Typed Windows
An Implementation of a
Programming Language
for Graphics Design

Technical Report INCO-97-02

AN%—IY%
in

—)
j)z:f
~
I_l ~

Master Thesis

yl

) MARNAARIX
b=

k/

[TTTTITTTT

Pablo J. Queirolo
Instituto de Computacion
Facultad de Ingenieria, Universidad de la Reptblica
52 piso. Julio Herrera y Reissig 565
Montevideo, Uruguay
email: queirolo@fing.edu.uy

May 1997

The author has been supported by the Pedeciba and the Conicyt.

Abstract

This paper presents an implementation of Ty Win!, a system for constructive 2D
graphic design proposed by Juan José Cabezas [Cab91].

Ty Win extends the usual concept of window in Computer Graphics, associating a
type with every window in the system. Then, the displaying rules (graphic repre-
sentation rules) for an object in a certain window depends of its type.

The displaying rules were designed inspired on the “Constructive Universalism” of
the Uruguayan painter Joaquin Torres Garcia and the type system of Ty Win takes
as a theoretical framework the Type Theory of the Swedish mathematician Per
Martin-Lof.

Two main modules of the system were implemented, a programming language in-
terpreter for 2D graphic design and a system to define libraries of “icons” (or
ideograms).

In order to increase the power of the system, the original language proposed in
[Cab91] was extended.

The result is an environment for 2D graphic design, with some original features
which are shown through a collection of examples including paintings of Joaquin
Torres Garcia.

1“Typed Windows”

CONTENTS

Contents

1 Introduction

1.1 Typed Windows
1.2 Martin-Lof’s Type Theory
1.3 Torres Garcia’s Constructive Universalism
1.4 The TyW3in Implementation Project

2 Graphical Meaning of Types

21 T oo
2.2 Bool e
2.3 Nat. . . e
24 Real
25 List. . .o
2.6 Seto
2.7 Disjoint Union
2.8 Cartesian Product Lo
2.9 Record
2.10 Function Lo

3 The TyWin Project

4 The TyWin Implementation Project
4.1 The PL Translator module
4.2 The Ideograms Editor module

5 The TyWin Language

5.1 The Ports Layer
5.2 The Windows & Values Layer
5.2.1 The Values
5.2.2 The Windows

5.3 The Views Layer

10
11
12

13
13
14
14
15
15
16
16
16
17
18

19

20
20
20

4 CONTENTS

5.4 The Sentences Layer 25

6 The Ports 28
6.1 Definition of portso 28
6.1.1 Simpleports. 28

6.1.2 Portlists. 29

6.2 Operatorsof ports 30
6.2.1 Rotate - BiRotate - UnRotate 30

6.2.2 SPHEINt . . . o e 31

6.2.3 SplitReal 31

6.2.4 Constructive operators 32

7 The Values 35
7.1 Simplevalues 35
7.2 Collections 35
7.3 Composed values 36

8 The Windows 37
9 The Views 38
10 The ToPort Operator 40
10.1 Simple values 40
10.1.1 ToPort(VT(port), tt) 40

10.1.2 ToPort(VBoolean(port), boolvalue) 40

10.1.3 ToPort (VReal (port), real_value) 40

10.1.4 ToPort (VInteger(range , port), int_value) 40

10.2 Collections 41
10.2.1 ToPort (VList (range , integer, sub-view), list_value) 41

10.2.2 ToPort (VSet (sub-view), set_value) 42

10.3 Composed values 42

CONTENTS

10.3.2 ToPort (VUnion (sub-view;, sub-views), union_value)

10.3.3 ToPort (VProd (sub-view,, sub-view,y), pair_value)
11 The Sentences

12 The Ideograms Module
12.1 Introduction L. L L
12.2 The Ideogram Editor oo
12.3 The Ideogram Translator

12.4 The Ideogram Compression

13 Examples
13.1 Hello World o
13.2 Text Fonts
13.2.1 Text Orientation T
13.2.2 Text Orientation IT
13.3 Coloured Butterfly oo
13.4 Torres Garcia’s Paintings

13.5 Screen designo
14 Conclusions and Future Work

A The Implementation
A.1 The Interpreter Architecture
A11 Parsing
A.1.2 Language Layers
A13 X-Windows Manage

A.2 The Image Translator Architecture

B The TyWin Language Syntax
B.1 Ports
B.2 Values e
B.3 Views

43

45

46
46
46
46
47

49
49
50
50
o1
33
54
56

57

61
61
61
62
62
62

CONTENTS

B4 Windows 66
B.5 Sentences 66
ToPort operator specification 67
C.1 Simplevalues 67
C.2 Collections e 67

C.3 Composed values 68

LIST OF FIGURES 7

List of Figures

© oo N O

11
12

13
14
15

16
17

18
19
20
21
22

23

24

Window - Visible Object relation. 11
T display rule. 13
Bool display rule. 14
Nat display rule. 14
Real display rule. o 15
List display rule. o 15
Set display rule.o 16
Disjoint Union display rule. 17
Cartesian Product display rule. 17
Record display rule.o 18
Function display rule. oo 18
The TyWin System viewed by the implementator (taken from the

system report of Cabezas). 19
The structure of the TyWin Language 22
Example output. o 27
The Ports Orientations defined in function of the different variations

of the vector ({(z1, y1)[{(®a, Ya)) - - - - -« o o o oo 28
Port rotation examples oL 31

SplitInt examples. In this figure, the range represents the values

{v1,v9,v3, 04,5} and the integer isvy.o L. 31
SplitReal examples. In this figure, the real value is 0.75 32
Constructive Ports Operators 32
Difference example L0 33
A~(A-B) U (ANB) example 33

ToPort examples. Simple values cases. The original port pyie, is
defined in A. 41

ToPort examples. Collection values cases. The original port pyiey iS
defined in A.. 43

ToPort examples. Composed values cases. The original port pyieqw is
defined in A with the three colour planes showed. 44

25
26
27
28
29
30
31
32
33

34
35
36
37
38
39

LIST OF FIGURES

The ideogram matrixo 48
Hello World. oo o 49
Text Fonts. 50
Text Fonts. 51
Butterfly. 53
“Constructivo con ancla y barco - Anphy” (1932-12x 9 cm.). 54
“Composicién constructiva” (1932 - 73 x 60 cm.). 54
“Planos de color - Madera constructiva” (1929 - 28 x 21.5 cm.). . . . 55
“Estructura a cinco tonos con dos formas intercaladas” (1948 - 52 x 50

CIL). © v v et e e 55
“Construccién” (1944 - 54 x 82 cm.). 56
Screen Design.o 56
Interpreter Modules - Architecture. 61
Parsing sub-modules.o 62
Language Layers sub-modules. 62

Image Translator Modules - Architecture. 63

1 Introduction

1.1 Typed Windows

TyWin is a system for constructive 2D graphic design proposed by Juan José
Cabezas [Cab91]. The main idea of the system is to generalize the usual concept of
window in Computer Graphics.

This concept can be described as follows:

e " ... specifying a window in the world-coordinate space surrounding the information
we wish displayed.” [NS83]

e ‘“In addition to the window, we can define a port (or viewport), a rectangle on the
screen where we would like the windows contents displayed.” [NS83]

e “We use the window to define what we want to display; we use the port to specify
where on the screen to put it”. [NS83]

However, the type of the objets of a certain window is usually limited to a cartesian
product of subranges of real or integer numbers. As a consequence, when program-
ming with graphic objects of different types, it is necessary to reduce (translate)
them to a list of objects of the window type, before they could be displayed.

From a methodological point of view, it would be desirable that for every object of
a certain type A in the ‘graphics’ universe, there exists a window of type A which
accepts that object for displaying. A window system with this property can increase
the quality of the programming environment in Computer Graphics, extending to
the graphics area the power of type systems.

We call this generalized concept of window ‘typed window’, and ‘ Ty Win System’
a complete environment for graphic design based on typed windows.

Therefore the Ty Win System associates graphic display rules with types so that
the task of displaying an object of type A on a window (associated with the type
A) is determined by the graphic rule of A.

The type system of Ty Win has been designed taking as theoretical framework the
Type Theory of the Swedish mathematician Per Martin-Lof.

Another expression of the constructive movement of this century was taken as guide
when designing the graphic representation rules of Ty Win: the “Constructive Uni-
versalism” of the Uruguayan painter Joaquin Torres Garcia.

2In order to introduce the foundations of the Typed Windows System, some paragraphs of the
Juan José Cabezas’s report are taken.

10 1 INTRODUCTION

He defined an art conception that stands out for understanding the constructive
painting like a structure of symbols. [Lin92]

As a consequence, Ty Win does not support the concepts of foreground and back-
ground. Torres Garcia said: “In the unity of the composition, the idea of thing and
background should disappear. ... Then, there are not the thing and the background,
all is thing and all is background.” [Gar69].

Furthermore the usual concept of port in Computer Graphics is also generalized:
in the TyWin System a port is a rectangular oriented region including colour
information that covers the usual concepts of port and pixel.

Then, when an object is displayed, the port defined for displaying is transformed
into new ports. Ty Wain translate ports into ports, allowing that the output of a
certain transformation could be the input of another.

In conclusion, the Typed Windows project takes two constructive expressions of
the current century and based on them develops an original system to support 2D
graphic design.

1.2 Martin-Lof’s Type Theory

The Type Theory introduced by the Swedish mathematician Per Martin-Lof is a
formalization of the constructive mathematics with concepts and properties relevant
to Computer Science.

In this theory, the idea of specification and program can be associated with the idea
of type and element respectively. The theory allows to express both using the same
language and to formally verify the correctness of a program to its specification.

The base of the type theory is introduced in [NPS90] as follows:

“The judgement a € A in type theory can be read in at least the following ways:

e a is an element in the set A.
e a is a proof object for the proposition A.
e a is a program satisfying the specification A.

e a is a solution to the problem A.

The reason for this is that the concepts set, proposition, specification and problem can
be explained in the same way.”

Then, the typed window concept can be introduced by means of extending the
previous list with:

e a is an object that can be displayed in the window A.

1.3 Torres Garcia’s Constructive Universalism 11

At the same time, this extension makes possible to apply this theory in Computer
Graphics (Figure 1).

Set Proposition Specification Problem Window

___>

Element Proof Program Solution Visible Object

Figure 1: Window - Visible Object relation.

1.3 Torres Garcia’s Constructive Universalism

The Uruguayan painter Joaquin Torres Garcia (July 1874, August 1949) defined an
art conception that he called “Constructive Universalism”.

This conception stands out for understanding the constructive work like a structure
of symbols. [Lin92]

Torres Garcia said: “The concept of construction like symbolic operation, reducing
every figure to sample ‘ideograms’ ® that combined with archaic signs, numbers and
other writings, tries to construct a synthesis of the universe like totality”. [Gar69]

His ideas made a constructive view of the “graphic universe” and can be interpreted
(modelled) with reasonable simplicity from the mathematical point of view. Fur-
thermore, they provide a conceptual guide to define a programming language for
Computer Graphics.

Joaquin Torres Garcia defined his art movement based on two concepts:

Structure : in order to give a unity to the construction (“Colour planes and lines
combined with art, will build a real structure.” [Gar69)]).

Abstraction : since he rejected the imitation of nature, he defined ideograms
representing things and ideas in order to use universal representations (“The
painter is not interested in the object, he is interested in the colour plane and the
geometry of his structure.” [Gar69)).

Avoiding the hand drawing model, Torres Garcia proposed a constructive painting
based on a composition (structure) of rectangles (planes of colour) and stamped
ideograms. This is the model followed in the Ty Win System to define constructive
2D designs.

In his paintings we can find structures, ideograms and planes of colour. In
the TyWin System these concepts are implemented by windows (and views),
values (graphic objects) and ports.

3He defines an ideogram like the simplest figure that represents a particular thing or idea.

12 1 INTRODUCTION

1.4 The TyWin Implementation Project

This paper addresses the implementation of two main modules of the Ty Win Sys-
tem. These modules are a programming language interpreter for 2D graphic design
and a system to define libraries of “figures” (or ideograms) to use in the language.
Then, in this stage of the system implementation the user can edit “figures” for
using in his designs and make programs to define and display 2D designs.

Outline of the paper

This paper is organised as follows. Section 2 addresses the graphical meaning of
types. Sections 3 and 4 addresses the TyWin project. Section 5 addresses the
TyWin Language and its different layers are presented in Sections 6, 7, 8, 9, 10
and 11. Section 12 tells how the ideograms were introduced into the system. Section
13 shows some examples. Section 14 presents the conclusions of this thesis.

13

2 Graphical Meaning of Types

The Typed Windows System associates graphic representation (display) rules
with types. Then, if a is a canonical object of type A, there is a graphic rule R
that determines how to display « on a window (of type) .A.

In this section, the graphic rules are informally introduced with the help of figures.
However, there are some differences between the basic rules introduced in this section
and the rules implemented in the Ty Win System?.

It was defined displaying rules for the following types in Ty Win:

oT e List e Cartesian Product
e Bool e Set e Record

e Nat e Disjoint Union e Function

e Real

The rules of representation were first defined for some of these types in [Cab91].
However, some rules were modified (Bool and List) and other were added (Real, Set
and Record).

These display rules transform rectangular regions into new rectangular regions. Each
rectangular region has associated an orientation® and colour information.

21 T

The rule corresponding to the T type is shown in Figure 2. For this type the result
is the original rectangle.

T

tt

Figure 2: T display rule.

4See Section 10 on page 40 for a complete description of the rules implemented in the Ty Win
System.
5There are four possible orientations: NORTH, EAST, SOUTH and WEST.

14 2 GRAPHICAL MEANING OF TYPES

2.2 Bool

The rule corresponding to the Bool type is shown in Figure 3. The result is the
original rectangle when the boolean value is T'rue and a null rectangle® if the boolean
value is Flalse.

Bool

True False

Figure 3: Bool display rule.

2.3 Nat

The rule corresponding to the Nat type is shown in Figure 4. In the TyWin
System the Nat type has a range associated with it. This range defines which
natural numbers can be visible. For example in the range (12 .. 18) only the natural
numbers between 12 and 18 are visible. The operator splits the original rectangle in
as many identical sub-rectangles as natural numbers accepts the range. The original
rectangle is split in function of its orientation. Then, the sub-rectangle that matches
the natural number is selected.

Nat (3.)
4

Figure 4: Nat display rule.

For displaying the natural number 4, the original rectangle is split in four identical
sub-rectangles (since the range (3 .. 6) accepts four natural numbers) and the second
one is returned (the natural number 4 matches the second natural number of the
range). The original rectangle in the example has a NORTH orientation.

6A null rectangle is a rectangle with area 0. This concept is useful in order to have some
properties in the operators defined in the system. See Section 6.2 on page 30.

2.4 Real 15

2.4 Real

The rule corresponding to the Real type is shown in Figure 5. The operator splits
the original rectangle proportionally with the real number in function of its orien-
tation.

Real

0.75

Figure 5: Real display rule.

In the example, the real number is 0.75, then the result is a sub-rectangle which size
is three quarters of the original one. The original rectangle in the example has an
EAST orientation.

2.5 List

The rule corresponding to the List type is shown in Figure 6. First the original
rectangle is split in as many identical sub-rectangles as elements are in the list value
(length(list-value)) in function of its orientation. Finally, the first element of the
list is displayed in the first sub-rectangle; the second element of the list is displayed
in the second sub-rectangle; and so on.”

List of Nat(1 ..5)

Figure 6: List display rule.

In the example, the list has four elements, so the original rectangle is split in four
identical sub-rectangles. Then, the first element of the list (the natural number 2))
is displayed in the first sub-rectangle using the range (1 .. 5), the second element

"This rule was extended during the implementation of the Ty Win System. See Section 10.2.1
on page 41 for a complete description of the rule implemented for the List type in the TyWin
System.

16 2 GRAPHICAL MEANING OF TYPES

of the list (the natural number 4) is displayed in the second sub-rectangle using
the range (1 .. 5) and so on. The original rectangle in the example has a NORTH
orientation and the sub-rectangles have an EAST orientation.

2.6 Set

The rule corresponding to the Set type is shown in Figure 7. Each element of the
set, is displayed in the original rectangle. Then the result are these sub-rectangles.
When the set is empty, the result is a null rectangle.

Set of Nat(; .. g

{1,3,5 7}

Figure 7: Set display rule.

In the example, the four natural numbers of the set are displayed in the original
rectangle using the range (1 .. 8) and the result are the four sub-rectangles. The
original rectangle in the example has a SOUTH orientation.

2.7 Disjoint Union

The rule corresponding to the Disjoint Union type is shown in Figure 8. This rule
is applied to two rectangles®. When the union value corresponds to the left sub-type
of the union, the result is the representation of the sub-value in the first rectangle.
When the union value corresponds to the right sub-type of the union, the results is
the representation of the sub-value in the second rectangle.

In the example, the first case displays the natural number 2 using the range (1 .. 4)
and the first rectangle and the second case displays the real number 0.75 using
the second rectangle. Both of the original rectangles in the example have a NORTH
orientation.

2.8 Cartesian Product

The rule corresponding to the Cartesian Product type is shown in Figure 9. This
rule is applied to two rectangles. First, the sub-rectangle associated with the left
element of the pair is found in the first rectangle, then the sub-rectangle associated

8Both rectangles could be the same.

2.9 Record 17

(Nat(; .4y + Real)

InL (2) InR (0.75)

|

Figure 8: Disjoint Union display rule.

with the right element of the pair value is found in the second rectangle and finally
the result is the intersection of both sub-rectangles.

(Nat(; .. 4y * Real)

Figure 9: Cartesian Product display rule.

In the example, the first element of the pair, the natural number 2 is displayed using
the range (1 .. 4) and the first rectangle. Then, the second element of the pair, the
real number 0.5 is displayed in the second rectangle. Finally, both sub-rectangles
are intersected. In the example the first original rectangle has a NORTH orientation
and the second has an EAST orientation.

2.9 Record

The rule corresponding to the Record type is shown in Figure 10. This rule is
applied to a collection of rectangles of different colours but the same position, size
and orientation. In this case, the first element of the record is displayed in the
first rectangle of the collection, the second element of the record is displayed in the
second rectangle of the collection, and so on.

In the example, each element of the record is displayed using the range (1 .. 3)

(2, 05)

18 2 GRAPHICAL MEANING OF TYPES

Record (
ﬁeld1 : Nat(l__g,),

ﬁeld2 : Nat(l__g,),
ﬁeld3 . Nat(l__g)

)
| field; : 1, field, : 2, fields : 3 |

Figure 10: Record display rule.

and the corresponding coloured rectangle of the collection. The first element of the
record, the natural number 1, is displayed using the range (1 .. 3) and the first
rectangle of the collection; the second element of the record, the natural number
2, is displayed using the range (1 .. 3) and the second rectangle of the collection
and finally the third element of the record, the natural number 3, is displayed using
the range (1 .. 3) and the third rectangle of the collection. Finally, the result are
these three sub-rectangles. The original rectangles in the example have a NORTH
orientation.

2.10 Function

The rule corresponding to the Function type is shown in Figure 11. For this type
the result is a null rectangle.

(Real — Real)

Figure 11: Function display rule.

No rule was found natural to be associated with functions. This type is absolutely
different from the ones introduced previously and any rule associated to it will be
extremely artificial. These are the reasons for selecting so simple rule.

19

3 The TyWin Project

The TyWin System is a 2D graphic design environment, that includes graphic
editors and languages in order to allow the user to comfortably define constructive
designs.

The architecture of the system is composed by the modules shown in Figure 12.

Graphic Interfase Editors Typed Functional PL Translator
Language

Ideograms

Windows |___o - -
& Objects |=<=— -

Ports

TyWin ‘ \L
Base Language Type Checking

USER - X Windows

Figure 12: The TyWin System viewed by the implementator (taken from the
system report of Cabezas).

The user defines 2D designs using graphic editors that offer a comfortable develop-
ment environment. These editors define types and values of a functional language
in order to use them in programs. The types of these objects are checked by the
Typed Functional Language module, then the checked program is interpreted by the
PL Translator’ module and the graphic output is sent to the X-Windows System.

The modules considered are:
Ideograms Editor : to define icons (ideograms) and store them in the TyWin
format.

Windows and Objects Editor : to define types and values of the Typed Func-
tional Language.

Ports Editor : to define rectangular regions (ports) of the main output window.

Typed Functional Language : to check that types of windows and values match,
and to add functionality to the language with statements which are not avail-
able in the Ty Win Language'®.

PL Translator : to convert the graphic data of the Ty Win System into graphic
output in the X-Windows System.

9Port Language Translator
10Gince 1994 Juan José Cabezas has been implementing a Typed Functional Language (called
“bamba”) for the Ty Win System.

20 4 THE TYWIN IMPLEMENTATION PROJECT

4 The TyWin Implementation Project

In order to check some hypotheses about the Ty Win System a first prototype was
implemented.

These hypotheses are:

e The rules defined for the graphic representation of the different types work
and interact each other well.

e The system can represent 2D figures and designs like Torres Garcia’s paintings.

Two modules of the system were implemented, the PL Translator module and the
Ideograms Editor module. The subjects of this document are these implementations
and the evaluation of the obtained 2D graphic design environment.

4.1 The PL Translator module

The PL Translator module interacts with the Typed Functional Language module
and produces the graphic output of the system (as shown in Figure 12).

Since the PL Translator module interacts with the Typed Functional Language
module, the Ty Win Language implemented is really simple (the language includes
four different statements and it only deals with canonical expressions), since in the
Typed Functional Language module the user has available functions, conditionals
and any common primitive of a functional language.

This module works in function of the rules defined to the graphic representation of
the types considered in this implementation.

These types are:

oT e Real e Disjoint Union
e Boolean e List e Cartesian Product ! 12
e Integer e Set e Record

4.2 The Ideograms Editor module

The Ideograms Editor module is composed by two sub-modules:

1Even when we introduce the Nat type in Section 2.3 on page 14, during the implementation
of the modules the Integer type was selected (then the system deals with negative values as in the
usual programming languages).

12The Function type was not introduced in this implementation.

4.2 The Ideograms Editor module 21

Graphic Ideogram Editor :
is a basic graphic image editor implemented to define ideograms with five-
planes of colour. The editor asks for the height and width of the ideogram,
and shows a grid where the user switches on the elements of the image.

Image Translator :
converts X-images (X-Bitmap or X-Pixmap) to the Ty Win format. Then, the
user can use his icon editors, and can export pre-defined images to Ty Win.

22 5 THE TYWIN LANGUAGE

5 The TyWin Language

The TyWin Language is built up as a herarchical structure of four languages.
The structure of the Ty Win Language is shown in Figure 13.

Sentences

Views

Windows & Values

Ports

Figure 13: The structure of the Ty Win Language

Each layer of the language is introduced in the following sections.

5.1 The Ports Layer

The concept of port is the core of the Ty Win System and this layer is really the
kernel of the language. Every other object will be reduced to a port in order to be
displayed. See Section 6 on page 28 for a complete description of this layer.

In TyWain a port object can be an instance of a simple port or an instance of a port
list.

e A simple port in the language is a rectangular region (with its edges aligned
with the screen edges) with an orientation and some colour information. A
simple port is defined by a vector (which defines the region and orientation of
the simple port) and the associated colors.

e A port list is a list of simple ports.

Observations

1. The rectangular region and the orientation of a simple port is defined by a
vector. A vector in the system is defined as a pair of coordinates. For example
the pair (<0, 0>|<WIDTH, HEIGHT>) defines the vector where the coordinate
<0, 0> (the top-left corner of the screen) and the coordinate<wIDTH, HEIGHT>
(the bottom-right corner of the screen). Then the vector (<0, 0>|<WIDTH,
HEIGHT>) defines a rectangle that covers all the screen.

2. The colour of a simple port is defined by the RGB! model, for example the
red colour is <MAX, MIN, MIN> and the blue colour is <MIN, MIN, MAX>.

13Red-Green-Blue.

5.2 The Windows & Values Layer 23

Examples

e port((<0, 0>|<WIDTH, HEIGHT>), [<MID, MID, MID>]): asimple port that cov-
ers all the screen (the vector (<0, 0>|<WIDTH, HEIGHT>)) and with the grey
colour associated ([<MID, MID, MID>]).

e port ((KWIDTH, HEIGHT>|<(WIDTH/2), (HEIGHT/2)>), [<MAX, MIN, MIN>]): a
simple port that covers the bottom-right quarter of the screen (the vector
(<WIDTH, HEIGHT>|<(WIDTH/2), (HEIGHT/2)>)) and with the red colour asso-
ciated ([<MAX, MIN, MIN>]).

e Nil: an empty port list.

e (port((<(WIDTH/2), 0>|<WIDTH, (HEIGHT/2)>), [<MIN, MAX, MIN>]) #
(port ((<(WIDTH/2), HEIGHT>|<0, (HEIGHT/2)>), [<MIN, MAX, MAX>]) #
Nil)): a port list composed by two simple ports:

— The first simple port covers the up-right quarter of the screen (the vector
((WIDTH/2), 0>|<WIDTH, (HEIGHT/2))) and with the green colour associ-
ated ([<MIN, MAX, MIN>]).

— The second simple port covers the bottom-left quarter of the screen
(the vector (<(WIDTH/2), HEIGHT>|<0, (HEIGHT/2)>)) and with the yel-
low colour associated ([<MIN, MAX, MAX>]).

5.2 The Windows & Values Layer

5.2.1 The Values

The Ty Win System assigns a method to display any object of the types introduced
in Section 4.1 on page 20. These objects are canonical values of the Typed Functional
Language module. See Section 7 on page 35 for a complete description of this sub-
layer.

Examples

e tt: the object of the T type.

True: an object of the Boolean type.

7: an object of the Integer type.

0.45: an object of the Real type.

e [3: 2 : 8 1]: an object of the List type.

{ True : True : False }: an object of the Set type.

InR(-5): an object of the Disjoint Union type.

24 5 THE TYWIN LANGUAGE

e (tt, 9.3): an object of the Cartesian Product type.

e <12::2.8::True>: an object of the Record type.

5.2.2 The Windows

In Ty Win the method used to display graphically an object (or value) is associated
with the type of the object. The windows are defined as extensions of the different
types in the language. Then, the methods to display objects are associated with the
windows. See Section 8 on page 37 for a complete description of this sub-layer.

Observations

1. The Integer type is extended with a range as it was introduced in Section 2.3
on page 14 for the Nat type. The window Integer(1..5) can display any
integer, but only the values between 1 and 5 should be visible in the output.
See Section 10.1.4 on page 40 for a complete description of how the integer
objects are displayed.

2. The List type is extended with a range and an integer in order to define which
sub-values of the list are displayed and wich orientation is used. The win-
dow List of ((2..4), 0, Boolean) can display the second, third and fourth
sub-values of the list using the same orientation of the original port. See Sec-
tion 10.2.1 on page 41 for a complete description of how the list objects are
displayed.

Examples

e T: a window for the T type.

e Boolean: a window for the Boolean type.

e Integer (3..4): a window for the Integer type with the range (3..4).
e Real: a window for the Real type.

e List of ((2..5), 0, Boolean): a window for the List type.

e Set of Real: a window for the Set type.

e (Boolean + Integer (1..100)): a window for the Disjoint Union type.
e (T * Real): a window for the Cartesian Product type.

® Record (Integer (1..10) :: Real :: Boolean>: a window for the Record
type.

5.3 The Views Layer 25

5.3 The Views Layer

In the TyWin Language a view is a pair (window, port). Then views have the
information needed to represent graphically every object or value. These objects
are canonical values of the Typed Functional Language module'. See Section 9 on
page 38 for a complete description of this layer.

Examples

e ToView(Boolean, port((<0, O>|<WIDTH, HEIGHT>), [<MID, MID, MID>])): a
view to display boolean values in the port port((<0, 0>|<WIDTH, HEIGHT>),
[<MAX, MAX, MIN>])).

e ToView(Integer(l..10), port((<WIDTH, HEIGHT>|<(WIDTH/2), (HEIGHT/2)>),
[<MAX, MIN, MAX>])): aview to display integer numbers in the port port ((<WIDTH,
HEIGHT>|<(WIDTH/2), (HEIGHT/2)>), [<MAX, MIN, MAX>])).

5.4 The Sentences Layer

The sentences included in the system are:

Assignment :
associates a new value with an identifier.

Graphics Display :
sends the graphic data to the X-Windows System.

File Inclusion :
includes and processes a pre-defined Ty Win program.

Free Identifier :
deletes an identifier of the environment and frees its associated memory.

See Section 11 on page 45 for a complete description of this layer.

Examples

e al = port((<0, 0>|<WIDTH, HEIGHT>), [<MIN, MAX, MIN>]);

It assigns the port port((<0, 0>|<WIDTH, HEIGHT>), [<MIN, MAX, MIN>]) to
the identifier al.

e #include "figurel.fig";

It includes the definitions in the "figurel.fig" file.

14The view has the method of displaying in the window and the place of the screen where to
display in the port.

26

5 THE TYWIN LANGUAGE

e display(port((<0, 0>|<WIDTH, HEIGHT>), [<MAX, MAX, MIN>]));
It displays the port port((<0, 0>|<WIDTH, HEIGHT>), [<MAX, MAX, MIN>1).

e free(al);

It frees the memory assigned to the identifier a1.

5.4 The Sentences Layer 27

Example of a complete program

A simple example is introduced to show how the language is structured.

display(|| Display a port.
ToPort (|| Define a port.
ToView (|| Define a view.
Integer(1..5), || Window (or type).
port (|| Create a port.
(<0, 0>|<WIDTH, HEIGHT>), || Vector (or Region).
[<MID, MID, MID>] || Colour.
)
),
2 || Value.
)
)

The screen is split in five rectangles and the second is shown in grey, as can be seen
in Figure 14.

Figure 14: Example output.

Observations

1. The ToView operator receives a port and a window and returns a view.

2. The ToPort operator receives a view and a value and returns a port. This is the
main operator of the system. It translates the value into graphic information
in function of the view.

28 6 THE PORTS

6 The Ports

The concept of port is the core of the Ty Win System and this layer is really the
kernel of the language. Every other object will be reduced to a port in order to be
displayed.

In TyWain a port object can be an instance of a simple port or an instance of a port
list. A simple port in the language is a rectangular region with an orientation and
some colour information. A port list is a list of simple ports.

6.1 Definition of ports
6.1.1 Simple ports

A simple port in the language is a rectangular region (with its edges aligned with
the screen edges '°) with an orientation and some colour information. The region
and the orientation are defined by a vector (a pair of coordinates). How the vector
represents the region and one of the four possible orientations (NORTH, EAST, SOUTH or
WEST) is shown in Figure 15. The orientation of a simple port is used in the semantic
of the main operators.

NORTH EAST SOUTH WEST

<$2, y2> <x1, y1> <$1, y1> <x2? y2>

% é

(T1, 11) (T2, Y2) (T2, Ya2) (z1, Y1)

Figure 15: The Ports Orientations defined in function of the different variations of
the vector (<x1a y1>|<$2, y2>)

The colour information is defined by a record of five different planes of colour. Then
five colours allow the user to manage five planes in a simple port. The display of a
port on screen is characterized by its associated planes of colour.

In conclusion, a simple port is composed by a vector (or rectangular region with an
orientation) and the planes of colour.

15 Joaquin Torres Garcia said about the wall paintings: “The dominant lines in the architecture
are always the vertical and the horizontal. Circles, semicircles, parabolas, angles and oblique lines
are always generated in function of them.” [Gar69]

6.1 Definition of ports 29

simple_port Constructor: o Port (vector , planes)
vector Constructor: o (position | position)
position Constructor: o (integer , integer)
planes Constructors: o [colour : colour : colour : colour : colour |
o [colour : colour : colour : colour |
o [colour : colour : colour |
o [colour : colour]
o [colour |
colour Constructor: o < complevel , complevel , complevel >
complevel Constructors: o Min
o Mdn
o Mid
o Mdx
o Max

Observations

1. In order to deal with simple ports whose regions are only one pixel but with
any of the four orientations, the vector origin is in the defined region but the
destiny is out, as it is shown in Figure 15.

When both positions in a vector have the same value, the simple port defined
is null, since it has not got a region.

2. The language has five variants of colour planes definition. Then, the user can
use less than five colour planes even when the Ty Win System manages five
planes of colours associated with a port.

Each colour plane is defined by its | Red - Green - Blue | components. A
colour component can take one of five different values!é. Then, the system can
manage 5% = 125 colours.

6.1.2 Port lists

Port lists are introduced in the language for two reasons.

1. In order to allow the user to manage more complex figures modelled by ports.
Every graphic image can be built using some coloured rectangles (if the image
uses only the colours supported by the system).

2. If we work only with simple ports some basic operations considered in the
language are not closed. For example the union or difference of two simple
ports is not always another simple port. On the other hand, a list of rectangles
is closed under these operations 7.

16 Min:minimum; M dn:middle-minimum; Mid:middle; M dz:middle-maximum; M az:maximum
17This is the reason for not introducing other shapes in the port scheme. Think about the
different results of the intersection between other shapes, for example two circles.

30 6 THE PORTS

Then, a port list is a list of simple ports.

Nil
(simple_port # port_list)

@)

port_list Constructors:

Selectors: o Head (port_list) —simple_port
Tail (port_ list) —port_list
o Length (port.list) —vinteger

Some operators, like the selectors implemented on port lists are not needed in the
prototype, but make the language more friendly for developing tests.

6.2 Operators of ports

The following table introduce the operators defined on the port class (composed by
simple ports and ports lists).

port Operators: o Rotate (port) —port
UnRotate (port) —port
BiRotate (port) —port
SplitInt (port , range , integer) —port
SplitReal (port , real) —port

18

(port + port) —sport
(port * port) —port
(port — port) —sport
SetColour (port , planes) —port

range Constructor: o (integer .. integer)

6.2.1 Rotate - BiRotate - UnRotate
The Rotate operator modifies the vector of the port, in order to change the orien-
tation but preserves the region. How it works is shown in Figure 16.

The operator BiRotate applies two rotations and UnRotate applies three. Since the
result of apply the operator Rotate four times is the Identity, the following equation
is true in the system:

(Rotate o UnRotate) = (UnRotate o Rotate) = (BiRotate o BiRotate) = Identity

18 A range represents an interval defined by two integers, the first is the lower bound and the
second the upper bound. However, if the second integer is lower than the first, an empty range is
defined, and any integer will be out of the interval.

6.2 Operators of ports 31

NORTH — EAST EAST — SOUTH
u]
L
SOUTH — WEST WEST — NORTH

v)

Figure 16: Port rotation examples

6.2.2 SplitInt

The SplitInt operator splits the original port in as many sub-ports as integer numbers
are in the range and selects the port whose number matches with the integer number
of the third argument. Figure 17 shows the four different variations of the operator
in function of the four possible orientations °.

—

—

Figure 17: SplitInt examples. In this figure, the range represents the values
{v1, v2,v3,v4,v5} and the integer is v,.

When the range is null or the integer number is not in the range, there is not
matching and then the operator returns a null simple port or an empty port list.

6.2.3 SplitReal

The SplitReal operator splits the port proportionally to the real argument. For
example the real number 0.5 returns a port whose size is half of the original, the

19For example, the arguments in this case could be the range (3..7) and the integer 4.

32 6 THE PORTS

real number 0.75 returns a port whose size is three quarters of the original and any
real argument greater than 1.0 returns the whole port. Figure 18 shows the four
different variations of the operator, in function of the four possible orientations.

u| O
= |

O O

Figure 18: SplitReal examples. In this figure, the real value is 0.75

6.2.4 Constructive operators

The union (+), intersection () and difference (—) of two simple ports are shown
in Figure 19.

Port A Port B

A+B A*B A-B

Figure 19: Constructive Ports Operators

The union of two ports concatenates the port lists or creates a new one; then this
operation returns a port list.

Some problems were found with the difference of two ports. Think for example
in the difference of two simple ports when the second is included in the first. In
this case, the result can not be modelled by another simple port, and it does not
exist a intuitive or direct solution using port lists. The language returns a port list
composed by four sub-ports as is shown in Figure 20. This method adopted during
the implementation is only one of some possibilities. During the analysis, no case
was found to be better than the one used.

Property

The colour planes associated with the result port are the colour planes of the first
argument. Then, the following equation is true in the system:

6.2 Operators of ports 33

Port A Port B A-B

Figure 20: Difference example
display(.A) = display(A—B) U display(ANB)
However, we have to remark that the equation is false if we omit the display operator.

This point is shown in Figure 21.
A-B

Ports List A Ports List B
A*B display((A-B)+(A*B)) +(A*B))

Figure 21: A~(A—B) U (ANB) example

Observation

Unfortunately, the Ty Win System does not hold more basic properties. For exam-
ple, the commutative property is false for the product (intersection) in the system,
since (A*B) takes the colour planes from A4 and (Bx.A) from B.

(AsB) # (B+A)

In spite of the fact that this last equation is false in the system, the alternatives
of combining the colours of both arguments in the different operators were refused,
since these methods make the result of applying some operations to different ports
unpredictable.

For example, if the average of colours were used, the result of applying some oper-
ations to ports with different colours, would result in grey coloured ports.

34 6 THE PORTS

In conclusion, the tests showed that the implemented method is better than other
considered alternatives even when it lacks some basic properties.

35

7 The Values

The TyWin System assigns a method to display objects of the types introduced in
Section 4.1 on page 20. These objects are canonical values of the Typed Functional
Language.

7.1 Simple values

Although in the complete TyWin System we handle only canonical values, in
the PL Translator module the simpler types have some operators defined (addition,
product, etc.) in order to make the language interpreter more friendly for test
performing.

T Constructor: o tt
boolean Constructors: o True
o False
real Constructors: o real_constant
o Aureate
Operators: o (real + real) —real
o (real x real) —real
o (real — real) —real
o (real [real) —real
o (—real) —real
integer Constructors: o integer_constant
o Width
o Height
Operators: o (integer + integer) —integer
o (integer % integer) —integer
o (integer — integer) —integer
o (integer | integer) —integer
o (— integer) —integer

The “aureate” section?’ is very often present in Torres Garcia’s paintings.

7.2 Collections

Two different classes of collections are introduced in Ty Win, lists and sets.

20 : s 1
The value of this real is 75

36

7 THE VALUES

list Constructors:

[]

[collection_values |

set Constructors:

{7

{ collection_values }

collection_values Syntax:

value
collection_values : value

7.3 Composed values

Finally, we have the values of the types record,

cartesian product and disjoint union.

record Constructor: o < record_values >
record_values Syntax: o wvalue
o record_values :: value
pair Constructor: o (value , value)
union Constructors: o InL (value)
o InR (value)
Observation

The values presented are the objects to be displayed in function of the view selected

by the system.

8 The Windows

37

A window in the TyWin System is defined as an extension of a type with some

display information.

The definitions of windows or extended types in the system are:

type Constructors:

Operator:

O
O
O
O
O
O
O
O
O

e}

T

Boolean

Real

Integer range

List of (range , integer | type)
Set of type

Record (record_types)

(type + type)

(type * type)

ToView (type , port) —view

record_types Constructors:

e}

type
record_types :: type

The ToView operator, translates a type structure to a view. This operation asso-
ciates the port with the information necessary to build the corresponding view.

38 9 THE VIEWS

9 The Views

A view represents a pair (window, port). It contains the information needed to
represent graphically every object, since it has the method in the window and the
place in the port. A view constructor is defined in the language for each type.

view Constructors: o VT (port)

o VBoolean (port)

o VReal (port)

o Vlnteger (range , port)

o VList (range , integer , view)

o VSet (view)

o VRecord (record_views)

o VUnion (view , view)

o VProd (view , view)

Operator: o ToPort(view , value) —portlist
recordviews Constructors: o wview
record_views :: view

Observations

1. The RotatePlane operation is applied to the ports in the record_views argu-
ment when they are saved in a Record View. The idea is that the first sub-view
of the record is not modified, the V RotatePlane operation is applied once to
the second sub-view of the record, twice to the third sub-view of the record
and so on.

In this way, the first colour in the port is activated in the first sub-view, the
second colour in the port is activated in the second sub-view, etc. Then, the
first object in the record will be displayed in the first colour, the second object
in the record will be displayed in the second colour, and so on.

2. The Rotate operation is applied to the port in the second view argument when
it is saved in a Product view. The idea is that the second object is considered
rotated when the intersection is evaluated.

The core of the language is the concept of port. In order to produce the graphic
representation of any object, the port in the view is transformed into another port.
This transformation is developed by the T'oPort operator.

39

Observation

A particular conditional can be introduced easily in the language:

cond : Boolean x Port — Port

cond(True, ToPort(ToView(T,P), V7)) = ToPort(ToView(T,P),Vr))
cond(False, ToPort(ToView(T,P),Vr)) = Nil

The result of this conditional is the port defined by the value V7 and the view made
by the type 7 and the port P, when the Boolean value is True, and the null port
when the Boolean value is False.

The semantic associated with the display of the Boolean and Product types allows
the user to use the conditional in the language. The following equation explain it:

cond(Vpooiean, ToPort(ToView(T,P), V1))

ToPort(ToView((T*Boolean),P), V7, VBoolean))

Thus the display of a product where the second subtype is Boolean works like the
conditional introduced above.

40 10 THE TOPORT OPERATOR

10 The ToPort Operator

The ToPort operator translates a value into graphic information (a port). It works
in function of the category of views considered.

10.1 Simple values
10.1.1 ToPort(VT(port), tt)

Since the type T has only one value, the result is the same port received as argument.

Example

e ToPort(VT (pyiew), tt) - Figure 22.A

10.1.2 ToPort(VBoolean(port), bool value)

The result is an empty port list if the bool_value is False and the original port when
the bool value is T'rue.

Examples
e ToPort(V Boolean(pyiew), True) - Figure 22.A

e ToPort(V Boolean(pyiew), False) - Figure 22.B

10.1.3 ToPort (VReal (port), real_value)

The operator applies the Split Real operation to the port with the argument real_value.

Example

e ToPort(V Real(pyiew),0.75) - Figure 22.C

10.1.4 ToPort (VInteger(range , port), int_value)

The operator applies the SplitInt operation to the port with the arguments range
and nt_value.

10.2

Collections 41

Examples

e ToPort(VInteger((15..15), Pyiew), 15) - Figure 22.A

ToPort(VInteger((1..0), Dyiew), 3) - Figure 22.B
ToPort(VInteger((7..9), Dview), 12) - in Figure 22.B

ToPort(VInteger((3..6), Dyiew), 4) - in Figure 22.D

Figure 22: ToPort examples. Simple values cases. The original port pyie, is defined

in A.

The rules for simple values are introduced in Section C.1 on page 67.

10.2 Collections

10.2.1 ToPort (VList (range , integer, sub-view), list_value)

The display method associated with the lists is not so simple. The operation works
in function of the range in the view.

When the range is empty, the port in the sub-view is split in as many sub-
ports as elements are in the list_value (length(list_value)). Then, each split
sub-port is rotated the number of times defined by the integer. Finally, the
first element of the list is displayed in the sub-view with the first sub-port
split and rotated associated; the second element of the list is displayed in the
sub-view with the second sub-port split and rotated associated; and so on.

When the range is not empty, the port in the sub-view is split in as many
sub-ports as elements are in the range. Then, each split sub-port is rotated
the number of times defined by the integer. Finally, the element of the list
whose ordinal corresponds with the first integer of the range is displayed in the
sub-view with the first sub-port split and rotated associated; then the next
element of the list is displayed in the sub-view with the next sub-port split
and rotated associated; and so on.

42 10 THE TOPORT OPERATOR

Examples

e ToPort(V List((1..0),1, VInteger((1..5), Pyiew), [2 : 4 : 5 : 3]) - Figure 23.B

ToPort(V List((2..5),1, VInteger((1..5), Piew);
[4:2:4:5:3:7]) - Figure 23.B

ToPort(V List((3..6), 3, V Real (pyiew),
[0.1:0.05:0.6:0.4:0.0:0.8:0.9:0.7]) - Figure 23.C

ToPort(V List((1..0), 1,V Real(pyiew), [0.8 : 1.4 : 0.2 : 0.4]) - Figure 23.D

ToPort(V List((1..4),0, VInteger((5..8), Pyiew), |5 : 3: 6 : 7]) - Figure 23.E

ToPort(V List((3..7),1, VInteger((5..8), Pyiew), |1 : 8]) - Figure 23.H

ToPort(V List((0..1), 1, VInteger((5..8), Pyiew); []) - Figure 23.H

10.2.2 ToPort (VSet (sub-view), set_value)

The operator works on each element of set_value, using sub-view. By this way as
many ports as elements have set_value are obtained. The final result is the union
of all these port lists. When the set_value is empty, the result is an empty port list.

Examples
e ToPort(VSet(VInteger((1..8), Pview)), {1 : 3: 6 : 8}) - Figure 23.F

e ToPort(VSet(VInteger((3..6), Pyiew)), {2 :4: 6 : 10}) - Figure 23.G

e ToPort(VSet(V Real (pyiew)), {}) - Figure 23.H

The rules for collections are introduced in Section C.2 on page 67.

10.3 Composed values

In this case, ToPort is invoked with sub-view, and wval;, then with sub-views and
vals, and so on. Finally, the operation returns the union of all the previous results.

Remember that the V Record operator modifies the colour planes in the sub-views.
In this way, each element in the record can be displayed in a different colour.

10.3 Composed values 43

Figure 23: ToPort examples. Collection values cases. The original port pyiew is
defined in A.

Examples

e ToPort(V Record(V Integer((1..3), Diew) ::
VInteger((1..3), Dyiew)

Vinteger((1..3), Piew));

<1::2:3>)- Figure 24.B

e ToPort(V Record(V Real(pyiew) :
Vinteger((1..4), Piew)),
< 0.75:: 2 >) - Figure 24.C

10.3.2 ToPort (VUnion (sub-view;, sub-view,), union_value)

When the union_value corresponds to the left subtype of the union, the result is the
application of ToPort to sub-view; and this value. When union_value corresponds
to the right subtype of the union, the result is the application of ToPort to sub-views
and this value.

Examples

e ToPort(VUnion(V Real(pyicw),
ViInteger((1..4), Piew)),
InL(0.75)) - Figure 24.D

e ToPort(VUnion(V Real(pyicw),
VInteger((1..4), Piew)),
InR(2)) - Figure 24.E

44 10 THE TOPORT OPERATOR

10.3.3 ToPort (VProd (sub-view;, sub-view,), pair_value)

First, ToPort is recursively invoked with the left element of pair_value and sub-
view;, then with the right element of pair_value and sub-view,, and finally the
result is the intersection of both ports.

Remember that the V Prod operator rotates the port associated with the second
sub-view.

Examples

e ToPort(VProd(VInteger((1..4), Dyiew),
VReal(pview))a
(2,0.8)) - Figure 24.F

e ToPort(VSet(V Prod(VInteger((1..2), Pyiew)s

VInteger((1..5), Piew))),
{(1,2): (1,5) : (2,1) : (2,4)}) - Figure 24.G

e ToPort(V Record(V Set(V Prod(V Integer((1..2), Dview),
VInteger((1..5), Pyiew))) ::

VSet(V Prod(VInteger((1..2), picw),

ViInteger((1..5), Poicw))) ::

VSet(V Prod(VInteger((1..2), Dyiew),
VInteger((1..5), Pyiew)))),

)
2):(2,4)} >) - Figure 24.H

<{(1,5): (2,1} = {(1,3): (2,3)} = {(1

Figure 24: ToPort examples. Composed values cases. The original port pyie, is
defined in A with the three colour planes showed.

The rules for records, disjoint unions and cartesian products, are introduced in
Section C.3 on page 68.

45

11 The Sentences

The statements included in the system are:

assignment o identifier = expression ;
file_inclusion o #include " filename";
display o display (port) ;

free o free (identifier) ;

Then the language allows the user:

e To use identifiers to store simple ports, port lists, values, views, etc.

e To include complex values (like ideograms) and types stored in “libraries”
created by the user (for example using the Ideogram Editor).

e To display ports.

e To remove a local identifier from the environment when it becomes useless.
Since the scope of an identifier in the language is all the session after its
definition, it is useful to free the memory assigned to an identifier when it will
not be used again.

In order to allow the programmer to document his programs, two types of comments
are included in the language:

1. ... sentence ... || ... comment ... <EOL> : allows to write a comment at the
end of the sentence.

2. /% ... comment ... x/ : allows to write C style comments.

No other sentences are implemented because more complex structures (like func-
tions) will be available in the Functional Programming Language module of the
TyWin System, where the input of this PL Translator module is generated. In
conclusion, this module only translates canonical objects and types into ports.

46 12 THE IDEOGRAMS MODULE

12 The Ideograms Module

12.1 Introduction

The ideograms are implemented in the system as pairs (ideogram_value, ideogram_type).
The following steps should be followed to display an ideogram:

e Include the library-file where the ideogram is defined.

e Define the view where the ideogram will be displayed using the tdeogram_type
and the selected port.

e Define the port associated with the display of the ideogram using the ideogram_value
and the previouslly defined view.

e Display this port.

The model to design an ideogram is a common matrix of “pixels”. This model is
easily implemented in Ty Win like a set of “T'Wpixels”, where a TWpizels is a
cartesian product of integers. Where the ideogram has more than one colour plane,
the ideogram is a record where each field is defined like the previous set.

Then, an ideogram results in something very similar to a classic rectangular image.
The differences between the behaviour of both models are:

e An ideogram has many planes of colour, but the colour associated with each
plane is defined in the port where it is stamped and is not in the ideogram.

e Even when the ideograms have a resolution associated (the number of rows and
columns where it is defined), the display of an ideogram uses automatically
the size of the port where it is stamped.

12.2 The Ideogram Editor

A simple graphic editor was implemented to define five-planes ideograms. The editor
asks for the ideogram name and resolution and shows a grid to active the T'W pixels
with each of the five planes.

However, it is better to use the usual icon editors and translate the output to Ty Win
ideograms. Then the user would not be required to learn a new editor. Further, the
user can translate pre-defined icons and images to Ty Win.

12.3 The Ideogram Translator

The translator produces the same output as the editor, but the input can be a
standard X Bitmap or a Colour X Pixmap.

12.4 The Ideogram Compression 47

12.4 The Ideogram Compression

Unfortunately, some problems appeared when dealing with large ideograms (more
than 10.000 TW pizels):

1. the library-file size was huge.

2. the process for displaying an ideogram used too many resources (time and
memory).

In order to solve these problems a compression method was designed and imple-
mented. This method is similar to the Constant Area Coding compression
[GW93]. The compression process defines variable-size windows on the image in
order to detect rectangular areas with the same plane associated.

The number of rows and columns of this windows have to be divisors of the number of
rows and columns of the complete matrix respectively. When one of this rectangular
areas are found a sub-value is defined.

Then, the method covers each plane in the image, with variable-size rectangles.

Example

In order to better understand the compression method an example is introduced.
Figure 25 shows a 16 x 16 matrix associated with a two colour ideogram that we
called example.

This ideogram has 104 “pixels” (82 in the first plane and 22 in the second). Then
the simple method without compression would define two sets of TWpixels, one with
82 elements and the other with 22.

However, the largest square in the upper left corner (8 x 8) could be modelled by
the pair ((0, 0), (Integer(0..1) * Integer(0..1))). Then, only one value defines
this area, not 64 like in the simple method. You can see that the type (Integer(0..1)
* Integer(0..1)) is associated with the type of the first plane and the value (0, 0)
associated with the value of the first plane in the code of this example.

This idea is used with windows [(16 x 16) : (16 x8) : (8 x16) : (8 x8): ---: (2x2)
:(2x1): (1x2):(1x1)] considering the different combinations of divisors of 16.

48 12 THE IDEOGRAMS MODULE

Figure 25: The ideogram matrix
Finally, the following ideogram file is obtained:

plane_type_1 = Set of
(Set of (Integer(0..15) * Integer(0..15))
+ ((Integer(0..3) * Integer(0..3))
+ (Integer(0..1) * Integer(0..1))));

plane_1 = {InL({(15,15):(15,0)}) : InR(InL((0,3))) :InR(InR((0,0)))};

plane_type_2 = Set of
(Set of (Integer(0..15) * Integer(0..15))

+ ((Integer(0..7) * Integer(0..7))

+ (Integer(0..3) * Integer(0..3))));
plane_2 = {InL({(14,11):(11,14)3}):InR(InL((6,6))) :InR(InR((2,2)))};
example = < plane_1 :: plane_2 >;

example_type = Record (plane_type_1 :: plane_type_2);

free (plane_1);
free (plane_2);
free (plane_type_1);
free (plane_type_2);

49

13 Examples

13.1 Hello World

The first example introduced is the classic Hello World where it is taken advantage
of the fact that the language works translating ports into ports.

===

(HOR CT40% 0740 (70A 0701 07400 T740R TTH0H
(M40R C740h 07401 (7oA 0701 07400 T740R TTH0H

Figure 26: Hello World.

Figure 26 shows the result of the following simple program.

#include "$TW_LIBRARY/char.5.12.all";

lport = (port((<0, 0> | <WIDTH, HEIGHT>), [<MIN, MIN, MID>]) # Nil);

hello_val = [_H: _E: _L: _L: _0];
world_val = [sp: _W: _0: _R: _L: _D 1;
text_type = List of ((1..0), 1, char_type);

text_view = ToView(text_type, lport);
lport = ToPort(text_view, hello_val);

text_view = ToView(text_type, lport);
lport = ToPort(text_view, world_val);

display (lport);

First, the font library file char.5.12.all is loaded (each character is defined in a matrix
of 5 x 12). Then, a port that covers all the Ty Win output window, the values of
each string (implemented as a list of characters) and the type associated with these
strings are defined. After it, the views and ports for each string are defined, using
the port obtained by the first string in the view of the second. Finally the result
port is displayed.

50 13 EXAMPLES

13.2 Text Fonts
13.2.1 Text Orientation I

This example shows how the orientation of the ports does not affect the way that
the operations are applied.

ABCDEFGHIIKLN — = = = =
NOPQRSTUY WY =2 == S
abedefghijkln =2 = = =5 =
DOPQISLUVWIyI = = —: = —
1234567890 = = = = =

= 068.L9SPET1
= 1hxmanisibdou
= wyyligdjapaqe
= TAXMANLSHOLON
= — WTACIHD430D4V

Figure 27: Text Fonts.

=
e

ABCDEFGHT JELN
NOPQRSTUVWET]
DTS LUTHL)T

—
==
St
L=
—_
T
—
L1

Figure 27 shows the result of the following program.

#include "$TW_LIBRARY/char.20.24.all";
lport = (port((<0, 0> | <WIDTH, HEIGHT>), [<MDX, MDX, MDN> 1) # Nil);

sub_view = ToView((Integer(0..1) * Integer(0..1)), lport);

pl = ToPort (sub_view, (0, 0)); p2 = ToPort(sub_view, (1, 0));
p3 = ToPort(sub_view, (1, 1)); p4 = ToPort(sub_view, (0, 1));
pl = rotate(pl); p2 = birotate(p2); p3 = unrotate(p3);

wport = (pl+(p2+(p3+p4)));

text_val =
[
[sp: _A: _B: _C: _D: _E: _F: _G: _H: _I: _J: _K: _L: _M: sp]
[sp: _N: _0: _P: _Q: _R: _S: _T: _U: _V: _W: _X: _Y: _Z: sp]
[sp: _a: _b: _c: _d: _e: _f: _g: _h: _i: _j: _k: _1: _m: sp]
[sp: _n: _o: _p: _q: _r: _s: _t: _u: _v: _w: _X: _y: _z: sp]
[sp: _1: _2: _3: _4: _5: _6: _7: _8: _9: _0: sp]

13.2 Text Fonts

view = ToView(List of ((1.

o1

.0),3,List of ((1..0),0,char_type)), wport);

lport = ToPort(view, text_val);

display (lport);

First, the font library file char.20.24.all is loaded (each character is defined in a
matrix of 20 x 24). Then, a port that covers all the TyWin output window is
defined and split in four identical sub-ports using a cartesian product of integers.

Each sub-port is re-oriented

in order to obtain the four possible orientations and

the four sub-ports are associated with wport. Then, a list of strings (a string is
implemented as a list of characters) is defined. After that, the view and port for the
list of string are assigned to view and Iport respectively. Finally the result port is

displayed.

13.2.2 Text Orientation

This example shows how the

ABRCDEFGHIJKLM
NOPQRSTUVHXYZ
abedefghijkIn
nopgrstuvwiyz
1234567890
WINUETOIHYRET
200 m0<SHEY
L7000 TRURH
S000RBTCGE RN
FNEROONDEO
FHIALADHI AT
NOIDISLOAME AT
eqopazbyr [u
uodbisanamxAz
12EF<S9L860
ANODHRDEHDE A
70LOMIENDZXHN
100 DWOLNHAE
COGEHOL I BN
ANAFNOr D00

II

orientation of the strings characters can be managed.

B BB 0689577 5.5 e
w8 goes 2 rhwwanysibdou P52 T E 5o
& og g e unltiepge =852
S E A s TRMANISDAN = 58 B
=SB SR DA RE = 8
T E=eSE 0onrONYINA zre—m = g
SEES S il ZTEEES
SEESS MMM EZESES
SZsSE Mg EEEZSS
S SETaE RHINN ==
— = m==n 098765437] =rez=.0 =
= BB S S ryowutstgpon = =52 =
= B8 }éﬁgg £ nlkjihgfedcba 2 28 & &
o == ITONVUISRQEN E £ &5 B
= &= 5 = MKJIHCFEN(EE = S8 8 —
éggg% DODNOMEWNR HEETEEo
2§g§§ Uil EEEE RS
==ES= awwcr@hmmw 2= =2
gﬁi‘g’é WXL SEE==E
S Eas =S NIy S RE=E T

Figure 28: Text Fonts.

Figure 28 shows the result of the following program.

#include "$TW_LIBRARY/char.20.24.all1";

lport = (port((<0, 0> | <WIDTH, HEIGHT>), [<MDX, MDX, MDN> 1) # Nil);

sub_view = ToView((Integer(1l..4) * Integer(l..4)), lport);

p01 = ToPort(sub_view, (1,
p03 = ToPort(sub_view, (1,
p05 = ToPort(sub_view, (2,
p07 = ToPort(sub_view, (2,

P09

ToPort (sub_view, (3,

1)); p02 = ToPort(sub_view, (1, 2));
3)); p04 = ToPort(sub_view, (1, 4));
1)) p06 = ToPort(sub_view, (2, 2));
3)); p08 = ToPort(sub_view, (2, 4));
1)) pl0 = ToPort(sub_view, (3, 2));

52 13 EXAMPLES
pll = ToPort(sub_view, (3, 3)); pl2 = ToPort(sub_view, (3, 4));
pl3 = ToPort(sub_view, (4, 1)); pléd = ToPort(sub_view, (4, 2));
pl5 = ToPort(sub_view, (4, 3)); pl6 = ToPort(sub_view, (4, 4));
p0l = rotate(p0l); p02 = rotate(p02); p03 = rotate(p03);
p04 = rotate(p04); p05 = birotate(p05); p06 = birotate (p06) ;
p07 = birotate(p07); p08 = birotate(p08); p09 = unrotate (p09) ;
pl0 = unrotate(pl0); pll = unrotate(pll); pl2 = unrotate(pl2);
pI = (((p01 + pO5) + p09) + p13);
pII = (((p02 + p06) + pl0) + pld);
pIII = (((p03 + p07) + pll) + pib);
pIV = (((p04 + p08) + pl12) + p16);
text_val =

[

[sp: _A: _B: _C: _D: _E: _ G: _H: _I: _J: _K: _L: _M: sp]

[sp: _N: _0: _P: _Q: _R: _ T: _U: _V: _W: _X: _Y: _Z: sp]

[sp: _a: _b: _c: _d: _e: _f: _g: _h: _i: _j: _k: _1: _m: sp]

[sp: _n: _o: _p: _q: _r: _ Po_u: _v: _w: _X: _y: _z: sp]

[sp: _1: _2: _3: _4: _5: _6: _8: _9: _0: sp]

1;

view = ToView(List of ((1..0), 3, List of ((1..0), 0, char_type)), pl);
lportI = ToPort(view, text_val);
view = ToView(List of ((1..0), 3, List of ((1..0), 1, char_type)), pII);
lportII = ToPort(view, text_val);
view = ToView(List of ((1..0), 3, List of ((1..0), 2, char_type)), pIII);
lportIII = ToPort(view, text_val);
view = ToView(List of ((1..0), 3, List of ((1..0), 3, char_type)), pIV);

lportIV = ToPort(view, text_val);

display (lportI);

display (lportII);
display (lportIII);
display (1lportIV);

First, the font library file char.20.24.all is loaded. Then, a port that covers all the
TyWain output window is defined and split in sixteen identical sub-ports using a
cartesian product of integers. Some sub-ports are re-oriented in order to obtain the
four possible orientations in groups of four ports. The sixteen sub-ports are associ-
ated in four groups where each group has four ports with four different orientations.
Then, a list of strings (a string is implemented as a list of characters) is defined.
After that, the string is processed in each group of ports, using different rotations
for each view. Finally the result ports are displayed.

13.3 Coloured Butterfly

13.3 Coloured Butterfly

93

This example shows how the colours are associated with the ports and not to the

Ty Win images (ideograms).

Figure 29: Butterfly.

Figure 29 shows the result of the following program.

pp = (port((<0, 0> | <WIDTH, HEIGHT>), [<MDX, MDX, MDN> 1) # Nil);

sub_view = ToView((Integer(1l..2) * Integer(1l..2))

pl = ToPort(sub_view, (1, 1)); p2 =
p3 = ToPort(sub_view, (2, 1)); p4 =
pl = SetColour(pi, [<MAX,MDX,MDX>:<MDX,MDX,MDN>:

<MIN,MIN,MIN>:<MAX,MAX,MIN>]);
p2 = SetColour(p2, [<MDX,MDX,MAX>:<MAX,MDN,MDN>:
<MAX ,MIN,MIN>:<MAX,MDX,MDX> 1);
p3 = SetColour(p3, [<MDX,MDX,MDX>:<MDN,MAX,MDN>:
<MIN,MDX,MIN>:<MIN,MID,MIN>]);
p4 = SetColour(p4, [<MDX,MAX,MDX>:<MDN,MDN,MAX>:
<MIN,MIN,MAX>:<MIN,MAX,MAX> 1);

p_all = (((pl + p2) + p3) + pd);

#include "$TW_LIBRARY/butterfly";
view = ToView(butterfly_type, p_all);
lport = ToPort(view, butterfly);
display (lport);

» PP);

ToPort (sub_view, (1, 2));
ToPort (sub_view, (2, 2));

<MDN ,MDN , MDN> :
<MDN ,MIN,MIN>:
<MIN,MDN,MIN>:

<MDN ,MIN,MID>:

54 13 EXAMPLES

13.4 Torres Garcia’s Paintings

The following pictures show four examples of designs where Torres Garcia’s paintings
were taken as models.

\

ANP

ils
I

Figure 30: “Constructivo con ancla y barco - Anphy” (1932 - 12 x 9 cm.).

21

Figure 31: “Composicién constructiva” (1932 - 73 x 60 cm.).

22

21 Constructive with anchor and ship - Anphy
22Constructive composition

13.4 Torres Garcia’s Paintings 55

Figure 32: “Planos de color - Madera constructiva” (1929 - 28 x 21.5 cm.).

23

Figure 33: “Estructura a cinco tonos con dos formas intercaladas” (1948 - 52 x 50
cm.).

24

23Planes of colour - Constructive wood
24Gtructure at five tones with two shapes intercalated

56 13 EXAMPLES

Figure 34: “Construccién” (1944 - 54 x 82 cm.).

25

13.5 Screen design

Figure 35 shows a different example, a possible screen on a graphic station.

The first example introduced is the
classic Hello World where is taken
advantage of the fact that the language
works translating ports into ports

Figure 35: Screen Design.

25Construction

37

14 Conclusions and Future Work

One of the main questions of the Ty Win research project was:

Could a TyWin programmer easily define constructive style designs, defining
structures and stamping ideograms stored in libraries?

The tests performed with the Language Interpreter indicate that we can answer the
previous question in a positive form:

After a learning period of the different display rules, it was possible to design and
program in a natural and easy way 2D designs like the examples introduced in this

paper.

We have to remark that the Ty Win programmer does not need a deep knowledge in
Computer Graphics. The programmer just needs to learn the graphic representation
rules of the different types and to understand the simple model <port-window-
view> defined in the system.

From this point of view, the system could be useful for beginners in Computer
Graphics since they would mainly use the usual programming language concepts.

The task of programming in the Ty Win System the examples gave us more infor-
mation about the behavior of the system:

e The examples revealed that the Ty Win programmer can easily design fractals
like in the Hello World or Screen Design examples.

e When the graphic editors of the system are available, the task of programming
the examples presented in this paper will take few minutes 2¢.

e In TyWin, 2D graphic designs are independent of the size of the port where
the designs will be mapped. Then, an ideogram stored in a library does not
include any restriction of the port size where it can be displayed.

e Text in Ty Win was implemented in a easy way by means of ideograms rep-
resenting fixed pitch (or character-cell) fonts.

e Even when this implementation of the system can use only a reduced set of
colours (125 colours), this problem could be overcome in future extensions
using different primitives to manage the colours in the X-Windows System.

However, we can not evaluate completely the two finished modules until all the
modules of the Ty Win System are developed. We hope that the Typed Functional

261f all the ideograms of the design are defined previously.

58 14 CONCLUSIONS AND FUTURE WORK

Language module will enhance the potential of the system 27.

In balance, the implementation of the Language Interpreter module and the Ideograms
sub-system allows the user to program designs using a really different conception
that needs some practice to work loosely.

Unfortunately at this stage of the development the prototype does not provide the
user with primitives to manage some simple shapes. However, we think that the
Typed Functional Language module will provide the primitives to manage diagonal
lines, triangles, arcs and other primitive shapes and also will provide the primitives
to deal with variable-pitch (or proportional) fonts implementing libraries of functions
to deal with some shapes and fonts.

Then, for a definitive evaluation of these implemented modules, it should be neces-
sary to implement all the Ty Win System modules and evaluate how each module
interacts with the others in the complete system.

2TJuan José Cabezas has been implementing the Typed Functional Language (“bamba”) for
the system since 1994.

99

Acknowledgements

I specially thank Juan José Cabezas for suggesting this project and for helping me
along the development of this work.

I want to thank Gustavo Betarte and Vera Goldim for reading drafts of this docu-
ment and for making suggestions.

I would also want to thank the members of the Bid-Conicyt project number 043 “Es-
tructuras para Sistemas Légicos (ESL)”?® who allowed me to use their workstations
and laser printer.

28Logical Framework

60

REFERENCES

References

[Cab91] Juan José Cabezas. An approach to typed windows.
Proceedings of the Compugraphics91 Conference, Portugal, 1991.

[Gar69] Joaquin Torres Garcia. Lo aparente y lo concreto en el arte (1947).
Capitulo Oriental 41 - Centro Editor de América Latina, 1969.

[GW93] Rafael C. Gonzdles and Richard E. Woods. Digital Image Processing.
Addison Wesley, 1993.

[Lin92] Gabriel Paluffo Linari. Historia de la Pintura Uruguaya. Torres Garcia :
de Barcelona a Paris.
Ediciones de la Banda Oriental, 1992.

[NS83] William M. Newman and Robert F. Sprouil. Principles of Interactive Com-
puter Graphics.
Mc Graw Hill, 1983.

[NPS90] Bengt Nordstrém, Kent Petersson and Jan M. Smith. Programming in

Martin-Lof’s Type Theory. An Introduction.
Oxford University Press, 1990.

61

APPENDIX

A The Implementation

All the modules were programmed in C. Lex and Yacc were used to parse the
TyWin Language and the X-images (X Bitmaps or colour X Pixmaps) in the
ideogram’s translator. The X1:b library was used to manage the X-Windows graphic
output and the XView library was used in the Ideogram Editor.

The TyW:in interpreter takes more than 9000 code lines and the ideogram transla-
tors more than 2000.

A.1 The Interpreter Architecture

The interpreter main modules are shown in Figure 36.

Interpreter

¢ ¢

Parsing Language Layers X-Windows Manage

Figure 36: Interpreter Modules - Architecture.

Then, the interpreter is composed by three sub-systems.

A.1.1 Parsing

This module is composed by three sub-modules as is shown in Figure 37. Then, the
parsing module has:

e a Lex component to make the lexicographic analysis.
e a Yacc component to make the syntax analysis.

e a Layers component to define the syntax functions invoked in the Yacc module.
This module has one sub-module for each component of the language.

62

A THE IMPLEMENTATION

Parsing
Layers
Lex Parsing Yacc
Ports Values Views Windows Statements
Parsing Parsing Parsing Parsing Parsing

Figure 37: Parsing sub-modules.

A.1.2 Language Layers

This module is composed by five sub-modules as is shown in Figure 38. Then, a
sub-module is defined for each component of the language in order to define the
services for each layer (constructors, selectors, operators, etc.).

Language Layers

Ports Values Views Windows Statements

Figure 38: Language Layers sub-modules.

A.1.3 X-Windows Manage

This module manages the graphic output to the X-Windows System.

A.2 The Image Translator Architecture

The image translator main modules are shown in Figure 39.

Then, the image translator is composed by three sub-systems.

e The Parsing module loads the X-image (X Bitmap or colour X Pixmap) in an
internal format in order to be processed.

A.2 The Image Translator Architecture 63

Image Translator

¢ ¢

Parsing Compression TyWin Library Output

Figure 39: Image Translator Modules - Architecture.

e The Compression module compresses the image.

e The TyWain Library Output module saves the new Ty W2in ideogram file in
the directory of libraries.

64 B THE TYWIN LANGUAGE SYNTAX

B The TyWin Language Syntax

B.1 Ports

Simple Ports

simple_port Constructor: o Port (vector , planes)
vector Constructor: o (position | position)
position Constructor: o (integer , integer)
planes Constructors: o [colour : colour : colour : colour : colour |
o [colour : colour : colour : colour |
o [colour : colour : colour |
o [colour : colour]
o [colour |
colour Constructor: o < complevel , complevel , complevel >
complevel Constructors: o Min
o Mdn
o Mid
o Mdx
o Max
Port lists

port_list Constructors: o Nil
(simple_port # port_list)

Selectors: o Head (port.list) —simple_port
Tail (port_list) —port_ list
Length (port_list) —integer

Port’s operations

port Operators: o Rotate (port) —port
UnRotate (port) —port
BiRotate (port) —port

SplitInt (port , range , integer) —port

SplitReal (port , real) —port
(port + port) —sport
(port * port) —port
(port — port) —sport
o SetColour (port , planes) —port

@)

range Constructor:

(integer .. integer)

B.2 Values

B.2 Values

Simple values

T Constructor: o tt
boolean Constructors: o True
o False
real Constructors: o real_constant
o Aureate
Operators: o (real + real) —real
o (real x real) —real
o (real — real) —real
o (real [/ real) —real
o (—real) —real
integer Constructors: o integer_constant
o Width
o Height
Operators: o (integer + integer) —integer
o (integer x integer) —integer
o (integer — integer) —integer
o (integer | integer) —integer
o (— integer) —integer
Collections
list Constructors: o []
o [collection_values |
set Constructors: o { }
o { collection_values }
collection_values Syntax: o wvalue
o collection_values : value
Composed values
record Constructor: o < record_values >
record_values Syntax: o wvalue
o recordvalues :: value
pair Constructor: o (value , value)
union Constructors: o InL (value)
o InR (value)

66 B THE TYWIN LANGUAGE SYNTAX
B.3 Views
view Constructors: o VT (port)
o VBoolean (port)
o VReal (port)
o Vlnteger (range , port)
o VList (range , integer , view)
o VSet (view)
o VRecord (record_views)
o VUnion (view , view)
o VProd (view , view)
Operator: o ToPort(view , value) —portlist
recordviews Constructors: o wview
record_views :: view
B.4 Windows
type Constructors: o T
o Boolean
o Real
o Integer range
o List of (range , integer , type)
o Set of type
o Record (record_types)
o (type + type)
o (type * type)
Operator: o ToView (type , port) —view
record_types Constructors: o type
record_types :: type
B.5 Sentences
assignment o identifier = expression ;
file_inclusion o #include " filename";
display o display (port) ;
free o free (identifier) ;

C ToPort operator specification

C.1 Simple values

The rules for simple values are:

67

ToPort(VT (port), tt) = port

ToPort(V Boolean(port), False) = Nil
ToPort(V Boolean(port), True) = port

ToPort(V Real(port), real _val) = SplitReal(port, real —val)

ToPort(V Integer(range, port),int_val) = SplitInt(port, range,int_val)

C.2 Collections

The rules for collections are:

ToPort(V List(rangeempty, rot_int, sub-view), [valy : ... : val,]) =
ToPort(V Rot,ot_int(V Split(sub-view, (1..n),1))), valy)
+...+
ToPort(V Rot,o_int(V Split(sub-view, (1..n),n))), val,)

ToPort(V List((ry..rs), rot_int, sub-view), [valy : ... : val,]) =

ToPort(V Rotye_int(V Split(sub-view, (1..(ry — 1)), 1))), val,,)

+...+

ToPort(V Rotyet_int(V Split(sub-view, (1..(rg — 71)), (r2 — r1)))), val,,)

ToPort(V Set(sub-view),{}) = Nil
ToPort(V Set(sub-view), {valy : vals : ... : val,}) =

ToPort(sub-view, valy) + ToPort(V Set(sub-view), {valy : ... : val,})

Where:

o V Rot,oi_int(view) rotates the ports in the view rot_int times.

o V Split(view, range, int_index) splites the port in the view in function to range

and int_index.

68 C TOPORT OPERATOR SPECIFICATION

C.3 Composed values

The rules for records, disjoint unions and cartesian products are:

ToPort(V Record(sub-view; :: ... :: sub-view,,), < valy :: ... :: val, >) =
ToPort(sub-viewy,valy) + ...+ ToPort(sub-view,, val,)

ToPort(VUnion(sub-viewy, sub-views), InL(val)) = ToPort(sub-view, val)
ToPort(VUnion(sub-views, sub-views), InR(val)) = ToPort(sub-views, val)

ToPort(V Prod(sub-viewy, sub-view,), (valy,valy)) =
ToPort(sub-views, valy)) * ToPort(sub-views, vals)

