A Machine-assisted Proof of the Subject Reduction Property for
a Small Typed Functional Language

Ana Bove !

bove@fing.edu.uy

November, 1995

!Computer Science Department, Engineering School, University of the Republic, Montevideo,
Uruguay. Partially supported by a Bid-Conicyt grant and by a Swedish Institute scholarship.

Abstract

We present an experiment in formally describing a programming language and its properties
in constructive type theory. By constructive type theory we understand primarily the formula-
tion of Martin-L6f’s set theory. Constructive type theory can also be seen as a programming
language where we write types, and objects of these types that can be view as functional pro-
grams. Thus, practical applicability of type theory depends on the availability of programming
environments or proof assistants. The language we analyze is a small typed functional language.
We present its syntax, its dynamic semantics and its type system. Among other properties, we
present a formalization of the Subject Reduction property for the language. The proof assistant
we use is ALF.

Contents

1 Introduction

1.1 About this Paper e e

2 Informal Presentation

2.1 The Syntax of the Language
2.2 The Dynamic Semantics of the Language
2.2.1 Some Properties of the Dynamic Semantics
2.3 The Type System o e
2.3.1 The Set of Types o e
2.3.2 The Contexts for the Type System
2.3.3 Presentation of the Type System
2.4 The Subject Reduction Theorem

Working with ALF

3.1 Formalization in ALF e
3.1.1 Formalization of the Set of Variables
3.1.2 Formalization of Contexts

3.1.3 Formalization of the Substitution Lemma
3.2 Some Conclusions About ALF e

Conclusions
4.1 Related Work o e e e
4.2 TFurther Work e e

ALF Code

A.1 Definition of the Set of Variables0 0 0.
A.2 Definition of the Set of Expressions 0oL,
A.3 Definition of Canonical Expressions 0000
A.4 Definition of the Dynamic Semantics o 0oL
A.5 Formalization of the Proofs Related with the Dynamic Semantics
A.6 Definition of the Set of Types o Lo
A.7 Definition of the Set of Declarations
A.8 Definition of the Set List of Declarations
A.9 Definition of the Predicate Context
A.10 Definition of the Type System o Lo
A.11 Formalization of the Proofs Related to the Type System
A.12 Formalization of the Subject Reduction Property

N =

— © 00 00 00 O O = W

—_

N = = = =
— 00 O O O D

22
22
23

List of Figures

0~ O Tk W N~

Abstract Syntax of Fap. oo 4
Definition of the function _ [/_]over Fep. 5
Inductive Definition of the Dynamic Semantics of the Language. 7
Abstract Syntax of the Set of Types. Lo 8

Inductive Definition of Contexts. o . o o v i i e e e 9
Inductive Definition of the Type System for the Language. 10
Inductive Definition of the Predicate Context. 18

Modified Inductive Definition of the Type System for the Language. 19

1 Introduction

We are interested in the formalization of the theory of programming languages in constructive
type theory. By constructive type theory we understand primarily Martin-L&f’s theory of log-
ical types (or logical framework [Nor 90]). This is conceived as a formal language in which to
carry out constructive mathematics. So what we want to do in the first place is to investigate
constructive formalizations of the mathematics of programs.

Constructive type theory can also be viewed as a programming language. More precisely, in
type theory we write types and objects of these types, and the objects are functional programs.
Proofs of propositions are objects (programs) in type theory. Following the constructive inter-
pretations, a proof of a theorem is in general a function. Given proofs of the assumptions of the
theorem this function computes the proof of the conclusion. In particular, when the theorem
states the existence of an object with certain properties, the proof of the theorem computes
such an object from any given proofs of the assumptions of the theorem. In this way, many
important algorithms used in the process of interpretation or compilation of programming lan-
guages arise naturally as proofs of properties of the languages. In other words, the formalization
of the relevant parts of the theory of programming languages gives implementations of these
languages that are correct by construction. So another motivation of our work is to actually
carry out this idea in practice, that is, to investigate the production of verified implementations
of programming languages.

The experiments we want to perform will test type theory as a formal language and the im-
plementation of type theory. We hope to obtain ideas about how to design better programming
environments for type theory.

In this paper we use the proof editor ALF ([Alt 94, Mag 92, Mag 94]) for Martin-L6f’s
monomorphic type theory. We use the pattern matching facility in our proofs, which in fact is
not a part of Martin-Lof’s framework but which makes the proofs easier to carry out. In the
proofs we also use the formalization of Martin-L6f’s monomorphic set theory provided by the

ALF library.

To begin with, we consider the theory of functional programming languages. In this paper,
we consider a small polymorphic functional language and among others, the property that re-
lates its type system with the evaluation of its expressions, more precisely the Subject Reduction
Property. A natural next step is given by the property of existence of most general type schemes,
i.e., the algorithm of type inference.

This paper is intended for readers who have some basic knowledge of operational semantics,
type systems and ALF.

2 Introduction

1.1 About this Paper

This paper is organized as follows :

In section 2 we briefly introduce type theory, and we present the language to be analyzed;
that is, we present its syntax, its dynamic semantics and its type system. Furthermore, we
describe informally the proofs of a number of properties of the language, concluding with the
Subject Reduction property.

In section 3 we describe how we formalize the results presented in section 2 in ALF. We
finish this section with some conclusions about ALF.

In section 4 we present related work and further work.

Finally, in appendix A we present the ALF code of all the definitions and theorems described
in this paper. In this code we use the formalization of Martin-L6f’s monomorphic set type theory
provided by the ALF library.

2 Informal Presentation

In this section we briefly introduce type theory, and we present the language to be analyzed;
that is, we present its syntax, its dynamic semantics and its type system. Furthermore, we
describe informally the proofs of a number of properties of the language, concluding with the
Subject Reduction property.

We use an informal mathematical language. We briefly explain the basic notions we use,
which are essentially those of Martin-Lof’s type theory. For an introduction to Martin-L&f’s
type theory see [Coq 94] or [Nor 90].

We have objects of various types, namely :

e Sets : A set is inductively defined, that is, a set is determined by the rules that construct
its elements. We write Set to refer to the type of sets.

e Elements of Sets : For each set .5, the elements of .S are objects of type S.

e Dependent Functions : A dependent function is a function in which the type of the
output depends on the value of the input. To form the type of a dependent function we
first need a type o as domain and then a family of types over a. The concept of family
of types over a type « is explained as follows : if # is a family of types over «, then to
every object a of type o there is a corresponding type [a.

Given a type o and a family of types 3 over o, we write « — [for the type of dependent
functions from o to 8. If f is a function of type @« — [, then by applying f to any
object a of type a we obtain an object of type 3 a. We write fa for such an application.

A non-dependent function is regarded as a special case of a dependent function. So, if «
and 3 are types we also write @« — [for the type of functions mapping objects of type
« to objects of type 3.

In each case we write a : o for “a is (an object) of type a”.

We want to consider predicates and relations on sets, and arbitrary complex propositions
formed from these predicates and relations. Predicates and relations are naturally viewed in
type theory as functions yielding propositions as output. So, if S is a set then, the predicate P
over S is a function of type S — Prop where Prop is the type of propositions. The type of
propositions is explained as follows : a proposition is determined by the rules that construct its
proofs, i.e., it is inductively defined. This explanation allows us to identify propositions with
sets, which is actually done in type theory. This identification has many consequences that
are exploited in the formal language of type theory. However, for the informal presentation we
prefer to follow the classical mathematical practice and distinguish sets and elements of sets
from propositions about them and proofs of the propositions.

As mentioned before, propositions are inductively defined. So when introducing for instance
a relation R on the sets S and S’, thatis, R:S — S’ — Prop , we give the rules that construct
the proofs of R(a,b) for some a : S and b : S’. We understand these rules as constituting the

4 Informal Presentation

inductive definition of the propositions R(a,b) for each ¢ : S and b : S’. We write them as
usual in the form :

P, P,
C

If @ and b are elements of the same set S, @ = b denotes the definitional equality between
these elements. So this is the symbol we use when introducing definitions. We write a = b for
the proposition that says that a and b are definitionally equal. In both cases, it is possible to
subscript the set in the equality asin @ =g b. But in most of the cases it is very easy to deduce
the set S, so there is no need for writing it explicitly.

2.1 The Syntax of the Language

We define the set of expressions Fxp by means of its abstract syntax in figure 1. For the defi-
nition of Frp we assume a (possibly infinite) set of variables Var. For each pair of variables in
Var it is decidable whether or not they are equal.

The expressions of the language are those of a small functional language. There are vari-
ables x ; Ax.e denotes an abstraction with respect to a variable in an expression, (d e) the
application of an expression to another one, fix x.e the least fixed point of Az .e, true and
falsethe two boolean values and if d then ¢ else f a conditional expression. In contrast to the
usual functional languages, we do not allow defining local constants. Expressions of the form
let x* = din e are interesting for our investigation if we can derive a polymorphic type for
them using the type system. The most convenient way of doing this uses type schemes. In this
paper we are not interested in considering type schemes or type inference, so we work with a
simple set of types and do not consider local definitions. We discuss the introduction of the let
expressions in section 4.2.

Notation : In concrete expressions, we use parentheses to avoid ambiguity. From now on z,
y, z (possibly primed) denote elements in the set Varand d, e, f, g denote elements in the set Fxp.

We define the set FV of free variables of an expression as usual (see [Bar 92]). A closed
expression is an expression with no free variables.

Var : Set
FEzxp @ Set
x : Var
d,e, f : Fxp

ex=ua |Ax.e |(d e) |fix x.e |true| false|if d then e else f

Figure 1: Abstract Syntax of Fzp.

2.2 The Dynamic Semantics of the Language 5

~[-/-1: Fxp — Var — Exp — Exp

yld/a] =y ify # 2
= d ify = =z

Ay.e)[d/x] = Ay.(e[d/z]) ify # «
= Ay.e ify = =z

(e f)[d/z] = (eld/z] fld/2])

(fix y.e)[d/x] = fixy.(e[d/z]) ify # «
= fixy.e ify =«

true [d/z] = true

false [d/z] % false

(if e then f else ¢)[d/x] if e [d/x] then f [d/z] else g [d/x]

Figure 2: Definition of the function _ [/_] over Exp.

For the definition of the dynamic semantics of the language we define the substitution of an
expression for a variable in an expression. We write the substitution of the expression d for the
(free occurrences of the) variable z in the expression e as e [d/x]. We present the definition of
the function _ [_ /_] in figure 2.

Notice that we do not care about capturing variables in the definition of the function _[_ /_].
This is because we only consider evaluation of closed expressions and no evaluation takes place
under a binding operator in the definition of the dynamic semantics (section 2.2). Then, vari-
able capture cannot occur during evaluation. This choice is usual when implementing functional
programming languages because it gives a powerful notion of evaluation from the users point of
view and allows a great simplification of the substitution function.

2.2 The Dynamic Semantics of the Language

In this section we present the dynamic semantics of the language; that is, we describe how to
evaluate an expression of the language. We also present some properties related to the evalua-
tion of expressions.

If it exists, the result of evaluating an expression e, the value of e, is also an element in
the set Fxp. We show in section 2.2.1 that the dynamic semantics we present here is a partial
function.

We give the dynamic semantics of the language in an operational style. There exist several
approaches to operational semantics (for an introduction to operational semantics see [Plo 81]);
we use Fvaluation Semantics ([Hen 90]), also known as Natural Semantics ([Kah 87], [Nie 92]).
Evaluation Semantics describes how to obtain the overall results of executions. It describes the
relationship between the initial and the final state of the execution. In our case, the evaluation

6 Informal Presentation

semantics consists of a set of rules that capture the essence of how we calculate the value of an
expression without excessive detail.

The dynamic semantics of the language is intended for closed expressions and we define it
in figure 3. The rule DSApp implies that the dynamic semantics is lazy.

Expressions of the form true, falseand Az .e are themselves values. These expressions are
the canonical expressions of the language.

There exist also closed expressions without a value. These are :
e Typeincorrect expressions, such as for example the expression if A 2 .2 then true else false.

e Looping expressions, such as for example fix z .z .

2.2.1 Some Properties of the Dynamic Semantics

In this section we present some properties of the dynamic semantics of the language.
Proposition 1 Ifd and e are two expressions such that d = e , then the expression e is a
canonical expression.

Proof. The proof is by straightforward induction on the derivation of d = e .

Proposition 2 (Unicity) Fvery expression has at most one value.

Proof. In general, given an expression e there is at most one rule for evaluating it. Except
in the case of an if _ then _ else _ expression, the form of the expression determines the rule to
apply. For an expression of the form if d then f else ¢, it is the value of expression d which
determines the applicable rule.

This proposition tells us that the relation _ = _ is a partial function.

2.2 The Dynamic Semantics of the Language

= : Fzp — Fxp — Prop

x : Var
d,e, f: Fxp
DSAbs Rule P w—
DSApp Rule d = Xa.f fle/z] = g
(de) =g
DSFix Rule elfixaz.e/z]= g
fixz.e = ¢

DSTrue Rule

true = true

DSFalse Rule

false = false

DSIf_True Rule d = true e =g
if d then e else f = ¢

DSIf_False Rule d = false f =9
if dtheneelse f = ¢

Figure 3: Inductive Definition of the Dynamic Semantics of the Language.

8 Informal Presentation

2.3 The Type System

In this section we present the type system for the language. Before presenting it, we should
introduce the types themselves and the notion of context.

2.3.1 The Set of Types

We define the set of types Types by means of its abstract syntax in figure 4. We do not consider
type variables or type schemes in this paper.

Notation : In concrete types, we use parentheses to avoid ambiguity. From now on o, 3,
~, ¢ denote elements in the set Type.

2.3.2 The Contexts for the Type System

The contexts we use in the type system are (in principle) lists of associations of the form z : o .
We call these associations declarations. Declis the set of declarations.

We are only interested in those contexts where each variable is declared at most once. There-
fore, we restrict the notion of contexts as lists of declarations given above. For that, we use the
relation fresh : Var — Ctzt — Set. By z fresh ' we mean that “I' contains no declarations
for the variable x 7. The definition of fresh is mutually recursive with the definition of con-
texts. We define the set of contexts Ctzt by giving the rules that construct its elements in figure 5.

Notation : In concrete contexts, we use parentheses to avoid ambiguity. In this section ',
A (possibly primed) denote elements in the set Ctat.

In order to present the Substitution Lemma for the language, we define the concatenation of
two disjoint contexts. By disjoint contexts we mean that there is no variable x which is declared
in both contexts. We denote the function that concatenates two disjoint contexts by _ & _. We
define it as usual, by induction on the second argument.

Type : Set
o, B Type
a 2= Bool|a — f3

Figure 4: Abstract Syntax of the Set of Types.

2.3 The Type System 9

Ctxt © Set
xz : Var
o Type
r : Ctat
Cons_Ctxt z fresh I

T,z ta]: Ctat

Figure 5: Inductive Definition of Contexts.

2.3.3 Presentation of the Type System

In this section we present the type system. The type system tells us when an expression e has
type a under a context I'. We define the type system in figure 6.

For our purpose we adapt a type system presented in [Geu 90] for Pure Type Systems. The
type system we present in this paper has one rule for each expression form plus a thinning rule.
The rules are rather straightforward. Notice that the rules TSVar and TSThinn look up a
variable in a context and that in all the rules in which we add a new declaration z : o to the
context I' in the conclusion of the rule, we check that the variable x is fresh for I' , so that
[[', 2 :«] is a context.

The thinning rule (TSThinn Rule) plays an important role when typing expressions where
the same variable is abstracted more than once, such as for example the expression Az . Az .¢e .
For typing this expression we cannot use simply the rule TS Abs twice because the second time
the variable will not be fresh in the context. Instead, we first type the expression Az .e with
the rule TSAbs, then add the variable 2 to the context with the rule TSThinn and then apply
the rule TSAbs again to obtain the type of the complete expression.

Instead of this type system we could have presented an equally expressive system with no
thinning rule and in which the context is a simple list of declarations. Then, we can declare
a variable more than once in a context. We look up a variable in a context from right to left.
Because we can declare a variable more than once in a context, in the rule TSVar we do not
need to check if the variable added is fresh. The rest of the rules are the same as here. Although
the Subject Reduction property also holds in this system, its proof is more complex than the
one we present in this paper.

10

F . Ctat — Fxp — Type — Prop

x : Var
d,e, f: Fxp
o, : Type
r . Cltat
TSVar Rule

TSThinn Rule

TSAbs Rule

TSApp Rule

TSFix Rule

TSTrue Rule

TSFalse Rule

TSIf Rule

z fresh I

T,z :a] bFaz:a

'Fe:a z fresh T

T,z :8]Fe:a

T,z :a]bkFe:p

'FXz.e:ao — (3

'Fe:a — '+f: :«a
I'kE(e f):8
T,z :a] ke :a
' Ffixz.e :
I' F true : Bool
I' - false : Bool
I' - d : Bool ' Fe:a 'f:«

I' Fif d then e else [: «

Figure 6: Inductive Definition of the Type System for the Language.

Informal Presentation

2.4 The Subject Reduction Theorem 11

The discussion on the choice of the type system is not exhausted by the above observations
but we will not discuss this topic further here.

2.4 The Subject Reduction Theorem

In this section we present some properties related to the type system of the language. We end
up this section with a proof of the Subject Reduction property. In our case, this property says
that if a closed expression e of type « has a value, this value is also a closed expression of type «.

For the proof of this property we need to prove the Substitution Lemma which states (infor-
mally) that if an expression e has a type under a context where the variable 2 (that possible
occurs free in e) is declared to have type «a, the result of substituting an expression d that
also has type o for z in e is an expression of the same type as the original one. We present it
formally in lemma 4.

We need an auxiliary lemma in order to prove the Substitution Lemma. This lemma says
that if a variable x is not free in an expression e, then the result of substituting an expression
d for z in e is equal to e. We express the fact : “the variable z is not free in an expression e”
as “we can derive that e has a type o under a context I' that does not contain any declaration
of the variable z”.

Lemma 3 Let I' be a context, e an expression and « a type. If we can derive I' e :a and
the variable x is fresh for T, then for any expression d, e = e[d/xz].
Proof. The proof is by induction on the derivation of I' F e : . We discuss two cases here.

The other cases are straightforward.

e Case TSVar Rule : The rule we apply is y fresh I’
T,y :a]kFy:«a

Notice that @ # y because z fresh [I', y : @] and 2 = y cannot hold at the same
time.

Then, the result follows from the fact that y [d/z] = y by definition of the function

A

e Case TSAbs Rule : The rule we apply is T,y :B8]1Ff:v
F'FXy.f:3 — ~

We consider whether or not the variables z and y are the same.

— 2 = y : The result follows immediately from the fact that (Ay. f)[d/z] = Ay. f
by definition of the function _ [_ /_].

12 Informal Presentation

— 2 # y : By definition of the function _ [_ /_] we have (Ay. f)[d/z] = Ay.(f[d/z]).
Since 2 fresh [I', y : 3] because z fresh' and z # y , weget f = f[d/x] by
the induction hypothesis. Then, we ¢

Usually, in informal presentations we find the Substitution Lemma formulated as follows :

Let T’ be a context, d and e expressions, © a variable and o and § types. If we can derive

[T,2 :a] ke :p andT F d :«, then we can also derive I' = e[d/x] : 3 .

Although this formulation is slightly restrictive because the variable 2 must be the last
variable added in the context, it is enough for our purposes in the proof of the Subject Reduction
property. However, this formulation of the lemma cannot be proved directly by induction on
derivations in our type system. Therefore, we formulate and prove the lemma in a more general
way, allowing the variable x to occur at any position in the context.

Theorem 4 (Substitution Lemma) Let [I', 2 :] and A be two disjoint contexts, d and
e expressions, x a variable and o and 3 types. If we can derive [[', 2 :a] & A Fe : [

and T Fd : o, then we can also derive T & A Feld/z] : .
Proof. The proof is by induction on the derivation of [I', z : @] & A F e : 3. Notice that if

[T, 2 : @] and A are digjoint contexts, then so are I' and A. Thus, in this case, I' & A is a context.

e Case TSVar Rule : We consider the two cases for context A .

— A =[] : The rule we apply is x fresh T’
T,z :a]kFz:a

The result follows from the facts that 2 [d/z] = d by definition of the function _[_ /_]
and that I' - d : a by assumption.

— A =[A",y : 5] : The rule we apply is y fresh[[', 2 :a] & A’
[Tz o] &A y 8] Fy:p

Notice that @ # y because y fresh [[', 2 : o«] & A’ and 2 = y cannot hold at
the same time.

Since y fresh [I', 2 : o] & A’ | we have y fresh I' & A’ . Now, we can apply
the variable rule to get ' & A’ Fy : . Then, we conclude I' & A" F y[d/z]: 3
as desired because y [d/x] = y by definition of the function _ [_ /_].

2.4 The Subject Reduction Theorem 13

e Case TSThinn Rule : Again, we consider the two cases for context A .

— A =[] : Therule weapplyis T ke :p x fresh I’
T,z :a] kFe:p

From the assumptions x freshT' and I' Fe : 3, using lemma 3, we get e = e[d/z].
Thus , as we have I' - e : § by assumption, we can conclude T' - e[d/z] : 3 as desired.

— A =[A",y 14] : The rule we apply is
T,z :a] &A" Fe:p y fresh[T',2 :a] & A’

T,z :a] &A" Jy:yv] Fe:p

We get T' & A’ = e[d/z] : 3 by the induction hypothesis. Since y fresh [T, 2 :] & A’
we have y fresh T' & A’ . Then, we can apply the thinning rule to conclude
' &[A"y v] Feld/z]:p as desired.

e Case TSAbs Rule : The rule we apply is [T,z :a] &AL,y vy] Ff:4d
T,z :a] &A FAy.f:v =6
Again, notice that 2 # y for the same reason mentioned before.
WegetT' & [A,y :v] F f[d/z]: 6 by the induction hypothesis. Then, we can apply
the abstraction rule to conclude I' & A F Ay.(f[d/z]) : v — & as desired, because
Ay. f)ld/z] = Ay.(f[d/z]) by definition of the function _ [- /_].
e Case TSApp Rule : The rule we apply is

T,z :a] &A Ff:y = § T,z :a] &A Fg:y
T,z :a] &A F(f ¢g) :0

We get bothT' & A F f[d/xz]:y — Band T & A F g[d/z] : v by the induction hypothesis.
Then, we can apply the application rule to conclude I' & A F (f[d/x] g[d/z]) : 5 as
desired, because (f ¢)[d/z] = (f[d/z] ¢[d/xz]) by definition of the function _[_ /_].

e Case TSFix Rule : Analogous to the abstraction case.

e Case TSTrue Rule : The rule we apply is .7 a] &A Firac : Bool

By definition of the function _ [- /_] we have true [d/z] = true . Then, the result follows
from applying the rule for the true expressions.

Case TSFalse Rule : Analogous to the previous case.

Case TSIf Rule : Analogous to the application case.

14 Informal Presentation

In our case, the Subject Reduction property only applies to closed expressions. To see that
in our case this property does not hold for open expressions we present the following exam-
ple. Consider the context [[], ¥y : o] and the expression ((Az.Ay.2) y). Notice
that this expression should have the expression Ay.z as value. It is easy to see that both
M1,y :a]l] F((A2z.Ay.2) y):8 — aand (Az.Ay.2) y) = Ay.y arederivable in our
type system but not [[],y :a] FAy.y : 3 = a.Instead [[],y :a] FAy.y : 8 — [is
derivable. The problem arises here because we evaluate an open expression and in the evaluation
process we capture a variable. This capturing changes the meaning of the resulting expression
and thus its type. Therefore, if we want the Subject Reduction property to also hold for open ex-
pressions we have to change the substitution function in order to avoid the capturing of variables.

Theorem 5 (Subject Reduction) Let d and e be expressions and o a type. If d = e and
[]Fd :a,then[] Fe :a.

Proof. The proof is by induction on the derivation of d = e . For each case in this
derivation we consider the possible cases in the derivation of [] F d : a. Notice that neither
the variable rule nor the thinning rule can be applied in the derivation of [] F d : & because
in the conclusion of these rules the context must contain at least one declaration.

e Case DSAbs Rule : The rule we apply is

Ae.f = dx.f

The result follows immediately from the assumption [] F Az. [: .

e Case DSApp Rule : The rule we applyis [= Az.f f'lg/z] = e
(f 9) = e

The only applicable rule for [] F (f g¢) : « is the application rule, so the rule we apply is

JF/iBsa [1Fg:s
(TF (9 o

Since both f = Az .f and [] F f: 8 — « hold by assumption, we have by the induction
hypothesis that [] F Aaz.f" : 8 — «. Then, it follows that [[],z : 8] &[] F f :a
holds. This is because the only way to obtain [] = Az . f' : § — « from the type system
is by applying the abstraction rule to [[],z : 8] F f' : @ . The other rules cannot be
applied either because the form of the expression does not match or because the context
must be inhabited (for the variable or the thinning rule to be applicable). Now, we can
apply the Substitution Lemma to [[1,2 : 3] &[] F f' :«a and to the assumption
[]Fg :03 toobtain [] F f'[g/z]: «. Since both f'[g/2] = e and [] F f'[g9/2] : &
hold, then we conclude by the induction hypothesis that [] I e : & also hods, as desired.

e Case DSFix Rule : Analogous to the previous case.
e Case DSTrue Rule : Analogous to the abstraction case.

e Case DSFalse Rule : Analogous to the abstraction case.

2.4 The Subject Reduction Theorem 15

e Case DSIf True Rule : The rule we apply is f = true g = €
if f then g else ¢’ = ¢

The only applicable rule for [] - if f then g else ¢’ : « is the rule for the if then else ex-

pressions, so the rule we applyis [] F f : Bool []Fg:a []F¢ :a

F if f then g else ¢’ : «
[] f g g

Since g = e and [] I ¢ : @ hold, we have by the induction hypothesis that [] F e : o,
as desired.

e Case DSIf False Rule : Analogous to the previous case.

3 Working with ALF

In this section we describe how we formalize the results presented in section 2 in ALF. We finish
this section with some conclusions about ALF.

ALF (Another Logical Framework) is an interactive editor for Martin-L6f’s monomorphic
type theory. In Martin-Lof’s type theory theorems are identified with types and a proof is an
object of the type, generally a function mapping proofs of the assumptions into proofs of its
conclusion. ALF ensures that the objects we construct are well-formed and well-typed. Since

proofs are objects, checking well-typing of objects amounts to checking correctness of proofs.
For an introduction to ALF see [Alt 94], [Aug 90], [Mag 92] and [Mag 94].

In nearly all cases, the formalization of the definitions and theorems presented in the last
section is direct. There are two points that need further explanation : the formalization of
contexts (and subsequently, the formalization of the type system) and the formalization of the
Substitution Lemma. Although the formalization of variables and in particular the formalization
of the decidability of their equality is straightforward, we explain it because nearly all the proofs
rely on the fact that equality between variables is decidable. We discuss these formalizations in
section 3.1.

In appendix A we present the ALF code of all the definitions and theorems introduced in
this paper.

3.1 Formalization in ALF
3.1.1 Formalization of the Set of Variables

A variable is encoded as a natural number. Thus, we formally define a (constructor) function
var : (n : N) VAR that given a natural number returns a variable, where N is the set of natural
numbers and VAR the set of variables. Two variables var(n) and var(m) are equal if their
“indices” m and m are equal.

Since the equality between natural numbers is decidable, so is the equality between variables.
Thus, we define the function IdVarDec: (z: VAR;y: VAR)Or(Id(z,y),Not(Id(z,y))) (see A.1)
that tells us whether or not the variables 2 and y are equal. The two cases z = y and z # y
in the informal proofs are translated to the different cases for the proof of IdVarDec(z,y) in the
formal proofs.

3.1.2 Formalization of Contexts

With the presentation of contexts as in section 2.3.2, that ' is a context implies that I' does
not declare a variable twice, because when adding a new declaration = : o to the context I' we
check that the variable z is fresh for I' . So with each context we not only have the list of the
declarations of the context, but also the proofs of the side conditions about the freshness of the
variables added to the list. A direct way of formalizing the contexts in ALF from the definition

16

3.1 Formalization in ALF 17

presented in section 2.3.2 is as follows :

Ctxt : Set
EmptyCtat . Ctat
ConsCtat = (I' : Ctat)(dl : Decl)(p : Fresh(VarDecl(dl),I')) Ctat

where VarDeclis the function that returns the variable of a declaration and Fresh is the formal-
ization of the predicate fresh.

For the formalization of the Substitution Lemmain section 3.1.3 we have to deal with equality
of contexts. With the present definition, the contexts ConsCtzt(I', d, p) and ConsCtat(T",d’, p’)
are equal if ', TV and d, d’ are equal and the proofs p and p’ are equal. But in practice, two
contexts are equal if they contain the same declarations in the same order, and the proofs about
the freshness of the variables do not matter.

We have a similar problem with the definition of the function that concatenates two contexts.
The direct formalization of such a function is as follows :

Concat : (I'; A : Ctat)(p : Disjoint(I' \A)) Ctat
where Disjoint is a predicate that formalizes the notion that two contexts are disjoint.

In order to work with the type system we need to know that the contexts we use are valid,
in the sense that they declare each variable at most once. So we need to be sure that when we
use a list of declarations I' for typing an expression e, I' is a valid context. However, we do not
need to have the proofs about the freshness of the variables we add to a context and the proofs
that two contexts are disjoint when concatenating them.

Our solution is to formalize a context as a list of declarations and to define a predicate
Context that tells us whether or not a list of declarations is a valid context. We present the
definition of this predicate in figure 7. Because the notions of contexts and lists of declarations
are similar we abuse notation and use the same abstract syntax for both notions.

Notation : In this section I'; A, ¥ (possibly primed) denote elements in the set ListDecl.

We use lists of declarations instead of contexts in the rules of the type system. To ensure
that each list of declarations I' used for typing an expression e is valid we change the type
system. We present a modified type system for the language in figure 8. We can easily see that
the definition of the (previous) type system presented in figure 6 is equivalent to the one we
present here in the sense that each time we can derive I' F ¢ : a with the former system we
can also derive IV F e : a with the latter one, where I is the list that contains the same
declarations as the context I' and in the same order.

The following lemma states that with these new definitions, each time we use a list I' for
typing an expression e in the type system, the list is a valid context.

18 Working with ALF

xz : Var

o Type

I' : ListDecl

Empty_Ctxt [] Context

Cons_Ctxt I' Context z fresh I

[[', 2 : «] Context

Figure 7: Inductive Definition of the Predicate Context.

Lemma 6 Let I' be a list of declarations, e an expression and o« a type. If we can derive
I' Fe :a, then the list T is a valid context, that is, we can derive ' Context.

Proof. The proof is by straightforward induction on the derivation of I' - € : «. Remember
that if a list [I[', # : «] is a context, then so is the list T".

Now, we can formalize contexts and the type system directly using these modifications.

Notice that after the modifications, we define the predicates fresh and Context over lists
of declarations. Furthermore, the definitions of the predicates fresh and Context are no more
mutually recursive. Finally, notice that since we work with lists of declarations we do not have
to check whether or not the lists I' and A are disjoint to define the concatenation I' & A . The
list ' & A is a valid context if ' & A Context holds.

3.1.3 Formalization of the Substitution Lemma
In section 2.4 we formulated the Substitution Lemma as follows :
Let [T, 2 :«] and A be two disjoint contexts, d and e expressions, © a variable and «

and 3 types. If we can derive [, 2 :a] & A Fe :f andT Fd : «, then we can also
derive ' & A Fel[d/z] : 3.

After the modifications of the previous section [[', 2 : a] and A are lists of declarations.
So, the requirement that the two contexts are disjoint is irrelevant.

Our informal proof is by induction on the derivation of [[', 2 :] & A F e : 5. The
problem now is the formalization of this induction in ALF.

3.1 Formalization in ALF

19

F . ListDecl — Exp — Type — Set

x : Var
d,e, f: Fxp

o, : Type

r : ListDecl
TSVar Rule

TSThinn Rule

TSAbs Rule

TSApp Rule

TSFix Rule

TSTrue Rule

TSFalse Rule

TSIf Rule

I' Context z fresh I

T,z :a] ka2 :a

I Fe:a z fresh T

T,z :8]Fe:a

T,z :a] bFe:p

' Xz.e:a — (3

' e :a ' f:a

%
PkE(e f):p

T,z :a]lkFe:a

I Ffixz.e : o

I' Context

[+ true : Bool

I' Context

I' F false : Bool

I' - d : Bool ' Fe :a 'f :a

I' - if d then e else f : «

Figure 8: Modified Inductive Definition of the Type System for the Language.

20 Working with ALF

Given the definition of the type system, we have a natural induction principle on derivations
of judgements of the form I' F e : a, for an arbitrary expression e, an arbitrary type « and
an arbitrary context I'; that is, not necessarily of the form I'" & A . In the informal proof, we
implicitly inferred the cases of the derivations of [[', 2 : @] & A F e : 3 from the definition
of the type system.

If we formulate the theorem in this way in ALF and we try to perform the induction men-
tioned before, we get the following message :

Non trivial unification problem

M,y:]l=[T,z :a] &A

This happens because ALF tries to unify [[', 2 : @] & A F e : 3 with the conclusion of
each rule in the type system. In the cases of the rules TSVar and TSThinn the conclusion is
of the form I,y : 3] F € :+ (in the rule TSVary = ¢ and § = «). So ALF has to
unify [I'y 2] & A with [,y : 3], e with ¢ and @ with v . In the last two cases the
unification is easy, but in the first one the unification is non trivial. For unifying the lists ALF
needs to know whether the list A is empty or inhabited, because we defined the concatenation
function by induction in the second argument. In this case the list A can be any kind of list,
so ALF has no information about whether it is empty or not; so it cannot unify.

There are at least two possible solutions for the problem :

e The first solution is to formalize the lemma as presented before. When constructing the
proof, before making the induction we consider the cases for the list A, that is, whether
it is empty or inhabited. This gives us two equations in the construction of the proof of
the lemma. In each equation we make the desired induction.

This process gives us two equations for each rule in the type system. For each rule we
discuss the lemma considering the cases whether or not the list A is empty. However, the
informal presentation of the proof presented in section 2.4 tells us that we only need this
distinction in the cases of the rules TSVar and TSThinn. So, in a way, this solution
implies more work than necessary.

e The second solution is to reformulate the theorem. We can formulate the Substitution
Lemma as follows :

Let X, T' and A be lists of declarations, d and e expressions, x© a variable and o and 3
types. If we can derive X e : 3 andT Fd :a when¥ = [T, 2 :a] & A | then
we can also derive ' & A Feld/z] : .

It is easy to see that both formulations of the lemma are equivalent. But now we can
perform the induction on the definition of ¥ F e : 3 without problems. This gives us
one equation for each rule in the type system. With this solution, like in the informal

3.2 Some Conclusions About ALF 21

presentation of the proof, we only have to consider cases for the list A in the rules TSVar
and TSThinn. We can now analyze (in the equations where this is needed) the proof that
requires ¥ = [[', 2 1] & A . The only proof of a proposition of the form ¢ = b (with
a and b elements of a set) is id(a). So, this analysis gives us the list ¥ that makes the
proposition true. Of course, the form of ¥ depends on the form of the list [I', 2 : o] and
on the form of the list A .

Notice that in spite of the fact that we use an extra list ¥ and the requirement that X is
equal to [I', 2 : @] & A | the complete proof with this solution has the same shape as
the proof presented in section 2.4.

In our formalization in ALF of all of the results, we formulate the Substitution Lemma as in
the second solution presented above.

3.2 Some Conclusions About ALF

The interactive proof editor ALF has changed a lot since its first version in 1990. The possibil-
ity of working with pattern matching instead of with the elimination rules for the sets defined
makes the programs easier to write and to read, although it is known that these two disciplines
are not proof-theoretically equivalent. However, in our opinion there are still two important
improvements to make.

The first improvement is related to the inductive proofs. When making proofs by induction,
ALF checks the types but it does not check whether the induction is well founded or not. This
condition is easy to check manually when the theory we are working with is small and there is
just one induction involved in the proof. But, if the theory is big and we are constructing a
proof that involves more than one induction, the control of whether or not these inductions are
well founded is not so trivial.

The second improvement is related to extending the theory. Frequently, when we want to
prove some results for a language, we start studying just a small part of the language and after
having proved the desired results for that small part we study the rest of it. A clear example
of this is the theory presented here. We started with a small language and after making the
proof of the Subject Reduction property for this language, we would like to extend it with for
example the natural numbers and the let expression. And, very likely, after that we would
like to extend it again with new expressions. But each time we want to extend the language in
ALF instead of completing the proofs for the new cases, we have to define the language again
and to redo the proofs from the beginning.

4 Conclusions

4.1 Related Work

The Subject Reduction property for languages similar to ours is studied in several papers. How-
ever, hardly any of these treatments is completely formal.

In [Bar 92], Barendregt studies the Subject Reduction property for the A_calculus where the
dynamic semantics is given by the _reduction rules. In the proofs Barendregt relies on what
he calls variable convention that lets him deal with variables. This convention says that bound
and free variables are chosen such that they differ from each other. This allows him to prove a
thinning rule needed for the Substitution LLemma, as a derived rule. Without this convention it
is not possible to prove the thinning rule and hence the Substitution Lemma.

Of course this variable convention is not formal. We think that there are (at least) two
ways to formalize it. One way is taking bound and free variables as two syntactically different
categories, as is done by Pollack in his PhD thesis ([Pol 94], see discussion below). The other
way is defining a predicate over expressions that tells us whether or not the variables that occur
in an expression are such that the convention mentioned above holds. We believe that it is quite
hard to work with this kind of predicate (if not impossible).

Holmstrém also proves the Subject Reduction property for a language of expressions similar
to ours (see [Hol 83]). In some of his proofs (as for example in the proof of the Substitution
Lemma), he shows that the conclusion of a theorem holds by informally manipulating the deriva-
tions in the type system.

In his PhD thesis, Pollack studies and formalizes the Subject Reduction property for Pure
Type Systems (PTS) in the proof checker LEGO. This language is more complex than ours
because of the dependent types. In his thesis he distinguishes between bound variables that he
calls variables and free variables that he calls parameters. Parameters and variables are disjoint
sets. Having these two sets leads him to define two substitutions : one replacing an expression for
a parameter in an expression and other replacing an expression for a variable in an expression.
The idea is to replace the usual rule for typing an abstraction by the following rule :

C.p:a]telp/a]:p
' Xz.e:a — (3

where p is a completely fresh parameter. In this way he captures the essence of a_conversion
where the name of bound variables does not matter, and abstracting a variable more than once in
an expression is no more a problem here (see the discussion at the end of section 2.3.3). Pollack
also present this method in his paper [Pol 93] where he discusses how to deal with a_conversion
in the A_calculus.

Another difference between our presentation and Pollack’s is the validity of contexts. As an
optimization he takes the validity of contexts out of the type system and each time he wants
to prove a result he adds an extra assumption to the theorem requiring the context to be valid.
Instead, we prefer to leave this validity condition as part of the system. Although leaving
the condition as part of the system implies that it is tested more often, this also ensures that

22

4.2 Further Work 23

the type system is closed in the sense that we do not need to add extra requirements in theorems.

In [Mic 91] there is a formalization of the dynamic semantics and the type system of Mini-ML
in the logic programming language Elf ([Pfe 91]) which is founded upon the logical framework
LF ([Har 93]). This language is bigger than ours, but it is not more complex. Although the
informal presentation of the type system presented in the paper is similar to ours, the EIf for-
malization is quite different to the ALF formalization we present here. The formal counterpart
of a set of Martin-Lof’s type theory is in LF called a type. Thus, for instance, our set Fxp
would be declared as a type. But, unlike Martin-L6f’s type theory’s sets, LF’s types are not
inductively defined. This allows the use of a so-called “higher-order abstract syntax” for coding
expressions into LF. For instance, the ML abstraction is formalized as a function with type
(exp — exp) — exp where exp is the type that represents expressions of ML. So variable binding
in ML is represented with the help of the A_abstraction in Elf and then substitutions in ML are
implemented using the g_reduction of EIf which avoids explicit «_conversion to prevent captur-
ing bound variables. Moreover, the formalization of the type system contexts in the informal
presentation become contexts in the meta-language Elf, so there is no need to formalize the
notion of contexts. Notice that if we formalize the abstractions in this way we obtain more
expressions than expected. One advantage of this formalization is that, because of the features
of Elf, this formalization can be used as an interpreter for ML. However, because types are not
inductively defined in Elf, there is no way of formalizing properties such as for example the
Subject Reduction. Instead, the paper present a set of rules that describe the relation between
the assumptions and the conclusion of the theorem. This set of rules is called in the paper a
partial internalization of the proof of the property.

4.2 Further Work

A natural extension of this work is considering the addition of type schemes to the language of
types. Then, we can show that if an expression e has type under a context then e has a most
general type scheme from which all types we can derive for the expression are instances. The
proof of such a theorem in type theory gives us the type inference algorithm. That is, the proof
of the theorem is a method that infers the most general type scheme for an expression, provided
that the expression has a type.

Another extension is adding to the language expressions of the form let + = d in e. We
can type a let expression in the same way as an application or we can do it in a polymorphic
way. The difference between the expressions (Az.e d) and let # = d in e is explained very
clearly in [Hol 83]. There are two ways of typing the let expression in a polymorphic way. In
[Cle 86] and [Dam 82] we find a type system that uses type schemes to type the let expressions.
There is another method that involves the use of substitutions in the type system (see [Hol 83]).

There are several type systems for a language like the one we presented here. We chose just
one and discussed the results for that type system. However, we are not sure that the system
we chose is the most convenient one for the formal treatment we are interested in. The study of
other systems has also to include the verification of whether they are equally expressive in the
sense that an expression e has type « in one system if and only if e has type « in the other system.

24 Conclusions

There is a well know notion introduced by Milner in [Mil 78] that we did not study here.
This is the notion of well typed programs cannot go wrong, that can be formalized with the
Computation Semantics (see [Mil 78, Hol 83]). Instead of defining the overall evaluation rela-
tion - = _ , the computation semantics (see [Hen 90]) defines a one step relation - — _. The
relation _ = _ can be seen as the reflexive transitive closure of - — _ .

Finally, there are other properties of a compilers we want to study. For example, it will be
interesting to show that when evaluating an expression of the language, the dynamic semantics
does not introduce variables. To prove this, we define a relation A > e meaning that the ex-
pression e depends on the list of variables A. Furthermore, an expression is closed if it depends
on the empty list of variables. Then we can show that if ~+ is the dynamic semantics, d and e
are two expressions such that d ~» e and A is a list of variables, A > d implies A > e. In
particular, if d ~+ e for a closed expression d, then the expression e is also closed.

Acknowledgements

First, I want to thank the Computer Science Department at the Engeneering School, Uruguay,
where I work and the Department of Computer Sciences at the Chalmers University of Technol-
ogy, Sweden, where I spent more than half a year as a guest, for providing a friendly working
environment.

I want to thank Bengt Nordstrém for his help in arranging my stay in Sweden.

I especially want to thank my supervisor Alvaro Tasistro which whom I spent many hours
discussing the results of this work and who corrected the different versions of the thesis, and
who also encouraged me each time things went wrong.

Several people spent part of their time discussing ideas about this work or reading draft
versions of this thesis. I want to thank all of them for their effort and helpful comments.
Especially, I want to thank Gustavo Betarte, Verdnica Gaspes, Johan Jeuring, Randy Pollack
and Bjoérn von Sydow.

Finally, T want to thank my family and friends for all the support they gave to me in these
years.

25

A ALF Code

In this section we present the ALF code of the definitions and theorems described in this paper.
In the code we use the formalization of Martin-L6f’s monomorphic set theory provided by the

ALF library.

In the following code we can find three forms of definitions :

e c: « [I'] C, where the letter C' at the end of the definition indicates that ¢ is introduced
as a constructor.

e ¢: « [I'] I, where the letter I at the end of the definition indicates that ¢ is an implicit
constant defined using pattern matching or case analysis over (some of) its arguments.
Immediately after such a definition, the equations associated to each case of the pattern
or the corresponding case expressions are displayed.

e ¢ = ¢ : « [['], where this case indicates that ¢ is just an abbreviation (explicit constant).

In each case [I'] stands for the set of assumptions of the definitions. In the following code,
it is always the case that [I'] is empty ([]).

To make the code more readable, we introduce some abbreviations in the code of the Substi-

tution Lemma. Each abbreviation has the mark (*) on its left. The codes of all the abbreviations
are displayed immediately after the lemma.

A.1 Definition of the Set of Variables

VAR : Set 1l c¢
var : (n:N)VAR dc
Value : (v:VAR)N 0z

Value(var(n)) = n

EqualToAbsurdityl : (n:N; i:Id(N,0,s(n)))Absurdity 01

EqualToAbsurdityl(n,i) = case i : Id(N,0,s(n)) of
end

26

A.1 Definition of the Set of Variables 27

EqualToAbsurdity2 : (n:N; i:Id(N,s(n),0))Absurdity 01

EqualToAbsurdity2(n,i) = case i : Id(N,s(n),0) of
end

EqAndNotEq1ToAbsurdity : (n:N; m:N;
ni:Not(Id(N,n,m));
i:1d(N,s(n),s(m))
YAbsurdity 0z

EqAndNotEq1ToAbsurdity(n,m,ni,i) =
case ni : Not(Id(N,n,m)) of
Imply_intro(_,_,f) => case f(idcongr(N,N,pred,s(n),s(m),i)) : Absurdity of
end
end

EqAndNotEq2ToAbsurdity : (n:N; m:N;
ni:Not(Id(N,n,m));
i:Id(VAR,var(n),var(m))
YAbsurdity 0z

EqAndNotEq2ToAbsurdity(n,m,ni,i) =
case ni : Not(Id(N,n,m)) of
Imply_intro(_,_,f) => case f(idcongr(VAR,N,Value,var(n),var(m),i))
Absurdity of
end
end

28 ALF Code

FromNatEq : (n:N; m:N)Or(Id(N,n,m),Not(Id(N,n,m))) Iz

FromNatEq(0,0)
FromNatEq(0,s(m1)) =
Or_intro2(Id(N,0,s(ml1)),
Not (Id(N,0,s(m1))),
Imply_intro(Id(N,0,s(m1)),
Absurdity,
[i]EqualToAbsurdity1(m1,i)))
FromNatEq(s(n1),0) =
Or_intro2(Id(N,s(n1),0),
Not (Id(N,s(n1),0)),
Imply_intro(Id(N,s(n1),0),
Absurdity,
[i]EqualToAbsurdity2(n1,i)))
FromNatEq(s(n1),s(m1)) =
case FromNatEq(nl,m1) : Or(Id(N,nl1,ml1),Not(Id(N,n1,m1))) of
Or_introl{(_,_,1i) => Or_intro1(Id(N,s(n1),s(ml1)),
Not(Id(N,s(n1),s(m1))),
idcongr(N,N,s,n1,m1,i))

Or_intro1(Id(N,0,0),Not(Id(N,0,0)),id(N,0))

Or_intro2{(_,_,ni) =>
Or_intro2(Id(N,s(n1),s(ml)),
Imply(Id(N,s(n1),s(m1)) ,Absurdity),
Imply_intro(Id(N,s(nl1),s(ml)),
Absurdity,
[i]EqAndNotEqiToAbsurdity(nl,ml,ni,i)))
end

IdVarDec : (x:VAR; y:VAR)Or(Id(VAR,x,y),Not(Id(VAR,x,y))) 0z

IdVarDec(var(n),var(m)) =
case FromNatEq(n,m) : Or(Id(N,n,m),Not(Id(N,n,m))) of
Or_introl{(_,_,1) => Or_introi1(Id(VAR,var(n),var(m)),
Not (Id(VAR,var(n),var(m))),
idcongr(N,VAR,var,n,m,1i))
Or_intro2(_,_,ni) =>
Or_intro2(Id(VAR,var(n),var(m)),
Not (Id(VAR,var(n),var(m))),
Imply_intro(Id(VAR,var(n),var(m)),
Absurdity,
[i]1EqAndNotEq2ToAbsurdity(n,m,ni,i)))
end

A.2 Definition of the Set of Expressions

A.2 Definition of the Set of Expressions

Exp : Set
Var : (x:VAR)Exp
Abs : (x:VAR; e:Exp)Exp
App : (d:Exp; e:Exp)Exp
Fix : (x:VAR; e:Exp)Exp
True : Exp
False : Exp
If : (d:Exp; e:Exp; f:Exp)Exp

Subst : (x:VAR; d:Exp;

Subst(x,d,Var(y))

Subst(x,d,Abs(y,e))

Subst(x,d,App(e,f))
Subst(x,d,Fix(y,e))

Subst(x,d,True)
Subst(x,d,False)
Subst(x,d,If(e,f,g))

:Exp)Exp

Or_elim(Id(VAR,x,y),
Not (Id(VAR,x,y)),
[elExp,
[ild,
[nilVar(y),
IdVarDec(x,y))
Or_elim(Id(VAR,x,y),
Not (Id(VAR,x,y)),
[e’]Exp,
[i]Abs(y,e),
[nilAbs(y,Subst(x,d,e)),
IdVarDec(x,y))
App(Subst(x,d,e),Subst(x,d,f))
Or_elim(Id(VAR,x,y),
Not (Id(VAR,x,y)),
[e’]Exp,
[i]1Fix(y,e),
[ni]Fix(y,Subst(x,d,e)),
IdVarDec(x,y))
True
False

If (Subst(x,d,e),Subst(x,d,f),Subst(x,d,g))

(]

(]
(]
(]
(]
(]
(]
(]

(]

QOO0

29

30

A.3 Definition of Canonical Expressions

Canon : (Exp)Set

CanonTrue : Canon(True)
CanonFalse : Canon(False)
CanonAbs : (x:VAR; e:Exp)Canon(Abs(x,e))

A.4 Definition of the Dynamic Semantics

DynSem : (d:Exp; e:Exp)Set

DSAbs : (x:VAR; e:Exp)DynSem(Abs(x,e),Abs(x,e))

DSApp : (x:VAR;
d:Exp; f:Exp; e:Exp; g:Exp;
p:DynSem(f,Abs(x,d));
pl:DynSem(Subst(x,e,d),g)

)DynSem(App(f,e),g)

DSFix : (x:VAR;
e:Exp; f:Exp;
p:DynSem(Subst(x,Fix(x,e),e),f)

)DynSem(Fix(x,e),f)

DSTrue : DynSem(True,True)

DSFalse : DynSem(False,False)

DSIfT : (d:Exp; e:Exp; f:Exp; g:Exp;
p:DynSem(d,True) ;
pl:DynSem(e,g)

)DynSem(If(d,e,f),g)

DSIfF : (d:Exp; e:Exp; f:Exp; g:Exp;
p:DynSem(d,False);
pl:DynSem(f,g)

)DynSem(If(d,e,f),g)

(]

(]
(]
(]

(]

(]

(]

(]
(]
(]

(]

(]

Q

Q

ALF Code

A.5 Formalization of the Proofs Related with the Dynamic Semantics

A.5 Formalization of the Proofs Related with the Dynamic Semantics

CanonEvaluation : (d:Exp; e:Exp; p:DynSem(d,e))Canon(e) 01
CanonEvaluation(_,_,DSAbs(x,el)) = CanonAbs(x,el)
CanonEvaluation(_,e,DSApp(x,dl,f,el,_,pl,p2)) =

CanonEvaluation(Subst(x,el,d1),e,p2)
CanonEvaluation(_,e,DSFix(x,el,_,p1)) =

CanonEvaluation(Subst(x,Fix(x,el),el),e,pl)
CanonEvaluation(_,_,DSTrue) = CanonTrue
CanonEvaluation(_,_,DSFalse) = CanonFalse

CanonEvaluation(_,e,DSIfT(dl,el,f,_,pl,p2))
CanonEvaluation(_,e,DSIfF(dl,el,f,_,pl,p2))

CanonEvaluation(el,e,p2)
CanonEvaluation(f,e,p2)

Unicity : (d:Exp; e:Exp; el:Exp;
p:DynSem(d,e); pl:DynSem(d,el)
)Id(Exp,e,el) 01

Unicity(_,_,_,DSAbs(x,e2),DSAbs(_,_)) =
id(Exp,Abs(x,e2))
Unicity(_,e,el,DSApp(x,d1,f,e2,_,p2,p3),DSApp(x1,d,_,_,_,p,p4))
case Unicity(f,Abs(x,d1),Abs(x1,d),p2,p) : Id(Exp,Abs(x,dl),Abs(x1,d)) of
id(_,_) => case Unicity(Subst(xl,e2,d),e,el,p3,p4) : Id(Exp,e,el) of
id(_,_) => id(Exp,el)
end

end
Unicity(_,e,el,DSFix(x,e2,_,p2),DSFix(_,_,_,p)) =
Unicity(Subst(x,Fix(x,e2),e2),e,el,p2,p)
Unicity(_,_,_,DSTrue,DSTrue) =
id(Exp,True)
Unicity(_,_,_,DSFalse,DSFalse) =
id(Exp,False)
Unicity(_,e,el1,DSIfT(d1,e2,f,_,p2,p3),DSIfT(_,_,_,_,p,p4)) =
Unicity(e2,e,el,p3,p4)
Unicity(_,e,el1,DSIfT(d1,e2,f,_,p2,p3),DSIfF(_,_,_,_,p,p4)) =
case Unicity(dl,True,False,p2,p) : Id(Exp,True,False) of
end
Unicity(_,e,el,DSIfF(d1,e2,f,_,p2,p3),DSIfT(_,_,_,_,p,p4)) =
case Unicity(dl,True,False,p,p2) : Id(Exp,True,False) of
end
Unicity(_,e,el,DSIfF(d1,e2,f,_,p2,p3),DSIfF(_,_,_,_,p,p4)) =
Unicity(f,e,el,p3,p4)

32

A.6 Definition of the Set of Types

Type : Set

TBool : Type
TFunc : (a:Type; b:Type)Type

A.7 Definition of the Set of Declarations

Decl : Set

decl : (x:VAR; a:Type)Decl

VarDecl : (dl:Decl)VAR

VarDecl(decl(x,a)) = x

TypeDecl : (dl:Decl)Type

TypeDecl(decl(x,a)) = a

A.8 Definition of the Set List of Declarations

ListDecl = List(Decl) : Set

Concat : (L:ListDecl; Li:ListDecl)ListDecl

Concat(L,nil(_))
Concat(L,cons(_,d1,1))

L

cons(Decl,dl,Concat(L,1))

(]

(]
(]

(]

(]

(]

(]

(]

(]

ALF Code

A.9 Definition of the Predicate Context

33

Fresh : (x:VAR; L:ListDecl)Set

FreshEmpty : (x:VAR)Fresh(x,nil(Decl))
FreshCons : (x:VAR;
dl:Decl;
L:ListDecl;
fs:Fresh(x,L);
ni:Not(Id(VAR,x,VarDecl(dl)))
YFresh(x,cons(Decl,dl,L))

FreshMon : (dl:Decl;
G:ListDecl;
x:VAR;
fs:Fresh(x,cons(Decl,dl,G))
YFresh(x,G)

FreshMon(dl,G,x,FreshCons(_,_,_,fs1,ni)) = fs1

ConcatFreshMon : (dl:Decl;
G:ListDecl; D:ListDecl;
x:VAR;

fs:Fresh(x,Concat(cons(Decl,dl,G),D))

YFresh(x,Concat(G,D))

ConcatFreshMon(dl,G,nil(_) ,x,FreshCons(_,_,_,fsl,ni))
ConcatFreshMon(dl,G,cons(_,a,1),x,FreshCons(_,_,_,fsl,ni))

FreshCons(x,a,Concat(G,1),ConcatFreshMon(dl,G,1,x,fs1),ni)

A.9 Definition of the Predicate Context

Context : (L:ListDecl)Set

ContextEmpty : Context(nil(Decl))
ContextCons : (dl:Decl;
L:ListDecl;
c:Context(L);
fs:Fresh(VarDecl(dl),L)
)YContext(cons(Decl,dl,L))

fsi

]c

]c

]c

01

01

]c

34 ALF Code

ContextMon : (dl:Decl; G:ListDecl; c:Context(cons(Decl,dl,G)))Context(G) [] I

ContextMon(dl,G,ContextCons(_,_,cl,fs)) = c1

ConcatCtxtMon : (dl:Decl;
G:ListDecl; D:ListDecl;
c:Context(Concat(cons(Decl,dl,G),D))
)YContext(Concat(G,D)) 0z

ConcatCtxtMon(dl,G,nil(_),c) =
ContextMon(dl,Concat(G,nil(Decl)),c)
ConcatCtxtMon(dl,G,cons(_,a,l),ContextCons(_,_,cl,fs)) =
ContextCons(a,
Concat(G,1),
ConcatCtxtMon(dl,G,1,cl),
ConcatFreshMon(dl,G,1,VarDecl(a),fs))

FreshCtxtToAbsurd : (dl:Decl;
G:ListDecl; D:ListDecl;
c:Context(Concat(cons(Decl,dl,G),D));
fs:Fresh(VarDecl(dl) ,Concat(cons(Decl,dl,G),D))
)Absurdity 01

FreshCtxtToAbsurd(dl,G,nil(_),c,FreshCons(_,_,_,fsl,ni)) =
case ni : Not(Id(VAR,VarDecl(dl),VarDecl(dl))) of
Imply_intro(_,_,f) => case f(id(VAR,VarDecl(dl))) : Absurdity of
end
end
FreshCtxtToAbsurd(dl,G,cons(_,d11,1),c,fs) =
FreshCtxtToAbsurd(dl,
G,
1,
ContextMon(dll,Concat(cons(Decl,dl,G),1),c),
FreshMon(dl1,Concat(cons(Decl,dl,G),1),VarDecl(dl),fs))

A.9 Definition of the Predicate Context

CtxtAndIdToAbsurdity : (x
a
G
i
c

:VAR; x1:VAR;

:Type; b:Type;

:ListDecl; D:ListDecl;

:Id(VAR,x,x1);

:Context(cons(Decl,
decl(x1l,a),
Concat(cons(Decl,decl(x,b),G),D)))

YAbsurdity []

CtxtAndIdToAbsurdity(x,x1,a,b,G,D,i,ContextCons(_,_,cl,fs)) =
FreshCtxtToAbsurd(decl(x,b),

G,
D,
ci,

idsubst’ (VAR,

[ylFresh(y,Concat(cons(Decl,decl(x,b),G),D)),
X,

x1,

i,

fs))

35

I

36 ALF Code

A.10 Definition of the Type System

TypeSystem : (G:ListDecl; e:Exp; a:Type)Set dc
TSVar : (dl:Decl;
G:ListDecl;

c:Context(G);

fs:Fresh(VarDecl(dl),G)

)TypeSystem(cons(Decl,dl,G),Var(VarDecl(dl)),TypeDecl(dl)) [1 C
TSThinn : (G:ListDecl;

e:Exp;

a:Type;

dl:Decl;

p:TypeSystem(G,e,a);

fs:Fresh(VarDecl(dl),G)

)TypeSystem(cons(Decl,dl,G),e,a) 1l c¢
TSAbs : (G:ListDecl;

x:VAR;

e:Exp;

a:Type;b:Type;

p:TypeSystem(cons(Decl,decl(x,a),G),e,b)

)TypeSystem(G,Abs(x,e) ,TFunc(a,b)) 1l c¢
TSApp : (G:ListDecl;

d:Exp; e:Exp;

a:Type; b:Type;

p:TypeSystem(G,d,TFunc(a,b));

pl:TypeSystem(G,e,a)

)TypeSystem(G,App(d,e),b) 1c
TSFix : (G:ListDecl;

x:VAR;

e:Exp;

a:Type;

p:TypeSystem(cons(Decl,decl(x,a),G),e,a)

)TypeSystem(G,Fix(x,e),a) dc
TSTrue : (G:ListDecl; c:Context(G))TypeSystem(G,True,TBool) dc
TSFalse : (G:ListDecl; c:Context(G))TypeSystem(G,False,TBool) dc
TSIf : (G:ListDecl;

d:Exp; e:Exp; f:Exp; a:Type;

p:TypeSystem(G,d,TBool);

pl:TypeSystem(G,e,a);

p2:TypeSystem(G,f,a)

)TypeSystem(G,If(d,e,f),a) 1l c¢

A.11 Formalization of the Proofs Related to the Type Syste

A.11 Formalization of the Proofs Related to the Type System

ValidCtxt : (G:ListDecl; e:Exp; a:Type; p:TypeSystem(G,e,a))Context(G)

ValidCtxt(_,_,_,TSVar(dl,G1,c,fs)) ContextCons(dl,Gl,c,fs)
ValidCtxt(_,e,a,TSThinn(Gl,_,_,dl,pl,fs)) =
ContextCons(dl,G1,ValidCtxt(Gl,e,a,pl),fs)
ValidCtxt(G,_,_,TSAbs(_,x,el,al,b,pl)) =
ContextMon(decl(x,al),G,ValidCtxt(cons(Decl,decl(x,al),G),el,b,pl))
ValidCtxt(G,_,a,TSApp(_,d,el,al,_,pl,p2)) = ValidCtxt(G,el,al,p2)
ValidCtxt(G,_,a,TSFix(_,x,el,_,p1)) =
ContextMon(decl(x,a),G,ValidCtxt(cons(Decl,decl(x,a),G),el,a,pl))
ValidCtxt(G,_,_,TSTrue(_,c)) = c
ValidCtxt(G,_,_,TSFalse(_,c)) = c
ValidCtxt(G,_,a,TSIf(_,d,el,f,_,p1,p2,p3)) = ValidCtxt(G,d,TBool,p1l)

EqAndNotEqToId : (x:VAR; y:VAR;
i:Id(VAR,x,y);
ni:Not(Id(VAR,x,y));
d:Exp

)Id(Exp,Var(y),d)

EqAndNotEqToId(x,y,i,Imply_intro(_,_,b),d) = case b(i) : Absurdity of
end

VarNotFreeInExp : (G:ListDecl;
x:VAR;
d:Exp; e:Exp;
a:Type;
fs:Fresh(x,G);
p:TypeSystem(G,e,a)
)Id(Exp,e,Subst(x,d,e))

(]

(]

(]

37

I

I

I

38

ALF Code

VarNotFreeInExp(_,x,d,_,_,FreshCons(_,_,_,fs2,ni),TSVar(dl,Gl,c,fs1)) =

Or_elim(Id(VAR,x,VarDecl(dl)),

Not (Id(VAR,x,VarDecl(dl))),

[o]Id(Exp,

Var(VarDecl(dl)),
Or_elim(Id(VAR,x,VarDecl(dl)),

Not (Id(VAR,x,VarDecl(dl))),

[o’]Exp,

[ild,

[ni’]Var(VarDecl(dl)),

o)),
[i]1EqAndNotEqToId(x,VarDecl(dl),i,ni,d),
[ni’]1id(Exp,Var(VarDecl(dl))),
IdVarDec(x,VarDecl(dl)))

VarNotFreeInExp(_,x,d,e,a,fs,TSThinn(G1,_,_,d1,pl,fs1))
VarNotFreeInExp(Gl,x,d,e,a,FreshMon(dl,G1,x,fs),pl)
VarNotFreeInExp(G,x,d,_,_,fs,TSAbs(_,x1,el,al,b,pl))
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,VarDecl(decl(x1,al1)))),
[o]Id(Exp,
Abs(x1,el),
Or_elim(Id(VAR,x,x1),

Not (Id(VAR,x,VarDecl(decl(x1,a1)))),

[o’]Exp,

[i]Abs(x1,el),

[ni]Abs(x1,Subst(x,d,el)),

o)),

[i]1id(Exp,Abs(x1,el)),

[nilidsubst (Exp,
[e’]1Id(Exp,Abs(xl,el),Abs(x1l,e’)),
el,

Subst(x,d,el),

VarNotFreeInExp(cons(Decl,decl(xl,al),G),

X,
d,
el,
b,

FreshCons(x,decl(x1,al),G,fs,ni),

pl),
id(Exp,Abs(x1,e1))),
IdVarDec(x,x1))

39

A.11 Formalization of the Proofs Related to the Type Syste

VarNotFreeInExp(G,x,d,_,a,fs,TSApp(_,d1l,el,al,_,pl,p2)) =
idsubst (Exp,
[d°11d(Exp,App(dl,el) ,App(d’,Subst(x,d,el))),
di,
Subst(x,d,d1),
VarNotFreeInExp(G,x,d,d1,TFunc(al,a),fs,pl),
idsubst (Exp,
[e’]Id(Exp,App(dl,el) ,App(di,e’)),
el,
Subst(x,d,el),
VarNotFreeInExp(G,x,d,el,al,fs,p2),
id(Exp,App(di,e1))))
VarNotFreeInExp(G,x,d,_,a,fs,TSFix(_,x1,el,_,p1))
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,VarDecl(decl(x1,a)))),
[o]Id(Exp,
Fix(x1l,el),
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,VarDecl(decl(x1,a)))),
[o’]Exp,
[i]Fix(x1,el),
[ni]Fix(x1,Subst(x,d,el)),
o)),
[i]1id(Exp,Fix(x1,el1)),
[nilidsubst (Exp,
[e’]1Id(Exp,Fix(x1,el),Fix(x1l,e’)),

el,
Subst(x,d,el),
VarNotFreeInExp(cons(Decl,decl(x1,a),G),
X,
d,
el,
a,
FreshCons(x,decl(x1,a),G,fs,ni),
pl),
id(Exp,Fix(x1,e1))),
IdVarDec(x,x1))
VarNotFreeInExp(G,x,d,_,_,fs,TSTrue(_,c)) = id(Exp,True)
VarNotFreeInExp(G,x,d,_,_,fs,TSFalse(_,c)) = id(Exp,False)

ALF Code

40

VarNotFreeInExp(G,x,d,_,a,fs,TSIf(_,d1,el,f1,_,pl,p2,p3)) =

idsubst (Exp,
[d’1Id(Exp,If(dl,el,f1),If(d’,Subst(x,d,el),Subst(x,d,f1))),
di,
Subst(x,d,d1),
VarNotFreeInExp(G,x,d,d1,TBool,fs,pl),

idsubst (Exp,

[e’]11d(Exp,If(dl,el,f1),If(dl,e’,Subst(x,d,f1))),

el,

Subst(x,d,el),

VarNotFreeInExp(G,x,d,el,a,fs,p2),

idsubst (Exp,
[£f’]Id(Exp,If(dl,el,f1),If(d1l,el,f’)),
f1,
Subst(x,d,f1),
VarNotFreeInExp(G,x,d,f1,a,fs,p3),
id(Exp,If(dl,el,£f1)))))

TypeSysofAbs : (x:VAR;
e:Exp;
a:Type; b:Type;
p:TypeSystem(nil(Decl) ,Abs(x,e) ,TFunc(a,b))
)TypeSystem(cons(Decl,decl(x,a),nil(Decl)),e,b) NI

TypeSysofAbs(x,e,a,b,TSAbs(_,_,_,_,_,p1)) = pi

EqAndNotEqToTS : (x:VAR;
i:TId(VAR,x,x);
ni:Not(Id(VAR,x,x));
G:ListDecl;
a:Type

)TypeSystem(G,Var(x),a) I

EqAndNotEqToTS(x,1i,Imply_intro(_,_,f),G,a) = case £(i) : Absurdity of

end

A.11 Formalization of the Proofs Related to the Type Syste 41

AbsurdityToTS : (bo:Absurdity; G:ListDecl; e:Exp; a:Type)TypeSystem(G,e,a) []1 I

AbsurdityToTS(bo,G,e,a) = case bo : Absurdity of
end

SubstLemma : (S:ListDecl; G:ListDecl; D:ListDecl;
x:VAR;
d:Exp; e:Exp;
a:Type; b:Type;
i:Id(ListDecl,S,Concat(cons(Decl,decl(x,a),G),D));
p:TypeSystem(S,e,b); pl:TypeSystem(G,d,a)
)TypeSystem(Concat(G,D),Subst(x,d,e),b) 0z

SubstLemma(_,G,nil() ,x,d,_,a,_,id(_,_),TSVar(_,_,c,fs),pl) =
Or_elim(Id(VAR,x,x),
Not (Id(VAR,x,x)),
[o] TypeSystem(G,
Or_elim(Id(VAR,x,x),
Not(Id(VAR,x,x)),
[o’]Exp,
[ild,
[nilVar(x),
o),
a),
[ilp1,
[ni]EqAndNotEqToTS(x,1d(VAR,x),ni,G,a),
IdVarDec(x,x))

42 ALF Code

SubstLemma(_,G,cons(_,d1,1),x,d,_,a,_,id(_,_),TSVar(_,_,c,fs),pl) =
Or_elim(Id(VAR,x,VarDecl(dl)),
Not (Id(VAR,x,VarDecl(dl))),
[o] TypeSystem(cons(Decl,dl,Concat(G,1)),
Or_elim(Id(VAR,x,VarDecl(dl)),
Not (Id(VAR,x,VarDecl(dl))),
[o’]Exp,
[ild,
[ni]Var(VarDecl(dl)),
o),
TypeDecl(dl)),
[i]1AbsurdityToTS(FreshCtxtToAbsurd(decl(x,a),
G,
1,
C,
idsubst’ (VAR,
(*) [y]Freshi,

X,
VarDecl(dl),
i,
fs)),
cons(Decl,dl,Concat(G,1)),
d,

TypeDecl(dl)),
[ni]TSVar(dl,
Concat(G,1),
ConcatCtxtMon(decl(x,a),G,1l,c),
ConcatFreshMon(decl(x,a),G,1,VarDecl(dl),fs)),
IdVarDec(x,VarDecl(dl)))
SubstLemma(_,G,nil(_),x,d,e,a,b,id(_,_) ,TSThinn(_,_,_,_,p2,fs),pl) =
idsubst (Exp,
[e’]TypeSystem(G,e’,b),
e,
Subst(VarDecl(decl(x,a)),d,e),
VarNotFreeInExp(G,VarDecl(decl(x,a)),d,e,b,fs,p2),
p2)

A.11 Formalization of the Proofs Related to the Type Syste 43

SubstLemma(_,G,cons(_,d1,1),x,d,e,a,b,id(_,_) ,TSThinn(_,_,_,_,p2,fs),pl) =
TSThinn(Concat(G,1),
Subst(x,d,e),
b,
dl,
SubstLemma(Concat(cons(Decl,decl(x,a),G),1),

id(ListDecl,Concat(cons(Decl,decl(x,a),G),1)),

p2,

P,
ConcatFreshMon(decl(x,a),G,1,VarDecl(dl) ,fs))

44

SubstLemma(_,G,D,x,d,_,a,_,id(_,_),TSAbs(_,x1,el,a1,bl,p2),pl) =
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,x1)),
[o] TypeSystem(Concat(G,D),
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,x1)),
[o’]Exp,
[i]Abs(x1,el),
[ni]Abs(x1,Subst(x,d,el)),
o),
TFunc(al,b1)),
[i]1AbsurdityToTS(CtxtAndIdToAbsurdity(x,
x1,
ail,
a,
G,
D,
i,
(%) Valid_Ctxtl),
Concat(G,D),
Abs(x1,el),
TFunc(al,bl)),
[ni]TSAbs(Concat(G,D),
x1,
Subst(x,d,el),
ail,
b1,
SubstLemma(Concat(cons(Decl,decl(x,a),G),
cons(Decl,decl(x1,al),D)),
G,
cons(Decl,decl(x1,al),D),
X,
d,
el,
a,
b1,
id(ListDecl,
Concat(cons(Decl,decl(x,a),G),
cons(Decl,decl(x1,al1),D))),
p2,
pi)),
IdVarDec(x,x1))

ALF Code

A.11 Formalization of the Proofs Related to the Type Syste

SubstLemma(S,G,D,x,d,_,a,b,i,TSApp(_,d1l,el,al,_,p2,p3),pl) =
TSApp (Concat(G,D),
Subst(x,d,d1),
Subst(x,d,el),
ail,
b,
SubstLemma(S,G,D,x,d,d1,a,TFunc(al,b),i,p2,pl),
SubstLemma(S,G,D,x,d,el,a,al,i,p3,pl))

45

46 ALF Code

SubstLemma(_,G,D,x,d,_,a,b,id(_,_),TSFix(_,x1,el,_,p2),pl) =
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,x1)),
[o] TypeSystem(Concat(G,D),
Or_elim(Id(VAR,x,x1),
Not (Id(VAR,x,x1)),
[o’]Exp,
[i]Fix(x1,el),
[ni]Fix(x1,Subst(x,d,el)),
o),
b),
[i]1AbsurdityToTS(CtxtAndIdToAbsurdity(x,
x1,
b,
a,
G,
D,
i,
(%) Valid_Ctxt2),
Concat(G,D),
Fix(x1l,el),
b),
[ni]TSFix(Concat(G,D),
x1,
Subst(x,d,el),
b,
SubstLemma(Concat(cons(Decl,decl(x,a),G),
cons(Decl,decl(x1,b),D)),
G,
cons(Decl,decl(x1,b),D),
X,
d,
el,
a,
b,
id(ListDecl,
Concat(cons(Decl,decl(x,a),G),
cons(Decl,decl(x1,b),D))),
p2,
pi)),
IdVarDec(x,x1))
SubstLemma(_,G,D,x,d,_,a,_,id(_,_),TSTrue(_,c),pl)
TSTrue(Concat(G,D),ConcatCtxtMon(decl(x,a),G,D,c))
SubstLemma(_,G,D,x,d,_,a,_,id(_,_),TSFalse(_,c),pl)
TSFalse(Concat(G,D),ConcatCtxtMon(decl(x,a),G,D,c))

A.12 Formalization of the Subject Reduction Property 47

SubstLemma(S,G,D,x,d,_,a,b,1,TSIf(_,d1l,el,f,_,p2,p3,p4),pl) =
TSIf(Concat(G,D),
Subst(x,d,d1),
Subst(x,d,el),
Subst(x,d,f),
b,
SubstLemma(S,G,D,x,d,d1,a,TBool,i,p2,pl),
SubstLemma(S,G,D,x,d,el,a,b,i,p3,pl),
SubstLemma(S,G,D,x,d,f,a,b,i,p4,pl))

Where the codes of the abbreviations are :

Freshl = Fresh(y,Concat(cons(Decl,decl(x,a),G),1))

Valid_Ctxtl =
ValidCtxt(cons(Decl,decl(x1,al),Concat(cons(Decl,decl(x,a),G),D)),el,bl,p2)

Valid_Ctxt2 =
ValidCtxt(cons(Decl,decl(x1,b),Concat(cons(Decl,decl(x,a),G),D)),el,b,p2)

A.12 Formalization of the Subject Reduction Property

SubjectReduction : (d:Exp; e:Exp;
a:Type;
p:DynSem(d,e) ;
pl:TypeSystem(nil(Decl),d,a)
)TypeSystem(nil(Decl),e,a) 01

SubjectReduction(_,_,a,DSAbs(x,el),pl) = pl

48 ALF Code

SubjectReduction(_,e,a,DSApp(x,d1,f,el,_,p2,p3),TSApp(_,_,_,al,_,p,p4)) =
SubjectReduction(Subst(x,el,dl),
e,
a,
p3,
SubstLemma(Concat(cons(Decl,decl(x,al),nil(Decl)),
nil(Decl)),
nil(Decl),
nil(Decl),
X,
el,
di,
ail,
a,
id(ListDecl,
Concat(cons(Decl,decl(x,al),nil(Decl)),
nil(Decl))),

TypeSysofAbs(x,
di,
ail,
a,
SubjectReduction(f,
Abs(x,d1),
TFunc(al,a),
P2,
P,
p4))

SubjectReduction(_,e,a,DSFix(x,el,_,p2) ,TSFix(_,_,_,_,p)) =
SubjectReduction(Subst(x,Fix(x,el),el),
e,
a,
p2,
SubstLemma(Concat(cons(Decl,decl(x,a),nil(Decl)),
nil(Decl)),
nil(Decl),
nil(Decl),
X,
Fix(x,el),
el,
a,
a,
id(ListDecl,
Concat(cons(Decl,decl(x,a),nil(Decl)),
nil(Decl))),

P
TSFix(nil(Decl),x,el,a,p)))

A.12 Formalization of the Subject Reduction Property

SubjectReduction(_,_,a,DSTrue,pl)
SubjectReduction(_,_,a,DSFalse,pl)

SubjectReduction(f,e,a,p3,pb)

,P,p4,p5))

,P,p4,p5))

pl

49

References

[Alt 94]

[Aug 90]

[Bar 92]

[Cle 86]

[Coq 94]

[Dam 82]

[Geu 90]

[Har 93]

[Hen 90]

[Hol 83]

[Kah 87]

[Mag 92]

[Mag 94]

A User’s guide to ALF. T. Altenkirch, V. Gaspes, B. Nordstrém, B. von Sydow.
Department of Computer Science, University of Goteborg / Chalmers, Sweden. June,
1994.

A Short Description of Another Logical Framework. 1.. Augustsson, T. Coquand, B.
Nordstrém. In Proceedings of the First Workshop on Logical Frameworks, Antibes,
pages 39 - 42. 1990.

Lambda Calculi with Types. H. P. Barendregt. In Handbook of Logic in Computer
Science, Vol. II. Gabbai, Abramsky and Maibaum editors. Oxford University Press.
1992.

A Simple Applicative Language : Mini - ML. D. Clément, J. Despeyroux, T. Despey-
roux, G. Kahn. Technical Report 529, INRIA, France. May, 1986.

Type Theory and Programming. T. Coquand, B. Nordstrém, J. M. Smith, B. von
Sydow. EATCS Bulletin. February, 1994.

Principal Type-Schemes for Functional Programs. 1.. Damas, R. Milner. In Proceed-
ings 9th. ACM Symposium on Principles of Programming Languages, Albuquerque
NM. January, 1982.

Type Systems for Higher Order Logic. J. H. Geuvers. Technical Report of the Depart-
ment of Computer Science, Catholic University, Toernooiveld 1, 6525 ED Nijmegen,
The Netherlands. 1990.

A Framework for Defining Logics. R. Harper, F. Honsell, G. Plotking. In Journal of
the Association for Computing Machinery, Vol. 40, no 1. January, 1993.

The Semantics of Programming Languages : An Flementary Introduction using Struc-
tural Operational Semantics. M. Hennessy. University of Sussex, U.K. John Wiley &
Sons Eds. 1990.

Polymorphic Type Systems : A Proof - Theoretic Approach. S. Holmstréom. Technical
Report 6, University of Goteborg and Chalmers University of Technology, Sweden.
September, 1983.

Natural Semantics. G. Kahn. Technical Report 601, INRIA, France. February, 1987.

The New Implementation of ALF. 1.. Magnusson. In Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, Bastad, Sweden. June, 1992.

The ALF Proof Editor and its Proof Fngine. L. Magnusson, B. Nordstrém. In Types
for Proofs and Programs : International Workshop TYPES’93, Selected Papers. Ni-
jmegen, The Netherlands. Springer-Verlag Lecture Notes in Computer Science 806.
H. Barendregt and T. Nipkow Eds. 1994.

[Mic 91]

[Mil 78]

[Nie 92]

[Nor 90]

[Pfe 91]

[Plo 81]

[Pol 93]

[Pol 94]

Natural Semantics and Some of its Meta-Theory in Elf. S. Michaylov, F. Pfenning. In
Proceedings of the Second International Workshop on Extensions of Logic Program-
ming, Stockholm, Sweden. Springer-Verlag Lecture Notes in Artificial Intelligence
596. L..-H. Eriksson, L. Hallnds and P. Schroeder-Heister Eds. 1991.

A Theory of Type Polymorphism in Programming. R. Milner. In Journal of Computer
and System Sciences, Vol. 17, no. 3. 1978.

Semantics with Applications : A Formal Introduction. H. Nielson, F. Nielson. Aarhus
University, Denmark. John Wiley & Sons Eds. 1992.

Programming in Martin - Lof’s Type Theory. An Introduction. B. Nordstrom, K.
Petersson, J. M. Smith. Oxford University Press. 1990.

Logic Programming in the LF Logical Framework. F. Pfenning. In Logical Frameworks.
Cambridge University Press. G. Huet and G. Plotkin Eds. 1991.

A Structural Approach to Operational Semantics. G. Plotkin. Report DAIMI FN-19.
University of Aarhus, Denmark. 1981.

Closure Under Alpha-Conversion. R. Pollack. In Types for Proofs and Programs :
International Workshop TYPES’93, Selected Papers. Nijmegen, The Netherlands.
Springer-Verlag Lecture Notes in Computer Science 806. H. Barendregt and T. Nip-
kow Eds. 1994.

The Theory of LEGO : A Poof Checker for the Frtended Calculus of Constructions. R.
Pollack. Doctor of Philosophy Thesis. University of Edinburgh. Available by anony-
mous ftp from ftp.cs.chalmers.se in directory pub/users/pollack. 1994.

ii

