tries to exploit intensely the existence
of key-nodes (and therefore of key-paths with at least one key-node as an endpoint) as components of
global optimal solution, and as above, to find minimal local-optimal topologies (as close as possible to the
global optimal) with better possible survivability properties. Otherwise, w#én=), the GRASP local
search pores over each link from the current solution, replacing it by a path that (as far as possible) contai

4.7. CONCLUSIONS 113

edges already present in the solution and trying to minimize the cost of introducing (if necessary) new edge
to reestablish the connectivity.

4.7 Conclusions

By modelling the backbone network design problem (BNDP) with heterogeneous survivability require-
ments based on the Generalized Steiner Problem with node-connectivity requirements, we were able |
develop several Greedy Randomized Search Adaptive Procedures designed to solve the BNDP. As ares
of the performance testing phase, we concluded that, in particular, one of the yielded GRASP version
overcame the others with respect to the quality of the built solutions, beating them in many cases, an
giving low-cost approximate solutions. This latter GRASP algorithm, denhtgeds obtained instancing
Construction_Phase with ConstPhase andLocal_Search with LocalSearch?2.

The implementation of our algorithms was tested on a number of different problems with heteroge-
neous survivability requirements. In all casés, was shown to find good quality solutions within few
iterations; in all cases, except one, with known optimum value an optimal solution was found, and for the
other instances minimal feasible solutions were reached improving in many cases the quality of optimal so
lutions corresponding to other related survivability problems such as TSP and 2NCON (this last one withou
considering Steiner nodes).

On the other hand, as discussed in Subsection 4.6.3, we can say that the local search phase enhan
considerably the quality of the solutions constructed by the construction phase, varying the percentag
of improvement according to the topological characteristics of each instance and also depending on th
connectivity requirements. In relation to this, we noted that such improvements are linked to the quality
of the solution delivered by the construction phase. More precisely, a good initial solution enhances the
performance of the GRASP algorithm, because the local search phase will require less computational effo
until accomplishing a local optimal feasible topology.

Globally, these are very promising results considering that to compute the best BNDP solution is a NP-
Hard problem [126, 136]; in particular, the known exact algorithms have worst case computing time which
grows exponentially with the number of terminal nodes and edges. The execution time of the propose
GRASP method is also dependent on the number of nodes, edges, and the connection requirements, |
increases much slower.

These are (up to our knowledge) the first results on the use of a GRASP metaheuristic as topolog:
planning method for designing a large-scale backbone network with high node-survivability constrains
applicable to general graph classes.

As future work, it is possible to search for new methods which improve either the initial construction or

114 CHAPTER 4. THE BACKBONE NETWORK DESIGN PROBLEM

the local search phases of the GRASP. In addition, we are looking for more BNDP instances with known
optimal costs, with the aim of comparing them with the costs associated with the solutions delivered by oul
GRASP algorithm.

Chapter 5

The 2-Node-Survivable Backbone Network
Design Problem

5.1 Introduction

In this chapter, we will focus on a particular case of the BNDP: the design of 2-node-survivable backbone
networks, which we will denote by BNDP2NS. Precisely, this has important applications in the problem
of designing High Speed Optical Data Transmission Networks (HSODTN) to be robust to a single link or
node failure.

Typically, in the design of large optical fiber networks, where there is high bandwidth and highly reliable
links, the need of adding communication redundancy to the network comes up in order to increase it
survivability, i.e., its capacity to resist failures. The survivability of a network is closely linked to its degree
of connectivity, which is the minimum number of disjoint paths that exist between any pair of the nodes of
the network; this connection measure may be given in terms of node-disjoint paths. Even if point to point
links are highly reliable, due to the type of service provided by optical fiber, the consequences of failures of
just one component may be disastrous. It is then necessary to obtain a higher degree of connectivity in tr
design of the optical fiber network, in order to increase its survivability. In the design of metropolitan optical
fiber networks, a commonly applied requirement is to ensure the existence of at least two node-disjoint
paths between pairs of distinguished nodes of the network. In this way, when a failure occur in some
component of the network (link or node), the network will remain in operational state, i.e. the resulting
network is connected. The problem of finding a network topology verifying this restriction is known as
the Steiner 2-Node-Survivable Network Probléhenoted by STNSNP) which is NP-Hard [6, 102]. Some
reference in this area are [6, 37, 35, 102, 112, 125].

Our interest in the BNDP2NS is motivated by the need of finding low cost backbone topologies in the

115

116 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

general case within reasonable execution times. That is to say, the goal is to design efficient approximate
algorithms for the BNDP2NS applicable to the most general class of graphs. As a result, we introduce
several algorithms based on the GRASP methodology for finding a low cost 2-node-survivable Backbone
network topology, working upon the STNSNP model.

The remainder of this chapter is organized as follows. Section 5.2 introduces the notation, the auxil-
iary definitions to be used and the formal definition of the 2-Node-Survivable Backbone Network Design
Problem (BNDP2NS). In Section 5.3 we propose three different alternative algorithms for the construction
phase. Section 5.4 provide two different algorithms for the local search phase. Like in the general cas
BNDP, the local search algorithms for the BNDP2NS were designed with the aim of complementing each
other, allowing the search for better solutions within different neighborhood structures. Combining these
options, yields different versions of GRASP. In Section 5.5 we propose several polynomial time heuristics
based on GRASP methodology for approximately solving the BNDP2NS. Section 5.6 introduces a surve)
of the experimental results obtained by running the GRASP algorithms on a test-set of BNDP2NS instance:
containing problem instances with different topological characteristics. Finally, in Section 5.7, we conclude
with a discussion, including conclusions and future work.

5.2 Notation, Problem Definition and Auxiliary Definitions

We will use the same notation that in the previous chapter, but here we do not have a matrix of connectiol
requirementsk since the goal is to design a low cost 2-node-survivable backbone network spanning the
fixed switch sites front;’.

Definition 5.2.1 (Backbone Network Design Problem with 2-Node-Survivable Topology - BNDP2NS)
We define the 2-Node-Survivable Backbone Network Design PrablémP2N S (Sp, E, C) as the prob-
lem of finding a subgraptz of G, of minimum cost such th&{ is 2-node-survivable with respect to
the set of fixed site§g>. We will denote by sz ppans the space of feasible solutions associated with the
problem.

We present a small BNDP2NS instance example, based on the network shown in Figure 5.1. In this
network there are five fixed switch sites, colored black and labgled, s3, s4, andss; and eight non-fixed
switch sites, colored white. The connections that can be used to build a solution are shown, annotated wit
their costs.

Figure 5.2 presents a minimal 2-node-survivable feasible solution (of cost 22) to this problem instance
There are five non-fixed sites integrating the solution. Let us note that the solution is not a cycle, having ¢
key-node and therefore a key-tree.

5.2. NOTATION, PROBLEM DEFINITION AND AUXILIARY DEFINITIONS 117

key-node : key-tree
associated to v

S,

key-path

Figure 5.2: A solution to the graph example given in Figure 5.1.

We introduce some auxiliary definitions which will be used in the descriptions of the proposed algo-
rithms.

Definition 5.2.2 (H-path) Given a grapht, we call a pathp an H — path if p is non-trivial and meetg/
exactly in its ends. In particular, the edge of aAy— path of length 1 is never an edge &f .

The following proposition is a characterization of the 2-connected graphs, a proof can be found in [43].

Proposition 5.2.3 A graph is 2-connected if and only if it can be constructed from a cycle by successively
addingH — paths to graphsH already constructed.

Notice that any minimal 2-node-survivable feasible solution belongingsepprans is also 2-node-
connected and 2-connected and therefore it has a decompositidn-ipaths. In this way, we give the
following definition.

118 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Definition 5.2.4 (H-paths decomposition)Given a 2-node-connected netwgtkWe define ait{ — paths
decomposition foG as a pair (P, H), whereP = (py,...,px) IS a sequence off — paths and’H =
(Hi, ..., Hy)is asequence of networks such th&t= C, withC a cycle,H; = H;_, Up;, Vj € 1..K, and
H,=g.

Figure 5.3 illustrates afl — paths decomposition associated with a 2-node-connected gyappheach
subgraphH;, i € 0..4, the path with broken lines models the addéd- path.

Initial Cycle
H, H,

H, H,

Figure 5.3: AnH — paths decomposition for the grapi.

In the previous chapter, we introduced a GRASP algorithm for designing a backbone network with
different node-survivability requirements between fixed sites ffh As mentioned above, an important
particular case is when the aim is to design a 2-node-survivable backbone. Now, we introduce GRASF
algorithms for approximately solving the BNDP2NS.

5.3 BNPD2NS Construction Phase Algorithms

In this point we will introduce the different construction phase algorithms designed as building blocks of a
general GRASP algorithm for the BNDP (which will be presented in Section 5.5).

Firstly, we propose a construction phase algorithm, which based on Proposition 5.2.3, builds 2-node
survivable topologies spannin};’. A second option for the construction phase is also proposed, which
is a variant of the algorithm@onstPhase presented in 4.3. Furthermore, we introduce a third construction

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 119

phase algorithm, which is a minor variant for this latter, in particular the node-requirements between fixec
nodes are computed in different order.

5.3.1 Algorithm ConstPhasel2NS

Based on Proposition 5.2.3, the algorithm builds iteratively a 2-node-survivable network spanning the fixec
switch sites ofS}). The feasible solution is computed building initially a cycle containing two sitet; of

and by successively adding,, — paths (containing a site off})’ not belonging tag.,,) to networksg.,,
already built until reaching feasibility.

Procedure ConstPhasel _2NS(Gg,C\k);

Vsi, € S5’ a unique identifier n; is assigned;
v — Select,Random(Sg>);
Y — {v}; Goor — {v};
while Y # 5% do
sw — ArgMax{n;|si, & G.o1};
L, < the k shortest paths from sy, t0 G.or;
p1 < Select_Random(L);
K; < the fixed switch sites of pq;
N — Giot U (p1\ sw);
H+— Gp \N;
L, «— the k shortest paths from s, to G.,; On H;
p2 < Select_Random(L>);
K, « the fixed switch sites of p»;
Gsot — Gsot U{p1,p2};
Let u, v be the endpoints of p; and ps in Gsoi;
if (Y| > 1) and (3 akey-path pfrom wto von G,) then
Gsot < Gsor \ (P \ {u,v});
17 Y —YUK UKyU{sw}
18 end_while;
19 return G.oi;
end ConstPhasel _2NS;

© 00N O 0o b~ WN PP

[l o
o U~ W NP O

Figure 5.4: ConstPhase€NS pseudo-code.

The algorithm (shown in Figure 5.4) takes as inputs the gtaplof feasible connections on the back-
bone network, the matrix of connections castand the GRASP parametgr In order to introduce ran-
domness in the selection process of the sites to be added to the current solution, we assign (in line 1)
unique identifiern; to each fixed switch site!, € S%. Line 2 selects randomly (and uniformly) one of
them. Line 3 initializes the current solutigh,, and the set” of fixed sites already added ¢,,, with the
selected fixed site. The loop from line 4 to 18 adds iteratigly — paths to G.,, until Y = S7), i.e. to
reach the feasibility.

120 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Each iteration works of the following way. Line 5 selects the fixed site not belongifig, teith greatest
value of identifier. Lets,, be this site. Thé:-shortest paths from,, to G,,, are computed in line 6 using
the Yen algorithm [137]. They are stored in the restricted candidatg lisin the same line, we check if
L, is empty, in which case the algorithm finalizes since we will not be able to construct a feasible solution.
Line 7 selects a path, € £, randomly (and uniformly). In line 8 the séf, of fixed sites belonging tp, is
computed. Lines 9-10 compute an auxiliary netwdtk= G \ (G.., U (p, \ s»)). Notice that this network
does not have nodes and edgegof nor of (p, \ s,), which allows to compute a new node-disjoint path
(with respect t@,) from s,, to G.,, on’H. Line 11 computes the-shortest paths from, to G,., on’H (which
are stored in the restricted candidate lis}. Line 12 selects a path, € £, randomly (and uniformly) and
its set of fixed siteds, is computed in line 13. Let us observe that the path p, is ag,,, — path. Line
14 updates/.,, by adding the pathg, andp,. Consideringg..,, letu andv be the endpoints gf, andp,
respectively. As we will see in Proposition 5.3.1, if¢n, a key-path from to v has been induced, it can
be removed preserving the 2-node-survivability. Hence, if this is the case, this key-path will be removed tc
improve the cost of the current solution. Line 16 is incorporated with that purpose. Finally, theofet
fixed sites already added €h,, is updated in line 17.

Once all fixed sites have been added, the built solufignis returned in line 19. Figure 5.5 shows the
adding of a new fixed switch site to the current solutihp.

endpoint of p ,

fixed site S,

Figure 5.5: Example of a ConstPhas&ldsS iteration.

We present in Figure 5.6 the possible situations when a new fixed switch site is added to the curren
solution by the algorithn€onstPhasel 2NS. The black nodes represent the fixed sites whereas the white
nodes represent the non-fixed switch sites.

¢ In the first two graphs there does not exist any key-path betwesmdv in G,,, since in any path

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 121

connecting them there are other key-nodes or fixed sites.

¢ In the third graph there exists a key-path connectingth v in G.,,, and the fourth graph is the result

of deleting it. The obtained solution will be 2-node-survivable with respect to the fixed sites already
added.

Figure 5.6: The insertion of a fixed switch site.

The following proposition demonstrates the constructive correctness of the algQhtrtPhasel 2NS.

Proposition 5.3.1 If the algorithm ConstPhasel 2NS returns a graph this will be a 2-node-survivable
solution for the BNDP2NS.

Proof. By induction in|Y|, we will demonstrate that at any time we have a 2-node-survivable network with
respect to the subset of fixed switch siiés

Basic Stepi]Y’| = 1. In lines2 — 3, the current solutiog,,, and the set” of nodes already added ¢, are
initialized with a fixed switch site € S}). By convention, a simple node is a 2-node-survivable network.

122 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Induction Stepl < |Y'|. The inductive step is presented of the following way.

As inductive hypothesis we have that¥f| < k& < |S})| for certain iteration, then executing lings- 17 the
resulting networlg.,, will be 2-node-survivable. As inductive thesis the property is fulfilled whéph= &

for certain iteration.

Let us suppose that in certain iteration we hgve= k. Let us analyze the following cases.

Case 1.|Y| = k < |S})]. The condition in line 4 is TRUE and therefore the algorithm will execute the
lines5 — 17. In the previous iteration we ha#f | < £ and by I.H. we know that after executing lings- 17

the networkg.., is 2-node-survivable. In the current iteration, in line 5 we select a fixed switch, siet

yet added t@j,,, (that one with greater value of identifier). Linés- 13 computes two node-disjoint paths
from s, t0 G.,,. Letp,, p, be these paths. Clearly, the netwdik= G.,, U {p,, p.} is 2-node-survivable.
Let u, v be the endpoints gf, andp, in H. If |Y| = 1 the networkH is a cycle and therefore minimal.

If Y| > 1 and there exists a key-pathfrom « to v in H, we can delete this path frofi (exceptu and

v) preserving the 2-node-survivability and obtaining a better solution (lines 14-16). Notice that once addec
the pathg, andp, at most one redundant key-path is introduced. Hence, the updated sdlytianl be
2-node-survivable when finalizing the current iteration. TheYsé$ updated by adding to &, and the
fixed switch sites present jm andp, (line 17).

Case 2|Y| = |S})|. In the previous iteration we hdd'| < |S§;’| and by I.H. we know that after executing
lines5 — 17 the networkg,,, is 2-node-survivable. In the current iteration, the condition in line 4 is FALSE
and thereforgj.,, is 2-node-survivable and spanning thesgt

QED

The following result will be useful to demonstrate certain topological properties related to the con-
structed solutions. A proof can be found in [102].

Lemma 5.3.2 (Monma, Munson and Pulleyblank) LetG = (V, E) be a two-connected graph witl{ =
(V', E') a subgraph of induced byl”’. Then replacingt’ by any collection of edge&” defined onl/’,
whereG” = (V', E") is two-node-connected, results il = (V, (£ \ E’) U E”) which is two-connected.

Let us observe that, by construction, the soluighn delivered byConstPhasel_2NS has at least one
fixed switch site with degree two. We introduce the following structural Lemma to show that a minimal
2-node-survivable solution must have at least one fixed switch site of degree two, or equivalently, that ther
do not exist minimal feasible solutions such that all the fixed sites have degree greater to two.

Lemma5.3.3 If G.,, is a minimal 2-node-survivable network then there exist§.jpat least one fixed
switch site of degree two.

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 123

Proof. By contradiction, let us suppose thatgn, all the fixed switch sites have degree greater to two. Let
u,v € S be two fixed switch sites. Let;, p, be two node-disjoint paths connectingndv in G,,,. We
denoteC the cycle conformed byp,, p2}. Let us considefz,, x2} and{y, y»} the adjacent nodes toand

v respectively. In addition, let, y3 ¢ C be two adjacent nodes toandv respectively. Considering the path
p = ((z3,u),p1, (v,y3)), @sgq.,, is 2-node-connected (matriXis positive), there exists a pgth connecting
xg andys in G,,, so thatps N p = {x3,y3}. We will denote byp to the pathp = ((u, x3), ps, (ys3,v)). Letus
analyze the following cases.

Case 1p, N ps = 0.

A) If 3k € SY such that € py, k # u, v, let & be the closest ta onps. Since by hypothesié has degree
greater to 2 irg,,,, there exists a nodeadjacent td in G.,, such that ¢ p, (itis easy to see thati € G,
then it is not optimal). Lek, € S\ be the next fixed switch closest toon p, (eventuallyk, = v). Let
us denote by, the path conformed by, = ((s, l%),pQ(,;,u)), WherepQ(,evu) C p9 is the sub-path connecting
k with u. As G.,, is 2-node-connected, there exists necessarily a pathg.,, from 5 to k, such that:
pNpy = {5}. Figure 5.7 illustrates this situation. Let us consider the network:

Figure 5.7: Cases 1.A and 2.A respectively.

~

H= (p1Up2UpUBU{()}) \ Pagis

wherep, ;. ;,, C p2 is the sub-path connectirigwith k,. Notice that the networ{ is 2-node-connected.
If we denoteH = p; U py U p, applying Lemma 5.3.2, we have that:

¢ G, =(G..\'H) UH is 2-node-connected (i.e. a 2-node-survivable feasible solution) and in addition,

124 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

® cOST(G.n1) < COST(Goar),

contradicting therefore the optimality 6f,.

B) If Ak € S} suchthatk € py, k # u,v, clearly the networlg.,, = G.., \ Epces(p,) would be a better
feasible solution thag,,;, which contradicts its optimality.

Case 2, N p3 # 0.

A) It is similar to the previous cas@.A). Again, if 3k € S¢ such thatk € py, k # u,v, letk be the
closest tou on p;. Since by hypothesié has degree greater to 2 éh,,, there exists a nodéadjacent to
kin G, such thats ¢ p, (as above, if € G.,, this is not optimal). Lek, € S be the next fixed switch
closest tou on p, (eventuallyk, = v). Let us denote by, the path conformed byp, = ((8, l%),pl(,;’u)),
wherepl(,;’u) C p; is the sub-path connectirigwith u. AsG,,, is 2-node-connected, there exists necessarily
a pathp C G.,, from s to k, such that:;p N py = {§}. Figure 5.7 illustrates this situation. Let us consider
the network:

G = ({09} UPUPI U UD) \ Priiy

wherep, ;. ;,) C p1 is the sub-path connectingwith k,. Let us observe that the netwogkis 2-node-
connected. Denoting = p; U po U p and applying Lemma 5.3.2, we have that:

e G., = (G \ G) U G is 2-node-connected (i.e. a 2-node-survivable feasible solution) and in addition,

o cost(G.,,) < cost(G.,..),

contradicting the optimality of. .
B) Finally, if Ak € S’ such thatt € ps, k # u, v, then the networkj,,, = G.., \ Epces(ps) would be a
better feasible solution than,,, contradicting thus its optimality.

QED

We will prove that any minimal feasible solution can be built by the algorifumstPhasel 2NS. Let
us notice that, by construction, if there exists a minimal feasible solution with cycle topology, itis possible to
find it, for example ifS}; C (p,Up,) in step 14 of the first iteration. Nevertheless, we cannot trivially deduce
this property when the minimal feasible topologies are not cycles. In this way, given a BNDP2NS instance,
the following theorem and its respective corollary prove that by applying the algofithistPhasel 2NS
it is possible to reach any minimal feasible solution belonging to the space of feasible solutions. More
precisely, ifG,,, is a minimal feasible solution, there exists a decompositiafi ia paths for G,,, such that
this one can iteratively be constructed GynstPhasel 2NS.

Theorem 5.3.4 Consider a minimal 2-node-survivable solutign, which is not a cycle. There exists a
decomposition if — paths for G,,, fulfilling the following points:

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 125

A) The initial cycleC has at least two fixed switch sites.

B) If P = (p1,...,pr) is the sequence dff — paths and’H = (Hy, ..., Hy) is the sequence of the
resulting networks such thaf, = C, H; = H;_, Up;, Vj € 1.K, andH;, = §G,,, we have that
Vp € P there exists a fixed sitg, € S}, such thats,, € INTERNAL NODES(p).

Proof. Initially, we choose a cyclé C G.,, containing al least two fixed sites. Iteratively, we build networks
H and theH — paths of the following way:

1) We initialize H = C.

2) If SY\ rixep sites(H) # (), let s, be one of them. Let us consider two pathsandp, from s,, to
H so that:

e p1,p2 C G.yp1NH ={u}, poNH = {v} beingu andv the endpoints of; andp, respectively,
® D1 mp2 - {Sw}-
Necessarily these paths must exist, othern@isewould not be 2-node-survivable.

3) Notice that the patlh = p; Upy isanH — path on H. The current network is updated b/ = H U p
and the construction is resumed frgg).

This process finalized once all the fixed sitesSgf have been added 3. Let us suppose that the resulting
network H is a subgraph og.,,, i.e. G.,, \ H # (. By Proposition 5.2.3 we have thaf is a 2-node-
survivable network spanning the s&t’. This contradicts the minimality of..,,. Hence,H = G.,,. To
complete the proof, let us note that the sequence of paths computed as well as the sequence of
networks computed if3) satisfy(A) and(B).

QED

Corollary 5.3.5 Consider a minimal 2-node-survivable soluti@p, which is notacycle. Le® = (p1, ..., px)
andH = (Hy,..., Hy) be a decomposition itf — paths for G,,, satisfying point§A) and (B) of the pre-
vious theorem. Then, when adding a pathto H;_,, for all j € 2..K, in the resulting networlf/; there
does not exist any key-path connecting the endpoinig of

Proof. By contradiction, let us suppose thi; € P such that ind; = H,_; U p, there exists a key-path
between the endpoints pf. Let us denote by this key-path and, v its endpoints, i.e. the endpoints of
on H;. Firstly, let us notice that:

1) If pis also a key-path ig.,, then, by constructiong,,, \ p is 2-node-survivable, which contradicts
the minimality ofG.,,.

126 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

2) By removing a connection from the resulting network preserves the node-survivability levels be-
tween fixed sites whose associaféd- paths have an endpoint non-belonginggor their endpoints

areu andov.

key-path

the 2-node-suvivability is

preserved
d N G.{e
mG‘”A’ uﬁ He)
0 o0
Vo P .
~H. * 0

Figure 5.8: Situationél) and(2).

Figure 5.8 shows these situations. Now, let us analyzéfthepaths whose endpoints are jinand one of
them belongs toxterNaL NODES(p). In this way, we define the set:

X; = {p € P|p has both endpoints ifland one of them belongs tOTERNAL NODES(p) } .
Let us denote by the subnetwork integrated by the set of pathsJ {p}. Let us define the set:
Y = {Ps1.52) C B|Vp; € X; with endpointssy, ss } .

We chose a path € Y such that does not exigte Y such thap C ¢. LetC C H,_, be a cycle such that

p C C. In Figure 5.9, we illustrate this case. Let ¢ be an edge. It is easy to see that the subnetwork
H = CU (G \ {e}) is 2-node-connected. Therefore, by Lema 5.3.2, by replacirgg,irthe subnetwork

C U G by H the resulting network is 2-node-survivable. This contradicts the minimality,afimplying
thus the nonexistence of a key-path connectirsgndo in H;, as required, and completing the proof.

QED

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 127

the 2-node-connectivity is
preserved

JA
_G-te}

Figure 5.9: Networks€ U G andC U (G \ {e}).

5.3.2 Algorithm ConstPhaseZ2NS

We also propose another alternative algorithm for the BNDP2NS construction phase which@nedhhase2_2N;
In particular, we can see it as a varian{afnstPhase (introduced in 4.3) customized for designing 2-node-
survivable networks. The proposed algorithm builds iteratively feasible solutions by reusing suitably the
connections already present in the current solution, with the aim of minimizing the cost of adding new
connections to satisfy (in each iteration) certain connection requirement between two fixed switch sites. |
differs from ConstPhasel _2NS by the fact that the 2-node-survivability (with respect to the already added
fixed sites) is not guaranteed once finalized each iteration (except for the last iteration, where the constructe
solution will be necessarily 2-node-survivable). Anyway, as we will show in Section 5.6, when using this
algorithm in the GRASP construction phase we obtain good feasible topologies which are improved by
the local search algorithms eliminating in certain cases redundant edges. Next, we introduce a detaile
description for this algorithm.

The algorithm builds iteratively a 2-node-survivable network spanning the fixed switch sit&$.of
In more detail, the algorithm (shown in Figure 5.10) takes as inputs the gfap feasible connections
on the backbone network, the matrix of connections ¢gsand the GRASP parametér In line 1 we

128 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Procedure ConstPhase2 _2NS(Gg,C\k);

1 Geot — (SU),0); myj — 2Vi,j € SO Py — 0Vi,j € 595 Ayj — 0Vi,j € S0,

2 while Im;; > 0suchthat A;; < MAX_ATTEMPT do

3 Leti,j € Sg) be a randomly chosen pair of fixed switch sites such that mi; >0
4 G — (G \ Pij);

0 if (u,v) € Gsor, .

cur i (u,0) € (G\ Gaot).

6 L, < the k shortest paths from i to 5 on G, considering the matrix C,
7 ifL,=0then Aj; — A +1; Pij — 0; myj — 2;

8 else
9

5 Let C be the matrix given by: Gy, «—

if 3p € £, such that COSTlé(ﬁ) = 0then p « p;
10 else p «— Select_Random(L,); Gsot <+ Gsot U {p};
11 if m;; = 2then P;; — p;

12 mij < my; — 1,

13 [P, M] <+ Update_Matrix(G.or, P, M, p, 1, 5);

14 end.if;

15 end_while;

16 return G.oi;

end ConstPhase2 _2NS;

Figure 5.10: ConstPhas&NS pseudo-code.
initialize:

the current solutio,,, with the sites ofS‘g) without connections among them,

the matrixM = {m;;}, y (indicating the connection requirements not yet satisfied between fixed

jesy
sites) withm,; = 2, Vi, j € SV,

the auxiliary matrixP = {Pij}ij stn (used to store paths between fixed sites) Wth= 0, Vi, je
» D

(D
SD]

and the auxiliary matrixd = {Aij}ijesm (used to record when has not been found a path between
> D
two fixed sites) withA;; = 0, Vi, j € S;.

Loop 2-15 is repeated until all the fixed sites have satisfied their connection requirements (i.e. the resultin
network is 2-node-survivable) or for certain pair of fixed sites have not been found two node-disjoint paths
connecting them afte&vAX_ATTEMT attempts.

Each iteration works in the following way. Line 3 selects randomly (and uniformly) aipaie S%
such thatn,; > 0 (i.e. there exists at least one requirement not yet fulfilled among them). Line 4 computes
the networkG = (G, \ P;;). Note that this network does not contain any edge and nod®;axcepting
i andj; therefore, all path communicatingwith j in G will be node-disjoint with respect t®;;. Line
5 computes an auxiliary matrik’ of connections cost such that all connectigasv) € G.., have cost

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 129

zero. This will allow to reuse already existing edge<jin (without considering their costs) when new
node-disjoint paths are computed. Line 6 computes:teRortest paths fromto j on G using the matrix
C. These paths are stored in the restricted candidaté Jidtine 7 checks ifC, is empty. If this is the case
(assuming thatr; is 2-node survivable), we re-initialize;; andm;; sinceP;; contains a separating set
between andj on G, and therefore does not exist a path froto j in G, they are in different connected
components. Otherwise,ifand; are in the same connected componer jrin order to not increase the
cost ofG,,,, in line 9 we search a pahe L, such thatost s (p) = 0 (its cost with respect t@)). If this
is successful, we assign tothe found path. Otherwise, line 10 selects randomly (and uniformly) a path
p from £, which is added t@;,,, in the same line. Line 11 checks if for the paiy there is no computed
path among them. In such a case, we assigh, te¢he pathp computed in lines 9-10. In this way, the next
computed path for the pair j will be node-disjoint to the pati®;;. Line 13 calls the auxiliary procedure
Update_Matrix to update the matri? and M. The description of this procedure explains in detail the
introduced updates.

Once the loop 2-15 finalized the built feasible solutin) is returned in line 16. Figure 5.11 shows an
example of a new node-disjoint path being added between two fixed switch sites.

G two node-disjoints
B paths

the new ;
node-disjoint path |

Figure 5.11: Computation of a new node-disjoint path between the fixed sitek;.

Update Matrix description

The algorithm (shown in Figure 5.12) receives as inputs the current solution in consti@gctiane matrix
P of computed paths between fixed sites, the maltfixndicating the requirements not yet satisfied between
fixed sites, two fixed sitesandj, and the patlp computed among them. The loop 1-18 analyzes each fixed

130 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

site belonging to the pathin order to update certain connection requirements with other fixed sites.

Each iteration woks of the following way. Leéte p,t # i, be a fixed site. In line 2, we check if
my; = 2. If this is the case, since the algoritilonstPhase preserves the conditior®,, = 0 iff m,, = 2,
Vu,v € S5, we have therP,; = (. Line 3 assigns t@;; the sub-patlp; ;) connecting with j in p. The
update ofmn,; depends on the number of paths already computed between theasids If m,;; = 1 then
my; IS decremented by one (line 4). Otherwiseyif, = 2 this implies the existence of a cycle included
in G.,, containingt andy, i.e. there exist two node-disjoint paths frano j in G,,,, and thereforen,; is
decremented by two (line 5). Similarly, we updatg in lines 7-11. The internal loop 12-17 analyzes each
fixed sitet € S\, ¢ ¢ p such thatny = 2. Line 13 checks if a path fromor j to # has been computed in
a previous iteration. If this is the case, there exists a path frtmm in G,,, and thenn;, is decremented by
one in line 14. In addition to satisfy the condition exposed above, asmgw 1, in line 15 we assign to
Py the shortest path fromto ¢ ongG.,,.

Once finalized the loop 1-18 the matfxand M are returned in line 19.

Procedure Update _Matrix(Gsoi,P,M,p,i,7);

1 foreach t € p/t € S% do
if t # 4,5 and my; = 2 then
Prj < Pe.):
if mi; = 1 then Myj < Mg — 1;

2

3

4

5 else my; «— my; — 2;

6 end.f;

7 ift+#14,5and m;; = 2then
8 Pit < P(i)s

9 if mg; =1 then m;s «— m4e — 1;

10 else m;y < m4 — 2;

11 end.f;

12 foreach i€ S /i ¢ p,i # 4,5 such that m,; = 2 do
13 if m;z <2 o0r m;z <2then

14 My — myg — 1

15 ‘P,z — shortest path from ¢ to zon G..;;

16 end_if;

17 end_for _each;
18 end _for _each;
19 return P,M,
end Update _Matrix;

Figure 5.12: Updatéatrix pseudo-code.

The updates oi/ andP must preserve the data coherence with respect to the solution in construction
G., and furthermore to guarantee that this one will be feasible once finalizaetPhase2 2NS. For
example, then,; value must be decremented by one only if we found a new node-disjoint path between

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 131

the fixed sites andj, and moreoveP;; # 0 only if it is a path connecting and; in the current solution
G.... Thus, we designeipdate_Matrix so that it satisfies certain properties which guarantee in each
ConstPhase2_2NS iteration, the data consistency inherent to the current net@grkthe matrix of paths

P and the matrix)/. We introduce these properties in the following proposition.

Proposition 5.3.6 Once the algorithmiypdate_Matrix finalizes the following points are satisfigd j €

S
ii) If m;; = 0 then there exist two node-disjoint paths fromo j in G,,,.

i) If m;; = 1 then there exists a path froirto j in G,,,.

Proof. Firstly, let us assume that whéfpdate_Matrix is called in line 11 ofConstPhase2_2NS, P and M
satisfy these conditions.

Leti, j € S’ be the input fixed switch sites apdhe path connectingwith j computed byConstPhase2 2NS.
Loop 1-18 analyz&'t € SV, t € p,t # i, j the following cases.

Case 1: Lines 2-6If m,; = 2 then we know thaP,; = (), therefore we assign 8;; the sub-pathp ;) C p
connecting with j in p (line 4). If m;; = 1, we decrement by one ta; (line 4), but ifm;; = 2 then there
exists a cycle irg,,, containingt and therefore we can decremen; by two. Clearly, once finalized lines
2-6 m,; satisfies point$ — iii.

Case 2: Lines 7-11t is similar to the previous case but for the sjte

Case 3: Lines 12-17For allt € Sy, &, # 4,7, such thatn,; = 2 we check ifm; < 2 ormj; < 2
in order to know if there already exists a path communicatiag; with ¢ in G,,,. If this condition is true,
my; is decremented by one since there exists a path conneatiit ¢ in G,,,. In addition,P; is setting
with the shortest path connecting themdn,, guaranteeing therefore the fulfillment of conditidns iii
for these pairs of fixed switch sites.

QED

Based on the previous proposition, the following proposition demonstrates the constructive correctnes
of the algorithmConstPhase2_2NS.

Proposition 5.3.7 If A;; < MAX_ATTEMPT, Vi, j € S}, then the graph returned ByonstPhase2_2NS
is a 2-node-survivable feasible solution for the BNDP2NS.

Proof. In line 1 the algorithm initializes:

132 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

G... with the set of fixed switch siteS}) without edges among them,

the auxiliary matrix)/ (indicating connections that we know satisfies netw@rk) with m;; = 2,
Vi, j €Sy,

the matrix? (which will store a path fromito j onG.,,, Vi, j € S3) with empty sets,

the auxiliary matrixA (indicating the unsuccessful attempts to find a new path between two nodes
from S\)) with A;; = 0, Vi, j € SV,

Suppose that for a certain iteration the condition in Bnis TRUE. In line 3 we choose randomly a pair
i,j € SV of fixed switch sites such that;; > 0. Line 4 computes the netwotk= (G, \ P;;). Depending
on Update_Matrix, assuming that it preserves the conditid?; = 0 iff m;; = 2, we have the following
possible cases:

A) There does not exist a path frarto j in G sinceP;; contains a separating set betweéeamd; onG ;.
B) There exists a path fromto j in G. In this case, we have the following possibilities:

I) m,;; = 2 and there exist already two node-disjoint paths fricmy in G.,,,

i) m;; = 2, there exists a path fromto j in G,,, but there do not exist two node-disjoint paths
fromitojing,,,

iif) m;; = 2 and there does not exist a path froto j in G.,,,
iv) m;; = 1 and there exists a path froito j in (G.., \ Pi;),

v) m;; = 1 and there does not exist a path froto j in (G.,, \ P;;).

Let us analyze each case.

Case Aln this case, line 7 re-initializeB;; andm;;, and the construction is resumed from line 2. This line
is executed at the mo3sAX_ATTEMPT times for any pair of fixed switch site, after which the search is
finalized.

Case B.i.In this caseP;; = () and by definition ofC, after line 6 is computed, in line 7 we found a path
p € L, such thatost(p) = 0. Line 9 adds to P;; andm;; is decremented in line 10.

Case B.ii.Similar to case.

Case B.iii. We haveP;; = () and by definition ofC, after line 6 is computed, in line 8 we found a path
p € L, such thatcost(p) > 0. Sincep contains some edges that are notjiy, the current solution is
updated in the same line. Line 9 add® P;; andm;; is decremented in line 10.

Case B.iv.In this caseP;; # () and by definition ofC, after line 6 is computed, in line 7 we found a path
p € L, such thatosr(p) = 0. Line 10 decrements;;.

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 133

Case B.vWe haveP;; # () and by definition o, after line 6 is computed, in line 8 we find a patt £,
such thaicost(p) > 0. Sincep contains some edges that are notip, G.., is updated in the same line.
Line 10 decrements,;.

Notice that:

e new edges are added only whertip, there are not two node-disjoint paths betweand,
o f m;; = 1 thenPij Np= {Z,j}

Line 11 callsUpdate_Matrix in order to updaté//. As loop2 — 12 is repeated unti;; = 0,Vi, j € S5,
by construction, the networ#,,, returned in line 13 is 2-node-survivable.

QED

5.3.3 Algorithm ConstPhase3®NS

Next, we introduce a third algorithm to build feasible solutions for a BNDP2NS instance. We can see it
as a variant of the algorithm exposed previously but with the difference that this one satisfies the 2-node
survivability requirement for a different pair of fixed switch sites at each iteration.

Given a BNDP2NS instance, iteratively the algorithm selects a pair of fixed switch sites not yet analyzed
and builds two node-disjoint paths connecting them, i.e. a cycle. In addition, when adding these paths t
the current partial solution, the algorithm updates the 2-node-survivability requirements between the fixec
switch sites belonging to the built cycle. Once all the pairs of fixed switch sites are analyzed, the resulting
network is 2-node-survivable finalizing thus the algorithm.

In more detail, the algorithm (shown in Figure 5.13) takes as inputs the gfaplhfeasible connections
on the backbone network, the matrix of connections ¢gsand the GRASP parametér In line 1 we
initialize:

e the current solutio,,, with the sites ofS}; without connections among them,

e the matrixM = {mij}ijesm (indicating the node-survivability requirements not yet satisfied be-
) D
tween fixed sites) with;; = FALSE, Vi, j € S5,

Loop 2-16 is repeated until all the fixed sites have satisfied their connection requirements (i.e. the
resulting network is 2-node-survivable).

Each iteration works in the following way. Line 3 selects randomly (and uniformly) aipaie S%
such thatn;; = FALSE (i.e. a pair not yet analyzed). Line 4 computes an auxiliary matmat connections
cost such that every connection, v) € G.,, has cost zero. This will allow the algorithm to reuse already
existing edges ig,,, (without considering their costs), when computing two node-disjoint paths connecting

134 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Procedure ConstPhase3 _2NS(Gi,C\k);

1 Geot < (S5,0); mj — FALSEVi,j € S5,

2 while 3i,j € S5 such that m;; = FALSE do

3 Leti,j € Sg) be a randomly chosen pat'r of fixed switch sites such that m;; = FALSE;
0 if (u,v) € Gsor,

cuv if (u,v) € (Gp \ Gaot).

E}J — the k shortest paths from i to j on G, considering the matrix C;

if 3p € £} such that COST|(p) = O then p1 «— p;

else p; «— Select,Random(L;); Goot — Gsor U{p1};

G~ (G \p1);

4 Let C be the matrix given by: &y, «—

0 N o O

0 if (u,v) € Gsor, .
cun if (u,0) € (G\ Geot).
10 L% — the k shortest paths from i to j on G, considering the matrix Cs;
11 if 3p € £2 such that COST| &, (P) = 0 then py — p;

12 else pa — Select_Random(L2); Guor «— Gaor U {p2};

13 m;; «— TRUE;

14 M < Update_Matrix-2(Gsor, M, p1,p2);

15 Gsor «— Remove_Internal_KeyPaths(p1,p2, Gsor);

16 end_while;

17 return Gsor;

end ConstPhase3 _2NS;

9 Let Co be the matrix given by: Gyup —

Figure 5.13: ConstPhas&NS pseudo-code.

i andj. Line 5 computes thé shortest paths fromto j on G, using the matrixC. These paths are stored
in the restricted candidate ligx . In line 6 we search a pafhe £ such thatost(p) = 0 (its cost with
respect taC). If this is successful, we assign po the found path. Notice that, in this case, the cost of the
current partial solution is not increased. Otherwise, line 7 selects randomly (and uniformly);a fratin

E; and it is added t@.,, in the same line. Line 8 computes the auxiliary netwgrk- (G \ p;). Let us
note that any path connectingvith j in G will be node-disjoint with respect tp,. In line 9, we compute
another auxiliary matrixC; so that every connectiofu, v) € G.,, has cost zero. Thus, when computing a
new path fromi to j on G, we can reuse the connections already presegt,jrwithout considering their
costs. Line 10 computes theshortest paths fromto j on G using the matrixC,. The computed paths
are stored in the restricted candidate li§t Line 11 searches for a pathe £2 such thatosrs, (p) = 0

(its cost with respect t@%,). If such paths exist, line 11 selects one of them. Otherwise, line 12 selects
randomly (and uniformly) a path, from 53 which is added t@;.,, in the same line. Since now ,, there
exist two node-disjoint paths communicatingith j, the indicatorn,; is set toTRUE in line 13. Line 14
calls the auxiliary procedurépdate_Matrix_2 to update the matrid/. The description of this procedure
explains in detail the introduced updates. In line 15, we remove fgnevery key-pattp, C G.,, whose
endpoints are ip; U p, and moreover:

EDGES(pr) N EDGES(py U pa) = 0.

5.3. BNPD2NS CONSTRUCTION PHASE ALGORITHMS 135

In this way, when deleting these key-paths, the local 2-node-survivability with respect to the pairs of fixed
switch sites already added is preserved. Below, we will prove it formally.

Once the loop 2-16 is finalized the built feasible solutéhp is returned in line 17. Figure 5.14 shows
when the algorithm computes two node-disjoint paths connecting two fixed switch sites not yet analyzed.

fixed switch site j

fixed switch site j

internal
.. key-path

" _ internal
key-path

fixed switch site j

Figure 5.14: A typical ConstPhas@S iteration.

We remark that in lines 6 and 10, we checlCif or £ are empty, in which case the algorithm finalizes
since we will not be able to construct a feasible solution.

The procedurdjpdate_Matrix_2 updates the matrid/ by setting toTRUE the 2-node-survivability
requirements between the fixed switch sites belonging to the connected component that contains the cyc
computed byConstPhase3_2NS in each iteration.

Given a cycleH C G, conformed by two node-disjoint paths with the same endpoints, the auxil-

136 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Procedure Update _Matrix _2(G.oi,M,p1,p2);

1 Let G C G.,; be the connected component such that (p; Up2) C G
2 foreach u,v € Sg) such that u,v € G do

3 My <— TRUE;

4 end for _each;

5 return M;

end Update _Matrix _2;

Figure 5.15: Updatéatrix_2 pseudo-code.

Procedure Remove _Internal _KeyPaths(p1,p2,Gs01);

1 H <« p1Up2;

2 while 3 Internal KeyPaths(H, Gs.;) do
3 p < akey-path notincluded in H, with endpointsin H;
4 Gsot < Gsol \p;
5 end_while;

6 return M;

end Remove _Internal _KeyPaths;

Figure 5.16: Removénternal KeyPaths pseudo-code.

iary procedureRemove_Internal KeyPaths deletes fromg,,, all the key-paths not included il whose
endpoints belong td/ (denominated internal key-paths); since they are redundant in the current partial
solution.

The following proposition demonstrates the constructive correctness of the algQhtimtPhase3_2NS.

Proposition 5.3.8 If the algorithm ConstPhase3_2NS returns a graph this will be a 2-node-survivable
solution for the BNDP2NS.

Proof. By induction on the number of iterations already computed, we will prove that the connected com-
ponents that integrate the current partial solution preserve the 2-connectedness.
In line 1 the algorithm initializes:

e G.,, with the set of fixed switch siteS}) without edges among them,

o the auxiliary matrixM (indicating the pairs of fixed switch sites already analyzed, i.e. for which we
known that the local 2-node-survivability is satisfied) with; = FALSE, Vi, j € S}).

Let us suppose that for certain iteration the condition in line ZRYJE. In line 3 we choose randomly a
pairi, j € S}, of fixed switch sites such that;; = FALSE. By construction, we have that:

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 137

i) lines 4-7 compute the shortest paths fromto j on GG ; so that the costs of the edges belonging to the
partial solutiong,,, are not considered, and one of them is chosen randomlyp,Lle¢ the selected
path,G.., is updated by adding, to it.

ii) lines 8-12 compute the shortest paths fromto j on G \ p; so that the costs of the edges belonging
to the partial solutiorg,,, are not considered, and one of them is chosen randomlypJ ke the
selected pathy,,, is updated by adding, to it.

Line 13 setsn,; to TRUE, since:i and; are locally 2-node-connected. It is easy to see that the computed
pathsp; andp, are node-disjoint. Let us denote Bito the cycle conformed by, Up,. LetG C G.., be the
connected component containifify By inductive hypothesig; is 2-node-connected. ConsidérC G the
subgraph conformed b¥ union all the key-paths whose endpoints belong/tBy Lema 5.3.2 (modelling
these key-paths as simple edges), the netwgrk H) U H is 2-node-connected. Thus, when removing
from G,,, the internal key-paths aoff (line 12), in the resulting network all the connected component will
preserve the 2-connectedness. In addition, in line 11, we update the indicator Mabix using the
procedurdJpdate_Matrix_2.

Inductively, the algorithm finalizes once there are no paire S}, /m;; = FALSE, i.e. the built network

g... I1s 2-node-survivable, as required and completing the proof.

QED

5.4 BNDP2NS Local Search Phase Algorithms

As mentioned in Chapter 2, since the solution produced by the construction phase is not necessarily a loc
optimum, local search can be applied to improve it. In this section we propose two local search strategie
for the BNDP2NS, one based in key-path replacements and the other in key-tree replacements which ce
work in complementary form by running in combined way.

The first step towards the implementation of a local search algorithm consists in identifying an appropri-
ate neighborhood definition. In this way, before describing each local search algorithm, we will introduce
the neighborhood structure on which the algorithm is based. Next, we present the local search based ¢
key-path replacements.

5.4.1 Algorithm LocalSearch12NS

Definition 5.4.1 (key-path based Neighborhood Structure)Let G,,, be a 2-node-survivable feasible so-
lution. Given a key-path C G..,, we define a neighbor solution 6f,, as: G.., = (G... \ p) Up, wherep is
another key-path connecting the endpoints ehd maintaining the feasibility in the new netwek,.

138 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

The Key-Path Neighborhood ¢, is composed of the neighbor solutions obtained by applying the
previous operation to each of the different key-pathKig..,) = (p1, ..., pn)-

Notice that it is structurally equal to the key-path Neighborhood Structure defined in Chapter 4, but here
it is defined on the BNDP2NS.

We propose a local search algorithm for the BNDP2NS which is based on the key-path Neighborhooc
Structure. We called itocalSearch1_2NS. Next, we introduce a detailed description@icalSearch1_2NS
and some topological properties satisfied by the constructed neighbor solutions.

The algorithm builds iteratively neighbor solutions by replacing each key-path from the current solution
by another key-path which preserves the feasibility and has smaller cost.

Procedure LocalSearchl _2NS(G5,C,Gs01);

1 K(Gso1) < the decomposition in key-paths of ~ Go1;

2 Hsor < Gsols

3 for each key-path p € K(Gsoi) with ends w,v do

4 H «— the subgraph induced by NODES(p) U (Sp \ NODES(Haot));
5 pthe shortest path from wto v on H;

6 Moot — (Haot \P) UB;

7 end for _each;

8 return Hsor;

end LocalSearchl _2NS;

Figure 5.17: LocalSearchaNS pseudo-code.

In more detail, the algorithm (shown in Figure 5.17) takes as inputs the grapif feasible connec-
tions on the backbone network, the matrix of connections €psind the current feasible soluti¢h,,. In
line 1 we compute the decomposition in key-pathg of, denoted byC(G.,,). Line 2 initialize the network
H.,, with the current solution. Loop 3-7 is repeated exatlygG.,,)| times. In each iteration a key-path
p € K(G.,,) not yet analyzed is selected randomly. ket be the ends of the current key-pathin line 4
we compute the subgrapf induced byxopgs(p) U (Sp \ Nobes(H,.,)). Clearly, any path connecting
with v in H can replace in H.,, and to preserve the feasibility. Accordingly, in line 5 we compute the
shortest path from to v on #, which is denoted by. Line 6 update$,,, by replacingp by p. Once all
the key-paths froniC(G.,,,) have been analyzed the feasible soluttoy, is returned in line 8.

We illustrate in Figure 5.18 the replacement of a key-path on the current neighbor s@tytion

e The first graph show${,,, and the subgraph induced by the set of sitgs\ ~nopes(H.,,). The
substitute key-path will have nodes ofopes(p) U (Sp \ NopEs(H..,)) preserving thus the 2-node-
survivability, i.e. the feasibility.

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 139

e The second graph shows netwdtik,, already updated.

new key-path

ememm e u

>

Figure 5.18: A key-path replacement.

When the construction phase delivers a minimal feasible solution, depending on the neighborhood com
putation complexity, the preservation of the minimality is a good property for the local search phase since
the search of the global optimum is focused only on a subspace of feasible solutions that contains it. Th
following proposition demonstrates the minimality preservation in éacllSearch1 _2NS iteration.

Proposition 5.4.2 If LocalSearch1_2NS receives as input a minimal feasible solut@y),, the local search

preserves the minimality at any time.

Proof. By backward induction in the number of key-paths not yet analyzed (denoteg bye will demon-
strate that the network(,,, is minimal at any time.
Basic Stepn; = |K(G.,)|. In line 2 the networkH,, is initialized with the networlg,,, which is minimal.

140 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Inductive Stepn;. < |K(G..,)|- The inductive step is presented as the following way.

As inductive thesis we have that(f< n, = m < |K(G..,)| the networkH,,, is feasible and minimal. As
inductive thesis the property is fulfilled when = m — 1.

Suppose that in certain local search iteration we have m. Let us analyze the following cases.

Case 1.m > 0. By L.H. the networkH,,, resulting of the previous iteration is 2-node-survivable and
minimal. Asm > 0 the algorithm will execute loop — 7. Letp € K(G..,) be a key-path not yet an-
alyzed with ends;, v. Line 5 computes a path which is the shortest path from to v on the network

H = G (~opEs(p) U (Sp \ nopes(H..,)). This path satisfies:

i) pN (H.. \ I) = {u,v}, with I the internal nodes af,
i) cost(p) < cost(p),

therefore the networkl = (.., \ p) U j is a minimal feasible solution satisfyingst(H) < cost(H,.,).
Line 6 updates the current soluti@t,,, with H.

Case 2. m = 0. By L.H. the networkH,,, resulting of the previous iteration is 2-node-survivable and
minimal. In the current iteration the lodp— 6 is not executed since all the key-paths fr&itg.,,) have
already been analyzed, finalizing thus the local search.

QED

5.4.2 Algorithm LocalSearch22NS

Before introducing another local search algorithm for the BNDP2NS, we define a new Neighborhood Struc-
ture based on the substitution of key-trees by other trees (not necessarily key-trees) which preserve tt
feasibility.

Definition 5.4.3 (tree based Neighborhood Structure)Let G,,, be a 2-node-survivable feasible solution.
Given a key-node € G,,, and its associated key-trég C G.,.,, we define a neighbor solution gf,, as:
Qsol = (G.. \ 7,) UT, where7 is atree spanning the endpointshfand maintaining the feasibility in the
new networlg ...

The Tree Neighborhood ©f,,, is composed of the neighbor solutions obtained by applying iteratively

the previous operation to each of the different key-tree&s jn

We propose another local search algorithm for the BNDP2NS which is based on the tree Neighborhoot
Structure. We called itocalSearch2 2NS. Next, we introduce a detailed descriptionieicalSearch2_2NS
and some topological properties satisfied by the constructed neighbor solutions.

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 141

The algorithm builds iteratively neighbor solutions by replacing key-trees from the current solution by
other trees which are suitably designed so that the 2-node-survivability (i.e. the feasibility) is preserved
This process is repeated until the key-tree replacements do not induce a better feasible solution.

Procedure LocalSearch2 _2NS(G5,C,Gs01);

1 improve «— TRUE;

2 while improve do

3 improve «— FALSE;

4 Let X be the set of key-nodesin G;.;

5 S+« Sp\NODES(Gs0r);

6 while not(improve) and 3 key-nodes not yet analyzed do
7 Let v € X be not yet analyzed;

8 [Gso1, improve] < RecConnect(G s, C, Gsor, v, S);
9 end _while;

10 end_while;

11 return Goo;

end LocalSearch2 _2NS;

Figure 5.19: LocalSearch2NS pseudo-code.

The algorithm (shown in Figure 5.19) takes as inputs the géapbf feasible connections on the back-
bone network, the matrix of connections cés5tand the current feasible solutiéi,,. In line 1 we initialize
with FALSE the indicator variablémprove used to indicate improvements obtained by the key-tree re-
placements. Loop 2-10 searches for neighbor solutions analyzing each key-node in the currentg&glution
and replacing their respective key-trees by trees in order to improve its cost without losing the feasibility.

Each iteration works of the following way. In line@prove is set toFALSE. Line 4 computes the
setX of key-nodes of;,,,. Line 5 computes the sét of non-fixed switch sites non-belonging,,. The
internal loop 6-9 analyzes the sites froknone at a time with the aim of finding a suitable tree of smaller
cost to replace the corresponding key-tree. Line 7 selects a siteX randomly (and uniformly). In
line 8 we execute the algorithm call@®cConnect in order to replace the key-tree associated witbr a
substitute tree which has a smaller cost and maintains the 2-node-survivability (we give in 5.4.3 a detailet
description for this algorithm and Proposition 5.10 proves that it preserves the feasibility). If this search is
successful, th&ecConnect delivers a better neighbor solution and the current soludignris updated with
it in the same line. In additiorimprove is setTRUE, to restart the local search. Otherwis&dcConnect
does not find a substitute tree, another key-node not yet analyzed will be considered.

Once there are no more improvements by key-tree replacements the current gglyti®neturned in
line 11.

142 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

5.4.3 RecConnect description

The algorithmRecConnect is an auxiliary procedure used by the algorithovalSearch2_2NS. Given the
current solutiorg,,, and a key-node € G.,,, RecConnect tries to build a tre¢” spanning the endpoints of
7, (being7Z, the key-tree associatedba To preserve the feasibility, the substitute t#ees built using only
the sites of7, and the non-fixed switch sites non-belongingitg.

Procedure RecConnect(G 5,C,Gso1,v,5);

Y « Nodes_Key_Tree(v, Gso1);

Z «— Ends Key_Tree(v,Gso1);

cost «— Cost_Key _Tree(v, Gso1);

‘H « subgraphinduced by (Y US)in Gg; H «+— H \ EDGES(Gs0i(Z));

T «— Z; value < 0;

m;; «— FALSE, Vi, j € Z;

while (34,5 € Z suchthat m;; = FALSE) and (value < cost) do
Let 7,5 € Z be arandomly Ehosen pair of nodes such that m;; = FALSE;

0 if (u,k) €T,

cyr Otherwise |

10 [val, p;j] « the shortest path from 4 to j in H using C;

11 7 — T Up;j;

12 walue «— value + val;

13 Let H C 7T be the connected component containing ;

14 myy — TRUE, Yu, k € (HN 2);

15 end_while;

16 if (value < cost) then

17 Goot — (G \ (Y \Z2)UT;

18 improve — TRUE;

19 else improve < FALSE;

20 return Gg,1, improve;

end RecConnect;

0 NOoO O~ WN PR

©

Compute C where &, =

Figure 5.20: RecConnect pseudo-code.

The algorithm (shown in Figure 5.20) takes as inputs the g@plof feasible connections on the
backbone network, the matrix of connections a@dsthe current feasible solutigh,,, the current key-node
v, and the sef of non-fixed switch sites non-belongingdo,,. Let us denote by, the key-tree associated
with v. Line 1 computes the séf of sites belonging td@,. Line 2 computes the séf of endpoints of
7,. Line 3 computes the cost &F,. Line 4 computes the subnetwof induced by the site¥” U S.
Furthermore, in the resulting network the edges belongingptass(G.,,(Z)) are removed. In line 5 we
initialize the substitute tre@ with the set of sitesZ and its cost with zero. Line 6 initialize an indicator
matrix M = {m,;}; jez used to indicate the existence of a path fromo j in 7. Loop 7-15 compute
shortest paths between pairs of sitesZafiot yet connected i, which are successively addedZo The
second condition in line 7 controls that at any moment the co%t dbes not exceed the costhf.

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 143

Each iteration works in the following way. Line 8 selects randomly (and uniformly) a paig Z such
thatm,; = FALSE, i.e. they are not connectedfn Line 9 computes an auxiliary matriX of connections
cost such that all connectidn, k) € 7 has cost zero. The objective is to reuse (if it is possible) the already
existing connections iff whenever new paths between pairs of site& @fre computed. Line 10 computes
the shortest path fromto j on H using the matri>xC. Let p;; be this path, the line 11 updates the t®e
addingp;; to it. The cost of7 is updated in line 12. Sineand; could have been in different connected
components the matrix/ must be updated with respect to the fixed sites of these; therefore in lines 13-14
m., 1S set toTRUE for all pair of fixed sites belonging to the connected componefit obntainingi and
j. The loop 7-15 finalizes once all the nodes/fare connected (i.e7 is a tree spanning’) or when
the cost of7 is greater to the cost &f,. In lines 16-19 we check whether the tréamproves the cost of
the current key-patht,. If this is the case, the current solutign,, is updated replacing, by 7 and the
indicatorimprove is set toTRUE in line 18. Both are returned in line 20. If no improving tree is found the
indicatorimprove is set toFALSE in line 19 and returned in line 20.

In order to clarify howRecConnect works, we exemplify in Figure 5.21 the replacement of a key-tree
on the current neighbor solutid@n,,.

¢ In the first graph, we can see a key-nade G.,, and its corresponding key-tr&e.

e The second graph shows one of the possible substitute trees for the kfy-tf@peserve that in this
case a new key-node has been introduced to the solution and furthermore the number of endpoints f
the corresponding key-tree is smaller (eventuaillig again a key-node).

e The third graph shows another substitute tree. In this case the substitute tree does not have a key-noc
In additiong,,, has a key-node (and a key-tree) less than before.

e The fourth graph is a substitute tree with a simple path topology connecting the endpdalptsAsf
above G, , has a key-node (and a key-tree) less than before.

In all cases, the solution obtained after the key-tree replacement preserves the 2-node-survivability.
Next, we present two auxiliary propositions relative to some topological properties satisfied by a key-
tree belonging to certain feasible solution.

Proposition 5.4.4 Given a minimal 2-node-survivable netwd@k,, lets € G,,, be a key-node and; the
key-tree associated withwith set of endpointg. Then, no pair of nodes of Z are adjacendn,.

Proof. Let us suppose thatlu, v € Z such thatu,v) € G,,,. Letk € Z k # u,v be another endpoint and
Pu, P, Pk C 7, the key-paths connectingwith u, v, andk respectively. Agj.,,, is 2-node-survivable, there

144 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

ey-tree v
key-node G .
®\ @ _________ sol_ subsitute tree
TN N O RN e Tl anew
A NN R == Tl key-node
Set of-éﬁ&bbints
the new key-tree
subsitute tree G,,/ subsitute tree

Figure 5.21: A key-tree replacement.

exists a pathp from £ to v (or v) and not containing. Without loss of generality, we assume thag p (if

u € p, consider the sub-paff,., C p). Let us define the sub-netwo# = p, U p, U p, Up U {(u,v)}.
Notice that this network is 2-node-connected but non-minimal./Us the nodes from, with degree 2.
Consider the network{ = H \ I, this is 2-node-connected and minimal. fis a simple edge, consider
H = H \ p,). Moreover, if we see the key-paths, p,, andp, as “super” edges, applying Lema 5.3.2, we
have thatG,,, = (G.., \ Epces(H)) U Epces(H) is 2-node-connected (i.e. 2-node-survivable); Figure 5.22
illustrates this situation. This contradicts the minimalitydof,. Hence, Au, v € Z such thafu, v) € G.,,.

QED

Proposition 5.4.5 Given a minimal 2-node-survivable netwagk,, let s € G, be a key-node7; the
key-tree associated withwith set of endpoint&’, and/ the set of internal nodes @f. Then, by replacing
in G.,, the key-tree¢Z, by a tree7 verifying:

i) Z C 7 and the endpoints df are a subset of nodes C 7,

ii) ~opes(7) Nnopes(G..,,) = Z U J, with J C I (eventually = (),

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 145

subgraph H
O—5W®
""""""""""""""""""" G"'
O
/
/

"§|I",'

~.supposed edge //

Figure 5.22: Example associated with Proposition 5.4.4.

we obtain a network ., which is 2-node-survivable.

Proof. LetG.,, be the network obtained by replacingdn, the key-treeZ, by 7. By the 2-node-survivability
properties, it is easy to see thét, v € Z there exists a path from « to v such thatp C (G.,,\I). In
addition, pointsi — ii guarantee the 2-node-survivability of netwafk, since the lost node-connectivity
requirements ing.,, \ 7;) will be satisfied again when addirig.

QED

This last proposition in not true when the soluti@p, is non-minimal. Thus, if7,,, is not minimal, the
following Proposition introduces an additional restriction to preserve the 2-node-survivability.

Proposition 5.4.6 Given a 2-node-survivable netwogk,, fulfilling points: — i: of Proposition 5.4.5 and
moreover:

EDGES(G,.,) NEDGES(T) = (),

then, when replacing the key-trge by the treeZ” we obtain a 2-node-survivable netwajk, .

Proof. If G,,, is minimal, by Proposition 5.4.5 the resulting network is minimal.
If G.., is not minimal, since the substitute tréedoes not have any edge belongingitg, when removing
from G.,, the internal nodes df, the lost node-connectivity levels are reestablished by adfiing

QED

146 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Based on the previous proposition, the following proposition demonstrates the constructive correctnes
of the algorithmRecConnect.

Proposition 5.4.7 Given a 2-node-survivable netwagk,,, the setS of non-fixed switch sites not included
in G,.,, and a key-node € g, the algorithmRecConnect builds a better neighbor solution by replacing
the key-tree associated withby another tree which preserves the feasibility.

Proof. Let 7, be the key-tree associated with Lines 1-6 computes: the s&t of nodes in7,, the set

7 C 17, of endpoints, and the subgraph= G (Y U S). Line 5 initializesT with the nodes of without

edges among them. Line 6 initializes an auxiliary matrix which indicates at any time the pairs of nodes of
Z not yet connected iff. It is easy to see that, by construction, once finalized [bepl5 and supposing

that at any timezost(7") < cost(7,), the networkZ has tree topology and furthermore:

o Z CT,

¢ the endpoints of are a subsek C 7,

e nopes(7) NNopes(G,,) = Z U J, with J C (Y \ Z) (eventually] = 0),
e EpGES(G.,,,) NEDGES(T) = ().

By Proposition 5.4.6, the resulting network is 2-node-survivable. The net$gris updated in line 17 and
returned in line 20. Since this is a better solution, the indicator varialbteove is set toTRUE in line 18
and also returned in line 20.

Notice that if in a given iterationost(7") > cost(7,), then the loop finalizegmprove is set toFALSE in
line 19 and it is returned in line 20.

QED

Now, we introduce a small example which shows the applicatioR&@{Connect when replacing a
key-tree by a suitable tree to obtain a neighbor feasible solution. Figure 5.23 includes the following graphs

e The first graph corresponds to the graph of feasible connections on the backbone rietwditie
black nodes represent the fixed switch sites whereas the white nodes represent the non-fixed switc
sites.

e The second graph corresponds to a minimal 2-node-survivable topology spanning the fixed sites. Thi
feasible solution has two key-nodes, one of them labeledwiifhe associated key-trée has three
endpoints: one non-fixed site and two fixed sites.

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 147

e The other three graphs are all the possible neighbor feasible solutions that we can obtain by replacin
the key-tree7, by another tree spanning their endpoints. In each case, the broken lines represent th
edges of the substitute tree. Depending on the connection costs, any of them can be computed by tf
algorithmRecConnect. Notice that two of them maintainas a key-node whereas the other consists

of a simple path connecting the endpoints/pf In addition the three topologies are minimal (when
removing an edge the feasibility is lost).

key-nodes

key-node

e

key-node

Figure 5.23: A feasible solution and its neighbor solutions built by repla€ing

In this example all possible neighbor solutions obtained by applRiag onnect are minimal, but it
could happen that the network resulting after the key-tree replacement loses the minimality. In addition, a

in the fifth graph, a new neighbor solution can have a key-node less than before. We introduce the followinc
proposition to prove formally these properties.

148 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Proposition 5.4.8 A neighbor feasible solution constructedtweConnect can be non-minimal and more-
over it can have a key-node less than the original solution.

Proof. Let us consider the networks shown in Figure 5.24. The black nodes model fixed switch sites anc

key-node

Figure 5.24: NetworksG;, G. .. andg.,, respectively.

the white nodes model non-fixed switch sites. The graphs from left to right are: the @raphfeasible
connections on the backbone network, the current solgignand the grap@sol delivered byRecConnect
when running with these inputs. Netwogk,, was built of the following way. Firstly, according to the
RecConnect pseudo-code, it easy to see that {s1, s2, s3}. When executing lines 7-15, the pajks, s;)
and(s,, s3) were selected (in that order), obtaining as result the feasible sohjjjprCIearly,Qsol is non-
minimal since by deleting the edde;, s,) € Qsol the resulting graph is 2-node-survivable. In addition, in

A

g... there are no key-nodes, completing thus the proof.
QED

In the example introduced in the previous proposition a redundant edge appears when adding conne
tions between the endpoints @f. The sitess, ands, are adjacent having degree three in the new solution.
As we saw above, by deleting the connection between both sites the 2-node-survivability is preserved. Fc
other BNDP2NS instances this action could induce the loss of the feasibility depending on the solution
topology. To prove it, we introduce the following proposition.

Proposition 5.4.9 LetG be a 2-node-connected network such that there exist two adjacent nodesg
with degree(u) > 3 anddegree(v) > 3, and moreover when removing the edgev) from G at most one
articulation node is introduced. Then, the netwgrk= G\ {(u,v)} is 2-edge-connected but not necessarily
2-node-connected.

Proof. In order to demonstrate thgt = G \ {(u,v)} could be non 2-node-connected, we introduce in
Figure 5.25 a 2-node-connected network so that by removing an edge between nodes with degree greater

5.4. BNDP2NS LOCAL SEARCH PHASE ALGORITHMS 149

Figure 5.25: By deleting the network loses the 2-node-connectivity.

two the 2-node-connectivity is lost.
Now, we will prove thaij is 2-edge-connected. By the 2-node-connectivity, there exists apaté from
u to v such that the edgeu,v) ¢ p. Letxy,z, € p be the adjacent sites toandv respectively. Since

=

Figure 5.26: CasesiNp =0, p N p # () and subgraph.

degree(u) > 3 anddegree(v) > 3 there exist two sites,, vy € G, y1 # 1,29, Y2 # 1, T2 adjacent tau
andv respectively. Again, by the 2-node-connectivity there exists a pathg connectingy; andy, such
that(u, v) ¢ p. We have the following casesnp = () or pNp # 0, Figure 5.26 illustrates these situations.
Let us define the subgrapits = p U p U {(u,41), (v,y2)} andH = H U {(u,v)}. It easy to see thdtl is
2-edge-connected; therefore by replactidy # in G and applying Lemma 5.3.2, we have tigais also
2-edge-connected.

QED

Proposition 5.4.9 is also valid whéhis 2-node-connected,andv have degree greater than three and in
addition they are connected by means of a key-path. In both cases, these results are very useful to elimine
redundant edges and key-paths from a solution, as long as the feasibility is preserved. In particular, give
a 2-node-survivable feasible solution we can remove key-paths and edges whose endpoints have degt
greater to three and to apply suitably the well-known DFS algorithm (Depth First Search) to determine
the presence of articulation nodes [73]. That is, under these hypothesis, we can iteratively eliminate edge

150 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

and key-paths and simultaneously control the feasibility of the resulting solution, obtaining thus a feasible
solution with smaller cost.

The following proposition demonstrates the feasibility preservation in @achlSearch2_2NS itera-
tion.

Proposition 5.4.10 If LocalSearch2_2NS receives as input a 2-node-survivable feasible solugign the
local search preserves the feasibility at any time.

Proof. By contradiction, for certain iteratio@,,, is 2-node-survivable with set of key-nod&sand there
existsu € X such thatRecConnect delivers a non-feasible solution. This contradicts Proposition 5.4.7.
Hence, the algorithm preserves the feasibility on each iteration.

QED

5.5 The GRASP algorithms for the BNDP2NS

We now describe the general GRASP algorithm for approximately solving the BNDP2NS. Figure 5.27
shows the corresponding pseudo-code. The algoritfiRdSP_BNDP2NS has two generic procedures
which can be instanced by different designed algorithms for the construction phase and local search phas
More precisely, the proceduré€®nstruction_Phase andLocal_Search can be instantiated of the following

way:

e Construction_Phase: by ConstPhasel 2NS, ConstPhase2_2NS, or ConstPhase3_2NS.

e Local Search: by LocalSearch1_2NS or LocalSearch1 (used byGRASP_BNDP).

Let us notice that, given a feasible soluti@p, the algorithmLocalSearch1_2NS replaces each key-path
from G, exactly one time, whereas the algorithmcalSearch1 resumes the key-path replacement process
whenever it finds a better neighbor feasible solution when replacing a certain key-path by other key-path
Therefore, we can sd@calSearchl as a generalization dfocalSearch1_2NS. Each of these algorithms are
used in combined way with the algorithhocalSearch2_2NS which works based on key-tree replacement
moves.

The local search phase applies first key-path replacement moves (by rdanifigearchl 2NS or
LocalSearch1 for key-paths replacements) and the evaluation of key-tree replacement moves is performec
only if there are no improving key-path replacement moves. In this way, we can explore structurally dif-
ferent neighborhoods in combined form and the search is resumed from the beginning whenever we find

5.5. THE GRASP ALGORITHMS FOR THE BNDP2NS 151

better neighbor feasible solution. The local search phase finalizes once no better neighbors are found wh
exploring the neighborhoods.

In order to present the different versions of the GRASP for solving the BNDP2NS, we will refer-
ence byConstruction_Phase indifferently to the algorithm&ConstPhasel 2NS, ConstPhase2 2NS and
ConstPhase3_2NS, and similarly byl.ocal_Search to the algorithmg.ocalSearch1 _2NS andLocalSearch1.

Next, we give a detailed description of the algorittiRASP_BNDP2NS.

Procedure GRASP _BNDP2NS;
Input: Gg, C, R, k, seed, MazxIter,

min_cost «— oo;

fori=1,..., MazxIter do
[Gsot] « Construction-Phase(G g, C, k);
cost_sol < COST(Gso1);
Gso1 — Local_Search(Gg, C, Gso1);
best «— cOST(Gso1);
if (best < cost_sol) then goto line 4;
Gso1 «— LocalSearch2 2NS(Gg, C, Gsot);
best <« COST(Gso1);
if (best < cost_sol) then goto line 4;
if (cost_sol < min_cost) then

© 00 N O U WDN PP

e =
N B O

Grt) G_ i min_cost «— cost_sol;

=
w

end _if;
end _for;
15 return GlorY);
end GRASP _BNDP2NS;

[N
N

Figure 5.27: General Version of the algorittiiR ASP_BNDP2NS.

The algorithm takes as inputs the gragh of feasible connections on the backbone network, the matrix
of connection costg§’, the GRASP parameteks(used in the construction phase), a seed for the pseudo
random number generateeed and the number of iteration®/ axzIter to be performed. The cost of the
best found feasible solution is initialized with the value infinity)in line 1. The algorithm is repeated
MazxIter times exploring the space of feasible solutions and searching for the optimal feasible solution for
the BNDP2NS. Each iteration works in the following way.

In line 3, a greedy randomized feasible solut@p is built using the algorithnConstruction_Phase
(i.e. ConstPhasel 2NS, ConstPhase2_2NS or ConstPhase3_2NS). In line 4 the cost of/.,, is assigned to
variablecost_sol. In line 5 we callLocal Search (i.e. LocalSearch1_2NS or LocalSearch1) in order to find
neighbor feasible solutions with smaller cost. In any case the local search algorithm builds better neighbo
feasible solutions by means of key-path replacement moves. Line 6 computes the cost of the neighbc
solutionG,,, built in line 5. Line 7 compares the cost of the current solution with the one returned by
Local_Search. If a neighbor solution with smaller cost has been computelddayl_Search, then, the local

152 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

search resumes from this new current solution executing from line 4. Otherwise, if no neighbor solution
of better cost is found by.ocal Search, then, in line 8 we call the algorithocalSearch2 2NS, which
searches for neighbor solutions with smaller cost by applying key-tree replacement moves. As mentione
previously, thd.ocalSearch2_2NS computes neighbor solutions by replacing key-trees by other trees which
are not necessarily key-trees. Line 9 computes the cost of the solution delivered in line 8. Again, if a
neighbor feasible solution with smaller cost has been founf@ldaylSearch2_2NS, then the local search
resumes from this new current solution executing from line 4. Otherwise, if no neighbor solution with better
cost is found byl.ocalSearch2_2NS, then, if the solution found at the end of the local search phase is better
than the best solution so far (line 11), we update in line 12 the best found feasible solution and the minimun
cost. Let us remark that the local search phase is conformed by the key-path replacement moves as well
the key-tree replacement moves; this corresponds to fired0 in the pseudo-code. Once finalized the
loop 2-14, the best found feasible soluti@i" is returned in line 15.

5.6 Performance Tests

In this section we introduce the experimental results obtained when applying the different combinations o
algorithms for the construction phase and the local search phase. All the algorithms were implemented i
ANSI C. The experiments were obtained on a Pentium IV with 1.7 GHz, and 1 Gbytes of RAM, running
under Windows XP. In the performance testing phase all instances were solved with the same GRASP par
meter settings. In a previous tuning phase the candidate lisk sizes chosen in the s€b, 10, 15, 20,30}

and the maximum number of iterationgaz I ter in the set{50, 100, 300, 500}. We tuned the value for the
candidate list size by considering a reduced group of BNDP2NS instances. As result of the tuning phase, w
selected: = 20 andk = 30 as the values with better results since they obtained at least the same solution
costs that the other parameter combinations, and better ones in many cases. Thus, we-fizedand
MaxIter = 300 when running all the performance testing problems. Next, we will describe the BNDP2NS
instances used in the testing phase.

5.6.1 BNDP2NS test-set description

As far as we known, there is no benchmark library neither for the STNSNP nor for the STESNP. Usually,
in other works related to the BNDP2NS the authors generate random graphs to perform the computation:
testing. For instance in [6], cases from the Travelling Salesman Problem (TSP) extracted from the TSPLIE
library [115] are used (without adding them Steiner nodes) with the aim of studying the efficiency of a
polyhedral algorithm specially designed for the STESNP.

Let us notice that, if we use TSP instances as BNDP2NS instances, the feasible solutions of the TS

5.6. PERFORMANCE TESTS 153

will also be feasible in the BNDP2NS, but the optimal solutions of the TSP will not necessarily be optimal

for the BNDP2NS. A particularity of these cases is that the optional nodes presence is not considered t
reduce the network designing costs, what considerably restricts the performance analysis of our GRAS
algorithms. In particular, we would not be able to study feasible solutions containing key-trees and key-
nodes as topological components. For these reasons, we focus on the generation of test cases based on’
instances, containing besides non-fixed switch sites. In what follows, we will indifferently refer to Steiner

nodes as non-fixed switch sites, owing to the analogy between the BNDP2NS and the STNSNP probler
cited in [6, 102, 126].

We generated a test-set using Traveling Salesman Problem (TSP) instances extracted from the we
known TSPLIB library [115] and customized (by adding to them certain amount of Steiner nodes) to our
BNDP2NS. The TSPLIB contains many problem classes related to the TSP. In particular, we are intereste
only in the Symmetric Traveling Salesman Problems (denoted simply by TSP) since the other classes ir
cluding in the TSPLIB are not applicable or directly customizable to our BNDP2NS. Below, we describe
the transformation process used to customize the TSP instances to our BNDP2NS.

Given a TSP instance from the TSPLIB and a non-negative integ@ne number of Steiner nodes to
be added), we generate a BNDP2NS instance as follows:

i) We will denote byG andg the graphs associated with the original TSP instance and its corresponding
BNDP2NS instance (to be constructed) respectively.

i) All the nodes ofG will be considered fixed switch sites ¢h In this way, initially we haveg = G.
iil) We distinguish the following cases:

a) If G is an implicit Euclidian graph (i.e. in the input TSP file each node has associated a position
with respect to a system of geographic coordinaté&? then, iteratively we addedh Steiner
nodes (one node at a time) by selecting randomly their positions in the range to which belongs
the nodes of;. The resulting BNDP2NS instance is modelling by a complete g¢aphving
all the original nodes of the TSP instance andithadded Steiner nodes. The connection costs
are given by the Euclidian distances.

b) If G is an explicit Euclidian graph (i.e. the input TSP file provides explicitly the matrix of
geographic distances between the nodes), then, iteratively we added Bteiner nodes (one
node at a time) so that at each iteration we generate a connection between the new Steine
node and each node already preseng.inThese connections have associated costs which are
randomly chosen in the interval- [¢pin, ¢z, Wherec,,;, andc,,,, are the minimum and
maximum euclidian distances between two nodeg,iandp € (0, 1) is a prefixed parameter.

154 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Clearly, the final topology will be a complete graph but their costs not necessarily satisfy the
triangular inequality.

Once finalized this process, the resulting grgpimodels a new BNDP2NS instance.

The TSP instances used to build BNDP2NS instances were: att48, berlin52, brazil58, dantzing42, eil51
eil76, gr48, gr96, hk48, kroA100, kroB100, kroC100, kroD100, kroE100, pr76, rat99, rd100, st70, and
swiss42. The numbers that appear in their names indicate the number of nodes of the problem. Table 5
indicates for each of these TSP instances the main characteristics of the BNDP2NS instances generated
applying the process exposed above. The first column contains the names of the original TSP instances a
the entries from left to right are:

¢ the format type of the input TSP file depending on if this one contains or not in explicit form the
matrix of geographic distances between the nodes (EXP or IMP denoting Explicit or Implicit form
respectively),

e the number of Steiner nodes added to the original graph (we used the vadue25%, 45%, and
65% percent of the number of nodes in the TSP instance),

¢ the total number of nodes in the resulting BNDP2NS instance (TNODES),

¢ the type of graph associated with the generated BNDP2NS instances (EUC or G denoting an euclidia
graph or a general graph respectively),

e and the number of generated instances (NI).

Most of the BNDP2NS instances generated by us, satisfy the triangular inequality between its node:
(45 out of 57 instances). This property is particularly important since, as we will see, we will be able to
compute (by means of the application of theoretical results present in the literature) lower and upper bond
for the optimal costs of such instances; and in this way bound the relative distance of GRASP solution cost
to the optimal costs. Obviously, low values with respect to the lower bounds will involve good quality sub-
optimal solutions or reaching the optimality. Lower bounds will be useful as long as they be relatively close
to the optimal values (tight lower bounds), otherwise, relatively high gaps could be obtained and, despite
this, being very close to the optimal global cost or achieving the optimality.

On the other hand, based on four explicit format of TSP instances, we generated twelve BNDP2NS in
stances with Steiner nodes whose connections to other nodes not necessarily satisfy the triangular inequal
among costs. More precisely, for the cases where the input TSP file is given in explicit format, when adding
new connections we chooge= 1/6 with the aim of generating Steiner nodes with connection costs to-
wards its adjacent nodes much lower when comparing them to the connection costs between fixed switc

5.6. PERFORMANCE TESTS 155

TSP problem ‘ Input TSP file per TNODES Graphs | NI
att48 IMP 25%, 45%, 65% 60, 69, 79 EUC| 3
berlin52 IMP 25%, 45%, 65% 65, 75, 85 EUC| 3
brazil58 EXP 25%, 45%, 65% 72,84,95 G 3
dantzing42 EXP/IMP 25%, 45%, 65% 52, 60, 69 EUC| 3
eil51 IMP 25%, 45%, 65% 63, 73,84 EUC| 3
eil76 IMP 25%, 45%, 65% 95, 110, 125 EUC| 3
gr48 EXP 25%, 45%, 65% 60, 69, 79 G 3
gro6 IMP 25%, 45%, 65% 120, 139, 158 EUC| 3
hk48 EXP 25%, 45%, 65% 60, 69, 79 G 3
kroA100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
kroB100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
kroC100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
kroD100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
kroE100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
pr76 IMP 25%, 45%, 65% 95, 110, 125 EUC| 3
rat99 IMP 25%, 45%, 65% 123, 143, 163 EUC| 3
rd100 IMP 25%, 45%, 65% 125, 145, 165 EUC| 3
st70 IMP 25%, 45%, 65% 87, 101, 115 EUC| 3
swiss42 EXP 25%, 45%, 65% 52, 60, 69 G 3

Table 5.1: Test-set for the BNDP2NS.

sites. In this way, when integrating new optional nodes, we will increase the chances of these of beinc
potential improvers of 2-node-survivable feasible solutions. Intuitively, the lower the valyetwd larger

the probability that the global optimal solutions of a generated BNDP2NS instance has Steiner nodes in it
topologies.

Moreover, if we observe the design of our local search algorithms, we will be able to notice that these
are strongly related to the analysis of feasible solutions which have Steiner nodes as network componen
(for example key-nodes, or Steiner nodes belonging to key-paths or to key-trees). As a result of this we ar
interested in having test instances available with considerably large amounts of Steiner nodes (more the
29% out of the totality of fixed switch nodes), and therefore in analyzing our algorithms performance and
studying the impact on the optimal cost reduction when we increasingly add more Steiner nodes to the TS
instance taken as basis.

5.6.2 Auxiliary topological properties

Before introducing the results obtained in the testing phase, we will give two theorems which can be uset
in order to compute a lower bound for the optimum cost of an Euclidian BNDP2NS instance. This lower
bound depends on the optimum value of the original TSP instance.

Let us place in the following context. Consider a set of nddegith a nonnegative, symmetréistance
function(or metric) d(-) defined orl x V which satisfies the triangle inequality. Let us c&li, v) thecost

156 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

or lengthof the edg€u, v). A subset of edge8 C V' x V' defines a grapl/ = (V, U) whose cost is given

by d(U) = >_(,..)ev d(u, v). Given a subset of special nodesC V', we letC,, (D) denote an optimal

cycle spanningD (without using nodes of” \ D) andT'C,,:(D) denote an optimal 2-node-connected
solution spanning (without using nodes of \ D) of costd(C,,(D)) andd(TC,,:(D)) respectively. In
addition, let us denote an optimal Steiner 2-node-connected solution spanrbggs7C,,,. (D, V') with
costd(STC,,.(D,V)) (in this case the nodes &f \ D may be used if they help reduce the overall cost). In
this context, Monma, Munson and Pulleyblank [102] proved that a minimum-cost traveling salesman tour
may be a good approximation to a minimum-cost 2-node-connected graph, more exactly they establish tha

Theorem 5.6.1 (Monma, Munson and Pulleyblank) For any set of node¥, D C V and a distance

functiond(-),

%d(Copt(D)) < d(TCop(D)) < d(Cop(D)).

Furthermore, they provide [102] a relation between an optimal 2-node-connected solution sganning
and a Steiner 2-node-connected solution spanfing

Theorem 5.6.2 (Monma, Munson and Pulleyblank) For any set of node¥, D C V and a distance

functiond(-),
3
Z—ld(TCopt(D)) < d(STCop(D,V)) < d(TCop(D)).
In this way, by combining both results, we have the relation:
9
16
obtaining thus a lower bound and an upper bound fod{¥d’C,,.(D, V')), which only depend od(C,,:(D)).

d(Copt(D)) < d(STCop (D, V)) < d(Cope(D)),

Let us note that, since in most cases our BNDP2NS instances are Euclidian graphs, these bounds are use
in practice to approximate the gap between the solution found by the algadthAtP_BNDP2NS and

the corresponding optimal solution. In the same context, Monma, Munson and Pulleyblank proved [102]
an important structural theorem related to optimal two-node-connected solutions, whose wording is the
following.

Theorem 5.6.3 (Monma, Munson and Pulleyblank) For any set of node§” with distance functior(-)
onV x V, there exists a minimum-weight two-connected netwdérk= (V, U) satisfying the following
conditions:

a) every node off has degree 2 or 3.
b) deleting any edge or pair of edgesihleaves a bridge in one of the resulting connected components
of H.

Later, we will use this theorem to analyze comparatively certain solutions delivered by our GRASP heuris-
tics.

5.6. PERFORMANCE TESTS 157

5.6.3 Numerical Results

Let us turn now to the study of the computational results.
Table 5.2 shows for each original TSP instance:

¢ the optimum value of the original TSP instance (denote@OyT_TSP),

e the valuelLB1 = %COPT,TSP which is a lower bound for the cost of a feasible solution which does

not have Steiner nodes,

e the valud.B2 = 1%COPT,TSP which is a lower bound for the optimal BNDP2NS solution. Itis easy
to see that if all the optimal solutions of a BNDP2NS instance have Steiner nodes, the Baloan-
not be used as lower bound for the solutions delivered by the algofitRhSP_BNDP2NS. In this
sense the valueB2 provides us a lower bound when the best solution founGBASP_BNDP2NS
has Steiner nodes.

TSP problem | COPT_TSP LB1 LB2
att48 10628 7971 5978.25
berlin52 7542 5656.5 4242.4
brazil58 25395 - -
dantzing42 699 524.25 393.18
eil51 426 319.5 239.62
eil76 538 403.5 302.62
gr48 5046 -

gro6 55209 41406.75 31055.06
hk48 11461 - -
kroA100 21282 15961.5 11971.12
kroB100 22141 16605.75 12454.31
kroC100 20749 15561.75 11696.62
kroD100 21294 15970.5 11671.31
kroE100 22068 16551 12413.25
pr76 108159 81119.25 60839.43
rat99 1211 908.25 681.18
rd100 7910 5932.5 4449.37
st70 675 506.25 379.68
swiss42 1273 -

Table 5.2: Comparative values for the generated BNDP2NS instances.

Let us notice that even thoudlB2 was deduced by the combination of inequalities derived from the
worst case ratios inherent to structurally different feasible topologies, we cannot a-priori know the approx-
imation degree which provides us such bound with respect to the optimal values of the BNDP2NS. In
relation to this latter, if we analyze the bounding interval present in theorem 5.6.1 and the bounding interva

158 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

resultant of relating theorems 5.6.1 and 5.6.2, we can at once infer that this lastlofetismes higher

than the first one (that i 75 = 1=577).

In a first stage, we tested all the combinations of construction phase algorithms with local search searc

algorithms. Since in this testing phase the experimental results obtained when using the local searc
LocalSearch1 surpassed qualitatively or at least obtained solutions of the same quality than the ones founc
when using the local seardlvcalSearch1_2NS (probably, this could be explained by the fact that the local
searchLocalSearch1l may be seen as a generalizatiori.otalSearch1_2NS owing to the way in which the
key-paths present in the solution to improve are replaced), from here on we will summarize the computa
tional results obtained by the GRASP algorithms that usddtalSearchl in the local search phase. In
order to present the results, we will introduce the following notation.

Heuristic H,: GRASP_BNDP2NS instantiated witfConstPhasel_2NS, LocalSearchl andLocalSearch2_2NS,
Heuristic H,: GRASP_BNDP2NS instantiated witfConstPhase2_2NS, LocalSearchl andLocalSearch2_2NS,

Heuristic H;: GRASP_BNDP2NS instantiated wititConstPhase3_2NS, LocalSearch1 andLocalSearch2_2NS,

In Tables 5.3 to 5.5 we show a summary of computational results obtained by applying the algorithm
GRASP_BNDP2NS to the test-set presented in Table 5.1. More precisely, they correspond to the perfor-
mance tests of the heuristies, H, andHs;.

In each table, the first column contains the names of the original TSP instances and the entries from le
to right are:

e an indicator if the best solution found by our heuristic has Steiner nGaEs,
e an indicator if the best solution found by our heuristic has cycle topol@gy),
¢ the cost of the best solution found BRASP_BNDP2NS (denoted byBCF),

e the valueGAP_1, where:GAP_1 ¥ 100 x %. This is the gap with respect to the lower bound
provided by theorem 5.6.1 inherent to optimal 2-node-connected solutions (without using Steiner

nodes),

e the valueGAP 2, where:GAP 2 © 100 x BB This is the gap with respect to the lower bound
introduced by combining theorems 5.6.1 and 5.6.2, inherent to optimal Steiner 2-node-connectec
solutions. Let us notice that BNI = FALSE, the valuelLB1 is a lower bound for the solution

delivered by the GRASP algorithm.

o the valueUB_GAP ¥ 100 x ECE_COPTISPI: s s the gap with respect to the optimum TSP value,

5.6. PERFORMANCE TESTS 159

o the average of the improvement of the results of the local search phase over the construction phas
(LSD),

e the running time per iteration (secs./itr).

For the instances derived from cases brazil58, gr48, hk48 and swiss42, we did not compute the values
GAP_1 andGAP_2 because their costs could not satisfy the triangular inequality and therefore we cannot
apply the theorems 5.6.1 and 5.6.2. Table 5.6 shows certain topological characteristics of the best solutior
found by the heuristic®{,, H, andH3; specifically, for each BNDP2NS instance we provide:

¢ the number of Steiner nodes of the best solution found (denotébhy
e the number of edges in the best solution fouRddes).

In addition, in Table 5.7, we introduce only the best cost found for each one of the generated instances &
well as the heuristics that attained these values.

In what follows, we will discuss the computational results obtained by the GRASP heuristics. In Ta-
bles 5.3, 5.4, and 5.5 the costs corresponding to the best feasible solutions found by the hegrigiics
and’H; are in bold letters. For each instance we indicate which of the three heuristics produced the lowes
cost solution. Let us notice in many cases the same cost was reached by more than one heuristic.

The heuristicH3 was the one which found in a larger number of BNDP2NS instances the best feasible
solutions, followed in order b${; andH;. Specifically, out of 57 instances, when comparing the costs of
the solutions returned by the three heuristics we have:

e H3 found 50 best solutions, being 41 of them not equalled in cost by the other heuristics and from the
eight remaining, six were also reachedMy and five byH;.

e H, found 8 best solutions, being all of them equalledHbyand/orH;. To be more precisely, four of
them were equalled in cost By, and seven of them were equalled in costHy.

e H; found 12 best solutions, 6 of them not equalled by the other heuristics. Of the remaining, four of
them were equalled in quality b, and other five byHs.

As can be seen in Tables 5.3, 5.4, and 5.5, in no case the feasible topologies returned by the GRAS
heuristics were cycles. In addition to this, in most cases the best solutions found had at least a Steiner no
as part of its topology, excepting four instancesar, three instances fdk, and an instance fot; .We
noticed that interestingly, two of these feasible solutions without Steiner nodes (corresponding to Euclidiar
instances), fulfilled pointéa) and(b) from theorem 5.6.3. Another important point to emphasize is that the
best GRASP solutions found were minimal (i.e. by removing an edge the feasibility is lost).

THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

CHAPTER 5.

160

TSP problem | SNI | cTI | BCF GAP_1 GAP_2 UB_GAP LSI secs./itr
att48 X Vv | x xx | 9491, 8696, 6828 | 19.07%,9.10%, -14.34%| 58.76%, 45.46%, 14.21% 10.70%, 18.18%, 35.75% 3.39%, 3.12%, 6.82% 3.95, 4.92, 6.23
berlin52 VvV | xxx | 6759, 6161,4875 | 19.49%, 8.92%, -13.82%| 59.32%, 45.23%, 14.91% 10.38%, 18.31%, 35.36% 3.12%, 4.04%, 4.36% 4.18, 5.05, 6.40
brazil58 VvV | % x x| 22360, 20660, 16063 - - 11.95%, 18.65%, 36.74% 4.35%, 4.62%, 6.29% 4.55, 5.42, 6.53
dantzingd2 | vvv | x x x 649, 586473 23.80%, 11.78%, -9.78%| 65.06%, 49.04%, 20.30% 7.15%, 16.17%, 32.33%| 5.01%, 5.56%, 7.33% 3.73, 4.36, 5.51
eil51 VYV xox x 387,397, 357 21.13%, 16.08%, 4.39%| 61.50%, 54.78%, 39.18% 9.15%, 12.94%, 21.71%| 5.69%, 6.96%, 7.68% 3.97, 4.78, 5.95
eil76 Vv xox x 470, 448,382 16.48%, 11.03%, -5.33%)| 55.31%, 48.04%, 26.23% 12.64%, 16.73%, 29.0%| 7.24%, 7.85%, 9.02%4 5.18, 6.51, 8.17
qras x Vv | xx x | 4450, 4107, 3269 - - 11.81%, 18.61%, 35.2%| 6.56%, 8.52%, 7.25% 3.62, 4.27,5.11
ro6 VYV | x x x | 48314, 44858, 34974 16.68%, 8.33%, -15.54%| 55.58%, 44.45%, 12.62% 12.49%, 18.75%, 36.65% 4.12%, 4.56%, 6.12% 6.30, 7.53, 9.28
hk48 X Vv | xxx | 10182, 9346, 7291 - - 11.16%, 18.45%, 36.38% 5.22%, 6.83%, 7.96% 3.81, 4.89, 6.06
kroA100 VvV | % x x| 18746,17295, 13488 17.45%, 8.35%, -15.50%| 56.59%, 44.47%, 12.67% 11.92%, 18.73%, 35.42% 4.52%, 5.13%, 7.23% 6.95, 8.33, 9.78
kroB100 Vv | x x x | 19393, 18003, 14324 16.78%, 8.41%, -13.74%| 55.71%, 44.55%, 15.01% 12.41%, 18.69%, 34.31% 4.23%, 6.93%, 6.01% 7.11, 8.18, 9.66
kroC100 VvV | x x x | 18347,16938, 12717 17.90%, 8.84%, -18.28%| 57.20%, 45.13%, 8.96%| 11.58%, 18.37%, 38.71% 3.97%, 5.02%, 7.85% 6.65, 7.80, 9.36
kroD100 VYV | x x x| 20214,17347, 15454 26.57%, 8.62%, -3.23% | 68.76%, 44.83%, 29.02% 5.07%, 18.54%, 27.43%| 4.10%, 4.07%, 8.23% 7.23, 8.88, 10.52
kroE100 VvV | x x x| 1947017936, 17002 17.64%, 8.37%, 2.72% | 56.85%, 44.49%, 36.97% 11.77%, 18.72%, 22.96% 4.08%, 5.86%, 9.71% 6.82, 8.41, 9.94
pri6 VYV | x x x| 9741394472 68443 | 20.09%, 16.46%, -15.63% 60.11%, 55.28%, 12.50% 9.94%, 12.65%, 36.72%| 5.63%, 7.23%, 6.94% 5.20, 6.14, 7.20
rat99 VvV | xxx | 12351173782 | 35.98%, 29.15%, -13.90% 81.30%, 72.20%, 14.80% 1.98%, 3.14%, 35.43% | 2.92%, 6.14%, 7.50% 6.99, 8.08, 9.79
rd100 VvV | xxx | 745070196224 | 27.10%,18.31%, 4.91%| 69.46%, 57.75%, 39.88% 4.68%, 11.26%, 21.31%| 4.07%, 5.96%, 8.01% 7.18, 8.58, 10.12
St70 V| X x % 663,637, 520 30.96%, 25.83%, 2.72% | 74.62%, 67.77%, 36.95% 1.78%, 5.63%, 22.96% | 2.23%, 4.79%, 7.23% 5.41, 6.75, 8.21
Swiss42 Vv | xx x| 1254,1237864 - - 1.49%, 2.83%, 32.13% | 2.10%, 5.65%, 9.34% 3.93, 4.63,5.75
Average 21.71%, 13.72%, -7.80%| 62.27%, 51.62%, 22.93% 9.01%, 14.70%, 31.75%| 4.34%, 5.72%, 7.41% 5.41, 6.50, 7.87

Table 5.3: Results witlonstPhasel 2N§S, LocalSearch1 andLocalSearch2 2NS (heuristicH).

161

PERFORMANCE TESTS

5.6.

"(YHPUSHNBY) SN ZUPTROSTRI0TpUR TUYDIRIS[RIOT ‘SNT ZISRUJISUOHIM SYNSDY °G d|gel

YTOT '9T'6 V'L Pol8'9 ‘%6T'S %ILY (%VT TE ‘%95 9T ‘%TS6 %62 €C ‘%IT IS ‘%P2 T9 |%VS L- ‘%.LEET ‘%E6 0 abelany
00°L 22985V PoL6°L ‘%CT'9 ‘%IT'S (%TO0E ‘%61 CT '%IST - - 168 ‘VITT ‘TveT XXX | PAX CYSSIms
20°0T 'TC'6 ‘2V'L POET'9 '%LOY ‘%96'E | %68°0C '%EY'S ‘Y%iv' vy %9 0V '%.LL L9 ‘%8869 |%8Y'S ‘%E]'SC ‘%TV L ¥€S '2€9'G19 XXX A PSS 0Ls
LYZT TV TT 'S6'8 POET'S ‘%L9'S ‘%IT ¥ |%97°'EC ‘%SZ ET ‘%Z8'S %90°9E ‘% S "%y’ L9 |%S0'C '%L9'ST ‘%85G 7509 ‘2989 0S¥ XXX A SrSN 00TPI
60°2T ‘28°0T ‘88’8 P090°'S ‘%.L8'Y ‘%TE'9 |%IV'8C ‘WIS L ‘WCET %82 LT ‘%YT'T6 '%EY'SL |%YS v~ ‘%SEEY ‘%G TE 198 ‘TOET ‘GBTT XXX N SIS 667el
GE'0T ‘8.6 ‘02’8 POSL'E ‘%C6'E ‘%952 YTT8E ‘%GICT '%.L8 TT %20 0T ‘%8C GG ‘%89°9S %8V LT- ‘%91 9T ‘%TS LT | 86699 CLVY6'CCES6 | X X X | MM X 9/ud
09°CT 2V’ TT '62°6 PO09'S ‘%EIY ‘%68 Y YTT SC ‘%8 0Z ‘%LLTT YVT EE ‘WEL OV ‘%SG89G | %ST 0- ‘%SS'S ‘%V9 LT [L2S9T ‘69VLT OLV6T | X X X | AAA 00T30
00°CT ‘'9S°'TT '0L'6 POoCT'L ‘%6T'S ‘%V0V |%SS 62 ‘%EI0C ‘% L %S SC %IT T ‘%I6 Y9 | %909~ ‘%ES'S ‘%89°EC | ¢00STC069T ‘€EGL6T | X X X | AAA 00TAo»
€C'ZT ‘T90T ‘8¥'6 P98V ‘%TC'S ‘%SGE'9 %92 0V ‘%81 0C ‘%98 ET [WTE'S ‘WLETY ‘%PTES (%20 TZ- ‘%209 ‘%G8 ¥T BTECT ‘SESIT CT6LT | X X X | AAA 00TO0H
G6'CT ‘SE'TT ‘CE'6 POL8'S 'WESY ‘%CT'S |%CL'SE '%8Y 6T ‘%8Y'6 %2 VT ‘%IT'EY ‘%2609 (%62 VT- '%LE L ‘%69°0C | CECYT 628LT'CY00C | X X X | AAA 00Tgon
GVZT CETT 'ET6 POL99 ‘%90°S ‘%IT'S Y%VE EE ‘%ZE 0T ‘“UESET %05 8T ‘%S9 T ‘WEL'ES |%ZT'TT- ‘%r2C'9 ‘%0E'ST H8TYT 'LS69T ‘€OV8T | X X X | AAA 00TVOX
8V L CULIV'S PO0EQ ‘%LT Y ‘%el'C YIS EE ‘%EOOZ ‘%00 TT - - 985/ ‘G916 ‘0020T XXX N PSS 8y
C6'TT ‘88°0T ‘68'8 POCT'6 ‘%CT L ‘%699 %ES LE ‘%LL 0T ‘%LT'ZT YES 0T ‘%S8 0 ‘%1 95 (%0T LT- '%V9'S ‘%IT LT GZEVE ‘CVLEV ‘06¥8Y | X X X | AAL 9616
22'8'20°L'0V'S PHAET'6 ‘%G8'L ‘%8S Y %8S 9E ‘%99'TC ‘%SLET - - 00Z€ ‘€S6€E ‘2GEY XXX A PSS 8vib
8T'TT 286 ‘80'8 P6C6'8 ‘%CS'9 ‘WLT'S |%lV'EC '%66'ST '%8S'S Y%PT 9E ‘%9IE 67 ‘%9829 |%TT'C '%c0CT ‘%06°GC 2T ‘2SY ‘808 XXX N SIS 9/lle
€5°L V99 'GL'G PACE L ‘%BCE '%0OT'S | %CT ST '%6Z'E ‘WIS, YCT EE ‘%6 TL ‘%l v9 |%9T 0- ‘%S6'8C ‘%ZEET 6TECTY 'v6E XXX N PSS TSI
80°L'05°9 ‘¥9'S PHEI'8 ‘%ET'S ‘%C0'S [%68EC ‘%TEBT ‘%EL'8 %OE'SE ‘% Sy ‘%9229 | %8Y'T ‘%C6'8 '%0.L T 2€S ‘TS 8€9 XXX N PSS zvBuizyuep
GL'8'V.°L'0E9 PS8 ‘%S8'S ‘%P9 %0S TE ‘%.LL 0C '%.L6ET - - B6ELT '0CTOC ‘LY8TC | X X X | AAA 8glizelq
7’867 L ‘V6'S PHAEC'8 ‘%TIV ‘%G8 E %90°LE ‘%686T ‘%0 VT %68 TT ‘%lv Cy ‘%282S |%80°9T- ‘%289 ‘%I VT | Lvlv ‘209 ‘€819 XXX N PSS csuleq
G6°L CT'LTOS POS8'L ‘%e8V ‘%e0v %ET'LE ‘%8L0C ‘%IECT %65 TT ‘%8 0 ‘%08°'SS |%TE9T- ‘%EI'S ‘%G8 9T | T.99 ‘0Z¥8 'VIE6 XXX N PSS 8yne
7 RTESES] IST dvodn ¢ dvVD dvD 404 4 LLD 4 INS 4 wajqoid dS L

THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

CHAPTER 5.

162

TSP problem | SNI | cTI | BCF GAP_1 GAP-2 UB.GAP LSI secs.fitr
att48 X Vv | x x x | 929782056424 | 16.64%, 2.94%, -19.41% 55.51%, 37.25%, 7.46%| 12.52%, 22.80%, 39.56% 3.29%, 5.28%, 6.17% 4.63, 6.08, 7.56
berlin52 VvV | x x x| 608758634523 | 7.61%, 3.65%, -20.04%| 43.48%, 38.20%, 6.61%| 19.29%, 22.26%, 40.03% 4.23%, 5.20%, 6.12% 5.06, 6.54, 8.02
brazil58 VvV | % x x| 2046319592 15871 - - 19.42%, 22.85%, 37.50% 3.62%, 4.34%, 5.45% 5.54,7.12, 8.33
dantzingd2 | vvv | x x x 638 557, 507 21.70%, 6.25%, -3.29%| 62.26%, 41.66%, 28.95% 8.73%, 20.31%, 27.47%| 4.29%, 4.49%, 6.47% 4.61, 5.57, 6.72
eil51 VYV xox x 387,384, 319 21.13%, 20.19%, -0.16% 61.50%, 60.25%, 33.129 9.15%, 9.86%, 25.12% | 4.32%, 3.40%, 7.01% 4.93, 5.92, 7.15
eil76 Vv xox x 472,441, 387 16.98%, 9.29%, -4.09%)| 55.97%, 45.72%, 27.88% 12.27%, 18.03%, 28.07% 3.98%, 5.22%, 6.48% 7.06, 8.85, 10.65
qras VvV | xxx | 428038803121 - - 15.18%, 23.11%, 38.15% 3.91%, 6.96%, 7.39% 4.62, 6.25, 7.81
ro6 Vv | x x x| 4693942587 32473 | 13.36%, 2.85%, -21.58% 51.15%, 37.13%, 4.57%| 14.98%, 22.86%, 41.18% 4.94%, 6.33%, 7.75% 8.01, 9.76, 11.35
hk48 VvV | xx x| 998288927328 - - 12.90%, 22.42%, 36.06% 3.20%, 4.05%, 4.02%4 4.88, 6.06, 7.11
kroA100 VYV | x x x| 182141684513117 | 14.11%, 5.54%, -17.82% 52.15%, 40.71%, 9.57%| 14.42%, 20.85%, 38.37% 4.33%, 5.57%, 5.08% 8.52, 10.26, 11.85
kroB100 Vv | x x x | 183431782913467 | 10.46%, 7.37%, -18.90% 47.28%, 43.16%, 8.13%| 17.15%, 19.48%, 39.18% 4.37%, 5.95%, 4.21% 8.50, 10.28, 11.56
kroC100 VYV | x x x| 167671571212211 | 7.74%, 0.97%, -21.53%| 43.66%, 34.62%, 4.62%| 19.19%, 24.28%, 41.15% 3.86%, 4.69%, 4.01%4 8.24, 9.86, 11.63
kroD100 VvV | x x x | 1951415886 15002 | 22.19%, -0.53%, -6.06% 62.92%, 32.63%, 25.25% 8.36%, 25.40%, 29.55%| 3.67%, 6.85%, 6.83% 8.42, 10.08, 11.42
kroE100 VvV | x x x| 1947017019 14245 | 17.64%, 2.83%, -13.93% 56.85%, 37.10%, 14.76% 11.77%, 22.88%, 35.45% 4.43%, 4.77%, 4.95% 8.01, 10.28, 12.00
pri6 VYV | x x x | 882379447263806 | 8.77%, 16.46%, -21.34% 45.03%, 55.28%, 4.88%| 18.42%, 12.65%, 41.01% 2.75%, 4.49%, 5.23% 7.00, 8.47, 9.85
rat99 VYV | xxx | 10711173818 | 17.92%, 29.15%, -9.94% 57.23%, 72.20%, 20.08% 11.56%, 3.14%, 32.45%| 4.64%, 5.36%, 4.44% 7.80, 9.31, 11.52
rd100 VYV | x x x| 747264485806 | 25.95%, 8.69%,-2.13%| 67.93%, 44.92%, 30.49% 5.54%, 18.48%, 26.60%| 3.38%, 6.17%, 5.65% 8.12, 10.02, 11.87]
St70 V| X x % 593 637, 542 17.14%, 25.83%, 7.06% 56.18%, 67.77%, 42.75% 12.15%, 5.63%, 19.70%| 2.93%, 5.01%, 7.37% 6.52, 8.16, 9.53
Swiss42 VYV xox x 1116 932, 870 - - 12.33%, 26.79%, 31.66% 4.07%, 5.07%, 7.02% 4.12, 5.21, 6.65
Average 15.96%, 9.43%, -11.54% 54.61%, 45.91%, 17.94% 13.44%, 19.16%, 34.12% 3.91%, 5.22%, 5.88% 6.56, 8.11, 9.61

Table 5.5: Results witonstPhase3 2NS, LocalSearch1 andLocalSearch2 2NS (heuristicHs).

5.6. PERFORMANCE TESTS 163

| Solutions of theH; heuristic Solutions of theH s heuristic Solutions of theH 3 heuristic ‘

TSP problem NS Edges NS Edges NS Edges
att48 0,2,5 51, 54, 58 4,3,4 55, 56, 57 4,4,5 55 57,59
berlin52 3,3,6 58, 59, 62 4,3,5 59, 58, 61 54,5 61, 60, 60
brazil58 4,7,9 65, 69, 72 4,6,8 65, 69, 72 3,47 64, 66, 69
dantzing42 3,4,6 49, 50,53 3,4,5 48,52, 54 3,4,5 48, 49, 51
eil51 54,8 59, 59, 65 2,3,4 55, 57,59 53,5 59 58,61
eil76 6, 6,5 86, 87,84 54,5 84, 83, 85 6,6,7 86,88, 87
gr48 0,3,7 51, 55, 59 4,3,5 55, 54, 57 4,4,5 58 57,58
gro6 4,5,5 105, 106, 104 | 4,5,5 103, 105, 105 4,6,5 105 108 106
hk48 0,5,9 51, 56, 62 3,4,6 54, 55, 58 3,6,6 56 59, 62
kroA100 4,7,11 108, 111, 117 | 5,6,8 111,111, 114 4,57 111,113 116
kroB100 4,5,10 108, 110, 116 | 5,6,5 109,113 112 5,6,9 113113 116
kroC100 3,6,11 107, 110,118 | 5,4,7 110, 109, 113 4,6,8 112111,114
kroD100 2,6,8 106, 109, 112 | 5,6,8 111,112,114 56,8 111,112 114
kroE100 4,8,9 109 112, 114 4,7,7 109 112, 113 4,7,9 109112 119
pr76 4,6,7 84,85, 88 3,6,5 86,85, 85 4,6,5 88 85, 89
rat99 3,5,8 106,107,112 4,4,6 108, 107, 110 6,5, 6 109 107,111
rd100 5,5,10 110, 109, 117 55,7 110, 113, 115 5,6,7 110,109 114
st70 2,4,6 76,79, 83 2,4,5 76,79, 79 3,4,6 79,79 79
swiss42 1,4,9 45, 49,57 1,3,7 47,51, 55 2,6,6 47,51, 54

Amount of 12 8 50
best solutions (6 of them not overcome) | (also all computed b§{; and/orHs) (41 of them not overcome)

Table 5.6: Features of the solutions found by the GRASP algorithms.

When analyzing the topological structure of the best GRASP solutions for the 57 instances (the bes
comparing the three heuristics), we noticed that the best solutions corresponding to the 45 Eucledian ir
stances did not have a Steiner node of degree 2 as network component. This is particularly important sinc
in those instances where the triangular inequality among costs is satisfied, the existence of degree 2 Steir
nodes in a feasible solution implies that this is not globally optimal. More precisely, for the Eucledian
instances, we noticed that all the Steiner nodes of the best solutions were of degree three. With this, fc
the BNDP2NS Eucledian instances, our best GRASP solutions satisfied this necessary optimality cond
tion [102]. According to this, from Table 5.6, we can state that the amount of key-nodes (and therefore
key-trees) present on each of the 45 best GRASP solutions (indicated in bold letters) corresponding to th
Eucledian instances, goes from 3 up to 9 Steiner nodes of degree higher than 2. With respect to the nol
Eucledian BNDP2NS instances, their best solutions had in several cases key-paths with Steiner nodes
degree 2, what do not discard its potential optimality.

Let us analyze now the values of the g&p&P_1 andGAP_2. Notice that for the three heuristics (as
Tables 5.3, 5.4, and 5.5 show), given a TSP instance, when increasing the number of Steiner nodes prest
in the generated BNDP2NS instance, the relative distance between the best feasible solution cost and t
vaIue%COPT,TSP significantly diminishes until the point in which (when we add &%, of Steiner

THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

CHAPTER 5.

164

TSP problem | COPT_TSP | per = 25% Heuristics | per = 45% Heuristics | per = 65% Heuristics
att48 10628 9297 Hs 8205 Hs 6424 H3
berlin52 7542 6087 Hs 5863 Hs 4523 Hs
brazil58 25395 20463 Hs 19592 Hs 15871 Hs
dantzing42 699 638 Ho Hs 557 Hs 473 Hi
eil51 426 387 H1 Hs 384 Hs 319 Ha Hs3
eil76 538 470 H1 441 Hs 382 H1
gra8 5046 4280 Hs 3880 Hs 3121 Hs
gro6 55209 46939 Hs 42587 Hs 32473 H3
hk48 11461 9982 Hs 8892 Hs 7328 Hs
kroA100 21282 18214 Hs 16845 Hs 13117 Hs
kroB100 22141 18343 Hs 17829 Ho Hs 13467 Hs
kroC100 20749 16767 Hs 15712 Hs 12211 H3
kroD100 21294 19514 Hsa 15886 Hs 15002 Ha H3
kroE100 22068 19470 H1 Ha Hs 17019 Hs 14245 Hs
pr76 108159 88237 Hs 94472 H1 Ho 63806 Hs
rat99 1211 1071 Hs 1173 H1 Hs 782 Hi
rd100 7910 7450 H1 Ha2 6448 Hsa 5806 Hs
st70 675 593 Hs 637 H1 Ha Hs 542 Ha
swiss42 1273 1116 Hs 932 Hs 864 H1

Table 5.7: Best costs found for each BNDP2NS instance.

5.6. PERFORMANCE TESTS 165

nodes) the value of the best GRASP solution found is under the valuB Iofexcept for a few cases. This

is a completely expected result since when increasing the amount of optional nodes, the space of feasib
solutions is expanded, and the probability of finding Steiner 2-node-survivable feasible solutions whose
costs improve the cost of the best 2-node-connected solution (which does not use Steiner nodes) grows. L
us observe that in the three heuristics, the average valu@s\&f 1 corroborate these tendency as well.
Computing the average (over the heuristics) of the valug &P _1 with respect to the instances generated
with 45% of Steiner nodes, we obtait.17% of average relative distance between the GRASP solution
found and the lower bound supplied for the best feasible solution not containing Steiner hBdgs (

In accordance with the mentioned above, when analyzing the valuga Bf2, we notice that in most
cases as the number of Steiner nodes is increased in a generated BNDP2NS instance, the relative distal
between the best solution found and the lower bound give%mOPT,TSP considerably diminishes,
what also was supposed to happen since the sub-space of feasible solutions that contain Steiner nodes
ponentially expands, and consequently the possibility of finding every time better feasible solutions grows

Note that theLB2 = %UB,GAP, this means that the gap betweleR2 andUB_GAP is of the order
of 78% therefore a value ofrAP_2 which is relatively high does not necessarily implies a great distance
with respect to the global optimal value. This is to say, eventually, the case in which the cost of our besi
feasible solution is very close (or is the same) to the optimal and at the same time is relatively far of the
lower bound, might happen.

Considering the BNDP2NS Eucledian instances generated by addify &f Steiner nodes, when
averaging the values 6t AP _2 over the three heuristics, we obtain an average relative distance with respect
to the lower bound.B2 equal t021.38%. Nevertheless, considering only the best GRASP solutions found
and calculating the average GIAP _2 for these solutions, we have an average relative distance with respect
to the lower bound.B2 equal to12.73%, which is not necessarily a “bad value” since we do not know how
tight the inferred bound is. Practical evidence suggests that testing applied to other BNDP2NS instance
with grater number of Steiner nodes would lead to smaller gaps.

Let us analyze now the valuesGB_GAP. As expected, when increasing the number of Steiner nodes
added to the TSP original instances, almost in every case, the valug3_6fAP were higher (the only
three exceptions happened when applying the heuftstion the instances generated from the problems
pr76, rat99 and st70, in particular when passing from2g to the45% of Steiner nodes to be added).
The reason for this is that in presence of more Steiner nodes, the space of BNDP2NS feasible solutior
significantly grows. In particular, there exists more feasible solutions having Steiner nodes as topologica
components. Then the probability of finding any Steiner 2-node-survivable solution beating the optimal
TSP solution grows. Let us notice that, for the three heuristics, the average valuBs@AP corroborate
the mentioned observation.

Let us see now the behaviour of the valued 8. In every case, the value &SI was higher than

166 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

2% and lower thanl0%. For the three GRASP heuristics, in most of cases, as we increased the number
of Steiner nodes added to the original TSP instance, the valueSloivere higher (there existed some
exceptions for the three heuristics which can be seen in Tables 5.3, 5.4, and 5.5). Let us recall that th
design of our strategies of local search is strongly linked to the presence of Steiner nodes as componer
of the starting feasible solution, and therefore its performance will be influenced in a certain way by the
amount of Steiner nodes existing in the solution delivered by the construction phase. When analyzing eac
of the BNDP2NS instances generated, as we compare them we find that there did not exist any releval
differences in the values dfSI corresponding to the three heuristics (these differences are always lower
than4 percentage points and #3% of cases lower tha.5 percentage points). The average valuekif

for each of the heuristics were higher thab%, 5% y 5.5% whenper = 25%, per = 45% andper = 65%
respectively. Besides, they were comparatively very similar, being at les$ geanentage point of distance
between them.

Finally, when analyzing the execution times of every one of the heuristics, we conclude that on average
the fastest per iteration was the heurigtic followed in order byHs; andH,.

Making a global balance of the obtained results, we have that even when the héusistas the one
which achieved the best solution in a higher number of instances, it was begatibysix occasions. Fur-
thermore, over the 57 instancds; achieved the¥7.7% of the best solutions found, whil®; achieved
the 21.1% of the best solutions found. Often, in the literature, in these kinds of situations (where an algo-
rithm beats the other and inversely) it is said that both algorithms are incomparable. On the other hand, th
execution times of{,; were lower than the ones {3 in every case, having an average differenceé.6f
seconds by GRASP iteration and in percentajevas18.17% faster thar#{;. The heuristic/, achieved
the 14.03% percent over the total of best solutions found, however, the topologies found in these cases wer:
equalled in quality (i.e. in cost) eith&t; or H3, but they were not beaten 13y, or by H; if we compare
separatelyi, with H; andH, with Hs. When comparing the average execution timéshad2.32 more
seconds per iteration comparedhe and(0.82 more seconds per iteration compared#g In percentage,

H, andH3 were26.03% and9.2% faster thari, respectively.

Let us notice that the number of Steiner nodes added to a BNDP2NS instance has a great impact on tt
cost of the feasible solutions found. We see that a large number of Steiner nodes lead to smaller costs, tr
can be explained in part by the fact that the local search algorithms designed take great advantage of tt
presence of Steiner nodes as potential enhancers of the current solution.

5.7. CONCLUSIONS 167

5.7 Conclusions

We investigated the design of 2-node-survivable backbone network topologies from the heuristic point of
view, with the aim of developing GRASP algorithms to solve problems which arise in practice. Such prob-
lem is a particular case of the BNDP introduced in Chapter 4, and we denominate it BNDP2NS. Our main
motivation for studying this problem comes from the great applicability of the 2-node-connected models in
real problems of design of High Speed Optical Data Transmission Networks (HSODTN) cores. We were
able to develop several GRASP algorithms which can give a good quality 2-node-survivable solution. We
designed three construction phase algorithms and two local search algorithms, and by combining them sui
ably with one of the local search algorithm used in the BNDP, we yielded six GRASP heuristics for the
BNDP2NS. The implementation of the algorithms was tested on a number of different problems with het-
erogeneous characteristics. In particular, we built a set of 57 BNDP2NS instances by transforming 19 TSI
instances (extracted from TSPLIB). By means of the application of certain theoretical results introducec
in [102], we deduce lower bounds for 45 of the BNDP2NS instances generated.

Considering the best solutions found for the 57 instances (over the set of better solutions achieved b
‘H1, Hs, andH3), we notice that:

e For the instances generated witr = 25%, the best solutions found were of better quality than the
feasible solution of the TSP. In particular, the relative average gap with respect to the TSP optimal
values was of-13.47%, what indicates a significant improvement compared with the optimal TSP
solutions. Considering only the BNDP2NS Eucledian instances, the average vdluebot was
of 10.55%, which measures the relative distance to the lower bound of the best feasible solution that
does not contain Steiner nodes.

¢ Inthe same way, for the instances generated pith= 45% andper = 65% the relative average gaps
with respect to the TSP optimal values were-af.16% and—34.60% respectively. Furthermore, in
all these cases the cost of the feasible solution found was considerably lower than the cost of the TS
optimal solution. The average valueSoAP _1 were 0f7.45% and—9.73% for the valueger = 45%
andper = 65% respectively. Withper = 45%, for the corresponding instance for the case kroD100,
we achieved a solution with lower cost than the valud.Bfi, and withper = 65% almost all the
solutions had costs sensibly lower than this bound (less-1&f¥% gap in 7 over 15 instances).

¢ When analyzing the non-Eucledian instances, even though we did not have lower bounds, we obsery
that the quality (i.e. the cost) of the achieved solutions was greatly superior than the TSP optimal
solutions. In particular, the relative distance between the best solutions found for these instances ar
the TSP optimal solutions was on average-@ft.9% percent (and always lower thanl 4.0%).

168 CHAPTER 5. THE 2-NODE-SURVIVABLE BACKBONE NETWORK DESIGN PROBLEM

Even if we have lower bounds for the optima of the BNDP2NS Eucledian cases, the real interval
[2COPT_TSP, COPT_TSP] generated between the lower and upper bound for the optimal valugsis
times more greater than the interval introduced by theorem 5.6.2, in a way, if the cost of our best solutior
is in that interval, we will not be able to estimate with more precision its location unless it be very close to
the lower bound.

We noticed that, as expected, the execution times of the proposed algorithms are strongly dependant «
the number of fixed sites and Steiner nodes (non-fixed sites).

To summarize, we think that the results obtained by means of the application of the GRASP meta-
heuristic to solve the BNDP2NS are good since we obtained minimal feasible topologies of low cost if
we compare it to the best TSP solutions and to the valdeBdf, reaching in many cases solutions which
significantly beat the quality of the best 2-node-connected feasible solution that does not contain Steine
nodes.

As future work, it is possible to search for new methods which improve either the initial construction
or the local search phases of the GRASP. Moreover, we are focusing on getting BNDP2NS instances wit
known optimal costs or more tight lower bounds in order to compare them to the solutions found by our
algorithms.

Chapter 6
Conclusions

In this thesis we have studied the topological design of a WAN (Wide Area Network) considering only the
construction costs, for instance the costs of digging trenches and placing a fiber cable into service [126
The reason for this following approach is that construction costs have the largest share in the overall cos
of a WAN planning and design stage. Let us point out that even a very small reduction in this cost may
represent many million dollars of savings for, say, telephone companies.

We tackled the problem of designing a WAN by breaking it down into two inter-related sub-problems:
the Access Network Design Problem (ANDP) and the Backbone Network Design Problem (BNDP).

We modeled the ANDP as a variant of tB&siner Problem in Graph$SPG), and the BNDP on the basis
of the Generalized Steiner Problem with Node-Connectivity Constr@a&P-NC) [1, 126]. Furthermore,
we studied the specific case of BNDP when there exist 2-node-survivability requirements between pairs o
backbone fixed switch nodes (which we called BNDP2NS). BNDP2NS is equivalent Stdimer 2-node-
survivable network problef8TNSNP) [6, 102, 126]. The reason for focusing on BNDP2NS is that it can
be widely applied to the design of high-speed optic fiber networks, where the network is usually required
to remain in operation in case of a single link or node failure. Moreover, the topological features of the
2-node-connected networks enable us to design customized algorithms taking advantage of their structur:

ANDP, BNDP and BNDP2NS are all NP-Hard problems. This means that applying exact algorithms in
order to solve them calls for prohibitive (that is to say, exponential) computational time even for small or
medium-sized networks.

Hence, we studied the ANDP, BNDP and BNDP2NS problems heuristically, opting for the Greedy
Randomized Adaptive Search Procedure (GRASP) for solving them. The first reason for this approach i:
that the GRASP methodology has proved both powerful and efficient in other combinatorial optimization
problems [47]. The second one is that GRASP appears as very flexible and potentially adaptable to th
specific problem to solve. It offers a general framework where the analyst can carefully tune the global
scheme for the problem at hand. Saying this differently, GRASP naturally forces the user to take advantag

169

170 CHAPTER 6. CONCLUSIONS

of the specificities of the problem, and this can be extremely efficient. Observe that we got good results fo
both families of problemas, for the ANDP and for the BNDP classes.

We now provide a summary of the experimental results obtained for each one of the problems referret
to above.

For ANDP we designed two algorithms for the feasible solution construction phase and two algorithms
for the local search phase, the two components of a GRASP procedure. The two construction algorithm
work by connecting one terminal at a time to a partial solution; one of them selects randomly a terminal
and chooses among tlheshortest paths to connect it, while the other chooses amonig rilearest termi-
nals, and always uses the shortest path for the connection. Both local search algorithms use Steiner no
insertion and deletion moves and Minimum Spanning Tree algorithms, but while one uses a traditional
neighborhood, the other one is based on a Random Neural Network model (RNN) [58, 59], which make:
it radically different from the usual local searches applied to similar problems. RNN models have also
proved remarkably effective when applied to other NP-Hard optimization problems [61, 62, 65, 63]. The
numerical experiments were done on a testing set containing 210 SPG instances extracted from the SteinL
repository and customized for ANDP. The optimal values of the SPG instances provided lower bounds fol
the optimal values of ANDP. The experimental results obtained for the four combinations were successful
While in many cases they reached the value of the lower bound, that is, optimality, in many others there
were relatively small gaps with respect to the lower bounds. Although the results of all the GRASP vari-
ants were very close, the construction method which only uses pre-computed shortest paths and the RN
based local search obtained in average the best results. Considering that in the ANDP generation proce
all the connections with terminal nodes were eliminated, and further that ANDP'’s feasible solution space is
more restrictive than that of SPG, the fact that we obtained small gaps in average shows the potential of th
GRASP methodology for finding good-quality solutions.

As to BNDP, we designed an algorithm for the construction of feasible solutions and three neighborhooc
definitions, two based on substitutihgpaths byk-paths or general paths respectively, and one based on
substitutingk-trees. We tried out two local phase algorithms, combining each df-fheehs neighborhoods
with the k-trees neighborhood. As testing set for this part of the thesis we used instances extracted fron
specialized literature, instances generated constructively and with known optimums, and instances gene
ated by transforming TSP problems taken from the TSPLIB repository (adding to them a certain numbel
of Steiner nodes which model non fixed switch sites). The full testing set consisted of a total of 29 BNDP
instances. Connectivity requirements varied widely according to each specific problem. The results ob
tained were extremely promising. The results show that the variant using the second local search obtair
better results. This can be explained as the paths neighborhood includegpadkies neighborhood, lead-
ing then to a more flexible search. With this variant, we achieved optimality in almost all instances with
known optima (except for only one case where there was a gap of less than 0.7 per cent with respect t

171

the global optimum) and found good-quality minimal feasible solutions in those cases where we did not
know the global optimum. The latter were compared to the optimal values of the TSP and with lower
bounds provided for the minimum-cost 2-node-connected network spanning problem [102]. Again, our
GRASP algorithms proved highly efficient in constructing minimal feasible solutions, taking advantage of
the presence of Steiner nodes as potential enhancers of the solutions.

With regard to BNDP2NS we tested three feasible solution construction algorithms and three neighbor:
hood definitions, which were combined like in BNDP to obtained two local search methods. One of the
construction algorithms was similar to the one used for BNDP, the other two were designed using propertie
of the BNDP2NS (one uses a characterization of its minimal solutions, and the other employs substitution:
of subgraphs preserving 2-node connectedness). As testing set for the performance test phase we gener:
BNDP2NS instances by transforming TSP problems extracted from the TSPLIB repository (adding differ-
ent numbers of Steiner nodes). Specifically, for each TSP problem selected we generated three BNDP2N
problems by adding 25, 45, and 65 per cent of Steiner nodes. The complete test set consisted of a total
57 BNDP2NS instances. The results showed that among the local search algorithms (based on using tl
key-paths and key-tree substitution neighborhoods), one produced much better results than the rest. A
the experiments using the three construction algorithms with this local search had very good results; if we
compare the construction algorithms by pairs, there are cases in which each one beats the other. In fact, t
best solutions found were good-quality minimal topologies which in many cases outperformed significantly
the optimal 2-node-connected topology spanning the set of fixed nodes without using Steiner nodes (this |
inferred when attaining solutions with costs smaller than the lower bound for these ones). As is the cas
of the general BNDP problem, the local search algorithms of BNDP2NS take advantage of the presence c
Steiner nodes as enhancers of the starting solution. We therefore observed that as the number of Steir
nodes added to the original TSP problem increased, the best feasible solutions found are significantly le:
costly.

This thesis work divides the WAN network topological design problem into two separate parts: back-
bone (Chapters 4 and 5) and access network (Chapter 3).

Future research, based on this line of work, could investigate means for combining adequately the prao
posed optimization methodologies. In this sense, we propose a possible scheme for designing the over:
topological architecture of a WAN by means of the combined use of the algorithms designed for the ANDP
and BNDP sub-problems. Figure 6.1 shows a pseudocode of the iterative algorithm proposed. The algc
rithm would work as follows. In Phase 1 a feasible solution for ANDP is constructed by applying one
of the construction algorithms proposed (that is, no local search is applied here, just a feasible solution i
built). The resulting access network induces a set of fixed switch sites on the backbone network. In Phas
2, assuming that those backbone sites connected with access sub-networks are fixed, we apply one of
GRASP algorithms proposed for BNDP -or BNDP2NS- optimizing the backbone topology as much as pos-

172 CHAPTER 6. CONCLUSIONS

sible. In Phase 3, considering only the switch sites that integrates the backbone network delivered by Pha:
2, we suitably apply one of the local search algorithms proposed for ANDP in order to re-optimize the
overall access network. Once the main loop has been finalized, the best WAN topology found is returned.

Procedure WAN _DESIGN;

0 for i =1to Maxzlter do

1 AccessNetwork «+— ANDP_Construction,;

2 BackboneNetwork «— GRASP_BNDP(AccessN etwork);

3 AccessNetwork «— ANDP _Improver(BackboneN etwork, Access N etwork);
4 end for,

5 return AccessNetwork, BackboneN etwork;

Figure 6.1: A model for designing a WAN topology.

Regarding the problem definition itself extensions can consider both topological restrictions to current
problem definition and considering new variables.

New topological restrictions can be introduced in the problem, like maximum number of incident links
at concentrator nodes. It is also worth minimizing the impact of failures on the access network, as there i
no redundancy in its topology. It might be relevant limiting the depth of cascaded concentrators connectes
to a single switch or balancing the number of subscribers per switch.

Other analysis variables could be introduced in the model. State of-the-art imposes limitations in the
length of links, both in the trunks (backbone) and in the access network. Bandwidth constraints should b
considered mainly while designing the access network.

Appendix A

Equivalent formulations for ANDP

In this chapter we will demonstrate the equivalence between the general formulation of the access networ
design problem and the problem of designing the global access topology when modelling the backbone &
a single fixed node. As introduced in Section 1.3, we use the following notation:

[] V:STUSCUSD,

A= {aij}ijes is the matrix which gives for any pair of sites &f the cost of laying a line between
them. When the direct connection betwéemd; is not possible, we take;; = oo,

o U =1{(4,4);Vi,7 € Vsuch that,;; < oo}, is the set of feasible connections between sitég,of

e H = (V,U) is the graph of feasible connections.

Definition A.0.1 (General Access Network Design Problem - GANDP)e define the General Access Net-
work Design ProbleniANDP(V, U, A) as the problem of finding a subgragh ¢ H of minimum cost
such thatvs, € S there exists a unique path fros to some fixed switch sitge, € Sp and such that
terminal sites can not be used as intermediate nodes (they must have degree 1 in the solution).

The problem ANDP defined in Chapter 3 is derived from GANDP model by applying the following
points:

A) The set of switch siteS, is modelled by a single fixed node The total set of nodes considered in
the ANDP isS = Sr U Sc U {z}.

B) The set of edge#’ used in the problem ANDP satisfies the following points:

i) Given a sites € Sp U S¢, there exists the edde, z) € FE iff there exists an edgés, s,,) € U
such thats,, € Sp. Moreover, we define:

C(s,z) = min {a(s,sw)\sw € SD})

173

174 APPENDIX A. EQUIVALENT FORMULATIONS FOR ANDP

i) The feasible connections between pairs of siteS;0f) S are the same in both problems and
their costs are equal.

Theorem A.0.2 (GANDP-ANDP relation) Given an instanc&FANDP(V,U, A) and its respective in-
stanceANDP(S, E, C'), the optimal solutions for both problems have the same cost.

Proof. Let H,,, and7Z,,, be global optimal solutions for the GANDP and ANDP respectively. It is easy
to see that the network(,,, has a forest topology where each tree that composes it has a unique switch
site like root. Let7 be the resultant network of modelling the set of switch site&gf as a single node.
Clearlycost(7) = cost(H,,) and moreovef is feasible for the ANDP. Hence, we have the inequality:

optimality ofZp¢
A T
CoST(Hopt) = cost(7) > cosT(Zopt).

On the other hand, let us consider a netwarko thatv(s, z) € 7,,, H includes an edgés, s,,) fulfilling:
(s, $w) = argmin { (s, |Vo € Sp},

and the other edges @f are those edges at,: whose two endpoints belong & U Sc. In this way, by
construction, we have that the netwdtkis feasible for the GANDP and furthermore satisfies the inequality:

by def. ofC(-) optimality of Hopt
N 1
coST(Zopt) L cost(H) > cosT(Hopt),

But this implies thatost(7Z,,:) = cost(H,t), as required, and completing the proof.

QED

Appendix B

ANDP test cases

We include here the information on the 210 ANDP instances generated from SteinLib library by the method
discussed in Chapter 3. Tables B.1 to B.7 show for each generated ANDP instance, the cost of the be
feasible solution found and its respective gap with respect to the lower bound. In the first column we have
the names of the original SPG instances and in the second column their topological characteristics (numb
of nodes, number of edges, and number of terminals). We remark that in most cases the best solutions we
reached by more than two heuristics. The cases marked tithdicate ANDP instances where the lower
bound was only reached with two different heuristics whereas the cases marked Wiitiditate ANDP
instances where the lower bound was reached by only one heuristic.

175

176 APPENDIX B. ANDP TEST CASES

SPG problem | |V||E||T| | ANDP_BCF | LB.GAP

Class C
c03 500 625 83 756 0.27%
c04 500 1000 125 1082 0.28%
c05 500 1000 250 1584 0.32%
c08 500 1000 83 510 0.20%
cl10 500 2500 250 1094 0.09%
Class MC
mcl3 150 11175 80 92 OPT
mc2 120 71140 60 73 2.82%
mc3 97 4656 45 49 4.26%
’ Class X
berlin52 52 1326 16 1379 32.09%
brazil58 58 1653 25 18093 32.50%
] Class PUC
cc3-4p 64 288 8 2340 0.09%
cc3-5p 12575013 3666 0.14%
cc3-5u 12575013 36 OPT
hc7p 128 448 64 7905 OPT
Class P6E
P6E1 100 180 5 8810 17.70%
P6E2 100 1805 10065 15.08%
P6E3 100 1805 10251 17.99%
P6E4 100 180 10 15972 OPT
P6ES5 100 180 10 22990 17.92%
P6E6 100 180 20 23870 17.90%
P6E7 100 180 20 27220 17.95%
P6E8 100 180 20 26360 17.96%
P6E12 20037010 26125 OPT
P6E13 200 370 20 46019 17.80%
Class P6Z
P6z1 100 1805 9618 18.99%
P622 100 1805 5976 19.00%
P6z4 100 180 10 12423 19.97%
P6z12 20037010 18429 OPT
P6713 200 370 20 32458 19.00%

Table B.1: Best found solutions for instances derived from classes C, MC, X, PUC, P6E, and P6Z.

177

SPG problem | |V| |E||T| | ANDP_BCF LB.GAP
Class 1080
1080-001 80120 6 1843 3.13%
1080-002 80120 6 1666 3.67%
1080-003 801206 1829 6.77%
1080-004 80120 6 1987 6.48%
1080-005 80120 6 1018 7.15%
1080-011 80 350 6 1579 6.76%
1080-012 80 350 6 1484 OPT
1080-013 80 350 6 1470 6.44%
1080-014 80 350 6 1412 1.07%
1080-015 80 350 6 1503 0.54%
1080-021 80 3160 6 1258 7.06%
1080-022 80 3160 6 1244 5.60%
1080-023 80 3160 6 1174 OPT* (Hz andHy)
1080-024 80 3160 6 1161 OPT
1080-025 80 3160 6 1247 7.31%
1080-031 80 160 6 1613 2.74%
1080-032 80 160 6 2214 6.03%
1080-033 80160 6 1794 OPT
1080-034 80 160 6 1812 7.35%
1080-035 80 160 6 1903 2.20%
1080-041 80632 6 1276 OPT
1080-042 80632 6 1302 1.17%
1080-043 80632 6 1383 6.80%
1080-044 80632 6 1463 7.10%
1080-045 806326 1384 5.65%
1080-101 801208 2775 6.40%
1080-102 801208 2566 6.78%
1080-103 801208 2684 3.11%
1080-104 80120 8 2651 6.64%
1080-105 801208 2349 6.63%
1080-111 80 350 8 2051 OPT
1080-112 80350 8 2018 7.06%
1080-113 803508 2022 7.32%
1080-114 80350 8 1895 OPT* (H, andHy)

Table B.2: Best found solutions for instances derived from class 1080.

178

APPENDIX B. ANDP TEST CASES

SPG problem | |V| |E||T| | ANDP_BCF | LB.GAP
Class 1080

1080-115 803508 1997 6.91%
1080-121 80 3160 8 1643 5.25%
1080-122 80 3160 8 1604 2.75%
1080-123 803160 8 1569 OPT
1080-124 80 3160 8 1667 7.20%
1080-125 80 3160 8 1572 OPT
1080-131 80160 8 2377 4.07%
1080-132 80160 8 2328 6.79%
1080-133 80160 8 2388 5.62%
1080-134 80160 8 2207 6.62%
1080-135 80160 8 2184 3.90%
1080-141 806328 1788 OPT
1080-142 806328 1788 4.68%
1080-143 806328 1889 6.90%
1080-144 806328 1843 4.01%
1080-145 806328 1884 6.92%
1080-211 80 350 16 3631 OPT
1080-212 80 350 16 3677 OPT
1080-213 80 350 16 3912 6.36%
1080-214 80 350 16 3847 3.03%
1080-215 80 350 16 3784 2.80%
1080-221 80 3160 16 3158 OPT
1080-222 80 3160 16 3141 OPT
1080-223 80 3160 16 3270 3.61%
1080-224 80 3160 16 3187 0.89%
1080-225 80 3160 16 3150 OPT
1080-241 80 632 16 3778 6.78%
1080-321 80 3160 20 4123 4.86%
1080-322 80 3160 20 4019 2.08%
1080-323 80 3160 20 3946 OPT
1080-324 80 3160 20 4199 6.79%
1080-325 80 3160 20 4190 6.78%
1080-342 80 632 20 4337 OPT
1080-343 80 632 20 4533 6.76%
1080-344 80 632 20 4480 3.94%
1080-345 80 632 20 4637 6.82%

Table B.3: Best found solutions for instances derived from class 1080.

SPG problem | |V||E||T| | ANDP_BCF | LB.GAP
Class 1160
1160-011 1608127 1743 3.94%
1160-012 1608127 1827 OPT
1160-013 1608127 1722 3.67%
1160-014 1608127 1848 3.93%
1160-015 1608127 1845 4.36%
1160-031 1603207 2240 3.23%
1160-032 160320 7 2432 OPT
1160-033 160320 7 2183 3.91%
1160-034 160320 7 2174 OPT
1160-035 1603207 2195 4.37%
1160-041 160 2544 7 1552 3.88%
1160-042 160 2544 7 1551 4.37%
1160-043 160 2544 7 1617 4.39%
1160-044 160 2544 7 1543 OPT
1160-045 160 2544 7 1622 4.38%
1160-111 160 812 12 2985 4.04%
1160-112 160 812 12 3052 OPT
1160-113 160 812 12 2965 3.45%
1160-114 160812 12 3120 4.38%
1160-115 160 812 12 3061 4.22%
1160-141 160 2544 12 2661 OPT
1160-142 160 2544 12 2674 OPT
Class 1320

1320-003 320480 8 3042 2.36%
1320-004 320480 8 2986 2.79%
1320-005 3204808 3074 2.77%
1320-011 32018458 2053 OPT
1320-033 320640 8 2769 OPT
1320-042 32010208 8 1729 2.79%
1320-043 32010208 8 1771 2.79%
1320-111 320 1845 17 4392 2.78%
1320-112 320 1845 17 4330 2.78%
1320-113 3201845 17 4322 2.78%
1320-142 320 10208 17 3654 2.44%
1320-143 320 10208 17 3660 2.78%
1320-144 320 10208 17 3512 OPT
1320-241 320 10208 34 7212 2.63%
1320-242 320 10208 34 7140 0.96%

Table B.4: Best found solutions for instances derived from classes 1160 and 1320.

179

180 APPENDIX B. ANDP TEST CASES

SPG problem | |V||E||T| | ANDP.BCF | LB.GAP |

Class 1640

1640-011 640 41359 2432 1.67%
1640-012 64041359 2543 3.16%
1640-013 64041359 2410 0.46%
1640-014 64041359 2234 2.90%
1640-015 64041359 2347 OPT

1640-031 640 12809 3382 3.17%
1640-032 640 12809 3223 1.13%
1640-033 640 1280 9 3364 3.19%
1640-034 640 1280 9 3047 3.18%
1640-035 640 12809 3298 0.18%
1640-102 640 960 25 9420 3.41%
1640-103 640 960 25 9101 3.20%
1640-105 640 960 25 9623 OPT

1640-111 640 4135 25 6364 3.19%
1640-113 640 4135 25 6432 2.93%

Table B.5: Best found solutions for instances derived from class 1640.

SPG problem | |V||E||T| | ANDPBCF | LB.GAP |

Class WRP3

WRP3-11 128 227 11 1100365 0.000363%
WRP3-12 84149 12 1200247 0.000833%
WRP3-13 31161313 1300500 0.000230%
WRP3-14 128 247 14 1400255 0.000357%
WRP3-15 138 257 15 1500428 0.000399%
WRP3-16 204 374 16 1600208 OPT

WRP3-17 177 354 17 1700448 0.000352%
WRP3-20 245 454 20 2000271 OPT

WRP3-21 237 444 21 2100530 0.000380%
WRP3-22 23343122 2200560 0.000136%
WRP3-25 246 468 25 2500540 OPT

WRP3-26 402 780 26 2600494 0.000384%
WRP3-27 37072127 2700512 0.000370%
WRP3-28 307 559 28 2800379 OPT

WRP3-30 467 896 30 3000581 0.000399%
WRP3-31 32359231 3100700 0.002096%
WRP3-33 437 838 33 3300515 0.000060%
WRP3-36 435 818 36 3600624 0.000388%
WRP3-38 603 1207 38 3800656 OPT

WRP3-39 703 1616 39 3900450 OPT (Ha)
WRP3-42 705 1373 42 4200598 OPT

WRP3-48 9251738 48 4800571 0.000395%
WRP3-49 886 1800 49 4900901 0.000387%
WRP3-52 701 1352 52 5200845 0.000384%
WRP3-53 775147153 5300868 0.000396%
WRP3-75 7291395 75 7501020 OPT

WRP3-88 7431409 88 88001527 0.000399%

Table B.6: Best found solutions for instances derived from class WRP3.

SPG problem | |V||E||T| | ANDP_.BCF LB.GAP
Class WRP4
WRP4-11 12323311 | 1100197 0.001636%
WRP4-13 11018813 | 1300816 0.001383%
WRP4-14 14528314 | 1400308 0.001285%
WRP4-15 19336915 | 1500408 0.000199%
WRP4-17 22340417 | 1700548 0.001352%
WRP4-18 21138018 | 1801501 0.002053%
WRP4-19 11920619 | 1901472 0.001367%
WRP4-21 529103221 2103312 0.001378%
WRP4-22 29456822 | 2200394 oPT
WRP4-23 25751523 | 2300376 oPT
WRP4-24 49396324 | 2403365 0.001373%
WRP4-27 24349727 | 2700508 0.002481%
WRP4-28 27254528 | 2800507 0.001464%
WRP4-29 24750529 | 2900573 0.003068%
WRP4-31 29078631 | 3100603 0.002483%
WRP4-32 31163232 | 3200720 0.005186%
WRP4-33 30457133 | 3300704 0.001484%
WRP4-34 31465034 | 3400572 0.001382%
WRP4-35 47195435 | 3500650 0.001399%
WRP4-36 36375036 | 3600596 oPT
WRP4-37 5221054 37| 3700663 0.000432%
WRP4-38 29461838 | 3800662 0.001473%
WRP4-39 8021553 39| 3903734 | OPT* (Hs andHy)
WRP4-42 552113142 4200759 0.001380%
WRP4-44 39878844 | 4401565 0.001385%
WRP4-45 38881545 | 4500791 0.001399%
WRP4-46 632128746 4600756 oPT
WRP4-52 547111552| 5201161 0.001538%
WRP4-56 839161756 5602377 0.001392%
WRP4-59 9041806 59| 5901674 0.001389%
WRP4-75 9381869 75| 7501817 0.001399%

Table B.7: Best found solutions for instances derived from class WRP4.

181

182 APPENDIX B. ANDP TEST CASES

Appendix C

Properties used for generating BNDP test cases

We introduce here some properties used to build the test cases for the BNDP problem denoted Network
2 to 6 and introduced in Chapter 4. We remark that the properties will be proved in the context of the
Generalized Steiner Problem with node-connectivity constrét@soted by GSP-NC) which is the model

on which the BNDP is based. Next, we give its definition, some notation and auxiliary definitions.

Definition C.0.3 We define the GSP-NC as follows. Given a non-directed simple graph (V, E), a
matrixC' = {c;;}, ;,, Of nonnegative edge-costs, a suiSet V' called “set of terminal nodes”, a matrix
R = {rij}ijjeT of required local node-connectivities between any pair of different nodé&s (ior any
i,7 € T, r;; Is a non-negative integer number), the goal is to find a subgr@plof G' with minimal cost so
that for every pair of nodes j € T, # j, there are at least;; node-disjoint paths connectinigand j in
Gr. The nodes iV\T are usually called Steiner nodes. We will denotd'by ¢ the space of feasible
solutions associated with the problem.

Notation C.0.4 Given a non-directed simple graghand a node) € GG, we denote byi;(v) the degree of
vindG.

Notation C.0.5 Given a GSP-NC instance we will denotellys »n¢ to the space of feasible solutions.
Notation C.0.6 Given a path or a tred?, we callu an endpoint o/ if dy(u) = 1.

Definition C.0.7 Given a non-directed simple graphi, we callpy an H — path if py is a (non-trivial)
path, which meeté/ exactly in its endpoints (i.e., the endpointgpgfare in H, and if py is not a simple
edge, the other nodes appearingin are not inH).

Definition C.0.8 We define a: — tree on a graphG as a tree7 rooted inu which meetss exactly in its
endpoints (the endpoints @t are in) and the other nodes appearing¥are not inG and have degree
2, exceptu which may have larger degree. We will call a pendant to a gath, C 7 such thatv is an
endpoint.

183

184 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES
The following property introduces “splitting” and “merging” operations.

Proposition C.0.9

1) (Splitting) Let (v;,v;) be any edge of7, with costc;;. Splitting this edge corresponds to adding a
new (non-terminal) node;, and replacing edgév;, v;) by two edgeg (v;, vi,), (vi, v;)}. If the costs
of these new edges verify thgt > 0, ¢;; > 0 andc;; + ¢x; = ¢;;; and if G, is an optimal solution
of the original problem, then the gragh,,; resulting of applying this splitting operation @, is an
optimal solution of the modified problem.

2) (Merging) Letwv;, vy, v; be three nodes aF, such that, ¢ T, there is an edgév;, vy,) of costc;,
there is an edgévy, v;) of costc;;, there is no edge betweenandv;, anddg(v;) = 2. Merging
edges(v;, v;) and (vg, v;) corresponds to deleting nodg, and replacing edge$(v;, vy), (vg, v;)}
by a new edgév;, v;). If the cost of the new edge verifies thgt= c¢;; + ¢;;, andg,,, is an optimal
solution of the original problem, then the gragh,: resulting of applying this merging operation on
Gopt I an optimal solution of the modified problem.

Proof. 1) Trivial. The set of feasible solutions which do not contain edgey;) is the same for the original
problem and for the problem modified after the splitting operation. There is a bijection between the set of
feasible solutions which contain edge, v;) in the original problem and the set of feasible solutions wich
contain edgesy;, v;) and(vy, v;) after the splitting operations; and the costs of the corresponding solutions
are identical. If there are new feasible solutions which only have édge;) or edge(vy, v,), they are
not minimal (the edge can be deleted preserving feasibility, &s7’). Then, both sets will have optimal
solutions of the same value.

2) Similar to part 1.

QED

It is clear that splitting and merging operations can be applied as many times as needed. Then, it i
possible to substitute an edge, v;) by anH — path with endpointsy; andwv;, and fix the costs of the new
edges so that the optimal solutions are preserved. The following property is useful to modify the costs o
existing edges.

Proposition C.0.10 Letg,,: be an optimal solution of the original GSPNC instance, anddgtv;) be an
edge ofG’ with costc;;.

1) If (vi,v;) € Gop, If we modify the problem by assigning this edge a new ggpst c¢;;, theng,,, is
still an optimal solution of the new problem instance.

185

2) If (v;,v;) & Gopt, if we modify the problem by assigning this edge a new gpst c¢;;, theng,,, is
still an optimal solution of the new problem instance.

Proof. 1) Given an edge = (v;,v;) € G, let us consider the following notation.

° F(j,)t is the subspace of optimal solutions containing the egge

O,

o I''\9isthe subspace of optimal solutions not containing the edge

opt

° F(e)

nonopt

is the subspace of feasible solutions (non-optimal) containing theecedge

©) is also

If the cost of the edge € G, is diminished, then the cost ¢f,,; and of all solutions if";,

diminished and by the same amoupt— ¢;;.
The costs of the solutions }f;’) do not change, so these solutions are no longer optimal in the modified
instance.

We will prove (by contradiction) that in addition the feasible solution:’:;“ﬁ?j,wplt are not optimal for
(e)

nonopt

the new instance. Let us suppose that a netwoérk I’ is optimal for the new instance. Then, the
following relation is satisfied:

COST(']:{) < COST(Qopt)y

where{ andg are the networké{ andg respectively but with the new cost fer This inequality implies:
cosT(H) + Ae < cosT(Gopt) + Ae,

and thereforecost(H) < cost(G,u), Which is a contradiction sincg{ is not optimal for the original
instance.

Then, the optimal solutions for the new instance are tho%ﬁp

2) Similar to part 1.

QED

We now look at some new operations, which we ¢al- path insertions and. — tree insertions.

Proposition C.0.11 (7 — path insertions) Let G,,, be an optimal solution of the original GSPNC in-
stance.

1) Assuming;; > 2, Vi, 5 € T'; if on G we add anH — path py with endpoints two nodes, v; € G,
so thatcost(py) > cost(pii ;)), wherepy ;) is the longest path from; to v; in G, theng,,, is an
optimal solution for the new instance.

186 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES

2) If on G'we add an{ — path py with endpoints two adjacent nodesv; € G,,, where at least one
of them is a Steiner node and so that:

cosT(py) > ¢y,
theng,,, is an optimal solution for the new instance.

3) If on G we add anH — path py with endpoints two adjacent terminal nodesv; € G, satisfying
cost(py) > cost(p) for all path p where:

i) pisapath fromw; tov; onG \ EDGES(G,pe) @aNd (Gope \ {(vi, v5) } Up) is feasible for the original
instance (the existence of at least one path in these conditions is assumed),

ii) or pis a path fromy; to v; on G \ NODES(Gp \ T),
theng,,, is an optimal solution for the new instance.

4) Assuming;; > 2, Vi,j € T, |T| > 2; if on G we add and — path py with endpoints two adjacent

nodesy;, v; € G such thatcost(py) > ¢;;, theng,,, is an optimal solution for the new instance.

5) If on G'we add anf{ — path py with endpoints two adjacent nodesv; € G,,, such that:

cosT(py) > max{c;;, COsT(pg)},

for all path p; ;) C Gope \ {(vs,v;)} integrated by Steiner nodes of degree 2 communicatingth
vj, theng,,,; is an optimal solution for the new instance.

Proof. We will prove in order each one of the previous points.

1) Let us suppose thak,,, is not optimal for the new instance. NecessarilyHif,; is a global optimal
solution for the new instance, then C H,,: (otherwiseH,,; would be a better solution thah,,, for the
original instance). Sincé,, is a feasible solution for the new instance, we haver(H,,:) < cosT(Gopt)
Let us consider the network = H,,: \ px. By minimality of H,,;, H is not feasible for the original
instance. On the other hand, gs > 2, Vi, j € T, there exists a path C G, from v; to v; such that
the networkH = H U p is a feasible solution for the original instance. @s, is optimal for the original
instance, we know:

~

coST(Gopt) < cosT(H).

We define the following sets of edges:
o A={eeple € Hopt} ={e € ple € Gopt N Hopt }

o B={eecple & Hop}

187

Clearly,epces(p) = AU B and moreover:

by hyp.
T
cost(pyg) > cost(p) = cost(A) + cost(B) > cost(B).

Let us analyze the cost 6f:

~

cosT(H) = cosT(Hopt) — cosT(pp) + cost(B) < cost(Hopt),

implying cosT(Gopt) < cosT(Hope), Which is a contradiction.

2) Again, by contradiction, let us suppose tlia}; is not optimal for the new instance. L&i,, be an
optimal solution for the new instance. As in the previous case, it is easy to seg;thaist satisfypy C
Hope- Now, let us suppose thét;, v;) & Hop, then the networkl = (H,,: \ pr) U {(vi,v;)} would be
feasible for the new instance and in addition:

byThyp-
cosT(H) = cosT(Hopt) — cOST(prr) + ¢ij < COST(Hopt),

implying the optimality ofH with p; ¢ H, which is a contradiction. Hence, necessarily the gdge;) €

Hopi- We define the network: = (Hopt \pr)- Since the requirements are of node connectivity, considering
in H,,: the edg€v;, v;) and the patlp;, only one of them can contribute to satisfy a connection requirement
between a pair of terminal nodes (except {of, v,} if both are terminals). ThusH is feasible for the
original instance and besides:

by optimality

coST(H) = cosT(Hept) — cosT(pr) < cosT(Hopt) L coST(Gopt),

implying the optimality of¥{ for the original instance, which is a contradiction.

3.i) Sincev; andv; are terminal nodesy;,v;) € G, and the requirements are of node connectivity, the
inclusion of theH — path py would result in an improvement in the connectivity level only for the terminal
nodesy; andv, (in the new instance, any other pair of terminal nodes would use in an excluding way the
pathpy or the edgé€v;, v;) to satisfy one of their connection requirements). Let us suppos€ghas not
optimal for the new instance. It is easy to prove that there exists an optimal solution for the new instance
whose topology is given byt,,; = (Gope Upn) \ pi,j), Wherep, j) is a path fromy; to v; onG,,;. Letp

be a path in the hypothesis of the Proposition. Let us deHote (G, \ {(vi,v;)} U p). AsH is feasible

for the original instance, it is easy to see that the netwWork (Hopt \ pr) U p is feasible for the original
instance and therefore for the new instance. By optimalititgf, we have:

~

coST(Hopt) < cosT(H).

188 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES

If cost(Hop) = COST(ﬂ) then would be an optimal solution for the new instance and not contaying

which is a contradiction. I&ost(H,,:) < cost(H), then:
COST(Hopt) < COST(Hopt) — COST(pa) + COST(P),

implying cost(py) < cost(p), which also is a contradiction. Henog,,; is an optimal solution for the

new instance.

3.ii) Let us suppose thai,,; is not optimal for the new instance. LiK&.i), necessarily there exists an
optimal solution for the new instance given by a netwdrk,; = (G,,: U pu) \ pi j), Wherep, ;) is a path
fromuv; tov; onG,,:. Letp be a path in the hypothesis of the Proposition (we assume that it exists, otherwise
(3.ii) is fulfilled emptily). Let us define the netwofl = (Hopt \) U p; clearly this network is feasible

for the new instance and the original instance. Then,

cosT(Hopt) < cosT(H).
As above, the equality induces a contradiction and the strict inequality would imphy(py) < cost(p),
which also is a contradiction. Therefag,, is globally optimal for the new instance.
4) Let us suppose th&,,; is not optimal for the new instance. L#f,,, be an optimal solution for the new
instance. Necessarily; C H,,:. Let us consider the netwo = (H,,: \ pr) U {(vi,v;)} (since|T| > 2
the edg€v;, v;) & Hopi)- The networkH is a feasible solution for the original instance and moreover:

optimality ofHop¢
_ 1
cosT(H) = cosT(Hopt) — cOST(pr) + ¢ij < coST(Hopt) < cosT(Gopt),

and thereforecost(H) < cost(G,,:). This contradicts the optimality f,,;, hencej,, is a global optimal
solution for the new instance.

5) Let us suppose thdl,, is not optimal for the new instance. As in the previous cas@{.if; is an
optimal solution for the new instance, this must satisfy C H,,:. Let P be the set of paths including in
Gopt \{(vs, v;) } integrated by Steiner nodes of degree 2 communicatingth v;. If (PU{(v;,v;)}) C Hopt
the networkH = H,,: \ px is a feasible solution for the original instance and therefore:

cosT(H) > cosT(Gopt).

Let us analyze its cost:
optimality of Hop¢
cosT(H) = cosT(Hopt) — cosT(prr) < cosT(Hopt) L cOST(Gopt)
which is a contradiction.
If there existg € (P U {(v;,v,)}) such thap ¢ H,,, considering the networkl = (H, \ pr) U p, this

189

is feasible for the new instance and moreover:
by hyp.
00sT(H) = cOST(Hop) — COST(ppr) + cOST(p) £ coST(Hopt)-
If the relation is satisfied by means of the equalityst(H) = cost(H,,), thenH would be an optimal
solution for the new instance and in addition not containing to the pathif the relation is satisfied by
means of the strict inequalit§{ would be a better feasible solution thfy,, for the new instance, which

is a contradiction.

QED

Proposition C.0.12 (. — tree insertion) LetG,,, be an optimal solution of the original instance. If on
an edge(v;, v;) € G we apply consecutively splitting operations preserving the optimality @f,; (with
Gopt = Gopt If (Vi,05) & Gopt OF Gop 1S Gope transformed by the splitting operations (if;, v;) € Gop),
creating thus a sek’ of new Steiner nodes, and posteriorly we add-atree 7 connecting: with a subset
W C K (the endpoints of) of nhodes such thatw,, w, € W

COST(P(uwy)) + COST(P(uyws)) = ngl,u,2>7

wherec(»1+2) is the cost fromu, to w; on (v;, v;) after splitting operations ang .,), Pu,w,) C 7 are the
paths fromu to w, andw, respectively; thew,,; (or G,,; if (vi,v;) ¢ G.,r) is an optimal solution for the
new instance.

Proof. Without loss of generality, we will analyze the cdsg v;) € G, (the other case is analogous). Let
us suppose thﬁopt is not optimal for the new instance. Then, a subset of nddesr,} C W will have

to integrate an optimal solutioR,,,, for the new instance. Let be the set of new edges resulting of the
splitting operations ornjv;, v;). Let us conside3 C A the set of edges belonging 19,,,. We have the
following relation:

COST(Hopt) = COST(Gopt) + COST(P(u,z1)) + COST(D(uzy)) + COST(B) — cost(A \ B)

= COST(Gopt) + COST(P(u,zy)) + COST(P(u,zy)) — Cob"?

nonoptimality oG+

7 _
< coST(Gopt),

this implies,

COST(p(uyxl)) + COST(p(’U,,xQ)) < Céa;l,mz)’

which is a contradiction; heneg, is globally optimal for the new instance.

190 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES
QED

Proposition C.0.13 Let G,,, be an optimal solution and lgi; be anH — path added toG with one
endpoint a node: ¢ G,,;. Let us denote by, a graph such thapy C 7, and there exists a set of edges
U C epGES(G,pt) satisfying: 7, U (G, \ U) is a minimal network belonging tBcspne. If we assign a
cost topy so that:

cost(py) > cost(U) — cost(7, \ pr), V7, VU,

theng,,, is optimal solution for the new instance.

Proof. Let us suppose that,, is not optimal for the new instance. Necessarily, there exists an optimal
solution’H,, for the new instance, a sub-graphand a set of edgds C epces(G,,:) S0 thatpy C 7, C
Hopt aNdH,p = T, U (Gope \ U). Then, we have the following relation:

coST(Hopt) < COST(Gopt),
and moreover,

COST(Hopt) = cosT(7,,) + cosT(Gyp) — cosT(U)

= c0ST(7, \ pr) + cost(py) + COST(Gopt) — COST(U) < COST(Gopt),

implying: cost(7, \ pm) + cost(py) — cost(U) < 0, which is a contradiction. Hencg,,, is globally
optimal for the new instance.

QED

Proposition C.0.14 Letg,,; be an optimal solution of the original instance. [Bte au — tree added to
G. If we assign costs t6 so thatvU C epces(G,,;) andvZ C 7 such thatl U (G, \ U) € I'gspnc and
minimal, we have the inequality:

cost(7) > cost(U),

theng,, is globally optimal for the new instance.

Proof. Let us suppose thak,,; is not optimal for the new instance. Necessarily,¢he tree 7T introduces
new paths so that there exists an optimal solufity, for the new instance, a sét C epces(G,,;) and a
graph7 C 7 such thati,,; = (Go,x \ U) U 7. Sinceg,,, is feasible for the new instance but not optimal,
we have:

coST(Hopt) < COST(Gopt).-

191

Then,

COST(Hopt) = COST(Gopt) — cOST(U) + cosT(7) < coST(Gopt),

implying: cost(7) — cost(U) < 0, which is a contradiction. Therefo@,,; is globally optimal for the
new instance.

QED

The following Proposition is particularly useful to assign costs to the original graph preserving as global
optimal solution a known feasible topology having minimum number of edges.

Proposition C.0.15 (minimal topology) LetG be a feasible solution of the GSPNC instance such that for
any other feasible solutiok we have:

1) |epces(G)| < |epces(H)| and moreover,
2) for any edge: € G and for any edge € (G \ Epces(G)), c. < ¢z,

theng is a global optimal solution.

Proof. Let us suppose that is not optimal. Then, there exists a feasible solutiosuch thaicost(G) <
cosT(G). We define the following sets of edges:

e A={ceGlecG}andB = {e € Gle ¢ G},
e A={eecGlecG}andB = {eecGle ZG}.
Clearly,epces(G) = AU B, epces(G) = AU B andA = A. On the other hand, it is easy to see that:

cost(G) < cost(A) +)

max

wherec!?) = max{c.|e € G}. If | B| > | B| we have:

max
by hyp. 2)

cost(G) < cosT(A) + 9 . |B] % cost(A) + cost(B) = cost(G),

which is a contradiction. Otherwise,|if| < | B| we would have the relation:
lepGES(G)| = |[AU B| = |A| + |B| < |A| + |B| = |AU B| = |[Epces(G)],
which contradicts hypothesig). HenceG is globally optimal.

QED

192 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES

Now, let us place in the context of the BNDP. We describe below the main characteristics of the six
first problem instances presented in Chapter 4. Figure 4.16 shows the topologies associated with these t
cases. The black nodes represent the fixed nodes, while the white nodes represent the Steiner nodes, wt
may or may not be included in the solution.

e Network 1 has a double grid structure, with 33 fixed nodes, 87 Steiner nodes and 286 edges. Th
link costs were chosen so that a link between Steiner nodes has cost 1, a link between a Steiner noc
and a fixed node has cost 2 and a link between two fixed nodes has cost 4. The objective is to fin
a 2-node-survivable subnetwork with minimal cost (all connection requirement between fixed nodes
are equal to 2). One optimal solution for this problem of cost 140 (shown in Figure 4.18) was found
by an exact parallel-distributed backtracking algorithm [121].

e Network 2 has been constructed in the following way. Taking as basis a network 4-node-connected
we applied iteratively splitting operations followed by the substitution of four edges by four 2-
octahedron topologies (this topology can be seen in [43]); and posteriorly we agpliechath
insertions until forming the topology associated to Network 2. We chose 22 nodes as fixed nodes
From the original topology, we deleted edges in order to have a minimal 4-node-survivable network
spanningSy) (we employ Menger’s theorem, cited in [43], to guarantee the feasibility), and assigned
costs of the edges obtaining a minimal feasible solution of cost 680. The edges that were deletet
were re-inserted into the network and the costs were selected carefully by means of the applicatiol
of properties like the exposed above and other properties related to edges satisfying the triangule
inequality, so that the optimum cost is preserved. However, other optimal solutions may come up.
The resulting instance has 22 fixed nodes, 61 Steiner nodes and 262 edges. The links have costs
the interval[1, 200]. The objective is to find a 4-node-survivable subnetwork spanning the fixed nodes
setS!) (all connection requirement between fixed nodes are equal to 4).

e Network 3 has 41 fixed nodes, 38 Steiner nodes and 364 edges. This network was designed takin
as basis two dodecahedron topologies connected through a fixed node and other connections. Fi
ure C.1 shows the initial network from which applying splitting operationsdnd path insertions
we obtained our testing instance. Our aim is to find a minimum cost network which must be 2-
node-survivable for all pair of fixed nodes and 3-node-survivable for the square fixed nodes. From
the original network, we eliminated some of the edges to have a unique feasible solution, and fixec
arbitrarily the edge values; obtaining a solution of cost 1848 which is shown in Figure C.1 and which
we will call “primary optimal solution”. Then the edges which were eliminated were re-inserted into
the network, with costs chosen in order to preserve the optimality of the primary optimal solution.
Afterwards new Steiner nodes and new connections (and the costs associated with these connectior

193

were added by splitting operations afld— path insertions, also verifying the conditions of propo-
sitions C.0.9, C.0.10, C.0.11 and C.0.13 in order to preserve the optimality of the known optimal
topology. Furthermore, we applied some- tree insertions verifying the conditions of Proposi-

tion C.0.12 and guaranteeing therefore the preservation of the optimality of the primary solution. In
these operations we systematically apply suitable controls to the triangles and cycles formed eac
time we add an{ — path, au — tree or two new edges are created by a splitting operation so that
optimality in this solution is maintained (typically, using the propositions C.0.12, C.0.13 and C.0.14).
The “primary optimal” solution is preserved, and new optimal solutions may also come up. All the
edge costs were selected within {i@, 200] range.

Figure C.1: Initial network for Network 3 and the primary optimal solution.

e Network 4 has 41 fixed nodes, 68 Steiner nodes and 383 edges. This network was designed takin
as basis four Brinkman sub-graphs (Four Brinkman graphs with two edges less on each one) inter
connected according to Figure 4.16. The Brinkman graph is 4-regular, 4-connected and of girth a
least 5. In Figure 4.16 we show the built topology; the edges of the Brinkman sub-graphs are repre:
sented by continue lines and the other connections are represented by broken lines. This instance w
formulated as & CON(-) problem [78, 126], which is a particular case of the GSP-NC, where each
fixed nodei ¢ Sg) is labeled with a positive integer numberand the aim is to find a minimum cost
sub-network so that for every pair of fixed nodeg € S} there exists at least; = min{r;,r;}
node-disjoint paths. We have 10 fixed nodes with= 4, 13 fixed nodes with; = 3 and 18 fixed
nodes withr; = 2. We know a global optimal solution of cost 3980 which is shown in Figure C.2
and we will call it the “primary optimal solution”. Taking as basis the primary solution and applying
H — path andu — tree insertions, we “rebuilt” the topology of the original instance, and like in
the previous instance we assigned costs to the edges in order to keep the optimality of the primar

194

APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES

solution. For this, we used the propositions C.0.10, C.0.11, C.0.13 and C.0.14. In the assignment cos
process of the edges, new optimal feasible solutions may eventually come up. The edge costs wel
selected within thel, 200] range.

Figure C.2: Brinkman graph and the primary solution for Network 4.

e Network 5 has 27 fixed nodes, 94 Steiner nodes and 386 edges. The design of this instance was ma

from a great cycle having only the set of fixed nodes. Then, applying splitting operations on this
cycle we obtained another cycle which contains some Steiner nodes (specifically 24 Steiner nodes
we call this network; as in the previous case; the “primary optimal solution”. Figure C.3 shows
its topology. On a second phase, we iteratively added diffefent paths andu — trees on the
network in construction; in this way new Steiner nodes and new edges were inserted. Our goal is tc
find a 2-node-survivable sub-network spanning the fixed nodes. The costs associated with the primar
solution edges as well as the costs associated with the other edges were suitably selected (according
the properties enunciated above) in order to preserve the optimality of the “primary solution”, which
has cost 2393. In particular, for this instance, we applied the propositions C.0.9, C.0.11, C.0.12
and C.0.13. Once more, after the edge cost assignment process is finished, new optimal feasibl
solutions may eventually come up. The edge costs were selected within 3Ge] range.

Network 6 has 38 fixed nodes, 33 Steiner nodes and 301 edges. We built this problem from the topol
ogy shown in Figure C.4 which only has the fixed nodes. By means of consecutive splitting operations
we obtain the topology shown in Figure C.4, which we will take as the “primary optimal solution”
and has 16 Steiner nodes. On this network, we iteratively apply somg-ce insertions followed of

H — path insertion a certain number of times until Network 6 is formed. In this way, the new Steiner

195

Figure C.3: Primary optimal solution for Network 5.

nodes could be considered in the optimal solution search for the instance. The resultant network i
shown in Figure 4.16. There are six square nodes: théuset,, v3} and the se{w;, we, ws}. Our
objective is to find a minimum cost sub-network whit the following properties:

— there exist at least 3-node-disjoint paths between the fixed nedeslw;, i € 1..3;

— there exist at least 2-node-disjoint paths between any pair of fixed nodes.

As in the other previous cases, the costs assigned to the network edges satisfy the presented propert
guaranteeing therefore the optimality non-loss of the “primary solution”, of cost 3041. This process
does not restrict the appearance of new optimal feasible topologies for this instance. Particularly, we
used the propositions C.0.9, C.0.11, C.0.12, C.0.13 and C.0.14. The costs were selected within th
range of[10, 200].

For the instances 3, 4, 5 and 6, we also created other test cases having the same topologies but with ott
edge costs (selected within more restricted value ranges), preserving always the the optimum values al
the optimal primary solutions discussed above. The computational experiments with these additional tes
cases were similar to those shown in Section 4.6, as the proposed GRASP algorithm found a global optim:
solution in every case.

196 APPENDIX C. PROPERTIES USED FOR GENERATING BNDP TEST CASES

Figure C.4: Initial network for Network 6 and the primary solution.

Bibliography

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the general-
ized Steiner problem on networkSIAM Journal on Computin@4(3):440-456, 1995.

[2] K. Altinkemer and A. Chaturvedi. Neural networks for topological design of local access tree net-
works. InProceeding of Telecommunication Systems, Modelling and Analysis Confepaiges
256-263, 1993.

[3] K. Altinkemer and Z. Yu. Topological design of wide area communication netwofksnals of
Operations Resear¢l36:365-382, 1992.

[4] M. Andrews and L. Zhang. The Access Network Design Problem39th Annual Symposium on
Foundations of Computer Sciengages 40-49, 1998.

[5] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an optimum
3-vertex-connected spanning subgrapdurnal of Algorithms32(1):21-30, 1999.

[6] Mourad Bdou. Le probEme du suos-graphe Steiner 28 connexe: approache pélyrale PhD
thesis, Universé de Rennes |, 1996.

[7] H. Bakircioglu and T. Kocak. Survey of random neural network applicati&wsopean Journal of
Operational Researgt26:319-330, 2000.

[8] A. Balakrishnan, T. Magnanti, and P. Mirchandi. A dual-based algorithm for multi-level network
design.Management Sciencé0:567-581, 1994.

[9] A. Balakrishnan, T. Magnanti, and P. Mirchandi. Connectivity-splitting models for survivable net-
work design.Networks 43(1):10-27, 2004.

[10] A.Balakrishnan, T.L. Magnanti, and P. Mirchandani. Modeling and heuristic worst-case performance
analysis of the two-level network design probleltanagement Sciencé0(7):846—-867, 1994.

197

198 BIBLIOGRAPHY

[11] A. Balakrishnan, T.L. Magnanti, and P. Mirchandani. Designing hierarchical survivable networks.
Operations Resear¢cid6(1):116—136, 1998.

[12] R.T. Berger and S. Raghavan. Long-Distance Access Network Dediganagement Science
50:309-325, 2004.

[13] D. Bienstock, E.F. Brickell, and C.L. Monma. On the structure of minimum weight k-connected
spanning networksSIAM Journal on Discrete Mathematjc3(3):320-329, 1990.

[14] H.J. Bockenhauser, D. Bongartz, J. HromkavR. Klasing, G. Proietti, S. Seibert, and W. Unger.
On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs wit
sharpened triangle inequality. FProceedings of the 22nd Conference Kanpur on Foundations of
Software Technology and Theoretical Computer Scignages 59—-70. Springer-Verlag, 2002.

[15] Z.R. Bogdanowicz. A new optimal algorithm for backbone topology design in communications
networks.Mathematical and Computer Modelling7(8):49-61, 1993.

[16] R.R. Boorstlyn and H. Frank. Large-scale network topological optimizatiGBE Transactions on
Communications25(1):29-47, 1977.

[17] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm for designing a Wide Area Network
backbone. IrProceedings of the International Network Optimization Conference (INOCjzR®)es
138-143, Evry/Paris, France, October 2003.

[18] H. Cancela, F. Robledo, and G. Rubino. Network design with node connectivity constraints. In
Proceedings of the IFIP/ACM Latin America Networking Conference (LANCj@jes 13-20, La
Paz, Bolivia, October 2003.

[19] H. Cancela, F. Robledo, and G. Rubino. Finding Steiner trees with degree 1 terminal Hel@4s.
Electronics Express (ELEX)(9):258-262, 2004.

[20] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with RNN based local search for de-
signing a WAN access network. Hlectronic Notes in Discrete Mathematics - special issue includ-
ing the Proceedings of the Latin-American Conference on Combinatorics, Graphs and Applications
(LACGA’04) volume 18C, pages 53-58, 2004.

[21] H. Cancela, F. Robledo, and G. Rubino. A GRASP algorithm with tree based local search for de-
signing a Wide Area Network backbondournal of Computer Science and Technologf{L):52-58,
2004.

BIBLIOGRAPHY 199

[22] H. Cancela, F. Robledo, and G. Rubino. Designing low-cost access network topologieso- In
ceeding of the International Network Optimization Conference (INOC'Ofijiversity of Lisbon,
Portugal, October 2005.

[23] H. Cancela, F. Robledo, and O. Viera. A parallel algorithm for the Steiner 2-edge-survivable network
problem.Journal of ICHIO (Chilean Institute of Operations Researéhjto appear), 2004.

[24] S. Chamberland and B. SansOn the design problem of multitechnology networkBlIFORMS
Journal on Computingl3(3):245-256, 2001.

[25] S. Chamberland, B. Samsand O. Marcotte. Topological design of two-level telecommunication
networks with modular switche©perations Resear¢cd8(5):745-760, 2000.

[26] N.G. Chattopadhyay, T.W. Morgan, and A. Ranghuram. An innovative technique for backbone net-
work design.IEEE Transactions on Systems, Man and Cyberneti@):1122-1132, 1989.

[27] Zhi-Zzhong Chen. Approximating unweighted connectivity problems in parallgormation and
Computation171:125-126, 2001.

[28] Sheng-Tzong Cheng. Topological optimization of a reliable communication netAN®BE Trans-
actions on Reliability47(3):225-233, 1998.

[29] J. Cheriyan, T. Jordan, and Z. Nutov. On rooted node-connectivity probleAigorithmica
30(3):353-375, 2001.

[30] J. Cheriyan, A. Sefh and Z. Szigeti. Improving on the 1.5-approximation of a smallest 2-edge
connected spanning subgra@@AM Journal on Discrete Mathematijcs4(2):170-180, 2001.

[31] J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning subgraphs via
matching.SIAM Journal on Computing0:528-560, 2000.

[32] J. Cheriyan, S. Vempala, and A. Vetta. Approximation algorithms for minimum-cost k-vertex-
connected subgraphs. Rroceedings of the 34th Annual ACM Symposium on the Theory of Com-
puting pages 306-312, 2002.

[33] S. Chopra. Polyhedra of the equivalent subgraph problem and some edge connectivity problems
SIAM Journal on Discrete Mathematids(3):321-337, 1992.

[34] W. Chou and H. Frank. Survivable communication networks and the terminal capacity naik.
Transactions on Circuit Theoyy7:192-197, 1970.

200

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

C. Christofides and C. A. Whitlock. Network synthesis with connectivity constraints-a sudey.
erational Researcl81:705-723, 1981.

N. Christofides and C.A. Whitlock. An algorithm for the design of optimal invulnerable networks.
Technical Report IC-OR-81-6, Imperial College, London, 1981.

R. Coullard, A. Rais, R.L. Rardin, and D.K. Wagner. Linear-time algorithm for the 2-connected
Steiner subgraph problem on special classes of graphs. Technical Report No. 91-25, School o
Industrial Engineering, Purdue University, 1991.

F.R.B. Cruz, J. MacGregor Smith, and G.R. Mateus. Algorithms for a multi-level network optimiza-
tion problem.European Journal of Operational Researdi8:164-180, 1999.

B. Csaba, M. Karpinski, and P. Krysta. Approximability of dense and sparse instances of minimum
2-connectivity, TSP and path problems. Rroceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithmspages 74—-83, 2002.

A. Czumaj and A. Lingas. On approximability of the minimum-cost k-connected spanning subgraph
problem. InProceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorigagss
281-290, 1999.

L. Davis, D. Orvosh, A. Cox, and Y. Qiu. A genetic algorithm for survivable network design. In
Proceedings of the Fifth International Conference on Genetic Algorithms (San Mateo, CA, USA)
pages 408-415, 1993.

M. Poggi de Arago, C.C. Ribeiro, E. Uchoa, and R.F. Werneck. Hybrid local search for the Steiner
problem in graphs. IExtended Abstracts of the 4th Metaheuristics International Conference (MIC
2001) pages 429-433, 2001.

R. Diestel.Graph theory Springer-Verlag, 2 edition, 2000.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computionally difficult set covering
problem.Operations Research Lettei&67—-71, 1989.

T.A. Feo and M.G.C. Resende. Greedy Randomized Adaptive Search Procdduresl of Global
Optimization 6:109-133, 1995.

C.G. Fernandes. A better approximation ratio for the minimum k-edge-connected spanning subgrapl
problem.Journal of Algorithms28(1):105-124, 1998.

BIBLIOGRAPHY 201

[47] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP. Technical Report TD-
SWYSEW, AT&T Labs Research, 2004.

[48] H. Frank and W. Chou. Connectivity considerations in the design of survivable netwiiks
Transactions on Circuit Theoyy17:486-490, 1970.

[49] L.F. Frantzeskakis and H. Luss. The network redesign problem for access telecommunications net
works. Naval Research Logistic46:487-506, 1999.

[50] G.N. Frederickson and Jaja. On the relationship between biconnectivity augmentation and traveling
salesman problenTheoretical Computer Sciencid:189-201, 1982.

[51] H.N. Gabow, M.X. Goemans, and D.P. Williamson. An efficient approximation algorithm for the
survivable network design problem. Rroceedings of the 3rd MPS Conference on Integer Program-
ming and Combinatorial Optimizatiopages 57-74, 1993.

[52] A. Galluccio and G. Proietti. Polynomial time algorithms for edge-connectivity augmentation prob-
lems. Algorithmicg 36(4):361-374, 2004.

[53] B. Gavish. A general model for the topological design of computer networkSL®BECOM’86 -
IEEE International Global Telecommunications Conferernpages 1584-1588, 1986.

[54] B. Gavish. Topological design of telecommunication networks - local access design méthonds
of Operations Researc33:17-71, 1991.

[55] B. Gavish. Configuring wide area computer networks-problems and mod@R. Spektrum
14(3):115-128, 1992.

[56] B. Gavish. Topological design of computer communication networks-the overall design problem.
European Journal of Operations Researb8(2):149-172, 1992.

[57] B. Gavish and K. Altinkemer. Parallel savings heuristics for the topological design of local access
tree networks. IrProceedings of IEEE INFOCOM’86. Fifth Annual Conference on Computers and
Communications Integration Design, Analysis, Managengages 130-139, 1986.

[58] E. Gelenbe. Random neural network with negative and positive signals and product form solution.
Neural Computation1(4):502-511, 1989.

[59] E. Gelenbe. Stability of the random neural network modskural Computation2(2):239-247,
1990.

202 BIBLIOGRAPHY

[60] E. Gelenbe. Hopfield energy of the random neural network Prisceedings of the IEEE World
Congress on Computational Intelligena®lume 7, pages 4681-4686, 1994.

[61] E. Gelenbe and F. Batty. Minimum cost graph covering with the random neural net@onkputer
Science and Operations Research. (New York: Pergampages 139-147, 1992.

[62] E. Gelenbe, A. Ghanwani, and V. Srinivasan. Improved neural heuristics for multicast rd&tte).
Journal on Selected Areas in Communicatidti(2):147-155, 1997.

[63] E. Gelenbe, V. Koubi, and F. Pekergin. Dynamical random neural network approach to the traveling
salesman problem. IRroceedings of the IEEE Symposium on Systems Engineering in the Service of
Humans pages 630-635. Systems, Man and Cybernetics, 1993.

[64] E. Gelenbe and A. Stafylopatis. Global behaviour of homogeneous random neural sybeiied
Mathematical Modelling15:534-541, 1991.

[65] A. Ghanwani. A qualitative comparison of neural networks models applied to the vertex covering
problem.Elektrik, 2(1):11-18, 1994.

[66] L. Ghosh, A. Mukherjee, and D. Saha. Design of 1-ft communication network under budget con-
straint. InProceedings of Distributed Computing. Mobile and Wireless Computing. 4th International
Workshop - IWDC 2002 (Calcutta, Indig)ages 300-311, 2002.

[67] L. Ghosh, A. Mukherjee, and D. Saha. Optimal design of backbone topology for a communication
network cost constraint. IRroceedings of ICCC 2002 - 15th International Conference on Computer
Communicationvolume 2, pages 471-485, 2002.

[68] A. Girard, B. Sang, and L. Dadjo. A tabu search algorithm for access network dedgmals of
Operations Researgii06(1-4):229-262, 2001.

[69] M.X. Goemans and D.J. Bertsimas. Survivable networks, linear programming relaxations and the
parsimonious propertyMathematical Programming0:143—-166, 1993.

[70] M.X. Goemans, A.V. Goldberg, S. Plotkii,. Tardos, and D.P. Williamson. Improved approxima-
tion algorithms for network design problems. Pnoceedings of the 5th ACM-SIAM Symposium on
Discrete Algorithmspages 223-232, 1994.

[71] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest
problems.SIAM Journal on Computin@4(2):296-317, 1992.

BIBLIOGRAPHY 203

[72] L. Gouveia and M.J. Lopes. Using generalized capacitated trees for designing the topology of local
access networkdslelecommunications Systeri¢4):315-337, 1997.

[73] R. Grimaldi. Discrete and combinatorial mathematics. An applied introductidadison-Wesley,
1994,

[74] M. Grotschel and C.L. Monma. Integer polyhedra associated with certain network design problems
with connectivity constraintsSIAM Journal on Discrete Mathematijc3502-523, 1990.

[75] M. Grotschel, C.L. Monma, and M. Stoer. Polyhedral Approaches to Network Survivability. In
F. Roberts, F. Hwang, and C.L. Monma, editdRgliability of Computer and Communication Net-
works, Proc. Workshop 1989, New Brunswick, NJ/U&#tume 5 ofSeries in Discrete Mathematics
and Theoretical Computer Scieng@ages 121-141. American Mathematical Society, 1991.

[76] M. Grotschel, C.L. Monma, and M. Stoer. Computational results with a cutting plane algorithm
for designing communication networks with low-connectivity constrain@perations Research
40(2):309-330, 1992.

[77] M. Grotschel, C.L. Monma, and M. Stoer. Facets for polyhedra arising in the design of communi-
cation networks with low-connectivity constraintSIAM Journal on Optimizatign2(3):474-504,
1992.

[78] M. Grotschel, C.L. Monma, and M. Stoer. Polyhedral and computational investigations for designing
communications networks with high survivability requiremer@perations Resear¢i3(6):1012—
1024, 1995.

[79] Jae gyun Kim and Dong wan Tcha. Optimal design of a two-level hierarchical network with tree-star
configuration.Computers & Industrial Engineerin@2(3):273-281, 1992.

[80] F. Harary. The maximum connectivity of a graph. Pmoceedings of the National Academy of
Sciences (USAyolume 48, pages 1142-1146, 1962.

[81] Sung hark Chung, Young soo Myung, and Dong wan Tcha. Optimal design of a distributed network
with two-level hierarchical structureEuropean Journal of Operational Reseay@2(1):105-115,
1992.

[82] K. Jain. A 3-approximation algorithm for finding optimum 4,5-vertex-connected spanning subgraphs.
Journal of Algorithms32(1):31-40, 1999.

[83] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network prol@embina-
torica, 21:39-60, 2001.

204 BIBLIOGRAPHY

[84] T. Jordan. On the optimal vertex-connectivity augmentatidournal of Combinatorial Theory
Series B 63:8-20, 1995.

[85] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computatiomesges 85-104. Plenum Press, NY, 1972.

[86] S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity prob-
lems. Journal of Algorithms21(2):434-450, 1996.

[87] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentatloarnal of Algo-
rithms, 4(2):214-225, 1991.

[88] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvingBraceedings of the
Twenty-Fourth Annual ACM Symposium on the Theory of Compuytagges 759-770, 1992.

[89] C.W. Ko and C.L. Monma. Heuristics methods for designing highly survivable communication
networks. Technical report, Bellcore, 1989.

[90] T. Koch, A. Martin, and S. Vof3. SteinLib: An updated library on Steiner tree problems in graphs.
Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentriamfiformationstechnik Berlin, Takustr.
7, Berlin, 2000.

[91] A. Konak and A.E. Smith. A hybrid genetic algorithm approach for backbone design of communi-
cation networks. IProceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Wash-
ington, DC, USA)volume 3, pages 1817-1823, 1999.

[92] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-connectivity
network-design problems$IAM Journal on Computing3(3):704-720, 2004.

[93] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set cokégerithmica
37(2):75-92, 2003.

[94] M. Kos, M. Mikac, and D. Mikac. Topological planning of communication networ8surnal of
Information and Organizational SciengeX(1-2):57-68, 2002.

[95] P. Krysta and V.S.A. Kumar. Approximation algorithms for minimum size 2-connectivity problems.
In Proceedings of the 18th Annual Symposium Theoretical Aspects of Computer Science (STACS’0
Berlin), Lecture Notes in Computer Sciengelume 2010, pages 431-442. Springer, 2001.

[96] B. Lukic. An approach of designing local access network using Simulated Annealing method. In
ConTEL'99 - 5th International Conference on Telecommunicatipages 241-247, 1999.

BIBLIOGRAPHY 205

[97] S. Mandal, D. Saha, R. Mukherjee, and A. Roy. An efficient algorithm for designing optimal back-
bone topology for a communication networks.Rroceedings of ICCT 2003 - International Confer-
ence on Communication Technology (Beijing, Chirma)Jume 1, pages 103-106, 2003.

[98] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos. A parallel GRASP for the Steiner
tree problem in graphs using a hybrid local search stratégyinal of Global Optimizationl7:267—
283, 2000.

[99] G.R. Mateus and R.V.L. Franqueira. Model and heuristics for a generalized access network desigt
problem.Telecommunication Systems - Modelling, Analysis, Design and Managdbd):257—
271, 2000.

[100] T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A GRASP for the bicuadratic
assignment problenturopean Journal of Operational Researdi95:613-621, 1998.

[101] M. Minoux. Efficient greedy heuristics for Steiner tree problems using reoptimization and super-
modularity. INFOR, 28:221-233, 1990.

[102] C.L. Monma, B.S. Munson, and W.R. Pulleyblank. Minimum-weight two connected spanning net-
works. Mathematical Programmingt6:153-171, 1990.

[103] C.L. Monma and D.F. Shallcross. Methods for designing communication networks with certain two-
connected survivability constraint®perations Researcl37:531-541, 1989.

[104] Z. Nutov and M. Penn. Faster approximation algorithms for weighted triconnectivity augmentation
problems.Operations Research Letteia1:219-223, 1997.

[105] P.M. Pardalos, T. Qian, and M.G.C. Resende. A greedy randomized adaptive search procedure fc
the feedback vertex set probledournal of Combinatorial Optimizatiqr2:399-412, 1999.

[106] Michael Penn and Haya Shasha-Krupnik. Improved approximation algorithms for weighted 2- and
3- vertex connectivity augmentation problendsurnal of Algorithms22:187-196, 1997.

[107] S. Pierre and A. Elgibaoui. A tabu-search approach for designing computer-network topologies with
unreliable componentsEEE Transactions on Reliabilify#6(3):350-359, 1997.

[108] M. Priem and F. Priemlngénierie des WAN (text in Frenchlpunod InterEditions, 1999.

[109] J.S. Provan and R.C. Burk. Two-connected augmentation problems in planar gdpheal of
Algorithms 32:87-107, 1999.

206 BIBLIOGRAPHY

[110] C.D. Randazzo and H.P.L. Luna. A comparison of optimal methods for local access uncapacitec
network designAnnals of Operations Researct06:263—-286, 2001.

[111] C.D. Randazzo, H.P.L. Luna, and P. Mahey. Benders decomposition for local access network desig
with two technologiesDiscete Mathematics & Theoretical Computer Sciedc235—-246, 2001.

[112] R. Ravi and P.N. Klein. When cycles collapse: a general approximation technique for constrained
2-connectivity problems. IRroceedings of the 3rd Symposium on Integer Programming and Com-
binatorial Optimization pages 39-55, 1993.

[113] R. Ravi and D.P. Williamson. An approximation for minimum-cost vertex-connectivity problems.
Algorithmicg 18(1):21-43, 1997.

[114] R. Ravi and D.P. Williamson. Erratum: An approximation for minimum-cost vertex-connectivity
problems. InProceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorigamgss
1000-1001, 2002.

[115] G. Reinelt. TSPLIB library. http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html, 2004.

[116] M.G.C. Resende. Computing approximate solutions of the maximum covering problem using
GRASP.Journal of Heuristics4:161-171, 1998.

[117] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarizafiournal of Heuristics4:161—
171, 1998.

[118] M.G.C. Resende and C.C. Ribeiro. Greedy Randomized Adaptive Search Procedures. Technice
Report TD-53RSJY, AT&T Labs Research, 2002.

[119] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the Steiner
problem in graphsINFORMS Journal on Computing4(3):228-246, 2002.

[120] F. Robledo. Disko topobgico de redes; casos de estudio: the Generalized Steiner Problem and the
Steiner 2-Edge-Connected Subgraph Problem (text in Spanish). Master Thesis, Universidad de |
Replblica-Facultad de Ingeniiex, J. Herrera y Reissig 565, Montevideo, Uruguay, 2000.

[121] F. Robledo. A parallel algorithm for the Steiner 2-edge-survivable network problem. Technical
Report Pl 1504, IRISA/INRIA, 2002.

[122] F. Robledo. A GRASP algorithm with MST based local search for designing a WAN access network.
In Proceedings of the me Jouries Doctorales Informatique eéReau (JDIR’04)-France@lécom
R&D, Lannion, France, November 2004.

BIBLIOGRAPHY 207

[123] F. Robledo, R. Maba, I. Manzo, and D. Nachman. Using GRASP for designing low-cost ac-
cess topologies. linternational Conference on Industrial Logistics (ICIL’'Q3)niversidad de la
Replblica-Facultad de Ingenier, Montevideo, Uruguay, February 2005.

[124] 1. Rosseti, M. Poggi de Aramp, C.C. Ribeiro, E. Uchoa, and R.F. Werneck. New benchmark instances
for the Steiner problem in graphs. Extended Abstracts of the 4th Metaheuristics International
Conference (MIC 200]1pages 557-561, 2001.

[125] K. Steiglitz, P. Weiner, and D.J. Kleitman. The design of minimum-cost survivable netw&E&
Transactions on Circuit Theoyy16:455-460, 1969.

[126] M. Stoer. Design of survivable networkgolume 1531 ol ecture Notes in MathematicSpringer-
Verlag, 1992.

[127] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in gkégiins.
ematica Japonica24:537-577, 1980.

[128] T. Thomadsen and J. Clausen. Hierarchical network design using simulated annealing. Technice
report, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard
Petersens Plads, Building 305, DK-2800 Kgs. Lyngby, sep 2002.

[129] L. Tran and P.A. Beling. A heuristic for the topological design of two-tiered network&ME’98
- IEEE International Conference on Systems, Man, and Cybernetdsme 3, pages 2962—-2967,
1998.

[130] S. Vempala and A. Vetta. Factor 4/3 approximations for minimum 2-connected subgrapgh®- In
ceedings of the Third International Workshop on Approximation Algorithms for Combinatorial Op-
timization Problems (Berlin, Germanyjages 262—-273, 2000.

[131] M.G.A. Verhoeven and M.E.M. Severens adn E.H.L. Aarts. Local search for Steiner trees in graphs.
In V.J. Rayward Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, ediloidern Heuristics Search
Methods pages 117-129. Jhon Wiley, 1996.

[132] T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of a gdagurnal of
Computer and System Scienc#8(1):91-128, 1993.

[133] D.P. Williamsom, M.X. Goemans, M. Mihail, and V.V. Vazirani. A primal-dual approximation algo-
rithm for the generalized Steiner network probleGombinatorica 15:435-454, 1995.

[134] P. Winter. Generalized Steiner problem in outerplanar graphi.25(3):485—-496, 1985.

208 BIBLIOGRAPHY

[135] P. Winter. Generalized Steiner problem in series-parallel netwaltstnal of Algorithms7:549—
566, 1986.

[136] P. Winter. Steiner problem in networks: A survéyetworks 17(2):129-167, 1987.

[137] J.Y. Yen. Finding the k shortest loopless paths in a netwdftlanagement Sciencd7:712—716,
1971.

