

PEDECIBA Informática
Instituto de Computación – Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay

Tesis de Doctorado
en Informática

First class syntax, semantics,

and their composition

Marcos Viera

2014

Firsst class syntax, semantics and their
composition
ISSN 0797-6410
Tesis de Doctorado en Informática
Reporte Técnico RT 14-03
PEDECIBA
Instituto de Computación – Facultad de Ingeniería
Universidad de la República.
Montevideo, Uruguay, marzo, 2014

T́ıtulo: First Class Syntax, Semantics, and Their Composition
Tesis de Doctorado

Autor: Marcos Viera
mviera@fing.edu.uy

Supervisor: Alberto Pardo
Instituto de Computación - Universidad de la República
pardo@fing.edu.uy

Orientador: Doaitse Swierstra
Utrecht University
doaitse@uu.nl

Fecha: 8 de Marzo de 2013

Resumen

Idealmente la complejidad es manejada componiendo un sistema en algunas pocas,
más o menos independientes, descripciones más pequeñas de varios aspectos del arte-
facto general. Al describir lenguajes de programación (extensibles), las gramáticas de
atributos han resultado ser una excelente herramienta para la definición modular y la
integracin de sus diferentes aspectos.

En la tesis se muestra cómo construir la implementacin de un lenguaje de pro-
gramación mediante la composición de una colección de fragmentos de gramáticas
de atributos que describen aspectos separados del lenguaje. Más espećıficamente, se
describe un conjunto coherente de bibliotecas y herramientas que en conjunto hacen
que esto sea posible en Haskell, donde la corrección de la composición es forzada a
través de la capacidad del sistema de tipos de Haskell para representar gramáticas de
atributos como valores de Haskell y sus interfaces como tipos de datos. Los objetos
semánticos construidos de este modo se pueden combinar con parsers que son con-
struidos on the fly a partir de fragmentos de parsers y se representan como valores
Haskell tipados. Una vez más el chequeo de tipos impide composiciones incorrectas.

A manera de caso de estudio de las técnicas propuestas en esta tesis, se implementó
un compilador para el lenguaje imperativo (Pascal-like) Oberon0. A través de un
diseño incremental, mostramos las capacidades de modularidad de nuestras técnicas.

Palabras clave: Gramática de primera clase, Semántica de primera clase, Gramáticas
de Atributos, Construcción de Compiladores, Lenguajes extensibles, Haskell.

First Class Syntax, Semantics,

and Their Composition

Marcos Viera

Author: Marcos Viera, 2012
Printed by: Wöhrmann Print Service
Cover: El Carafon de primera by Alessandro Spinuso, 2012

First Class Syntax, Semantics, and Their

Composition

Eerste klas syntax, semantiek en hun samenstelling

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de
rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college
voor promoties in het openbaar te verdedigen op vrijdag 8 maart 2013 des middags
te 4.15 uur

door

Marcos Viera

geboren op 9 september 1979 te San José, Uruguay

Promotoren: Prof.dr. S. D. Swierstra
Prof.dr. A. Pardo

Preface

Ideally complexity is managed by composing a system out of quite a few, more or
less independent, and much smaller descriptions of various aspects of the overall
artifact. When describing (extensible) programming languages, attribute grammars
have turned out to be an excellent tool for modular definition and integration of their
different aspects.

In this thesis we show how to construct a programming language implementation
by composing a collection of attribute grammar fragments describing separate aspects
of the language. More specifically we describe a coherent set of libraries and tools
which together make this possible in Haskell, where the correctness of the composition
is enforced through the Haskell type system’s ability to represent attribute grammars
as plain Haskell values and their interfaces as Haskell types.

Semantic objects thus constructed can be combined with parsers which are con-
structed on the fly out of parser fragments and are also represented as typed Haskell
values. Again the type checker prevents insane compositions.

As a small case study of the techniques proposed in this thesis, we implemented a
compiler for the (Pascal-like) imperative language Oberon0. Through an incremental
design, we show the modularity capacities of our techniques.

Acknowledgements. As this story has been written on two sides of the Atlantic, I
feel obliged to thank in two languages. Since ik spreek geen Nederlands, the people I
met at the eastern side of the Atlantic will be acknowledged in English.

I am very grateful to my promotor Doaitse Swierstra, who introduced me to the
Haskell type-level puzzling world. It is impossible not to get contagious with his
passion for our research area. He is a never ending source of ideas, which he has no
problems on sharing, always starting with the sentence: “I have been thinking while
biking home...”. Doaitse is not only an excellent scientist. I discovered, while working
with him, that he is also a very good person. Gracias, señor de Holanda!

I want to thank Wilke and Tineke Schram, who hosted me at their home during
my first month in Utrecht, helping me a lot while I was taking my first baby steps
into the dutch society.

The Software Technology group is a very good place where to work, its members
are very talented researchers and also very kind people. Although I was there for a
relatively short time, they treated my as if I was a member of the group. I thank
Jurriaan for his continuous visits to my office, trying to convince me that drops was
something that deserved to be tasted.

The foosball sessions deserve a separate chapter. We had a lot of fun producing
all those weird vocalism, as a result of the excitement for this “sport”. Thanks to

1

Preface

Américo, Arthur, José Pedro, Juan Francisco, Martijn, Reinier, Rodrigo and Sean for
such a great time.
I took a couple of master courses in Utrecht to catch up with the research area I

had to work on. Both courses were very helpful and inspiring. So I am very grateful
to the great lecturers, Andres Löh and Jeroen Fokker.
I also want to thank my co-authors Arthur, Doaitse, Wouter, Arie and Atze, it was

a pleasure and a honour to work with you and learn from you.
I am thankful to the members of the reading committee, Roland Backhouse, Koen

Claessen, Johan Jeuring, Rinus Plasmeijer and Joao Saraiva, who kindly accepted to
read my thesis.
Alessandro did a great work designing the cover of my thesis. He even took the risk

of getting a fee on a Belgian train, for sitting in first class with a second class ticket,
in order to set up what was needed to take the picture. I do not know if the material
inside the thesis is that good, but I am sure its cover is a piece of art.

Finally, I want to spend some words on the group of friends who made me feel like
home while I was there. Until I met them I did not know that someone can construct
a friendship in such a short time. I have plenty of moments stored in my hearth,
from quiet nice conversations to endless nights trying to convince me not to finish
at Carafon. Alessandro, Américo, Alexey, David, Despoina, Juan Francisco, Luca,
Martijn and Tizy, thanks to you, when I think about my days in Utrecht I have this
feeling that the Brazilians call saudade.

Como esta fue una historia escrita en dos márgenes del Atlántico, me vi obligado a
agradecer en dos idiomas. Luego de haber agradecido en inglés a aquellos que conoćı
en mi aventura europea, me toca agradecer en mi lengua a aquellos que en nuestro
paisito me han acompañado en esta etapa tan importante de mi vida.
Repasando la sección de agradecimientos de mi tesis de maestŕıa, con la desesperada

intención de autoplagiarme un poco, tuve la grata confirmación de que a pesar de que
el tiempo ha pasado, y varios pelos se han ido fugando, los afectos siguen intactos. De
verdad que casi que podŕıa copiar y pegar aqúı aquellas palabras que escrib́ı hace ya
más de cinco años y, agregando algunos nuevos nombres, tendŕıan la misma validez.
Pero no voy a ser tan mezquino, la gratitud merece ser renovada con palabras nuevas,
y aqúı van...
El Instituto de Computación es un lugar en el que me gusta mucho trabajar, a

pesar de los 90 kilómetros que tengo que hacer para llegar hasta ah́ı, y eso se debe
básicamente a la gente que se encuentra dispersa a lo largo de ese interminable pasillo
del quinto piso y en los kibutz del cuerpo norte. Desde la visita por secretaŕıa para
recibir algún comentario ácido de Lucyla o Daniela, hasta las charlas de oficina, mate
mediante, con Andrea, Daniel o Mónica, hacen del trabajo diario algo muy disfrutable
y eso lo tengo que agradecer.
Quiero agradecer a mi supervisor, Alberto Pardo, quien me ha guiado paso a paso

en este proceso de iniciación a la vida académica, estando siempre disponible para
resolver cualquier cosa que le haya ido a plantear. Por suerte todav́ıa me queda mucho
por aprender de Alberto.

2

Preface

También quiero agradecer a aquellos con los que he compartido la escritura de
(proyectos de) papers en esta última etapa. Gracias a Alberto, Bruno, Mart́ın, Mauro,
Pablo y Pablo (E), por considerar al menos por un rato que lo que hacemos pueda
llegar a ser interesante.

En todas las instancias del curso de Programación 2 en las que he trabajado siempre
me han tocado buenos grupos de compañeros. A través de sus co-responsables, Carlos
y Lorena, les agradezco a todos ellos, por el buen trabajo y por la flexibilidad que
siempre han mostrado cuando esta tesis le quitó algún tiempo al curso.

Quiero agradecer a todos los miembros del PEDECIBA Informática y a su secretaria
Maŕıa Inés. En especial quiero agradecer a los integrantes del Consejo Cient́ıfico que
junto con Daniel tuvimos la suerte de integrar como delegados estudiantiles.

Agradezco profundamente a todos mis amigos, los de siempre. Los que parece que
nada tienen que ver con todo esto pero que en realidad son grandes culpables de lo
que soy.

A mis padres, a quienes no me cansaré de decirles que me enorgullece ser su hijo,
y que no me alcanzará la vida para agradecer lo que han hecho por mi.

A Carolina. Recuerdo que hace ya varios años te di aquella tarjeta que dećıa que
“no hay nada más hermoso que el amor que ha sobrellevado las tormentas de la
vida”, y la profećıa se va cumpliendo, porque nuestro amor es hermoso. Primero en
Montevideo, luego sobrevivir a la distancia y ahora en San José, viviendo el sueño,
con el pequeño Dante, el mejor regalo que nos pudo haber dado la vida. Como se que
no lo voy a poder describir mejor, le robo estas palabras a Drexler para decirte “que
el corazón no miente, que afortunadamente, me haces bien, me haces bien, me haces
bien”.

Sponsors. I am grateful to the European project LerNet and PEDECIBA Informática,
who respectively funded the 75% and 25% of my eighteen months stay in the Nether-
lands. ANII financed another one month internship at the Utrecht University to be
able to meet my supervisor and advance in my thesis. From 2009 to 2011, I received a
grant for my PhD studies from the Engineering School of Universidad de la República.

3

Contents

Preface 1

1 Introduction 9

1.1 Extensible Languages . 10
1.1.1 Language Extension . 13

1.2 First-Class Syntax . 15
1.2.1 Grammar Representation . 15
1.2.2 Grammar Extensions . 15
1.2.3 Closed Grammars . 16

1.3 First-Class Semantics . 17
1.3.1 Definition of the Language Semantics 17
1.3.2 Extending the Semantics . 20

1.4 Related Work . 23
1.5 Outline of the Thesis . 25

2 Constructing and Composing Efficient Top-down Parsers at Runtime 27

2.1 Introduction . 27
2.2 A Better Read . 31

2.2.1 Deriving Gram . 32
2.2.2 Grouping . 34
2.2.3 LC-Transformation . 34
2.2.4 Left-Factoring . 36

2.3 Representing Data Type Grammars 37
2.3.1 Typed References and Environments 37
2.3.2 Typed Grammar Representations 38
2.3.3 Typed Grammar Representations for Data Types 38
2.3.4 Representing Mutually Recursive Data Types 40
2.3.5 Non Representable Data Types 45
2.3.6 Deriving Data Type Grammars 45

2.4 Typed Transformations . 46
2.4.1 Transformation Library . 46
2.4.2 Implementation of Grouping 49

2.5 Efficiency . 53
2.5.1 gread versus read . 53
2.5.2 gread versus leftcorner . 55

2.6 Conclusions and Future Work . 55

5

Contents

3 Grammar Fragments Fly First-Class 57

3.1 Introduction . 57
3.2 Context-Free Grammar . 58

3.2.1 Language Extension . 59
3.3 Grammar Representation . 61

3.3.1 From Grammar to Parser . 62
3.3.2 Applicative Interface . 63

3.4 Extensible Grammars . 64
3.4.1 Grammar Extensions . 64

3.5 Closed Grammars . 67
3.5.1 Finding Empty Productions . 69
3.5.2 Removal of Empty Productions 73

3.6 Fixpoint Production . 76
3.6.1 Fixpoint Removal . 77

3.7 Related Work and Conclusions . 77

4 Attribute Grammars Fly First-Class 79

4.1 Introduction . 79
4.2 HList . 85

4.2.1 Heterogeneous Lists . 86
4.2.2 Extensible Records . 87

4.3 Rules . 89
4.3.1 Rule Definition . 91
4.3.2 Monadic Rule Definition . 95
4.3.3 Applicative Rule Definition . 96

4.4 Aspects . 97
4.4.1 Aspects Combination . 98

4.5 Semantic Functions . 99
4.5.1 The Knit Function . 100

4.6 Common Patterns . 101
4.6.1 Copy Rule . 102
4.6.2 Other Rules . 103

4.7 Defining Aspects . 104
4.7.1 Attribute Aspects . 105
4.7.2 Default Aspects . 106

4.8 Related Work . 107
4.9 Conclusions . 108

5 Attribute Grammar Macros 111

5.1 Introduction . 111
5.2 Attribute Grammar Combinators . 113
5.3 Attribute Grammar Macros . 118

5.3.1 Mapping a Child to a Child . 120
5.3.2 Mapping a Child to a Macro 120

6

Contents

5.3.3 Mapping a Child to a Constant 121
5.4 Accessing Attributes . 121
5.5 Attribute Redefinitions . 123
5.6 Conclusions and Future Work . 124

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class 125

6.1 Introduction . 125
6.2 Attribute Grammars . 127

6.2.1 Initial Attribute Grammars . 127
6.2.2 Attribute Grammar Extensions 128

6.3 From UUAG to AspectAG . 132
6.4 Optimizations . 134

6.4.1 Grouping Attributes . 134
6.4.2 Static Productions . 135
6.4.3 Benchmarks . 136

6.5 Conclusions and Future Work . 138

7 Case Study - Oberon0 139

7.1 Architecture . 140
7.2 Syntax . 142
7.3 Aspect Oriented Semantics . 145

7.3.1 Name analysis . 145
7.3.2 Type checking . 147
7.3.3 Source-to-source transformation 149
7.3.4 Code generation . 150

7.4 Artifacts . 152
7.5 Conclusions . 152

8 Conclusions and Future Work 155

8.1 First Class Syntax . 155
8.2 First Class Semantics . 155
8.3 Their Composition . 156
8.4 Future Work . 156

A Oberon0 Syntax 159

A.1 Concrete Grammar . 159
A.1.1 L1 . 159
A.1.2 L2 . 161
A.1.3 L3 . 161
A.1.4 L4 . 162

A.2 Abstract Syntax . 163
A.2.1 L1 . 163
A.2.2 L2 . 165
A.2.3 L3 . 165

7

Contents

A.2.4 L4 . 166

Bibliography 167

Samenvatting 173

8

1 Introduction

Since the introduction of the very first programming languages, and the invention
of grammatical formalisms for describing them, people have been looking into how
to enable an initial language definition to be extended by someone other than the
original language designers. In the extreme case a programmer, starting from an
empty initial language, could thus compose his favorite language out of a collection
of pre-compiled language-definition fragments. Such language fragments may range
from the definition of a simple syntactic abbreviation like list comprehensions to the
addition of completely new language concepts, or even extensions to the type system.

In solving the problem of how to compose a compiler, various lines of attack have
been pursued. The most direct and least invasive approach, which is so widely applied
that one may not recognize it as an approach to the goal sketched above, is to make
use of libraries defined in the language itself, thus simulating real extensibility. Over
the years this method has been very effective, and especially modern, lazily evaluated,
statically typed functional languages such as Haskell serve as an ideal environment
for applying this technique; the definition of many so-called combinator libraries in
Haskell has shown the effectiveness of this approach, which had been characterized as
the construction of embedded domain specific languages (EDSL). The ability to define
operators and precedences can be used to mimic syntactic extensions. Unfortunately
not all programming languages really support this approach very well, given the flood
of so-called modeling languages and frameworks from which lots of boilerplate code
is generated.

At the other extreme of the spectrum we start from a base language and the compiler
text for that base language. Just before the compiler is compiled itself, several extra
ingredients can be added textually. In this way we get great flexibility and there is
virtually no limit to the things we may add. The Utrecht Haskell Compiler [19] has
shown the effectiveness of this approach using attribute grammars as the composing
mechanism. This approach however is not very practical when defining relatively small
language extensions; we do not want every individual user to generate a completely
new compiler for each small extension. Another problematic aspect of this approach
is that by making the complete text of the compiler available for modification we may
also loose important guarantees provided by e.g. the type system of the language
being defined; we definitely do not want everyone to mess around with the delicate
internals of a compiler for a complex language.

So the question arises of how we can do better than only providing powerful ab-
straction mechanisms without opening up the whole source of the compiler. The most
commonly found approach is to introduce so-called syntax-macros [39], which enable
the programmer to add syntactic sugar to a language by defining new notation in
terms of already existing notation. Despite the fact that this approach may be very

9

1 Introduction

effective, it also has severe shortcomings; as a consequence of mapping the new con-
structs onto existing constructs and performing any further processing such as type
checking on this simpler, but often more detailed program representation, feedback
from later stages is given in terms of invisible intermediate program representations.
Hence the implementation details shine through, and error messages produced can be
confusing or even incomprehensible.
Given the above considerations we impose some quite heavy restrictions on our-

selves. In the first place extensions should go beyond merely syntactic extensions as
is the case with the original syntax macros, which only map new syntax onto existing
syntax; we want also to gain access to the part of the compiler which deals with the
static semantics, e.g., in order to report errors in terms of the extended syntax instead
of the original one. We seek extension at the semantic level, i.e. by using some sort
of plug-in architecture; we will do so by constructing a core compiler as a collection
of pre-compiled components, to which extra components can be added and for which
existing components can be redefined at will. The questions we answer in this thesis
are how to compose a compiler out of separately compiled and statically type checked
language-definition fragments and how to construct such fragments using a domain
specific language embedded in Haskell.
In this chapter we show how several related techniques we will introduce through

the thesis can be combined in a unified approach to construct extensible compilers.
The solution we present builds on:

• the description of typed grammar fragments as first class Haskell values, and
the possibility to construct parsers out of them

• the possibility to deal with attribute grammars as first class Haskell values,
which can be transformed, composed and finally evaluated.

These techniques make use of many well-known Haskell extensions, such as multi-
parameter type classes, functional dependencies, generalised algebraic data types and
arrow notation. For simplicity, in the rest of the chapter we will refer to this just as
Haskell.
In Section 1.1 we introduce the syntax of a small language and its extension, as it

is to be provided by the language definer and extender. In Section 1.2 we show the
techniques we use to represent the syntax, and in Section 1.3 show the corresponding
static semantics parts. We close by discussing related work and outline the rest of
the thesis.

1.1 Extensible Languages

In this section we show how to express extensible languages. The architecture of our
approach is depicted in Figure 1.1; boxes represent (groups of Haskell) modules and
arrows are import relations.
In the rest of the section we will take a detailed look at each module, and how

everything fits together in the construction of a compiler. Our running example will

10

1.1 Extensible Languages

Figure 1.1: Initial Language

be a small expression language with declarations, to which we will refer as the initial
grammar :

root ::= decls "main" "=" exp
decls ::= var "=" exp decls | empty
exp ::= exp "+" term | term
term ::= term "*" factor | factor
factor ::= int | var

Note that this concrete grammar uses the syntactic categories exp, term and factor
to represent operator precedences.

gramIni sf = proc ()→ do

rec root ← addNT ≺ T (semRoot sf) decls "main" "=" exp U

decls ← addNT ≺ T (semDecls sf) var "=" exp decls U
<|> T (semNoDecl sf) U

exp ← addNT ≺ T (semAdd sf) exp "+" term U <|> T term U

term ← addNT ≺ T (semMul sf) term "*" factor U <|> T factor U

factor ← addNT ≺ T (semCst sf) int U <|> T (semVar sf) var U

exportNTs ≺ exportList root $ export ntDecls decls . export ntExp exp
. export ntTerm term . export ntFactor factor

Figure 1.2: Initial Language Grammar

To implement this language fragment, a language implementer has to provide the
Haskell code of Figure 1.2, expressing himself using our murder1 combinator library
(of course one might generate this from the grammar description) and the arrow-
interface2. This corresponds to the module Grammar in Figure 1.1. Without delving
into details in this section, observe that the context-free grammar just given can be
immediately recognized in the structure of the code. This grammar fragment descrip-
tion consists of a sequence of transformations, introducing new non-terminals to the

1MUtually Recursive Definitions Explicitly Represented: http://hackage.haskell.org/package/

murder
2Using Arrow syntax [50], which is inspired by the do-notation for Monads

11

1 Introduction

grammar. The notation is to be read as output ← transformation ≺ input . Each
non-terminal (syntactic category) of the context free grammar is introduced (using
addNT) by defining a list of productions (alternatives) separated by <|> (choice)
operators, where each production contains a sequence of elements to be recognized.
The parameter sf is a record containing the “semantics of the language”. The type

of this record is declared in the module Semantics Declaration, for example:

data SemLang decls main rs name val rest ds nds
al ar as ml mr ms value cs var vs

= SemLang {semRoot :: decls → main → rs
, semDecls :: name → val → rest → ds
, semNoDecl :: nds
, semAdd :: al → ar → as
, semMul ::ml → mr → ms
, semCst :: value → cs
, semVar :: var → vs }

The functions contained in the record (accessed as e.g. semMul sf) describe how to
map the semantic values associated with the abstract syntax trees corresponding to
the non-terminals in the right-hand side of a production onto the semantic value of
the left hand side of that production (and eventually the value associated with the
root of a parse tree). We call these semantic functions, because they give meaning to
the constructs of the language. The record is parametrized by the types that compose
the types of its fields, i.e. the semantic functions of the productions. Such a record
describes the abstract syntax of the language.
In Section 1.3 we show how to construct and adapt the semantic functions (module

Semantics Implementation in Figure 1.1) using the uuagc-system combined with a
first-class attribute grammar library. We map the abstract parse tree of the program
onto a call tree of the semantic function calls. The resulting meaning of a parse tree
is a function which can be seen as a mapping from the inherited to the synthesized
attributes. Thus, a production is defined by a semantic function and a sequence of
non-terminals and terminals ("*"), the latter corresponding to literals which are to
be recognized.
As usual, some of the elementary parsers return values which are constructed by

the scanner. For such terminals we have a couple of predefined special cases, such as
int , which returns the integer value from the input and var which returns a recognized
variable name.
An initial grammar is also an extensible grammar. It exports (with exportNTs) its

starting point (root) and a list of exportable non-terminals each consisting of a label
(by convention of the form nt ...) and the collection of right hand sides. These right
hand sides can be used and modified in future extensions.
Figure 1.3 contains a fragment of a (very simple) compiler of the example language;

it corresponds to the module Compiler of Figure 1.1. The function genCompiler
closes a grammar and generates a parser integrated with the semantics for the lan-
guage starting from the first non-terminal, which in our case is root . The left-corner

12

1.1 Extensible Languages

import Grammar (gramIni)
import SemanticsImpl (semIni)

compiler = genCompiler (gramIni semIni)

Figure 1.3: Initial Language Compiler

transform is applied to remove possible left recursion from the grammar, in order to
use straightforward top-down parsing techniques in the actual parsing process.

1.1.1 Language Extension

The language (and thus compiler of that language) can be extended without having
either to re-compile or to inspect the grammar and semantic components of the com-
piler for the initial language. Figure 1.4 shows the structure of a compiler produced
as an extension of an initial language including the introduction of new syntax. In
this case both the grammar and the semantics are being extended.

Figure 1.4: Language Extension Figure 1.5: Lang. Semantics Modification

If the extension only involves modification of the semantics (e.g. to add new aspects
or redefine existing ones), then it suffices to add an extension to the module containing
the Semantics Implementation (Figure 1.5).
In the rest of the section we show how to extend the language just defined by adding

new kinds of expressions such as conditional expressions and new syntactic categories
such as conditions:

factor ::= ... | "if" cond "then" exp "else" exp

cond ::= exp "==" exp | exp ">" exp

The grammar extension gramExt is again defined as a Haskell value, which imports an
existing set of productions and builds an extended set, as shown in Figure 1.6. In this
case the type of the sf record, defined in the module Semantics Declaration Extension,
is:

data SemLangExt cnd thn els is el er es gl gr gs

= SemLangExt {semIf :: cnd → thn → els → is
, semEq :: el → er → es
, semGr :: gl → gr → gs }

13

1 Introduction

gramExt sf = proc imported → do

let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (factor , T (semIf sf) "if" cond "then" exp "else" exp U)

cond ← addNT ≺ T (semEq sf) exp "==" exp U
<|> T (semGr sf) exp ">" exp U

exportNTs ≺ extendExport imported (export ntCond cond)

Figure 1.6: Language Extension

We first show how to combine previously defined productions with the newly defined
productions into an extended grammar: for each non-terminal to be extended, or used
in an extension, we retrieve its list of productions (using getNT) from the imported
non-terminals, and add new productions to this list using addProds. For example, for
factor the new if ... then ... else... production is added by:

let exp = getNT ntExp imported
let factor = getNT ntFactor imported
rec addProds ≺ (factor , T (semIf sf) "if" cond "then" exp "else" exp U)

Extra non-terminals can be added as well using addNT ; in the example we add the
non-terminal cond with its two productions to represent some simple conditions:

cond ← addNT ≺ T (semEq sf) exp "==" exp U <|> T (semGr sf) exp ">" exp U

Finally, we extend the list of exportable non-terminals with (some of) the newly added
non-terminals, so they can be extended by further fragments elsewhere:

exportNTs ≺ extendExport imported (export ntCond cond)

Because both gramIni and gramExt are proper Haskell values, which are separately
defined in different modules which can be compiled separately, we claim that the term
first-class grammar fragments is justified.

import GrammarExt (gramIni , gramExt)
import SemanticsImplExt (semIni , semExt)

compiler = genCompiler (gramIni semIni +>> gramExt semExt)

Figure 1.7: Extended Language Compiler

The extended language compiler is shown in Figure 1.7. The operator (+>>) com-
poses an initial grammar with its extension, returning a new (initial) grammar. The
function genCompiler makes sure that all existing references to non-terminals even-
tually refer to the final version of the definitions for these non-terminals.

14

1.2 First-Class Syntax

1.2 First-Class Syntax

In this section we introduce the murder library, which we use to define and combine
grammars. The library is based on the typed representation of grammars and the
typed transformations [6] of these grammars. A detailed description of the library
will be provided in Chapter 3.

1.2.1 Grammar Representation

We use a representation of grammars as typed abstract syntax [7] based on the use of
Generalized Algebraic Data Types [54]. The idea is to indirectly refer to non-terminals
via references encoded as types. Such references type-index into an environment
holding the actual collection of productions for non-terminals. This enforces that
the productions occurring in an environment can only contain references to non-
terminals that belong to the environment in question. A grammar is a value with
type Grammar a, where the type a is the type of a witness of a complete successful
parse starting from the root nonterminal of the grammar.

1.2.2 Grammar Extensions

Grammar definitions (Figure 1.2) and extensions (Figure 1.6) are typed transfor-
mations of values of type Grammar , implemented using the library TTTAS3 (Typed
Transformations of Typed Abstract Syntax). TTTAS enables us to represent typed
transformation steps, (possibly) extending a typed environment. In other words, by
using typed transformations when adding non-terminals and productions to a gram-
mar, we will always construct a grammar that is assured to be well-typed again.
In TTTAS the transformations are represented as Arrows [29]. Arrows are a general-

ization of Monads, modeling a computation that takes inputs and produces outputs.
In our case the computation maintains a state containing the environment mapping
the non-terminals of the grammar onto the thus far defined productions. We use the
input and output of the arrows to read and write data controlling the transformation
process.

Both extensible grammars and grammar extensions have to export their starting
point and their list of exportable non-terminals, which can be used and/or modified by
future extensions. We encode this data in a value of type Export , which is constructed
using the function exportList , and extended with extendExport .
The only difference between extensible grammars and grammar extensions is that

a grammar extension has to import the list of non-terminals it will extend, while an
initial grammar does not import anything.

Thus, the definition of an extensible grammar, like the one in Figure 1.2, has the
following shape:

gramIni = proc ()→ do ...

exportNTs ≺ exported

3http://hackage.haskell.org/package/TTTAS

15

1 Introduction

where the proc () part indicates that gramIni is a typed transformation that takes
just () as input and returns as output a value (exported) of type Export . With
exportNTs we inject the Export value in the transformation in order to return it as
output.
The definition of a grammar extension, like the one in Figure 1.6, has the shape:

gramExt = proc imported → do ...

exportNTs ≺ exported

Now in order to extend a grammar with a grammar extension all we have to do is
to compose both transformations by connecting the output of the first to the input
of the second. This is the role of the operator (+>>), used in Figure 1.7, which is a
(type) specialized version of the Arrow ’s composition (>>>).
To add a new non-terminal to the grammar boils down to adding a new term to

the environment using the transformation addNT . The input to addNT is the initial
list of alternative productions for the non-terminal and the output is a non-terminal
symbol, i.e. the index of the newly added non-terminal in the new grammar. Thus,
when in Figure 1.2 we write:

exp ← addNT ≺ productions

we are adding the non-terminal for the expressions, with the list of productions
productions passed as a parameter, and we bind to exp a symbol holding the ref-
erence to the added non-terminal so it can be used in the definition of this or other
non-terminals. The list of alternative productions is expressed in an applicative style;
i.e. in terms of pure, (<*>), (<*) and (<|>), or using the brackets T and U. These
brackets are inspired by the idioms approach as introduced by McBride [44]. The
brackets T and U are the LATEX representations of the Haskell identifiers iI and Ii,
which come with a collection of Haskell class and instance declarations which together
allow us to write T (semMul sf) term "*" factor U instead of the more elaborate text:

pure (semMul sf) <*> sym term <* tr "*" <*> sym factor

Adding new productions to an existing non-terminal boils down to appending the
extra productions to the list of existing productions of that non-terminal. Figure 1.6
contains an example of adding a production to the non-terminal factor . The trans-
formation addProds takes as input a pair with a reference to the non-terminal to be
extended and the list of productions to add:

addProds ≺ (nonterminal , productions)

In this case the output is irrelevant, since no new references are created as a result of
this extension.

1.2.3 Closed Grammars

We can run the transformation by closing the grammar; i.e. all references are made
to point to the latest version of their corresponding non-terminals. Thus, a call to

16

1.3 First-Class Semantics

closeGram starts with an empty grammar, and applies to it all the transformations
defined in the grammar description to obtain the defined grammar.

genCompiler = (parse . generate . leftcorner) closeGram

The type of a closed grammar is Grammar a, where a is a phantom type [28] repre-
senting the type of the start non-terminal.

Since this grammar can be left-recursive we have to apply the leftcorner [7] typed
transformation in order to remove potential left-recursion:

leftcorner ::Grammar a → Grammar a

The function generate generates a parser integrated with the semantics for the lan-
guage starting from the first non-terminal, which in our case is root .

generate ::Grammar a → Parser Token a

Finally, parse parses the input program while computing the meaning of that program.
Currently we can generate either uulib4 or uu-parsinglib5 parsers.

parse :: Parser Token a → [Token]→ ParseResult a

1.3 First-Class Semantics

In this section we complete the example by showing how we use attribute grammars
to define the static semantics of the initial language and how such definitions can be
redefined when the language is extended.

An Attribute Grammar describes for a context-free grammar how each node in a
parse tree is to be decorated with a collection of values, called attributes. For each
attribute we have a defining expression in which we may refer to other “nearby”
attributes, thus defining a data-flow graph based on the abstract syntax tree. An
attribute grammar evaluator schedules the computation of these expressions, such
that the attributes we are interested in eventually get computed.

1.3.1 Definition of the Language Semantics

To define the static semantics of a language we use the AspectAG6 embedding of
attribute grammars in Haskell. We introduce AspectAG in Chapter 4. In order to
be able to redefine attributes or to add new attributes later, it encodes the lists of
inherited and synthesized attributes of a non-terminal as an HList-encoded [35] value,
indexed by types using the Haskell class mechanism. In this way the closure test of

4http://hackage.haskell.org/package/uulib
5http://hackage.haskell.org/package/uu-parsinglib
6http://hackage.haskell.org/package/AspectAG

17

1 Introduction

SemanticsImpl.agi

DATA Root | Root decls :Decls main : Expr

DATA Decls | Decl name : String val : Expr rest :Decls
| NoDecl

DATA Expr | Add al : Expr ar : Expr
| Mul ml : Expr mr : Expr
| Cst value : Int
| Var var : String

ATTR Root Decls SYN spp : PP Doc
ATTR Root Expr SYN sval : Int
ATTR Decls Expr INH ienv : [(String , Int)]
ATTR Decls SYN senv : [(String , Int)]

Figure 1.8: Language semantics

the attribute grammar (each attribute has exactly one definition) is realized through
the Haskell class system. Thus, attribute grammar fragments can be individually
type-checked, compiled, distributed and composed to construct a compiler. Albeit
easy to use for the experienced Haskell programmer, it has a rather steep learning
curve for the uninitiated. A further disadvantage is that the approach is relatively
expensive: once the language gets complicated (in our Haskell compiler UHC [19] some
non-terminals have over 20 attributes), the cost of accessing attributes may eventually
overshadow the cost of the actual computations.

For those reasons we define in Chapter 6 an extension to the uuagc compiler [64],
that generates AspectAG code fragments from original uuagc sources. This tool en-
ables a couple of optimizations to the AspectAG code: we limit both our reliance on
the HList-encoding, resulting in a considerable speed improvement, and allow existing
uuagc code to be reused in a flexible environment.

With the --aspectag option we make uuagc generate AspectAG code out of a set
of .ag files and their corresponding .agi files. An .agi file includes the declaration
of a grammar and its attributes (the interface), while the SEM blocks specifying the
computation of these attributes are included in the .ag file (the implementation).

In the rest of the chapter we will show examples written in the uuagc language.
Although another valid option would have been to implement the semantic functions
directly in AspectAG, or to use a hybrid approach.

Figure 1.8 shows the .agi file for the semantics of our initial language. Notice
that the grammar defined here is not exactly the same as the context-free grammar
of the language, since our attribute grammars are built on top of the abstract syntax
of the language. We define attributes for the following aspects: pretty printing,
realized by the synthesized attribute spp, which holds a pretty printed document

18

1.3 First-Class Semantics

SemanticsImpl.ag

SEM Root | Root lhs.spp = decls.spp <-> "main =" <#>main.spp

SEM Decls | Decl lhs.spp = name <#> "=" <#> val .spp <-> rest .spp
| NoDecl lhs.spp = empty

SEM Expr | Add lhs.spp = al .spp <#> "+" <#> ar .spp
| Mul lhs.spp = ml .spp <#> "*" <#>mr .spp
| Cst lhs.spp = pp (show value)
| Var lhs.spp = pp var

SEM Root | Root lhs.sval = main.sval

SEM Expr | Add lhs.sval = al .sval + ar .sval
| Mul lhs.sval = ml .sval ∗mr .sval
| Cst lhs.sval = value
| Var lhs.sval = case lookup var lhs.ienv of

Just v → v
Nothing → 0

SEM Root | Root decls.ienv = []
main.ienv = decls.senv

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

SEM Decls | Decl lhs.senv = rest .senv
| NoDecl lhs.senv = lhs.ienv

Figure 1.9: Language semantics

of type PP Doc, and expression evaluation, realized by the synthesized attribute
sval of type Int , which holds the result of an expression, and an inherited attribute
ienv which holds the environment ([(String , Int)]) in which an expression is to be
evaluated. Synthesized attributes take their definition “from below”, using the values
of the synthesized attributes of the children of the node the attribute is associated
with and the inherited attributes of the node itself. An inherited attribute is defined
“from above”: in its defining expression we may refer to the inherited attributes of
its parent and the synthesized attributes of its siblings.

Keep in mind that we chose these trivial semantics in order to keep the example
simple, and focus on the features of the technique. A real compiler should involve
more complex tasks such as type-checking, optimization and code generation.

Figure 1.9 shows the .ag file including the implementation of the attributes declared
above. In a SEM block we specify how attributes of a production are to be computed
out of the attributes from the left hand side and children of the production. The

19

1 Introduction

defining expressions at the right hand side of the = signs are almost plain Haskell code,
using minimal syntactic extensions to refer to attributes. We refer to a synthesized
attribute of a child using the notation child .attribute and to an inherited attribute
of the production itself (the left-hand side) as lhs.attribute. Terminals are referred
to by the name introduced in the DATA declaration. For example, the rule for the
attribute ienv for the child rest of the production Decl extends the inherited list ienv
by a pair composed of the name used in the declaration and the value sval of the
child with name val (val .sval).
The pretty-printing attribute is defined for each production by combining the pretty

printed children using the pretty printing combinators from the uulib library: (<#>)
for horizontal (beside) composition, (<->) for vertical (above) composition, and pp to
pretty print a string.
The semantics of the expression evaluation (sval) is intuitive. Variables of the main

expression are located in an environment constructed as follows:

• the declarations sub-tree (decls) receives an empty environment ienv and ex-
tends it through the list of declarations with the values resulting from the eval-
uation of the expression in the right hand side of each declaration

• the complete environment is passed “up” to the root in the attribute senv

• this environment is distributed into the main expression as ienv

The rules to describe the computation of the attribute ienv for the productions Add
and Mul of the non-terminal Expr are omitted. In this case, rules that copy the at-
tribute (unchanged) to the children are inserted automatically by uuagc. The library
AspectAG includes a function copy that implements the same behaviour.
Notice that the expressions of the declarations (Decl) should be closed, since they

are (in our current definition) evaluated in an empty environment.
A semantic function (sem Prod) is generated for each production (Prod) of the

grammar. Thus, to complete our initial language of Section 1.1 we only need to
construct the record semIni with these semantic functions:

semIni = SemLang {semRoot = sem Root
, semDecls = semDecls, semNoDecl = sem NoDecl
, semAdd = sem Add , semMul = sem Mul
, semCst = sem Cst , semVar = sem Var }

1.3.2 Extending the Semantics

Having first-class attribute grammars enables us to have a compiled definition of
the semantics of a language and to introduce relatively small extensions to it later,
without the need to either reconstruct the whole compiler, or to require the sources
of the core language to be available.

20

1.3 First-Class Semantics

SemanticsImplExt.agi

EXTENDS "SemanticsImpl"

ATTR Root Decls Expr SYN serr USE {++} { []} : [String]

SemanticsImplExt.ag

SEM Decls | Decl lhs.serr = (case lookup name lhs.ienv of

Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

SEM Expr | Var lhs.serr = case lookup var lhs.ienv of

Just → []
Nothing → [var ++ " undefined"]

Figure 1.10: Language Extension: Errors

In this subsection we show, by using some simple examples, how extensions can be
defined.

The use of variables and declarations in the example language can be erroneous.
Thus we introduce in Figure 1.10 an extra synthesized attribute (serr) in which we
collect error messages corresponding to duplicated definitions and referring to unde-
fined variables. This extension to the language corresponds to the kind of extensions
described in Figure 1.5, because it only involves a change at the semantic level; no
new syntax is added.

The keyword EXTENDS in Figure 1.10 is used to indicate which attribute gram-
mar is being extended. The USE clause included in the declaration of the synthesized
attribute serr indicates that, for the productions where the definition is omitted, the
attribute will be computed by collecting the synthesized attributes serr of the chil-
dren of the production. If the collection is empty (NoDecl and Cst) the value of the
attribute is []. In the other case (Root , Add and Mul) the values are combined with
the operator (++). The same can be done in AspectAG using the function use.

In Section 1.1.1 we extended the initial language with a conditional expression. The
implementation of the semantics of this extension, which corresponds to the extensions
depicted in Figure 1.4, is shown in Figure 1.11. In this case not only new attributes
are added, but we also extend the abstract syntax with a new kind of node, and define
a new production for the existing non-terminal Expr . Since semantics extensions are
pairwise incremental, we also have to define the computation of the attribute serr for
the newly included productions.

AspectAG enables the redefinition of already existing attributes. In uuagc (extended
to generate AspectAG) we use :=, instead of =, to declare attribute redefinitions. For
example, in the extension of Figure 1.12, the attribute ienv is redefined to allow the
use of variables in the expressions of the declarations. Notice how a very small change
to the attribute grammar definitions may influence the overall language considerably.

21

1 Introduction

SemanticsImplExt2.agi

EXTENDS "SemanticsImplExt"

DATA Expr | If cnd : Cond thn : Expr els : Expr

DATA Cond | Eq el : Expr er : Expr
| Gr gl : Expr gr : Expr

ATTR Cond SYN sval : Bool
ATTR Cond SYN spp : PP Doc
ATTR Cond SYN serr USE {++} { []} : [String]

SemanticsImplExt2.ag

SEM Expr | If lhs.sval = if cnd .sval then thn.sval else els.sval

SEM Cond | Eq lhs.sval = el .sval ≡ er .sval
lhs.spp = el .spp <#> "==" <#> er .spp

| Gr lhs.sval = gl .sval > gr .sval
lhs.spp = gl .spp <#> ">" <#> gr .spp

Figure 1.11: Language Extension: If

SemanticsImplExt3.agi

EXTENDS "SemanticsImplExt2"

SemanticsImplExt3.ag

SEM Decls | Decl val .ienv := rest .senv

Figure 1.12: Language Extension: Variables in declarations

Usually we do not want to define the complete semantics of a syntactic extension
from scratch. If we limited ourselves to a syntax-macro like mechanism, where new
syntax is mapped onto existent syntax, it would be useful to have a way to express this
mapping at the semantic level. In Chapter 5 we extend AspectAG with an agMacro
combinator that enables us to define the attribute computations of a new production
in terms of the attribute computations of existing productions. Thus, we can define
the extensions Sq , computing the square of an expression, Pyth for the sum of the
squares of two expressions, and Db to double an expression as in Figure 1.13. The
fragment Sq se : Expr ⇒ (Mul se se) defines a production Sq with a child se, where
the computation of its semantics is based on the computation of the semantics of the
production Mul , but mapping both children to se. In the case of Pyth, macros are

22

1.4 Related Work

SemanticsImplExt4.agi

EXTENDS "SemanticsImplExt3"

DATA Expr | Sq se : Expr ⇒ (Mul se se)
| Pyth pl : Expr pr : Expr ⇒ (Add (Sq pl) (Sq pr))
| Db de : Expr ⇒ (Mul (Cst 2) de)

Figure 1.13: Language Extension: Sq and Pyth

SemanticsImplExt4.ag

SEM Expr | Sq lhs.spp := "sq" <#> se.spp
| Pyth lhs.spp := "pyth" <#> pl .spp <#> pr .spp
| Db lhs.spp := "db" <#> de.spp

Figure 1.14: Pretty printing redefinition

used recursively to define the mapping of the children of the production Add .

Sometimes we will need to define a special semantics for certain attributes of the
production. For example, with the definition of Sq of Figure 1.13, if we pretty print
the expression pyth 3 4 the result will be 3 ∗ 3 + 4 ∗ 4, since that was the abstract
syntax tree to which it was mapped in order to compute its semantics. This however
is likely not to be the desired behavior. Fortunately we are able to redefine attribute
computations in such cases! Thus, in the corresponding .agi file (Figure 1.14) we
redefine the semantics of the pretty printing aspect.

1.4 Related Work

Although syntax extensions are not commonly supported in typed languages, there is
a long tradition in languages like Lisp [75], Scheme [2], Prolog [1], and more recently
Stratego [11]. For these syntactically very parsimonious languages a pressing need
for such a facility exists, and the absence of a rich type system does not provide a
burden for its implementation. We quote Fisher and Shivers [22] who say “Once one
has become accustomed to such a powerful tool, it is hard to give up. When we find
ourselves writing programs in languages such as Java, SML, or C, that is, that lack
Scheme’s syntax extension ability- we find that we miss it greatly”. Having made this
observation they introduce the Ziggurat [23] system, which aims at the same goal
as this thesis; the underlying technology is completely different though. They use
a delegation based system with which the semantics associated with the node in an
abstract syntax tree can be updated. By using Lisp as their implementation language
they do not have to cope with the problems posed by the Haskell type system; on the
other hand the users of the Ziggurat system do not have the advantages associated

23

1 Introduction

with having a typed implementation language. We believe that having a statically
typed implementation language is a great advantage, and we happily rephrase the
above quote: “Once one has become accustomed to the advantages of a static type
system, it is hard to give up. When we find ourselves writing programs in languages
such as Lisp, PHP, Ruby and JavaScript, that lack Haskell’s type and class system-
we find that we miss it greatly”.

Another distinguishing feature is that our underlying technology for describing the
static semantics is based on attribute grammars. Attribute grammars have proven
themselves extremely useful for compositional language definitions. Adams [3] pro-
posed a set of tools for modular syntax and modular attribute grammars in an untyped
setting. Among many others, the attribute grammars systems LISA [45], JastAdd
[21], Silver [68] and Kiama [60], have successfully tackled the problem of defining
modular extensible compilers in a typed context.

Most of these systems, like uuagc, have a generative approach to compositionality;
i.e. take the sources of all the composing modules and generate a monolithic system in
a host language. Therefore, they do not provide separate compilation. An exception is
Kiama, which is embedded as a library in Scala, and supports composition by using
mixins and traits. From this point of view, Kiama is closely related to AspectAG,
although the former is not able to perform well-formedness checks (such as the closure
test) to a composed grammar, unless the grammar is declared as non-extensible. The
design of AspectAG is inspired by [16], which represents attributions using Rémy-style
records, instead of the type-level programming techniques.

LISA and Silver include parser generators to construct parsers out of the composed
grammars. Since we do not have access to the source of the composing grammars, we
use typed grammar transformations and parser combinators to generate (left-recursion
free) top-down parsers on the fly. Neither Kiama nor JastAdd provides support for
concrete syntax specification and parsing.

All the systems support synthesized and inherited attributes, but some of them
extended the model with some new features. Silver includes forwarding, to allow
productions to implicitly define the computation of some attributes by translation.
This functionality is very similar to the provided in AspectAG by the combination
of agMacros and attribute redefinitions. JastAdd and Kiama support reference at-
tributes, i.e. attributes that refer to other tree nodes. This is useful in writing
compilers, because it allows one to model language relations (such as the use and
declaration of variables and types) as references inside the abstract syntax tree. We
do not support this kind of attribute.

Finally, we use Haskell, a strongly-typed pure functional programming language,
to define the attribute computations. We think it fits perfectly to the declarative na-
ture of attribute grammars. In cases where imperative languages like Java (JastAdd,
LINDA) are used, it becomes impossible to control the absence of side-effects. Sil-
ver defines its own language which is declarative and strongly-typed, although more
limited.

24

1.5 Outline of the Thesis

1.5 Outline of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2 we describe our approach to construct efficient parsers for the
language of data types in a compositional way. This chapter is an adapted
version of our Haskell 2008 paper “Haskell, Do You Read Me?: Constructing
and composing efficient top-down parsers at runtime” [71].

• In Chapter 3 we extend our technique to first-class context-free grammars, in-
troducing an unrestricted, applicative interface for constructing them. This
chapter is an adapted and extended version of our LDTA 2012 paper “Gram-
mar Fragments Fly First-Class” [70].

• In Chapter 4 we introduce an embedding of attribute grammars in Haskell. This
chapter is an adapted and extended version of our ICFP 2009 paper “Attribute
Grammars Fly First-Class: How to do aspect oriented programming in Haskell”
[73].

• In Chapter 5 we extend our embedding with attribute grammar macros, a me-
chanism which allows us to express semantics in terms of already existing se-
mantics. This chapter is an adapted and extended version of our SBLP 2012
paper “Attribute Grammar Macros” [69].

• In Chapter 6 we describe an extension of uuagc to generate (and optimize)
attribute grammars expressed in our embedding. This chapter is an adapted
version of our LDTA 2012 paper “UUAG Meets AspectAG: How to make At-
tribute Grammars First-Class” [72].

• In Chapter 7 we present a small case study, which we implemented to partici-
pate in the LDTA 2011 Tool Challenge. A reduced version of this chapter will
be included in a joint paper which is planned to be submitted to Science of
Computer Programming.

• Finally, in Chapter 8 we conclude and discuss some directions for future work.

As a formal detail, the Association for Computing Machinery (ACM) has copyright
on the paper version of Chapter 2, Chapter 3, Chapter 4 and Chapter 6. Springer
has copyright on the paper version of Chapter 5

25

2 Haskell, Do You Read Me? Constructing

and Composing Efficient Top-down Parsers

at Runtime

The Haskell definition and implementation of read is far from perfect. In the first place
read is not able to handle the associativities defined for infix operators. Furthermore,
it puts constraints on the way show is defined, and especially forces it to generate far
more parentheses than expected to be able to read back such printed values. Lastly,
it may give rise to exponential parsing times. All this is due to the compositionality
requirement for read functions, which imposes a top-down parsing strategy.

We propose a different approach, based on typed abstract syntax, in which gram-
mars describing the data types are composed dynamically. Using the TTTAS transfor-
mation library these syntax descriptions are combined and transformed into parsers
at runtime, from which the required read functions are constructed. In this way we
obtain linear parsing times, achieve consistency with the defined associativities, and
may use a version of show which generates far fewer parentheses, thus improving
readability of printed values.

The described transformation algorithm can be incorporated in a Haskell compiler,
thus moving most of the work involved to compile time.

2.1 Introduction

In this chapter we propose a solution1 to a few long standing, related problems in
the design of the Haskell Read and Show classes. We start by explaining the current
design, which was considered an optimal point in the design space available at the
time of the design of Haskell98 [52].

Consider the following data type, together with the fixity declarations of the ope-
rators involved:

infixl 5 :<:
infixr 6 :>:

data T1 = T1 :<: T1 | T1 :>: T1 | C1
deriving (Read ,Show)

v = C1 :>: C1 :<: C1 :<: C1

w = (read "C1 :>: C1 :<: C1 :<: C1" :: T1)
x = (read (show v) :: T1)

1Available as the ChristmasTree library: http://hackage.haskell.org/package/ChristmasTree.

27

2 Constructing and Composing Efficient Top-down Parsers at Runtime

Given the fixity declarations, the definition of v is fine. Unfortunately the evaluation
of w leads to a runtime error, because read is ignorant of the associativities of :>:
and :<:. It is a sad observation that despite all the effort that went into the design
of the language, we cannot just take a constant expression out of the program, put
it in a file and read it back. Surprisingly, the definition of show is such that x is
well-defined again.
The second problem relates to the efficiency of the standard implementation of

read . In a GHC bug ticket [51] it is explained why, with the current implementation
of read and show , the following expression takes a long time to be processed, and on
some systems may not run at all:

read "((((((((((C1))))))))))" :: T1

To understand what is going on we delve into the internals of the implementation, and
the definitions of read and show from the Haskell98 Report, using a small example.

T1 (n)→ T1 (5) ":<:" T1 (6)
| T1 (7) ":>:" T1 (6)
| "C1"

| "(" T1 (0) ")"

(n 6 5)
(n 6 6)

Figure 2.1: Grammar of the type T1

Consider the grammar of Figure 2.1, in which the parameter indicates the priority
level at which the non-terminal may occur in an expression. Note how the associativity
of the operators is encoded by this parameter: for the first alternative the second
occurrence of T1 in the right hand side has a higher priority.
A second observation is that for n = 5, this grammar is actually left recursive

because of the first alternative, and thus cannot be parsed by conventional top-down
parsing methods, based on recursive descent techniques.
The Haskell98 Report describes how left recursion is avoided by using a modified

grammar, in which the priorities of the children are always higher than the priority
of the left hand side of the production. So the language which is actually recognised
by the generated read function is described by the non left-recursive grammar:

T1 (n)→ T1 (6) ":<:" T1 (6)
| T1 (7) ":>:" T1 (7)
| "C1"

| "(" T1 (0) ")"

(n 6 5)
(n 6 6)

Note that this grammar treats all operators as non-associative. The derived instance
for read is:

28

2.1 Introduction

left prec = 5
right prec = 6
app prec = 10

instance Read T1 where

readsPrec n r
= readParen (n > left prec)

(λr → [(u :<: v ,w) |
(u, s)← readsPrec (left prec + 1) r ,
(":<:", t)← lex s ,
(v ,w)← readsPrec (left prec + 1) t]

) r
++ readParen (n > right prec)

(λr → [(u :>: v ,w) |
(u, s)← readsPrec (right prec + 1) r ,
(":>:", t)← lex s ,
(v ,w)← readsPrec (right prec + 1) t]

) r
++ readParen (n > app prec)

(λr → [(C1, s) |
("C1", s)← lex r]

) r

The function readParen requires a pair of parentheses around its parser argument,
if its first argument evaluates to True. The price we have to pay for avoiding left-
recursive grammars, is that we have to place many more parentheses in our expres-
sions. The good news, and the reason that the aforementioned x is well-defined, is
that the derived show function generates these extra parentheses; the derived read is
helped to perform its task by the derived show , such that read .show = id .
By taking a closer look at this code we can now understand the source of the

potential exponential parsing times; all three alternatives happily start by accepting a
"("-symbol – the first one expecting to see a :<: after having seen the corresponding
closing parenthesis, the second one expecting a :>:, and the third one expecting
nothing– and if the second input symbol is a "(" too, all three have three more ways
to proceed, leading to an exponential growth in parsing time.

Now consider a expression of the form C1:>: (C1:>: (...)). Here we do not have the
problem of the opening parentheses, but for expressions with more than 10 C1s the
parsing time grows exponentially too. What is happening? If we split the grammar
according to the precedences we can see the problem:

T1 (0 . . 5) → T1 (6) ":<:" T1 (6) | T1 (6)
T1 (6) → T1 (7) ":>:" T1 (7) | T1 (7)
T1 (7 . . 10)→ "C1"

| "(" T1 (0) ")"

Due to the division of the non-terminal T1 into three non-terminals, new alterna-

29

2 Constructing and Composing Efficient Top-down Parsers at Runtime

tives pointing directly to the next level have to be added to T1 (0 . . 5) and T1 (6).
Nonterminals T1 (0 . . 5) and T1 (6) have a common prefix into their productions.
So, each "C1" will be parsed twice before making a decision between the alternatives
T1 (7) ":>:" T1 (7) and T1 (7); and, even worse, this process is performed twice
before deciding between T1 (6) ":<:" T1 (6) and T (6).
One might expect that there is a simple cure for these problems, since the Haskell

compiler itself is able to parse the equivalent expression. In the example case a com-
piler could indeed spend a bit more time in analysing the data type and constructing
an equivalent grammar which does not have the identified shortcomings. This leads,
using the applicative parser interface [44], straightforwardly to the following combi-
nator based parser for T1 , using the parser combinators pChainl and pChainr :

infixr 7‘pChainl ‘, ‘pChainr ‘
pT1 = (":<:", (:<:)) ‘pChainl ‘

(":>:", (:<:)) ‘pChainr ‘
(pParens pT1 <|> pToken "C1")

Both combinators combine an operator, described by its string representation and a
binary function defining its semantics, and a parser for the operands into a parser
which recognises a sequence of operands separated by operators. When parsing is
completed the combinator pChainl builds the result for a left-associative operator
and pChainr for a right-associative operator.
Unfortunately however the situation is not always so easy to solve. Consider the

following definition:

infix 5 :+:
infix 6 :*:

data T2 a = T2 a :+: T2 a
| a :*: T2 a
| C2

When deriving read for T2 , a Haskell implementation does not generate a parser,
but a function that maps a parser (coming from the Read dictionary) recognising
values of some parameter type a, to a parser which recognises values of type T2 a.
In this way we can handle the situation where the complete grammar is not at hand
when building parsers: the parameter of T2 might be defined in another module, or
may not be defined at all.

It now also becomes clear why the strategy chosen in Haskell works; we have limited
our languages to a class for which we can build parsers by composing parsers whenever
we define new languages by composing languages. Each module happily generates its
own instances of the class Read , and these values can straightforwardly be combined
into the required parser. So the question we answer in this chapter is:

“How can we construct efficient parsers for the language of data types in
a compositional way?”.

30

2.2 A Better Read

In the rest of this chapter we show how these problems can be overcome, using a library
for transforming typed abstract syntax, the design of which has been described in [6].

Before delving into the technical details we start out by sketching the solution.
Parser generators usually perform some form of grammar analysis, but unfortunately
the result of such analyses cannot easily be combined into the analysis result for a
combined grammar [11, 9]. Since there is no easy way to compose parsers, we take one
step back and compose grammars instead, and thus we have to represent grammars
as Haskell values. Once the grammars are composed we can build the required parser.
In order to make grammars first-class values we introduce a polymorphic data

type DGrammar a (DataGrammar), describing grammatical structures which des-
cribe String values corresponding to values of type a. By making values of this data
type member of a class:

class Gram a where

grammar ::DGrammar a

we can now provide the type of our read function, gread2:

read :: Read a ⇒ String → a -- the original
gread ::Gram a ⇒ String → a -- our version

In Section 2.2 we give a top-level overview of the steps involved. In Section 2.3 we
describe how to represent grammars using typed abstract syntax, thus preparing the
grammars for the transformations in Section 2.4. In Section 2.5 we spend some words
on the efficiency of the overall approach and describe a few open problems and details
to pursue further, whereas in Section 2.6 we conclude.

2.2 A Better Read

We obtain a parser for rules of data type t by taking the following steps.

deriveGrammar Generate an instance of the class Gram. We provide a function
deriveGrammar , defined using Template Haskell [58], which performs this step,
although we would eventually expect a compiler to take care of this. The ins-
tance Gram T1 , describing the structure of the type T1 is generated by calling:

$ (deriveGrammar “T1)

In this generated description precedences and associativities are reflected by
annotating uses of non-terminals in the right hand side with the precedence
of the position at which they occur, and by annotating productions with the
level at which they may be applied (as in Figure 2.1). This is similar to the
description given in the Haskell98 report.

2Available at: http://hackage.haskell.org/package/ChristmasTree

31

2 Constructing and Composing Efficient Top-down Parsers at Runtime

group When a grammar refers to other grammars, which are generated separately and
probably in a different module, we have to remove these references by combining
the separate grammars into a single complete grammar; this corresponds to the
dictionary passing for Read . Once this is done we know all the precedences of
all the non-terminals involved, and we may construct a new grammar using a
sufficient number of new non-annotated non-terminals, in which the precedences
and associativities are represented in the grammar itself.

leftcorner For all resulting left-recursive grammars (or parts thereof) we perform the
Left-Corner transform [7]. The LC-transform is a relatively straightforward
transformation which maps a grammar onto an equivalent grammar which is
not left-recursive.

leftfactoring Apply left-factoring to the resulting grammar, in order to remove the
source of inefficiencies we have seen in section 1.

compile Convert the grammar into a parser. We use the parser combinators included
in the uulib [62] package in order to construct a fast parser.

parse Add a call to this parser, a check for a successful result and the generation of
an error message in case of failure.

All these steps are visible as individual functions in gread :

gread :: (Gram a)⇒ String → a
gread = (parse . compile . leftfactoring . leftcorner . group) grammar

Since all these steps, except the first one, are performed at runtime, we have achieved
true runtime compositionality. Modules can be compiled separately, and the final
parsing function is generated just in time. In the next subsections we look at each
step in more detail.

2.2.1 Deriving Gram

The data type DGrammar describes grammars, and we postpone its detailed discus-
sion to Section 2.3. In Figure 2.2 we give the instance of the class Gram, containing
a value of type DGrammar T1 , which is generated for the data type T1 from Fig-
ure 2.1. Without going into the implementation details, it is easy to see the direct
relationship between the data type T1 and its DGrammar T1 representation. For
example the part of the grammar:

| T1 (7) ":>:" T1 (6) (n 6 6)

which corresponds to the second alternative (n 6 6) in the data type definition, is
represented by the pair:

32

2.2 A Better Read

instance Gram T1 where

grammar = DGrammar 0 envT1

envT1 :: Env DGram (T1 , ()) (T1 , ())
envT1 = consD (nonts 0) Empty

where

nonts T1 = DLNontDefs
[(DRef (T1 , 5)
,DPS [dNont (T1 , 5) .#. dTerm ":<:" .#.

dNont (T1 , 6) .#. dEnd infixL]
)
, (DRef (T1 , 6)
,DPS [dNont (T1 , 7) .#. dTerm ":>:" .#.

dNont (T1 , 6) .#. dEnd infixR]
)
, (DRef (T1 , 10)
,DPS [dTerm "C1" .#. dEnd (const C1)

, dTerm "(" .#. dNont (T1 , 0) .#.

dTerm ")" .#. dEnd parenT]
)
]

infixL e1 e2 = e2 :<: e1
infixR e1 e2 = e2 :>: e1

Figure 2.2: Representation of the grammar of type T1

(DRef (T1 , 6)
,DPS [dNont (T1 , 7) .#. dTerm ":>:" .#.

dNont (T1 , 6) .#. dEnd infixR]
)

In the first component of this pair we specify the non-terminal and its precedence level
(which corresponds to a guard behind a set of production rules), while in the second
component we find the set of corresponding productions (in this case a singleton
list). Each right-hand side consists of a sequence of terminals (dTerm) and non-
terminals (dNont), separated by an operator .#. indicating sequential composition.
The sequence finishes with a call to dEnd f , where f (in this case infixR) is a function
which takes the parsing results of the right-hand side elements into a value of type
T1 .

33

2 Constructing and Composing Efficient Top-down Parsers at Runtime

T2 (n)→ T2 (6) ":+:" T2 (6)
| A (7) ":*:" T2 (7)
| "C2"

| "(" T2 (0) ")"

(n 6 5)
(n 6 6)

Figure 2.3: Grammar of the type T2 a

2.2.2 Grouping

The first transformation we apply to the grammar is to split it according to prece-
dences actually used. The result of grouping the grammar for the type T1 (Figure 2.1)
is:

A → A ":<:" B | B
B → C ":>:" B | C
C → "C1" | "(" A ")"

where A groups all non-terminals from level 0 to 5, B corresponds to the non-terminal
of level 6 and C all non-terminals from level 7 up-to 10. The original reference
to T1 (0) between parentheses is mapped to a reference to A. For non-terminals
representing levels less than 10 (A and B) a new alternative that points to the next
level is added.
When a grammar contains references to non-terminals of other grammars, we in-

clude all the referred grammars. Hence, if we have the grammar of T2 a (Figure 2.3),
the result of grouping T2 T1 is:

A → B ":+:" B | B
B → F ":*:" C | C
C → "C2" | "(" A ")"

D → D ":<:" E | E
E → F ":>:" E | F
F → "C1" | "(" D ")"

Note that the non-terminal names of the split grammar of T1 have changed from A,
B and C to D , E and F , respectively.
Of course a compiler could do this statically for those types for which all necessary

information is already available; but in the general case this is something which has
to be done dynamically.

2.2.3 LC-Transformation

Consider the grammar of the data type T1 after applying group. The production:

34

2.2 A Better Read

A→ A ":<:" B | B

is left-recursive. So, this grammar cannot be parsed by a top-down parser. We remedy
this by applying a Left-Corner transformation [30], for which a typed implementation
is given in [7]. Since the complete implementation is given in that paper, we only give
a short description of this transformation.

We use the following notational convention for grammar meta-variables. Lower-
case letters (a, b, etc.) denote terminal symbols. Low-order upper-case letters (A,
B, etc.) denote non-terminals, while high-order upper-case letters (X, Y, Z) denote
symbols that can either be terminals or non-terminals. Greek lower-case symbols (α,
β, etc.) denote sequences of terminals and non-terminals.

A direct left-corner of a non-terminal A is a symbol X so that there exists a pro-
duction for A with X as the left-most symbol on the right-hand side. The left-corner
relation is defined as the transitive closure of the direct left-corner relation. So, a
non-terminal being left-recursive is equivalent to being a left-corner of itself.
For each (left-recursive) non-terminal A of the original grammar, the function

leftcorner applies the following rules to build new productions for A and produc-
tions for new non-terminals A X , where X is a left-corner of A and a non-terminal
A X stands for that part of an A after having seen an X .

1. For each production A → X α of the source grammar add A X → α to the
target grammar, and add X to the set of left-corners found for A.

2. For each newly found left-corner X of A:

a) If X is a terminal symbol b add A→ b A b to the transformed grammar.

b) If X is a non-terminal B then for each original production B → Y β add
the production A Y → β A B to the transformed grammar and add Y to
the left-corners of A.

This transformation can not deal with alternatives of the form A → X α if X is an
empty element; i.e. alternatives with empty elements at the beginning. This is not
a restriction for us, since the grammars we are working with (data types grammars)
do not include such kind of alternatives. In Chapter 3 we will show how to overcome
this problem when dealing with more general grammars.

The left-corner transformation for the type T1 yields the grammar:

A → "C1" A C1 | "(" A (
A A → ":<:" B A A | ":<:" B
A B → A A | ǫ
A C → ":>:" B A B | A B
A C1 → A C
A (→ A ")" A C
B → "C1" B C1 | "(" B (
B C → ":>:" B | ǫ
B C1 → B C

35

2 Constructing and Composing Efficient Top-down Parsers at Runtime

B (→ A ")" B C
C → "C1" C C1 | "(" C (
C C1 → ǫ

C (→ A ")"

2.2.4 Left-Factoring

Looking at the grammar of T1 after the LC-transform, we see that a common prefix
has shown up in the productions for the non-terminal A A. This overlap leads to
inefficient parsers, since we have to parse the same part of the input more than once.
The function leftfactoring removes such common prefixes by applying the following
rule until all left-factors have been removed.

• For each set of productions C = {A→ X α1, ..., A→ X αn}, with n > 1, add
the productions (A → X A X , A X → α1, ..., A X → αn) to the grammar,
and remove the productions in C .

So, by applying leftfactoring to the grammar after the LC-transform we obtain its
optimised version:

A → "C1" A C1 | "(" A (
A A → ":<:" A A lt
A A lt → B A A lt B
A A lt B → A A | ǫ
A B → A A | ǫ
A C → ":>:" B A B | A B
A C1 → A C
A (→ A ")" A C
B → "C1" B C1 | "(" B (
B C → ":>:" B | ǫ
B C1 → B C
B (→ A ")" B C
C → "C1" C C1 | "(" C (
C C1 → ǫ

C (→ A ")"

36

2.3 Representing Data Type Grammars

2.3 Representing Data Type Grammars

We represent the grammars as typed abstract syntax, encoded using Generalised Alge-
braic Data Types [54]. In the following subsections we introduce this representation
and the issues involved in deriving it from a data type. The main problem to be
solved is how to represent the typed references, and how to maintain a type correct
representation during the transformation processes.

2.3.1 Typed References and Environments

Pasalic and Linger [49] introduced an encoding Ref of typed references to an envi-
ronment containing values of different type. A Ref is labeled with the type of the
referenced value and the type of an environment (a nested Cartesian product exten-
ding to the right) the value lives in:

data Ref a env where

Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

The constructor Zero expresses that the first element of the environment has to be
of type a. The constructor Suc does not care about the type of the first element in
the environment (it is polymorphic in the type b), and remembers a position in the
rest of the environment.

Baars et al. [5, 6] extend this idea such that environments do not contain values of
mixed type but instead terms (expressions) describing such values; these terms take an
extra type parameter describing the environment to which references to other terms
occurring in the term may point. In this way we can describe typed terms containing
typed references to other terms. As a consequence, a GADT Env is introduced,
which may be used to represent an environment, consisting of a collection of possibly
mutually recursive definitions (in our case grammars). The environment stores a
heterogeneous list of terms of type t a use, which are the right-hand expressions of the
definitions. References to elements are represented by indices in the list, implemented
by values of type Ref .

data Env t use def where

Empty :: Env t use ()
Ext :: Env t use def ′ → t a use → Env t use (def ′, a)

The type parameter def is a nested product containing the type labels a of the
terms of type t a use occurring in the environment. When the constructor Ext is
used to extend an environment Ent t use def ′ with a term t a use the type label of
the resulting environment is extended with this a, resulting in (def ′, a). The type use
describes the types that may be referenced from within terms of type t a use using
Ref a use values. When the types def and use coincide the type system ensures that
the references in the terms do not point to values outside the environment; i.e. the
environment is closed. A type FinalEnv forces an environment to be closed:

37

2 Constructing and Composing Efficient Top-down Parsers at Runtime

type FinalEnv t usedef = Env t usedef usedef

The function lookupEnv takes a reference and an environment. The reference is used
as an index in the environment to locate the referenced value. The types guarantee
that the lookup succeeds, and that the value found is indeed labeled with the type
with which the Ref argument was labeled:

lookupEnv :: Ref a env → Env t s env → t a s
lookupEnv Zero (Ext p) = p
lookupEnv (Suc r) (Ext ps) = lookupEnv r ps

2.3.2 Typed Grammar Representations

A Grammar consists of a root symbol, represented by a value of type Ref a..., where
a is the type of the witness of a successful parse, and a closed environment FinalEnv ,
containing for each non-terminal of the grammar its list of alternative productions.
Because the internal structure of the grammar is not of interest it is made existential.
This enables us to add or remove non-terminals without changing the visible type of
the grammar as such.

data Grammar a = ∀ env .Grammar (Ref a env)
(FinalEnv Productions env)

newtype Productions a env = PS {unPS :: [Prod a env]}

A production is a sequence of symbols, and a symbol is either a terminal with Token
as its witness or a non-terminal, encoded by a reference.

data Token = Keyw String | Open | Close

data Symbol a env where

Nont :: Ref a env → Symbol a env
Term :: Token → Symbol Token env

data Prod a env where

Seq :: Symbol b env → Prod (b → a) env
→ Prod a env

End :: a → Prod a env

The right hand side sequence of symbols terminated by an End f element. The
function f accepts the parsing results of the right hand side elements as arguments,
and builds the parsing result for the left-hand side non-terminal.

2.3.3 Typed Grammar Representations for Data Types

For a grammar corresponding to a Haskell data type the situation is a bit different,
since we actually have a whole collection of non-terminals: for each non-terminal the

38

2.3 Representing Data Type Grammars

set is indexed by the precedences. Furthermore in productions of a non-terminal we
can have references to non-terminals of both the grammar (i.e. data type) being
defined as well as other grammars, corresponding to parameters of the data type.
For example, the grammar of the type T2 a (Figure 2.3) has a reference to the 7th
precedence level of the grammar of the type parameter a.

We coin the non-terminal we are finally interested in the main non-terminal, and
our new grammar representation type DGrammar starts with a reference to the main
non-terminal in the environment. Note that this is the only non-terminal that can be
referred to from outside the grammar!

data DGrammar a = ∀ env .DGrammar (Ref a env)
(FinalEnv DGram env)

data DGram a env = DGD (DLNontDefs a env)
| DGG (DGrammar a)

Other non-terminals definitions may be included in the environment as further DGD ’s,
and all the non-terminals labeled by DGD can be mutually recursive. In order to be
able to refer to other grammars (such as introduced by a type parameter) we introduce
an extra kind of non-terminal (DGG), which is the starting symbol of a completely
new grammar. This imposes a tree like hierarchy on our non-terminals, with the
DGrammar nodes representing mutually recursive sets of non-terminals.

A reference to a non-terminal has to indicate the place in the environment where
the non-terminal is defined (which can either be an internal non-terminal or another
grammar) and the level of precedence at the referring position:

newtype DRef a env = DRef (Ref a env , Int)

A non-terminal is defined by a list of productions available at each precedence level.
An occurrence (DRef (r ,n), prods) tells us that the alternatives prods of the non-
terminal r are available for the levels from 0 to n. For efficiency reasons we order the
list in increasing order of precedence.

newtype DLNontDefs a env
= DLNontDefs [(DRef a env ,DProductions a env)]

The list of alternative productions DProductions is defined similar to Productions:

newtype DProductions a env = DPS {unDPS :: [DProd a env]}

data DProd a env where

DSeq ::DSymbol b env → DProd (b → a) env
→ DProd a env

DEnd :: a → DProd a env

data DSymbol a env where

DNont ::DRef a env → DSymbol a env
DTerm :: Token → DSymbol Token env

39

2 Constructing and Composing Efficient Top-down Parsers at Runtime

In order to make our grammar definitions look a bit nicer we introduce:

infixr 5 .#.

(.#.) = DSeq
consG g es = Ext es (DGG g)
consD g es = Ext es (DGD g)
dNont nt = DNont (DRef nt)
dTerm t | t ≡ "(" = DTerm Open

| t ≡ ")" = DTerm Close
| otherwise = DTerm (Keyw t)

dEnd f = DEnd f
parenT p1 e p2 = e

0 = Zero
1 = Suc 0
2 = Suc 1

Figure 2.4 shows the DGrammar (T2 a) representation of the grammar T2 a
(Figure 2.3). It consists of an environment with the production of T2 a represented
at position 0 and the grammar of the type a at position 1 . So DRef (0 ,n) refers to
T2 a at level n and DRef (1 ,n) refers the grammar of the type a at level n. Due to
the type signature of the environment, the type system guarantees that the grammar
we store as the second component in the environment is of type DGrammar a.

2.3.4 Representing Mutually Recursive Data Types

When performing the grammar transformations, we expect the grammars to be com-
plete, i.e. all referred grammars are inlined in the grammar from which we want to
derive a gread . In case of mutually recursive data types, like T3 and T4 of Figure 2.5,
if we derive the instances:

instance Gram T3 where

grammar = DGrammar 0 envT3

instance Gram T4 where

grammar = DGrammar 1 envT4

we get an unbounded number of copies of each grammar when trying to inline them.
This happens because the generation of the grammars is mutually recursive too.

Mutual recursion occurs if there is a cycle of data types mentioned explicitly. When
trying to define the representation of a type it can be detected, by constructing a
directed graph with the explicit calls to other types. If the type belongs to a strongly
connected component there is a cyclic type dependency with the other components.
We have solved the problem of cyclic dependencies using the idea of binding groups [52].

When a strongly connected component is found, the definitions of all the components

40

2.3 Representing Data Type Grammars

instance Gram a ⇒ Gram (T2 a) where

grammar = DGrammar 0 envT2

envT2 :: (Gram a)⇒ FinalEnv DGram (((), a),T2 a)
envT2 = consD (nonts 0 1) $

consG grammar Empty
where

nonts T2 A = DLNontDefs
[(DRef (T2 , 5)
,DPS [dNont (T2 , 6) .#. dTerm ":+:" .#.

dNont (T2 , 6) .#. dEnd infixP]
)
, (DRef (T2 , 6)
,DPS [dNont (A, 7) .#. dTerm ":*:" .#.

dNont (T2 , 7) .#. dEnd infixT]
)
, (DRef (T2 , 10)
,DPS [dTerm "C2" .#. dEnd (const C2)

, dTerm "(" .#. dNont (T2 , 0) .#.

dTerm ")" .#. dEnd parenT]
)
]

infixP e1 e2 = e2 :+: e1
infixT e1 e2 = e2 :*: e1

Figure 2.4: Representation of the grammar of type T2 a

types are tupled together into a single environment. Remember that our environ-
ments (Env) have no problem in describing mutually recursive definitions. So, in the
case of T3 and T4 , we build the environment:

envT3T4 :: FinalEnv DGram (((),T4),T3)
envT3T4 = consD (nonts3 0 1) $

consD (nonts4 1 0) Empty
where

nonts3 T3 T4 = DLNontDefs
[(DRef (T3 , 10)
,DPS [dTerm "T3" .#. dNont (T4 , 0) .#.

dEnd consT3
, dTerm "C3" .#. dEnd (const C3)
, dTerm "(" .#. dNont (T3 , 0) .#.

dTerm ")" .#. dEnd parenT
]

41

2 Constructing and Composing Efficient Top-down Parsers at Runtime

data T3 = T3 T4 | C3
data T4 = T4 T3 | C4

T3 T4

data T5 = T5 T6 | C5
data T6 = T6 T7
data T7 = T7 T5 T5

T6

T7

Figure 2.5: Mutually recursive types with graph representation

)
]

nonts4 T4 T3 = DLNontDefs
[(DRef (T4 , 10)
,DPS [dTerm "T4" .#. dNont (T3 , 0) .#.

dEnd consT4
, dTerm "C4" .#. dEnd (const C4)
, dTerm "(" .#. dNont (T4 , 0) .#.

dTerm ")" .#. dEnd parenT
]

)
]

consT3 a = const (T3 a)
consT4 a = const (T4 a)

Note that when defining T3 we pass the location of T4 in the environment, and vice
versa. For both types the instances can now be created using the same environment,
only using different references for the root symbols.

instance Gram T3 where

grammar = DGrammar 0 envT3T4

instance Gram T4 where

grammar = DGrammar 1 envT3T4

As we can see in Figure 2.6, there are some cases where a type is a member of a
strongly connected component, but it does not contain explicit references to the other
members of its component. This happens when we have a parametrised type that is
instantiated with a member of the component. This relation is expressed in the figure

42

2.3 Representing Data Type Grammars

data T8 = T8 (T2 T8)
| C8 T8 T2

data T9 = T9 (T2 T10)
| C9

data T10 = T10 T9 T10

T9

T2

data T11 = T11 (T2 T11)
(T2 T12)

data T12 = T12 T11 T11

T12

T2

Figure 2.6: Mutually recursive components with weak edges

as a dashed edge in the graph. We call such edges weak edges, and the types pointing
from a such an edge a weak member.

These types, in the examples T2 , generate the cyclic type dependencies but they
do not form part of it: the grammar for T2 is generated without referring to T8 ,
T9 , T10 or T11 . But, for example, to generate the grammar of T9 (or T10) the
definition of (T2 T10) has to be made part of the environment. So in order to define
the environment for the instances of T9 and T10 :

instance Gram T9 where

grammar = DGrammar 0 envT9T10

instance Gram T10 where

grammar = DGrammar 1 envT9T10

We include a copy of the definition of the non-terminals of T2 a instantiated with
T10 :

envT9T10 :: FinalEnv DGram ((((),T2 T10),T10),T9)
envT9T10 = consD (nonts9 0 2) $

consD (nonts10 1 0) $
consD (nonts2 2 1) Empty

where

nonts9 T9 T2 = DLNontDefs

43

2 Constructing and Composing Efficient Top-down Parsers at Runtime

[(DRef (T9 , 10)
,DPS [dTerm "T9" .#. dNont (T2 , 0) .#.

dEnd consT9
, dTerm "C9" .#. dEnd (const C9)
, dTerm "(" .#. dNont (T9 , 0) .#.

dTerm ")" .#. dEnd parenT
]

)
]

nonts10 T10 T9 = DLNontDefs
[(DRef (T10 , 10)
,DPS [dTerm "T10" .#. dNont (T9 , 0) .#.

dEnd consT10
, dTerm "(" .#. dNont (T10 , 0) .#.

dTerm ")" .#. dEnd parenT
]

)
]

nonts2 T2 T10 = DLNontDefs
[(DRef (T2 , 5)
,DPS [dNont (T2 , 6) .#. dTerm ":+:" .#.

dNont (T2 , 6) .#. dEnd infixP]
)
, (DRef (T2 , 6)
,DPS [dNont (T10 , 7) .#. dTerm ":*:" .#.

dNont (T2 , 7) .#. dEnd infixT]
)
, (DRef (T2 , 10)
,DPS [dTerm "C2" .#. dEnd (const C2)

, dTerm "(" .#. dNont (T2 , 0) .#.

dTerm ")" .#. dEnd parenT]
)
]

consT9 a = const (T9 a)
consT10 a = const (T10 a)
infixP e1 e2 = e2 :+: e1
infixT e1 e2 = e2 :*: e1

Note that the instance of Gram T2 does not occur in this environment; the instance
of Gram T2 is the one defined in Section 2.3.3.
We have to include all the instances of weak edges into a binding group. In the

case of T11 there are two weak edges from T2 . Hence both (T2 T11) and (T2 T12)
are included.

envT11T12 :: FinalEnv DGram (((((),T2 T12),T2 T11),T12),T11)

44

2.3 Representing Data Type Grammars

envT11T12 = consD (nonts11 0 2 3) $
consD (nonts12 1 0) $
consD (nonts2 2 0) $
consD (nonts2 3 1) Empty

2.3.5 Non Representable Data Types

There are some cases in which we cannot define a representation of the grammar. In
the presence of non uniform data types, we cannot avoid the generation of infinite
grammars. Consider the data type:

data T13 a = T13 (T13 (a, a)) | C13 a

To generate the grammar of T13 a, we need the grammar of T13 (a, a), that needs
the grammar of T13 ((a, a), (a, a)), and so on. Note that all grammars are of different
type, so we cannot use the approach defined before.

Another type that cannot be represented with our approach, because is also a kind
of non uniform type, is the fix-point type:

data Fix f = In (f (Fix f))

In these cases we have to resort to the current way the read function works.

2.3.6 Deriving Data Type Grammars

To automatically derive the data type grammars, we use Template Haskell. While
you can do most of the introspection needed also with Data.Generics [37, 38], we
specifically need the fixity information of infix constructors for our grammar, which
is not available from Data.Generics.

We first need to find out if the type is part of a mutually recursive group. Then we
generate code for all types in the group, but only construct an instance for the type
deriveGrammar was called on.

Calculating binding groups

The algorithm that finds the set of types that is mutually recursive is pretty straight-
forward: recursively getting the information of the types used in the constructors,
while building a graph of types.

To make sure we do not loop, we stop when we find a type that is already in the
graph. This works fine, but for types of a kind other than ∗, we need to take the type
arguments into account . We bind the arguments in the environment and we do not
recurse if we have done so with the same arguments before.

45

2 Constructing and Composing Efficient Top-down Parsers at Runtime

Generating Gram instances

Using the binding group, we generate the DLNontDefs for each of the types. This is
straightforward: for a normal constructor we add a non-terminal at precedence level
10, using the constructor as term and it is arguments as references to non-terminals.
For infix constructors we use the precedence and associativity information to add the
at the right precedence. For each types we add a special non-terminal for parentheses.
When we need a reference to another grammar we use a naming scheme using the

type, bindings (if applicable) and a prefix. For references to grammars that are not
known at compile time we use the argument name, prefixed by the type and a general
prefix.
When we have all the generated DLNontDefs we can chain them together using

consD . For types that take arguments, we add a consG grammar for each argument.
In the resulting environment, there will still be variables for references to grammars
that are not defined yet. We solve this by wrapping the definitions in two lambda
expressions. The inner expression makes the mapping from the ‘polymorphic’ gram-
mars to names (using explicit polymorphic signatures in the patterns). The outer
lambda is used to create the mappings for the parametrised grammars.
As an example, when calling $(deriveGrammar “T8) the generated code looks like

Figure 2.7.

2.4 Typed Transformations

In this section we present the approach used in implementing the transformations:

group ::DGrammar a → Grammar a
leftcorner ::Grammar a → Grammar a
leftfactoring ::Grammar a → Grammar a

All these functions are implemented by using the typed transformation library TTTAS [6].
In the following subsections we introduce the library and describe the implementation
of the function group. The function leftcorner has been presented in the mentioned
paper, and leftfactoring has a quite similar structure.

2.4.1 Transformation Library

The library is based on the Arrow type Trafo, which represents typed transformation
steps, (possibly) extending an environment Env :

data Trafo m t s a b

The arguments are the types of: the meta-data m (i.e., state other than the en-
vironment we are constructing), the terms t stored in the environment, the final
environment s, the arrow-input a and arrow-output b. Thus, instances of the classes

46

2.4 Typed Transformations

instance Gram T8
where grammar = DGrammar Zero

((λ t T8 t T2 ′T8 →
(λ(nonts T8 :: ∀ env .Ref T8 env

→ Ref (T2 T8) env
→ DLNontDefs T8 env)

(nonts T2 :: ∀ env a 0 .Ref (T2 a 0) env
→ Ref a 0 env
→ DLNontDefs (T2 a 0) env)

→
consD (nonts T8 t T8 t T2 ′T8)

(consD (nonts T2 t T2 ′T8 t T8) Empty))
(λ r T8 r T2 ′T8 → DLNontDefs
[(DRef (r T8 , 10),DPS [

((.#.) $ dTerm "T8")
((.#.) (dNont (r T2 ′T8 , 0))
(dEnd (λarg1 → T8 arg1)))
, ((.#.) $ dTerm "C8") (dEnd (\ → C8))
, dTerm "("

.#. (dNont (r T8 , 0)

.#. (dTerm ")" .#. dEnd parenT))
])])

(λ r T2 r T2 a → DLNontDefs [...]))
Zero (Suc Zero)
:: FinalEnv DGram (((),T2 T8),T8)

Figure 2.7: Generated grammar of type T8

47

2 Constructing and Composing Efficient Top-down Parsers at Runtime

Category and Arrow are implemented for (Trafo m t s), which provides a set of func-
tions for constructing and combining Trafos. Some of these functions which we will
refer to are:

• (>>>) :: Category cat ⇒ cat a b → cat b c → cat a c
Left to right composition.

• arr :: Arrow a ⇒ (b → c)→ a b c
Lift a function to an arrow.

• first ::Arrow a ⇒ a b c → a (b, d) (c, d)
Use the first component for the argument arrow and copy the second component
unchanged.

• second :: Arrow a ⇒ a b c → a (d , b) (d , c)
Use the second component for the argument arrow and copy the first component
unchanged.

• returnA :: Arrow a ⇒ a b b
Identity arrow.

There also exists a convenient notation [50] for Arrows, which is inspired by the
do-notation for Monads. For example, writing:

proc x → do y ← f ≺ x
z ← g ≺ x
returnA ≺ y + z

is equivalent to:

arr (λx → (x , x)) >>> first f >>> second g >>> arr (λ(y , z)→ y + z) >>> returnA

The class ArrowLoop is instantiated to provide feedback loops with:

loop ::ArrowLoop a ⇒ a (b, d) (c, d)→ a b c

The second component of the output (with type d) is fed back as the second compo-
nent of the input. In Arrow notation this is represented with the rec value recursion
construct.

A transformation is run with runTrafo, starting with an empty environment and an
initial value of type a. The universal quantification over the type s ensures that trans-
formation steps cannot make any assumptions about the type of the (yet unknown)
final environment.

runTrafo :: (∀ s.Trafo m t s a (b s))→ m ()→ a → Result m t b

The result of running a transformation is encoded by the type Result , containing the
final meta-data, the output type and the final environment. It is existential in the

48

2.4 Typed Transformations

final environment, because in general we do not know how many definitions will be
introduced by a transformation and which are their associated types. Note that the
final environment has to be closed (hence the use of FinalEnv).

data Result m t b = ∀ s.Result (m s) (b s) (FinalEnv t s)

New terms can be added to the environment by using the function newSRef . It takes
the term of type t a s to be added as input and yields as output a reference of type
Ref a s that points to this term in the final environment:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

The type Unit is used to express the fact that this transformation does not record
any meta-information.

Functions of type (FinalEnv t s → FinalEnv t s) which update the final en-
vironment of a transformation can be lifted into the Trafo and composed using
updateFinalEnv . All functions lifted using updateFinalEnv will be applied to the
final environment once it is created.

updateFinalEnv :: Trafo m t s (FinalEnv t s → FinalEnv t s) ()

If we have, for example:

proc ()→ do updateFinalEnv ≺ upd1
...

updateFinalEnv ≺ upd2

the function (upd2 .upd1) will be applied to the final environment, produced by the
transformation.

The combinator sequenceA composes a list of Trafos with input a and output b,
as a Trafo with input a and output a list of outputs generated sequentially by each
Trafo of the composed list.

sequenceA :: [Trafo m t s a b]→ Trafo m t s a [b]

2.4.2 Implementation of Grouping

The function group splits the grammar into parts, depending on the precedence, while
changing the representation of the grammar to the one used in the implementation
of the left-corner transform:

group ::DGrammar a → Grammar a

49

2 Constructing and Composing Efficient Top-down Parsers at Runtime

References Mapping

The transformation has to map references in a DGrammar with explicitly indicated
precedences to a representation where all elements represent normal non-terminals.
So, we have to transform the DRef s references into the old representation to Ref s
into the new environment. We introduce a DRef -transformer for this conversion,
where env1 describes the types of the old non-terminals and env2 those of the new
non-terminals:

newtype DT env1 env2 = DT {unDT :: ∀ a.DRef a env1 → Ref a env2 }

With this transformer we map each production into its new representation using
references into new environment. This is done by applying unDT to each non-terminal
reference in the production:

mapDP2Prod ::DT env1 env2 → DProd a env1 → Prod a env2

mapDP2Prod t (DEnd x) = End x
mapDP2Prod t (DSeq (DNont x) r) = Seq (Nont (unDT t x))

(mapDP2Prod t r)
mapDP2Prod t (DSeq (DTerm x) r) = Seq (Term x)

(mapDP2Prod t r)

The function dp2prod lifts mapDP2Prod using the combinator arr . Thus, it takes a
DProd and returns a transformation that has as output a Prod , which is a production
in the new environment.

type GTrafo = Trafo Unit Productions

dp2prod ::DProd a env → GTrafo s (DT env s) (Prod a s)

dp2prod p = arr (λenv2s → mapDP2Prod env2s p)

The type of the resulting Trafo indicates that the transformation creates an environ-
ment of Productions (a Grammar).

Each precedence level definition is converted to a non-terminal in the new grammar,
using the function ld2nt . This function takes a pair (DRef a env ,DProductions a env),
that defines a level of precedence, and creates the new non-terminal, returning a ref-
erence to it. The transformation made by dp2prod is applied to all the elements of
the list of alternative productions (DProductions) using sequenceA, in order to obtain
a list of alternative productions in the new grammar (Productions). In parallel, the
function mkNxtLev creates a new production to add to the list, that directly refers to
the next level of precedence, if the represented level is less than 10.

ld2nt :: (DRef a env ,DProductions a env)→ GTrafo s (DT env s) (DRef a s)

ld2nt (DRef (rnt , i),DPS lp)
= proc env2s →

do ps ← sequenceA (map dp2prod lp) ≺ env2s

50

2.4 Typed Transformations

(PS nl) ← mkNxtLev ≺ env2s
r ← newSRef ≺ PS $ nl ++ ps
returnA ≺ DRef (r , i)

where

mkNxtLev = arr $ λt → PS $
if (i < 10)

then [Seq (Nont $ unDT t $DRef (rnt , i + 1)) (End id)]
else []

Then the possible new production (or an empty list otherwise) is appended to
the mapped alternative productions, generating the list that is combined with the
creation of a new reference. This new reference is the new non-terminal, which stores
its productions. The reference and the precedence level that represents are the output
of the transformation.

By applying this transformation to a list of definitions of precedence levels we obtain
a list of DRef s:

newtype ListDR a s = ListDR {unListDR :: [DRef a s]}

We now apply this transformation to all the defined levels of precedence in all the
non-terminal definitions and recursively to all the referenced grammars. In this way
we construct a mapping from the references in the original environment to references
in the transformed one.

newtype DMapping o n = DMapping {unDMapping :: Env ListDR n o}

A DRef -transformer can be obtained from the DMapping by constructing a function
that takes a DRef a env , looks up the reference in the environment and subsequently
locates the appropriate precedence level in the list:

dmap2trans ::DMapping env s → DT env s
dmap2trans (DMapping env)

= DT (λ(DRef (r , i))→ case (lookupEnv r env) of
ListDR rs → (plookup i rs))

Having an ordered list of DRef s, the function plookup returns the first reference
(Ref) that applies to a given preference level.

plookup :: Int → [DRef a s]→ Ref a s
plookup i ((DRef (r , p)) : drs) | i 6 p = r

| otherwise = plookup i drs

Transformation

The function group runs a Trafo that generates the new environment and returns
as output the reference of the starting point (precedence level 0 in the main non-
terminal). We construct the new grammar by taking the output and the constructed
environment from the Result .

51

2 Constructing and Composing Efficient Top-down Parsers at Runtime

group ::DGrammar a → Grammar a
group gram

= let trafo = proc x → do (ListDR rs)← (gGrammar gram) ≺ x
returnA ≺ plookup 0 rs

in case runTrafo trafo Unit ⊥ of

Result r grm → Grammar r grm

The function gGrammar implements the grammar transformation. It takes a
DGrammar and returns a transformation that constructs the “grouped” environment
and has as output the list of new references of the main non-terminal.

gGrammar ::DGrammar a → GTrafo s t (ListDR a s)
gGrammar (DGrammar r gram) = proc → do

rec let env s = dmap2trans menv s
menv s ← gDGrams gram ≺ env s

returnA ≺ lookupEnv r (unDMapping menv s)

The function applies the transformation returned by gDGrams to the elements of
the environment. This transformation takes as input a DRef -transformer, mapping all
non-terminals from the original environment to the newly generated one. The output
is a DMapping which remembers the new locations of the non-terminals from the
original grammar. To obtain the needed DRef -transformer for this transformation,
the function gGrammar uses a feed-back loop using the DMapping returned by the
transformation itself. To obtain the list of mapped references for the main non-
terminal it just looks up the reference in the DMapping .
The function gDGrams iterates (by induction) over the environment that contains

the non-terminal definitions and the grammars referenced by them.

gDGrams :: Env DGram env env ′ → GTrafo s (DT env s) (DMapping env ′ s)
gDGrams = mapTrafoEnv tr

where

tr (DGG gram) = gGrammar gram
tr (DGD (DLNontDefs nonts)) = proc env s → do

r ← sequenceA (map ld2nt nonts)) ≺ env s
returnA ≺ ListDR r

In the case of a grammar, the function gGrammar is invoked. The output of this
transformation is the list of new references assigned to the main non-terminal of this
grammar. The list is added to the DMapping in the place of the grammar.
In the case of a list of precedences (a non-terminal), we map the function ld2nt to

the list, obtaining a list of transformations. Each transformation adds a new non-
terminal to the new grammar and returns the new reference and the precedence level
that represents. We execute this transformations sequentially (using sequenceA) and
add the resulting list of references to the DMapping .
The iteration over the environment is performed by the function mapTrafoEnv .

52

2.5 Efficiency

mapTrafoEnv :: (∀ a.t a env → GTrafo s i (ListDR a))
→ Env t env env ′ → GTrafo s i (DMapping env ′)

mapTrafoEnv Empty = proc → do

returnA ≺ DMapping Empty
mapTrafoEnv t (Ext x xs) = proc i → do

tx ← t x ≺ i
txs ← mapTrafoEnv t xs ≺ i
returnA ≺ DMapping (Ext tx $ unDMapping txs)

2.5 Efficiency

In this section we show some experimental results about the efficiency of our ap-
proach3. First of all we compare read and gread in the presence of infix constructors.
Finally we show how the presence of the left-factoring optimisation influences effi-
ciency.

2.5.1 gread versus read

In Figure 2.8 we show the execution times resulting from the use of read and gread
to parse an expression of the form C1 :>: (C1 :>: ...), where n is the number of
constructors C1 the expression has.

n

t(s)
read

gread

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

10

20

30

40

50

60

70

Figure 2.8: Execution times of reading C1 :> (C1 :>: ...)

The function read clearly has an exponential behaviour. It takes 75 seconds to resolve
the case with 17 C1s and does not run after 18. On the other hand, the function gread

3The tests were run in a computer with 1.6 GHz Intel Core Duo processor and 1 GB RAM.

53

2 Constructing and Composing Efficient Top-down Parsers at Runtime

maintains negligible times. If we do not use parentheses we can read 50000 C1s within
a second.

We obtain similar behaviour with (... :<: C1) :<: C1. Note that this is a bad case
for the function read , due to the opening parentheses. The function read takes 23
seconds to resolve the case with 9 C1s (does not run after 10), while the function gread
requires negligible times: more than 40000 C1s can be read within a second, without
the extra parentheses.

Data type grammars are usually very small, but in order to test our approach in
its worst case, we defined a large data type of the form:

data TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
= CB

| TB1 (TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)
| ...

| TBn (TBig t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)

where n is a number between 10 and 100. Note that the type has 10 parameters and
no infix constructors. So a relatively large combination and transformation effort is
needed, while the optimisations do not add anything. We tested this type with an
expression TBn (...(TBn CB)...) with 10000 constructors.

n(×103)

t(s)

read

gread

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Figure 2.9: Execution times of reading a large data type

We can see in Figure 2.9 that the function gread has linear behaviour after a constant
(n-dependent) startup time. From this case we can conclude that the time needed to
perform the transformations is almost negligible. We have performed the same tests
using the expressions TB1 (...(TB1 CB)...) and TBn

2
(...(TBn

2
CB)...) obtaining similar

results.

54

2.6 Conclusions and Future Work

2.5.2 gread versus leftcorner

We have shown that the gread function has efficient behaviour in comparison with
the Haskell read . But what happens if we do not include the left-factoring?

n(×103)

t(s)
only LC

gread

0 5 10 15 20 25 30
0

20

40

60

80

100

120

Figure 2.10: Execution times of reading C1:<:...:<:C1 with and without left-factoring

As we can see in Figure 2.10 (expression C1 :<: ... :<: C1) the inclusion of left-
factoring improves the efficiency by avoiding duplicate parsing.

We have tested both functions in situations where the left-factoring is not needed
and they behave in a similar way; so the extra transformation work and the few
extra non-terminals add little to the total cost of parsing. For example, in the case
of Table 2.1 there are no common prefixes in the evaluated productions while only
applying the LC-transform.

2.6 Conclusions and Future Work

We have shown an alternative way to implement the read (and consequently also
the show) functions. We read data in linear time, generate shorter output, and the
overhead caused by generating the read functions at runtime does not seem to be a
problem; not even for very large data types. Unfortunately we are not able to handle
nested data types which have infix constructors; for these one has to write the parsing
functions by hand. Note that this problem only occurs if the nested data type occurs
at the left-hand side of an infix type constructor, and that in such cases also the
conventional solution is problematic.

Besides the completely dynamic implementation which we have presented in which
we compose all grammars at runtime, a large part of the work could be done by the
Haskell compiler at compilation time.

55

2 Constructing and Composing Efficient Top-down Parsers at Runtime

n (×103) gread (s) only LC (s)
10 0.14 0.14
20 0.33 0.32
30 0.57 0.56
40 0.82 0.82
50 1.13 1.11
60 1.47 1.47
70 1.82 1.81
80 2.23 2.22
90 2.68 2.67
100 3.18 3.15

Table 2.1: Execution times of reading C1:>: ...:>:C1 with and without left-factoring

We consider the Template Haskell implementation to be a prototype. Further
optimisations are to tuple grammars with their corresponding parser. If we know
there are no problems with common prefixes or left-recursion we can resort to simpler
parsing methods, and generate parsers only once by sharing them.
Straightforward extensions are the inclusion of a generator for record constructors.

An open research problem is how to merge in the techniques for parsing record fields
in arbitrary order, since the proposed solution [4] critically depends on the dynamic
generation of parsers; we expect lazy evaluation to save us here. Finally, we need
a more robust naming scheme to deal with problems due a similarly named types
coming from different modules.

56

3 Grammar Fragments Fly First-Class

We present a Haskell library for expressing (fragments of) grammars using typed
abstract syntax with references. We can analyze and transform such representations
and generate parsers from them. What makes our approach special is that we can
combine embedded grammar fragments on the fly, i.e. after they have been compiled.
Thus grammar fragments have become fully typed, first-class Haskell values.

We show how we can extend an initial, limited grammar embedded in a compiler
with new syntactic constructs, either by introducing new non-terminals or by adding
new productions for existing non-terminals. We do not impose any restrictions on the
individual grammar fragments, nor on the structure as a whole.

3.1 Introduction

There are many different ways to represent grammars and grammatical structures in
a typeful way: be it in implicit form using conventional parser combinators or more
explicitly in the form of typed abstract syntax. Each approach has its own advan-
tages and disadvantages. The former, being a domain specific embedded language,
makes direct use of the typing, abstraction and naming mechanisms of the host lan-
guage. This implicit representation however does have its disadvantages: we can only
perform a limited form of grammar analysis and transformation since references to
non-terminals in the embedded language are implemented by variable references in
the host language. The latter approach, which does give us full access to the complete
domain specific program, comes with a more elaborate naming system which gives
us the possibility to identify references to non-terminals; however transforming such
programs in Haskell necessitates to provide proofs (in our case encoded through the
Haskell type system) that the types remain correct during transformation.

One of the applications of the latter approach is where one wants to compose
grammar fragments. This is needed when a user can extend the syntax of a base
language. In doing so he has to extend the underlying context-free grammar and
he has to define the semantics for these new constructs. Once all extensions have
become available the parser for the complete language is constructed by joining the
newly defined or redefined semantics with the already existing parts. In a more
limited way such things can be done by e.g. the quasi quoting mechanism as available
through Template Haskell [41, 58], which however has its limitations: the code using
the new syntax can be clearly distinguished from the host language. Furthermore the
TH code, which is run in a separate phase, is not guaranteed to generate type correct
code; only after the code is expanded type checking takes place, often leading to hard
to understand error messages.

57

3 Grammar Fragments Fly First-Class

In the previous chapter we have shown how to compose grammar fragments for a
limited class of grammars, i.e. those describing the output format of Haskell data
types. These latter grammars have a convenient property: productions will never
derive the empty string, which is a pre-condition for the Left-Corner Transform (LCT)
[7] which is to be applied later to remove left-recursion from the grammar which arises
from the use of infix data constructors.
In this chapter introduce the library murder1 for expressing first-class context-free

grammars. We describe an unrestricted, applicative interface for constructing such
grammar descriptions, we describe how they can be combined, and how they can be
transformed so they fulfill the precondition of the LCT. The final result can safely be
mapped onto a top-down parser, constructed using a conventional parser combinator
library.
In section 3.2 we describe the “user-interface” to our library. In section 3.3 we

introduce the types used to represent our fragments, whereas in section 3.4 we describe
the internal data structures. In section 3.6 we extend our grammar representation
with a fixpoint-like combinator. In section 3.7 we discuss some related work and
conclude.

3.2 Context-Free Grammar

In this section we show how to express a context free grammar fragment. Our running
example is the simple expression language we introduced in Chapter 1
Figure 3.1 shows the concrete grammar of the initial language and the almost iso-

morphic Haskell code encoding of this language fragment in terms of our combinator
library and the Arrow -interface [29, 50]. A grammar description is an Arrow , rep-
resenting the introduction of its composing non-terminals. Since non-terminals can
be mutually recursive, they are declared using a rec block. The function addNT
introduces a new non-terminal together with some initial productions (alternatives)
separated by <|> operators. Each alternative (right hand side of a production) consists
of a sequence of elements, expressed in so-called applicative style, using the idiomatic
brackets2 T and U which delineate the description of a production from the rest of the
Haskell code. The brackets T and U are syntactic sugar for the Haskell function iI and
constant Ii. A production consists of a call to a semantic function, which maps the
results of the trailing non-terminals to the result of this production, and a sequence of
non-terminals and terminals, the latter corresponding to literals which are to be rec-
ognized. Since terminal symbols like "main" and "*" do not bear any meaning our id-
ioms automatically discard these results: the expression T semMul term "*" factor U
is equivalent to pure (λl r → semMul l r) <*> sym term <*> tr "*" <*> sym factor
in the Applicative interface [44]. The semantic functions are defined elsewhere (using
monad transformers, attribute grammars or embedded AG code, as we will see in
Chapter 4). By convention we will let their names start with sem. For elementary

1Available at: http://hackage.haskell.org/package/murder
2http://www.haskell.org/haskellwiki/Idiom_brackets

58

3.2 Context-Free Grammar

Grammar:

root ::= decls "main" "=" exp
decls ::= var "=" exp decls | empty
exp ::= exp "+" term | term
term ::= term "*" factor | factor
factor ::= int | var

Haskell code:

prds = proc ()→ do

rec root ← addNT ≺ T semRoot decls "main" "=" exp U

decls ← addNT ≺ T semDecls var "=" exp decls U
<|> T semNoDecl U

exp ← addNT ≺ T semAdd exp "+" term U <|> T term U

term ← addNT ≺ T semMul term "*" factor U <|> T factor U

factor ← addNT ≺ T semCst int U <|> T semVar var U

exportNTs ≺ exportList root $ export ntDecls decls
. export ntExp exp
. export ntTerm term
. export ntFactor factor

gram = closeGram prds

Figure 3.1: Initial language

parsers which return values which are constructed by the scanner we provide a couple
of predefined special cases, such as int which returns the integer value from the input
and var which returns a recognized variable name.

An initial grammar is also an extensible grammar. It exports (with exportNTs)
its starting point (root) and a list of exportable non-terminals which actually stand
for a collection of productions to be used and modified in future extensions. Each
export-ed non-terminal is labeled by a unique value of a unique type (by convention
starting with nt). The function closeGram takes the list of productions, and converts
it into a compiler; in our case a parser integrated with the semantics for the language
derived from the starting symbol root .

3.2.1 Language Extension

We now extend the language with an extra non-terminal for conditions (Boolean
expressions) and an extra production for conditional expressions:

59

3 Grammar Fragments Fly First-Class

exp ::= ... | "if" cond "then" exp "else" exp
cond ::= exp "==" exp | exp ">" exp

This language extension prds ′ is defined as a closed Haskell value by itself, which
accesses an already existing set of productions (imported) and builds an extended set,
as shown in Figure 3.2.

prds ′ = proc imported → do

let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (factor , T (semIf sf) "if" cond "then" exp "else" exp U)

cond ← addNT ≺ T (semEq sf) exp "==" exp U
<|> T (semGr sf) exp ">" exp U

exportNTs ≺ extendExport imported (export ntCond cond)

gram ′ = closeGram (prds +>> prds ′)

Figure 3.2: Language Extension

For each non-terminal to be extended we retrieve its current list of productions
(using getNT) from the imported non-terminals, and add new productions to this list
using addProds. The if -expression is e.g. added by:

let exp = getNT ntExp imported
let factor = getNT ntFactor imported

rec addProds ≺ (factor , T (semIf sf) "if" cond "then" exp "else" exp U)

New non-terminals can be added as well using addNT ; in the example we add the
non-terminal cond :

cond ← addNT ≺ T semEq exp "==" exp U <|> T semGr exp ">" exp U

Finally, we extend the list of exportable non-terminals with (some of) the newly added
non-terminals, so they can be extended by further fragments elsewhere:

exportNTs ≺ extendExport imported (export ntCond cond)

The original grammar prds is extended with prds ′ using the combinator (+>>). Because
both prds and prds ′ are proper Haskell values which can be separately defined in
different modules and compiled separately we claim that the term first class grammar
fragments is justified here. It is important to note that all these productions are
well-typed Haskell values, of which the type is parameterized with the type of values
the expressions represent; so, based on the type of semIf the Haskell compiler will be

60

3.3 Grammar Representation

able to check that the non-terminal cond indeed parses Boolean expressions! By being
able to compile a language and its extensions separately, a framework for extensible
compilers can be defined which allows a language to be extended without providing
full access to its source and without having to re-compile the whole compiler.

3.3 Grammar Representation

Having described how a user describes and combines individual language fragments,
we now embark on the description of the internals of our library.

Just as in Chapter 2, a Grammar consists of a closed environment, containing a list
of productions for each non-terminal, and a reference (Ref a env) to the root symbol,
where a is the type of the witness of a successful parse. Note that the type env is
hidden using existential quantification, so changes to the structure of the grammar
can be made, by adding or removing non-terminals, without having to change the
visible part of its type.

data EG
data CG

data Grammar s a = ∀ env .Grammar (Ref a env)
(FinalEnv (Productions s) env)

newtype Productions s a env = PS {unPS :: [Prod s a env]}

The type s encodes the state of the grammar, that is: EG if the grammar can contain
empty productions and CG (closed grammar) if the grammar does not.

For productions we choose a representation which differs slightly from the one used
in the previous chapter. Here we represent productions really in an applicative-style;
i.e. using constructors Pure and Seq analogous to the pure function and <*> operator
of applicative functors:

data Prod s a env where

Pure :: a → Prod s a env
Seq :: Prod s (a → b) env

→ Prod s a env → Prod s b env
Sym :: Symbol a t env → Prod s a env

FlipSeq :: Prod CG a env
→ Prod CG (a → b) env → Prod CG b env

FlipSeq is a variant of Seq with its arguments in reverse order. By imposing s to
be CG , we restrict FlipSeq to be included only in grammars not containing empty
productions. Sym is a special case of pure that lifts a symbol to a production. A
symbol is either a terminal or a non-terminal encoded by a reference pointing to one
of the elements in an environment labeled with env . A normal terminal contains the
literal string it represents. We define a category of attributed terminals, which are not

61

3 Grammar Fragments Fly First-Class

fixed by a literal string. Every attributed terminal refers to some lexical structure. In
contrast to the normal terminals which do not bear a semantic value, for attributed
terminals the parsed values are used and the type a instantiates to the type of the
parsed value.

data TTerm;data TNonT ;data TAttT

data Symbol a t env where

Term :: String → Symbol (DTerm String) TTerm env
TermInt :: Symbol (DTerm Int) TAttT env
TermVarid :: Symbol (DTerm String) TAttT env
Nont :: Ref a env → Symbol a TNonT env

The type parameter t indicates, at the type-level, whether a Symbol is a terminal
(type TTerm) for which the result is (usually) discarded, a non-terminal (TNonT)
or an attributed terminal (TAttT) in the value of which we are interested. In order
to make our code more readable we introduce the smart constructors trm, int and
var , for the terminals Term, TermInt and TermVarid , respectively. The data type
DTerm couples the value of a terminal with its position in the source (code) from
where it is obtained:

data DTerm a = DTerm {pos :: Pos, value :: a }

3.3.1 From Grammar to Parser

A grammar can be compiled into a top-down parser with an Applicative (andAlternative)
interface. We show how a grammar can be translated to the uu-parsinglib parser
combinator library [63], which can then be used to parse a String into a ParseResult
containing a semantic value of type a:

generate :: Set String → Grammar CG a → Parser a
parse :: Parser a → String → ParseResult a

The function generate translates a Productions list as a sequence of parsers combined
by <|>. The Prod constructors Seq , FlipSeq and Pure are translated to <*>, <**> and
pure, respectively. Terminals are translated to terminal parsers and non-terminal
references are retrieved from an environment containing the translated productions
for each non-terminal. Notice that only CG grammars can be compiled.

newtype Const f a s = C {unC :: f a }

generate :: Set String → Grammar CG a → Parser a
generate reserved (Grammar (start :: Ref a env) rules)

= id <$ pSpaces <*> (unC (lookupEnv start result))
where

result = mapEnv (λ(PS ps)→ C (foldr1 (<|>) [comp p | p ← ps])) rules

62

3.3 Grammar Representation

comp :: Prod CG t env → Parser t

comp (Seq x y) = comp x <*> comp y
comp (FlipStar x y) = comp x <**> comp y
comp (Pure x) = pure x

comp (Sym (Term t)) = DTerm <$> pPos <*> pTerm t
comp (Sym (Nont n)) = unC (lookupEnv n result)

comp (Sym TermInt) = DTerm <$> pPos <*> pInt
comp (Sym TermVarid) = DTerm <$> pPos <*> (pVar reserved)

mapEnv :: (∀ a.f a s → g a s)→ Env f s env → Env g s env
mapEnv Empty = Empty
mapEnv f (Ext r v) = Ext (mapEnv f r) (f v)

Since the uu-parsinglib performs a breadth-first search it will parse a large class
of grammars without any further try or cut-like annotations; the only requirement
it imposes is that the grammar is not left-recursive (which holds since we will apply
the LCT before compiling the grammar into a parser) and that the grammar is un-
ambiguous. This latter property is unfortunately undecidable; fortunately it is trivial
to generate a parser version which can handle ambiguous grammars too, since the
uu-parsinglib library contains provisions for this.

3.3.2 Applicative Interface

We want the type Productions to be an instance of the Haskell classes Applicative and
Alternative themselves as we have seen in the examples. However, this is impossible
due to the order of its type parameters; we need a to be the last parameter3. Thus,
we define the type PreProductions for descriptions of (possibly empty) alternative
productions.

newtype PreProductions env a = PP {unPP :: [Prod EG a env]}

The translation from PreProductions to Productions is trivial:

prod :: PreProductions env a → Productions EG a env
prod (PP ps) = PS ps

Now we can define the (PreProductions env) instances of Applicative and Alternative:

instance Applicative (PreProductions env) where

pure f = PP [Pure f]

(PP f) <*> (PP g) = PP [Seq f ′ g ′ | f ′ ← f , g ′ ← g]

instance Alternative (PreProductions env) where

3We cannot just redefine Productions with this order, because we need the current order for the
transformations we will introduce later.

63

3 Grammar Fragments Fly First-Class

empty = PP []

(PP f) <|> (PP g) = PP (f ++ g)

We are dealing with lists of alternative productions, thus the alternative operator
(<|>) takes two lists of alternatives and just appends them. In the case of sequential
application (<*>) a list of productions is generated with all the possible combinations
of the operands joined with a Seq .
We also defined smart constructors for symbols: sym for the general case and tr

for the special case where the symbol is a terminal.

sym :: Symbol a t env → PreProductions env a
sym s = PP [Sym s]

tr :: String → PreProductions env String
tr s = sym (Term s)

3.4 Extensible Grammars

In this section we present our approach to define and combine extensible grammars
(like the one in Figure 3.1) and grammar extensions (Figure 3.2). The key idea is to see
the definition, and possibly future extensions, of a grammar as a typed transformation
that introduces new non-terminals into a typed grammar (Grammar). For example,
both prds and prds ′ of Figures 3.1 and 3.2 are typed transformations: while prd
starts with an empty context-free grammar and transforms it by adding the non-
terminals root , decls, exp, term and factor , the grammar extension prd ′ continues the
transformation started by prd and modifies the definition of one of the non-terminals
and adds a new one. Notice that aGrammar is a collection of mutually recursive typed
structures; thus, performing transformations while maintaining the whole collection
well-typed is non-trivial. We use TTTAS (introduced in Section 2.4.1) to implement
our transformations.

3.4.1 Grammar Extensions

In this subsection we present the API of a library for defining and combining extensible
grammars (like the one in Figure 3.1) and grammar extensions (Figure 3.2).
A grammar extension can be seen as a series of typed transformation steps that

can add new non-terminals to a typed grammar and/or modify the definition of
already existing non-terminals. We define an extensible grammar type (ExtGram) for
constructing initial grammars from scratch and a grammar extension type (GramExt)
as a typed transformation that extends a typed extensible grammar. In both cases
a Trafo uses the Productions as the type of terms defined in the environment being
carried.

type ExtGramTrafo = Trafo Unit (Productions EG)

64

3.4 Extensible Grammars

type ExtGram env start ′ nts ′

= ExtGramTrafo env () (Export start ′ nts ′ env)
type GramExt env start nts start ′ nts ′

= ExtGramTrafo env (Export start nts env) (Export start ′ nts ′ env)

Exportable non-terminals

Both extensible grammars and grammar extensions have to export the starting point
start ′ and a list of exportable non-terminals nts ′ to be used in future extensions. The
only difference between them is that a grammar extension has to import the elements
(start and nts) exported by the grammar it is about to extend, whereas an extensible
grammar, given that it is an initial grammar, does not need to import anything.
The exported (and imported, in the case of grammar extensions) elements have

type Export start nts env , including the starting point (a non-terminal, with type
Symbol start TNonT env) and the list of exportable non-terminals (nts env).

data Export start nts env = Export (Symbol start TNonT env) (nts env)

The list of exportable non-terminals has to be passed in a NTRecord , which is an
implementation of extensible records very similar to the one in the HList library [35],
with the difference that it has a type parameter env for the environment where the
non-terminals point into. A field (l ∈ v) relates a (first-class) non-terminal label l
with a value v . A NTRecord can be constructed with the functions (.∗.), for record
extension, and ntNil , for empty records. The function getNT is used to retrieve the
value part corresponding to a specific non-terminal label from a record. We have
defined some functions to construct Export values:

exportList r ext = Export r (ext ntNil)
export l nt = (.∗.) (l ∈ nt)

Thus, the export list in Figure 3.1 is equivalent to:

Export root (ntDecls ∈ decls .∗. ntExp ∈ exp .∗.
ntTerm ∈ term .∗. ntFactor ∈ factor .∗. ntNil)

In order to finally export the starting point and the exportable non-terminals we
chain an Export value through the transformation in order to return it as output.

exportNTs :: NTRecord (nts env)
⇒ ExtGramTrafo env (Export start nts env) (Export start nts env)

exportNTs = returnA

Thus, the definition of an extensible grammar (like the one in Figure 3.1) has the
following shape, where exported nts is a value of type Export :

prds = proc ()→ do ...

exportNTs ≺ exported nts

65

3 Grammar Fragments Fly First-Class

The definition of a grammar extension, like the one in Figure 3.2, has the shape:

prds ′ = proc (imported nts)→ do ...

exportNTs ≺ exported nts

where imported nts and exported nts are both of type Export . We have defined a
function to extend (imported) exportable lists:

extendExport (Export r nts) ext = Export r (ext nts)

Adding Non-terminals

To add a new non-terminal to the grammar we need to add a new term to the
environment.

addNT :: ExtGramTrafo env (PreProductions env a) (Symbol a TNonT env)
addNT = proc p → do r ← newSRef ≺ prod p

returnA ≺ Nont r

The input to addNT is the initial list of alternative productions (PreProductions) for
the non-terminal and the output is a non-terminal symbol, i. e. a reference to the
non-terminal in the grammar. Thus, when in Figure 3.1 we write:

term ← addNT ≺ T semMul term "*" factor U <|> T factor U

we are adding the non-terminal for terms, with the alternative productions T factor U
and T semMul term "*" factor U, and we bind to factor a symbol holding the reference
to the added non-terminal thus making it available to be used in the definition of
this or other non-terminals. Because Trafo instantiates ArrowLoop, we can define
mutually recursive non-terminals using the keyword rec, like in figures 3.1 and 3.2.

Updating Productions

The list of productions of an existing non-terminal can be updated by a function f :

updProds :: ExtGramTrafo env
(Symbol a TNonT env
,PreProductions env a → PreProductions env a)
()

updProds = proc (Nont r , f)→ do

updateFinalEnv ≺ updateEnv (λps → PS $ (unPP . f) (PP $ unPS ps)) r

Thus, adding new productions to a non-terminal translates into the concatenation
of the new productions to the existing list of productions of the non-terminal.

ppAppend pp1 pp2 = PP $ (unPP pp1) ++ (unPP pp2)

66

3.5 Closed Grammars

addProds = proc (nont , prds)→ do

updProds ≺ (nont , ppAppend prds)

In Figure 3.2 we have seen an example of adding productions to the non-terminal
factor . It is also easy to define a function remProds, to remove all the productions of
a non-terminal, based on updProds. The function which updates the productions in
this case is (const $ PP []). Note that removing the non-terminal completely would
be much harder.

Grammar Extension and Composition

Extending a grammar boils down to composing two transformations, the first one
constructing an extensible grammar and the second one representing a grammar ex-
tension.

(+>>) :: (NTRecord (nts env),NTRecord (nts ′ env))
⇒ ExtGram env start nts → GramExt env start nts start ′ nts ′

→ ExtGram env start ′ nts ′

g +>> sm = g >>> sm

We defined (+>>) to restrict the types of the composition. Two grammar extensions
can be composed just by using the (>>>) operator from the Arrow class.

If we want to compose two extensible grammars g1 and g2 with disjoint non-
terminals sets, we have to sequence them, obtain their start points s1 and s2 and
add a new starting point s with s1 and s2 as productions.

(<++>) :: (NTUnion nts1 nts2 nts)
⇒ ExtGram env start nts1 → ExtGram env start nts2
→ ExtGram env start nts

g1 <++> g2 = proc ()→ do (Export s1 ns1)← g1 ≺ ()
(Export s2 ns2)← g2 ≺ ()

s ← addNT ≺ sym s1 <|> sym s2

returnA ≺ Export s (ntUnion ns1 ns2)

The function ntUnion performs the union of the non-terminal labels both at value and
type level. It introduces the constraint NTUnion, which also ensures the disjointed-
ness of the sets. If we have a function ntIntersection, returning for each intersecting
non-terminal its position on each grammar (nt1 ,nt2), then we can define a gen-
eral composition of grammars. We have to extend (<++>) with the transformation
(addProds (nt1 , T id nt2 U) >>> addProds (nt2 , T id nt1 U)) for each non-terminal
belonging to the intersection.

3.5 Closed Grammars

To close a grammar we run the Trafo, in order to obtain the grammar to which we
apply the Left-Corner Transform. By applying leftcorner we prevent the resulting

67

3 Grammar Fragments Fly First-Class

grammar to be left-recursive, so it can be parsed by a top-down parser. Such a step
is essential since we cannot expect from a large collection of language fragments, that
the resulting grammar will be e.g. LALR(1) or non-left-recursive. The type of the
start non-terminal a is the type of the resulting grammar.

closeGram :: (∀ env .ExtGram env a nts)→ Grammar CG a
closeGram prds = case runTrafo prds Unit () of

Result (Export (Nont r)) gram
→ (leftCorner . removeEmpties) (Grammar r gram)

The leftcorner function is an adaptation to our representation of Prod of the trans-
formation proposed in [7] which preprocesses the grammar such that empty parts at
the beginning of productions have been removed:

removeEmpties ::Grammar EG a → Grammar CG a
leftCorner ::Grammar CG a → Grammar CG a

The function removeEmpties takes a grammar that can have empty productions
(Grammar EG a) and returns an equivalent grammar (Grammar CG a) without
empty productions and without left-most empty elements. Since this transformation
does not introduce new non-terminals to the grammar, we do not need to use TTTAS

to implement it.
First, the possibly empty production of each non-terminal is located using the func-

tion findEmpties , that takes the environment with the productions of the grammar
and returns an isomorphic environment with values of type HasEmpty . If a non-
terminal has an empty production, then the position of the resulting environment
corresponding to this non-terminal contains a value HasEmpty f , where f is the se-
mantic value associated with this empty case. If a non-terminal does not have empty
productions then the environment contains a HasNotEmpty on its corresponding po-
sition.
After locating the empty productions we remove them from the grammar using

the function removeEmptiesEnv , where the empty production of each non-terminal is
removed and added to the contexts where the non-terminal is referenced. Thus, if the
root symbol has an empty production, allowing the parsing of the empty string, this
behavior will not be present after the removal. For simplicity reasons we avoid this
situation by disallowing empty productions for the root symbol of the grammars we
deal with, and yield an error message in this case. It is easy to remove this constraint
by adding a production (Pure f) to the start non-terminal of the grammar resulting
from the whole (leftCorner .removeEmpties) transformation, where (HasEmpty f) is
the result of looking-up the start point in the environment of empty productions. But
in practice we do not expect this to be necessary.

data HasEmpty a env = Unknown | HasNotEmpty | HasEmpty a

removeEmpties ::Grammar EG a → Grammar CG a

68

3.5 Closed Grammars

removeEmpties (Grammar start prds) =
let empties = findEmpties prds
in case lookupEnv start empties of

HasNotEmpty → Grammar start (removeEmptiesEnv empties prds)
→ error "Empty prod at start point"

In the following sub-sections we will explain the empty productions removal algo-
rithm on more detail. For that we will use the following example grammar:

A → pure fA <*> tr "a" <*> sym B
B → sym C <*> sym D <*> pure fB
C → pure fC1 <*> sym C <*> tr "c" <|> pure fC2
D → pure fD <|> tr "d"

3.5.1 Finding Empty Productions

The function findEmpties constructs an environment with values of type HasEmpty .
It starts with an initial environment of found empties without information, created by
initEmpties, and iterates updating this environment until a fixpoint is reached. The
function stepFindEmpties implements one step of this iteration, returning a triple
with: the environment with the found empty productions thus far, a Boolean value
indicating whether this step introduced changes to the environment, and a Boolean
value that tells us whether the returned environment still has any Unknown non-
terminals.

type GramEnv s = Env (Productions s)

findEmpties ::GramEnv EG env env → Env HasEmpty env env
findEmpties prods = findEmpties ′ prods (initEmpties prods)

findEmpties ′ prds empties
= case stepFindEmpties empties prds empties of

(empties ′,True,)→ findEmpties ′ prds empties ′

(empties ′,False,False)→ empties ′

(, False,True)→ error "Incorrect Grammar"

If we arrive at a fixpoint, and still have remaining Unknown non-terminals, then
the grammar is incorrect, so we get a soundness check for the grammar for free. Such
non-terminals will not be able to derive a finite sentence, as in the following example:

A→ term "a" <*> sym A

The initial environment of the algorithm is an environment with an Unknown value
for each non-terminal of the grammar. In the example, the initial environment is the
one of the Step 0 in Figure 3.3.

69

3 Grammar Fragments Fly First-Class

initEmpties ::GramEnv EG use def → Env HasEmpty use def
initEmpties Empty = Empty
initEmpties (Ext nts) = Ext (initEmpties nts) Unknown

On each step we take the actual environment of found empty productions and we
go through all the non-terminals of the grammar, trying to find out if the informa-
tion about the existence of empty productions for this non-terminal can be updated
(updEmpty).

stepFindEmpties :: Env HasEmpty use use
→ GramEnv EG use def
→ Env HasEmpty use def
→ (Env HasEmpty use def ,Bool ,Bool)

stepFindEmpties empties (Ext rprd prd) (Ext re e)
= let (re ′, rchg , runk) = stepFindEmpties empties rprd re

(e ′, chg , unk) = updEmpty empties prd e
in (Ext re ′ e ′, chg ∨ rchg , unk ∨ runk)

stepFindEmpties Empty Empty = (Empty ,False)

Step 0

A → Unknown
B → Unknown
C → Unknown
D → Unknown

Step 1

A → HasNotEmpty
B → Unknown
C → HasEmpty fC2
D → HasEmpty fD

Step 2

A → HasNotEmpty
B → HasEmpty (fC2 fD fB)
C → HasEmpty fC2
D → HasEmpty fD

Step 3

A → HasNotEmpty
B → HasEmpty (fC2 fD fB)
C → HasEmpty fC2
D → HasEmpty fD

Figure 3.3: Results of Finding Empties Steps for the Example

We only have to update the HasEmpty value associated with a non-terminal if in
the actual environment it is Unknown. In the other cases we already know whether
this non-terminal has any empty productions.

updEmpty :: Env HasEmpty use use → Productions EG a use → HasEmpty a use
→ (HasEmpty a use,Bool ,Bool)

updEmpty empties prds Unknown = case hasEmpty empties prds of

Unknown → (Unknown,False,True)

70

3.5 Closed Grammars

e → (e, True, False)
updEmpty e = (e,False,False)

The new HasEmpty information for a non-terminal is computed out of the pre-
vious environment and the list of productions of the non-terminal. The HasEmpty
information is retrieved for each production using isEmpty , and those results are com-
bined. If any of the productions is empty then we have found that the non-terminal
may derive the empty string. If we find more than a single empty production for a
non-terminal then the grammar is ambiguous. If all the productions are not empty,
then we return HasNotEmpty . In other cases, the information for this non-terminal
remains still Unknown.

hasEmpty :: Env HasEmpty env env → Productions EG a env → HasEmpty a env
hasEmpty empties (PS ps)

= foldr (λp re → combine (isEmpty p empties) re) HasNotEmpty ps

combine :: HasEmpty a env → HasEmpty a env → HasEmpty a env
combine (HasEmpty) (HasEmpty) = error "Ambiguous Grammar"

combine (HasEmpty f) = HasEmpty f
combine (HasEmpty f) = HasEmpty f
combine HasNotEmpty HasNotEmpty = HasNotEmpty
combine = Unknown

An empty production is obtained from: a production (Pure a), a reference to a
non-terminal that has an empty production, or a sequence of two empty productions.
In this case we construct a HasEmpty a value with a the semantic action associated to
this empty alternative; for a sequential composition of actions f and x the associated
semantic action is (f x), given that pure f <*> pure x ≡ pure (f x). If a production
is a terminal symbol, a reference to a non-terminal that has no empty production,
or a sequence of two productions where at least one of them is not empty, then this
production is not empty and we return HasNotEmpty . We obtain the information
of the referenced non-terminals from the environment created thus far. Thus, it can
happen that in a certain step there is not enough information to take a decision about
a production, remaining it Unknown. This is the case of a reference to a non-terminal
that is still Unknown and a sequence of two productions where the first production is
empty and the second Unknown or the first is Unknown and the second not empty.

isEmpty :: Prod EG a env → Env HasEmpty env env → HasEmpty a env

isEmpty (Pure a) = HasEmpty a

isEmpty (Sym (Nont r)) empties = lookupEnv r empties

isEmpty (Sym) = HasNotEmpty

isEmpty (Seq pl pr) empties
= case isEmpty pl empties of

HasNotEmpty → HasNotEmpty
HasEmpty f → case isEmpty pr empties of

71

3 Grammar Fragments Fly First-Class

HasEmpty x → HasEmpty (f x)
e → e

Unknown → case isEmpty pr empties of

HasNotEmpty → HasNotEmpty
→ Unknown

Let us look at our example grammar; in Figure 3.3 we show the results of the steps
taken to find the empty productions.

In Step 1 we find useful information for non-terminals A, C and D . In the case of
A we have only one production:

Pure fA ‘Seq ‘ Sym (Term "a") ‘Seq ‘ Sym B

looking at the left part of the sequence:

Pure fA ‘Seq ‘ Sym (Term "a")

we have another sequence with an empty left part and a non-empty right part. Since
one of its components is not empty, the whole sequence is not empty; and the same
applies to its containing sequence.

In the cases of C and D , it can be seen that both have two productions. In both
cases one production is empty and the other is not empty; hence we have immediately
located an empty production for both non-terminals.

The non-terminal B has a single production:

Sym C ‘Seq ‘ Sym D ‘Seq ‘ Pure fB

if we look at the left part:

Sym C ‘Seq ‘ Sym D

it is a sequence of two non-terminals. Thus we have to look for the information we
have from the previous step, in this case the Step 0 (the initial environment). For
both C and D we still do not have any information, thus the information of the left
part of the production is Unknown. Since the right part of the production is empty
(Pure fB), we cannot assume anything yet about the existence of empty productions
for B .

In Step 2 we take another look at B . Now we know that C has an empty production
with semantic action fC2 and D has an empty production with semantic action fD .
Therefore from the left part of the sequence we can construct a HasEmpty (fC2 fD),
having finally found the empty production HasEmpty (fC2 fD fB).

The Step 3 does not perform any changes to the environment of found empty
productions, since no non-terminal is Unknown. Thus, we have found the empty
productions of the grammar.

72

3.5 Closed Grammars

3.5.2 Removal of Empty Productions

Once the empty productions are found, we can proceed to remove them. The func-
tion removeEmptiesEnv traverses the environment with the productions of the non-
terminals, removing the empty productions, transforming productions which start
with an empty element into productions starting with non-empty elements, and trans-
forming the contexts where the non-terminals with empty productions are referenced.

removeEmptiesEnv :: Env HasEmpty use use
→ GramEnv EG use def → GramEnv CG use def

removeEmptiesEnv empties = mapEnv (removeEmpty empties)

To remove the possibly empty production from a non-terminal, we apply the func-
tion splitEmpty to every production, concatenating the resulting alternative produc-
tions.

removeEmpty :: Env HasEmpty env env
→ Productions EG a env → Productions CG a env

removeEmpty empties (PS prds)
= PS $ foldr ((++) . remEmptyProd) [] prds
where remEmptyProd = fst . splitEmpty empties

The function splitEmpty takes a production, and the environment of found empty
productions, and returns a pair with a list of alternative productions generated from
removing the empty part of the input production, and the possibly empty part of
the production. While removing the empty productions in removeEmpty we use the
generated non-empty productions and ignore the empty part.

splitEmpty :: Env HasEmpty env env → Prod EG a env
→ ([Prod CG a env],Maybe (Prod CG a env))

In the case of non-terminal symbols, the generated non-empty production is a
reference to the symbol itself, since the algorithm will remove its possible empty
production. The empty production, if it exists, is looked-up in the environment of
found empty productions.

splitEmpty empties (Sym (Nont r))
= case lookupEnv r empties of

HasEmpty f → ([Sym $Nont r], Just (Pure f))
→ ([Sym $Nont r],Nothing)

Terminal symbols are non-empty productions, thus the generated non-empty produc-
tion is the symbol itself, not having any empty part. On the other hand, a Pure a
production is an empty production without non-empty part.

splitEmpty (Sym s) = ([Sym s],Nothing)
splitEmpty (Pure a) = ([], Just (Pure a))

73

3 Grammar Fragments Fly First-Class

In the example, when removing the empty productions of D , splitEmpty is invoked
for the alternative productions (Pure fD) and (Sym (Term "d")), that result in the
respective pairs ([Sym (Term "d")],Nothing) and ([], Just (Pure fD)). Thus, after
the removal D only has the production (Sym (Term "d")).

The non-empty productions generated by the transformation of a sequence f <*> g
are:

• fne gne: Sequences of the combination of the non-empty productions generated
from f and g .

• fne ge: Sequences of the non-empty productions generated from f and the
empty production of g .

• fe gne: Sequences of the empty production of f and the non-empty productions
generated from g . Here we introduce the FlipSeq “reversed” sequence, trans-
lating (fe <*> gne) to (gne <**> fe), in order to move the non-empty part of the
sequence to the left. Thus we avoid introducing left-most empty elements.

The possible empty production generated from f <*>g is fe ge, a production Pure (fv gv)
where fv and gv are the semantic actions associated to the empty productions of f
and g , respectively. Notice the use of the Maybe Monad .

splitEmpty empties (Seq f g)
= let (fne, fe) = splitEmpty empties f

(gne, ge) = splitEmpty empties g

fne gne = [Seq fv gv | fv ← fne, gv ← gne]
fne ge = case ge of

Nothing → []
Just gv → [Seq fv gv | fv ← fne]

fe gne = case fe of

Nothing → []
Just fv → [FlipSeq gv fv | gv ← gne]

fe ge = do (Pure fv) ← fe
(Pure gv)← ge
return $ Pure (fv gv)

in (fne gne ++ fne ge ++ fe gne, fe ge)

The function splitEmpty takes a production of type Prod EG a env as argument, and
thus productions of the form (FlipSeq g f) are not possible as input. However, as we
have seen before, this kind of productions can be generated out of the transformation
(case fe gne) because the returned productions have type Prod CG a env . In the
example, during the removal of the empty production of B , we call splitEmpty for:

Sym C ‘Seq ‘ Sym D ‘Seq ‘ Pure fB

74

3.5 Closed Grammars

that calls splitEmpty for Sym C ‘Seq ‘ Sym D and Pure fB . Let us see what happens
in the evaluation for the first sub-production. The function splitEmpty is again called
for Sym C and Sym D , resulting in:

fne ⇒ [Sym C]
fe ⇒ Just (Pure fC2)
gne ⇒ [Sym D]
ge ⇒ Just (Pure fD)

Thus, the empty part of the sub-production is (Pure (fC2 fD)), and the non-empty
generated productions are:

[Sym C ‘Seq ‘ Sym D
,Sym C ‘Seq ‘ Pure fD
,Sym D ‘FlipSeq ‘ Pure fC2]

Finally, given that the result of splitEmpty for (Pure fB) is ([], Just (Pure fB)), the
empty part of B coincides with the one found with findEmpties and the transformed
B is:

B → PS [Sym C ‘Seq ‘ Sym D ‘Seq ‘ Pure fB
,Sym C ‘Seq ‘ Pure fD ‘Seq ‘ Pure fB
,Sym D ‘FlipSeq ‘ Pure fC2 ‘Seq ‘ Pure fB]

Note that now B does not contain any empty production, includes productions for
the empty and non-empty part of every referenced non-terminal, and has no left-most
empty element.

The result of the transformation over the whole grammar example, using the smart
constructors to make it easier to read, is:

A → tr "a" <**> pure fA <*> sym B
<|> tr "a" <**> pure fA <*> pure (fC2 fD fB)

B → sym C <*> sym D <*> pure fB
<|> sym C <*> pure fD <*> pure fB
<|> sym D <**> pure fC2 <*> pure fB

C → sym C <**> pure fC1 <*> tr "c"

D → tr "d"

Notice how our brute-force approach generates grammars which have productions
which start with the same sequence of elements. These will be taken care of by the
left-factoring which is done as the last step of the Left Corner Transform. A slight
different approach would be to extend our formalism to allow for nested structures,
where we have a special kind of non-terminals, i.e. those which are only referenced
once, and which we substitute directly in the grammar. This will lead to a grammar
with a rule:

A→ tr "a" <**> pure fA <*> (sym B <|> pure (fC2 fD fB))

Unfortunately this will make the formulation of the Left Corner Transform more
complicated.

75

3 Grammar Fragments Fly First-Class

3.6 Fixpoint Production

In order to be able to define recursive productions, we have added a sort of fixpoint
combinator to our productions representation. The data type Prod is extended with
the constructors Fix , for the fixpoint combinator, and Var , for references to the fixed
point.

data FL a

data Prod s a env where

...

Fix :: Productions (FL a) a env → Prod EG a env
Var :: Prod (FL a) a env

The type parameter s is used to restrict: Fix to be used only at “top-level”, Var to
be used only at “fixpoint-level” (FL), productions Var to have the same type of their
containing Fix .
Thus, by defining some smart constructors:

varPrd :: PreProductions (FL a) env a
varPrd = PP [Var]
fixPrd :: PreProductions (FL a) env a → PreProductions EG env a
fixPrd p = PP [(Fix . prod) p]

we can, for example, represent the useful EBNF-like combinators pSome and pMany .

pSome :: PreProductions (FL [a]) env a → PreProductions EG env [a]
pSome p = fixPrd (one <|>more)

where one = (:[]) <$> p
more = (:) <$> p <*> varPrd

pMany :: PreProductions (FL [a]) env a → PreProductions EG env [a]
pMany p = fixPrd (none <|>more)
where none = pure []

more = (:) <$> p <*> varPrd

Another useful combinator is pFoldr , which is a generalized version of pMany ,
where the semantic functions have to be passed as an argument.

pFoldr :: (a → b → b, b)
→ PreProductions (FL b) env a → PreProductions EG env b

pFoldr (c, e) p = fixPrd (none <|>more)
where none = pure e

more = c <$> p <*> varPrd

Thus, in Figure 3.1 instead of writing:

76

3.7 Related Work and Conclusions

decls ← addNT ≺ T semDecls var "=" exp decls U
<|> T semNoDecl U

we could have written:

decls ← addNT ≺ pFoldr (semDecls, semNoDecl) T var "=" exp U

3.6.1 Fixpoint Removal

The semantics of Fix and Var are provided by a new transformation removeFix , that
we add to the grammar closing pipeline.

closeGram :: (∀ env .ExtGram env a nts)→ Grammar CG a
closeGram prds = case runTrafo prds Unit () of

Result (Export (Nont r)) gram
→ (leftCorner . removeEmpties . removeFix) (Grammar r gram)

The function removeFix takes a grammar which can have Fix and Var productions,
and returns a new grammar without them.

removeFix ::Grammar EG a → Grammar EG a

What we basically do is to traverse the input environment returning a copy of the
productions in every case but Fix . When a (Fix prds) is found, we use addNT to
add a new non-terminal to the grammar and return its reference. The productions
we add to this non-terminal result of replacing Var by the non-terminal reference in
prds. Thus, for example:

rec A← addNT ≺ fixPrd (pure fA1 <|> pure fA2 <* trm "a" <*> varPrd)

is equivalent to do:

rec R ← addNT ≺ pure fA1 <|> pure fA2 <* trm "a" <*> sym R
A← addNT ≺ sym R

3.7 Related Work and Conclusions

This work builds on our previous work on typed transformations of typed grammars
[6, 7], although we here stuck more to the conventional applicative style in order to
make it more accessible to the everyday programmer who knows Haskell. The major
contribution of this chapter is the introduction of a set of combinators to describe,
extend and combine grammar fragments using arrow notation. In order to avoid
problems with the constructed grammars we have introduced a preprocessing step
before applying the LCT.

77

3 Grammar Fragments Fly First-Class

Of course there exist a myriad of other approaches to represent context-free gram-
mars and grammar fragments, but we are not aware of the existence of a typeful way
of representing grammar fragments using an embedded domain specific language as
we have presented here. Because of the embeddedness it remains possible to define
one’s own grammar constructs such as sequences, optional elements and chains of el-
ements, thus keeping all the advantages commonly found in combinator parser based
approaches.
Devriese and Piessens [17] propose a model for explicitly recursive grammars in

Haskell, which provides an applicative interface to describe productions. By using
generic programming techniques from [77] their representation supports a wide range
of grammar algorithms, including the Left-Corner Transform.
Brink et al. [13] introduced a framework to represent grammars and grammar

transformations in the dependently typed programming language Agda. In such a
language it is possible to prove correctness properties of the transformations, more
than the preservation of semantic types.
On one hand both claim to be less complex than our technique, but on the other

hand, they are both based on closed non-terminal domains, and thus they lack gram-
mar extension and composition which form the core of this paper.
Finally note that the way in which we eventually construct parsers out of the con-

structed grammar in no way precludes other approaches. So it is a trivial extension to
generate parsers which can deal with ambiguous grammars by using suitable combina-
tors (like the amb combinator from the uu-parsinglib library). If one wants to use
very general parsing techniques or scannerless parsing techniques [11] there is nothing
that prevents one from doing so. No information is lost in the final representation.

78

4 Attribute Grammars Fly First-Class

Attribute Grammars (AGs), a general-purpose formalism for describing recursive com-
putations over data types, are a useful tool for implementing language semantics. In
this chapter we present AspectAG, a typed embedding of AGs in Haskell. The key lies
in using HList-like typed heterogeneous collections (extensible polymorphic records)
and expressing AG well-formedness conditions as type-level predicates (i.e., type-class
constraints). By further type-level programming we can also express common pro-
gramming patterns, corresponding to the typical use cases of monads such as Reader ,
Writer and State.

4.1 Introduction

Functional programs can easily be extended by defining extra functions. If however a
data type is extended with a new alternative, each parameter position and each case
expression where a value of this type is matched has to be inspected and modified
accordingly. In object oriented programing the situation is reversed: if we implement
the alternatives of a data type by sub-classing, it is easy to add a new alternative
by defining a new subclass in which we define a method for each part of desired
global functionality. If however we want to define a new function for a data type,
we have to inspect all the existing subclasses and add a method describing the local
contribution to the global computation over this data type. This problem was first
noted by Reynolds [56] and later referred to as “the expression problem” by Wadler
[74]. We start out by showing how the use of AGs overcomes this problem.

As running example we use the classic repmin function [8]; it takes a tree argument,
and returns a tree of similar shape, in which the leaf values are replaced by the minimal
value of the leaves in the original tree (see Figure 4.1). The program (Figure 4.2) was
originally introduced to describe so-called circular programs, i.e. programs in which
part of a result of a function is again used as one of its arguments. We will use this
example to show that the computation is composed of three so-called aspects: the
computation of the minimal value as the first component of the result of sem Tree
(asp smin), passing down the globally minimal value from the root to the leaves as
the parameter ival (asp ival), and the construction of the resulting tree as the second
component of the result (asp sres).

Now suppose we want to change the function repmin into a function repavg which
replaces the leaves by the average value of the leaves. Unfortunately we have to change
almost every line of the program, because instead of computing the minimal value
we have to compute both the sum of the leaf values and the total number of leaves.
At the root level we can then divide the total sum by the total number of leaves to

79

4 Attribute Grammars Fly First-Class

5 1 2 8

4

3 6

⇒

1 1 1 1

1

1 1

Figure 4.1: repmin replaces leaf values by their minimal value

data Root = Root Tree
data Tree = Node Tree Tree | Leaf Int

repmin = sem Root

sem Root (Root tree) = let (smin, sres) = (sem Tree tree) smin
in (sres)

sem Tree (Node l r) = λival → let (lmin, lres) = (sem Tree l) ival
(rmin, rres) = (sem Tree r) ival

in (min lmin rmin,Node lres rres)
sem Tree (Leaf i) = λival → (i ,Leaf ival)

Figure 4.2: repmin as a circular program

80

4.1 Introduction

DATA Root | Root tree
DATA Tree | Node l , r : Tree

| Leaf i : {Int }

SYN Tree [smin : Int]
SEM Tree

| Leaf lhs .smin = i
| Node lhs .smin = min l .smin r .smin

INH Tree [ival : Int]
SEM Root

| Root tree.ival = tree.smin
SEM Tree

| Node l .ival = lhs.ival
r .ival = lhs.ival

SYN Root Tree [sres : Tree]
SEM Root

| Root lhs .sres = tree.sres
SEM Tree

| Leaf lhs .sres = Leaf (lhs.ival)
| Node lhs .sres = Node (l .sres) (r .sres)

Figure 4.3: AG specification of repmin

compute the average leaf value. However, the traversal of the tree, the passing of the
value to be used in constructing the new leafs and the construction of the new tree
all remain unchanged. What we are now looking for is a way to define the function
repmin as:

repmin = sem Root (asp smin ⊕ asp ival ⊕ asp sres)

so we can easily replace the aspect asp smin by asp savg :

repavg = sem Root (asp savg ⊕ asp ival ⊕ asp sres)

In Figure 4.3 we have expressed the solution of the repmin problem in terms of a
domain specific language, i.e., as an uuagc attribute grammar [64]. Attributes are
values associated with tree nodes. We will refer to a collection of (one or more) related
attributes, with their defining rules, as an aspect. After defining the underlying data
types by a few DATA definitions, we define the different aspects: for the two “result”
aspects we introduce synthesized attributes (SYN smin and SYN sres), and for the
“parameter” aspect we introduce an inherited attribute (INH ival).

Note that attributes are introduced separately, and that for each attribute/alter-
native pair we have a SEM rule which contains a separate piece of code describing

81

4 Attribute Grammars Fly First-Class

what to compute. The defining expressions at the right hand side of the =-signs are
all written in Haskell, using minimal syntactic extensions to refer to attribute values;
we refer to a synthesized attribute of a child using the notation child .attribute and
to an inherited attribute of the production itself (the left-hand side) as lhs.attribute.
These expressions are copied directly into the generated program: only the attribute
references are replaced by references to values defined in the generated program. The
attribute grammar system only checks whether for all attributes a definition has been
given. Type checking of the defining expressions is left to the Haskell compiler when
compiling the generated program (given in Figure 4.2).

As a consequence type errors are reported in terms of the generated program. Al-
though this works reasonably well in practice, the question arises whether we can
define a set of combinators which enables us to embed the AG formalism directly in
Haskell, thus making the separate generation step uncalled for and immediately prof-
iting from Haskell’s type checker and getting error messages referring to the original
source code.

A first approach to such an embedded attribute grammar notation was made by de
Moor et al. [16]. Unfortunately this approach, which is based on extensible records
[25], necessitates the introduction of a large set of combinators, which encode posi-
tions of children-trees explicitly. Furthermore combinators are indexed by a number
which indicates the number of children a node has where the combinator is to be
applied. The first contribution of this chapter is that we show how to overcome these
shortcomings by making use of the Haskell class system.

The second contribution is that we show how to express the previous solution in
terms of heterogeneous collections, thus avoiding the use of Hugs-style extensible
records are not supported by the main Haskell compilers.

Attribute grammars exhibit typical design patterns; an example of such a pattern
is the inherited attribute ival , which is distributed to all the children of a node,
and so on recursively. Other examples are attributes which thread a value through
the tree, or collect information from all the children which have a specific attribute
and combine this into a synthesized attribute of the father node. In normal Haskell
programming this would be done by introducing a collection of monads (Reader ,
State and Writer monad respectively), and by using monad transformers to combine
these in to a single monadic computation. Unfortunately this approach breaks down
once too many attributes have to be dealt with, when the data flows backwards,
and especially if we have a non-uniform grammar, i.e., a grammar which has several
different non-terminals each with a different collection of attributes. In the latter case
a single monad will no longer be sufficient.

One way of making such computational patterns first-class is by going to a universal
representation for all the attributes, and packing and unpacking them whenever we
need to perform a computation. In this way all attributes have the same type at
the attribute grammar level, and non-terminals can now be seen as functions which
map dictionaries to dictionaries, where such dictionaries are tables mapping Strings
representing attribute names to universal attribute values [15]. Although this provides
us with a powerful mechanism for describing attribute flows by Haskell functions, this

82

4.1 Introduction

data Root = Root {tree :: Tree }
deriving Show

data Tree = Node { l :: Tree, r :: Tree }
| Leaf {i :: Int }
deriving Show

$ (deriveAG ’’ Root)
$ (attLabels ["smin", "ival", "sres"])

asp smin = synthesize smin at {Tree }
use min 0 at {Node }
define at Leaf = i

asp ival = inherit ival at {Tree }
copy at {Node }
define at Root .tree = tree.smin

asp sres = synthesize sres at {Root ,Tree }
use Node (Leaf 0) at {Node }
define at Root = tree.sres

Leaf = Leaf lhs.ival

asp repmin = asp smin ⊕ asp sres ⊕ asp ival
repmin t = select sres from compute asp repmin t

Figure 4.4: repmin in our embedded DSL

comes at a huge price; all attributes have to be unpacked before the contents can be
accesses, and to be repacked before they can be passed on. Worse still, the check
that verifies that all attributes are completely defined, is no longer a static check, but
rather something which is implicitly done at run-time by the evaluator, as a side-effect
of looking up attributes in the dictionaries. The third contribution of this chapter is
that we show how patterns corresponding to the mentioned monadic constructs can
be described, again using the Haskell class mechanism.

The fourth contribution of this chapter is that it presents yet another large example
of how to do type-level programming in Haskell, and what can be achieved with it.
In our conclusions we will come back to this.

Before going into the technical details we want to give an impression of what our
embedded Domain Specific Language (DSL) looks like. In Figure 4.4 we give our
definition of the repmin problem in a lightly sugared notation.

83

4 Attribute Grammars Fly First-Class

To completely implement the repmin function the user of our library1 needs to
undertake the following steps (Figure 4.4):

• define the Haskell data types involved;

• optionally, generate some boiler-plate code using calls to Template Haskell;

• define the aspects, by specifying whether the attribute is inherited or synthe-
sized, with which non-terminals it is associated, how to compute its value if no
explicit definition is given (i.e., which computational pattern it follows), and
providing definitions for the attribute at the various data type constructors
(productions in grammar terms) for which it needs to be defined, resulting in
asp repmin;

• composing the aspects into a single large aspect asp repmin

• define the function repmin that takes a tree, calls the semantic function for the
tree and the aspect asp repmin, and selects the synthesized attribute sres from
the result.

Together these rules define for each of the productions a so-called Data Dependency
Graph (DDG). A DDG is basically a data-flow graph (Figure 4.5), with as incoming
values the inherited attributes of the father node and the synthesized attributes of the
children nodes (indicated by closed arrows), and as outputs the inherited attributes
of the children nodes and the synthesized attributes of the father node (open arrows).
The semantics of our DSL is defined as the data-flow graph which results from com-
posing all the DDGs corresponding to the individual nodes of the abstract syntax
tree. Note that the semantics of a tree is thus represented by a function which maps
the inherited attributes of the root node onto its synthesized attributes.

p

l r

min lmin rmin
Node lres rres

ival ival

ival

lmin
lres

rmin
rres

sem Tree sem Tree

Figure 4.5: The DDG for Node

The main result of this chapter is a combinator based implementation of attribute
grammars in Haskell; it has statically type checked semantic functions, it is stati-
cally checked for correctness at the attribute grammar level, and high-level attribute
evaluation patterns can be described.
In Section 4.2 we introduce the heterogeneous collections, which are used to combine

a collection of inherited or synthesised attributes into a single value. In Section 4.3

1Available at: http://hackage.haskell.org/package/AspectAG.

84

4.2 HList

we show how individual attribute grammar rules are represented. In Section 4.4 we
introduce the aforementioned ⊕ operator which combines the aspects. In Section
4.5 we introduce a function knit which takes the DDG associated with the production
used at the root of a tree and the mappings (sem ... functions) from inherited to
synthesised attributes for its children (i.e. the data flow over the children trees) and
out of this constructs a data flow computation over the combined tree. In Section 4.6
we show how the common patterns can be encoded in our library, and in Section 4.7
we show how default aspects can be defined. In Section 4.8 we discuss related work,
and in Section 4.9 we conclude.

4.2 HList

The library HList [35] implements typeful heterogeneous collections (lists, records,
etc.), using techniques for dependently typed programming in Haskell [26, 43] which in
turn make use of Haskell 98 extensions for multi-parameter classes [53] and functional
dependencies [33]. The idea of type-level programming is based on the use of types to
represent type-level values, and classes to represent type-level types and functions.
In order to be self-contained we start out with a small introduction. To represent

Boolean values at the type level we define a new type for each of the Boolean values.
The class HBool represents the type-level type of Booleans. We may read the ins-
tance definitions as “the type-level values HTrue and HFalse have the type-level type
HBool”:

class HBool x

data HTrue ; hTrue = ⊥ :: HTrue
data HFalse; hFalse = ⊥ :: HFalse

instance HBool HTrue
instance HBool HFalse

Since we are only interested in type-level computation, we defined HTrue and
HFalse as empty types. By defining an inhabitant for each value we can, by writing
expressions at the value level, construct values at the type-level by referring to the
types of such expressions.

Multi-parameter classes can be used to describe type-level relations, whereas func-
tional dependencies restrict such relations to functions. As an example we define the
class HOr for type-level disjunction:

class (HBool t ,HBool t ′,HBool t ′′)⇒ HOr t t ′ t ′′ | t t ′ → t ′′

where hOr :: t → t ′ → t ′′

The context (HBool t ,HBool t ′,HBool t ′′) expresses that the types t , t ′ and t ′′ have
to be type-level values of the type-level type HBool . The functional dependency
t t ′ → t ′′ expresses that the parameters t and t ′ uniquely determine the parameter
t ′′. This implies that once t and t ′ are instantiated, the instance of t ′′ must be

85

4 Attribute Grammars Fly First-Class

uniquely inferable by the type-system, and that thus we are defining a type-level
function from t and t ′ to t ′′. The type-level function itself is defined by the following
non-overlapping instance declarations:

instance HOr HFalse HFalse HFalse
where hOr = hFalse

instance HOr HTrue HFalse HTrue
where hOr = hTrue

instance HOr HFalse HTrue HTrue
where hOr = hTrue

instance HOr HTrue HTrue HTrue
where hOr = hTrue

If we write (hOr hTrue hFalse), we know that t and t ′ are HTrue and HFalse,
respectively. So, the second instance is chosen to select hOr from and thus t ′′ is
inferred to be HTrue.
Despite the fact that is looks like a computation at the value level, its actual purpose

is to express a computation at the type-level; no interesting value level computation
is taking place at all. If we had defined HTrue and HFalse in the following way:

data HTrue = HTrue ; hTrue = HTrue :: Htrue
data HFalse = HFalse; hFalse = HFalse ::HFalse

then the same computation would also be performed at the value level, resulting in
the value HTrue of type HTrue.

4.2.1 Heterogeneous Lists

Heterogeneous lists are represented with the data types HNil and HCons, which model
the structure of a normal list both at the value and type level:

data HNil = HNil
data HCons e l = HCons e l

The sequence HCons True (HCons "bla" HNil) is a correct heterogeneous list with
type HCons Bool (HCons String HNil). We introduce the class HList and its in-
stances to prevent incorrect expressions, such as HCons True False, where the second
argument of HCons is not a type-level list. This constraint is expressed by adding a
context condition to the HCons... instance:

class HList l
instance HList HNil
instance HList l ⇒ HList (HCons e l)

The library includes a multi-parameter class HExtend to model the extension of het-
erogeneous collections.

86

4.2 HList

class HExtend e l l ′ | e l → l ′, l ′ → e l
where hExtend :: e → l → l ′

The functional dependency e l → l ′ makes that HExtend is a type-level function,
instead of a relation: once e and l are fixed l ′ is uniquely determined. It fixes the
type l ′ of a collection, resulting from extending a collection of type l with an element
of type e. The member hExtend performs the same computation at the level of
values. The instance of HExtend for heterogeneous lists includes the well-formedness
condition:

instance HList l ⇒ HExtend e l (HCons e l)
where hExtend = HCons

The main reason for introducing the class HExtend is to make it possible to encode
constraints on the things which can be HCons-ed; here we have expressed that the
second parameter should be a list again. In the next subsection we will see how to
make use of this facility.

4.2.2 Extensible Records

In our code we will make heavy use of non-homogeneous collections: grammars are a
collection of productions, and nodes have a collection of attributes and a collection
of children nodes. Such collections, which can be extended and shrunk, map typed
labels to values and are modeled by an HList containing a heterogeneous list of fields,
marked with the data type Record . We will refer to them as records from now on:

newtype Record r = Record r

An empty record is a Record containing an empty heterogeneous list:

emptyRecord :: Record HNil
emptyRecord = Record HNil

A field with label l (a phantom type [28]) and value of type v is represented by the
type:

newtype LVPair l v = LVPair {valueLVPair :: v }

Labels are now almost first-class objects, and can be used as type-level values. We can
retrieve the label value using the function labelLVPair , which exposes the phantom
type parameter:

labelLVPair :: LVPair l v → l
labelLVPair = ⊥

Since we need to represent many labels, we introduce a polymorphic type Proxy to
represent them; by choosing a different phantom type for each label to be represented
we can distinguish them:

87

4 Attribute Grammars Fly First-Class

data Proxy e; proxy = ⊥ :: Proxy e

Thus, the following declarations define a record (myR) with two elements, labelled
by Label1 and Label2 :

data Label1 ; label1 = proxy :: Proxy Label1
data Label2 ; label2 = proxy :: Proxy Label2

field1 = LVPair True :: LVPair (Proxy Label1) Bool
field2 = LVPair "bla" :: LVPair (Proxy Label2) [Char]

myR = Record (HCons field1 (HCons field2 HNil)

Since our lists will represent collections of attributes we want to express statically that
we do not have more than a single definition for each attribute occurrence, and so the
labels in a record should be all different. This constraint is represented by requiring
an instance of the class HRLabelSet to be available when defining extendability for
records:

instance HRLabelSet (HCons (LVPair l v) r)
⇒ HExtend (LVPair l v) (Record r) (Record (HCons (LVPair l v) r))
where hExtend f (Record r) = Record (HCons f r)

The class HasField is used to retrieve the value part corresponding to a specific
label from a record:

class HasField l r v | l r → v where

hLookupByLabel :: l → r → v

At the type-level it is statically checked that the record r indeed has a field with label
l associated with a value of the type v . At value-level the member hLookupByLabel
returns the value of type v . So, the following expression returns the string "bla":

hLookupByLabel label2 myR

The possibility to update an element in a record at a given label position is provided
by:

class HUpdateAtLabel l v r r ′ | l v r → r ′ where

hUpdateAtLabel :: l → v → r → r ′

In order to keep our programs readable we introduce infix operators for some of the
previous functions:

(.∗.) = hExtend
.=. v = LVPair v

r # l = hLookupByLabel l r

Furthermore we will use the following syntactic sugar to denote lists and records in
the rest of the thesis:

88

4.3 Rules

• { v1 , ..., vn } for (v1 .∗.∗. vn .∗. HNil)

• {{ v1 , ..., vn }} for (v1 .∗.∗. vn .∗. emptyRecord)

So, for example the definition of myR can now be written as:

myR = {{ label1 .=. True, label2 .=. "bla" }}

4.3 Rules

In this subsection we show how attributes and their defining rules are represented. An
attribution is a finite mapping from attribute names to attribute values, represented
as a Record , in which each field represents the name and value of an attribute.

type Att att val = LVPair att val

The labels2 (attribute names) for the attributes of the example are:

data Att smin; smin = proxy :: Proxy Att smin
data Att ival ; ival = proxy :: Proxy Att ival
data Att sres; sres = proxy :: Proxy Att sres

When inspecting what happens at a production we see that information flows from
the inherited attribute of the parent and the synthesized attributes of the children
(henceforth called in the input family) to the synthesized attributes of the parent and
the inherited attributes of the children (together called the output family from now
on). Both the input and the output attribute family is represented by an instance of:

data Fam c p = Fam c p

A Fam contains a single attribution for the parent and a collection of attributions for
the children. Thus the type p will always be a Record with fields of type Att , and the
type c a Record with fields of the type:

type Chi ch atts = LVPair ch atts

where ch is a label that represents the name of that child and atts is again a Record
with the fields of type Att associated with this particular child. In our example the
Root production has a single child Ch tree of type Tree, the Node production has
two children labelled by Ch l and Ch r of type Tree, and the Leaf production has a
single child called Ch i of type Int . As we will see later it comes in handy if, besides
the name of an element, we also encode its type in the label. Thus we generate, using
template Haskell:

2These and all needed labels can be generated automatically by Template Haskell functions available
in the library

89

4 Attribute Grammars Fly First-Class

data Ch tree; ch tree = proxy :: Proxy (Ch tree,Tree)
data Ch r ; ch r = proxy :: Proxy (Ch r ,Tree)
data Ch l ; ch l = proxy :: Proxy (Ch l ,Tree)
data Ch i ; ch i = proxy :: Proxy (Ch i , Int)

p

l r

ival

smin
sres

smin
sres

p

l r

smin
sres

ival ival

Figure 4.6: Repmin’s input and output families for Node

Families are used to model the input and output attributes of attribute computations.
For example, Figure 4.6 shows the input (black arrows) and output (white arrows)
attribute families of the repmin problem for the production Node. We now give the
attributions associated with the output family of the Node production, which are the
synthesized attributes of the parent (SP) and the inherited attributions for the left
and right child (IL and IR):

type SP = Record (HCons (Att (Proxy Att smin) Int)
HCons (Att (Proxy Att sres) Tree)
HNil)

type IL = Record (HCons (Att (Proxy Att ival) Int)
HNil)

type IR = Record (HCons (Att (Proxy Att ival) Int)
HNil)

The next type collects the last two children attributions into a single record:

type IC = Record (HCons (Chi (Proxy (Ch l , Tree)) IL)
HCons (Chi (Proxy (Ch r ,Tree)) IR)
HNil)

We now have all the ingredients to define the output family for Node-s.

type Output Node = Fam IC SP

Attribute computations are defined in terms of rules. As defined by [15], a rule is a
mapping from an input family to an output family. In order to make rules composable
we define a rule as a mapping from an input family to a function which extends an
output family with the new elements defined by this rule:

type Rule sc ip ic sp ic′ sp′ = Fam sc ip → Fam ic sp → Fam ic′ sp′

90

4.3 Rules

Thus, the type Rule states that a rule takes as input the synthesized attributes of
the children sc and the inherited attributes of the parent ip and returns a function
from the output constructed thus far (inherited attributes of the children ic and
synthesized attributes of the parent sp) to the extended output.

The composition of two rules is the composition of the two functions we get by
applying each of them to the input family first:

ext :: Rule sc ip ic′ sp′ ic′′ sp′′ → Rule sc ip ic sp ic′ sp′ → Rule sc ip ic sp ic′′ sp′′

(f ‘ext ‘ g) input = f input .g input

4.3.1 Rule Definition

We now introduce the functions syndef and inhdef , which are used to define primitive
rules which define a synthesized or an inherited attribute respectively. Figure 4.7 lists
all the rule definitions for our running example. The naming convention is such that
a rule with name prod att defines the attribute att for the production prod . Without
trying to completely understand the definitions we suggest the reader to compare
them with their respective SEM specifications in Figure 4.3.

leaf smin (Fam chi par) = syndef smin (chi # ch i)
node smin (Fam chi par) = syndef smin (min ((chi # ch l) # smin)

((chi # ch r) # smin))

root ival (Fam chi par) = inhdef ival { nt Tree }
{{ ch tree .=. (chi # ch tree) # smin }}

node ival (Fam chi par) = inhdef ival { nt Tree }
{{ ch l .=. par # ival
, ch r .=. par # ival }}

root sres (Fam chi par) = syndef sres ((chi # ch tree) # sres)
leaf sres (Fam chi par) = syndef sres (Leaf (par # ival))
node sres (Fam chi par) = syndef sres (Node ((chi # ch l) # sres)

((chi # ch r) # sres))

Figure 4.7: Rule definitions for repmin

The function syndef adds the definition of a synthesized attribute. It takes a label
att representing the name of the new attribute, a value val to be assigned to this
attribute, and it builds a function which updates the output constructed thus far.

syndef :: HExtend (Att att val) sp sp′

⇒ att → val → (Fam ic sp → Fam ic sp′)
syndef att val (Fam ic sp) = Fam ic (att .=. val .∗. sp)

91

4 Attribute Grammars Fly First-Class

The record sp with the synthesized attributes of the parent is extended with a field
with name att and value val , as shown in Figure 4.8. If we look at the type of the
function, the check that we have not already defined this attribute is done by the
constraint HExtend (Att att val) sp sp′, meaning that sp′ is the result of adding the
field (Att att val) to sp, which cannot have any field with name att . Thus the Haskell
type system is statically preventing duplicated attribute definitions.

p

c1 cn

sp

ic1 icn. . .

p

c1 cn

sp,
att = val

ic1 icn. . .

Figure 4.8: Synthesized attribute definition

Let us take a look at the rule definition node smin of the attribute smin for the
production Node in Figure 4.7. The children ch l and ch r are retrieved from the
input family so we can subsequently retrieve the attribute smin from these attribu-
tions, and construct the computation of the synthesized attribute smin. This process
is demonstrated in Figure 4.9. The attribute smin is required (underlined) in the
children l and r of the input, and the parent of the output is extended with smin.

p

l r

ival

sres
smin

sres
smin

p

l r

...

... ...

p

l r

...,
smin

... ...

Figure 4.9: Rule node sres

If we take a look at the type which is inferred for node sres we find back all the
constraints which are normally checked by an off-line attribute grammar system,
i.e., an attribute smin is made available by each child (accessed by its name) and
an attribute smin can be safely added to the current synthesized attribution of the
parent: 3

node sres :: (HasField (Proxy (Ch l ,Tree)) sc scl
,HasField (Proxy Att smin) scl Int
,HasField (Proxy (Ch r ,Tree)) sc scr
,HasField (Proxy Att smin) scr Int
,HExtend (Att (Proxy Att smin) Int) sp sp′)

⇒ Rule sc ip ic sp ic sp′

The function inhdef introduces a new inherited attribute for a collection of non-
terminals. It takes the following parameters:

3In order to keep the explanation simple we will suppose that min is not overloaded, and takes
Int ’s as parameter.

92

4.3 Rules

att the attribute which is being defined;

nts the non-terminals with which this attribute is being associated;

vals a record labelled with child names and containing values, describing how to
compute the attribute being defined at each of the applicable child positions.

The parameter nts takes over the role of the INH declaration in Figure 4.3. Here
this extra parameter seems to be superfluous, since its value can be inferred, but adds
an additional restriction to be checked (yielding better error messages) and it will be
used in the introduction of default rules later. The names for the non-terminals of
our example are:

nt Root = proxy :: Proxy Root
nt Tree = proxy :: Proxy Tree

The result of inhdef again is a function which updates the output constructed thus
far.

inhdef :: Defs att nts vals ic ic′

⇒ att → nts → vals → (Fam ic sp → Fam ic′ sp)
inhdef att nts vals (Fam ic sp) = Fam (defs att nts vals ic) sp

The class Def is defined by induction over the record vals containing the new def-
initions. The function defs inserts each definition into the attribution of the corre-
sponding child.

class Defs att nts vals ic ic′ | vals ic → ic′ where

defs :: att → nts → vals → ic → ic′

We start out with the base case, where we have no more definitions to add. In this
case the inherited attributes of the children are returned unchanged.

instance Defs att nts (Record HNil) ic ic where

defs ic = ic

The instance for HCons given below first recursively processes the rest of the defini-
tions by updating the collection of collections of inherited attributes of the children
ic into ic′. A helper type level function SingleDef (and its corresponding value level
function singledef) is used to incorporate the single definition (pch) into ic′, resulting
in a new set ic′′. The type level functions HasLabel and HMember are used to stati-
cally check whether the child being defined (lch) exists in ic′ and if its type (t) belongs
to the non-terminals nts, respectively. The result of both functions are HBools (either
HTrue or HFalse) which are passed as parameters to SingleDef . We are now ready
to give the definition for the non-empty case:

instance (Defs att nts (Record vs) ic ic′

,HasLabel (Proxy (lch, t)) ic′ mch

93

4 Attribute Grammars Fly First-Class

,HMember (Proxy t) nts mnts
,SingleDef mch mnts att (Chi (Proxy (lch, t)) vch) ic′ ic′′)

⇒ Defs att nts (Record (HCons (Chi (Proxy (lch, t)) vch) vs)) ic ic′′

where

defs att nts ∼(Record (HCons pch vs)) ic = singledef mch mnts att pch ic′

where ic′ = defs att nts (Record vs) ic
lch = labelLVPair pch
mch = hasLabel lch ic′

mnts = hMember (sndProxy lch) nts

The class Haslabel can be encoded straightforwardly, together with a function which
retrieves part of a phantom type:

class HBool b ⇒ HasLabel l r b | l r → b
instance HasLabel l r b ⇒ HasLabel l (Record r) b
instance (HEq l lp b,HasLabel l r b′,HOr b b′ b′′)
⇒ HasLabel l (HCons (LVPair lp vp) r) b′′

instance HasLabel l HNil HFalse

hasLabel :: HasLabel l r b ⇒ l → r → b
hasLabel = ⊥

sndProxy :: Proxy (a, b)→ Proxy b
sndProxy = ⊥

We only show the instance with both mch and mnts equal to HTrue, which is the
case we expect to apply in a correct attribute grammar definition: we do not refer to
children which do not exist, and this child has the type we expect.4

class SingleDef mch mnts att pv ic ic′ | mch mnts pv ic → ic′

where singledef ::mch → mnts → att → pv → ic → ic′

instance (HasField lch ic och
,HExtend (Att att vch) och och ′

,HUpdateAtLabel lch och ′ ic ic′)
⇒ SingleDef HTrue HTrue att (Chi lch vch) ic ic′

where

singledef att pch ic = hUpdateAtLabel lch (att .=. vch .∗. och) ic
where lch = labelLVPair pch

vch = valueLVPair pch
och = hLookupByLabel lch ic

We will guarantee that the collection of attributions ic (inherited attributes of the chil-
dren) contains an attribution och for the child lch, and so we can use hUpdateAtlabel

4The instances for error cases could just be left undefined, yielding to “undefined instance” type
errors. In our library we use a class Fail (as defined in [35], section 6) in order to get more
instructive type error messages.

94

4.3 Rules

to extend the attribution for this child with a field (Att att vch), thus binding at-
tribute att to value vch. The type system checks, thanks to the presence of HExtend ,
that the attribute att was not defined before in och.

4.3.2 Monadic Rule Definition

To make definitions look somewhat “prettier”, we have defined the functions syndefM
and inhdefM , that are versions of syndef and inhdef that use a Reader monad to
access the attributes. In Figure 4.10 we show the rules of Figure 4.7 written in terms
of syndefM and inhdefM . The monad keeps the input family; we use at to lookup an

leaf smin = syndefM smin $ liftM id (at ch i)
node smin = syndefM smin $ do l ← at ch l

r ← at ch r
return $ min (l # smin) (r # smin)

root ival = inhdefM ival { nt Tree } $
do tree ← at ch tree

return {{ ch tree .=. tree # smin }}
node ival = inhdefM ival { nt Tree } $

do lhs ← at lhs
return {{ ch l .=. lhs# ival

, ch r .=. lhs# ival }}

root sres = syndefM sres $ liftM (#sres) (at ch tree)
leaf sres = syndefM sres $ do lhs← at lhs

return $ Leaf (lhs# ival)
node sres = syndefM sres $ do l ← at ch l

r ← at ch r
return $ Node (l # sres) (r # sres)

Figure 4.10: Monadic Rule definitions for repmin

attribution given a label.

class At l m v | l → v where

at :: l → m v

The type of the returned attribute depends on the label. If the label indicates a child
of the production (i.e. it has type (Proxy (lch,nt))) the attribution of this child is
returned.

instance (HasField (Proxy (lch,nt)) chi v
,MonadReader (Fam chi par) m)

95

4 Attribute Grammars Fly First-Class

⇒ At (Proxy (lch,nt)) m v where

at lbl = liftM (λ(Fam chi)→ chi # lbl) ask

If the label is lhs (with type (Proxy Lhs)) then the returned attribution is the one
corresponding to the left-hand side.

data Lhs ; lhs = proxy :: Proxy Lhs

instance MonadReader (Fam chi par) m
⇒ At (Proxy Lhs) m par where

at = liftM (λ(Fam par)→ par) ask

We can pass the input family to a monadic attribute computation by running
(runReader) the monad.

def :: Reader (Fam chi par) val → ((Fam chi par)→ val)
def = runReader

Thus, the functions syndefM and inhdefM receive a monadic computation, run it, and
apply the respective non-monadic function to the obtained attribute computation.

syndefM :: (HExtend (Att att val) sp sp′)
⇒ att → Reader (Fam sc ip) val → Rule sc ip ic sp ic sp′

syndefM att mval inp = syndef att (def mval inp)

inhdefM :: (Defs att nts vals ic ic′)
⇒ att → nts → Reader (Fam sc ip) vals → Rule sc ip ic sp ic′ sp

inhdefM att nts mvals inp = inhdef att nts (def mvals inp)

4.3.3 Applicative Rule Definition

Given an instance of Applicative for Reader , we can define rules in an applicative way
using the same functions we defined for the monadic case. In Figure 4.11 we show
the applicative version of our example.
We define attr to lift the value of an attribute att of a given attribution ch:

attr :: (HasField att chi val ,At ch (Reader (Fam sc ip)) chi)
⇒ ch → att → Reader (Fam sc ip) val

attr ch att = (#att) <$> at ch

We also define some combinators to lift the construction of records. Thus the rules
for inherited attributes, like node ival , can be written in a prettier way.

infixr 2 .∗..
(.∗..) :: HExtend f r r ′

⇒ Reader (Fam sc ip) f → Reader (Fam sc ip) r → Reader (Fam sc ip) r ′

96

4.4 Aspects

leaf smin = syndefM smin $ at ch i
node smin = syndefM smin $ min <$> attr ch l smin <*> attr ch r smin

root ival = inhdefM ival { nt Tree } $
{{{ ch tree .=.. attr ch tree smin }}}

node ival = inhdefM ival { nt Tree } $
{{{ ch l .=.. attr lhs ival
, ch r .=.. attr lhs ival }}}

root sres = syndefM sres $ attr ch tree sres
leaf sres = syndefM sres $ Leaf <$> attr lhs ival
node sres = syndefM sres $ Node <$> attr ch l sres <*> attr ch r sres

Figure 4.11: Applicative Rule definitions for repmin

x .∗.. xs = (.∗.) <$> x <*> xs

infixr 3 .=..
(.=..) :: ch → Reader (Fam sc ip) val → Reader (Fam sc ip) (LVPair ch val)
l .=.. f = (.=.) <$> pure l <*> f

emptyRecordA :: Reader (Fam sc ip) (Record HNil)
emptyRecordA = pure emptyRecord

In Figure 4.11 we used some syntax sugar ({{{...}}}) to represent lifted records, similar
to the syntax we used for records.

4.4 Aspects

We represent aspects as records which contain for each production a rule field:

type Prd prd rule = LVPair prd rule

For our example we thus introduce fresh labels to refer to repmin’s productions:

data P Root ; p Root = proxy :: Proxy P Root
data P Node; p Node = proxy :: Proxy P Node
data P Leaf ; p Leaf = proxy :: Proxy P Leaf

We now can define the aspects of repmin as records with the rules of Figure 4.7.5

asp smin = {{ p Leaf .=. leaf smin
, p Node .=. node smin }}

5We assume that the monomorphism restriction has been switched off.

97

4 Attribute Grammars Fly First-Class

asp ival = {{ p Root .=. root ival
, p Node .=. node ival }}

asp sres = {{ p Root .=. root sres
, p Node .=. node sres
, p Leaf .=. leaf sres }}

4.4.1 Aspects Combination

We define the class Com which will provide the instances we need for combining
aspects:

class Com r r ′ r ′′ | r r ′ → r ′′

where (⊕) :: r → r ′ → r ′′

With this operator we can now combine the three aspects which together make up
the repmin problem:

asp repmin = asp smin ⊕ asp ival ⊕ asp sres

Combination of aspects is a sort of union of records where, in case of fields with
the same label (i.e., for rules for the same production), the rule combination (ext)
is applied to the values. To perform the union we iterate over the second record,
inserting the next element into the first one if it is new and combining it with an
existing entry if it exists:

instance Com r (Record HNil) r where

r ⊕ = r

instance (HasLabel lprd r b
,ComSingle b (Prd lprd rprd) r r ′′′

,Com r ′′′ (Record r ′) r ′′)
⇒ Com r (Record (HCons (Prd lprd rprd) r ′)) r ′′ where

r ⊕ (Record (HCons prd r ′)) = r ′′

where b = hasLabel (labelLVPair prd) r
r ′′′ = comsingle b prd r
r ′′ = r ′′′ ⊕ (Record r ′)

We use the class ComSingle to insert a single element into the first record. The
type-level Boolean parameter b is used to distinguish those cases where the left hand
operand already contains a field for the rule to be added and the case where it is
new.6

class ComSingle b f r r ′ | b f r → r ′

where comsingle :: b → f → r → r ′

6This parameter can be avoided by allowing overlapping instances, but we prefer to minimize the
number of Haskell extensions we use.

98

4.5 Semantic Functions

If the first record has a field with the same label lprd , we update its value by composing
the rules.

instance (HasField lprd r (Rule sc ip ic′ sp′ ic′′ sp′′)
,HUpdateAtLabel lprd (Rule sc ip ic sp ic′′ sp′′) r r ′)

⇒ ComSingle HTrue (Prd lprd (Rule sc ip ic sp ic′ sp′)) r r ′ where

comsingle f r = hUpdateAtLabel n ((r # n) ‘ext ‘ v) r
where n = labelLVPair f

v = valueLVPair f

In case the first record does not have a field with the label, we just insert the element
in the record.

instance ComSingle HFalse f (Record r) (Record (HCons f r)) where

comsingle f (Record r) = Record (HCons f r)

4.5 Semantic Functions

Our overall goal is to construct a Tree-algebra and a Root-algebra. For the domain
associated with each non-terminal we take the function mapping its inherited to its
synthesized attributes. The hard work is done by the function knit , the purpose of
which is to combine the data flow defined by the DDG –which was constructed by
combining all the rules for this production– with the semantic functions of the children
(describing the flow of data from their inherited to their synthesized attributes) into
the semantic function for the parent.

With the attribute computations as first-class entities, we can now pass them as
an argument to functions of the form sem < nt>. The following code follows the
definitions of the data types at hand: it contains recursive calls for all children of an
alternative, each of which results in a mapping from inherited to synthesized attributes
for that child followed by a call to knit, which stitches everything together:

sem Root asp (Root t) = knit (asp # p Root) {{ ch tree .=. sem Tree asp t }}
sem Tree asp (Node l r) = knit (asp # p Node) {{ ch l .=. sem Tree asp l

, ch r .=. sem Tree asp r }}
sem Tree asp (Leaf i) = knit (asp # p Leaf) {{ ch i .=. sem Lit i }}

sem Lit e (Record HNil) = e

Since this code is completely generic we provide a Template Haskell function deriveAG
which automatically generates the functions such as sem Root and sem Tree, together
with the labels for the non-terminals and labels for referring to children. Thus, to
completely implement the repmin function we need to undertake the following steps:

99

4 Attribute Grammars Fly First-Class

• Generate the semantic functions and the corresponding labels by using:

$ (deriveAG “Root)

• Define and compose the aspects as shown in the previous sections, resulting in
asp repmin.

• Define the function repmin that takes a tree, executes the semantic function for
the tree and the aspect asp repmin, and selects the synthesized attribute sres
from the result.

repmin tree = sem Root asp repmin (Root tree) () # sres

4.5.1 The Knit Function

As said before the function knit takes the combined rules for a node and the semantic
functions of the children, and builds a function from the inherited attributes of the
parent to its synthesized attributes. We start out by constructing an empty output
family, containing an empty attribution for each child and one for the parent. To
each of these attributions we apply the corresponding part of the rules, which will
construct the inherited attributes of the children and the synthesized attributes of
the parent (together forming the output family). Rules however contain references to
the input family, which is composed of the inherited attributes of the parent ip and
the synthesized attributes of the children sc.

knit :: (Empties fc ec,Kn fc ic sc)
⇒ Rule sc ip ec (Record HNil) ic sp → fc → ip → sp

knit rule fc ip = let ec = empties fc
(Fam ic sp) = rule (Fam sc ip) (Fam ec emptyRecord)
sc = kn fc ic

in sp

The function kn, which takes the semantic functions of the children (fc) and their
inputs (ic), computes the results for the children (sc). The functional dependency
fc → ic sc indicates that fc determines ic and sc, so the shape of the record with the
semantic functions determines the shape of the other records:

class Kn fc ic sc | fc → ic sc where

kn :: fc → ic → sc

We declare a helper instance of Kn to remove the Record tags of the parameters, in
order to be able to iterate over their lists without having to tag and untag at each
step:

instance Kn fc ic sc ⇒ Kn (Record fc) (Record ic) (Record sc) where

kn (Record fc) (Record ic) = Record $ kn fc ic

100

4.6 Common Patterns

When the list of children is empty, we just return an empty list of results.

instance Kn HNil HNil HNil where

kn = hNil

The function kn is a type level zipWith ($), which applies the functions contained
in the first argument list to the corresponding element in the second argument list.

instance Kn fcr icr scr ⇒ Kn (HCons (Chi lch (ich → sch)) fcr)
(HCons (Chi lch ich) icr)
(HCons (Chi lch sch) scr) where

kn ∼(HCons pfch fcr) ∼(HCons pich icr) =
let scr = kn fcr icr

lch = labelLVPair pfch
fch = valueLVPair pfch
ich = valueLVPair pich

in HCons (newLVPair lch (fch ich)) scr

The class Empties is used to construct the record, with an empty attribution for
each child, which we have used to initialize the computation of the input attributes
with.

class Empties fc ec | fc → ec where

empties :: fc → ec

In the same way that fc determines the shape of ic and sc in Kn, it also tells us how
many empty attributions ec to produce and in which order:

instance Empties fc ec ⇒ Empties (Record fc) (Record ec) where

empties (Record fc) = Record $ empties fc

instance Empties fcr ecr ⇒ Empties (HCons (Chi lch fch) fcr)
(HCons (Chi lch (Record HNil)) ecr)

where

empties ∼(HCons pch fcr) = let ecr = empties fcr
lch = labelLVPair pch

in HCons (newLVPair lch emptyRecord) ecr

instance Empties HNil HNil where

empties = hNil

4.6 Common Patterns

At this point all the basic functionality of attribute grammars has been implemented.
In practice however we want more. If we look at the code in Figure 4.3 we see that
the rules for ival at the production Node are “free of semantics”, since the value is

101

4 Attribute Grammars Fly First-Class

copied unmodified to its children. If we were dealing with a tree with three children
instead of two the extra line would look quite similar. When programming attribute
grammars such patterns are quite common and most attribute grammar systems
contain implicit rules which automatically insert such “trivial” rules. As a result
descriptions can decrease in size dramatically. The question now arises whether we
can extend our embedded language to incorporate such more high level data flow
patterns.

4.6.1 Copy Rule

The most common pattern is the copying of an inherited attribute from the parent
to all its children. We capture this pattern with the an operator copy , which takes
the name of an attribute att and an heterogeneous list of non-terminals nts for which
the attribute has to be defined, and generates a copy rule for this. This corresponds
closely to the introduction of a Reader monad.

copy :: (Copy att nts vp ic ic′,HasField att ip vp)
⇒ att → nts → Rule sc ip ic sp ic′ sp

Thus, for example, the rule node ival of Figure 4.7 can now be written as:

node ival input = copy ival { nt Tree } input

The function copy uses a function defcp to define the attribute att as an inherited
attribute of its children. This function is similar in some sense to inhdef , but instead
of taking a record containing the new definitions it gets the value vp of the attribute
which is to be copied to the children:

copy att nts (Fam ip) = defcp att nts (ip # att)

defcp :: Copy att nts vp ic ic′ ⇒ att → nts → vp → (Fam ic sp → Fam ic′ sp)
defcp att nts vp (Fam ic sp) = Fam (cpychi att nts vp ic) sp

The class Copy iterates over the record ic containing the output attribution of the
children, and inserts the attribute att with value vp if the type of the child is included
in the list nts of non-terminals and the attribute is not already defined for this child.

class Copy att nts vp ic ic′ | ic → ic′ where

cpychi :: att → nts → vp → ic → ic′

instance Copy att nts vp (Record HNil) (Record HNil)
where cpychi = emptyRecord

instance (Copy att nts vp (Record ics) ics ′

,HMember (Proxy t) nts mnts
,HasLabel att vch mvch

102

4.6 Common Patterns

,Copy ′ mnts mvch att vp (Chi (Proxy (lch, t)) vch) pch
,HExtend pch ics ′ ic)

⇒ Copy att nts vp (Record (HCons (Chi (Proxy (lch, t)) vch) ics)) ic
where

cpychi att nts vp (Record (HCons pch ics)) = cpychi ′ mnts mvch att vp pch .∗. ics ′

where ics ′ = cpychi att nts vp (Record ics)
lch = sndProxy (labelLVPair pch)
vch = valueLVPair pch
mnts = hMember lch nts
mvch = hasLabel att vch

The function cpychi ′ updates the field pch by adding the new attribute:

class Copy ′ mnts mvch att vp pch pch ′ | mnts mvch pch → pch ′

where cpychi ′ ::mnts → mvch → att → vp → pch → pch ′

When the type of the child doesn’t belong to the non-terminals for which the attribute
is defined we define an instance which leaves the field pch unchanged.

instance Copy ′ HFalse mvch att vp pch pch where

cpychi ′ pch = pch

We also leave pch unchanged if the attribute is already defined for this child.

instance Copy ′ HTrue HTrue att vp pch pch where

cpychi ′ pch = pch

In other case the attribution vch is extended with the attribute (Att att vp).

instance HExtend (Att att vp) vch vch ′

⇒ Copy ′ HTrue HFalse att vp (Chi lch vch) (Chi lch vch ′) where

cpychi ′ att vp pch = lch .=. (att .=. vp .∗. vch)
where lch = labelLVPair pch

vch = valueLVPair pch

4.6.2 Other Rules

In this section we introduce two more constructs of our DSL, without giving their
implementation. Besides the Reader monad, there is also the Writer monad. Often
we want to collect information provided by some of the children into an attribute of
the parent. This can be used to e.g. collect all identifiers contained in an expression.
Such a synthesized attribute can be declared using the use rule, which combines the
attribute values of the children in similar way as Haskell’s foldr1 . The use rule takes
the following arguments: the attribute to be defined, the list of non-terminals for
which the attribute is defined, a monoidal operator which combines the attribute

103

4 Attribute Grammars Fly First-Class

values, and a unit value to be used in those cases where none of the children has such
an attribute.

use :: (Use att nts a sc,HExtend (Att att a) sp sp′)
⇒ att → nts → (a → a → a)→ a → Rule sc ip ic sp ic sp′

Using this new combinator the rule node smin of Figure 4.7 becomes:

node smin = use smin { nt Tree } min 0

A third common pattern corresponds to the use of the State monad. A value is
threaded in a depth-first way through the tree, being updated every now and then. For
this we have chained attributes (both inherited and synthesized). If a definition for
a synthesized attribute of the parent with this name is missing we look for the right-
most child with a synthesized attribute of this name. If we are missing a definition
for one of the children, we look for the right-most of its left siblings which can provide
such a value, and if we cannot find it there, we look at the inherited attributes of the
father.

chain :: (Chain att nts val sc ic sp ic′ sp′,HasField att ip val)
⇒ att → nts → Rule sc ip ic sp ic′ sp′

4.7 Defining Aspects

Now we have both implicit rules to define attributes, and explicit rules which contain
explicit definitions, we may want to combine these into a single attribute aspect which
contains all the definitions for single attribute. We now refer to Figure 4.12 which is
a desugared version of the notation presented in the introduction.
An inherited attribute aspect, like asp ival in Figure 4.12, can be defined using the

function inhAspect . It takes as arguments: the name of the attribute att , the list nts
of non-terminals where the attribute is defined, the list cpys of productions where the
copy rule has to be applied, and a record defs containing the explicit definitions for
some productions:

inhAspect att nts cpys defs = (defAspect (FnCpy att nts) cpys)
⊕ (attAspect (FnInh att nts) defs)

The function attAspect generates an attribute aspect given the explicit definitions,
whereas defAspect constructs an attribute aspect based in a common pattern’s rule.
Thus, an inherited attribute aspect is defined as a composition of two attribute as-
pects: one with the explicit definitions and other with the application of the copy rule.
In the following sections we will see how attAspect and defAspect are implemented.

A synthesized attribute aspect, like asp smin and asp sres in Figure 4.12, can be
defined using synAspect . Here the rule applied is the use rule, which takes op as the
monoidal operator and unit as the unit value.

104

4.7 Defining Aspects

asp smin
= synAspect smin { nt Tree } -- synthesize at

min 0 { p Node } -- use at
{{ p Leaf .=. (λ(Fam chi)→ chi # ch i) }} -- define at

asp ival
= inhAspect ival { nt Tree } -- inherit

{ p Node } -- copy at
{{ p Root .=. (λ(Fam chi)→

{{ ch tree .=. (chi # ch tree) # smin }}) }} -- define at

asp sres
= synAspect sres { nt Root ,nt Tree el

Node (Leaf 0) { p Node }
{{ p Root .=. (λ(Fam chi)→ (chi # ch tree) # sres)
, p Leaf .=. (λ(Fam par)→ Leaf (par # ival)) }}

Figure 4.12: Aspects definition for repmin

synAspect att nts op unit uses defs = (defAspect (FnUse att nts op unit) uses)
⊕ (attAspect (FnSyn att) defs)

A chained attribute definition introduces both an inherited and a synthesized at-
tribute. In this case the pattern to be applied is the chain rule.

chnAspect att nts chns inhdefs syndefs = (defAspect (FnChn att nts) chns)
⊕ (attAspect (FnInh att nts) inhdefs)
⊕ (attAspect (FnSyn att) syndefs)

4.7.1 Attribute Aspects

Consider the explicit definitions of the aspect asp sres. The idea is that, when declar-
ing the explicit definitions, instead of completely writing the rules, like:

{{ p Root .=. (λinput → syndef sres ((chi input # ch tree) # sres))
, p Leaf .=. (λinput → syndef sres (Leaf (par input # ival))) }}

we just define a record with the functions from the input to the attribute value:

{{ p Root .=. (λinput → (chi input # ch tree) # sres)
, p Leaf .=. (λinput → Leaf (par input # ival)) }}

By mapping the function ((.) (syndef sres)) over such records, we get back our previ-
ous record containing rules. The function attAspect updates all the values of a record
by applying a function to them:

105

4 Attribute Grammars Fly First-Class

class AttAspect rdef defs rules | rdef defs → rules
where attAspect :: rdef → defs → rules

instance (AttAspect rdef (Record defs) rules
,Apply rdef def rule
,HExtend (Prd lprd rule) rules rules ′)

⇒ AttAspect rdef (Record (HCons (Prd lprd def) defs)) rules ′

where

attAspect rdef (Record (HCons def defs)) =
let lprd = (labelLVPair def)
in lprd .=. apply rdef (valueLVPair def) .∗. attAspect rdef (Record defs)

instance AttAspect rdef (Record HNil) (Record HNil) where

attAspect = emptyRecord

The class Apply (from the HList library) models the function application, and it is
used to add specific constraints on the types:

class Apply f a r | f a → r
where apply :: f → a → r

In the case of synthesized attributes we apply ((.) (syndef att)) to values of type
(Fam sc ip → val) in order to construct a rule of type (Rule sc ip ic sp ic sp′). The
constraint HExtend (LVPair att val) sp sp′ is introduced by the use of syndef . The
data type FnSyn is used to determine which instance of Apply has to be chosen.

data FnSyn att = FnSyn att

instance HExtend (LVPair att val) sp sp′

⇒ Apply (FnSyn att) (Fam sc ip → val) (Rule sc ip ic sp ic sp′) where

apply (FnSyn att) f = syndef att . f

In the case of inherited attributes the function ((.) (inhdef att nts)) is applied to
define the rule.

data FnInh att nt = FnInh att nt

instance Defs att nts vals ic ic′

⇒ Apply (FnInh att nts) (Fam sc ip → vals) (Rule sc ip ic sp ic′ sp) where

apply (FnInh att nts) f = inhdef att nts . f

4.7.2 Default Aspects

The function defAspect is used to construct an aspect given a rule and a list of
production labels.

class DefAspect deff prds rules | deff prds → rules
where defAspect :: deff → prds → rules

106

4.8 Related Work

It iterates over the list of labels prds, constructing a record with these labels and a
rule determined by the parameter deff as value. For inherited attributes we apply
the copy rule copy att nts, for synthesized attributes use att nt op unit and for
chained attributes chain att nts . The following types are used, in a similar way than
in attAspect , to determine the rule to be applied:

data FnCpy att nts = FnCpy att nts
data FnUse att nt op unit = FnUse att nt op unit
data FnChn att nt = FnChn att nt

Thus, for example in the case of the aspect asp ival , the application:

defAspect (FnCpy ival { nt Tree }) { p Node }

generates the default aspect:

{{ p Node .=. copy ival { nt Tree } }}

4.8 Related Work

There have been several previous attempts at incorporating first-class attribute gram-
mars in lazy functional languages. To the best of our knowledge all these attempts
exploit some form of extensible records to collect attribute definitions. They however
do not exploit the Haskell class system as we do. De Moor et al. [16] introduce a
whole collection of functions, and a result it is no longer possible to define copy, use
and chain rules. Other approaches fail to provide some of the static guarantees that
we have enforced [15].

The exploration of the limitations of type-level programming in Haskell is still
a topic of active research. For example, there has been recent work on modelling
relational data bases using techniques similar to those applied in this paper [59].
As to be expected the type-level programming performed here in Haskell can also

be done in dependently typed languages such as Agda [47, 48]. By doing so, we
use Boolean values in type level-functions, thereby avoiding the need for a separate
definition of the type-level Booleans. This would certainly simplify certain parts of
our development. On the other hand, because Agda only permits the definition of
total functions, we would need to maintain even more information in our types to
make it evident that all our functions are indeed total.

An open question is how easy it will be to extend the approach taken to more global
strategies of accessing attributes definitions; some attribute grammars systems allow
references to more remote attributes [55, 10]. Although we are convinced that we can
in principle encode such systems too, the question remains how much work this turns
out to be.

Another thing we could have done is to make use of associated types [14] in those
cases where our relations are actually functions; since this feature is still experimen-
tal and has only recently become available we have refrained from doing so for the

107

4 Attribute Grammars Fly First-Class

moment. Future work includes this and the use of promotion of data types to kinds
[78] to avoid the use of type classes (e.g. HList) to represent the types of type level
values.

4.9 Conclusions

In the first place we remark that we have achieved all four goals stated in the intro-
duction:

1. removing the need for a whole collection of indexed combinators as used in [16]

2. replacing extensible records completely by heterogeneous collections

3. the description of common attribute grammar patterns in order to reduce code
size, and making them almost first class objects

4. give a nice demonstration of type level programming

We have extensive experience with attribute grammars in the construction of the
Utrecht Haskell compiler [19]. The code of this compiler is completely factored out
along the two axes mentioned in the introduction [20, 24, 18], using the notation
used in Figure 4.3. In doing so we have found the possibility to factor the code into
separate pieces of text indispensable.
We also have come to the conclusion that the so-called monadic approach, although

it may seem attractive at first sight, in the end brings considerable complications
when programs start to grow [32]. Since monad transformers are usually type based
we already run into problems if we extend a state twice with a value of the same type
without taking explicit measures to avoid confusion. Another complication is that
the interfaces of non-terminals are in general not uniform, thus necessitating all kind
of tricks to change the monad at the right places, keeping information to be reused
later, etc. In our generated Haskell compiler [19] we have non-terminals with more
than 10 different attributes, and glueing all these together or selectively leaving some
out turns out to be impossible to do by hand.
In our attribute grammar system (uuagc on Hackage), we perform a global flow

analysis, which makes it possible to schedule the computations explicitly [34]. Once
we know the evaluation order we do not have to rely on lazy evaluation, and all
parameter positions can be made strict. When combined with a uniqueness analysis
we can, by reusing space occupied by unreachable attributes, get an even further
increase in speed. This leads to a considerable, despite constant, speed improvement.
Unfortunately we do not see how we can perform such analyses with the approach
described in this chapter: the semantic functions defining the values of the attributes
in principle access the whole input family, and we cannot find out which functions
only access part of such a family, and if so which part.
Of course a straightforward implementation of extensible records will be quite ex-

pensive, since basically we use nested pairs to represent attributions. We think how-
ever that a not too complicated program analysis will reveal enough information to

108

4.9 Conclusions

be able to transform the program into a much more efficient form by flattening such
nested pairs. Note that thanks to our type-level functions, which are completely eval-
uated by the compiler, we do not have to perform any run-time checks as in [15]: once
the program type-checks there is nothing which will prevent it to run to completion,
apart form logical errors in the definitions of the attributes.

Concluding we think that the library described here is quite useful and relatively
easy to experiment with. We notice furthermore that a conventional attribute gram-
mar restriction, stating that no attribute should depend on itself, does not apply since
we build on top of a lazily evaluated language. An example of this can be found in
online pretty printing [61, 65]. Once we go for speed it may become preferable to use
more conventional off-line generators. Ideally we should like to have a mixed approach
in which we can use the same definitions as input for both systems.

109

5 Attribute Grammar Macros

Having extensible languages is appealing, but raises the question of how to construct
extensible compilers and how to compose compilers out of a collection of pre-compiled
components.

Being able to deal with attribute grammar fragments as described in Chapter 4
makes it possible to describe semantics in a compositional way; this leads naturally
to a plug-in architecture, in which a core compiler can be constructed as a (collection
of) pre-compiled component(s), and to which extra components can safely be added
as need arises.

We extend AspectAG with a set of combinators that make it easy to describe se-
mantics in terms of already existing semantics in a macro-like style, just as syntax
macros extend the syntax of a language. We also show how existing semantics can be
redefined, thus adapting some aspects from the behavior defined by the macros.

5.1 Introduction

Since the introduction of the very first programming languages, and the invention
of grammatical formalisms for describing them, people have investigated how an ini-
tial language definition can be extended by someone else than the original language
designer by providing separate language-definition fragments.

The simplest approach starts from the text which describes a compiler for the
base language. Just before the compiler is compiled, several extra ingredients may
be added textually. In this way we get great flexibility and there is virtually no
limit to the things we may add. The Utrecht Haskell Compiler [19] has shown the
effectiveness of this approach by composing a large number of attribute grammar
fragments textually into a complete compiler description. This approach however
is not very practical when defining relatively small language extensions; we do not
want an individual user to have to generate a completely new compiler for each
small extension. Another problematic aspect of this approach is that, by making the
complete text of the compiler available for modification or extension, we also loose
important safety guarantees provided by e.g. the type system; we definitely do not
want everyone to mess around with the delicate internals of a compiler for a complex
language.

So the question arises how we can reach the effect of textual composition, but
without opening up the whole compiler source. The most commonly found approach
is to introduce so-called syntax macros [39], which enable the programmer to add
syntactic sugar to a language by defining new notation in terms of already existing
syntax.

111

5 Attribute Grammar Macros

In this chapter we will focus on how to provide such mechanisms at the semantic
level [40] too. As a running example we take a minimal expression language described
by the grammar:

expr → "let" var "=" expr "in" expr | term "+" expr | term
term → factor "*" term | factor
factor → int | var

with the following abstract syntax (as a Haskell data type):

data Root = Root {expr :: Expr }
data Expr = Cst {cv :: Int } | Var {vnm :: String }

| Mul {me1 :: Expr , me2 :: Expr }
| Add {ae1 :: Expr , ae2 :: Expr }
| Let { lnm :: String , val :: Expr , body :: Expr }

Suppose we want to extend the language with an extra production for defining the
square of a value. A syntax macro aware compiler might accept definitions of the
form square (se :: Expr) ⇒ Mul se se, translating the new syntax into the existing
abstract syntax.
Although this approach may be very effective and seems attractive, such transfor-

mational programming [12] has its shortcomings too. As a consequence of mapping
the new constructs onto existing constructs and performing any further processing
on this simpler, but often more detailed program representation, feedback from later
stages of the compiler is given in terms of the intermediate program representations
in which the original program structure if often hard to recognise. For example, if
we do not change the pretty printing phase of the compiler, the expression square 2
will be printed as 2 ∗ 2, and worse, type-checking the expression square True will
lead to more than a single error message. Hence the implementation details shine
through, and the produced error messages can be confusing or even incomprehensi-
ble. Similar problems show up when defining embedded domain specific languages:
the error messages from the type system are typically given in terms of the underlying
representation [27].
In Chapter 4 we introduced AspectAG: a Haskell library of first-class attribute

grammars, which can be used to implement a language semantics and its extensions
in a safe way, i.e. by constructing a core compiler as a (collection of) pre-compiled
component(s), to which extra components can safely be added at will. In this chapter
we show how we can define the semantics of the right hand side in terms of existing
semantics, in the form of attribute grammar macros.

We also show how, by using first class attribute grammars, the already defined
semantics can easily be redefined at the places where it makes a difference, e.g. in
pretty printing and generating error messages.
The functionality provided by the combination of attribute grammar macros and

redefinition is similar to the forwarding attributes [67] technique for higher-order at-
tribute grammars, implemented in the Silver AG system [68]. We however implement

112

5.2 Attribute Grammar Combinators

-- Pretty-Printing
sppRoot = syndefM spp $ liftM (#spp) (at ch expr)
...

sppAdd = syndefM spp $ do e1 ← at ch ae1
e2 ← at ch ae2
return $ e1 # spp >#< "+" >#< e2 # spp

...

-- Environment

ienvRoot = inhdefM ienv { nt Expr } $
do return {{ ch expr .=. ([] :: [(String , Int)]) }}

...

ienvLet = inhdefM ienv { nt Expr } $
do lnm ← at ch lnm

val ← at ch val
lhs ← at lhs
return {{ ch val .=. lhs# ienv

, ch body .=. (lnm, val # sval) : lhs# ienv }}

-- Value

svalRoot = syndefM sval $ liftM (#sval) (at ch expr)
...

svalVar = syndefM sval $ do vnm ← at ch vnm
lhs ← at lhs
return $ fromJust (lookup vnm (lhs# ienv))

...

Figure 5.1: Fragments of the specification of the example’s semantics using the
AspectAG library

our proposal as a set of combinators embedded in Haskell, such that the consistency
of the composite system is checked by the Haskell type checker.

In Section 5.2 we give a top-level overview of our approach. In Section 5.3 we show
how to define semantic macros and in Section 5.5 how to redefine attributes. We close
by presenting our conclusions and future work.

5.2 Attribute Grammar Combinators

Before delving into the technical details, we show in this section how the semantics
of our running example language and some simple extensions can be implemented
using our approach. We have chosen our example to be very simple, in order to

113

5 Attribute Grammar Macros

Figure 5.2: Rule: black arrows represent input and gray arrows represent output;
dotted gray arrows represent the already constructed output which can
be used to compute further output elements (hence the direction of the
arrow)

help the understanding of the technique. For a more involved example, including an
implementation of the Oberon-0 language [76] using macros to represent the FOR

and CASE statements in terms of a core sub-language, we refer to Chapter 7.
The semantics are defined by two aspects: pretty printing, realized by a synthesized

attribute spp, which holds a pretty printed document, and expression evaluation,
realized by two attributes: a synthesized sval of type Int , which holds the result of
an expression, and an inherited ienv which holds the environment ([(String , Int)])
in which an expression is to be evaluated. We show how the attributes are directly
definable in Haskell using the functions syndefM and inhdefM from the AspectAG

library, which define a single synthesized or inherited attribute respectively. Figure 5.1
lists some of the rule definitions of the semantics of our example. In our naming
convention a rule with name attProd defines the attribute att for the production
Prod . The rule sppAdd for the attribute spp of the production Add looks for its
children attributions and binds them (ei ← at ch aei) and then combines the pretty
printed children ei # spp with the string "+" using the pretty printing combinator
(>#<) for horizontal (beside) composition, from the uulib library. The rule ienvLet
specifies that the ienv value coming from the parent (lhs stands for “left-hand side”)
is copied to the ienv position of the child val ; the ienv attribute of the body is this
environment extended with a pair composed of the name (lnm) associated with the
first child and the value (the sval attribute) of the second child.
As defined in Chapter 4, a rule is a mapping from an input family (the inherited

attributes of the parent and the synthesized attributes of the children) to a function
which extends the output family (the inherited attributes of the children and the
synthesized attributes of the parent) with the new elements defined by this rule.

type Rule sc ip ic sp ic′ sp′ = Fam sc ip → (Fam ic sp → Fam ic′ sp′)

Figure 5.2 shows a graphic representation of a rule; each rule describes a node of
a data flow graph which has an underlying tree-shaped structure induced by the
abstract syntax tree at hand.
The composition of two rules is the composition of the two functions resulting from

applying each of them to the input family:

114

5.2 Attribute Grammar Combinators

Figure 5.3: Rules Composition: produces a new rule, represented by the external oval

ext :: Rule sc ip ic′ sp′ ic′′ sp′′ → Rule sc ip ic sp ic′ sp′ → Rule sc ip ic sp ic′′ sp′′

(rule1 ‘ext ‘ rule2) input = rule1 input .rule2 input

Figure 5.3 represents a composition rule1 ‘ext ‘ rule2 , of rules with two children. By
inspecting the labyrinths of this figure, it can be seen how the inputs (black arrows)
are shared and the outputs are combined by using the outputs of rule2 (solid gray)
as output constructed thus far of rule1 (dotted gray). Thus, the outputs constructed
thus far (dotted gray) of the composed rule are passed to rule2 and the resulting
outputs (solid gray) of the composed rule are equivalent to the resulting outputs of
rule1 . In Figure 5.4 we show for each production of the example how we combine the
various aspects introduced by the attributes using the function ext .

The semantics we associate with an abstract syntax tree is a function which maps
the inherited attributes of the root node to its synthesized attributes. So for each
production that may be applied at the root node of the tree we have to construct
a function that takes the semantics of its children and uses these to construct the
semantics of the complete tree. We will refer to such functions as semantic functions.
The hard work is done by the function knit , that “ties the knot”, combining the
attribute computations (i.e. the data flow at the node) with the semantics of the
children trees (describing the flow of data from their inherited to their synthesized

aspRoot = sppRoot ‘ext ‘ svalRoot ‘ext ‘ ienvRoot
aspCst = sppCst ‘ext ‘ svalCst
aspVar = sppVar ‘ext ‘ svalVar
aspMul = sppMul ‘ext ‘ svalMul ‘ext ‘ ienvMul
aspAdd = sppAdd ‘ext ‘ svalAdd ‘ext ‘ ienvAdd
aspLet = sppLet ‘ext ‘ svalLet ‘ext ‘ ienvLet

Figure 5.4: Composition of the semantics

115

5 Attribute Grammar Macros

attributes) into the semantic function for the parent. The following code defines the
semantic functions of the production Add :

semExpr Add sae1 sae2 = knit aspAdd {{ ch ae1 .=. sae1 , ch ae2 .=. sae2 }}

where the function knit is applied to the combined attributes for the production.
The resulting semantic functions can be associated with the concrete syntax by

using parser combinators [63] in an applicative style1:

pExpr = semExpr Let <$ pKeyw "let" <*> pString
<* pKeyw "=" <*> pExpr
<* pKeyw "in" <*> pExpr

<|> semExpr Add <$> pTerm <* pKeyw "+" <*> pExpr <|> pTerm
pTerm = semExpr Mul <$> pFactor <* pKeyw "*" <*> pTerm <|> pFactor
pFactor = semExpr Cst <$> pInt <|> semExpr Var <$> pString

Thus far we have described a methodology to define the static semantics of a lan-
guage. The goal of this chapter is to show how we can define new productions by
combining existing productions, while probably updating some of the aspects. We
want to express the semantics of new productions in terms of already existing seman-
tics and by adapting parts of the semantics resulting from such a composition.
To show our approach we will extend the language of our example with some extra

productions; one for defining the square of a value, one for defining the sum of the
squares of two values, and one for doubling a value:

expr → ... | "square" expr | "pyth" expr expr | "double" expr

In the rest of this section we define the semantic functions semExpr Sq , semExpr Pyth
and semExpr Double, of the new productions, in a macro style, although providing
specific definitions for the pretty-printing attributes. Thus, if the expressions’ parser
is extended with these new productions:

pExpr = ... <|> semExpr Sq <$ pKeyw "square" <*> pExpr
<|> semExpr Pyth <$ pKeyw "pyth" <*> pExpr <*> pExpr
<|> semExpr Double <$ pKeyw "double" <*> pExpr

the semantic action associated to parse, for example, "square 2" returns the value 2
for the attribute sval and "square 2" for spp.
Thus far, when extending the example language with a square production, we would

have to define its semantics from scratch, i.e we had to define all its attributes in the
same way we did for the original language. Thus, if the semantics of a language
are defined by about twenty attributes2 (to perform pretty-printing, name binding,
type checking, optimizations, code generation, etc.), a definition of all these twenty

1The parsers can be generated using the technique introduced in Chapter 3.
2As is the case in the UHC Haskell compiler.

116

5.2 Attribute Grammar Combinators

aspSq = agMacro (aspMul , ch me1 −֒→ ch se
<.> ch me2 −֒→ ch se)

aspPyth = agMacro (aspAdd , ch ae1 =⇒ (aspSq , ch se −֒→ ch pe1)
<.> ch ae2 =⇒ (aspSq , ch se −֒→ ch pe2))

aspDouble = agMacro (aspMul , ch me1 =⇒ (aspCst , ch cv − 2)
<.> ch me2 −֒→ ch de)

Figure 5.5: Language Extension

sppSq = synmodM spp $ do de ← at ch de
return $ "square" >#< de # spp

aspSq ′ = sppSq ‘ext ‘ aspSq

sppPyth = synmodM spp $ do e1 ← at ch pe1
e2 ← at ch pe2
return $ "pyth" >#< e1 # spp >#< e2 # spp

aspPyth ′ = sppPyth ‘ext ‘ aspPyth

sppDouble = synmodM spp $ do de ← at ch de
return $ "double" >#< de # spp

aspDouble ′ = sppDouble ‘ext ‘ aspDouble

Figure 5.6: Redefiniton of the spp attribute

attributes has to be provided. To avoid this, we introduce attribute grammar macros
in Figure 5.5 to define the extensions of the example.

The square of a value is the multiplication of this value by itself. Thus, the semantics
of multiplication can be used as a basis, by passing to it the semantics of the only
child (ch se) of the square production both as ch me1 and ch me2. We do so in the
definition of aspSq in Figure 5.5; we declare an attribute grammar macro based on the
attribute computations for the production Mul , defined in aspMul , with its children
(ch me1 and ch me2) mapped to the new child ch se.

Attribute macros can map children to other macros, and so on. For example, in
the definition of aspPyth (sum of the squares of ch pe1 and ch pe2) the children are
mapped to macros based on the semantics of square (aspSq).

When defining a macro based on the semantics of a production which has literal
children, these children can be mapped to literals. In the definition of aspDouble the
child ch me1 of the multiplication is mapped to a constant, which is mapped to the
literal 2.

In some cases we may want to introduce a specialized behavior for some specific

117

5 Attribute Grammar Macros

Figure 5.7: AG Macro

attributes of an aspect defined by a macro. For example, the pretty printing attribute
spp of the macros of Figure 5.5 currently is expressed in terms of the base rule. Thus
when pretty printing square x , instead x ∗ x will be shown. Fortunately it turns out
to be very easy to overwrite the definition of some specific attribute instead of adding
a new one. This is implemented by the functions synmodM and inhmodM .
In Figure 5.6 we show how the pretty printing attributes of the language extensions

we defined in Figure 5.5 can be redefined to reflect their original appearance in the
input program.

5.3 Attribute Grammar Macros
An attribute grammar macro is determined by a pair with the body rule (ruleb) of
the macro and the mapping (chMap) between the children of this rule and their
newly defined semantics, and returns a macro rule. As shown in Figure 5.7, chMap
(rectangle) is an interface between the children of the body rule (inner oval) and the
children of the macro rule (outer oval). The number of children of the macro rule
(below chMap in the figure) does not need to be the same as the number of children
of the body rule.
The function agMacro constructs the macro rule; it performs the “knitting” of

ruleb, by applying this rule to its input and the output produced thus far. These
elements have to be obtained from the corresponding elements of the macro rule
and the mapping chMap. To keep the code clear, we will use the subindex b for
the elements of the body rule and m for the elements of the macro rule. Thus, the
macro rule takes as input the family (Fam scm ipm) and updates the output family
constructed thus far (Fam icm spm) to a new output family (Fam ic′′

m
sp′

m
):

agMacro (ruleb, chMap) (Fam scm ipm) (Fam icm spm) =
let ipb = ipm

spb = spm

(Fam ic′
b
sp′

b
) = ruleb (Fam scb ipb) (Fam icb spb)

(ic′
m
, icb, scb) = chMap (scm, icm) (ic′

b
, emptyRecord , emptyRecord)

ic′′
m

= hRearrange (recordLabels icm) ic′
m

sp′
m

= sp′
b

in (Fam ic′′
m

sp′
m
)

118

5.3 Attribute Grammar Macros

Figure 5.8: aspSq

The inherited and synthesized attributes of the parent of the body rule (ipb and spb)
respectively correspond to ipm and spm, the inherited and synthesized attributes of
the parent of the macro rule. The inherited and synthesized attributes of the children
of the body rule (icb and scb), as well as the updated inherited attributes of the chil-
dren of the macro rule (ic′

m
), are generated by the children mapping function chMap.

The function chMap takes as input a pair (scm, icm) with the synthesized attributes
and the inherited attributes constructed thus far of the children of the macro rule,
and returns a function that updates a triple with the updated inherited attributes
(ic′

m
) of the children of the macro rule and the inherited (icb) and synthesized (scb)

attributes of the children of the body rule. We start with an “initial” triple composed
of the updated inherited attributes of the children of the body rule (ic′

b
), which has

been converted into ic′
m
, and two empty records (to be extended to icb and scb).

Notice that the attributes we pass to chMap are effectively the ones indicated by the
incoming arrows in Figure 5.7.

The rearranging of ic′
m

is just a technical detail stemming from the use of HList; by
doing this we make sure that the children in icm and ic′

m
are in the same order, thus

informing the type system that both represent the same production. The synthesized
attributes of the parent of the macro rule (sp′

m
) are just sp′

b
, the synthesized attributes

of the parent of the body rule.
Mapping functions resemble rules in the sense that they take an input and return

a function that updates its “output”, that in this case is the triple (ic′
m
, icb, scb)

instead of an output family. Thus, they can be combined in the same way as rules
are combined; the combinator (<.>), used in Figure 5.5, is exactly the same as the
ext function but with a different type:3

(<.>) :: ((scm, icm)→ ((ic′1m, ic1b, sc1b)→ (ic′2m, ic2b, sc2b)))
→ ((scm, icm)→ ((ic′0m, ic0b, sc0b)→ (ic′1m, ic1b, sc1b)))
→ ((scm, icm)→ ((ic′0m, ic0b, sc0b)→ (ic′2m, ic2b, sc2b)))

(chMap1 <.> chMap2) inp = chMap1 inp.chMap2 inp

3To avoid confusion with rule combination, instead of using apostrophes to denote updates we use
numeric suffixes

119

5 Attribute Grammar Macros

Figure 5.9: aspPyth Figure 5.10: aspDouble

5.3.1 Mapping a Child to a Child

We use the combinator (−֒→) to map a child lchb of the body rule to a child lchm of
the macro rule.

lchb −֒→ lchm = λ(scm, icm) (ic′0m, ic0b, sc0b)→
let ic′1m = hRenameLabel lchb lchm (hDeleteAtLabel lchm ic′0m)

ic1b = lchb .=. (icm # lchm) .∗. ic0b
sc1b = lchb .=. (scm # lchm) .∗. sc0b

in (ic′1m, ic1b, sc1b)

The updated inherited attributes for the child lchm correspond to the updated in-
herited attributes of the child lchb. Thus, the new ic′

m
(ic′1m) is the original one

with the field lchb renamed to lchm. Since more than a single child of the body rule
can be mapped to a child of the macro rule, like in aspSq of Figure 5.5, we have
to avoid duplicates in the record by deleting a possible previous occurrence of lchm.
This decision fixes the semantics of multiple occurrences of a child in a macro: the
child will receive the inherited attributes of its left-most mapping. We represent this
behavior in Figure 5.8 with the gray arrow, which corresponds to the inherited at-
tributes of ch me2, pointing nowhere outside the mapping. In the cases of the initial
inherited attributes and the synthesized attributes, they have to be extended with a
field corresponding to the child lchb with the attributions for the child lchm from the
inherited and synthesized attributes, respectively, of the macro rule.

5.3.2 Mapping a Child to a Macro

Inside a macro a child can be mapped to some other macro (rulec, chMap), where
the subindex c stands for child. This is the case of the definitions of aspPyth and
aspDouble, graphically represented in Figure 5.9 and Figure 5.10, where the rectangles
representing the children mappings have rules (ovals) inside.

120

5.4 Accessing Attributes

lchb =⇒ (rulec, chMap) = λ(scm, icm) (ic′0m, ic0b, sc0b)→
let (Fam ic′

c
sp′

c
) = agMacro (rulec, chMap) (Fam scm (ic′0m # lchb))

(Fam icm emptyRecord)

ic′1m = hLeftUnion ic′
c
(hDeleteAtLabel lchb ic

′0m)
ic1b = lchb .=. emptyRecord .∗. ic0b
sc1b = lchb .=. sp

′

c
.∗. sc0b

in (ic′0m, ic1b, sc1b)

In this case, the inner macro has to be evaluated using agMacro. The children of the
inner macro will be included in the children of the outer macro; thus the synthesized
attributes of the inner macro are included in scm, and the new inherited attributes of
the children have to extend icm. The inherited attributes of the parent of the inner
macro are the inherited attributes of the child lch b of the body rule of the outer
macro. The synthesized attributes of the parent of the inner macro are initialized
with an empty attribution. The child lchb is removed from ic′0m, because the macro
rule will not include it. On the other hand, the inherited attributes of the children of
the inner macro (ic′

c
) have to be added to the inherited attributes of the children of the

macro. With the function hLeftUnion from HList we perform an union of records,
choosing the elements of the left record in case of duplication. We initialize the
inherited attributes for lchb with an empty attribution, since it cannot be seen “from
the outside”. The synthesized attributes are initialized with the resulting synthesized
attributes of the inner rule.

5.3.3 Mapping a Child to a Constant

With the combinator (−) we define a mapping from a child with label lch to a literal
value cst . For the body rule, the initial synthesized attributes of the child lchb are
fixed to the literal cst .

lchb − cst = λ(,) (ic′0m, ic0b, sc0b)→
let ic′1m = hDeleteAtLabel lch ic′0m

ic1b = lchb .=. emptyRecord .∗. ic0b
sc1b = lchb .=. cst .∗. sc0b

in (ic′1m, ic1b, sc1b)

The (internal) macro associated to the mapping of the child ch me1 in Figure 5.10
shows the semantics of the combinator (−). The synthesized attributes of ch cv
are fixed to the constant (hexagon) 2. Since the child is mapped to a constant, the
inherited attributes are ignored (the arrow points nowhere). Nevertheless, we have to
provide a (empty) set of inherited attributes constructed thus far to the rule aspCst .

5.4 Accessing Attributes

We defined a couple of combinators withLhsAtt and withChildAtt to provide access
to the values of the attributes composing the input family.

121

5 Attribute Grammar Macros

aspCond = withChildAtt ch cnd sval $ λcnd →
let opt1 = (aspLet , ch lnm − "is-true"

<.> ch val −֒→ ch pe1
<.> ch body =⇒ opt2)

opt2 = (aspLet , ch lnm − "is-false"

<.> ch val −֒→ ch pe2
<.> ch body =⇒ res)

res = (aspVar , ch vnm − if cnd 6≡ 0 then "is-true"

else "is-false")
in withoutChild ch cnd (agMacro opt1)

Figure 5.11: Language Extension: Conditionals

The function withLhsAtt takes as arguments the label att of an inherited attribute
of the parent and a function frule that uses the value of this attribute to return a
rule.

withLhsAtt :: HasField att ip v
⇒ att → (v → Rule sc ip ic sp ic′ sp′)
→ Rule sc ip ic sp ic′ sp′

withLhsAtt att frule (Fam sc ip) (Fam ici spi)
= frule (ip # att) (Fam sc ip) (Fam ici spi)

The value of the attribute att is located in the record ip of the input family, containing
the inherited attributes of the parent.

The function withChildAtt is similar to withLhsAtt , but adding to its parameters
the label of child whose synthesized attribute we want to use.

withChildAtt :: (HasField lch sc r ,HasField att r v)
⇒ lch → att → (v → Rule sc ip ic sp ic′ sp′)
→ Rule sc ip ic sp ic′ sp′

withChildAtt lch att frule (Fam sc ip) (Fam ici spi)
= frule ((sc # lch) # att) (Fam sc ip) (Fam ici spi)

Thus we first lookup the attribution corresponding to the child lch, and obtain the
value of the attribute att from this attribution.

We can use these combinators to discriminate between the values of a given attribute
when defining a macro. For example, suppose we want to extend the example language
with a conditional expression:

expr → ... | expr "?" expr ":" expr

The first sub-expression is the condition and the other two are the true branch (to
the left of the ":" symbol) and the false branch (to the right).

122

5.5 Attribute Redefinitions

In Figure 5.11 we show how such an extension can be implemented, using macros,
in terms of variable bindings and their use. We basically bind the true sub-expression
(ch pe1) to a variable "is-true", the false sub-expression (ch pe2) to "is-false"

and decide which variable to use in the body of the inner binding based on the result of
the evaluation (sval) of the condition (ch cnd). We use the combinator withChildAtt
to obtain the value of the attribute sval of the child ch cnd .

In this case, the macro (agMacro opt1) does not consider the child ch cnd . The
combinator withoutChild takes a child label lch and a rule rule1 without this child
and returns a rule with this child.

withoutChild lch rule1 (Fam sc ip) (Fam ici spi) =
let spi1 = spi

ip1 = ip

sc1 = hDeleteAtLabel lch sc
ici1 = hDeleteAtLabel lch ici

(Fam ico1 spo1) = rule1 (Fam sc1 ip1) (Fam ici1 spi1)

ico = lch .=. (ici # lch) .∗. ico1

ico′ = hRearrange (recordLabels ici) ico
spo = spo1

in (Fam ico′ spo)

To invoke rule1 we have to remove the child from the synthesized attributes (sc) and
the inherited attributes produced thus far (ici). Then we reinsert the attributes of
this child to the inherited attributes produced thus far (ico′) by the resulting rule.

5.5 Attribute Redefinitions

We have shown how to introduce new syntax and how to express its meaning in terms
of existing constructs. In this section we show how we can redefine parts of the just
defined semantics by showing how to redefine attribute computations.

The function synmod (and its monadic version synmodM) modifies the definition
of an existing synthesized attribute:

synmod :: HUpdateAtLabel att val sp sp′ ⇒ att → val → Fam ic sp → Fam ic sp′

synmod att val (Fam ic sp) = Fam ic (hUpdateAtLabel att val sp)

Note that the only difference between syndef , from Section 4.3, and synmod , is that
the latter updates an existing field of the attribution sp, instead of adding a new
field. With the use of the HList’s function hUpdateAtLabel we enforce (by type class
constraints) the record sp, which contains the synthesized attributes of the parent
constructed thus far, indeed contains a field labeled att . Thus, a rule created us-
ing synmod has to extend, using ext , some other rule that has already defined the
synthesized attribute this rule is redefining.

123

5 Attribute Grammar Macros

The AspectAG library also provides functions inhmodM and inhmod , analogous
to inhdefM and inhdef , that modify the definition of an inherited attribute for all
children coming from a specified collection of semantic categories.
A generalized version of the redefinition functions, to update an attribute value

given its previous definition, is also provided. For example, a synthesized attribute
can be updated with:

synupd :: (HasField att sp val ,HUpdateAtLabel att val ′ sp sp′)
⇒ att → (val → val ′)→ Fam ic sp → Fam ic sp′

synupd att f (Fam ic sp) = Fam ic (hUpdateAtLabel att val ′ sp)
where val ′ = f (sp # att)

5.6 Conclusions and Future Work

Building on top of a set of combinators that allow us to formulate extensions to
semantics as first class attribute grammars (i.e. as plain typed Haskell values), we
introduced in this chapter a mechanism which allows us to express semantics in terms
of already existing semantics, without the need to use higher order attributes.
The programmer of the extensions does not need to know the details of the im-

plementation of every attribute. In order to implement a macro or a redefinition for
a production he only needs the names of the attributes used and the names of the
children of the production, the latter being provided by the definition of the abstract
syntax tree.
This work is part of a bigger plan, involving the development of a series of techniques

to deal with the problems involved in both syntactic and semantic extensions of a
compiler by composing compiled and type-checked Haskell values. In this way we
leverage the type checking capabilities of the Haskel world into such specifications,
and we profit from all the abstraction mechanisms Haskell provides.
We already think that the current approach is to be preferred over stacking more

and more monads when defining a compositional semantics as is conventionally done
in the Haskell world [57].

124

6 UUAG Meets AspectAG: How to make

Attribute Grammars First-Class

The Utrecht University Attribute Grammar Compiler (UUAGC) takes attribute gram-
mar declarations from multiple source files and generates an attribute grammar eval-
uator consisting of a single Haskell source text. The problem with such generative
approaches is that, once the code is generated and compiled, neither new attributes
can be introduced nor existing ones can be modified without providing access to all
the source code and without having to regenerate and recompile the entire program.

In contrast to this textual approach we presented in earlier chapters the Haskell
combinator library AspectAG with which one can construct attribute grammar frag-
ments as a Haskell value. Such descriptions can be individually type-checked, com-
piled, distributed and composed to construct a compiler. This method however results
in rather inefficient compilers, due to the extra indirection caused by this increased
flexibility.

We show how to combine the two approaches by generating AspectAG code frag-
ments from UUAGC sources, thus making it possible to trade between efficiency and
flexibility, enabling a couple of optimizations for AspectAG resulting in a considerable
speed improvement and making existing UUAGC code reusable in a flexible environ-
ment.

6.1 Introduction

The key advantage of using attribute grammar systems is that they allow us to des-
cribe the semantics of a programming language in an aspect oriented way. A complete
evaluator can be assembled from a large collection of attribute grammar fragments,
each describing a specific aspect of the language at hand.

Solutions to the quest for composable language description can be found at the
textual level, as done by most attribute grammar systems [45, 21, 19], or at the
semantic level, where language descriptions become first class values, which can be
composed to build a complete language description.

The first approach is supported by, amongst many others, the Utrecht University
Attribute Grammar System (UUAGC) [20], which reads in a complete language defini-
tion from a large collection of files, each describing a separate aspect of the language.
These fragments are assembled and analyzed together, leading to a large, monolithic
and eficiënt compiler, which however cannot easily be adapted once generated and
compiled. In the object-oriented world we find similar weaving based approaches in
e.g. Lisa [45] and Jastadd [21], which are both Java based.

125

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

At the other extreme we find the attempts to assemble the semantics from individual
fragments, which, in case of Haskell, use monad transformers to stack a large collection
of relatively independent computations over the syntax tree, each taking care of one
of the aspects that together make up a complete compiler [32, 57]. Unfortunately,
the monad-based approach comes with its own problems: one gets easily lost in the
stack of monads, one is sometimes obliged to impose an order which does not really
make sense, and the type system makes it hard to e.g. compose state out of a number
of individual states which probably carry the same type. Furthermore, the implicit
order in which attributes have to be evaluated becomes very explicit in the way the
monads are composed.

In earlier chapters we have presented a completely different, non monad-based,
approach to describing first-class language definition fragments; using a collection of
combinators (the AspectAG Haskell package) it becomes possible to express attribute
grammars using an Embedded Domain-Specific Language in Haskell (Chapter 4);
unfortunately it is both a bit more verbose than the specific syntax as provided
by the UUAGC system and relatively expensive. In order to provide the possibility to
redefine attributes or to add new attributes elsewhere, we encode the lists of inherited
and synthesized attributes of a non-terminal as an HList-encoded [35] value, indexed
by types using the Haskell class mechanism. In this way checking the well-formedness
of the attribute grammar is realized through the Haskell class system. Once the
language gets complicated (in our Haskell compiler UHC [19] some non-terminals have
over 20 attributes), the cost of accessing attributes may become noticeable. Note
that, in contrast to the weaving based approaches, this approach supports separate
compilation of individual aspects: each generated fragment is individually checked
to be well-typed and once compiled its source is not modifiable by other extensions.
Once it is used however it has to “dynamically link” itself to the other components,
which induces an extra source of inefficiency.

In this chapter we seek to alleviate the aforementioned verbosity and inefficiency
by generating AspectAG code from the original UUAGC code. We furthermore take the
opportunity to group collections of attributes which are not likely to be adapted, so
we can shorten the HList values, thus relieving the costs of the extra available ex-
pressibility. Only the attributes which are to be adapted by other language fragments
have to be made part of these HList values at the top level; hence we only pay for
the extra flexibility when needed.

In section 6.2 we describe the way the UUAGC represents grammars and introduce our
running example, which consists of an initial language fragment and a small extension.
In section 6.3 we describe how to generate AspectAG code out of the UUAGC sources
and in section 6.4 we describe how we optimize the generated code.

126

6.2 Attribute Grammars

LangDef.ag

DATA Root | Root decls :Decls main : Expr

DATA Decls | Decl name : String val : Expr rest :Decls

| NoDecl

DATA Expr | Add al : Expr ar : Expr
| Mul ml : Expr mr : Expr
| Cst value : Int
| Var var : String

ATTR Root Expr SYN sval : Int

SEM Root | Root lhs.sval = main.sval

SEM Expr | Add lhs.sval = al .sval + ar .sval

| Mul lhs.sval = ml .sval ∗mr .sval

| Cst lhs.sval = value

| Var lhs.sval = case lookup var lhs.ienv of

Just v → v

Nothing → 0

ATTR Decls Expr INH ienv : [(String , Int)]

SEM Root | Root decls.ienv = []
main.ienv = decls.senv

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

ATTR Decls SYN senv : [(String , Int)]

SEM Decls | Decl lhs.senv = rest .senv

| NoDecl lhs.senv = lhs.ienv

Figure 6.1: AG specification of the language semantics

6.2 Attribute Grammars

6.2.1 Initial Attribute Grammars

An Attribute Grammar is a context-free grammar where the nodes in the parse tree
are decorated with a (usually quite large) number of values, called attributes. As
running example we revisit the example language of Chapter 1.

In Figure 6.1 we show the semantics in terms of UUAGC input. Attributes define
semantics for the language in terms of the grammar and in their defining expression
may refer to other attributes. A tree-walk evaluator generated from the AG computes
values for these attributes, and thus provides implementations for the semantics in
the form of compilers and interpreters. In our example (Figure 6.1) we use three at-

127

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

LangExt.ag

ATTR Root Decls Expr SYN serr USE {++} { []} : [String]

SEM Decls | Decl lhs.serr = (case lookup name lhs.ienv of

Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

SEM Expr | Var lhs.serr = case lookup var lhs.ienv of

Just → []
Nothing → [var ++ " undefined"]

Figure 6.2: Semantics extended with an attribute that collects errors

Figure 6.3: Compilation Process with UUAGC

tributes: one attribute (SYN sval) holding the result value, one attribute (INH ienv)
in which we assemble the environment from the declarations (ienv) and one attribute
(SYN senv) for passing the final environment back to the Root to be used in the
main expression.
In the SEM blocks we specify how attributes are to be computed out of other

attributes. These computations are expressed in terms of almost plain Haskell code,
using minimal syntactic extensions to refer to the attributes.
When the UUAGC compiler weaves its input files into a Haskell program the rules’

expressions are copied almost verbatim into the generated program: only the attribute
references are replaced by references to values defined in the generated program. The
UUAGC compiler checks whether a definition has been given for each attribute, whereas
type checking of the defining expressions is left to the Haskell compiler when compiling
the generated program.

6.2.2 Attribute Grammar Extensions

In this subsection we show how we can extend the given language without touching
the code written (neither the generated nor the compiled code). In our compiler we
want to generate error messages, so we introduce an extra synthesized attribute (serr ,
Figure 6.2), in which we report occurences of dual declarations (name is already an
element of the ienv) and absent declarations (name is not an element of ienv).
To compile this code using UUAGC and GHC we follow the process described in Fig-

ure 6.3; i.e. use UUAGC to generate a completely fresh Haskell file out of the two related

128

6.2 Attribute Grammars

Figure 6.4: Compilation Process with our extension of UUAGC

attribute grammar sources, compile the composite result with GHC and link it with
yet another call to GHC. Keep in mind that by doing so we only generate the semantic
part of the compiler, which has to be completed with a few lines of main program
containing the parsers from which refer to the generated semantic part.
To use AspectAG almost the same code has to be written, but by passing some extra

flags to UUAGC we generate human-readable AspectAG code. This enables a completely
different construction process (Figure 6.4), which makes it possible to have a com-
piled definition of the semantics of a core language and to introduce relative small
extensions to it later, without neither the need to reconstruct the whole compiler, nor
even requiring the sources of the core language to be available! Thus, for example,
a core language compiler and a set of optional extensions can be distributed (with-
out sources), such that the user can link his own extended compiler together. Such
extensions could also be written in AspectAG directly.

To switch on this extension in UUAGC we pass the flag --aspectag:

uuagc -a --aspectag LangDef

uuagc -a --aspectag LangExt

With --aspectag we make UUAGC generate AspectAG code out of a set of .ag files
and their corresponding .agi files, as we show in the following sections.

An .agi file includes the declaration of a grammar and its attributes (the interface),
while the SEM blocks, which specify the computation of these attributes, end up in
the .ag file (the implementation). Figure 6.5 shows the attribute grammar specifi-
cation of Figure 6.1 adapted to our approach. Notice that the code is exactly the
same, although distributed over a file Langdef.agi containing DATA and ATTR

declarations, and a file Langdef.ag with the rules.
In Figure 6.6 we adapt the extension of Figure 6.2. In this case a new keyword

EXTENDS is used to indicate which attribute grammar is being extended. Exten-
sions are incremental. Thus, if we define yet another extension (Figure 6.7) which
adds a new production representing negating expressions to the attribute grammar re-
sulting from the previous extension LangExt , the specific rules for the attributes sval ,
ienv and serr have to be defined (in case they differ from the otherwise generated
copy rules).

129

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

LangDef.agi

DATA Root | Root decls :Decls main : Expr

DATA Decls | Decl name : String val : Expr rest :Decls

| NoDecl

DATA Expr | Add al : Expr ar : Expr
| Mul ml : Expr mr : Expr
| Cst value : Int
| Var var : String

ATTR Root Expr SYN sval : Int
ATTR Decls Expr INH ienv : [(String , Int)]
ATTR Decls SYN senv : [(String , Int)]

LangDef.ag

SEM Root | Root lhs.sval = main.sval

SEM Expr | Add lhs.sval = al .sval + ar .sval

| Mul lhs.sval = ml .sval ∗mr .sval

| Cst lhs.sval = value

| Var lhs.sval = case lookup var lhs.ienv of

Just v → v

Nothing → 0

SEM Root | Root decls.ienv = []
main.ienv = decls.senv

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

SEM Decls | Decl lhs.senv = rest .senv

| NoDecl lhs.senv = lhs.ienv

Figure 6.5: Language semantics

130

6.2 Attribute Grammars

LangExt.agi

EXTENDS "LangDef"

ATTR Root Decls Expr SYN serr USE {++} { []} : [String]

LangExt.ag

SEM Decls | Decl lhs.serr = (case lookup name lhs.ienv of

Just → [name ++ " duplicated"]
Nothing → []) ++ val .serr ++ rest .serr

SEM Expr | Var lhs.serr = case lookup var lhs.ienv of

Just → []
Nothing → [var ++ " undefined"]

Figure 6.6: Language Extension: Errors

LangExt2.agi

EXTENDS "LangExt"

DATA Expr | Neg expr : Expr

LangExt2.ag

SEM Expr | Neg lhs.sval = −expr .sval

SEM Expr | Neg expr .ienv = lhs.ienv

SEM Expr | Neg lhs.serr = expr .serr

Figure 6.7: Language Extension: Negation

LangExt3.agi

EXTENDS "LangExt2"

LangExt3.ag

SEM Decls | Decl val .ienv := rest .senv

Figure 6.8: Language Extension: Attribute ienv redefined to allow the use of variables
in declarations

131

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

An important feature of the AspectAG library is that, besides adding new attributes
or productions, existing definitions for attributes can be overwritten. If we want
to extend the example language in such a way that an expression in a declaration
may refer to sibling declarations, we can do so by redefining the definition for the
environment we pass to such right-hand side expressions. In Figure 6.8 we show
how this can be done using := instead of =, the UUAGC syntactic form of attribute
redefinitions.

6.3 From UUAG to AspectAG

The translation to AspectAG is quite straightforward. In the rest of this section we
will show, with some examples, its most important aspects.

Grammar

Since we use extensible records, labels have to be generated to refer to the children
of the productions of the grammar. For example, the child label generated out of the
.agi file of Figure 6.7 is ch expr Neg Expr . A label in an HList is represented by a
plain Haskell value of a singleton type.

Attribute Definition

A collection of synthesized or inherited attributes is an extensible record, too. Thus,
for each ATTR declaration in the .agi file, a label has to be generated to refer to
the defined attribute. The declaration ATTR Decls SYN senv : { [(String , Int)]}, in
Figure 6.6, generates the label att senv .
The AspectAG function syndefM adds the definition of a synthesized attribute. It

constructs a rule Rule sc ip ic sp ic sp′, where sp′ is the record sp extended with a
field representing the new attribute. We use syndefM to generate the code for the
rules for the synthesized attributes, like:

SEM Decls | Decl lhs.senv = rest .senv

Resulting in the code:

senv Decls Decl = syndefM att senv $ do rest ← at ch rest Decls Decl
return $ rest # att senv

where at ch rest Decls Decl locates the rest child in the record sc of the environment
with type Fam sc ip using the label ch rest Decls Decl . Having this record bound
to rest the HList lookup operator # is used to locate the value of the attribute
att senv . The uses of such calls to at will inform the type system that the input
family Fam sc ip has to have a child ch rest Decls Decl with a defined attribute
att senv . Such constraints turn up as class constraints, to be checked by the Haskell
type checker.

132

6.3 From UUAG to AspectAG

The same procedure is followed to generate code for the inherited attributes, but
using the function inhdefM . For the declarations:

SEM Decls | Decl val .ienv = []
rest .ienv = (name, val .sval) : lhs.ienv

The following code is generated:

ienv Decls Decl = inhdefM att ienv nts ienv $
do

lhs ← at lhs
name ← at ch name Decls Decl
val ← at ch val Decls Decl
return {{ ch val Decls Decl .=. []

, ch rest Decls Decl .=. (name, val # att sval) : lhs# att ienv }}

The parameter nts ienv is a list of labels representing the non-terminals for which the
attribute ienv is defined (generated out of the ATTR declarations). The function
lhs returns the record ip (inherited attributes of the parent) from the input family
Fam sc ip. The defined computations for each child are returned in an extensible
record,which is iterated by a “type-level function” (implemented by a type class called
Defs) to extend the corresponding records in ic.

Generating the Semantic Functions

Thus, when generating AspectAG code, all the rules for the attributes of each pro-
duction are composed. In the example of Figure 6.5 the following composition is
generated for the production Decl :

atts Decls Decl = ienv Decls Decl ‘ext ‘ senv Decls Decl

The semantic functions of the non-terminal Decl is:

sem Decls Decl = knit atts Decls Decl
sem Decls NoDecl = knit atts Decls NoDecl

This code is generated out of the DATA declarations.

Extensions

The keyword EXTENDS indicates that an attribute grammar declaration extends
an existing attribute grammar. In an extension we can both add new attributes or
productions or redefine the computation of existing attributes.

When the code of an extension is generated, the names of context-free grammar
and the previously defined attributes have to be imported from the code generated
for the system to extend. We take this information from the (chain of) .agi file(s) of
the extended module.

133

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

We also generate a qualified import of the whole module, so we can refer to already
defined rules without name clashes:

import qualified LangDef

So, when introducing new attributes, we can perform the composition for each pro-
duction where the attribute is defined, and knit it again. For example:

atts Decls Decl = serr Decls Decl ‘ext ‘ LangDef .atts Decls Decl

sem Decls Decl = knit atts Decls Decl

When an attribute is overwritten using :=, a similar approach as when defining
new attributes is taken. Instead of using syndefM and inhdefM to define attributes,
the functions synmodM and inhmodM are used, which are almost identical to their
respective def functions, with the difference that instead of extending a record with
a new attribute, the value of an existing attribute is updated in the record.

6.4 Optimizations

The flexibility provided by the use of list-like structures to represent collections of
attributes (and children) of productions has its consequences in terms of performance.
In this section we propose a couple of optimizations, based on changing some of the
extensible records we use by normal records (Cartesian products). Both optimizations
can be performed automatically by the transformation.

6.4.1 Grouping Attributes

If some attributes are fixed and will not be redefined, the use of extensible records
is not necessary: in those cases we can group such a collection of synthesized at-
tributes into a single attribute att syn and such a collection of inherited attributes
into an attribute att inh. The type of a grouping attribute is a (non extensible) record
containing the grouped attributes.
Attributes defined in extensions cannot be grouped with the original attributes.

Thus, in our running example applying grouping does not make much sense, since
every group will have only one attribute. But if the specifications in Figures 6.5
and 6.6 were joined in the generation process we will have the attributes att inh and
att syn for Decls with types:

data Inh Decls = Inh Decls {ienv Inh Decls :: [(String , Int)]}
data Syn Decls = Syn Decls {senv Syn Decls :: [(String , Int)]

, serr Syn Decls :: [String]}

To define and access the grouped attributes, one more level of indirection is added.
Thus, the definition of att syn for the production Decl is:

134

6.4 Optimizations

syn Decls Decl = syndefM att syn $
do rest ← at ch rest Decls Decl

return Syn Decls {senv Syn Decls = (senv Syn Decls (rest # att syn))}

By default, all the attributes of every production are grouped, but grouped at-
tributes cannot be redefined without having to make changes to the entire group. The
flag --nogroup lets us specify the list of attributes we do not want to be included in
the grouping. For example, the following call to uuagc generates the AspectAG code
for the example with all the attributes grouped except ienv , which will be redefined
in the extensions.

uuagc -a --aspectag --nogroup=ienv LangDef.ag

6.4.2 Static Productions

If we do not need the possibility to change the definition of already existing pro-
ductions (note that our flexible approach did not forbid this thus far), a less flexible
approach to represent productions can also be taken. The flag --static activates
an optimization where the collection of child attributions are represented as records
instead of extensible records. Thus, instead of defining the labels for the children of
the productions, we define for each production a record with the children as fields.
For example:

data Ch Decls Decl name val rest
= Ch Decls Decl {ch name :: name, ch val :: val , ch rest :: rest }

In this case, the generic knit function, which uses the type class mechanism to iterate
over an HList, cannot be used anymore and thus specific knit functions are generated
for such productions:

knit Decls Decl rule fc ip = sp
where ec = Ch Decls Decl {{ }} {{ }} {{ }}

(Fam ic sp) = rule (Fam sc ip) (Fam ec {{ }})
sc = Ch Decls Decl ((ch name fc) (ch name ic))

((ch val fc) (ch val ic))
((ch rest fc) (ch rest ic))

Also the semantic functions are a bit different:

sem Decls Decl sn sv sr
= knit Decls Decl atts Decls Decl (Ch Decls Decl sn sv sr)

We cannot use the generic type-level function Defs to define inherited attributes.
We must define a specific instance of Defs for each production:

instance (HExtend (LVPair att v2) ic2 ic′2
,HExtend (LVPair att v3) ic3 ic′3)

135

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

⇒ Defs att nts (Ch Decls Decl v1 v2 v3)
(Ch Decls Decl (Record HNil) ic2 ic3)
(Ch Decls Decl (Record HNil) ic′2 ic′3) where

defs att nts vals ic = Ch Decls Decl (ch name ic)
(att .=. ch val vals .∗. ch val ic)
(att .=. ch rest vals .∗. ch rest ic)

and adapt the rule definitions to the use of records. For example:

ienv Decls Decl = inhdefM att ienv nts ienv $
do lhs ← at lhs

name ← at ch name Decls Decl
val ← at ch val Decls Decl
return Ch Decls Decl

{ch val Decls Decl = []
, ch rest Decls Decl = (name, val # att sval) : lhs# att ienv }

6.4.3 Benchmarks

atts.

t(s)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 6.9: Grouping Syn. Attrs.

atts.

t(s)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 6.10: Grouping Inh. Attrs.

We benchmarked our optimizations against AspectAG and UUAGC, in order to an-
alyze their performance impact.1 Figures 6.9 and 6.10 show the effect of grouping
attributes in a grammar represented by a binary tree. Note that these represent
worst-case scenarios, since we hardly perform any work in the rules themselves. The
y-axis represents the execution time (in seconds) and the x-axis the number of un-
grouped attributes (the rest are grouped) in a full tree with 15 levels. In Figure 6.9 we
show the results for a system with twenty synthesized attributes. Figure 6.10 shows
the results for twenty inherited attributes and one synthesized attribute to collect
them. In both cases the effect of grouping attributes becomes clear; for a relative
large number of attributes the grouping optimization achieves good speedup, since

1Information available at: http://www.cs.uu.nl/wiki/bin/view/Center/Benchmarks

136

6.4 Optimizations

whenever an attribute is needed it is located in constant time instead of linear time
in the number of attributes.

arity

t(s)

AspectAG

static

2 4 6 8 10 12 14
0

10
20
30
40
50
60
70
80
90

Figure 6.11: Static: Syn.

arity

t(s)

AspectAG

static

2 4 6 8 10 12
0

10

20

30

40

50

60

70

Figure 6.12: Static: Syn. and Inh.

In figures 6.11 and 6.12 we show the performance impact of the “static produc-
tions” optimization, as the number of children of the nodes increases. We tested with
complete trees with depth 5; the x-axis represents the arity of the tree. Figure 6.11
shows the results for one synthesized attribute, while the results of Figure 6.12 include
one synthesized and one inherited attribute. Thus, the optimization helps, and has
a big impact on productions with many children, because we are avoiding iterations
over lists of children when evaluating the semantics for each node. In figures 6.13 and

atts.

t(s) AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 6.13: Static vs Grouped: Syn.

atts.

t(s)

AspectAG

static

grouped

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Figure 6.14: Static vs Grouped: Inh.

6.14 we compared the performance of both optimizations and AspectAG in a simple
grammar represented by a binary tree. In this case the x-axis represents the number
of (synthesized or inherited) attributes. As the number of attributes increases, the
grouping optimization has a bigger performance impact. If we apply both optimiza-
tions together (figures 6.15 and 6.16) we obtain better times, although we are still
quite far from the performance of UUAGC.

137

6 UUAG Meets AspectAG: How to make Attribute Grammars First-Class

atts.

t(s)

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 6.15: Static + Grouped: Syn.

atts.

t(s)

grouped

static+grouped

UUAGC

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Figure 6.16: Static + Grouped: Inh.

6.5 Conclusions and Future Work

We have shown an approach to write AspectAG code, i.e. a strongly-typed flexible
attribute system, in a less verbose Domain-Specific Language style.
We provide a framework for the generation of flexible compilers by taking a hybrid

approach to their architecture. The core part is composed by a single monolithic
part, which is evaluated efficiently, and a set of redefinable aspects. Extensions (and
redefinitions) can be plugged into this core, albeit at a certain cost. The syntax
macros-like mechanism we proposed in Chapter 5 follows this idea. The semantics
of newly introduced syntax is defined in terms of already existing semantics. Some
existing aspects, e.g. pretty-printing, may be redefined to provide accurate feedback.
Summarizing, it can be seen that flexibility still has its cost, but the application of

the optimizations is a good option as the number of attributes and/or children of the
productions increases. One should keep in mind that the actual computations done in
our examples in the rule functions is trivial. Hence in a real compiler, where most of
the work is actually done in the rules, the overhead coming with the extra flexibility
will usually be far less of a burden. The numbers we have presented relate to a worst
case situation.
Possible future work is to add a new optimization, consisting in the generation of

a less type-safe code than AspectAG. This involves the addition of a Haskell type-
checking phase to UUAGC. Furthermore, a drawback of that approach is that it ties
us to the use of UUAGC, not allowing the introduction of extensions written directly in
the target language (e.g. AspectAG).

138

7 Case Study - Oberon0

As a case study of the techinques proposed in this thesis, we participated in the LDTA
2011 Tool Challenge1. The challenge was to implement a compiler for Oberon0, a
small (Pascal-like) imperative language designed by Nicolas Wirth as an example
language for his book “Compiler Construction” [76].

The goal of the challenge is to contribute to “a better understanding, among tool
developers and tool users, of relative strengths and weaknesses of different language
processing tools, techniques, and formalisms”. The challenge is divided into a set of
incremental sub-problems, that can be seen as points in a two dimensional space. The
first dimension (Table 7.1) defines a series of language levels, each building on the
previous one by adding some new features. The second dimension (Table 7.2) consists

L1 Oberon0 without procedures and with only primitive types.
L2 Add a Pascal-style for-loop and a Pascal-style case statement.
L3 Add Oberon0 Procedures.
L4 Add Oberon0 Arrays and Records.

Table 7.1: Language Levels.

of several traditional language processing tasks, such as parsing, pretty-printing, static
analysis, optimizations and code generation.

T1 Parsing and Pretty-Printing
T2 Name Binding
T3 Type Checking
T4 Desugaring
T5 C Code Generation

Table 7.2: Processing Tasks.

This incremental design has two main reasons. First, participants were able to
provide partial solutions, choosing the most suitable tasks to show the characteristics
and features of their tool or technique. The possible software artifacts generated to
solve any of the 25 proposed problems range between a L1 T1, a parser and pretty-
printer of a simple subset of Oberon0, and L4 T1-5, the full proposed system. In order
to be able to compare participant’s artifacts, a list of suggested software artifacts to
be completed (Table 7.3) is provided. The second reason of the design is to show how

1http://ldta.info/tool.html

139

7 Case Study - Oberon0

Artifact Level Tasks Description
A1 L2 T1-2 Core language with pretty-printing and

name binding
A2a L3 T1-2 A1 plus pretty-printing and name bind-

ing for procedures
A2b L2 T1-3 A1 plus type checking
A3 L3 T1-3 A2a and A2b
A4 L4 T1-5 Full language and all tasks

Table 7.3: Artifacts.

the different techniques for modularity provided by the participants can be used in
the implementation of a growing system.
We have provided an implemention of all the proposed problems, and made it

available in Hackage as the oberon02 package.

7.1 Architecture

Figure 7.1: Architecture of the Oberon0 Implementation

The architecture of our implementation of Oberon0 is given in Figure 7.1; boxes
represent Haskell modules and arrows are import relations3, where every module can
be compiled separately and results in a set of normal Haskell value definitions. The
design is incremental: rows corresponds to syntactic extensions (language levels) and

2http://hackage.haskell.org/package/oberon0.
3For example, module L2 .SemT1 imports from (i.e. depends on) modules L2 .Decl and L1 .SemT1 .

140

7.1 Architecture

columns corresponds to semantic extensions (tasks); each artifact in the challenge cor-
responds to a dashed box surrounding the modules involved in it. For each language
level L1 to L4 :

• Gram modules contain syntax definition in the form of first-class grammar frag-
ments, as introduced in Chapter 3

• Decl modules contain the definition of the type of the semantics’ record, and thus
the interface to the corresponding part of the abstract syntax of the language
at hand

• Sem modules implement the semantics of each task in the form of rules which
together construct an attribute grammar

Notice that we do not include modules to implement Task 4. In Subsection 7.3.3 we
will explain how by using attribute grammar macros when defining L2 we get this
task almost for free.

To build a compiler, e.g. Artifact 4 (Figure 7.2), we import the syntax fragments
(l1 , l2 , l3 and l4 from L4 .Gram) and their respective semantics (l1t4 , l2t4 , l3t4 and
l4t4 from L4 .Sem), combine them and build the compiler in the form of a parser
which calls semantic functions. In Figure 7.3 we show how the parser of Artifact 4

Figure 7.2: Architecture of Artifact 4

gl4t5 = closeGram $ emptyGram +>>

l1 l1t5 +>>

l2 l2t5 +>>

l3 l3t5 +>>

l4 l4t5

pA4 = (parse . generate kws) gl4t5

Figure 7.3: A Parser for Artifact 4

is generated. The left-associative operator (+>>) composes an initial grammar with
an extension; we start with an empty grammar (emptyGram) and extend it with the
different language fragments. The function closeGram closes the constructed gram-
mar and applies the left-corner transform in order to remove potential left-recursion;
as a consequence straightforward combinator-based top-down parsing techniques can
be used in building the parser. Then generate kws generates a parser integrated with
the semantics for the language starting from the first non-terminal, where the list
kws is a list of keywords extracted from the grammar description. This takes care of
the problem caused by the fact that some identifiers in earlier challenges may become
keywords in later challenges. The function parse performs the parse of the input
program and computes the meaning of that program. In the actual implementation
of Oberon0 we generate scanner-less uu-parsinglib parsers.

141

7 Case Study - Oberon0

7.2 Syntax

Using our combinator library murder we describe the concrete syntax of each language
fragment as a Haskell value. A fragment of the code constructing the CFG of the initial
language L1 (module L1 .Gram) is given in Figure 7.4; the complete definition of the
concrete grammar of the four languages can be found in Appendix A.1. The parameter

l1 sf = proc → do

rec

modul ← addNT ≺ ...

...

ss ← addNT ≺ T (pSeqStmt sf)
stmt
(pFoldr (pSeqStmt sf , pEmptyStmt sf)

(T ";" stmt U)) U

stmt ← addNT ≺ T (pAssigStmt sf) ident ":=" exp U
<|> T (pIfStmt sf)

"IF" cond
(pFoldr (pCondStmtL Cons sf , pCondStmtL Nil sf)

(T "ELSIF" cond U))
mbelse
"END" U

<|> T (pWhileStmt sf) "WHILE" exp "DO" ss "END" U
<|> T (pEmptyStmt sf) U

cond ← addNT ≺ T (pCondStmt sf) exp "THEN" ss U

mbelse ← addNT ≺ pMaybe (pMaybeElseStmt Nothing sf
, pMaybeElseStmt Just sf)
(T "ELSE" ss U)

exp ← addNT ≺ ...

...

exportNTs ≺ exportList modul $ export cs Expression exp
. export cs StmtSeq ss
. export cs Statement stmt
. export cs MaybeElseStmt mbelse
. ...

Figure 7.4: Fragment of the concrete syntax specification of L1

sf contains the “semantics of the language”; its type is defined in the module L1 .Decl
and is derived from the abstract syntax of which we show a fragment in Figure 7.5.
The full abstract syntax of the four languages can be found in Appendix A.2. We use

142

7.2 Syntax

data Statement = AssigStmt {id AssigStmt :: String
, exp AssigStmt :: Expression }

| IfStmt {if IfStmt :: CondStmt
, elsif IfStmt :: CondStmtL
, else IfStmt ::MaybeElseStmt }

| WhileStmt {exp WhileStmt :: Expression
, ss WhileStmt :: Statement }

| SeqStmt {s1 SeqStmt :: Statement
, s2 SeqStmt :: Statement }

| EmptyStmt

type CondStmtL = [CondStmt]

data CondStmt = CondStmt {exp CondStmt :: Expression
, ss CondStmt :: Statement }

type MaybeElseStmt = Maybe Statement

data Expression = ...

Figure 7.5: AS of the statements of L1

the Template Haskell function deriveLang4 to derive the type of the record, given the
list of data types together composing the abstract syntax tree. For example, for the
example fragment we call:

$ (deriveLang "L1" [“Module, “Statement , “Expression
, “CondStmtL, “CondStmt , “MaybeElseStmt])

For each production of the abstract syntax tree a field is produced, with name the
name of the production prefixed by a p and as type the type of the semantic func-
tion, which is defined in terms of the semantics associated with the children of the
production. For example, the field generated for the production AssigStmt is:

pAssigStmt :: sf id AssigStmt → sf exp AssigStmt → sf AssigStmt

For the cases of List or Maybe type aliases, fields are produced using the name of
the non-terminal (i.e. the type) to disambiguate. In our example, for CondStmtL we
generate the fields pCondStmtL Cons and pCondStmtL Nil , and for MaybeElseStmt
we generate pMaybeElseStmt Just and pMaybeElseStmt Nothing .

The code of Figure 7.4 defines the context free grammar of the language fragment,
using the record sf to add semantics to it. We use the murder combinators pFoldr
and pMaybe to model repetition and option, respectively. These combinators are
analogous to the respective foldr and maybe functions.

4Provided by the package AspectAG.

143

7 Case Study - Oberon0

Grammars defined in this way are extensible, since further transformations may
be applied to the grammar under construction in other modules. Each grammar
exports (with exportNTs) its starting point (e.g. modul) and a table of exported
non-terminals, each consisting of a label (by convention of the form cs ...) and a
reference to the current definition of that non-terminal, again a plain Haskell value
which can be used and modified in future extensions. Figure 7.6 contains a fragment
of the definition of L2 (from module L2 .Gram), which extends the L1 grammar with
a !"-loop statement. We start by retrieving references to all non-terminals which

l2 sf = proc imported → do

let ss = getNT cs StmtSeq imported
let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
...

rec

addProds ≺ (stmt , T (pForStmt sf) "FOR" ident ":=" exp dir exp mbexp
"DO" ss "END" U)

dir ← addNT ≺ T (pTo sf) "TO" U <|> T (pDownto sf) "DOWNTO" U
mbexp ← addNT ≺ pMaybe (pCst1Exp sf , id) (T "BY" exp U)

...

exportNTs ≺ imported

Figure 7.6: Fragment of the grammar extension L2

are to be extended or used (using getNT) from the imported non-terminals. We
add new productions to existing non-terminals with addProds; this does not lead to
references to new non-terminals. New non-terminals can still be introduced as well
using addNT . The Haskell type-system ensures that the imported list indeed contains
a table with entries cs StmtSeq , cs Statement , cs Expression and cs Ident , and that
the types of these non-terminals coincide with their use in the semantic functions of
the extensions.

The definition in Figure 7.6 may look a bit verbose, caused by the interface having
been made explicit. Using some Template Haskell this can easily be overcome.

Figure 7.7 shows the abstract syntax tree fragment corresponding to the !"-loop
extension. The prefix EXT indicates that this definition is extending a given non-
terminal.

144

7.3 Aspect Oriented Semantics

data EXT Statement
= ForStmt {id ForStmt :: String , start ForStmt :: Expression

, dir ForStmt :: ForDir , stop ForStmt :: Expression
, step ForStmt :: Expression, ss ForStmt :: Statement }

| ...

data ForDir = To | Downto

data EXT Expression = Cst1Exp

...

Figure 7.7: AST of the !"-loop of L2

7.3 Aspect Oriented Semantics

The semantics of Oberon0 were implemented using the AspectAG embedding of at-
tribute grammars in Haskell. In order to be able to redefine attributes or to add new
attributes later, it encodes the lists of inherited and synthesized attributes of a non-
terminal as an HList-encoded [35] value; each attribute is associated with a unique
type which is used as an index in such a “list”. The lookup process is performed by
the Haskell class mechanism. In this way the closure test of the attribute grammar
(each attribute has a single definition) is implicitly realised by the Haskell compiler
when trying to build the right instances of the classes. Thus, attribute grammar
fragments can be individually type-checked, compiled, distributed and composed to
construct a compiler.

7.3.1 Name analysis

Error messages produced by the name analysis are collected in a synthesized attribute
called serr .The default behaviour of this attribute for most of the productions is to
combine (append) the errors produced by the children of the production. This be-
haviour is captured by the function use from the AspectAG library, which takes as
arguments the label of the attribute to be defined (serr), the Haskell list of non-
terminals (labels) for which the attribute is defined (serrNTs), an operator for com-
bining the attribute values (++), and a unit value to be used when none of the children
has such an attribute ([] :: String).

serrRule = use serr serrNTs (++) ([] :: [String])

When a new name is defined we check for multiple declarations and at name uses
we check for incorrect uses or uses of undefined identifiers, producing error messages
when appropriate. The code below shows the definition of serr for the use of an

145

7 Case Study - Oberon0

identifier represented by a production IdExp, which has a child named ch id IdExp
of type (DTerm String)5.

serrIdExp = syn serr $ do

lhs← at lhs
nm ← at ch id IdExp
return $ checkName nm (lhs# ienv) ["Var", "Cst"] "an expression"

With the (plain Haskell) function checkName we lookup the name (nm) in the symbol
table (inherited attribute ienv coming from the left-hand side) and, if it is defined,
we verify that the name represents either a variable ("Var") or a constant ("Cst")
and generate a proper error message if not.
The symbol table is implemented by the pair of attributes senv and ienv . The

synthesized attribute senv collects the information from the name declarations and
the inherited attribute ienv distributes this information through the tree.
In order to perform the name analysis, the type of the symbol table could have

been Map String NameDef , which is a map from names to values of type NameDef
representing information about the bound name. However, since we want to use the
same symbol table for future extensions, we keep the type “non-closed” by using a
list-like structure:

data SymbolInfo b a = SI b a
type NMap a = Map String (SymbolInfo NameDef a)

For the current task the symbol table includes values of type NMap a, parametric
in a, the “the rest of the information we might want to store for this symbol”. In
the example below, for declarations of constants, the table consists of a map from
the introduced name to a SymbolInfo which includes the information needed by the
name analysis (constructed using cstDef) and some other (yet unknown) information,
which is represented by the argument the rule receives:

senvCstDecl r = syn senv $ do

nm ← at ch id CstDecl
return $ Map.singleton (value nm) (SI (cstDef $ pos nm) r)

Similarly to how we used use for the default cases of synthesized attributes, we capture
the behaviour of distributing an inherited attribute to the children of a production
with the function copy :

ienvRule = copy ienv ienvNTs

The various aspects introduced by the attributes are combined using the function
ext :

5DTerm a is the type used by murder to represent attributed terminals (i.e. identifiers, values); it
encodes the value (value) and position in the source code (pos) of the terminal.

146

7.3 Aspect Oriented Semantics

aspCstDecl r = senvCstDecl r ‘ext ‘ ienvCstDecl r ‘ext ‘ serrCstDecl ‘ext ‘
T1 .aspCstDecl

In this case, for the production CstDecl , we extend T1 .aspCstDecl , which is imported
from L1 .SemT1 and includes the pretty-printing attribute, with the attributes im-
plementing the name analysis task (serr , ienv and senv).

Once the attributes definitions are composed, the semantic functions for the produc-
tions may be computed using the function knit . For example, the semantic function
of the production CstDecl in the case of L1 .SemT2 is knit (aspCstDecl ()). The use
of () (unit) here is just to “close the symbol table”, since no further information needs
to be recorded for Task 2.

7.3.2 Type checking

Type error messages are collected in the synthesized attribute sterr . For type check-
ing we extend the symbol table with the type information (TInfo) of the declared
names. This is done by updating the value of the attribute senv with the function
synupdM , which is similar to syn but redefines it making use of its current definition.
In the following example we update the symbol table information for the production
VarDecl , where sty is an attribute defined for expressions and types, computing their
type information:

senvVarDecl ′ r = synupdM senv $ do

typ ← at ch typ VarDecl
return $ Map.map (λ(SI nd)→ (SI nd $ SI (typ # sty) r))

The previous definition of the type information is just ignored and only used to indi-
cate the type of the symbol table. Thus, thanks to lazy evaluation, when extending the
aspects of Task 2 we only need to pass an undefined value of type SymbolInfo TInfo a,
where a is the type of even further information to be stored in the symbol table (for
future extensions):

undTInfo :: a → SymbolInfo TInfo a
undTInfo = const ⊥

aspVarDecl r = (senvVarDecl ′ r) ‘ext ‘ sterrRule ‘ext ‘
(T2 .aspVarDecl $ undTInfo r)

To represent type information we have to deal again with the lack of open data types
in Haskell, since we want to keep some specific information for each of the types of the
extensible type system we are implementing, and we have decided to resort to the use
of Haskell’s Dynamic type. A TInfo, with the information of a certain type, consists
of: the representation trep of the given type, encapsulated as a Dynamic value, a
String with its pretty-printing (tshow), and a function teq that, given another type
information indicates if the actual type is compatible with the given one.

147

7 Case Study - Oberon0

data TInfo = TInfo {trep ::Dynamic
, tshow :: String
, teq :: (TInfo → Bool)}

The main task we perform during type checking is to verify whether the actual type
of an expression is compatible with the type expected by its context. For example if
the condition of an ! statement has type BOOLEAN.

check pos expected got
= if (teq expected got) ∨ (teq got unkTy) ∨ (teq expected unkTy)

then []
else [show pos ++ ": Type error. Expected "++ tshow expected ++

", but got "++ tshow got]

If either the expected or the obtained type is unknown (unkTy) we do not report a
type error, because unknown types are generated by errors that have been already
detected by the name analysis process.
A very simple case of type information is the elementary type BOOLEAN, where we do

not provide any extra information than the type itself. Thus, the type representation
is implemented with a singleton type BoolType.

data BoolType = BoolType

boolTy = let d = toDyn BoolType
bEq = (≡) (dynTypeRep d) . dynTypeRep . trep . baseType

in TInfo d "BOOLEAN" bEq

To construct the corresponding TInfo we convert a BoolType value into a Dynamic
with the function toDyn. A type is compatible with BOOLEAN if its base type6 is also
BOOLEAN, i.e. is compatible if both types are represented with BoolType values. With
the function dynTypeRep we extract a concrete representation of the type of the value
inside a Dynamic that provides support for equality.
There exist some other cases were a more involved type representation is needed.

For example, in the case of "##"$ we include the type information of its elements and
the length of the array, if it can be statically computed.

data ArrType = ArrType (Maybe Int) TInfo

Then, by using the type-safe cast function fromDynamic we can get access to this
information provided the dynamic typed value represents an array. Thus, when trying
to index a variable, we can for example check if the index is out of range; in case the
cast does not succeed we indicate that the variable we are trying to access is not an
array:

checkSelArray pos ty ind
= case (fromDynamic . trep . baseType) ty of

6In case of a user type, the type it denotes.

148

7.3 Aspect Oriented Semantics

Just (ArrType l)→ checkIndex pos ind l
→ [show pos ++ ": Accessed variable is not an array"]

We use the same technique to keep information about the fields of a !"# $ and the
parameters of a % #"!$& !.

7.3.3 Source-to-source transformation

In Chapter 5 we extended AspectAG with an agMacro combinator that enables us
to define the attribute computations of a new production in terms of the attribute
computations of existing productions. We defined the semantics of the extensions of
the language level L2 using this macro mechanism. The '# -loop is implemented as
a ()*+!-loop and the ",-! statement is defined in terms of an *'-!+-*'-!+-! cascade.

Figure 7.8 contains the macro definition for the '# -loop, which is parametrized by
the attributes (semantics) of:

• SeqStmt : sequence of statements

• AssigStmt : assign statement

• IntCmpExp: integer comparison expression

• IdExp: identifier expression

• IntBOpExp: integer binary operation expression

We use the combinator withChildAtt to obtain the value of the self attribute of the
child ch dir ForStmt , with the direction of the iteration. In case the value is To
the loop counter is incremented (Plus) on each step while is less or equal (LECmp)
the stop value. In other case (Downto) we use Minus to decrement the counter and
GECmp (greater or equal) to compare it it with the stop value. In Figure 7.9 we
show the structure of the macro (i.e. the '# -loop in terms of the original AST) for
the To case. That can be seen as a code translation from:

'# id := start .# stop BY step $#

ss

!/$

to:

id := start ;
()*+! id <= stop $#

ss ;
id := id + step

!/$

In the cases were specialized behaviour is needed, like for example pretty-printing,
it is still possible to redefine the attributes involved on these aspects. As such, our
mechanism is much more expressive than conventional macro mechanisms, which only
perform a structure transformation. Using the library we get Task 4 almost for free.

149

7 Case Study - Oberon0

macroForStmt aspSeqStmt aspAssigStmt aspWhileStmt
aspIntCmpExp aspIdExp aspIntBOpExp

= withChildAtt ch dir ForStmt self $ λdir →
let (op stop, op step) = case dir of

To → (LECmp,Plus)
Downto → (GECmp,Minus)

initStmt = (aspAssigStmt , ch id AssigStmt −֒→ ch id ForStmt
<.> ch exp AssigStmt −֒→ ch start ForStmt)

whileStmt = (aspWhileStmt , ch exp WhileStmt =⇒ condWhile
<.> ch ss WhileStmt =⇒ bodyWhile)

condWhile = (aspIntCmpExp , ch op IntCmpExp − op stop
<.> ch e1 IntCmpExp =⇒ idExp
<.> ch e2 IntCmpExp −֒→ ch stop ForStmt)

idExp = (aspIdExp , ch id IdExp −֒→ ch id ForStmt)

bodyWhile = (aspSeqStmt , ch s1 SeqStmt −֒→ ch ss ForStmt
<.> ch s2 SeqStmt =⇒ stepWhile)

stepWhile = (aspAssigStmt , ch id AssigStmt −֒→ ch id ForStmt
<.> ch exp AssigStmt =⇒ expStep)

expStep = (aspIntBOpExp , ch op IntBOpExp − op step
<.> ch e1 IntBOpExp =⇒ idExp
<.> ch e2 IntBOpExp −֒→ ch step ForStmt)

in withoutChild ch dir ForStmt
(agMacro (aspSeqStmt , ch s1 SeqStmt =⇒ initStmt

<.> ch s2 SeqStmt =⇒ whileStmt))

Figure 7.8: Macro definition of the !"-loop

Our approach is not very suitable for some other kind of source-to-source transfor-
mations like optimizations, because we do not represent the AST with values (if we
want to keep the AST extensible) and we (still) do not have higher-order attributes.
Although a possible approach is to generate an AST of a fixed core language and
perform the optimizations in this language.

7.3.4 Code generation

We generate the C abstract syntax representation provided by the language-c7 pack-
age. This package also includes a pretty-printing function for the abstract syntax.

7http://hackage.haskell.org/package/language-c

150

7.3 Aspect Oriented Semantics

Figure 7.9: The !"-loop in terms of the original AST

Since ANSI C does not include nested functions we have to lift all the procedures,
types and constants definitions to top-level when generating the C code required
by the challenge (note that the lifting as specified is trivial, since the exercise does
not require bindings to be lifted properly). In order to avoid name clashes with C
keywords or due to the lifting process, we rename every identifier to make it unique.
New names are composed by: a character ’_’ (assuring no clashes with C keywords),
the path (module and procedure names) to the scope were the name is defined and
the actual name. Thus, if we have the following Oberon0 program:

#!$%&' A ;
()" BC : INTEGER ;
*"!+'$%"' B ;
*"!+'$%"' C ;
',$ C

',$ B

',$ A .

The names are mapped: the variable name BC to A BC , the procedure name B
to A B and the procedure name C to A B C . Since underscore is not allowed in
Oberon0 identifiers, this renaming does not introduce new clashes, like the one we
could have had with C if the variable BC was called B C .

To implement the renaming we extend the symbol table with the name mapping.

151

7 Case Study - Oberon0

Lang. / Task Common T1 T2 T3 T5 Total

Common - 42 14 - 23 79
L1 128 156 147 220 228 879
L2 187 98 69 65 56 475
L3 94 75 75 134 145 523
L4 48 67 56 197 95 463

Total 457 438 361 616 547 2419

Table 7.4: Code sizes (in lines of code) of the components of the compiler

7.4 Artifacts

In Table 7.4 we show the complexity (in lines of code without comments) of our
implementation of the compiler, disaggregated into the different tasks and language
levels. The Common column includes the Gram and Decl files, while the Common
row includes some code used by the Main modules.

The code includes 26 lines of Template Haskell, calling functions defined in the
libraries to avoid some boilerplate.

We have implemented all the combinations from L1-T1 to L4-T5, including the
artifacts proposed by the challenge.

7.5 Conclusions

The most important aspect of our approach is the possibility to construct a com-
piler out of a collection of pre-compiled, statically type-checked, possibly mutually
dependent language-definition fragments written in Haskell, but with a DSL taste.

When looking at all the aspects we have covered we can conclude that we managed
to find solutions for all aspects of the problems; we were rescued by the fact that
we could always fall back to plain Haskell, in case our libraries were not providing a
standard solution for the problem at hand. We have seen such solutions for dealing
with flexible symbol tables, generating new identifiers and types.

We mention again that our implementation is quite verbose, since each module
contains quite some code “describing its interface” in the collection of co-operating
modules. This is the price we have to pay for getting the extreme degree of flexibility
we are providing. By collapse the modules the amount of linking information shrinks
considerably. Other option to reduce verbosity is to use uuagc to generate AspectAG
code (Chapter 6).

Another cause of the verbosity is that we have not used the system itself or Tem-
plate Haskell to capture common patterns. We have chosen to reveal the underlying
mechanisms, the role of the type system, the full flexibility provided, and have left
open the possibility for further extensions.

The lack of open data types in Haskell makes it hard to implement AST trans-

152

7.5 Conclusions

formations in extensible languages using our technique. Semantic macros solve some
of these problems. A possible approach is to use our technique to implement the
front-end of a compiler, translating to a core fixed language, and then use other more
traditional approaches (like uuagc) to implement the back-end. Another option is to
use data types à la carte [66] to simulate open data types (and functions) in Haskell.

153

8 Conclusions and Future Work

With the combination of the techniques we have developed over the years our dream is
close to coming true: the possibility to construct a complete compiler out of a collec-
tion of pre-compiled, statically type-checked, possibly mutually dependent language-
definition fragments.

Summarizing the conclusions of the previous chapters, we tackled the problem of
how to construct a composable compiler both at syntactic and semantic level.

8.1 First Class Syntax

We started by using typed grammars and typed transformations to implement an al-
ternative version of the read functions; i.e. parsers for Haskell data types. By dealing
with grammars as Haskell values we were able to compose, analyze and transform
them (to apply for example the left-corner transform) to construct efficient parsers.
With the use of typed transformations we mantain a type correct representation of
the grammars during the transformation processes. It is important to point out that
grammar fragments are combined on the fly; i.e. after they have been compiled. This
work is based on a previous joint work with Arthur Baars and Doaitse Swierstra
[6, 7]. Then we generalized our approach for expressing first-class context-free gram-
mars. We introduced a set of combinators to describe, extend and compose grammar
fragments using arrow notation, while expressing the productions in an applicative
style.

8.2 First Class Semantics

At the semantic level, we introduced an embedding of attribute grammars in Haskell.
We use strongly typed heterogenuous collections (HList) to model the collections of
attribute computations that decorate the nodes of the abstract syntax tree. With the
use of such structure, attribute grammar well-formedness conditions are expressed as
type-level predicates, being the Haskell type-system responsible for checking them.
We used type-level programming to describe some common attribute grammar pat-
terns, in order to reduce code size. Attribute computations can be defined and com-
posed; different attributes can be stored in different modules, compiled and then
composed. An importan characteristic of our embedding is that attribute computa-
tions can also be redefined, in order to specialize (or modify the behaviour of) parts
of already defined (and compiled) semantics.

We also introduced a macro-like mechanism to the attribute grammars embedding,
to be able to express semantics in terms of already existing semantics. To program a

155

8 Conclusions and Future Work

language extension using macros, the programmer does not need to know the imple-
mentation details of every attribute of the system; only the used attributes and the
structure of the abstract syntax have to be known.
Since the use of our approach may sometimes feel a bit verbose to an attribute gram-

mar programmer, we defined an extension to UUAGC (the Utrecht Attribute Grammars
Compiler) to transform its code to our embedding. This provides a way to write
a strongly-typed flexible attribute grammar system in a Domain-Specific Language
style. We also defined a couple of optimizations that, at the cost of some flexibility
(some attributes can not be redefined), result in a considerable speed improvement.

8.3 Their Composition

We have already seen in the Introduction how to compose a compiler using all our
techniques, describing the syntax of the language using first class grammars and im-
plementing the semantic functions as first class attribute grammars. We developed a
small case study, implementing a compiler for the small Pascal-like Oberon0 language,
to put this to work.
We think we were able to meet all aspects of the challenge in a satisfactory way.

The embedding nature of our approach was very helpful, since we were able to use
plain Haskell in the cases where our libraries did not provide a standard solution.

8.4 Future Work

With the combination of techniques described in this thesis we have established a firm
bridge-head. So what problems are left and how should we proceed from here?
In the first place the organization of the collection of attributes in a linear structure,

such as HList is costly. It is our experience however that a compiler spends most
of its time in the auxiliary code for type-checking and -inferencing and (global) opti-
mization. Thus for a modest language defined by a limited set of attributes we think
the approach is not prohibitively costly. For more complicated languages, which use
many attributes for their definition, there are several ways to alleviate this problem.
Most attributes are not defined in isolation since most aspects are described using a
collection of attributes. This is something we can exploit; do not place all attributes
in a single linear HList, but group them in an tree-like structure [42], thus lowering
the nesting depth of the top HList products.
Building the complete compiler from scratch as a collection of syntax extensions

and fine-grained aspect definitions is probably not always the optimal approach; large
parts of the compiler will be shared by all users, and there is no reason to use the
relatively expensive techniques enabling extensibility all over the compiler, as long
as the core compiler remains extensible. In this way we plan to define an extensible
Haskell compiler, where the already existing attribute-grammar based description of
UHC can be used to generate such an extensible core compiler. Therefore we provide
default definitions for all aspects, each of which can be redefined. An additional

156

8.4 Future Work

benefit of this approach is that we prevent unwanted or illogical combinations of
aspects. For example, we may inhibit circumvention of the basic type-checking part
of the compiler by simply not exporting that part of the interface.

A second point for improvement is the way attribute evaluation is scheduled. In
the description above we use a very straightforward approach which uses Haskell’s
lazy evaluation; a tree attribution is seen as a single large data flow graph, with
attributes in the nodes and semantic functions for defining the values of the nodes
[31, 36, 16, 15]. Unfortunately this elegant approach breaks down when large trees
are to be attributed; a lazy evaluation scheduling first builds a large dependency
graph in memory, and only starts doing some real work when this large graph has
been constructed. This resembles the application of function foldr to a very long list,
usually remedied by using foldl ′ instead. Unfortunately there is no similar simple
transformation which alleviates this problem for an arbitrary attribute grammar,
since this requires a global flow analysis of the attribute dependencies [34]. However,
the UUAGC already performs these analyses and can generate strict implementations
containing explicitly scheduled code, and thus an efficient version for the sketched
core compiler can be generated. Interfacing with this core compiler will be a bit
more cumbersome, since the dependencies between the attributes now have become
visible. Since these dependencies usually reflect the way the compiler programmer
thinks about his attribute grammars [46] we expect this extra burden to be bearable.

A third problem arises from the way we construct our parsers and combine our
aspects. With the current Haskell implementations every time we use the compiler the
complete parser and attribute grammar is reconstructed from scratch; the individual
grammar components are constructed first (gramIni and gramExt), then they are
merged into a single large grammar (the calls to +>>) and references are resolved
(closeGram); subsequently this large grammar is analysed and subjected to the Left-
Corner Transform, and finally out of this resulting grammar the actual parser is
constructed. A similar sequence of steps is done for the aspects. The final parser
and evaluator, however, do not depend on the input of the compiler; they are global
constant Haskell values; i.e. are in constant applicative form (CAF). Having such
values repeatedly being constructed is not a problem of our approach alone, but
occurs whenever some form of composition, analysis and transformation is taking
place. We expect this to occur more often once the expressiveness of our techniques
become more widely known and we think this problem is to be solved at the Haskell
level in a generic way, e.g., by making it possible to save evaluated global values just
before a program quits (using pragmas), and reading them back when the program is
run for the next time; in this way the evaluation of CAFs is memoized over different
runs of the program.

One might object that library code used in this paper goes far beyond the normal
use of the Haskell type system, and that our type-level programming is not for the
everyday Haskell programmer. We agree completely, although some of the complex-
ity is already hidden in the libraries. Moreover, we believe type-level programming
is a promising research area, which has broad interest in the (functional) program-
ming languages community. Another possible line of future work is to explore the

157

8 Conclusions and Future Work

implementation of our techniques in a dependently-typed language, such as Agda or
Coq.

158

A Oberon0 Syntax

A.1 Concrete Grammar

A.1.1 L1

$ (csLabels ["cs_Module", "cs_Declarations", "cs_Expression", "cs_Factor"
, "cs_StmtSeq", "cs_Statement", "cs_MaybeElseStmt"

, "cs_Ident", "cs_IdentL", "cs_Type"])

l1 sf = proc → do

rec

modul ← addNT ≺ T (pModule sf)
"MODULE" ident ";"
decls
(pMaybe (pEmptyStmt sf , id) (T "BEGIN" ss U))
"END" ident "." U

decls ← addNT ≺ T (pDeclarations sf)
(pMaybe (pDeclL Nil sf , id) (T "CONST" cstDeclL U))
(pMaybe (pDeclL Nil sf , id) (T "TYPE" typDeclL U))
(pMaybe (pDeclL Nil sf , id) (T "VAR" varDeclL U)) U

cstDeclL ← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pCstDecl sf) ident "=" exp ";" U)

typDeclL ← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pTypDecl sf) ident "=" typ ";" U)

varDeclL← addNT ≺ pFoldr (pDeclL Cons sf , pDeclL Nil sf)
(T (pVarDecl sf) idL ":" typ ";" U)

idL ← addNT ≺ T (pIdentL Cons sf) ident
(pFoldr (pIdentL Cons sf , pIdentL Nil sf)

(T "," ident U)) U

typ ← addNT ≺ T (pType sf) ident U

exp ← addNT ≺ T sexp U
<|> T (eExp sf) exp "=" sexp U
<|> T (neExp sf) exp "#" sexp U
<|> T (lExp sf) exp "<" sexp U
<|> T (leExp sf) exp "<=" sexp U
<|> T (gExp sf) exp ">" sexp U
<|> T (geExp sf) exp ">=" sexp U

159

A Oberon0 Syntax

sexp ← addNT ≺ T signed U
<|> T (plusExp sf) sexp "+" signed U
<|> T (minusExp sf) sexp "-" signed U
<|> T (orExp sf) sexp "OR" signed U

signed ← addNT ≺ T term U
<|> T (posExp sf) "+" term U <|> T (negExp sf) "-" term U

term ← addNT ≺ T factor U
<|> T (timesExp sf) term "*" factor U
<|> T (divExp sf) term "DIV" factor U
<|> T (modExp sf) term "MOD" factor U
<|> T (andExp sf) term "&" factor U

factor ← addNT ≺ T (trueExp sf) (kw "TRUE") U
<|> T (falseExp sf) (kw "FALSE") U
<|> T (pParExp sf) "(" exp ")" U
<|> T (notExp sf) "~" factor U
<|> T (pIdExp sf) ident U <|> T (pIntExp sf) int U

ss ← addNT ≺ T (pSeqStmt sf) stmt
(pFoldr (pSeqStmt sf , pEmptyStmt sf)

(T ";" stmt U)) U

stmt ← addNT ≺ T (pAssigStmt sf) ident ":=" exp U
<|> T (pIfStmt sf)

"IF" cond
(pFoldr (pCondStmtL Cons sf , pCondStmtL Nil sf)

(T "ELSIF" cond U))
mbelse
"END" U

<|> T (pWhileStmt sf) "WHILE" exp "DO" ss "END" U
<|> T (pEmptyStmt sf) U

cond ← addNT ≺ T (pCondStmt sf) exp "THEN" ss U

mbelse ← addNT ≺ pMaybe (pMaybeElseStmt Nothing sf
, pMaybeElseStmt Just sf)
(T "ELSE" ss U)

ident ← addNT ≺ T var U <|> T con U

exportNTs ≺ exportList modul $ export cs Declarations decls
. export cs Expression exp
. export cs Factor factor
. export cs StmtSeq ss
. export cs Statement stmt
. export cs Ident ident
. export cs IdentL idL
. export cs MaybeElseStmt mbelse
. export cs Type typ

160

A.1 Concrete Grammar

A.1.2 L2

l2 sf = proc imported → do

let ss = getNT cs StmtSeq imported
let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
let mbelse = getNT cs MaybeElseStmt imported

rec

addProds ≺ (stmt , T (pForStmt sf) "FOR" ident ":=" exp dir exp mbexp
"DO" ss "END" U

<|> T (pCaseStmt sf) "CASE" exp "OF"

c cs mbelse "END" U)

dir ← addNT ≺ T (pTo sf) "TO" U <|> T (pDownto sf) "DOWNTO" U
mbexp ← addNT ≺ pMaybe (pCst1Exp sf , id) (T "BY" exp U)

cs ← addNT ≺ pFoldr (pCaseL Cons sf , pCaseL Nil sf) (T "|" c U)
c ← addNT ≺ T (pCase sf) labels ":" ss U

labels ← addNT ≺ T (pLabelL Cons sf) label
(pFoldr (pLabelL Cons sf , pLabelL Nil sf)

(T "," label U)) U
label ← addNT ≺ T (pExpreLbl sf) exp U

<|> T (pRangeLbl sf) exp ".." exp U

exportNTs ≺ imported

A.1.3 L3

l3 sf = proc imported → do

let decls = getNT cs Declarations imported
let stmt = getNT cs Statement imported
let ss = getNT cs StmtSeq imported
let exp = getNT cs Expression imported
let ident = getNT cs Ident imported
let idl = getNT cs IdentL imported
let typ = getNT cs Type imported

rec

addProds ≺ (stmt , T (pProcCStmt sf) ident params U)

params ← addNT ≺ T "(" paraml ")" U <|> T (pExpressionL Nil sf) U

paraml ← addNT ≺ T (pExpressionL Cons sf) exp
(pFoldr (pExpressionL Cons sf , pExpressionL Nil sf)

(T "," exp U)) U
<|> T (pExpressionL Nil sf) U

updProds ≺ (decls, λdeclarations → T (pExtDeclarations sf) declarations

161

A Oberon0 Syntax

procDeclL U)

procDeclL← addNT ≺ pFoldr (pDeclL Cons ′ sf , pDeclL Nil ′ sf)
(T procDecl U)

procDecl ← addNT ≺ T (pProcDecl sf) "PROCEDURE" ident fparams ";"
decls
(pMaybe (pEmptyStmt ′ sf , id)

(T "BEGIN" ss U))
"END" ident ";" U

fparams ← addNT ≺ T "(" fparaml ")" U <|> T (pParamL Nil sf) U

fparaml ← addNT ≺ T (pParamL Cons sf) fparam
(pFoldr (pParamL Cons sf , pParamL Nil sf)

(T ";" fparam U)) U
<|> T (pParamL Nil sf) U

fparam ← addNT ≺ T (fpVar sf) "VAR" idl ":" typ U
<|> T (fpVal sf) idl ":" typ U

exportNTs ≺ imported

A.1.4 L4
l4 sf = proc imported → do

let stmt = getNT cs Statement imported
let exp = getNT cs Expression imported
let factor = getNT cs Factor imported
let ident = getNT cs Ident imported
let idl = getNT cs IdentL imported
let typ = getNT cs Type imported

rec

addProds ≺ (typ , T (pArrayType sf) "ARRAY" exp "OF" typ U
<|> T (pRecordType sf) "RECORD" fieldl "END" U)

fieldl ← addNT ≺ T (pFieldL Cons sf) field
(pFoldr (pFieldL Cons sf , pFieldL Nil sf)

(T ";" field U)) U

field ← addNT ≺ T (pField sf) idl ":" typ U <|> T (pEmptyField sf) U

addProds ≺ (factor , T (pSelExp sf) ident selector U)

selector ← addNT ≺ T (pSelectL Cons sf) sel
(pFoldr (pSelectL Cons sf , pSelectL Nil sf)

(T sel U)) U

sel ← addNT ≺ T (pSelField sf) "." ident U
<|> T (pSelArray sf) "[" exp "]" U

addProds ≺ (stmt , T (pAssigSelStmt sf) ident selector ":=" exp U)

exportNTs ≺ imported

162

A.2 Abstract Syntax

A.2 Abstract Syntax

A.2.1 L1

data Module = Module {idbgn Module :: String
, decls Module ::Declarations
, stmts Module :: Statement
, idend Module :: String }

data Declarations = Declarations {cstdecl Declarations ::DeclL
, typdecl Declarations ::DeclL
, vardecl Declarations ::DeclL}

type DeclL = [Decl]

data Decl = CstDecl {id CstDecl :: String , exp CstDecl :: Expression }
| TypDecl {id TypDecl :: String , typ TypDecl :: Type }
| VarDecl {idl VarDecl :: IdentL, typ VarDecl :: Type }

data Type = Type {id Type :: String }

data Statement = AssigStmt {id AssigStmt :: String
, exp AssigStmt :: Expression }

| IfStmt {if IfStmt :: CondStmt
, elsif IfStmt :: CondStmtL
, else IfStmt ::MaybeElseStmt }

| WhileStmt {exp WhileStmt :: Expression
, ss WhileStmt :: Statement }

| SeqStmt {s1 SeqStmt :: Statement
, s2 SeqStmt :: Statement }

| EmptyStmt

type CondStmtL = [CondStmt]

data CondStmt = CondStmt {exp CondStmt :: Expression
, ss CondStmt :: Statement }

type MaybeElseStmt = Maybe Statement

type IdentL = [String]

type GHC IntCmp = IntCmp
data IntCmp = ECmp | NECmp | LCmp | LECmp | GCmp | GECmp
type GHC IntBOp = IntBOp
data IntBOp = Plus | Minus | Times | Div | Mod
type GHC IntUOp = IntUOp
data IntUOp = Ng | Ps

type GHC BoolBOp = BoolBOp
data BoolBOp = Or | And
type GHC BoolUOp = BoolUOp
data BoolUOp = Not

163

A Oberon0 Syntax

data Expression = IntCmpExp {op IntCmpExp ::GHC IntCmp
, e1 IntCmpExp :: Expression
, e2 IntCmpExp :: Expression }

| IntBOpExp {op IntBOpExp ::GHC IntBOp
, e1 IntBOpExp :: Expression
, e2 IntBOpExp :: Expression }

| IntUOpExp {op IntUOpExp ::GHC IntUOp
, e IntUOpExp :: Expression }

| BoolBOpExp {op BoolBOpExp ::GHC BoolBOp
, e1 BoolBOpExp :: Expression
, e2 BoolBOpExp :: Expression }

| BoolUOpExp {op BoolUOpExp ::GHC BoolUOp
, e BoolUOpExp :: Expression }

| IdExp {id IdExp :: String }
| IntExp {int IntExp :: Int }
| BoolExp {bool BoolExp :: Bool }
| ParExp {e ParExp :: Expression }

$ (deriveAG “Module)
$ (deriveLang "L1" [“Module, “Declarations, “DeclL, “Decl , “Type

, “Statement , “CondStmtL, “CondStmt , “MaybeElseStmt
, “Expression, “IdentL])

eExp sf = pIntCmpExp sf (sem Lit ECmp)
neExp sf = pIntCmpExp sf (sem Lit NECmp)
lExp sf = pIntCmpExp sf (sem Lit LCmp)
leExp sf = pIntCmpExp sf (sem Lit LECmp)
gExp sf = pIntCmpExp sf (sem Lit GCmp)
geExp sf = pIntCmpExp sf (sem Lit GECmp)

plusExp sf = pIntBOpExp sf (sem Lit Plus)
minusExp sf = pIntBOpExp sf (sem Lit Minus)
timesExp sf = pIntBOpExp sf (sem Lit Times)
divExp sf = pIntBOpExp sf (sem Lit Div)
modExp sf = pIntBOpExp sf (sem Lit Mod)

posExp sf = pIntUOpExp sf (sem Lit Ps)
negExp sf = pIntUOpExp sf (sem Lit Ng)

orExp sf = pBoolBOpExp sf (sem Lit Or)
andExp sf = pBoolBOpExp sf (sem Lit And)

notExp sf = pBoolUOpExp sf (sem Lit Not)

trueExp sf t = pBoolExp sf (λr → DTerm (pos (t r)) True)
falseExp sf f = pBoolExp sf (λr → DTerm (pos (f r)) False)

164

A.2 Abstract Syntax

A.2.2 L2

data EXT Statement
= ForStmt {id ForStmt :: String , start ForStmt :: Expression

, dir ForStmt :: ForDir , stop ForStmt :: Expression
, step ForStmt :: Expression, ss ForStmt :: Statement }

| CaseStmt {exp CaseStmt :: Expression, case CaseStmt :: Case
, cases CaseStmt :: CaseL, else CaseStmt ::MaybeElseStmt }

data ForDir = To | Downto

type CaseL = [Case]

data Case = Case { label Case :: LabelL, ss Case :: Statement }

type LabelL = [Label]

data Label = ExpreLbl {exp ExpreLbl :: Expression }
| RangeLbl {e1 RangeLbl :: Expression

, e2 RangeLbl :: Expression }

data EXT Expression = Cst1Exp

$ (extendAG “EXT Statement [“Statement , “MaybeElseStmt , “Expression])
$ (extendAG “EXT Expression [])

$ (deriveLang "L2" [“EXT Statement , “ForDir , “CaseL, “Case
, “LabelL, “Label , “EXT Expression])

A.2.3 L3

type GHC KindParam = KindParam
data KindParam = VarP | ValP

data Param = Param {kind Param ::GHC KindParam
, idl Param :: IdentL
, typ Param :: Type }

type ParamL = [Param]

data EXT Decl = ProcDecl {id ProcDecl :: String
, params ProcDecl :: ParamL
, decls ProcDecl ::Declarations
, stmts ProcDecl :: Statement
, idend ProcDecl :: String }

data EXT Declarations
= ExtDeclarations {decls ExtDeclarations ::Declarations

, prcdecl ExtDeclarations ::DeclL}

type ExpressionL = [Expression]

data EXT2 Statement = ProcCStmt {id ProcCStmt :: String
, params ProcCStmt :: ExpressionL}

165

A Oberon0 Syntax

$ (extendAG “EXT Decl [“Declarations, “Statement , “IdentL, “Type])
$ (extendAG “EXT Declarations [“Declarations, “DeclL])
$ (extendAG “EXT2 Statement [“Expression])
$ (deriveLang "L3" [“EXT Declarations, “EXT Decl , “Param, “ParamL

, “EXT2 Statement , “ExpressionL])

A.2.4 L4

data EXT Type = ArrayType {exp ArrayType :: Expression
, typ ArrayType :: Type }

| RecordType {fields RecordType :: FieldL}

type FieldL = [Field]

data Field = Field {idl Field :: IdentL, typ Field :: Type }
| EmptyField

data EXT2 Expression = SelExp {id SelExp :: String , sel SelExp :: SelectL}

type SelectL = [Select]

data Select = SelField {id SelField :: String }
| SelArray {exp SelArray :: Expression }

data EXT3 Statement = AssigSelStmt {id AssigSelStmt :: String
, sel AssigSelStmt :: SelectL
, exp AssigSelStmt :: Expression }

$ (extendAG “EXT Type [“Expression, “IdentL, “Type])
$ (extendAG “EXT2 Expression [“Expression])
$ (extendAG “EXT3 Statement [“SelectL, “Expression])

$ (deriveLang "L4" [“EXT Type, “FieldL, “Field , “EXT2 Expression
, “SelectL, “Select , “EXT3 Statement])

166

Bibliography

[1] Harvey Abramson. Definite clause translation grammars. Technical report, Uni-
versity of British Columbia, Vancouver, BC, Canada, Canada, 1984.

[2] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P. Friedman,
R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker, D. Oxley, K. M. Pitman,
G. J. Rozas, G. L. Steele, Jr., G. J. Sussman, M. Wand, and H. Abelson. Re-
vised5 report on the algorithmic language scheme. SIGPLAN Not., 33(9):26–76,
September 1998.

[3] Stephen R. Adams. Modular Grammars for Programming Language Prototyping.
PhD thesis, University of Southampton, Department of Elec. and Comp. Sci.,
1991.

[4] Arthur I. Baars, Andres Löh, and S. Doaitse Swierstra. Parsing permutation
phrases. Journal of Functional Programming, 14(6):635–646, 2004.

[5] Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspecting code. In
Proc. of the 2004 ACM SIGPLAN workshop on Haskell, pages 69–79, New York,
NY, USA, 2004. ACM.

[6] Arthur I. Baars, S. Doaitse Swierstra, and Marcos Viera. Typed Transformations
of Typed Abstract Syntax. In TLDI ’09: fourth ACM SIGPLAN Workshop on
Types in Language Design and Implementation, pages 15–26, New York, NY,
USA, 2009. ACM.

[7] Arthur I. Baars, S. Doaitse Swierstra, and Marcos Viera. Typed Transformations
of Typed Grammars: The Left Corner Transform. In Proc. of the 9th Workshop
on Language Descriptions Tools and Applications, ENTCS, pages 18–33, 2009.

[8] Richard S. Bird. Using circular programs to eliminate multiple traversals of data.
Acta Inf., 21:239–250, 1984.

[9] Eric Bouwers, Martin Bravenboer, and Eelco Visser. Grammar engineering sup-
port for precedence rule recovery and compatibility checking. Electron. Notes
Theor. Comput. Sci., 203(2):85–101, 2008.

[10] John Boyland. Remote attribute grammars. Journal of the ACM (JACM, 52(4),
Jul 2005.

[11] Martin Bravenboer. Exercises in Free Syntax. Syntax Definition, Parsing,
and Assimilation of Language Conglomerates. PhD thesis, Utrecht University,
Utrecht, The Netherlands, January 2008.

167

Bibliography

[12] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17. A language and toolset for program transformation. Science
of Computer Programming, 72(1-2):52–70, June 2008.

[13] Kasper Brink, Stefan Holdermans, and Andres Löh. Dependently typed gram-
mars. In Mathematics of Program Construction, volume 6120 of Lecture Notes
in Computer Science, pages 58–79. 2010.

[14] M. T. Chakravarty, Manuel, Gabriele Keller, and Simon Peyton Jones. Associ-
ated type synonyms. In Proc. of the tenth International Conference on Functional
Programming, pages 241–253, New York, NY, USA, 2005. ACM.

[15] Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First class attribute
grammars. Informatica: An International Journal of Computing and Informat-
ics, 24(2):329–341, June 2000. Special Issue: Attribute grammars and Their
Applications.

[16] Oege de Moor, L. Peyton Jones, Simon, and Van Wyk, Eric. Aspect-oriented
compilers. In Proc. of the 1st Int. Symposium on Generative and Component-
Based Software Engineering, pages 121–133, London, UK, 2000. Springer-Verlag.

[17] Dominique Devriese and Frank Piessens. Explicitly recursive grammar combi-
nators: a better model for shallow parser DSLs. In Proceedings of PADL 2011,
pages 84–98, 2011.

[18] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The structure of the
essential haskell compiler, or coping with compiler complexity. In Implementation
of Functional Languages, 2007.

[19] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of
the Utrecht Haskell compiler. In Proc. of the 2nd Symposium on Haskell, pages
93–104, New York, NY, USA, 2009. ACM.

[20] Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an Attribute Gram-
mar. In Advanced Functional Programming Summerschool, number 3622 in
LNCS. Springer-Verlag, 2004.

[21] Torbjörn Ekman and Görel Hedin. The JastAdd system - modular extensible
compiler construction. Sci. Comput. Program., 69(1-3):14–26, 2007.

[22] David Fisher and Olin Shivers. Static analysis for syntax objects. In Proc. of the
eleventh International Conference on Functional Programming, pages 111–121,
New York, NY, USA, 2006. ACM.

[23] David Fisher and Olin Shivers. Building language towers with ziggurat. Journal
of Functional Programming, 18(5-6):707–780, September 2008.

168

Bibliography

[24] Jeroen Fokker and S. Doaitse Swierstra. Abstract interpretation of functional
programs using an attribute grammar system. In Adrian Johnstone and Jurgen
Vinju, editors, Language Descriptions, Tools and Applications, 2008.

[25] Benedict R. Gaster and Mark P. Jones. A polymorphic type system for extensible
records and variants. NOTTCS-TR 96-3, Nottingham, 1996.

[26] Thomas Hallgren. Fun with functional dependencies or (draft) types as values
in static computations in haskell. In Proc. of the Joint CS/CE Winter Meeting,
2001.

[27] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type in-
ference process. In Eighth ACM Sigplan International Conference on Functional
Programming, pages 3 – 13, New York, 2003. ACM Press.

[28] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor,
editors, The Fun of Programming, pages 245–262. Palgrave Macmillan, 2003.

[29] John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-
3):67–111, 2000.

[30] M. Johnson. Finite-state approximation of constraint-based grammars using left-
corner grammar transforms. In COLING-ACL Õ98, Montreal, Quebec, Canada,
pages 619–623. Association for Computational Linguistics, 1998.

[31] Thomas Johnsson. Attribute grammars as a functional programming paradigm.
In Proc. of the Functional Programming Languages and Computer Architecture,
pages 154–173, London, UK, 1987. Springer-Verlag.

[32] Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

[33] P. Jones, Mark. Type classes with functional dependencies. In Proc. of the 9th
European Symposium on Programming Languages and Systems, pages 230–244,
London, UK, 2000. Springer-Verlag.

[34] Uwe Kastens. Ordered Attribute Grammars. Acta Informatica, 13:229–256, 1980.

[35] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Proc. of the 2004 Workshop on Haskell, pages 96–107. ACM Press,
2004.

[36] M. F. Kuiper and S. Doaitse Swierstra. Using attribute grammars to derive
efficient functional programs. RUU-CS 86-16, Department of Computer Science,
1986.

[37] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March
2003. Proc. of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

169

Bibliography

[38] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proc. of the ACM SIGPLAN International Conference
on Functional Programming (ICFP 2004), pages 244–255. ACM Press, 2004.

[39] B. M. Leavenworth. Syntax macros and extended translation. Commun. ACM,
9(11):790–793, 1966.

[40] William Maddox. Semantically-sensitive macroprocessing. Technical report,
Berkeley, CA, USA, 1989.

[41] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Proceedings of Haskell Symposium 2007, pages 73–82, 2007.

[42] Bruno Mart́ınez, Marcos Viera, and Alberto Pardo. Just Do It While Compil-
ing!: Fast Extensible Records in Haskell. In Proc. of the ACM SIGPLAN 2013
Workshop on Partial Evaluation and Program Manipulation (PEPM’13), 2013.

[43] Conor McBride. Faking it simulating dependent types in haskell. Journal of
Functional Programming, 12(5):375–392, 2002.

[44] Conor McBride and Ross Paterson. Applicative programming with effects. Jour-
nal of Functional Programming, 18(01):1–13, 2007.

[45] Marjan Mernik and Viljem Žumer. Incremental programming language develop-
ment. Computer languages, Systems and Structures, 31:1–16, 2005.

[46] Arie Middelkoop, Atze Dijkstra, and S. Doaitse Swierstra. Visit Functions for
the Semantics of Programming Languages. In Workshop on Generative Program-
ming, 2010.

[47] Ulf Norell. Dependently typed programming in Agda. In 6th International School
on Advanced Functional Programming, 2008.

[48] Nicolas Oury and Wouter Swierstra. The power of Pi. In Proc. of the Thirteenth
International Conference on Functional Programming, 2008.

[49] Emir Pasalic and Nathan Linger. Meta-programming with typed object-
language representations. In Generative Programming and Component Engi-
neering (GPCE’04), volume LNCS 3286, pages 136 – 167, October 2004.

[50] Ross Paterson. A new notation for arrows. In Proc. of the 6th Int. Conference
on Functional Programming, pages 229–240, New York, USA, 2001. ACM.

[51] JC Petruzza, Koen Claessen, and Simon Peyton Jones. Derived read instances
for recursive datatypes with infix constructors are too inefficient. GHC Ticket
1544.

[52] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Report.
2003.

170

Bibliography

[53] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration
of the design space. In Haskell Workshop, June 1997.

[54] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for gadts. SIGPLAN Not.,
41(9):50–61, 2006.

[55] W. Reps, Thomas, Carla Marceau, and Tim Teitelbaum. Remote attribute up-
dating for language-based editors. In Proc. of the 13th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 1–13, New York, NY,
USA, 1986. ACM.

[56] J.C. Reynolds. User defined types and procedural data as complementary ap-
proaches to data abstraction. In S.A. Schuman, editor, New Directions in Algo-
rithmic Languages. INRIA, 1975.

[57] Tom Schrijvers and Bruno C.d.S. Oliveira. Monads, zippers and views: virtual-
izing the monad stack. In ICFP 2011, pages 32–44. ACM, 2011.

[58] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell.
In Proc. of the ACM SIGPLAN workshop on Haskell, pages 1–16. ACM Press,
2002.

[59] Alexandra Silva and Joost Visser. Strong types for relational databases. In Proc.
of the 2006 Workshop on Haskell, pages 25–36, New York, NY, USA, 2006. ACM.

[60] Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. A pure object-oriented
embedding of attribute grammars. In Proc. of the Ninth Workshop on Language
Descriptions, Tools, and Applications, March 2009.

[61] S. Doaitse Swierstra. Linear, online, functional pretty printing (extended and
corrected version). Technical Report UU-CS-2004-025a, Inst. of Information and
Comp. Science, Utrecht Univ., 2004.

[62] S. Doaitse Swierstra. The Utrecht Parsing Libraries. http://www.cs.uu.nl/

wiki/bin/view/HUT/ParserCombinators, July 2008.

[63] S. Doaitse Swierstra. Combinator parsers: a short tutorial. In A. Bove, L. Bar-
bosa, A. Pardo, , and J. Sousa Pinto, editors, Language Engineering and Rigorous
Software Development, volume 5520 of LNCS, pages 252–300. Spinger, 2009.

[64] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and João A. Saraiva. Designing and
implementing combinator languages. In S. Doaitse Swierstra, Pedro Henriques,
and José Oliveira, editors, Advanced Functional Programming, Third Interna-
tional School, AFP’98, volume 1608 of LNCS, pages 150–206. Springer-Verlag,
1999.

[65] S. Doaitse Swierstra and Olaf Chitil. Linear, bounded, functional pretty-printing.
Journal of Functional Programming, 19(01):1–16, 2009.

171

Bibliography

[66] Wouter Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–436,
July 2008.

[67] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in
attribute grammars for modular language design. In Proc. 11th International
Conf. on Compiler Construction, volume 2304 of LNCS. Springer-Verlag, 2002.

[68] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an exten-
sible attribute grammar system. Science of Computer Programming, 75(1–2):39–
54, January 2010.

[69] Marcos Viera and S. Doaitse Swierstra. Attribute grammar macros. In XVI
Simpósio Brasileiro de Linguagens de Programação, LNCS, pages 150–165, 2012.

[70] Marcos Viera, S. Doaitse Swierstra, and Atze Dijkstra. Grammar Fragments Fly
First-Class. In Proc. of the 12th Workshop on Language Descriptions Tools and
Applications, pages 47–60, 2012.

[71] Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. Haskell, Do You Read
Me?: Constructing and composing efficient top-down parsers at runtime. In
Proc. of the first Symposium on Haskell, pages 63–74, New York, NY, USA,
2008. ACM.

[72] Marcos Viera, S. Doaitse Swierstra, and Arie Middelkoop. UUAG Meets As-
pectAG. In Proc. of the 12th Workshop on Language Descriptions Tools and
Applications, 2012.

[73] Marcos Viera, S. Doaitse Swierstra, and Wouter Swierstra. Attribute Grammars
Fly First-Class: How to do aspect oriented programming in Haskell. In Proc. of
the 14th Int. Conf. on Functional Programming, pages 245–256, New York, USA,
2009. ACM.

[74] Phil Wadler. The Expression Problem. E-mail available online., 1998.

[75] Daniel Weise and Roger Crew. Programmable syntax macros. In Proc. of the
1993 conference on Programming Language Design and Implementation, pages
156–165, New York, NY, USA, 1993. ACM.

[76] Niklaus Wirth. Compiler construction. International computer science series.
Addison-Wesley, 1996.

[77] Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan Jeur-
ing. Generic programming with fixed points for mutually recursive datatypes. In
Proceedings of ICFP 2009, pages 233–244, 2009.

[78] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promotion. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in language design
and implementation, TLDI ’12, pages 53–66, New York, NY, USA, 2012. ACM.

172

Samenvatting

Een domeinspecieke taal (Domain Specific Language, DSL) is een programmeertaal
die op een specifiek toepassingsgebied is toegesneden, en waarmee domeinexperts
gemakkelijk programma’s kunnen schrijven die hun probleem oplossen.

Het bieden van ondersteuning bij het gebruik van een dergelijke programmeertaal
is geen sine cure: telkens moet een volledige vertaler geschreven worden, die pro-
gramma’s vanuit een dergelijke taal afbeeldt op code die door een computer kan
worden verwerkt.

Een manier om dit probleem aan te pakken in om de DSL in te bedden in een
bestaande taal, gebruik makend van de taalconstructies die deze gasttaal al biedt,
zoals functies, combinatoren of macro’s. Op deze manier realiseren we de voordelen
van een DSL in de vorm van een biliotheek uitgedrukt in de gasttaal.

Deze oplossing komt echter met zijn eigen problemen: doordat nieuwe constructies
eerst worden afgebeeld op bestaande constructies is de uiteindelijke feedback van de
compiler, bijvoorbeeld over geconsteerde fouten, uitgedrukt in termen van de gasttaal.
Wij stellen een benadering voor waarbij de gasttaal zelf gemakkelijk uitgebreid kan
worden met nieuwe taalconstructies.

We ontwikkelen een aantal vertalerbouwtechnieken (Compositional Compiler Con-
struction), die de voordelen van een echte DSL combineren met het implementatiege-
mak van het gebruik van een gasttaal: vertalers worden samengesteld uit apart ver-
taalde, statisch getypeerde “taal-definitie-fragmenten”

Onze gereedschapskist bestaat uit een collectie EDSL’s uitgedrukt in de mod-
erne functionele programmeertaal Haskell. Zowel syntax als semantiek van onze
(uitbreidbare) talen zijn normale Haskell waarden, die kunnen worden gedefinierd,
samengesteld, getransformeerd, geparametriseerd en genstantieerd. Het gebruik van
Haskell garandeert belangrijke consistentie eigenschappen van aldus geconstrueerde
vertalers.

173

Curriculum Vitae

Marcos Omar Viera Larrea was born September 09 1979 in San José, Uruguay.
From 1998 to 2003, he studied Computing Systems Engineering at Universidad de
la República, Uruguay. From 2004 to 2007, he did a Master in Computer Science at
PEDECIBA, Uruguay. From 2008 to 2013, he was a PhD student at PEDECIBA,
and from 2012 also at Utrecht University, under the supervision of Doaitse Swierstra
and Alberto Pardo. He works doing teaching activities at Universidad de la República
since 2002. Since November 2012 he is an Assistant Professor at Department of Com-
puter Science, Engineering School, Universidad de la República.

175

