
�
�

����������	
��
������
�	�������������
�������	����������������	��	������

�	���������������� ��!"�����
#�	�������$�������%�

�

&������������������
�	��	
��
������

�

�

�

������������	
���
�
�	�	�����	��

���������	��
��������
�����	���	���


	���
��	����
��
����
���������

�����
�

�

�

�
��	����
��	�
�

�

�

�

�

�

�

�

�����������

�



�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
������������	
���
�
�	�	�����	�����������	��
��������
�����	���	���
�	���
��	����
��
����
��������������
���������� !"��
#
�����
��$	��	���	�
����
	��%�����
&
�	��
�#'����	�&#�"!��"�
()$)*�+��
��������	��
�*	�������,��-�����������
����
��
�.��
/��0
��������
����&
�1�����2�
3	��
0��
	4�/������4������	�5�"!�





Informe de Tesis de Doctorado en Informática 

An analysis of the  

economic lot-sizing problem with 

return options focused on the 

remanufacturing plan  

Autor: Pedro Piñeyro 
ppineyro@fing.edu.uy

Tutor: Omar Viera 
viera@fing.edu.uy

PEDECIBA - Informática 

(Proyecto para el Desarrollo de las Ciencias Básicas) 

             

Departamento de Investigación Operativa 

Instituto de Computación 

Facultad de Ingeniería 

Universidad de la República

Montevideo, Uruguay 
Noviembre 2013 



Resumen

El Problema del Tamaño del Lote Económico (ELSP por sus siglas en inglés) puede 
ser definido como el problema de determinar los períodos y las cantidades a producir 
en cada período para satisfacer los requerimientos de demanda de un cierto artículo 
sobre un horizonte de planificación finito, minimizando la suma de todos los costos 
involucrados. Los valores de demanda se asumen conocidos y pueden ser diferentes 
para cada período, es decir, demanda determinística y dinámica. Hay costos fijos y 
variables por producir en cada período, y por unidad almacenada en inventario de un 
período a otro siguiente. El ELSP es un problema bien conocido en la literatura y 
varias extensiones han sido planteadas para atender de una mejor manera las 
necesidades de la industria. Una de las más recientes y relevantes extensiones del 
ELSP es cuando se incluye el retorno de artículos usados, los cuales pueden ser 
remanufacturados para satisfacer la demanda. También debe tenerse en cuenta que los 
artículos usados y retornados (o retornos simplemente) puedan ser descartados de una 
manera adecuada, como por ejemplo, cuando los mismos no satisfacen ciertos 
requerimientos mínimos para ser remanufacturados. La remanufacturación es un 
proceso de recuperación de artículos usados mediante la cual se puede asegurar que 
los productos remanufacturados ofrecen la misma calidad y funcionalidad que los 
artículos nuevos. Ejemplos de productos remanufacturados son: autopartes, motores, 
neumáticos, equipamiento de aviones, cámaras fotográficas, instrumentos médicos, 
muebles, cartuchos, fotocopiadoras, computadoras y equipo de telecomunicaciones. 
La remanufacturación ofrece beneficios para todas las partes involucradas. El 
consumidor puede obtener productos de la misma calidad a un precio generalmente 
inferior que el de uno nuevo. El fabricante se ve beneficiado ya que la 
remanufacturación necesita menos energía, menos materias primeras y menor trabajo. 
Por último, el medio ambiente también se ve beneficiado con un uso más eficiente de 
la energía y de las materias primas, y además la remanufacturación tiende a reducir el 
número total de artículos puestos en el mercado al extender la vida útil de los mismos. 

En esta tesis consideramos la extensión del ELSP en la cual la demanda puede ser 
también satisfecha mediante la remanufacturación de artículos usados y retornados al 
origen, además de con artículos nuevos. Nos referiremos a este problema como el 
Problema del Tamaño del Lote Económico con Retornos (ELSR por sus siglas en 
inglés). Teniendo en cuenta que el ELSR es un problema NP-difícil en general e 
incluso para casos particulares de funciones de costos, decidimos analizar el ELSR 
desde el enfoque “divide y reinaras”, aplicado a la actividad de remanufacturación. 
Esta decisión está basada en el hecho de que la actividad de remanufacturación juega 
un rol fundamental en la resolución del ELSR ya que los planes de producción y de 
disposición final óptimos pueden ser determinados eficientemente y de forma 
independiente si el plan de remanufacturación es conocido, ya que ambos pueden ser 
formulados como problemas ELSP independientes. Por lo tanto en esta tesis nos 
enfocaremos en el problema de determinar la remanufacturación de una solución 
óptima del ELSR, el cual referiremos como el problema de obtener el Plan de 
Remanufacturación de Costo Perfecto. Se debe tener en cuenta que resolver este 
último problema es equivalente a resolver el ELSR, y por lo tanto es NP-difícil para 
los mismos casos. Considerando esta dificultad, analizaremos el problema de 
determinar las cantidades óptimas de remanufacturación suponiendo que el conjunto 
de períodos en donde la remanufacturación es posible ha sido definido con 
anterioridad, o en otras palabras el ESLR con Períodos Fijos para la 



Remanufacturación. Este supuesto está soportado tanto por motivos académicos como 
de la vida real, como por ejemplo: razones operativas si los operarios y las máquinas 
son los mismos para la producción y la remanufacturación; disponibilidad de artículos 
usados solo en ciertos períodos; o razones económicas causadas por 
remanufacturación a bajo costo en ciertos períodos. Asumiendo que la cantidad a 
remanufacturar en los períodos permitidos es estrictamente positiva, y que los costos 
son no especulativos (es decir que es conveniente producir o remanufacturar lo más 
tarde posible) pudimos demostrar que la cantidad total de remanufacturación de una 
solución óptima puede ser obtenida de manera eficiente a través de un procedimiento 
de tiempo lineal en el número de períodos. Entre otras implicaciones, este resultado 
sirve como sustento teórico para una regla de remanufacturación simple pero efectiva, 
utilizada para resolver el ELSR con períodos fijos de remanufacturación. La regla 
establece que la cantidad a remanufacturar en un cierto período fijado debe ser el 
mínimo entre la cantidad de retornos disponibles en le período y la demanda 
acumulada desde el período en cuestión hasta el período inmediatamente anterior al 
próximo periodo fijado como de remanufacturación positiva. En esta tesis se muestra 
además que esta regla puede ser aplicada con muy buenos resultados para el caso del 
ELSR con Sustitución en Una Vía, es decir, los productos nuevos pueden utilizarse 
para satisfacer al demanda de artículos remanufacturados pero no viceversa. Esta 
clase de problemas ocurre en la práctica cuando hay segmentos de mercado diferentes 
para los productos nuevos y los remanufacturados. El análisis del ELSR centrado en 
la remanufacturación se completa demostrando que el problema de determinar las 
cantidades óptimas para cada uno de los períodos fijados es NP-difícil en general, aún 
en el caso en que el número de períodos que se han fijado como de remanufacturación 
positiva, es menor que el número total de períodos. Considerando este resultado para 
el caso general, se provee un algoritmo recursivo de orden pseudopolinomial que 
puede resultar efectivo en los casos en que la cantidad de períodos fijados es pequeña 
en relación al largo del horizonte de planificación, o la cantidad total de retornos es 
pequeña en comparación con la cantidad de demanda total. Finalmente, teniendo en 
cuenta los buenos resultados obtenidos para el ELSR bajo el supuesto de costos no 
especulativos, decidimos analizar la extensión del ELSP en la cual existen 
restricciones de capacidad en la producción (CLSP por sus siglas en inglés) bajo este 
supuesto en los costos. Para este problema fuimos capaces de mejorar el orden del 
reconocido algoritmo de Florian y Klein (1974) de O(T 4) a O(T 3) para el caso de 
costos cóncavos y no especulativos y capacidad de producción estacionaria. Hasta 
donde sabemos, este tipo de estructura de costos incluye casos de interés que no son 
abarcados por trabajos previos en la literatura.

Palabras Claves: Problema del Tamaño del Lote Económico, Remanufacturación, 
Control de Inventario, Optimización. 



Abstract 

The Economic Lot-Sizing Problem (ELSP) can be defined as the problem of 
determining the periods and the quantities to produce in order to meet the demand 
requirements of a single item for each one of the periods over a finite planning 
horizon on time, minimizing the sum of all the costs involved. The values of the 
demand are known in advance and can be different for each period, i.e. deterministic 
and dynamic demand. Set-up and unit costs are incurred by producing at each period, 
and unit costs for holding inventory from one period to the next. The ELSP is a well-
known problem in the literature and several extensions have been considered in order 
to better attend practical and industrial needs. One of the recent and relevant 
extensions on the ELSP is to consider return options, i.e., used products returned to 
the origin that can be remanufactured to satisfy the demand requirements. On the 
other hand, used items (or returns) can be discarded properly, e.g. when they do not 
satisfy certain minimum requirements for remanufacturing. Among the recovery 
options, remanufacturing can be defined as the recovery process of returned products 
after which it is warranted that the remanufactured products offer the same quality 
and functionality that those newly manufactured. Products that are remanufactured 
include automotive parts, engines, tires, aviation equipment, cameras, medical 
instruments, furniture, toner cartridges, copiers, computers, and telecommunications 
equipment. Remanufacturing offers benefits for all of the parties involved. From the 
consumer’s point-of-view, remanufactured products assume the same quality of new 
products and are sometimes offered at an inferior market price. For the manufacturer, 
remanufacturing provides cost savings in energy consumption, raw materials, and 
labor. Finally, the environment benefits from the more efficient use of energy and raw 
materials. In addition, remanufacturing tends to reduce the total number of products 
put in the market and later disposed, i.e. long-life products. 

In this thesis we consider the ELSP extension for which the demand requirements can 
be also satisfied by remanufacturing used items returned to the origin. We refer to this 
problem as the Economic Lot-Sizing Problem with Remanufacturing and Final 
Disposal options (ELSR). Since the ELSR is an NP-hard problem, even for particular 
types of cost structures, we address the ELSR by means of a divide-and-conquer 
approach, focused on the remanufacturing activity. This approach is supported by the 
fact that the remanufacturing plan plays a key-role in the ELSR resolution since both 
the optimal production plan and the optimal final disposal plan can be determined 
separately and in an effective-time way if the remanufacturing plan is known, since 
both can be formulated as classical ELSP. Therefore, we focus on the problem of 
obtaining the remanufacturing plan of an optimal solution of the ELSR, which we 
refer as the remanufacturing plan of perfect cost. The problem of determining the 
remanufacturing plan of perfect cost can be considered equivalent to solve the ELSR, 
and then it is also NP-hard for the same cases. Considering this difficulty, we study 
the problem of obtaining the remanufacturing plan of perfect cost for which the 
periods where remanufacturing is allowed to be positive are known in advance, or in 
other words, the ELSR with fixed periods for remanufacturing. This assumption is 
supported by academic as well as practical reasons, e.g., operative reasons if the 
machinery and workers are the same for production and remanufacturing operations; 
availability of used items only in certain periods; or economic reasons due to periods 
with remanufacturing at low cost. Assuming strictly positive remanufacturing 
quantities in the periods fixed and a non-speculative motives on the costs (i.e., it is 



profitable to produce or remanufacture as late as possible) we prove that the total 
remanufacturing quantity of the remanufacturing plan of perfect cost can be obtained 
in linear time. Among further implications, this result serves as a theoretical support 
for a simple but effective rule proposed for obtaining the remanufacturing quantities 
of an ELSR with fixed periods for remanufacturing. This rule establishes that the 
remanufacturing quantity in a certain period is the minimum between the available 
returns and the accumulative demand from the current period until the period 
preceding the next period with positive remanufacturing. In this thesis we show that 
this rule can be effective employed for the case in which one-way substitution is 
allowed for the ELSR, i.e., manufactured items can satisfy the demand requirements 
of remanufactured items but not viceversa. This kind of situation occurs in practice 
when there are different market segments for new and remanufactured items. We 
complete the study of the remanufacturing plan showing that the problem of 
determining the optimal quantities for each one of the periods of an ELSR problem 
with fixed periods for remanufacturing is NP-hard in general, even in the case that the 
number of periods where remanufacturing is allowed is less than the total number of 
periods. In addition, we provide a recursive algorithm of pseudopolynomial time for 
solving the problem that can be time-effective if either the number of fixed periods for 
remanufacturing or the number of total returns is small. Taking into account the good 
results obtained for the ELSR with non-speculative motives on the costs, we decided 
to address the capacitated version of the economic lot-sizing problem (CLSP) under 
this last assumption. Thus, we are able to show that the well-known algorithm of 
Florian and Klein (1971) for the CLSP can be improved from O(T 4) to O(T 3) time for 
the case of concave cost functions with non-speculative motives and stationary 
capacities. This type of cost structure includes many situations of interest; including 
some particular cases that are not covered by algorithms proposed in previous works 
in the literature.  

Keywords: Economic Lot-Sizing Problem, Remanufacturing, Inventory Control, 
Optimization. 
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The economic lot-sizing problem (ELSP) can be defined in its simplest form as the 
problem of determining the periods and the quantities to produce in order to meet the 
demand requirements of a single item on time, minimizing the sum of all the costs 
involved. There are set-up and unit costs for carrying out the production activity and 
unit costs for holding inventory from one period to the next. The demand and costs 
values are assumed known in advance and can vary for each period. In addition, 
capacity on production and storage is assumed unbounded and backlogging demand is 
not allowed. The ELSP is a well-known problem in the literature of Operations 
Research and Management Science (OR/MS) from the late 1950s as it can be 
considered a basic problem in production planning and inventory management 
(Karimi et al., 2003; Brahimi et al., 2006). Wagner and Whitin (1958) address the 
ELSP considering that the unit production cost is the same for every period. They 
provide an O(T 2) time algorithm for the ELSP based on a dynamic programming 
approach, with T the planning horizon length. The algorithm is based on the today 
well-known zero-inventory property, introduced by the authors in their seminal paper: 
there is an optimal solution for which the production quantity in a certain period is 
positive if and only if the entering inventory level is zero. Later it was shown that the 
algorithm is also valid for the case of general concave cost functions (Zangwill, 
1968). As an evidence of the impact of the Wagner and Whitin (1958) paper on 
ELSP, it was reproduced in January 2004 in the special issue of the journal 
Management Science celebrating the 50th volume of this leading journal in OR/MS. 
More recently, Federgruen and Tzur (1991), Wagelmans et al. (1992) and Aggarwal 
and Park (1993) propose faster algorithms for the ELSP of O(TlogT) time and O(T) 
time for the Wagner and Whitin case (constant unit production costs). In particular, 
Atamtürk and Küçükyavuz (2008) provide an O(T 2) time algorithm for a more 
general formulation of the ELSP with inventory bounds and fixed costs for holding 
inventory.  

From the seminal paper of Wagner and Whitin (1958), many extensions have been 
considered in the literature in order to better attend practical and industrial needs, e.g., 
more general cost functions (Zangwill, 1968; Shaw and Wagelmans, 1998), multi-
item (Pochet and Wolsey, 1991; Tempelmeier and Helber, 1994), multi-level 
(Zangwill, 1969; van Hoesel et al., 2005), allowing shortage and/or lost sales (Pochet 
and Wolsey, 1988; Sandbothe and Thompson, 1990), capacity constraints on 
production (Florian and Klein, 1971; van den Heuvel and Wagelmans, 2006), limited 
storage (Love, 1973; Gutiérrez et al. 2001, Wolsey 2006; Atamtürk and Küçükyavuz 
2008) and perishable items (Friedman and Hoch, 1978; Hsu 2000), some of them 
considering more than one of the extensions listed above in the same paper. We refer 
to Brahimi et al. (2006) for details about the ELSP and its extensions.  

A recent and relevant extension on the ELSP is to consider return options, i.e., used 
products returned to the origin (supplier) that can be reconditioned to satisfy the 
demand requirements. Additionally, used items (or returns) can be discarded properly, 
e.g. when there is an overstock of used products or they do not satisfy certain 
minimum requirements for recovering. This kind of problem has been receiving an 
increasing academic attention in recent years as the industry has been involved with 
the recovery of used products (Gungor and Gupta 1999; Guide 2000; de Brito and 
Dekker, 2002, Hatcher et al. 2013). Environmental problems related to industrial 
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activity from the middle of the last century and uncontrolled usage of natural 
resources puts in danger both the present levels of production and the development of 
future generations. These problems were caused in part by the production and massive 
consumption of short-life products. In view of this situation, governmental and social 
pressures as well as economic opportunities have motivated many firms to become 
involved with the return of used products for recovery. The management and 
activities related to the return flow from the consumer to the producer are known as 
Reverse Logistics, and they stand in contrast to the forward logistics from the 
producer to the consumer. Among the industrial options for recovering, the 
remanufacturing activity can be defined as the recovery process of returned products 
after which it is warranted that the remanufactured products offer the same quality 
and functionality that those newly manufactured (Ijomah, 2002; Matsumoto and 
Ijomah, 2013). Products that are remanufactured include automotive parts, engines, 
tires, aviation equipment, cameras, medical instruments, furniture, toner cartridges, 
copiers, computers, and telecommunications equipment. Remanufacturing offers 
benefits for all of the parties involved. From the consumer’s point-of-view, 
remanufactured products assume the same quality of new products and are sometimes 
offered at an inferior market price. For the manufacturer, remanufacturing provides 
cost savings in energy consumption, raw materials, and labor. Finally, the 
environment benefits from the more efficient use of raw materials and energy 
employed during the production phase. In addition, remanufacturing tends to reduce 
the total number of products put in the market and later disposed, i.e. long-life 
products. For overviews about reverse logistics and remanufacturing benefits, the 
reader is referred to Gungor and Gupta (1999), Guide (2000), de Brito and Dekker 
(2002), Ijomah (2002), Hormozi (2003), Sundin (2004) and Gurler (2011). As an 
example of the today relevance of the remanufacturing activity in the industry, the 
European Division of the Automotive Parts of Remanufacturers Association (APRA) 
reports that the remanufacturing industry involves more than 400.000 directly or 
indirectly jobs in the world, and the annual production of remanufactured products in 
Europe grew from 10 millions of units in 1995 to 20 millions of units in 2005, with a 
potential of 30 millions of units in 2015. The U.S. International Trade Commission 
(USITC) report of October 2012 reports that during the period 2009-2011, U.S. 
production of remanufactured goods grew by 15 percent to at least $43 billion, 
supporting 180.000 full-time jobs, and exports of remanufactured goods totaled $11.7 
billion in 2011. 

In this thesis we consider the ELSP extension with return options for which the used 
items returned to the origin can be remanufactured for satisfying the demand 
requirements or possibly discarded in an adequate form for economic reasons. Costs 
are incurred for carrying on the activities (producing, remanufacturing or disposing) 
and for holding inventory of both used and serviceable items (produced or 
remanufactured items). The objective is to determine the quantities to produce, 
remanufacture and dispose at each period over a finite planning horizon in order to 
meet the demand requirements on time, minimizing the sum of all the involved costs. 
We refer to this problem as the Economic Lot-Sizing Problem with Remanufacturing 
and Final Disposal options (ELSR). The ELSR was shown to be NP-hard, even for the 
case of cost functions composed of both setup and variable costs for the activities (van 
den Heuvel, 2005; Retel-Helmrich et al., 2014). Considering this difficulty, several 
particular cases have been analyzed in the literature and heuristic procedures have 
been suggested (Richter and Weber, 2001; Golany et al., 2001; Yang et al., 2005; 
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Teunter et al., 2006; Retel-Helmrich et al., 2014; Li et al., 2014).  One way to address 
the problem is by means of a divide-and-conquer approach, solving separately the 
activities of production, remanufacturing and final disposing. In Piñeyro and Viera 
(2009) we suggest and evaluate several inventory policies for the ELSR based on the 
divide-and-conquer approach (this paper is not included in this thesis as it was part of 
the MSc thesis by the same author of the present one; it was an important starting 
point for this work). We show that this approach is supported by the fact that the 
remanufacturing activity plays a key role in the resolution of the ELSR since the 
remanufacturing involves both serviceable and used items while the other activities 
involve only one of them. Thus, if the remanufacturing plan is known in advance 
(periods and quantities), the production and final disposal plans can be solved in an 
effective-time way as separate ELSP. Thus, the problem of solving the ELSR can be 
reduced to the problem of finding a remanufacturing plan of perfect cost in an 
independently way, i.e., the remanufacturing plan of an optimal solution of the ELSR. 
We note that this last problem is NP-hard, since it is equivalent to the ELSR. In 
Piñeyro and Viera (2009) we address the problem of finding a remanufacturing plan 
of perfect cost by means of analyzing the problem of determining a remanufacturing 
plan which maximizes the total remanufacturing quantity, thus considering both 
ecological as well as economical benefits simultaneously. In this sense, we introduce 
a simple but effective rule for determining the remanufacturing quantities for a given 
set of periods fixed as positive remanufacturing periods. This rule establishes that the 
remanufacturing quantity in a certain period fixed is the minimum between the 
available returns and the accumulative demand from the current period until the 
period preceding the next period with positive remanufacturing. In Piñeyro and Viera 
(2009) we use this rule in a Tabu Search-based procedure developed for solving the 
ELSR that we refer as Basic Tabu Search procedure (BTS). The procedure receives 
among other parameters, the periods where remanufacturing is allowed. In the 
numerical experiment carried out, the BTS procedure showed a very good behavior, 
finding in many instances the optimal solution. The success achieved by the BTS is 
supported in part by the key role that the remanufacturing plan plays in the ELSR 
resolution. In addition, we think that the simple rule for determining the 
remanufacturing quantities also plays a decisive role in the BTS success. One of the 
main objectives of the research carried out in this thesis is to confirm this hunch.      

Considering the relevance of the remanufacturing activity in the ELSR resolution, we 
focus on the problem of determining the remanufacturing quantities plan of perfect 
cost under the assumption that the periods where remanufacturing is allowed to be 
positive are known in advance. This assumption is supported by academic as well as 
practical reasons, e.g., operative reasons if the machinery and workers are the same 
for production and remanufacturing operations; availability of used items only in 
certain periods; or economic reasons due to periods with remanufacturing at low cost. 
Assuming that the remanufacturing quantities in the periods fixed is strictly positive 
and a non-speculative motives on the costs (i.e., it is profitable to produce or 
remanufacture as late as possible) we are able to prove that the total remanufacturing 
quantity of the remanufacturing plan of perfect cost can be obtained in linear time. 
Among further implications, this result serves as a theoretical support for a simple but 
effective rule that we introduce in Piñeyro and Viera (2009) for obtaining the 
remanufacturing quantities of an ELSR with fixed periods for remanufacturing. We 
also show that the remanufacturing rule can be effectively employed for the ELSR 
extension in which one-way substitution is allowed, i.e., manufactured items can 
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satisfy the demand requirements of remanufactured items but not viceversa. This kind 
of situation occurs in practice when there are different market segments for new and 
remanufactured items. We complete the study of the remanufacturing plan of perfect 
cost, showing that the problem of determining the optimal quantities for each one of 
the periods of an ELSR problem with fixed periods for remanufacturing is NP-hard, 
even assuming only that the costs related to the used items are at most equal to the 
costs of new items. Considering this difficulty, we suggest a recursive algorithm of 
polynomial time for the problem that can be time-effective if either the number of 
fixed periods for remanufacturing or the number of total returns is small. Considering 
the good results obtained for the ELSR with non-speculative motives on the costs, we 
decided to address the CLSP (the capacitated version of the ELSP) under this cost 
assumption. We show that the algorithm of Florian and Klein (1971) for the CLSP 
with concave cost functions and stationary capacities can be improved from O(T 4) to 
O(T 3) time for the case of non-speculative motives. This type of cost structure 
includes many cases of interest; in particular the cases where the production set-up 
costs are non-decreasing and non-linear cost functions, which according to our best 
knowledge, are not covered by the algorithms proposed in previous works in the 
literature of the CLSP. The improvement is achieved thanks to the fact that there is an 
optimal solution that is composed exclusively by a kind of sequences that we refer as 
ascending constrained capacity sequences: the only period with positive production 
below capacity, if it exists, is the first among all the positive periods of the sequence. 

��� ����
���

The thesis is structured in two parts. Part I introduces the problems and the results 
obtained during the research reported in this thesis. It is composed by the following 
sections. Section 1 presents the problem and the motivations for this thesis research. 
Section 2 begins with the definition and mathematical formulation for the ELSR, and 
the review of those papers closest to our work. Section 2.1 is about the relevance of 
the remanufacturing activity in the ELSR resolution and the motivation for the study 
of the ELSR with fixed periods for remanufacturing. In Section 2.2 we describe in 
detail the simple but effective rule for obtaining the remanufacturing quantities. 
Section 2.3 provides the results obtained for the ELSR with fixed periods for 
remanufacturing. We present first the results for the case of only one period fixed 
(Section 2.3.1) and then the results for the general case of more than one period 
(Section 2.3.2). In Section 2.4 we present the analysis and the results for the ELSR 
with one-way substitution. Section 3 is dedicated to the CLSP (the capacitated version 
of the ELSP) with non-speculative motives on the costs. We provide the formulation 
of the problem and a literature review focused in those papers considering non-
speculative costs. The results for the CLSP are presented in Section 3.1. Part I ends in 
Section 4, with the conclusions and directions for future research. Part II contains the 
four papers that describe in details the problems and results obtained during the 
development of this thesis. Each one of them can be read independently. However, we 
note that the first two papers are close related and they were written in the order that 
they appear. 
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We consider a finite, deterministic and dynamic lot-sizing problem of a single item 
for which the demand requirements can be satisfied either by producing new items or 
by remanufacturing used items returned to the origin. New and remanufactured items 
are called indistinctly serviceable items since they are identical from the customer’s 
point-of-view. Additionally, used items can be disposed off in an adequate form. 
Figure 1 below shows a picture of the flows of items for the inventory system that 
represents the lot-sizing problem under consideration. 

Figure 1. Flow of items in the ELSR. 

The objective is determining the quantities to produce, remanufacture and dispose at 
each period in order to meet the demand requirements on time, minimizing the costs 
of carrying out the activities and for holding inventories from one period to the next. 

Formally, we consider a lot-sizing problem of T periods, with +∞<< T0 , where tD

and tR  represent the demand and return values in periods Tt ,...,1= , respectively; 
p

tK , r

tK , d

tK , p

tc , r

tc and d

tc  represent the set-up and unit costs for production, 

remanufacturing and final disposing in periods Tt ,...,1= , respectively; s

th  and u

th , 

denote the unit cost of holding inventory for serviceable and used products in periods 

Tt ,...,1= , respectively; We also define ijD  and ijR  as the accumulative demand and 

returns between periods i and j, with Tji ≤≤≤1 . The quantities to produce, 

remanufacture and final disposing are denoted by tp , tr  and td , respectively, for 

each period t in Tt ,...,1= ; finally, s

ty and u

ty , denote the inventory level during 

periods Tt ,...,1= , for serviceable and used items respectively. We refer to this lot-

sizing problem as the Economic Lot-Sizing Problem with Remanufacturing and Final 
Disposal options (ELSR). The ELSR can be modeled as the following Mixed Integer 
Linear Programming (MILP) problem: 

production 

remanufacturing 

final disposal 

items 

return 

consumers

demand for 
serviceable 

items 

inventory of 
serviceable 

items 

inventory of 

used items  
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Where M is a number at least as large as },max{ 11 TT RD , and p

tδ , r

tδ  and d

tδ , are 

binary variables equal to 1 if production, remanufacturing or disposing is carried out 

in periods Tt ,...,1= , or 0 otherwise, respectively. Constraints (2) and (3) are the 

inventory balance equations for serviceable and used items. Constraints (4) to (6) 
indicate that a set-up is made whenever an activity is carried out in a period for a 
positive quantity. Constraint (7) states that the initial inventory-level for both 
serviceable and used items is zero. Finally, the set of possible values for each decision 
variable is specified by constraint (8). 

After the seminal work of Simpson (1978) considering distinct inventories for 
serviceable and used items, papers regarding deterministic inventory problems with 
return options began to appear in the late 1990s. Richter and Sombrutzki (2000) and 
Richter and Weber (2001) consider the ELSR for the particular case when the number 
of returns in the first period is sufficient to satisfy the total demand over the planning 
horizon. Golany et al. (2001) suggest a Network Flow formulation for the ELSR and 

provide an exact algorithm of )( 3TO  time for the case of linear cost functions. They 

also show that the ELSR is NP-hard for the case of general concave cost functions. 
Yang et al. (2005) show the same result of complexity for the case of stationary 

concave cost functions and suggest a heuristic procedure of )( 4TO  time for the 

ELSR. van den Heuvel (2004) shows that ELSR is NP-hard for the case of set-up and 
unit costs for the activities and unit costs for holding inventory, even in the case that 
they are stationary, i.e. the same values for every period. Teunter et al. (2006) 
consider the ELSR with joint set-up costs for the production and remanufacturing 

activities, and suggest an )( 4TO  time algorithm based on a dynamic programming 

approach. Also several heuristic for the problem are provided. In Piñeyro and Viera 
(2009) we suggest and compare several inventory policies for the ELSR using a 
divide-and-conquer approach and a Tabu Search-based on procedure. We also show 
the key role that the remanufacturing plan plays in the ELSR resolution. Recently, Li 
et al. (2014) suggest a sophisticated Tabu Search based on procedure for the ELSR 
with stationary costs which outperforms other available algorithms in the literature. 
Nenes et al. (2010) analyze the ELSR taking into account the quality of the returns 
and Retel-Helmrich et al. (2014) provide and compare different mathematical 
formulations for the ELSR with separate and joint set-up costs for the activities.  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

(8) 
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The remanufacturing plan plays a key-role in the ELSR resolution. While the 
production activity affects only the inventory level of serviceable items and the final 
disposal affects only the inventory of used items, remanufacturing affects both 
simultaneously. This means that for a given remanufacturing plan (periods and 
quantities for remanufacturing), the production and final-disposal subproblems can be 
tackled separately and solved efficiently as they can be considered as separate ELSP 
problems. The ELSP can be solved in O(T 2) time if a Wagner and Whitin (1958) 
algorithm type is used, or in at most O(TlogT) time if any of the faster algorithms of 
Federgruen and Tzur (1991), Wagelmans et al. (1992) or Aggarwal and Park (1993) is 
used. Thus, we can say that solving the ELSR is equivalent to the problem of finding 
the remanufacturing plan of an optimal solution of the ELSR. We refer to this 
problem as the remanufacturing plan of perfect cost.  

The problem of obtaining the remanufacturing plan of perfect cost is NP-hard in 
general and for those cases where the ELSR is NP-hard, since they are equivalent 
problems. Therefore, it is unlikely that we can develop any efficient time procedure 
for obtaining the remanufacturing plan of perfect cost. Considering this difficulty, the 
way that we propose to address the problem is to assume that the periods where 
remanufacturing can be positive are fixed in advance. Thus, the original problem 
reduces to finding the remanufacturing quantities for each one of the periods fixed. In 
the following section we provide a rule for determining these quantities. 
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Consider an ELSR instance with a given set of periods },...,1{ TF ⊆ with positive 

remanufacturing. The remanufacturing quantity for each period Fi ∈  is obtained by 
means of the following rule: the minimum between the number of available returns in 
period i and the accumulative demand from the current period i to the future period 

)1( −j , with Fj ∈  the next period fixed as positive remanufacturing period, if it 

exists, otherwise the accumulative demand from the current period i to the last period 
T. We define formally the rule by means of the following expression:  

)(npr,0),,min( )1(1 ijrDRyr ijii

u

ii =>+= −−

with function FF →:()npr defined as follows: 

�
�
�

≤<∀=>

≤<<∀=>
=

TtitrrT

Tjtitrrrj
i

ti

tji

:0,0,

:0,0,,
)npr(

We note that the remanufacturing rule of (9) establishes that the remanufacturing 
quantity in a certain period fixed is the maximum feasible quantity, since it is at most 

equal to the number of available returns ( i

u

ii Ryr +≤ −1 ). This seems to be the correct 

decision for those cases where the remanufacturing costs are at most equal to the 
production costs. We introduce the remanufacturing rule of (9) in Piñeyro and Viera 

(9) 
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(2009). The rule is used in a Tabu Search based-on procedure, referred as a Basic 
Tabu-Search procedure (BTS), for solving the ELSR. The procedure explores 
different solutions by means of changing at each step the periods where 
remanufacturing can be positive, determining the remanufacturing quantity for each 
period fixed by means of the rule formulated in (9). The BTS procedure was tested for 
a wide range of return-demand relationships, cost settings, and planning horizon 
lengths. For all of them, the BTS showed a very good behavior (less than 2% of 
average gap between the cost of the solution obtained from BTS and the cost of the 
optimal solution), finding in many instances the optimal solution.  

One of the main objectives of the analysis carried out in this thesis is to find the 
theoretical foundations for the success of the remanufacturing rule formulated in 
expression (9). We also show that this rule and the BTS procedure can be successfully 
applied to the ELSR extension for which the one-way substitution activity is allowed: 
different markets for new and remanufactured items where remanufactured items can 
be substituted by new ones but not viceversa. We note that there can be real situations 
for which it makes sense to restrict the periods where remanufacturing is positive, 
e.g., operative reasons if the machinery and workers are the same for production and 
remanufacturing operations; availability of used items only in certain periods; or 
economic reasons due to periods with remanufacturing at low cost. 
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In this section we provide the contributions obtained for the ELSR with fixed periods 
for remanufacturing. The results are about the conditions for which the 
remanufacturing rule of (9) is optimal as well as about the computational complexity 
of the problem of determining the remanufacturing quantities for each period. First we 
present the results for the case of only one period for remanufacturing (single-period 
case) and then for the general case of more than one period fixed as positive 
remanufacturing period (multi-period case). The following definition on the costs is 
assumed for all of the results obtained. 

Definition 1. We say that the costs of the returns are at most equal to the costs of the 
new items when the expressions below are fulfilled by the cost components: 

,p

j

r

i KK ≤

,p

j

r

i cc ≤

,s

j

u

i hh ≤

for any couple of periods i and j in T,...,1 . 

Expressions (10.1) and (10.2) state the fact that the remanufacturing of used items is 
economically preferred to the production of new items. This can happen in practice 
due to the savings of energy and raw material of the remanufacturing activity. 
Expression (10.3) is fulfilled as it is assumed that value is added to the used items in 
order to make them serviceable. In addition we assume that the set-up costs are at 

least equal to the unit costs for each activity, i.e., 0≥≥ p

t

p

t
cK , 0≥≥ r

t

r

t
cK  and 

0≥≥ d

t

d

t
cK , for each period Tt ,...,1= .  

(10.1) 

(10.2) 

(10.3) 
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In this section we present the results for solving the ELSR with only one period fixed 
as a positive remanufacturing period. Assuming only that the conditions of Definition 
1 are fulfilled, we show that either nothing or as much as possible of the demand of a 
certain future period j must be satisfied by remanufacturing in period i, where i is the 

only period fixed as positive remanufacturing period, with Tji ≤≤≤1 . This means 

that the optimal remanufacturing quantity is either zero or the minimum between the 
number of available returns and the accumulative demand from period i to the last 
period T, i.e. the remanufacturing rule of (9). The optimal production and final 
disposal plans are obtained by solving two independent ELSP instances in at most 
O(T 2) time, after we have calculated the remanufacturing quantity of period i. Thus, 
the ELSR with only one period fixed as positive remanufacturing period can be 
solved in O(T 3) time if the algorithm of Wagner and Whitin (1958) is used for 
obtaining the optimal production and disposal plans or in O(T 2logT) time if the faster 
algorithms mentioned in Section 2.1 are used.  

We also note that the optimal single period for remanufacturing of an ELSR instance 
can be computed in O(T 4), or O(T 3logT) time if the faster algorithms are used for 
solving the ELSP subproblems, since we must consider each one of the T different 
periods for positive remanufacturing, with T the length of the planning horizon.  

The following definition on the costs provides the necessary conditions for 
maximizing the remanufacturing quantity in a given period, and then for computing 
the remanufacturing quantity in the single period case in constant time. 

Definition 2. Given a period i of an ELSR instance of T periods, such that 0>
i

r  and 

0=tr  for all t in T,...,1  and it ≠ , we say that it is profitable to maximize the 

remanufacturing quantity of period i if the expression:  

p

j

j

it

s

t

r

i
chc ≤+�

−

=

1

  

is fulfilled for each period j in ki,..., , with Tki ≤≤≤1 , or 
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=

+≤+
T

it

u

t

p

j

j

it

s

t

r

i
hchc

1

  

in the case that the final disposal of used items is not considered.  

For the cases in which Definition 2 is fulfilled for any couple of periods ),( ki  within 

the planning horizon with Tki ≤≤≤1  and 0>
i

r , we can assure that it is optimal to 

remanufacture as much as possible in the period fixed for remanufacturing, i.e., the 
remanufacturing rule of (9) is the optimal choice for the period under consideration. 
In fact, it is sufficient that Definition 2 is fulfilled between the period fixed as 
positive-remanufacturing period and the last one for which at least a portion of its 
demand is attainable by remanufacturing in the period fixed. The last attainable period 

can be determined as the earliest period t for which it

u

iit RyD +> −1 with i the single 

(11.1) 

(11.2) 



-21- 

remanufacturing period. Then, assuming that Definition 2 is fulfilled, the optimal 
solution of an ELSR with only one period fixed as positive remanufacturing period 
can be solved in O(T 2) time if the algorithm of Wagner and Whitin (1958) is used or 
in O(T logT) time if the faster algorithms mentioned in Section 2.1 are used. Real 
situations where Definition 2 is fulfilled include the cases for which the holding costs 
of both used and serviceable items are similar or negligible, very low remanufacturing 
costs as well as instances with few periods. 

For details about the analysis and the results presented in this section, we refer to the 
papers “Analysis of the quantities of the remanufacturing plan of perfect cost” and 
“The economic lot-sizing problem with return options and fixed periods for 
remanufacturing: formulation, algorithm and complexity” included in Part II of this 
document. 
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In this section we present the results obtained for the ELSR with at least two periods 
fixed as positive remanufacturing periods. The first result that we present below is 
about the form of the remanufacturing plan under particular assumptions in the 
number of returns.  

Let us consider an ELSR instance with a given set of periods },...,1{ TF ⊆ with 

positive remanufacturing. If the number of available returns in a certain period i fixed 
as a positive-remanufacturing period is sufficient to fully cover the demand until the 

end of the planning horizon, i.e., iT

u

ii DyR ≥+ −1 , 0>ir , with Ti ≤≤1 , we are able to 

prove that there is at least one optimal solution of the ELSR for which the total 
remaining demand from period i is satisfied only by remanufacturing from period i

onwards, i.e., iTiT Dr = , with Tjirr
j

it

tij ≤≤≤=�
=

1, .  

This result helps us to identify the form of a remanufacturing plan of perfect cost for 
the ELSR in the particular case that the number of available returns in a period fixed 
as positive-remanufacturing period is sufficient to meet all the remaining demand 
until the end of the planning horizon. The results for the cases for which no 
relationship is assumed between the demand and returns quantities, is based on the 
following definitions.  

Definition 3. We say that the remanufacturing costs are non-speculative with respect 
to the transfer when they satisfy the following expressions: 
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for any couple of period i and j in T,...,1 . 

(12.1) 

(12.2) 
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Expression (12.1) states that it is profitable to transfer the entire remanufacturing 
quantity from certain period to other future period that was inactive, while (12.2) 
states that it is profitable to transfer forward at least one unit between two periods 
with positive remanufacturing. We note that expressions given in (12) are fulfilled in 
different settings of practical interest, e.g., when all the costs involved are stationary 
or they do not increase over time. Non-speculative motives on the costs have been 
used successfully in the literature about lot-sizing problems, e.g. in the seminal paper 
of Wagner and Whitin (1958) costs are assumed stationary and then they are non-
speculative. The faster algorithm of Federgruen and Tzur (1991) of O(TlogT) time for 
the ELSP runs in O(T) when there is non-speculative motives. Wolsey (2006) 
provides new results for the lot-sizing problem with delivery time windows for the 
case of non-speculative costs. In Section 3 we will see also the relevance of non-
speculative motives for the capacitated extension of the ELSP.  

Definition 4. Given an ELSR instance with a set of periods fixed as positive 
remanufacturing periods and a feasible remanufacturing plan r, we define the upper 

bound of remanufacturing of a certain period i to the quantity 0=iu  if 0=ir  and 

),min( )1( −+= ji

u

iii DyRu  if 0>ir , where j is either the next positive-remanufacturing 

period within the planning horizon, or )1( +T  if i is the last positive-remanufacturing 

period, i.e., 0=tr  for all periods t in Ti ),...,1( + . 

Considering that the costs are non-speculative according to Definition 3, we first are 
able to prove that there is at least one optimal solution of the ELSR with fixed periods 
for remanufacturing for which the remanufacturing quantity of each period is at most 

equal to its upper bound of remanufacturing, i.e., tt ur ≤≤0 , for all periods 

Tt ,...,1= . Then, we prove that there is an optimal solution for which the total 

remanufacturing quantity is equal to the sum of the upper bounds. This last result 
implies that in order to determine a remanufacturing plan of perfect cost for an ELSR 
instance with certain periods fixed as positive-remanufacturing periods, we only need 
to explore those remanufacturing plans for which the total remanufacturing quantity is 
equal to the sum of the upper bounds of remanufacturing. These values can be 
determined in linear time by means of applying Definition 4 period by period, 
beginning with the first period fixed as positive-remanufacturing period. For example, 

consider an ELSR instance with T = 5, a demand vector )5,4,6,3,5(=D  and a returns 

vector )3,2,2,2,3(=R , where the periods 2, 4 and 5 are fixed as positive 

remanufacturing periods. The cost values are as follows: 200=p

t
K , 20=p

tc , 

150=r

tK , 15=r

tc , 100=d

tK , 10=d

tc , 5=s

th  and 2=u

th , with 51 ≤≤ t . Note that 

maximizing the remanufacturing quantity is profitable according to Definition 2 for 
all the meaningful pair of periods, i.e., (2,3), (4,4) and (5,5). Applying Definition 4 we 
have that the total remanufacturing quantity is 12, since the upper bounds of 

remanufacturing obtained sequentially are )3,4,0,5,0(=u . Table 1 below provides the 

candidate remanufacturing plans that we must consider in order to determine the 
remanufacturing plan of perfect cost for the ELSR instance under consideration. 
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t D R r

1 5 3 0 0 0 0 0 0 

2 3 2 5 5 5 4 4 3 

3 6 2 0 0 0 0 0 0 

4 4 2 4 3 2 4 3 4 

5 5 3 3 4 5 4 5 5 

Table 1. Candidate remanufacturing plans. 

These candidate plans were obtained by assigning to each period the maximum 
quantity according to its upper bound, and then transferring unit by unit from period 4 
to period 5, and from period 2 to period 4. The last column of Table 1 in bold 
corresponds to the remanufacturing plan of perfect cost. The corresponding 

production and final dispose plans of the optimal solution are )0,0,0,11(=p  and 

)0,0,0,0(=d , respectively. 

At this point we want to note that the upper bound of remanufacturing given in 
Definition 4 is the remanufacturing rule given in expression (9) for determining the 
remanufacturing quantities in the periods fixed. Thus, by means of the rule given in 
expression (9) we can obtain the total remanufacturing quantity of an optimal solution 
of an ELSR with a given set of periods for positive remanufacturing and this quantity 
can be computed in linear time as we showed in the numeric example above.  

The result about the total remanufacturing quantity of an optimal solution from the 
remanufacturing rule of (9) under non-speculative motives serves to explain in part 
the good performance of the BTS procedure of Piñeyro and Viera (2009) for the 
ELSR. In addition, these theoretical contributions can be used for evaluating the 
solutions obtained for any algorithm developed for the ELSR under the assumptions 
on the costs of Definitions 1 to 3, i.e. 1) remanufacturing costs at most equal to the 
production costs, 2) conditions on the costs for maximizing the remanufacturing 
quantity in the periods fixed, and 3) non-speculative motives on the remanufacturing 
costs. We also note that considering the good performance of the BTS procedure 
reported in Piñeyro and Viera (2009), the upper bounds are tight to the optimal values 
for those ELSR instances where conditions of Definitions 1 to 3 are fulfilled.  
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We describe below the results obtained about the computational complexity of the 
ELSR-F in the general case of number of periods fixed as positive remanufacturing 
periods and provide a recursive algorithm for solving the ELSR-F focused on the 
remanufacturing activity. 

Since the ELSR-F can be considered an extension of the ELSR, it is easy to see that 

the ELSR-F is NP-hard in the case that },...,1{ TF = . However, we show that the 

ELSR-F is also NP-hard in the case that },...,1{ TF ⊂ . In order to demonstrate this 
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last result we were able to construct a particular ELSR-F instance that is equivalent to 

a traditional ELSR for which the number of periods is F . 

We also suggest a recursive algorithm of pseudopolynomial time for solving the 
ELSR-F. The algorithm is based on the key role that the remanufacturing plays in the 
ELSR resolution. The algorithm evaluates all the feasible remanufacturing plans and 
for each one of them, the optimal production plan and the optimal final disposal plan 
are obtained by means of a time-effective algorithm for the ELSP. We note that the 
algorithm can be efficient in practice if either the number of fixed periods for 
remanufacturing or the number of total returns is small.   

For details about the analysis and the results presented in Section 2.3.1 to Section 
2.3.3, we refer to the papers “Analysis of the quantities of the remanufacturing plan of 
perfect cost” and “The economic lot-sizing problem with return options and fixed 
periods for remanufacturing: complexity and algorithms” included in Part II of this 
document. 
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In this section we report the results obtained for the extension of the ELSR in which 
there are different demand requirements for new and remanufactured items, and the 
requirements for remanufactured items can be satisfied by new items if it necessary, 
but not viceversa, i.e., one-way substitution. 

Different demand segments for new and remanufactured items arise when they are not 
identical from the consumer’s viewpoint. Possible downgrading in the remanufactured 
products may cause that they are offered at an inferior market price than the new ones. 
Gutowski et al. (2011) show that there are products for which remanufactured items 
consume more energy than new ones, if we take into account the use phase of the 
products. The reason is that the new products are composed by devices more efficient 
from an energy point of view. Therefore, there may be cases for which 
remanufactured products do not offer the same characteristics than the new products. 
Industrial applications where segmented market for manufactured and remanufactured 
occurs include photocopiers, tires and personal computers (Ayres et al., 1997; Ferrer, 
1997; Maslennikova and Foley, 2000; Inderfurth, 2004). When the number of 
available returns is not sufficient to meet the demand requirements for 
remanufactured products on time, a manufacturer’s market strategy is to allow 
substitution of remanufactured products by new ones, possibly maintaining the selling 
price of the remanufactured products in order to avoid losing potential customers 
(Bayindir et al., 2007; Inderfurth, 2004). Thus, we can consider the substitution 
necessary rather than desirable.  

We investigate the single-item economic lot-sizing problem with remanufacturing and 
final disposal options and different demand streams for new and remanufactured 
products, where in addition the requirements for the remanufactured items can be also 
satisfied by new items, but not vice versa (i.e. one-way substitution). We refer to this 
problem as the Economic Lot-Sizing Problem with Remanufacturing and Final 
Disposal options and one-way Substitution (ELSR-S). Figure below shows a picture 
of the flows of items for the ELSR-S. 
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Figure 2. Flow of items in the ELSR-S. 

The literature about the ELSR-S is very scarce. Inderfurth (2004) suggests and 
analyzes a profit model for the single-period hybrid manufacturing/remanufacturing 
system with product substitution. Bayindir et al. (2005) and Bayindir et al. (2007) 
propose profit models in order to investigate the effect of substitution on the optimal 
utilization of remanufacturing options under capacity constraints. Several 
observations and managerial insights are derived for the numerical experiment carried 
out by the authors. A multi-product version of the problem is studied by Li et al. 
(2006), without considering the final disposal of used items and without distinction 
among produced and remanufactured items.  

The contributions presented in this thesis about the ELSR-S are as follows. We 
provide a mathematical model for the problem and show it is NP-hard, even under 
stationary cost parameters. By means of a numerical example, we show that allowing 
substitution can result in cost savings, even when the returns are sufficient to fulfill 
the requirements of remanufactured products in any period and the remanufacturing 
costs are favorable. As with the ELSR, we show that in order to solve the ELSR-S, we 
can apply a divide-and-conquer approach determining first the remanufacturing and 
substitution quantities, i.e, the ELSR-S reduces to the problem of finding a 
remanufacturing plan and a substitution plan of perfect cost. Considering this last 
result, we suggest a Tabu Search-based procedure for solving the ELSR-S, exploiting 
the key role that the remanufacturing plays in the problem resolution as in the 
traditional ELSR. The procedure receives the periods where remanufacturing is 
allowed and explores different remanufacturing plans, guided by the rule of 
maximizing the useful remanufacturing quantity for each period fixed as positive 
remanufacturing-period. The substitution quantities at each period are determined as 
the portion of the demand for remanufactured products that cannot be fulfilled by 
remanufacturing. After that the remanufacturing and substitution quantities are 
determined, the corresponding optimal production and final disposal plans are 
obtained by means of the Wagner and Whitin (1958) algorithm. The experiment 
conducted shows that the suggested procedure is cost-effective for a wide-range of 
problem instances. For all cases the average gap is less than one percent and the 
optimal value was attained for 153 cases; this is 28.33% of the total tested cases. In 
58.89% cases the gap among the cost of the solution obtained and the optimal solution 
was positive and less than 1%. Only in 13% of the total tested cases the gap was 
superior to 1% and always less than 5%. Referring to the procedure time efficiency 
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we note that the solution was found in the first 20 iterations for all the tested 
instances, and the running time was less than 250 milliseconds. To the best of our 
knowledge, this is the first time that a metaheuristic, and in particular the Tabu 
Search, is used for solving this kind of problem. 

For details about the analysis and the results presented in this section, we refer to the 
paper “The economic lot-sizing problem with remanufacturing and one-way 
substitution” included in Part II of this document.
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This section present the result obtained for the Capacitated Economic Lot-Sizing 
Problem (CLSP), i.e., the ELSP with capacity constraints on the production activity. 
We consider the problem with stationary capacities (i.e., equal capacity upper bounds 
for each period) and concave cost functions with non-speculative motives (i.e. it is 
profitable to produce as late as possible). The CLSP in the general case can be 
formulated as follows: 
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The objective function (P) is the sum of the production cost (.)
t

f  and the holding 

inventory cost (.)
t

h  for each period Tt ,...,1= . Constraint (1) states the well-known 

inventory balance equations. Constraint (2) establishes that the initial inventory 
quantity must be zero. The capacity constraints are given in (3), and constraints (4) 
state the set of possible values for the decision variables. 

The CLSP is a well-known problem in the literature. Florian and Klein (1971) show 
that the optimal solutions of the CLSP are composed by a particular kind of subplans 
called capacity constrained sequences, for which the production quantities of the 
periods involved are either zero or equal to the capacity, except in at most one period, 
which is called the fractional period. Based on this property, they provide an O(T 

4) 
time algorithm for solving the CLSP with stationary capacity-pattern and general 
concave cost functions. More recently, faster algorithms of O(T 3) and O(T 2logT) 
times have been suggested by van Hoesel and Wagelmans (1996) for the case of 
linear inventory holding costs and by van Vyve (2007) for the case of linear costs 
with non-speculative motives, respectively. Bitran and Yanasse (1982) introduce the 

notation δγβα ///  in order to represent different capacitated lot-sizing problem 

settings, where δγβα ,,, specify the set-up costs, the holding costs, the unit production 

costs, and the capacity pattern, respectively. Letters G, C, ND, NI, Z are used to 
indicate arbitrary pattern, constant, non-decreasing, non-increasing and zero, 
respectively. They suggest polynomial time algorithms for the cases NI/G/NI/ND, 
NI/G/NI/C, C/Z/ND/NI, and ND/Z/ND/NI of the CLSP. For the case NI/G/NI/ND of 
the CLSP, Chun and Lin (1988) provide an algorithm of O(T 2) time. van den Heuvel 
and Wagelmans (2006) also consider the NI/G/NI/ND case, providing other O(T 2) 
time algorithm which may run faster in practice. Chen et al. (2008) provide a pseudo-
polynomial time algorithm for the same CLSP case but with more general cost 
functions. For surveys on the CLSP, we refer the readers to Brahimi et al. (2006) and 
Karimi et al. (2010). 

(1) 

(P) 

(2) 

(3) 

(4) 
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Taking into account the good results presented in Section 2 for the ELSR with non-
speculative motives, we analyze the CLSP under the same assumption on the costs. 
We note that previous works in the literature have considered non-speculative motives 
but for more restrictive cost functions (Hoesel and Wagelmans, 1996; Wolsey, 2006; 
Van Vyve, 2007). In particular, we note that our assumptions on the costs may 
include the case of fixed costs for holding inventory, which arise in the 
pharmaceutical and software industries (Atamtürk and Küçükyavuz, 2008).  

We show that the subplans composing an optimal solution of the CLSP with 
stationary capacities and concave cost functions with non-speculative motives have a 
particular structure and can be obtained by means of a linear time procedure. We refer 
to these particular subplans as ascending capacity constrained sequences since the 
production level in these subplans is increasing over time: the only period below 
capacity, if it exists, is the first among all the positive periods in the sequence. This 
last property of the optimal solutions is because the non-speculative motives on the 
costs indicate to transfer the production to the later periods as much as it is possible. 
By means of this result about the structure of the optimal solutions we can improve 
the running time of the well-known algorithm of Florian and Klein (1971) for the 
CLSP from O(T 4) time to O(T 3) time for the case of non-speculative motives on the 
costs. According to our best knowledge, our approach can be applied over situations 
that are not covered by previous related works in the literature. In addition, we note 
that our approach is simpler than the approach of Van Vyve (2007). 

For details about the analysis and the results presented in this section, we refer to the 
paper “An O(T 3) algorithm for the CLSP with stationary capacities and concave cost 
functions with non-speculative motives” included in Part II of this document. 
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In this thesis we present different results for the economic lot-sizing problem with 
remanufacturing (ELSR) assuming that the periods where remanufacturing can occur 
are fixed in advance. This assumption is supported by academic as well as practical 
reasons. For the particular case of only one fixed period, we show that the optimal 
remanufacturing quantity can be determined in at most O(T 3 ) time. For the general 
case of more than one fixed period, we show that the problem of obtaining the optimal 
remanufacturing quantity for every period is NP-hard. However, we are able to show 
that under the assumption of non-speculative motives on the costs, the total 
remanufacturing quantity of an optimal solution can be determined in linear time by 
means of the sum of certain quantities that we refer as the upper bounds of 
remanufacturing. Among further implications, this theoretical result serves as support 
for the simple but effective rule of remanufacturing that we introduce in Piñeyro and 
Viera (2009): the minimum between the available returns and the accumulative 
demand from the current period and the period preceding the next period fixed as 
positive-remanufacturing period. This theoretical result can be used for improving 
available algorithms in the literature. For example, the recent approach of Li et al. 
(2014) can be improved by considering the result about the total remanufacturing 
quantity in the Linear Programming formulation that they suggest for the ELSR under 
certain particular circumstances. In addition, we suggest a recursive algorithm for the 
ELSR that can be effective in time if either the number of fixed periods for 
remanufacturing or the number of total returns is small. We consider then the ELSR 
with one-way substitution, i.e. remanufactured products can be substituted by new 
ones but not viceversa. This kind of situation occurs in practice when there are 
different market segments for new and remanufactured items. For this ELSR 
extension we develop and evaluate a Tabu Search-based on procedure, guided by the 
rule of remanufacturing described above. The numerical experiment conducted shows 
that the suggested procedure will be cost-effective for a wide-range of problem 
instances. We note that the optimal solution was found for nearly one third of tested 
cases and for most cases the gap with the optimal solution was less than 1%. Finally, 
we consider the CLSP with non-speculative motives on the costs. For this problem we 
are able to improve the well-known algorithm of Florian and Klein (1971) from O(T 4) 
time to O(T 3) time for the case of stationary capacities and non-speculative motives 
on the costs. According to our best knowledge, our approach can be applied over 
situations that are not covered by previous related works in the literature.  

Future research on the problem of determining the quantities of the remanufacturing 
plan of perfect cost in an independent way may be done relaxing some of the 
assumptions imposed in this thesis or considering more realistic assumptions such as 
the quality of the returns (Nenes et al., 2010; Jin et al., 2011), limited times for 
remanufacturing of the products (El Saadany et al., 2013) or different firms for 
producing and remanufacturing (Xiong et al., 2013; Georgiadis and Athanasiou 2013, 
Jonrinaldi and Zhang; 2014). In addition, the problem of determining the periods with 
positive remanufacturing should be tackled. In this direction, we can resort to the 
Useful Remanufacturing Problem (URP) defined in Piñeyro and Viera (2009). The 
URP refers to the problem of determining the remanufacturing plan that minimizes 
the involved costs and maximizes the use of the returns. Then, it would be interesting 
to investigate the relationship between the positive periods of an URP solution and the 
positive periods of a remanufacturing plan of perfect cost. Another interesting 



-31- 

direction for future research for the ELSR is to study the situation which arises when 
imposing a minimum quantity for remanufacturing, e.g., remanufacturing at least fifty 
percent of the total quantity of available returns within the planning horizon.  



-32- 

+ #����������

Atamtürk, A., Küçükyavuz, S., 2008, An O(T 2) algorithm for the lost sizing with 
inventory bounds and fixed costs, Operations Reserch Letters, 36(1), 297–299. 

Ayres, R., Ferrer, G., van Leynseele, T., 1997, Eco-efficiency, Asset Recovery and 
Remanufacturing, European Management Journal, 15(5), 557–574. 

Bayindir, Z.P., Erkip, N., Güllü, R., 2005, Assessing the benefits of remanufacturing 
option under one-way substitution, Journal of Operational Research Society 56(3), 
286–296. 

Bayindir, Z.P., Erkip, N., Güllü, R., 2007, Assessing the benefits of remanufacturing 
option under one-way substitution and capacity constraint, Computers & Operations 
Research 34(2), 487–514. 

Bitran, G.R., Yanasse, H.H., 1982, Computational Complexity of the Capacitated Lot 
Sizing Problem, Management Science 28(10), 1174–1186. 

Brahimi, N., Dauzere-Peres, S., Najid, N.M., Nordli, A., 2006, Single item lot sizing 
problems, European Journal of Operational Research 168(1), 1–16. 

Chen, S., Feng, Y., Kumar, A., Lin, B., 2008, An algorithm for single-item economic 
lot-sizing problem with general inventory cost, non-decreasing capacity, and non-
increasing setup and production cost, Operations Research Letters 36(3), 300–302. 

Chung, C.S., Lin, C.H.M., 1988, An O(T2) Algorithm for the NI/G/NI/ND 
Capacitated Lot Size Problem, Management Science 34(3), 420–426. 

de Brito, M.P., Dekker, R., 2002, Reverse Logistics – a framework, Econometric 
Institute Report EI 2002-38 (2002), Erasmus University Rotterdam, The Netherlands. 

El Saadany, A.M.A., Jaber, M.Y., Bonney, M., 2013, How many times to 
remanufacture?, International Journal of Production Economics 143(2), 598-604. 

Ferrer, G., 1997, The Economics of Personal Computer Remanufacturing, Resources, 
Conservation and Recycling 21(2), 79–108. 

Florian, M., Klein, M., 1971, Deterministic Production Planning with Concave Costs 
and Capacity Constraints, Management Science 18(1), 12–20. 

Friedman, Y., Hoch, Y., 1978, A dynamic lot-size model with inventory deterioration, 
INFOR 16 183–188. 

Georgiadis, P., Athanasiou , E., 2013, Flexible long-term capacity planning in closed-
loop supply chains with remanufacturing, European Journal of Operational Research 
225(1), 44–58. 

Golany, B., Yang, J., Yu, G., 2001, Economic Lot-sizing with Remanufacturing 
Options, IIE Transactions 33(11), 995-1003. 



-33- 

Guide, V.D.R. Jr., 2000, Production planning and control for remanufacturing: 
industry practice and research needs, Journal of Operations Management 18, 467-483. 

Gungor, A., Gupta, S.M., 1999, Issues in environmentally conscious manufacturing 
and product recovery: a survey, Computers & Industrial Engineering 36, 811-853. 

Gurler, I., 2011, The Analysis and Impact of Remanufacturing Industry Practices, 
International Journal of Contemporary Economics and Administrative Sciences 1(1), 
25–39 

Gutiérrez, J., Sedeno-Noda, A., Colebrook, M., Sicilia, J., 2001, A new 
characterization for the dynamic lot size problem with bounded inventory, Computers 
and Operations Research 30(3), 383-395. 

Gutowski, T.G., Sahni, S., Boustani, A., Graves, S.C., 2011, Remanufacturing and 
Energy Savings, Environmental Science and Technology 45(10), 4540-4547. 

Hatcher, G.D., Ijomah, W.L., Windmill, J.F.C., 2013, Integrating design for 
remanufacture into the design process: the operational factors, Journal of Cleaner 
Production 39(1), 200–208.  

Hormozi, A.M., 2003, The Art and Science of Remanufacturing: An In-Depth Study, 
34th Annual Meeting of the Decision Sciences Institute, Washington D.C., November 
22-25 2003, Marriott Wardman Park Hotel. 

Hsu, V.N., 2000, Dynamic economic lot size model with perishable inventory, 
Management Science 46(8), 1159–1169. 

Ijomah, W., 2002, A model-based definition of the generic remanufacturing business 
process, PhD thesis, The University of Playmouth, United Kindom. 

Inderfurth, K., 2004, Optimal Policies in Hybrid Manufacturing/Remanufacturing 
Systems with Product Substitution, International Journal of Production Economics 
90(3), 325–343. 

Jin, X., Ni, J., Koren, Y., 2011, Optimal control of reassembly with variable quality 
returns in a product remanufacturing system, CIRP Annals - Manufacturing 
Technology 60(1), 25–28. 

Jonrinaldi, J., Zhang, D.Z., 2014, An integrated production and inventory model for a 
whole manufacturing supply chain involving reverse logistics with finite horizon 
period, Omega 41(3), 598–620. 

Karimi, B., Fatemi-Ghomi, S.M.T., Wilson, J.M., 2003, The capacitated lot sizing 
problem: a review of models and algorithms, Omega 31(5), 365–378. 

Li, X., Baki, F., Tian, P., Chaouch, B.A., 2014, A robust block-chain based tabu 
search algorithm for the dynamic lot sizing problem with product returns and 
remanufacturing, Omega 42(1), 75–87.  



-34- 

Li, Y., Chen, J., Cai, X., 2006, Uncapacitated production planning with multiple 
product types, returned product remanufacturing, and demand substitution, OR 
Spectrum 28(1), 101–125. 

Love, S.F, 1973, Bounded production and inventory models with piecewise concave 
costs, Management Science 20(3), 313-318. 

Maslennikova, I., Foley, D., 2000, Xerox approach to sustainability, Interfaces 30(3), 
226–33. 

Matsumoto, M., Ijomah, W.L., 2013, Remanufacturing, Handbook of Sustainable 
Engineering, Kauffman, J., and LEE, K.M. (Eds.), Sringer 389–408. 

Piñeyro, P,, Viera, O., 2009, Inventory policies for the economic lot-sizing problem 
with remanufacturing and final disposal options, Journal of Industrial and 
Management Optimization 5(2), 217-238. 

Pochet, Y., Wolsey, L.A., 1988, Lot-size models with backlogging: strong 
reformulations and cutting planes, Mathematical Programming 40, 317-335. 

Pochet, Y., Wolsey, L.A., 1991, Solving multi-item lot-sizing problems using strong 
cutting planes, Management Science 37(1), 53-67. 

Retel-Helmrich, M., Jans, R., van den Heuvel, W. and Wagelmans, A.P.M., 2014, 
Economic lot-sizing with remanufacturing: complexity and efficient formulations, IIE 
Transactions 46(1): 67–86. 

Richter, K., Sombrutzki, M., 2000, Remanufacturing Planning for the Reverse 
Wagner/Whitin Models, European Journal of Operational Research 121(2), 304-315. 

Richter, K., Weber, J., 2001, The Reverse Wagner/Whitin Model with Variable 
Manufacturing and Remanufacturing Cost, International Journal of Production 
Economics 71(1), 447-456. 

Sandbothe, R.A., Thompson, G.L, 1990, A forward algorithm for the capacitated lot 
size model with stockouts, Operations Research 38(3), 474-486. 

Shaw, D.X., Wagelmans, A.P., 1998, An algorithm for single-item capacitated 
economic lot sizing with piecewise linear production costs and general holding costs, 
Management Science 44(6), 831–838. 

Simpson, V.P., 1978, Optimum Solution Structure for a Repairable Inventory 
Problem, Operations Research 26(2), 270-281. 

Sundin, E., 2004, Product and Process Design for Successful Remanufacturing, PhD 
thesis, Linköpings Universitet, Sweden. 



-35- 

Tempelmeier, H., Helber, S., 1994, A heuristic for dynamic multi-item multi-level 
capacitated lotsizing for general product structures, European Journal of Operational 
Research 75(2), 296-311. 

Teunter, R., Bayındır, Z., van den Heuvel, W., 2006, Dynamic lot sizing with product 
returns and remanufacturing, International Journal of Production Research 44(20), 
4377-4400. 

van den Heuvel, W., 2004, On the complexity of the economic lot-sizing problem 
with remanufacturing options, Econometric Institute Report EI 2004-46 (2004), 
Erasmus University Rotterdam, The Netherlands. 

van den Heuvel, W., Wagelmans, A., 2006, An efficient dynamic programming 
algorithm for a special case of the capacitated lot-sizing problem, Computers & 
Operations Research 33(12), 3583–3599. 

van Hoesel, C.P.M., Wagelmans, A.P.M., 1996, An O(T3) algorithm for the economic 
lot-sizing problem with constant capacities, Management Science 42(1), 142–150. 

van Hoesel, S., Romeijn, H.E., Morales, D.R., Wagelmans, A.P.M., 2005, Integrated 
Lot Sizing in Serial Supply Chains with Production Capacity, Management Science 
51(11), 1706–1719. 

Van Vyve, M., 2007, Algorithms for single-item lot-sizing problems with constant 
batch size, Mathematics of Operations Research 32(3), 594–613. 

Wagner, H.M., Whitin, T.M., 1958, Dynamic Version of the Economic Lot Size 
Model, Management Science 5, 89–96. 

Wolsey, L.A., 2006, Lot-sizing with production and delivery times windows, 
Mathematical Programming Series A 107(1), 471–489. 
  
Xiong, Y., Zhou, Y., Li, G., Chan, H.K., Xiong, Z., 2013, Don’t forget your supplier 
when remanufacturing, European Journal of Operational Research 230(1), 15–25. 

Yang, J., Golany, B., Yu, G., 2005, A Concave-cost Production Planning Problem 
with Remanufacturing Options, Naval Research Logistics 52(5), 443–458. 

Zangwill, W., 1968, Minimum concave cost flows in certain networks, Management 
Science 14(7), 429–450. 

Zangwill, W., 1969, A backlogging model and a multi-echelon model of a dynamic 
economic lot size production system - a network approach, Management Science 
15(9), 506–527. 



-36- 

�

�

��������



-37- 



-38- 

, $�����
��	������%����
�
���	������������������
���������

	�����������	���

Pedro Piñeyro and Omar Viera 

Revised version of a paper published in Journal of Remanufacturing 2:3, 2012 

Abstract. The remanufacturing plan of perfect cost makes reference to the 
remanufacturing plan of an optimal solution of the economic lot-sizing problem with 
remanufacturing (ELSR). In this paper we address the problem of determining the 
quantities of the remanufacturing plan of perfect cost in an independent way. 
Assuming that the periods where the remanufacturing is strictly positive are known in 
advance and certain other assumptions on the costs, we can show that the total 
remanufacturing quantity of a remanufacturing plan of perfect cost can be determined 
separately and in a time-effective way. We consider that the theoretical results 
obtained in this paper contribute to a deeper knowledge of the characteristics of the 
ELSR optimal solutions. Thus, the results obtained can be used to develop an 
effective algorithm for solving the ELSR. 

Keywords: Remanufacturing, Economic Lot-Sizing Problem, Inventory Control, 
Reverse Logistics. 
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Introduction  

We consider a single item economic lot-sizing problem where the demand can also be 
satisfied by remanufacturing used items backed to the origin. This problem is 
commonly known in the literature as the economic lot-sizing problem with 
remanufacturing (ELSR) and refers to the problem of determining the quantities to 
produce, remanufacture, and dispose in each period over a finite planning horizon in 
order to meet the demand requirements of a single item on time, minimizing the 
involved costs. Used products returned by the customers are available at each period 
for remanufacturing. In addition, we consider that the returns can be disposed off, 
e.g., when there is an overstock of used products. This kind of problem has been 
receiving an increasing academic attention in recent years as the industry has been 
involved with the recovery of used products. This has been the result of governmental 
and social pressures as well as economic opportunities. Remanufacturing can be 
defined as the recovery process of returned products after which it is warranted that 
the remanufactured products offer the same quality and functionality that those newly 
manufactured (Ijomah [7]). Remanufacturing tasks often involve disassembly, 
cleaning, testing, part replacement and reassembling operations. Products that are 
remanufactured include automotive parts, engines, tires, aviation equipment, cameras, 
medical instruments, furniture, toner cartridges, copiers, computers, and 
telecommunications equipment. Among the recovery options, the remanufacturing 
offers benefits for all of the parties involved. We refer the readers to de Brito and 
Dekker [1], Guide [3], Gungor and Gupta [4], and Hormozi [6] for details descriptions 
about the remanufacturing benefits. 

This paper is focused on the analysis of the quantities of the remanufacturing plan of 
an optimal solution of the ELSR that we refer as the remanufacturing plan of perfect 
cost. The remanufacturing plan plays a key-role in the ELSR resolution since both the 
optimal production plan and the optimal final disposal plan can be determined 
separately and in an effective-time way if the remanufacturing plan is known (Piñeyro 
and Viera [9]). Thus, we can say that solving the ELSR reduce to the problem of 
finding the remanufacturing plan of perfect cost, i.e., the remanufacturing plan of an 
optimal solution of the ELSR. We note that the problem of finding a remanufacturing 
plan of perfect cost is a NP-hard problem, since it is equivalent to the ELSR, which is 
a known NP-hard problem even under stationary cost structures (Golany et al. [2], 
Yang et al. [16], van den Heuvel [14]). Considering this difficulty, we tackle the 
problem of determining the quantities of a remanufacturing plan of perfect cost under 
the assumption that the periods where the remanufacturing is strictly positive are 
known in advance. This can occur in practice if cores, parts, machinery or workers are 
only available in certain periods within the planning horizon. We also assume certain 
constrains on the costs that can be fulfilled in the real life, such as non-speculative 
motives or that the costs related to used items are at most equal to those related to new 
items. In addition, we provide a constraint on the costs which makes it more profitable 
to maximize the remanufacturing quantity in those periods where remanufacturing is 
carried out. This can be fulfilled in practice if the unit cost of producing is much 
greater than other unit costs of the problem, or in those cases for which the inventory 
holding costs can be neglected. 
  
The rest of the paper is organized as follows. In Section 2 a short literature review is 
provided. The problem formulation is given in Section 3. Section 4 is devoted to the 
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analysis of the quantities of the remanufacturing plan of perfect cost with fixed 
periods for positive remanufacturing. Section 5 concludes the paper with possible 
directions for future research. 

Literature review 

According to our best knowledge Richter and Sombrutzki [11] and Richter and Weber 
[12] are the first to analyze the ELSR. They consider the particular case that the 
returns in the first period are sufficient to satisfy the total demand over the planning 
horizon. Golany et al. [2] suggest a Network Flow formulation for the ELSR and 

provide an exact algorithm of )( 3TO  time for the case of linear cost functions. They 

also show that the ELSR is a NP-hard problem for the case of general concave cost 
functions. Yang et al. [16] show the same result of complexity for the case of 

stationary concave cost functions and provide a heuristic procedure of )( 4TO  time for 

the ELSR. van den Heuvel [14] show that ELSR is NP-hard for the case of set-up and 
unit costs for the activities and unit costs for holding inventory, even in the case that 
they are stationary. Teunter et al. [13] consider the ELSR with joint set-up costs for 

the production and remanufacturing activities, and suggest an )( 4TO  time algorithm 

based on a dynamic programming approach. Also several heuristic for the problem 
are provided. Piñeyro and Viera [9] suggest and compare several inventory policies 
for the ELSR using a divide-and-conquer approach and a Tabu Search based on 
procedure. They also show the key role that the remanufacturing plan plays in the 
ELSR resolution and introduce the concept of the remanufacturing plan of perfect 
cost. Piñeyro and Viera [10] consider the ELSR with different demand streams for 
new and remanufactured items where in addition substitution is allowed for 
remanufactured items but not viceversa. Recently, Nenes et al. [8] provide an analysis 
of the ELSR taking into account the quality of the returns and Helmrich et al. [5] 
provide and compare different mathematical formulations for the ELSR with separate 
and joint set-up costs for the activities. 

Problem formulation 

Figure 1 below shows a sketch of the flow of items for the inventory system that 
represents the lot-sizing problem that we are facing. 

Figure 1. Flow of items in the system. 
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We consider a lot-sizing problem for which the demand and return values are known 
in advance for each period over the finite planning horizon. The demand for 
serviceable items must be satisfied on time, i.e., backlogging demand is not allowed. 
Infinite capacity for producing, remanufacturing and disposing is assumed with zero 
lead-times. The inventory level of both used and serviceable items is determined after 
all activities were carried out. Set-up and unit costs are incurred for producing, 
remanufacturing or disposing, and unit costs for carrying ending positive inventory 
from one period to the next. Finally, we assume that the initial inventory levels of 
both used and serviceable items are zero and the demand is positive for each period in 
the planning horizon. The objective is to determine the amounts to produce, 
remanufacture, and dispose for each one of the periods in the planning horizon such 
that all demand requirements are satisfied on time and the sum of all the involved 
costs is minimized. We refer to this problem as the Economic Lot-sizing Problem 
with Remanufacturing (ELSR) and it can be modeled as the following Mixed Integer 
Linear Programming (MILP) problem: 
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In model (1) – (8) the parameters T , tD  and tR  denote the length of the planning 

horizon, demand and returns values in periods Tt ,...,1= , respectively; p

tK , r

tK , d

tK , 
p

tc , r

tc and d

tc  denote the set-up and unit costs for production, remanufacturing and 

final disposing in periods Tt ,...,1= , respectively; s

th  and u

th , denote the unit cost of 

holding inventory for serviceable and used products in periods Tt ,...,1= , 

respectively; M is a number at least as large as },max{ 11 TT RD , where ijD  and ijR  are 

the accumulative demand and returns between periods i and j, with Tji ≤≤≤1 . The 

decision variables tp , tr  and td , denote the number of units produced, 

remanufactured and disposed in periods Tt ,...,1= , respectively; p

tδ , r

tδ  and d

tδ , are 

binary variables equal to1 if production, remanufacturing or disposing is carried out in 

periods Tt ,...,1= , or 0 otherwise, respectively; s

ty and u

ty , denote the inventory level 

during periods Tt ,...,1= , for serviceable and used items respectively. 

Constraints (2) and (3) are the inventory equilibrium equations for serviceable and 
used items, respectively. Constraints (4) to (6) indicate that a set-up is made whenever 
an activity is carried out in a period for a positive quantity. Constraint (7) states that 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 

(7) 

(1) 
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the initial inventory-level for both serviceable and used items is zero. Finally, the set 
of possible values for each decision variable is specified by constraint (8). 

The ELSR as modeled above is a NP-hard problem (van den Heuvel [14]). As we 
mentioned earlier, solving the ELSR is equivalent to find a remanufacturing plan of 
perfect cost, i.e., the remanufacturing plan of an optimal solution of the ELSR. In the 
following section we analyze this last problem assuming that the periods for which 
the quantity of remanufacturing is positive are known in advance. 

Fixed periods for remanufacturing  

In this section we tackle the problem of determining the quantities of the 
remanufacturing plan of perfect cost under the assumption that the periods with 
strictly positive remanufacturing (periods for which the quantity of remanufacturing is 
greater than zero) are known in advance. This means that the remanufacturing setup is 
already taken into account and hence only the remanufacturing variable cost must be 
considered in order to determine the optimal quantities. We begin considering the 
particular case of only one positive-remanufacturing period, and then we consider the 
case of more than one period. To conduct the analysis we resort to certain 
assumptions on the costs as well as on the number of the available returns in the 
periods fixed. The first assumption that we introduce below is about the costs related 
to the used items.  

Definition 1. We say that the costs of the returns are at most equal to the costs of the 
new items when the expressions below are fulfilled by the cost components: 

,p

j

r

i KK ≤

,p

j

r

i cc ≤

,s

j

u

i hh ≤

for any couple of periods i and j in T,...,1 . 

Expressions (9.1) and (9.2) state the fact that the remanufacturing of used items is 
economically preferred to the production of new items. This can happen in practice 
due to the savings of energy and raw material of the remanufacturing activity. 
Expression (9.3) is fulfilled as it is assumed that value is added to the used items in 
order to make them serviceable. In addition we assume that the set-up costs are at 

least equal to the unit costs for each activity, i.e., 0≥≥ p

t

p

t
cK , 0≥≥ r

t

r

t
cK  and 

0≥≥ d

t

d

t
cK , for each period Tt ,...,1= . 

The single-period case 

Consider an ELSR instance of T periods with only one period i fixed as positive-

remanufacturing period, i.e., 0>ir , with Ti ≤≤1 , and 0=tr  for all t with Tt ≤≤1

and it ≠ . The objective is to determine the optimal remanufacturing quantity r

iQ  of 

the period i, with i

u

i

r

i RyQ +≤< −10 , assuming that 01 >+− i

u

i Ry . Note that case for 

which the remanufacturing quantity is zero is not considered since we are assuming 
only a strictly positive remanufacturing quantity in the fixed period. 

(9.1) 

(9.2) 

(9.3) 
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First consider the case that the number of available returns in period i are at most 

equal to the demand of the period, i.e., ii
u
i DRy ≤+−1 . Then, by (9), the optimal 

remanufacturing quantity must be equal to all of the available returns, i.e., 

01 >+= − i
u
i

r
i RyQ . On the other hand, for the case that ii

u

i DRy >+−1 , we must 

determine the last period j within the planning horizon for which it is more profitable 
to meet at least one unit of its demand by remanufacturing in period i. Assume first 
that the number of available returns is sufficient to exactly meet the accumulative 

demand from the current period i to certain future period k, i.e., iki

u

i DRy =+−1 , with 

Tki ≤≤≤1 . Then, the optimal remanufacturing quantity of period i is ij

r

i DQ = , 

with j the last period for which ��
=

−

=

++≤+
T

it

j
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tj

p

j

p

j

j
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j

s
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i DhDcKDhDc
1

 is fulfilled, 

with Tkji ≤≤≤≤1  and 0>jD . However, we note that in general the number of 

available returns in period i is sufficient to meet only a portion of the demand of 

certain future period k, i.e., 
ikkii

u

i
DDRy <+=+ −− α

)1(1
, with Tki ≤≤≤1  and 1≥α . 

Without loss of generality let us assume that it is profitable to remanufacture in period 

i at least the needed quantity to cover the demand requirements from i to )1( −k , i.e., 

ik

r

iki
DQD <≤− )1(

.This means that at least one unit of the demand requirement of 

period k is satisfied by means of the production of new items in certain period t with, 

kt ≤≤1 . If it ≤≤1 , then there must be that α+= − )1(ki

r

i
DQ , since �

−

=
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hcc

τ
τ  is 

true by (9). Therefore, in the case of kti ≤< , we have that α+= − )1(ki

r

i
DQ  only if 

the condition p

t
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 is fulfilled, otherwise 
)1( −=
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DQ . This last condition 

can be relaxed by ��
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 in the case that final disposal of used items 

is not considered, which is supported by economic as well as ecological reasons. 
Teunter et al. [13] point out that disposing option "does not lead to a considerable cost 
reduction unless the remanufacturable return rate as a percentage of the demand rate 
is unrealistically high (above 90%) and the demand rate is very small (less than 10 per 
year)". We resume the reasoning above by means of the following assumption about 
the profitability of maximizing the remanufacturing quantity in a certain period. 

Definition 2. Given two periods i and k of an ELSR instance of T periods, with 

Tki ≤≤≤1 , such that 0>
i

r , we say that it is profitable to maximize the 

remanufacturing quantity of period i if the expression:  
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in the case that the final disposal of used items is not considered.    

(10.1) 

(10.2) 
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Thus, if Definition 2 is fulfilled for any couple of periods i and j in T,...,1 , with ji ≤ , 

we can assure that the strictly positive optimal remanufacturing quantity r

iQ of a 

single period i fixed as positive-remanufacturing period is the minimum between the 
amount of available returns and the accumulative demand from the current period and 
the end of the planning horizon, i.e., to remanufacture as much as possible. We note 
that for a given instance it is sufficient that Definition 2 is fulfilled between the period 
fixed as positive-remanufacturing period and the last one for which at least a portion 
of its demand is attainable by remanufacturing in the period fixed. On the other hand, 
if Definition 2 is not fulfilled it is unlikely that we can determine the optimal 
remanufacturing quantity of a certain period without knowing the periods where 
production is carried out, since in the case that the available returns in period i are 
only sufficient for partially meet the accumulative demand to certain future period k, 
we need to know if the rest of the demand of period k is produced either in the same 
period or in a previous one.   

Real situations where Definition 2 is fulfilled include cases where holding costs of 
both used and serviceable items are similar or negligible, very low remanufacturing 
costs as well as instances with few periods. We also note that the problem of finding 
the optimal positive-remanufacturing period for an ELSR instance for which it is 

profitable to remanufacture as much as possible at any period, can be solved in )( 3TO

time, since we must consider T different periods and the corresponding optimal 

production and final dispose plans can be obtained in )( 2TO  by means of a Wagner-

Whitin algorithm type (Wagner and Whitin [15]). 

We summarize the results obtained above for the single-period case in the following 
proposition. 

Proposition 1. Consider an ELSR instance with only one period i fixed as strictly 

positive remanufacturing period with 01 >+− i

u

i Ry . Let us assume that Definition 2 is 

fulfilled for the pairs of periods (i, j), for any j in �≤≤ ji , with �  the last period 

within the planning horizon for which at least a portion of its demand is attainable by 

remanufacturing in the period i. Then the optimal remanufacturing quantity r

iQ  of 

period i is equal to the minimum between the number of available returns in the 

period and the accumulative demand from period i to period � , i.e. 

),min( 1 �ii

u

i

r

i DRyQ += − . 

Proof. The proof is straightforward from Definition 2 applied to the pair of periods 

),( �i .  

�

  

The multi-period case 

We now consider the problem of finding the remanufacturing quantities of a 
remanufacturing plan of perfect cost with at least two periods fixed as positive-
remanufacturing periods. We first note that the amount to be remanufactured in a 
certain period depends in part of the remanufactured quantity in previous periods as 
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well as affects the amount to be remanufactured in future periods. Then, it may not be 
possible to determine efficiently the optimal remanufacturing quantity for each 
period, even under the assumptions introduced in the previous section. In view of this 
difficulty, we focus on the problem of determining the total quantity of a 
remanufacturing plan of perfect cost assuming that the periods with strictly positive 
remanufacturing quantity are known in advance. Before tackle this problem, we 
provide a result about the form of the remanufacturing plan of perfect cost for a 
particular case. 

Proposition 2. Consider an ELSR instance for which the number of available returns 
in a certain period i fixed as a positive-remanufacturing period is sufficient to fully 

cover the demand until the end of the planning horizon, i.e., iT

u

ii DyR ≥+ −1 , 0>ir , 

with Ti ≤≤1 . If the optimal solution set is not empty, there is at least one optimal 
solution for which the total remaining demand from period i is satisfied only by 

remanufacturing from period i onwards, i.e., iTiT Dr = , with Tjirr
j

it

tij ≤≤≤=�
=

1, . 

Proof. Let us consider an optimal solution of the ELSR with 0>ir , iT

u

ii DyR ≥+ −1 , 

and iTiT Dr < . Then, the quantity 0)( >− iTiT rD  is satisfied by means of the 

production of new items. We can determine a new solution with iTiT Dr =  from the 

current solution as follows. First, for each period t with Tti ≤≤  and 0>tp , we 

replace the entire production in t by remanufacturing, i.e., tt pr ← , 0←tp . Note 

that the replacement operation is possible as we are assuming the returns are 

sufficient. Secondly, while iTiT Dr < , take the last period t with 0>tp  and it <≤1 , 

and transfer units of the production of period t to the remanufacturing of period i, until 

iTiT Dr =  or 0=tp . By (9) the cost of the new solution is at most equal to the cost of 

the original. Therefore, there must be an optimal solution of the ELSR for which 

iTiT Dr = , if 0>ir  and iT

u

ii DyR ≥+ −1  is complied.  

�

Proposition 2 helps us to identify the form of a remanufacturing plan of perfect cost 
for the ELSR in the particular case that the number of available returns in a period 
fixed as positive-remanufacturing period is sufficient to meet all the remaining 
demand until the end of the planning horizon. We must note that if the amount of 
available returns in a certain period is sufficient to meet all the remaining demand but 
the period is not fixed as a positive-remanufacturing period, we cannot ensure the 
result above unless the period under consideration is the first one (see Richter and 
Sombrutzki [11]).  

We consider now the problem in general sense, i.e., no kind of relationship is assumed 
between the returns and the demand values. First, we provide the following 
definitions about the costs and the quantities of remanufacturing. 

Definition 3. We say that the remanufacturing costs are non-speculative with respect 
to the transfer when they satisfy the following expressions: 
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for any couple of period i and j in T,...,1 . 

Expression (11.1) states that it is profitable to transfer the entire remanufacturing 
quantity from certain period to other future period that was inactive, while (11.2) 
states that it is profitable transfer forward at least one unit between two periods with 
positive remanufacturing. We note that expressions given in (11) are fulfilled in 
different settings of practical interest, e.g., when all the costs involved are stationary 
or they do not increase over time.  

Definition 4. Given an ELSR instance with a set of periods fixed as positive 
remanufacturing periods and a feasible remanufacturing plan r, we define the upper 

bound of remanufacturing of a certain period i to the quantity 0=iu  if 0=ir  and 

),min( )1()1( −−+= ji

u

iii DyRu  if 0>ir , where j is either the next positive-

remanufacturing period within the planning horizon, or )1( +T  if i is the last positive-

remanufacturing period, i.e., 0=tr  for all periods t in Ti ),...,1( + . 

Proposition 3. Given an ELSR instance, there is at least one optimal solution for 
which the remanufacturing quantity of each period is at most equal to its upper bound 

of remanufacturing, i.e., tt ur ≤≤0 , for all periods Tt ,...,1= . 

Proof. Without loss of generality, consider an optimal solution of an ELSR instance 

with only one period i for which ),min( )1( −+=> ji

u

iiii DyRur  and 0>jr  with 

Tji ≤≤≤1 . First we note that the case u

iii yRu +=  is not feasible since the 

remanufacturing quantity is greater than the amount of available returns. Now 

consider the case that )1( −= jii Du . Then, by (11) we can obtain a new solution with at 

most the same cost than the original by transferring remanufactured units from period 

i to the consecutive period j with 0>jr , until )1( −= jii Dr  in the new solution. 

Therefore, an optimal solution for the same ELSR instance for which tt ur ≤  can be 

obtained, for all periods Tt ,...,1= . 

�

Proposition 3 states that the remanufacturing quantity of a certain period is upper 
bounded by the minimum between the number of available returns and the 
accumulative demand until the period preceding the next period with positive 
remanufacturing. We note that the upper bound value of certain period depends on the 
remanufacturing quantities of the previous periods. In addition, it may not be possible 
to determine how close or how far to its upper bound is the remanufacturing quantity 
of a certain period in an optimal solution of the ELSR. Despite these facts, the upper 
bound of remanufacturing allows us to determine the total remanufacturing quantity 
of a remanufacturing plan of perfect cost, as we show in the following proposition.  

(11.1) 

(11.2) 
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Proposition 4. Consider an ELSR instance with a set of periods F fixed as positive-
remanufacturing periods such as for any pair of consecutive periods i and j of F, the 

Definition 2 is fulfilled for any pair of meaningful periods, i.e., pairs ),( ti  with 

Fi ∈ and t the last period before j for which at least a portion of its demand is 

attainable by remanufacturing in i with jti <≤ . Then consider the remanufacturing 

plan r  obtained by remanufacturing in each period the amount given by the upper 

bound of remanufacturing applied in ascending order, i.e., tt ur = , assuming that 

)1()1(2211 ,...,, −− === tt ururur , for all periods Tt ,...,1= . Then, there is an optimal 

solution with a remanufacturing plan *r  for which TT rr 1

*

1 = , where �
=

=
j

it

tij rr **  and 

�
=

=
j

it

tij rr , with Tji ≤≤≤1 . 

Proof. We note that by Proposition 3 and Definition 4, there must be that TT rr 1

*

1 ≤ . 

Without loss of generality, let us assume that 11

*

1 −= TT rr . Then, there exists a period 

i, with Ti ≤≤1 , for which 10 * −=< ii rr , )1(1

*

)1(1 −− = ii rr  and u

i

u

i yy )1(

*

)1( −− = . This means 

that the upper bound of remanufacturing of period i is the same for both 

remanufacturing plans under consideration, with iii rur =<< *0 . We also note that 

1* ≥u

ty  is fulfilled for all periods Tit ,...,= . Therefore, we can obtain a new feasible 

solution for the same ELSR instance with at most the same cost by increasing the 

remanufacturing in period i in one unit, i.e. 
iii

rrr =+← 1** , without affecting the 

remanufacturing of the future periods and in the meantime by reducing the production 

of a certain period j in T,...,1 . This new solution fulfills that TT rr 1

*

1 =  and its cost is at 

most the same than the cost of the original optimal solution as we are assuming that to 
maximize the remanufacturing quantity of the periods with positive remanufacturing 
is profitable according to Definition 2.  

�

Proposition 4 states that in order to determine a remanufacturing plan of perfect cost 
for an ELSR instance with certain periods fixed as positive-remanufacturing periods, 
we only need to explore those remanufacturing plans for which the total 
remanufacturing quantity is equal to the sum of the upper bounds of remanufacturing. 
These values can be determined efficiently (linear time) by applying Definition 4 
period by period, beginning with the first period fixed as positive-remanufacturing 
period. We show the usefulness of Proposition 4 through the following numerical 
example. 

A numerical example 

Consider an ELSR instance with T = 5, a demand vector )5,4,6,3,5(=D  and a returns 

vector )3,2,2,2,3(=R , where the periods 2, 4 and 5 are fixed as positive 

remanufacturing periods. The cost values are as follows: 200=p

t
K , 20=p

tc , 

150=r

tK , 15=r

tc , 100=d

tK , 10=d

tc , 5=s

th  and 2=u

th , with 51 ≤≤ t . Note that the 
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remanufacturing is profitable according to Definition 2 for all the meaningful pair of 
periods, i.e., (2,3), (4,4) and (5,5). Applying Definition 4 we have that the total 
remanufacturing quantity is 12, since the upper bounds of remanufacturing obtained 

sequentially are )3,4,0,5,0(=u . Table 1 below provides the candidate 

remanufacturing plans that we must consider in order to determine the 
remanufacturing plan of perfect cost for the ELSR instance. 

t D R r

1 5 3 0 0 0 0 0 0 

2 3 2 5 5 5 4 4 3 

3 6 2 0 0 0 0 0 0 

4 4 2 4 3 2 4 3 4 

5 5 3 3 4 5 4 5 5 

Table 1. Candidate remanufacturing plans. 

These candidate plans were obtained by assigning to each period the maximum 
quantity according to its upper bound, and then transferring unit by unit from period 4 
to period 5, and from period 2 to period 4. The last column of Table 1 in bold 
corresponds to the remanufacturing plan of perfect cost. The corresponding 

production and final dispose plans of the optimal solution are )0,0,0,11(=p  and 

)0,0,0,0(=d , respectively. 

Effectiveness of the upper bound of remanufacturing

In Piñeyro and Viera [9] a basic Tabu Search based-on procedure (BTS) was 
suggested and evaluated for the ELSR. The procedure receives among other 
parameters, an initial (0,1) T-tuple, where a value of 1 in position t indicates that 
remanufacturing is allowed to be positive in period t, otherwise it must be zero. The 
procedure explores different remanufacturing plans by means of swapping the periods 
where remanufacturing can be positive. The remanufacturing quantity of each period i
fixed as positive-remanufacturing period is equal to the minimum between the 
number of available returns in i and the accumulative demand from i to the period 
preceding the next period j with positive remanufacturing, i.e., the upper bound of 
remanufacturing of Definition 4. The BTS procedure was tested for a wide range of 
return-demand relationships, cost settings, and planning horizon lengths of 5, 10 and 
15 periods. For all of the tested cases the BTS showed a very good behavior (less than 
2% of average gap between the cost of the solution obtained from BTS and the cost of 
the optimal solution), finding in many instances the optimal solution.  

The good performance observed for the BTS procedure can be explained in part by 
the theoretical results provided in this paper about the quantities of the 
remanufacturing plan of perfect, at least for those cases where the conditions of 
Definitions 1 to 3 are fulfilled. In this sense we note that for the numeric experiments 
of the BTS procedure of Piñeyro and Viera [9] it is assumed that the costs of the 



-49- 

returns are at most equal to the costs of the new items according to expression (9) of 
Definition 1. In addition, horizon planning lengths of 5, 10 and 15 are used, thus it can 
be assumed that the conditions of Definition 2 and Definition 3 are fulfilled in many 
of the tested instances. On the other hand, for those cases where the conditions are not 
fulfilled, may be that the upper bound of remanufacturing is not a good option which 
in turn explains why the BTS procedure is not able to achieve high quality solutions 
for some of the tested instances, e.g. when the positive-remanufacturing periods are 
widely separated or the holding costs of serviceable items are relatively greater. 

Conclusions and future research 

In this paper we have addressed the problem of determining the quantities of the 
remanufacturing plan of perfect cost for the economic lot-sizing problem with 
remanufacturing (ELSR) assuming that the periods where remanufacturing is strictly 
positive are known in advance and that it is profitable to remanufacture as much as 
possible in a period fixed as positive remanufacturing period. Thus, we are able to 
determine the optimal remanufacturing quantity for the particular case of only one 
period fixed as positive-remanufacturing period. We also note that the problem of 

finding the optimal period for remanufacturing can be solved in )( 3TO  time. For the 

general case of more than one period fixed as positive-remanufacturing period, we 
note that it may not be possible to determine the optimal remanufacturing quantity for 
each one of them in an effective-time way. Nevertheless, we show that the total 
remanufacturing quantity of an optimal solution can be determined as the sum of the 
upper bounds of remanufacturing, assuming also that the remanufacturing costs are 
non-speculative respect to the transfer, i.e., remanufacturing occurs as late as possible. 
The upper bounds of remanufacturing can be computed period by period in a linear 
time way as the minimum between the number of available returns and the 
accumulative demand from the current period to the period preceding the next period 
with positive remanufacturing. The theoretical results obtained about the quantities of 
a remanufacturing plan of perfect cost serve to explain the effectiveness of the Tabu 
Search based-on procedure suggested in Piñeyro and Viera [9] for the ELSR. 

More attention should be placed in the future on the problem of determining the 
quantities of the plan of perfect cost in an independent way by relaxing some of the 
assumptions imposed in this paper. More specifically, on identifying situations in 
which it is desirable to maximize the remanufacturing, even if the condition of 
Definition 2 is not fulfilled. In addition, the problem of determining the periods with 
positive remanufacturing should be tackled. In this sense, we can resort to the Useful 
Remanufacturing Problem (URP) introduced in Piñeyro and Viera [9]. The URP 
refers to the problem of determining the useful remanufacturing plan that minimizes 
the involved costs and maximizes the use of the returns. Then, we can assume that the 
positive periods of a useful remanufacturing plan are close to the positive periods of a 
remanufacturing plan of perfect cost. We may include also different demand streams 
for new and remanufactured items, as in Piñeyro and Viera [10]. 

Acknowledgements  

This work was supported by PEDECIBA, Uruguay. The authors thank the anonymous 
referees for their suggestions. 



-50- 

References 

1. de Brito MP, Dekker R: Reverse Logistics – a framework. Econometric Institute 
Report EI 2002-38, Erasmus University Rotterdam, Netherlands 2002. 

2. Golany B, Yang J, Yu G: Economic Lot-sizing with Remanufacturing Options.

IIE Transactions 2001, 33: 995-1003.  

3. Guide Jr VDR: Production planning and control for remanufacturing: 

industry practice and research needs. Journal of Operations Management 2000, 
18: 467-483. 

4. Gungor A, Gupta SM: Issues in environmentally conscious manufacturing and 

product recovery: a survey. Computers & Industrial Engineering 1999, 36: 811-
853. 

5. Helmrich M, Jans R, van den Heuvel W, Wagelmans APM: Economic lot-sizing 

with remanufacturing: complexity and efficient formulations. Econometric 
Institute Report EI 2010-71, Erasmus University Rotterdam, Netherlands, 2010. 

6. Hormozi, AM: The Art and Science of Remanufacturing: An In-Depth Study.

34th Annual Meeting of the Decision Sciences Institute, Washington D.C., 
November 22-25 2003. 

7. Ijomah W: A model-based definition of the generic remanufacturing business 

process. PhD dissertation, The University of Playmouth, United Kindom, 2002. 

8. Nenes G, Panagiotidou S, Dekker R: Inventory control policies for inspection 

and remanufacturing of returns: A case study. International Journal of 

Production Economics 2010, 125: 300-312. 

9. Piñeyro P, Viera O: Inventory policies for the economic lot-sizing problem 

with remanufacturing and final disposal options. Journal of Industrial and 

Management Optimization 2009, 5: 217-238. 

10. Piñeyro P, Viera O: The economic lot-sizing problem with remanufacturing 

and one-way substitution. International Journal of Production Economics 2010, 
124: 482-488. 

11. Richter K, Sombrutzki M: Remanufacturing Planning for the Reverse 

Wagner/Whitin Models. European Journal of Operational Research 2000, 121: 
304-315. 

12. Richter K, Sombrutzki M: The Reverse Wagner/Whitin Model with Variable 

Manufacturing and Remanufacturing Cost. International Journal of 

Production Economics 2001, 71: 447-456. 



-51- 

13. Teunter R, Bayındır Z, van den Heuvel W: Dynamic lot sizing with product 

returns and remanufacturing. International Journal of Production Research

2006, 44:4377-4400. 

14. van den Heuvel W: On the complexity of the economic lot-sizing problem with 

remanufacturing options. Econometric Institute Report EI 2004-46, Erasmus 
University Rotterdam, Netherlands, 2004. 

15. Wagner HM, Whitin TM: Dynamic Version of the Economic Lot Size Model.

Management Science 1958, 5: 89-96. 

16. Yang J, Golany B, Yu G: A Concave-cost Production Planning Problem with 

Remanufacturing Options. Naval Research Logistics 2005, 52: 443-458. 



-52- 

- ������	�	�
���	���
�
�����	������
����������	��
	�����
�

�
'�
����
	
���	��������������
��.���	����'
�����
�

���	�
�����

Pedro Piñeyro and Omar Viera 

Revised version of a paper published in Annals of CLAIO/SBPO 2013.  

Abstract. In this paper we analyze the economic lot-sizing problem with return 
options assuming that the periods where remanufacturing is allowed to be positive 
have been fixed in advance. We begin considering the case of only one period fixed 
and then we tackle the general case of more than one period fixed. For the single-
period case, we are able to derive an efficient time procedure for obtaining the 
optimal remanufacturing quantity under certain assumptions on the costs. For the 
multi-period case we show that the problem is NP-hard and suggest a recursive 
algorithm of pseudopolynomial time for solving the problem.

Keywords: Remanufacturing, Economic Lot-Sizing Problem, Inventory Control. 
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1. Introduction 

We consider an economic lot-sizing problem (ELSP) with return options for which 
the demand requests of the periods can be satisfied either by producing new items or 
by remanufacturing used items backed to the origin. More specifically, the economic 
lot-sizing problem with remanufacturing (ELSR) refers to the problem of determining 
the quantities to produce, remanufacture, and dispose in each period over a finite 
planning horizon in order to meet the demand requirements of a single item on time, 
minimizing the sum of the involved costs. Used products returned by the customers 
are available at each period for remanufacturing. In addition, the returns can be 
disposed off, e.g., when there is an overstock of used products. The ELSR has been 
receiving an increasing academic attention from late 90s as the industry has been 
involved with the recovery of used products due to governmental and social pressures 
as well as economic opportunities. Remanufacturing can be defined as the recovery 
process of returned products after which it is warranted that the remanufactured 
products offer the same quality and functionality that those newly manufactured 
(Ijomah, 2002). Remanufacturing tasks often involve disassembly, cleaning, testing, 
part replacement and reassembling operations. Products that are remanufactured 
include automotive parts, engines, tires, aviation equipment, cameras, medical 
instruments, furniture, toner cartridges, copiers, computers, and telecommunications 
equipment. Remanufacturing offers benefits for all of the parties involved. We refer 
the readers to de Brito and Dekker (2002), Guide (2000), Gungor and Gupta (1999), 
and Hormozi (2003) for detail descriptions about the remanufacturing benefits. 

The ELSP and extensions are well-studied problems in the literature (Karimi et al., 
2003; Brahimi et al., 2006; Toledo et al., 2007; Atamtürk and Küçükyavuz, 2008; 
Toso et al., 2008). According to our best knowledge, Richter and Sombrutzki (2000) 
and Richter and Weber (2001) are the first to consider the ELSP extension with return 
options, analyzing the particular case for which the number of returns in the first 
period are sufficient to satisfy the total demand over the planning horizon. Golany et 
al. (2001) suggest a Network Flow formulation for the ELSR and provide an exact 

algorithm of )( 3TO  time for the case of linear cost functions. They also show that the 

ELSR is a NP-hard problem for the case of general concave cost functions. Yang et 
al. (2005) and van den Heuvel (2004) extend this last result about complexity for the 
cases of stationary concave cost functions and set-up and unit costs for the activities 
and for holding inventory, respectively. Teunter et al. (2006) consider the ELSR with 
joint set-up costs for the production and remanufacturing activities, and suggest an 

)( 4TO  time algorithm based on a dynamic programming approach. Piñeyro and Viera 

(2009) suggest and compare several inventory policies for the ELSR using a divide-
and-conquer approach and a Tabu Search-based procedure. Piñeyro and Viera (2010) 
consider an ELSR extension with different demand streams for new and 
remanufactured items where in addition substitution is allowed for remanufactured 
items but not viceversa. Nenes et al. (2010) provide an analysis of the ELSR taking 
into account the quality of the returns and Retel-Helmrich et al. (2014) provide and 
compare different mathematical formulations for the ELSR with separate and joint 
set-up costs for the activities. They show that the ELSR with joint set-up costs is also 
NP-hard. 

The analysis presented in this paper is motivated by the following facts. The 
remanufacturing plan plays a key-role in the ELSR resolution, as it was noted in 



-54- 

Piñeyro and Viera (2009). If the remanufacturing plan is known, the optimal 
production and final disposing plans can be obtained by solving independent ELSP 

problems, which can be solved in at most )( 2TO  time (Wagner and Whitin, 1958; 

Zangwill, 1968). Thus, the ELSR can be reduced to the problem of determining the 
remanufacturing plan of an optimal solution, which is referred as the problem of 
determining the remanufacturing plan of perfect cost. Piñeyro and Viera (2012) 
consider the problem of determining the quantities of the remanufacturing plan of 
perfect cost assuming that the periods with strictly positive remanufacturing are 
known in advance and that it is profitable to maximize the remanufacturing quantity 
in the periods fixed. Thus, they show that the total remanufacturing quantity of an 
optimal solution of the ELSR with fixed periods for positive-remanufacturing can be 
obtained in linear time and claim that is unlikely that we can determine the exact 
amount for each one of the periods fixed as positive-remanufacturing period by means 
of an efficient-time procedure. Here, we analyze this last problem relaxing some of 
the assumptions of this previous work. Besides the academic motivation exposed 
above, we note that there can be real situations for which it makes sense to restrict the 
periods where remanufacturing can be carried out, e.g., operative reasons if the 
machinery and workers are the same for production and remanufacturing operations; 
availability of used items only in certain periods; or economic reasons due to periods 
with remanufacturing at low cost. 

In this paper we consider the ELSR with fixed periods for remanufacturing in a more 
broad sense that in Piñeyro and Viera (2012) of Chapter 6. First, the remanufacturing 
quantity in the periods fixed can be either zero or positive in contrast to Piñeyro and 
Viera (2012), in which the remanufacturing quantity in the periods fixed is assumed 
strictly positive. Second, some of the assumptions on the costs are relaxed in this 
paper. We provide an efficient-time algorithm for the case of only one period fixed 
and we show that the multi-period case of the problem is NP-hard. In addition, we 
suggest a recursive algorithm for the general case of the ELSR-F of 
pseudopolynomial time which can be time-effective in practice if either the number of 
periods where remanufacturing is allowed or the number of total returns is small. 

The remainder of the paper is organized as follows. Section 2 introduces the notation 
used through the paper and the mathematical formulation for the problem. In Section 
3 we analyze the single-period case of the problem and provide an efficient-time 
algorithm for determining the optimal remanufacturing quantity of the fixed period. In 
Section 4 we present the NP-hard result for the multi-period case and we suggest a 
pseudopolynomial time algorithm for solving the problem in the general case. Section 
5 concludes the paper. 

2. Notation and mathematical formulation 

We consider the ELSR with T periods, with ∞<< T0 . Demand and return values are 

denoted by 
t

D  and
t

R  for each period Tt ,...,1= , respectively; p

t
K , r

t
K , d

t
K , p

t
c , 

r

t
c and d

t
c  denote the set-up and unit costs for production, remanufacturing and final 

disposing in periods Tt ,...,1= , respectively; s

t
h and u

t
h , denote the unit cost of 

holding inventory for serviceable and used products in periods Tt ,...,1= , respectively. 

In addition, TF 2∈  denote the set of periods for which the remanufacturing is allowed 
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to be positive, i.e., 0≥
t

r  if and only if Ft ∈ , 0=
t

r  otherwise. We also denote by 
ij

D , 

ij
R , 

ij
p , 

ij
r , and 

ij
d  the accumulative demand, returns, production, remanufacturing 

and disposing quantities between periods i and j, with Tji ≤≤≤1 , respectively. The 

objective is to determine the values for the decision variables 
t

p , 
t

r  and 
t

d  of 

producing,  remanufacturing  and final disposing  at each period Tt ,...,1= , 

respectively, and for holding inventory of serviceable and used items s

t
y  and u

t
y , 

respectively, minimizing the sum of all the involved costs. We refer to this problem as 
the ELSR with Fixed periods for remanufacturing (ELSR-F).  

The ELSR-F can be modeled as a Mixed Integer Linear Programming (MILP) 
problem. The model (1) – (9) below is similar to that given in Golany et al. (2001), 
Yang et al. (2005) and Piñeyro and Viera (2009) for the ELSR, except by constraint 
(8) which is introduced in order to indicate the periods where remanufacturing is not 
allowed to be positive. 
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Where M is a big number at least as large as },max{ 11 TT
RD . We note that the ELSR-F 

can be considered as an extension of the traditional ELSR, if we consider the case in 

which TF = , and then it is NP-hard in general (van den Heuvel, 2004). As we will 

discuss in the following sections, the problem of determining the optimal 

remanufacturing quantity for the case that 1=F can be solved in polynomial time and 

the NP-hard result remains valid for those cases for which TF <<1 . 

3. The single-period case 

In this section we address the problem of determining the remanufacturing quantity of 
the ESLR with only one period i fixed as positive remanufacturing period, with 

Ti ≤≤1 . We refer to this problem as ELSR-{i}. According to our best knowledge, the 

first to tackle this problem were Piñeyro and Viera (2012) for the case that it is 
profitable to maximize the remanufacturing quantity in the period fixed and assuming 
that at least one unit of used items is remanufactured. Here we relax these 
assumptions. The remanufacturing quantity in the period fixed can be either zero or a 
positive quantity. In addition, we only consider that remanufacturing is profitable 
according to the conditions given in the following assumption, used also in van den 
Heuvel (2004) and Piñeyro and Viera (2012). 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 

(7) 

(1) 

(9) 
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Definition 1. We say that the costs of the returns are at most equal to the costs of the 
new items when the expressions below are fulfilled by the cost components: 

,p

j

r

i
KK ≤

,p

j

r

i
cc ≤

,s

j

u

i
hh ≤

for any couple of periods i and j in T,...,1 . 

Consider first the case that the number of available returns in period i is at most equal 

to the demand of the period, i.e., i

u

ii DyR ≤+≤ −10 . Then, assuming that the 

conditions of Definition 1 are fulfilled, the optimal remanufacturing quantity is either 

0=ir or u

iii
yRr 1−+= . On the other hand, if the number of available returns is greater 

than the demand requirement of the period, we must determine the last period j within 
the planning horizon for which it is more profitable to satisfy its demand by 
remanufacturing in period i rather than by producing in period j or in a previous 

period t, with Tji ≤≤≤1  and Tjt ≤≤≤1 .The following result is about the 

profitability of remanufacturing in an optimal solution of the ELSR-{i}. 

Proposition 1. Consider an ELSR-{i} instance. If it is profitable to meet one unit of 
the demand of certain period j by remanufacturing in i, then it is profitable to satisfy 
as much as possible the demand of period j by remanufacturing in period i, with 

Tji ≤≤≤1 . 

Proof. Without loss of generality, consider an ELSR-{i} instance with 2≥
j

D  and a 

solution for which u

iijii
yRDr 1)1( 1 −− +<+= , with Tji ≤≤≤1 . We note that the 

remaining demand of period j is satisfied by producing only in certain period t, with 

Tjt ≤≤≤1 . In addition, if it is profitable to meet one unit of the demand of period j

by remanufacturing in period i rather than by producing in period t, then the 

expression ��
−

=

−

=

+≤+
)1()1( j

t

sp

t

j

it

sr

i hchc
τ

ττ  must be fulfilled. Therefore, for each unit that we 

increase the remanufacturing quantity at period i for satisfying the demand of period j, 

we are reducing the cost of the current solution in at least 0
)1()1(

≥−−+ ��
−

=

−

=

j

t

sr

i

j

it

sp

t hchc
τ

ττ

and then we obtain a new solution which fulfills that as much as possible of the 
demand of period j is satisfied by remanufacturing in period i. We note that the 
analysis above is also valid for the case that there is a period k of positive final 

disposing after period i, with Tki ≤≤≤1 . 

�

Proposition 1 means that in order to determine the optimal remanufacturing quantity 
for the only period i of the ELSR-{i} we must consider the periods one by one from 
period i onwards until we find a period j for which either it is not profitable to meet at 
least one unit of its demand requirement by remanufacturing at period i, or the returns 

(10.1) 

(10.2) 

(10.3) 
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in period i has been exhausted. Having this result in mind we provide in Figure 1 a 
pseudocode of a procedure for solving the ELSR-{i}. 

Figure 1. Pseudocode of an algorithm for solving the ELSR-{i}. 

In the pseudocode above ),,( drps =  makes reference to the ELSR solution s with a 

production plan p, remanufacturing plan r, and final disposing plan d, respectively. 

We note that the case 0=α  is for taking into account the case where no 
remanufacturing is the optimal decision. Procedure ELSP_solver of lines 02 and 10 
can be implemented by any of the well known algorithms for solving the ELSP like 
the O(T 2) time algorithm of Wagner and Whitin (1958) or faster algorithms of 
O(TlogT) time of Federgruen and Tzur (1991), Wagelmans et al. (1992) or Aggarwal 
and Park (1993). 

We analyze now the computational complexity of the procedure of Figure 1. First we 

note that we must consider at most )1( +− iT  periods if the period i is fixed as the 

single period with positive remanufacturing of the ELSR. Then, the worst case is 1=i

since we must consider T different periods. For each period under consideration we 
need to compute the optimal production and final disposing plans in order to obtain 
the ESLR solution, solving two independent ELSP instances. We also assume that the 
time for computing the cost of an ELSR solution can be neglected. Therefore, the 
ELSR-{i} can be solved in O(T 3) time if the algorithm of Wagner and Whitin (1958) 
is used or in O(T 2logT) time if faster algorithms are used for the ELSP like the 
algorithms of O(TlogT) time mentioned above. We also note that the optimal single 
period for remanufacturing of an ELSR instance can be computed in O(T 4), or  

01. Ttrt ...1,0 =∀=

02. )r(ELSP_solve),( rdp =

03. ),,( drps =

04. u

ii
yR 1−+=α

05. it =

06. 0stop =

07. do 0stop and and 0while =≤≥ Ttα

08. ),min(
iti

Dr α=

09. )r(ELSP_solve),( rdp =

10. )cost(  ),,cost( if sdrp <

11. ),,( drps =

12. 
i

r−= αα

13. 1+= tt

14. else

15. 1stop =

16. endif

17. enddo

18. sreturn 
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O(T 3logT) time if faster algorithms are used for solving the ELSP subproblems, since 
we must consider each one of the T different periods. 

4. The multi-period case 

In this section we consider the ELSR-F with more than one period fixed as positive-

remanufacturing period, i.e. TF ≤<1 . We note that the remanufacturing quantity in 

the periods fixed can be either zero or positive. We begin analyzing the computational 

complexity of the problem. As we noted in Section 2, the case TF =  (i.e. all the 

periods are fixed as positive-remanufacturing periods) is equivalent to the traditional 
ELSR, and then it is NP-hard for the same cases. We show below that the problem 

remains NP-hard for the case TF <<1 ,  i.e. the case with at least one period that is 

not fixed as positive-remanufacturing period. Secondly, we suggest a recursive 
algorithm for solving the ELSR-F in the general case of the number of periods fixed 
as positive-remanufacturing periods.  

Proposition 2. The ELSR-F with TF <<1 , is NP-hard. 

Proof. We prove the proposition by showing that a particular instance of the ELSR-F 
is at least as hard to solve as an ELSR instance which is known an NP-hard problem. 

Consider a particular ELSR-F instance of T periods, with TF <<1 . Let i be the first 

period in F, i.e., }:min{ Ftti ∈= . Then define the components of this particular 

instance as follows: 

• 0==
tt

RD  if Ft ∉ . 

• +∞=s

t
h if it <≤1 . 

• 0=s

t
h  if Tti ≤< and Ft ∉ . 

• 0=u

t
h if Ft ∉ . 

• +∞== p

t

p

t
cK  if Tti ≤< and Ft ∉ . 

• +∞== d

t

d

t
cK  for all t in Tt ≤≤1 . 

The rest of the demand, return and cost values, i.e. the values for the periods in F, are 
arbitrary except that we assume that the cost components satisfy the conditions of 
Definition 1. Thus, for any optimal solution of this particular ELSR-F instance, the 
demand requirements of the periods in F are satisfied only by the production and 
remanufacturing of the periods in F. Therefore, this particular instance of the ELSR-F

is equivalent to a traditional ELSR instance with a planning horizon length F  for 

which the demand, return and cost values are equal to the demand, return and costs 
values of the periods in F, taken in ascending order in the number of periods. Since 
solving the ELSR under the conditions of Definition 1 is NP-hard (van den Heuvel, 
2004), we can conclude that the ELSR-F is NP-hard. 

�
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4.1. An exact algorithm for the ELSR-F  

In this section we suggest a recursive algorithm for solving the ELSR-F in the general 
case based on the fact that the optimal plans of production and final disposing from a 
given remanufacturing plan can be obtained in polynomial time, since they can be 
formulated as traditional ELSP problems (Piñeyro and Viera, 2009). The algorithm 
receives five parameters: 1) the problem data denoted by P (planning horizon length, 
demand, return and costs values); 2) the set F of periods for remanufacturing; 3) the 
period i to consider; 4) the remanufacturing quantities determined to the moment and 
5) the best ELSR-F solution to the moment denoted by s. Thus, for the period under 
consideration, we determine the range of feasible remanufacturing quantities taking 
into account: 1) the remanufacturing quantities to the moment, 2) the number of 
available returns and 3) the accumulative demand from the current period onward. If 
the period under consideration is not the last one in F, we update the remanufacturing 
plan to the moment with the remanufacturing quantity of period i and call the 
algorithm for the next period of F in the planning horizon. Otherwise, if the period 
under consideration is the last one, we determine the corresponding optimal 
production and final disposing plans in order to obtain a new solution of the problem. 
If the cost of the new solution is less than the cost of the best solution to the moment, 
we replace the best solution by the new one. The algorithm begins with the first 

period (t = 1) and a zero remanufacturing plan ( 0...1 ===
T

rr ). Since the algorithm 

considers all the feasible remanufacturing plans, the solution obtained is optimal. A 
pseudocode of the algorithm for solving the ELSR-F is given in Figure 2. 

Figure 2. Pseudocode of an algorithm for solving the ELSR-F. 

The function last_period(F) of line 04 returns the greater period of F and the function 
next_period(F,i) of line 05 returns the minor period of F that is greater than i or zero 

otherwise. The above algorithm solves the ELSR-F in at most )},(min{ 2

11 TDRO
F

TT
⋅

time since there are most )},(min{ 11

F

TT
DRO  different remanufacturing plans, and for 

each one of them we must determine the optimal production plan and the optimal final 

),,,,(solve_ELSR sriFP

01. ),min( )1(11 iTiii
DrRu −−=

02. 
ii

ur   to0for =

03. 
i

rr ←

04. )(dlast_perio if Fi <

05. ),(dnext_perio iFj =

06. ),,,,(solve_ELSR srjFP

07. else

08. )r(ELSP_solve),( rdp =

09. )cost(  ),,cost( if sdrp <

10. ),,( drps =
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disposing plan solving two independent ELSP problems by means of the ELSP_solver 

procedure of Figure 1, which takes at most )( 2TO  time (Wagner and Whitin, 1958).  

The algorithm of Figure 2 can be applied for solving the traditional ELSR problem if 

we consider the ELSR-F with },..,1{ TF = . For the ELSR, Yang et al. (2005) provide a 

dynamic programming algorithm of ))()(},min{( 2

1

2

111 TTTT
DRDRTO ⋅⋅⋅  time. Although 

the order of complexity of our algorithm is worse than that of Yang et al. (2005), we 

note that it can be better for those cases in which F  is significantly less than T and/or 

the number of returns is significantly less than the number of demand requirements.  

5. Conclusions and future research 

In this paper we have analyzed the ELSR for which the periods where 
remanufacturing is allowed are known in advance. We refer to this problem as ELSR 
with fixed periods for remanufacturing (ELSR-F). For the case of only one period 
fixed as remanufacturing period, we derived a polynomial time procedure for 
obtaining the optimal remanufacturing quantity, assuming as it is common in the 
literature that the costs related to the used items are at most equal to the costs of new 
items. The procedure is based on the property that either zero or as much as possible 
of the demand of certain period must be satisfied by remanufacturing in the fixed 
period. We also note that the minor cost period for remanufacturing can be 
determined in polynomial time. For the general case of more than one period fixed as 
remanufacturing period, we showed that the problem is NP-hard even under particular 
structure on the costs. We provide a recursive algorithm of pseudopolynomial time 
that can be time-effective in practice if the number of total returns or the number of 
periods where remanufacturing is allowed is small. 
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Abstract. We investigate a lot-sizing problem with different demand streams for new 
and remanufactured items, in which the demand for remanufactured items can be also 
satisfied by new products, but not vice versa. We provide a mathematical model for 
the problem and demonstrate it is NP-hard, even under particular cost structures. With 
the aim of finding a near optimal solution of the problem, we suggest and evaluate a 
Tabu Search-based procedure. The numerical experiment carried out confirms the 
successful of the procedure for different cases.

Keywords: Economic Lot-Sizing Problem, Remanufacturing, One-way Substitution, 
Tabu Search. 
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1. Introduction 

The economic lot-sizing problem with remanufacturing and final disposal options 
(ELSR) refers to the problem of finding the quantities to produce, remanufacture, and 
dispose in each period over a finite planning horizon such that all demand 
requirements of a single item are satisfied on time, minimizing the sum of all the 
involved costs. The main difference with the traditional economic lot-sizing problem 
(ELSP) is that the demand can be also satisfied by recovering used items returned to 
the origin. Governmental and social pressures as well as economic opportunities have 
motivated many firms to become involved with the return of used products for 
recovery (Gungor and Gupta, 1999; Guide, 2000; Fleischmann, 2001; Brito and 
Dekker, 2002). Remanufacturing can be defined as the recovery of returned products, 
after which the products are as good as new (Gungor and Gupta, 1999; Hormozi, 
2003). Remanufacturing tasks often involve disassembly, cleaning, testing, part 
replacement or repairing, and reassembling operations. Products that are 
remanufactured include automotive parts, engines, tires, aviation equipment, cameras, 
medical instruments, furniture, toner cartridges, copiers, computers, and 
telecommunications equipment. 

However, possible downgrading in the remanufactured products may cause that they 
are offered at an inferior market price than the new ones, i.e. they are not identical 
from the consumer’s viewpoint. Then, it makes sense to assume different demand 
segments for remanufactured and new items. Industrial applications where segmented 
market for new and remanufactured occurs include photocopiers, tires and personal 
computers (Ayres et al., 1997; Ferrer, 1997b; Maslennikova and Foley, 2000; 
Inderfurth, 2004). Since the demand requirements must be fulfilled on time, the case 
where the available returned items in a certain period are not sufficient to meet the 
demand requirements for remanufactured products must be considered. To address 
this problem, a manufacturer’s market strategy is to allow substitution of 
remanufactured products by new ones, possibly maintaining the selling price of the 
remanufactured products in order to avoid losing potential customers (Bayindir et al., 
2007; Inderfurth, 2004). Thus, we can consider the substitution necessary rather than 
desirable. On the other hand, as we will see further in a numeric example of Section 
3.1, allowing substitution can result in cost savings, even when the returns are 
sufficient to fulfill the requirements of remanufactured products in any period and the 
remanufacturing costs are favorable. As it is noted by Inderfurth (2004), when 
manufacturing and remanufacturing processes are sharing common manufacturer 
resources and/or the different markets are interconnected by substitution, it is 
necessary to coordinate manufacturing and remanufacturing decisions. 

In this paper we investigate the economic lot-sizing problem with products returns 
under the circumstances described above, i.e., two independent demand streams for 
new and remanufactured items, and where the substitution for the remanufactured 
items is allowed but not vice versa. We refer to this problem as the Economic Lot-
Sizing Problem with Remanufacturing and Final Disposal options and one-way 
Substitution (ELSR-S). We provide a mathematical model for the problem and show 
it is NP-hard, even under stationary cost parameters. We also show that in order to 
effectively solving the ELSR-S, we can apply a divide-and-conquer approach 
determining first the remanufacturing and substitution quantities at each period. 
Considering this last result, we suggest a Tabu-Search-based procedure for solving the 
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ELSR-S that can be considered as an extension of that presented in Piñeyro and Viera 
(2009) for the traditional ELSR, i.e. when substitution is not allowed. To the best of 
our knowledge, this is the first time that a metaheuristic, and in particular the Tabu 
Search, is used for solving this kind of problem.  

The remainder of this paper is organized as follows. Section 2 is devoted to the 
literature review. In Section 3 we provide the problem definition and the respective 
mathematical model. We also present an analysis of the relevance that the 
remanufacturing plays in the ELSR-S resolution and certain effects of the substitution 
in its determination. In Section 4 we present the Tabu Search procedure suggested for 
solving the ELSR-S. The computational analysis is provided in Section 5. Finally, 
Section 6 is devoted to our conclusions and several directions for future research. 

2. Literature review 

To the best of our knowledge, the first to study a deterministic and dynamic 
inventory-system with product returns are Richter and Sombrutzki (2000). They 
provide an extension to the well-known algorithm of Wagner and Whitin (1958) for 
the particular case that the number of returns in the first period is sufficient to satisfy 
the total demand over the planning horizon. In Richter and Weber (2001), the 
previous work is extended for including variable costs. The same problem with less 
restrictive assumptions in the returns flow is analyzed in Golany et al. (2001). They 
introduce a Network Flow formulation for the problem and demonstrate that it is NP-
hard for the case of general concave cost functions. They also provide an exact 
algorithm of O(T 3) for the case of linear function costs. The NP-hard result is 
extended in Yang et al. (2005) for the case of stationary concave cost functions, and a 
heuristic procedure of O(T 4) is proposed for the ELSR. Finally, van den Heuvel 
(2004) demonstrates that the problem is NP-hard in the particular case that the cost 
functions are composed of both setup and variable costs for the activities and variable 
cost for the holding inventory. This last result is valid even when the setup and 
variable costs are stationary. Teunter et al. (2006) suggest several heuristics for the 
economic lot-sizing problem with the remanufacturing option (final disposal is not 
considered). Two versions of the problem are analyzed: with joint and separate setup 
costs for production and remanufacturing, respectively. For the case of joint setup 
costs, an algorithm of O(T 4) time based on a dynamic programming approach is 
provided. For the other case, the authors “conjecture that the problem with separate 
set-up costs is NP-hard”. Finally, Piñeyro and Viera (2009) propose and evaluate a set 
of inventory policies specially designed for the ELSR, under the assumption that 
remanufacturing used items is more suitable than disposing of them and producing 
new items. In addition, a Tabu Search based-on procedure for the problem is 
developed. The policies as well as the Tabu Search procedure are based on the divide 
and conquer principle and exploiting the key role that remanufacturing plays in the 
ELSR resolution. 

We also note that the continuous review version of the inventory problem with 
product returns has been received a lot of attention. Relevant and recent works 
examples are as follow. Minner and Kleber (2001) determine optimally conditions for 
a continuous time model along with an algorithm tested under different return 
scenarios. In Teunter (2004) new and simple formulas are derived for determining the 
optimal lot sizes of production and recovery. He also presents a detail analysis of 
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different policies. Minner and Lindner (2004) analyze the continuous review 
inventory system with returns, showing for example that a policy with non-identical 
lot sizes may be better than those with identical lot sizes. In addition, more realistic 
and complex situations have been considered recently. Examples are the papers of 
Konstantaras and Papachristos (2006) and Pan et al. (2009). They analyze the 
inventory problem with returns allowing demand backlogging and considering 
capacity constraints, respectively. However, substitution is not allowed. 

Since the ELSR is a relatively new problem, the works dealing with both 
remanufacturing and substitution are very scarce. Inderfurth (2004) suggests and 
analyzes a profit model for the single-period hybrid manufacturing/remanufacturing 
system with product substitution. Optimal policies are derived for the problem taking 
into account different initial inventory values, costs configurations and positive lead-
times values. Bayindir et al. (2005) and Bayindir et al. (2007) propose profit models 
in order to investigate the effect of substitution on the optimal utilization of 
remanufacturing option under capacity constraint. Several observations and 
managerial insights are derived for the numerical experiment carried out by the 
authors. A multi-product version of the problem tackled in this paper is study by Li et 
al. (2006), without considering the final disposal of used items and without distinction 
among produced and remanufactured items. They provide a dynamic programming 
approach to obtain the optimal solution for the particular case of large quantities of 
returned products. Based on this approach, an approximate procedure is suggested for 
the general case of O(TQ) time, where T is the number of periods and Q the number 
of products. A detailed analysis of the procedure is reported, considering also the 
effect of the substitution. 

The main contribution of this paper is to analyze a deterministic and dynamic 
inventory-system with product returns and one-way substitution, considering 1) multi-
period, 2) no special constraints about the returns flow, 3) different storages for 
produced and remanufactured items, and 4) the final-disposal option. 

3. Problem definition 

We investigate a single-item economic lot-sizing problem with remanufacturing and 
final disposal options and different demand streams for new and remanufactured 
products, where in addition the requirements for the remanufactured items can be also 
satisfied by new items, but not vice versa (i.e. one-way substitution). Figure 1 shows a 
sketch of the flow of items for this inventory system. 

FIGURE 1. Flow of items in the system 
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We assume that the demand and return values are known in advance for each period 
over the finite planning horizon of long T > 0, and no relationships are assumed 
among them. Two different demand streams are considered. One of them is for new 
items, and the other for remanufactured items. This means that new and 
remanufactured items are not identical for the consumer’s viewpoint. It is also 
assumed that the customer accepts substitution, i.e. the demand for remanufactured 
items can be satisfied by remanufacturing used items returned to origin and/or 
producing new ones. Backlogging demand is not allowed for both new and 
remanufactured items. Infinite capacity for producing, remanufacturing and disposing 
is assumed. Nevertheless, we note that the sum of the remanufacturing and final 
disposal quantities in a certain period is bounded by the amount of used items 
available in that period. The producing, remanufacturing, and final disposal lead-
times are assumed to be zero. The inventory level in a certain period for used, 
remanufactured or new products is determined at zero-time and after all activities. 
When a positive amount is produced, remanufactured, or disposed in a certain period, 
set-up and unit costs are incurred for each activity. When substitution occurs in a 
certain period unit costs are incurred. In the meantime, holding costs are incurred for 
carrying ending positive inventory from one period to the next. All decisions occur at 
the beginning of the period and all values of the problem (i.e. demands, returns, and 
components of the cost functions) are assumed to be non-negative, dynamic, and 
independent. Finally, we assume that 1) all initial stocks are zero and 2) there is at 
least one type of demand with a positive requirement in the first period. The objective 
is to determine the amounts to produce, remanufacture, and dispose for each period in 
the planning horizon such that all demand requirements are satisfied on time, 
minimizing the sum of all the involved costs. We use the following notation for the 
problem throughout the remainder of the paper.

• 0>T : Long planning horizon, with T < +∞. 

• 0≥tDP : Number of new items demanded in period t, with 1 ≤ t ≤ T. 

• 0≥ijDP : Accumulated demand of new items between periods i and j, with  

1 ≤ i ≤ j ≤ T. 

• 0≥tDR : Number of remanufactured items demanded in period t, with 1 ≤ t ≤

T. 

• 0≥ijDR : Accumulated demand of remanufactured items between periods i and 

j, with 1 ≤ i ≤ j ≤ T. 

• 0≥tR : Number of used items returned in period t, with 1 ≤ t ≤ T. 

• 0≥ijR : Accumulated returns between periods i, j with 1 ≤ i ≤ j ≤ T. 

• 0≥tp : Number of items produced in period t, with 1 ≤ t ≤ T. 

• 0≥tr : Number of items remanufactured in period t, with 1 ≤ t ≤ T. 

• 0≥ijr : Accumulated remanufacturing quantity between periods i and j, with  

1 ≤ i ≤ j ≤ T. 

• 0≥td : Number of items disposed in period t, with 1 ≤ t ≤ T. 

• 0≥p

ty : Inventory level of new items during period t, with 1 ≤ t ≤ T. 

• 0≥r

ty : Inventory level of remanufactured items during period t, with  

1 ≤ t ≤ T. 

• 0≥u

ty : Inventory level of used items during period t, with 1 ≤ t ≤ T. 
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• 0≥ts : Number of remanufactured items satisfied by substitution in period t, 

with 1 ≤ t ≤ T. 

• 0>p

tK : Fixed cost of production in period t, with 1 ≤ t ≤ T. 

• 0>r

tK : Fixed cost of remanufacturing in period t, with 1 ≤ t ≤ T. 

• 0>d

tK : Fixed cost of final disposing in period t, with 1 ≤ t ≤ T. 

• 0≥p

tc : Unit cost of production in period t, with 1 ≤ t ≤ T.

• 0≥r

tc : Unit cost of remanufacturing in period t, with 1 ≤ t ≤ T. 

• 0≥d

tc : Unit cost of final disposing in period t, with 1 ≤ t ≤ T. 

• 0≥s

tc : Unit cost of substitution in period t, with 1 ≤ t ≤ T. 

• 0≥p

th : Unit cost for holding inventory of new items during period t, with  

1 ≤ t ≤ T. 

• 0≥r

th : Unit cost for holding inventory of remanufactured items during period 

t, with 1 ≤ t ≤ T. 

• 0≥u

th : Unit cost for holding inventory of used items during period t, with  

1 ≤ t ≤ T.

The lot-sizing problem described above can be modeled as the following Mixed 
Integer Linear Programming (MILP) problem: 
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Constraints (1) – (3) are the inventory balance equations for new, remanufactured and 
used items, respectively. Constraint (4) states that the substitution quantity in a certain 
period cannot be greater than the demand for remanufactured items of the current 
period. Otherwise, the inventory of remanufactured items would increase with the 
production of new items. Constraints (5) – (7) indicate that a set-up is made whenever 
an activity is carried out in a period for a positive quantity, where M is a large natural 

number with M ≥ max{D1T, R1T}. Constraint (8) states that the initial inventory-level 
of each type of item must be zero. Finally, the set of possible values for each decision 
variable is specified by constraint (9). 

The ELSR-S modeled above can be considered as an extension of the traditional 
ELSR. To see this, consider a particular instance of the ELSR-S without positive 
demand for new items, zero substitution costs, and equal inventory holding costs for 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(P)
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both new and remanufactured items. Thereby, this last ELSR-S instance is equivalent 
to an ELSR instance with the same costs for the activities and storage. The ELSR is 
an NP-hard problem for different cost function structures, even for those used in this 
paper and considering stationary parameters (Golany et al., 2001; van den Heuvel, 
2004; Yang et al., 2005). Therefore, the ELSR-S is also NP-hard for the same cost 
function structures and it is unlikely that we can develop a time-effective algorithm to 
solve it optimally. Instead, we propose a Tabu-Search-based heuristic for solving the 
ELSR-S, extending that of Piñeyro and Viera (2009) for the ELSR. The procedure is 
based on the divide-and-conquer approach and considering the key role that 
remanufacturing plays in the structure of an optimal solution of the traditional ELSR. 
In the following section we analyze this last fact along with certain effects of the 
substitution in the optimal remanufacturing-plan determination. 

3.1. Problem analysis 

In this section we investigate the connection among the different problem activities. 
Let us assume that the remanufacturing and substitution quantities at each period are 
known in advance. Then, the production and final-disposal subproblems can be 
determined separately and in a time-effective way, as in the traditional ELSR (Piñeyro 
and Viera, 2009). This last observation is based on the fact that we can formulate the 
production and the final-disposal subproblems as separate single-source uncapacitated 
minimum concave-cost network flow problems (Zangwill, 1968; Guisewite and 
Pardalos, 1991). Figure 2 gives the network flows formulation for both subproblems.  

FIGURE 2. Network flow formulation for the production 

and final-disposal subproblems of the ELSR-S 

Values tt sDP + , with 1 ≤ t ≤ T, are the total demand requirements that we must satisfy 

by producing new items at each period, i.e., the sum of the demand for new products 
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are given, the production and final disposal problems can be optimally solved 
separately in O(T 2) time by means of a Wagner-Whitin (W-W) algorithm type. For 
the networks formulation we have assumed a final-inventory-level equal to zero for 
both the used and new items. This assumption can be eliminated without loss of 
generality by the same arguments discussed in Piñeyro and Viera (2009). 

Therefore, we can solve the ELSR-S by means of finding first the remanufacturing 
and substitution plans of perfect cost, i.e. the remanufacturing and substation 
quantities at each period that allows us to determine in a time-effective way the 
production and final disposal plans of an optimal solution for the ELSR-S. We note 
that is last result is also valid for the case of general concave-cost functions. Since the 
ELSR-S is NP-hard, it is unlikely that we can develop any efficient time procedure for 
determining remanufacturing and substitution plans of perfect cost. In addition, we 
note that the approach of Piñeyro and Viera (2009) for the traditional ELSR of 
maximizing the total remanufacturing quantity cannot be a nice decision for the 
ELSR-S. Consider a particular ELSR-S instance with T = 5, where demand and return 
values are equal to 10 for each period. The costs are assumed stationary with the 

following values: p

tK = pK = 200, p

tc = pc = 40, s

tc = sc = 10, r

tK = rK = 150, r

tc = rc = 20, 
d

tK = dK = 150, d

tc = dc = 20, p

th = ph = 10, r

th = rh = 3, u

th = uh = 1, 5,...,1=∀t . The 

optimal solution for this particular instance is { 1p = 30, 3p = 20, 5p = 10, 2r = 20,  

4r = 20} with the remainder values for the activities equal to zero, and an optimal 

value of 4490. Note that the total remanufacturing quantity of the optimal solution is 
less than the total returns quantity. On the other hand, if substitution is not allowed, 

the optimal solution for the same instance is { 1p = 30, 4p = 20, tr = 10, 5,...,1=∀t }, 

with an optimal value of 4550. Note that this last problem is feasible because the 
returns are useful (Piñeyro and Viera, 2009). Therefore, when one-way substitution is 
allowed, maximizing the total remanufacturing amount may not be the best option, 
even when the remanufacturing costs are favorable, as in the example above. In 
addition, we note that allowing substitution can lead in costs savings. 

4. A Tabu Search procedure for the ELSR-S 

In this section, we suggest a Tabu Search-based heuristic for the ELSR-S that can be 
considered an extension of that proposed in Piñeyro and Viera (2009) for the ELSR. 
The metaheuristic of Tabu Search is an iterative exploration process based on 
information stored in memory. This allows the search to escape from the trap of local 
optima. The procedure repeatedly moves from a current solution to the best among 
neighboring solutions until an aspiration criterion is fulfilled. In order to prevent 
cycling, the procedure stores recently visited solutions (or related information about 
them) in a continuously updated “tabu list”. Thus, previously visited solutions are 
discarded for the next steps of the procedure as long as they are in the tabu list. 
Additionally, the notions of long and short-term memory, along with intensification 
and diversification strategies, are commonly used in order to make the Tabu Search an 
effective and robust procedure. This metaheuristic has been applied successfully in a 
wide range of optimization problems (Glover, 1990).

As it was further discussed in Section 3.1, obtaining an optimal solution of the ELSR-
S can be reduced to the problem of finding the remanufacturing and substitution plans 
of perfect-cost. Although it is not a simple task, since the ELSR-S is a NP-hard 
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problem, this result allows us to focus only in the remanufacturing and substitution 
activities. The Tabu Search procedure defined in Piñeyro and Viera (2009) receives 
the periods where it is desirable to remanufacture, and determines the quantities 
according to a simple rule. After the remanufacturing plan is obtained, the optimal 
production and disposal plans are obtained by means of a W-W algorithm type. The 
rule employed in Piñeyro and Viera (2009) to determine the remanufacturing quantity 
can be easy adapted for the case of one-way substitution, as follows. 

TjtRyDRr t

u

tjtt ≤<≤+= −− 1),min( 1)1(

Where periods t and j have been fixed as positive-remanufacturing periods, and j = T
if t is the last positive-remanufacturing period. Expression (10) means that the 
remanufacturing quantity in a certain period t is the minimum quantity between 1) all 
the available returns and 2) the accumulated demand from this period to the next one 
fixed as positive-remanufacturing period or to the end of the planning horizon. In 
other words, the remanufacturing plan obtained from (10) is the maximum among all 
the useful remanufacturing plans with the same positive-remanufacturing periods. A 

plan is useful when the accumulated remanufacturing quantity from any period t ≥ 1 
to the end-period T is at most equal to the accumulated demand (Piñeyro and Viera, 
2009). This rule seems to be the fair option if we assume that remanufacturing used 
items is more suitable than disposing of them and producing new items. This last 
assumption is supported by both ecological as well as economic reasoning (Gungor 
and Gupta, 1999; Guide, 2000; Hormozi, 2003). Note that the remanufacturing plan of 
the optimal solution of the numeric example in Section 3.1 can be obtained applying 
(10) on periods 2 and 4. In order to apply the W-W algorithm for obtaining the 
production plan, we need to determine the substitution quantity for each period. We 
suggest the following rule for obtaining the substitution quantity at each period.  
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With ijs  the accumulated substitution between periods i and j, with Tji ≤≤≤1 . 

Expression (11) means that the substitution quantity at each period is calculated as the 
portion of the remanufactured demand of the period that cannot be fulfilled by 
remanufactured items, i.e., the minimum among all the feasible substitution 

quantities. Thus, the demand for each period Tt ,...,1=  that we must consider for the 

production subproblem is tt sDP + . In a similar way, for the final disposal problem, we 

need to determine first the portion of the used items, t∆ , returned but not 

remanufactured. These amounts can be obtained as follows. 
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With ij∆  the accumulated portion of returns that is not remanufactured between 

periods i and j, with Tji ≤≤≤1 .We must enlarge the planning horizon by one period 

(T + 1) in order to represent the situation where not-disposal is the most suitable 
option (Piñeyro and Viera, 2009). By completeness reasons we present it in the 

(10)

(11)

(12)
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following sections the different components of the Tabu Search procedure developed 
in Piñeyro and Viera (2009).

4.1. Solution representation 

A feasible solution of the ELSR-S is represented by means of a (0,1) T-tuple. A value 

of 1 in position t means that remanufacturing is positive in period t, with 1 ≤ t ≤ T. On 
the other hand, a value of 0 in position t means remanufacturing is zero. Thus, the 
tabu list stores a set of (0,1) T-tuples, each of which is associated with a feasible 
ELSR solution. For the remainder of the paper, optionally we refer to an ELSR-S 
solution only by the corresponding (0,1) T-tuple of its remanufacturing activity, since 
the optimal production and final disposal plans, and the substitution quantities can be 
determined as we explained in Section 3.1 and Section 4, respectively. 

4.2. Neighborhood and moves 

The neighborhood notion is based on the Hamming distance between two ELSR-S 
solutions represented by the (0,1) T-tuple. Thus, a solution ud is d-neighboring to 
solution u0 when the Hamming distance between them is exactly d, with d > 0. In 
order to explore the neighborhood of a current solution, we use a swap move. The 
move consists of swapping 0 with 1 (or vice versa) in a selected group of positions of 
the (0,1) T-tuple. For a given value d > 0, we must swapping d times in d different 
positions in order to obtain one of the neighboring solutions. An odd number of d

must be employed to ensure that any of the (0,1) T-tuples can be generated regardless 
of the initial solution. 

4.3. Aspiration criterion 

The stop conditions are given by either the total number of iterations or a maximum 
number of iterations without improvement. The procedure returns the best among all 
of the evaluated solutions (including the initial solution). 

4.4. Tabu list management 

The tabu list has a fixed size K > 0, and is managed in a cyclical way using the FIFO 
strategy. Thus, a solution in the position k of the tabu list moves to position (k + 1) 
when a new solution is entered into the list. When the position (k + 1) is greater than 
the value K, the solution in (k + 1) is eliminated. 

4.5. Procedure description 

The procedure receives four parameters: the total number of iterations, the maximum 
number of iterations without improvement, the size of the tabu list, and the initial 
(0,1) T-tuple corresponding to the positive remanufacturing periods. First, we 
determine the initial ELSR-S solution, applying the expression (10) in order to obtain 
the quantities to remanufacture for each period with value 1 in the initial (0,1) T-tuple. 
Then, the corresponding optimal plans for both production and final disposal activities 
are determined by means of the W-W algorithm, considering the expression (11) and 
(12) respectively. The cost of the initial solution is calculated. The search process is as 
follows. We first construct the set of neighboring solutions for the current solution by 
means of the swap move with a Hamming distance of value equal to 1. Observe that 
with this value, we can compute the whole neighborhood of the current solution in 
O(T) time. For each neighboring solution, we control whether that solution belongs to 
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the tabu list. If it does not, we add the neighboring solution to the tabu list; otherwise, 
we discard it. For this new neighboring solution, we determine the corresponding 
ELSR-S solution by means of the expressions (10) – (12) and the W-W algorithm. We 
compare the cost of this new solution with the best cost at the moment. If the cost of 
the new solution is smaller, we mark it as the new best neighboring solution. We 
proceed in the same way for each neighboring solution. After the best neighboring 
solution is determined, we compare its cost with the global best cost at that moment. 
If the cost of the selected neighboring solution is again smaller, we mark it as the new 
best global solution and reset the number of iterations without improvement. The 
iterative section continues until either the number of iterations is greater than the total 
number of iterations allowed or the number of iterations without improvement is 
greater than the maximum allowed. The procedure returns the best global solution 
evaluated. 

5. Computational analysis 

In this section, we report the numerical experiment carried out for the Tabu Search 
procedure suggested for solving the ELSR-S in the previous section. Three different 
demand-return relationships are tested in order to reflect situations with low, medium, 
and high return rates. Additionally, three different relationships between the new and 
remanufactured demand-streams are considered. Demands and return values are 

generated from the Poisson random distribution with means DPλ , DRλ and Rλ , 

respectively. We use the following values: 10=DPλ , )10,5.7,0.5(=DRλ  and 

)5.7,0.5,5.2(=Rλ . For the costs values also three different situations are considered for 

each demand-return relationship. The different costs components are obtained from a 
continuous uniform distribution. The values for the production costs are as fallows. 

The production setup cost p

tK  is uniformly distributed in the interval [ ]500,300 ; the 

unit production cost p

tc is uniformly distributed in the interval [ ]50,30 ; the unit cost of 

holding produced items p

th  is uniformly distributed in the interval [ ]20,10 . As it is 

common in practice, we assume that the return costs are at most equal to the 
serviceable costs (Guide, 2000; Richter and Weber, 2001; Brito and Dekker, 2002). 
For substitution costs, we assume the opposite behavior compared with the costs of 
returns, i.e. they are low when the costs of returns are high, and vice versa. This last 
decision is supported by the assumption that when the tasks related to the returns are 
expensive, the gap with new products should be lower. The different intervals of costs 
for both the activities concerned with returns and substitution are listed below in 
Table 1. 

TABLE 1. Intervals for the return and substitution costs 

Costs Low case Medium case High case 
r

tK [ ]60,30 [ ]100,60 [ ]150,100

r

tc [ ]20,10 [ ]30,20 [ ]40,30

d

tK [ ]20,10 [ ]40,30 [ ]80,60

d

tc [ ]5,2 [ ]10,5 [ ]15,10

r

th [ ]8,5 [ ]12,8 [ ]15,12

u

th [ ]3,1 [ ]5,3 [ ]8,5

ts [ ]15,10 [ ]10,5 [ ]5,1   
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Combining all the previous cases for the demands, returns and costs, we have a total 
of 27 benchmarks. For each one of the benchmarks, we execute ten different cases 
using planning horizon values of T = 5 and T = 15, respectively. Thus, we test a total 
of 540 different cases. For the Tabu Search procedure, we use the following 
configuration. The size of the tabu list is fixed at 5000. The total number of iterations 
is 500, and the maximum number of iterations without improvement is 250. The 
initial solution is always the (0) T-tuple (i.e. without remanufacturing at any period). 
These parameter values are arbitrary, and we aim to maintain a large number of 
visited solutions in the tabu list. Our results are presented in Tables 2, 3 and 4. All of 
the entries are the sample means from ten cases. For each table, we indicate the 
percentage difference with respect to the cost of the optimal solution obtained with 
GAMS using the CPLEX solver. We mark in bold the minimum and maximum gap; 
the final column contains the average gap. 

TABLE 2. Results for the case of low return rate 

TABLE 3. Results for the case of medium return rate

TABLE 4. Results for the case of high return rate 

From tables 2–4 we are able to conclude that the Tabu Search procedure shows an 
excellent behavior regardless of the case under consideration. For all cases the 
average gap is less than one percent and the optimal value was attained for 153 cases; 
this is 28.33% of the total tested cases. In 58.89% cases the gap among the cost of the 
solution obtained and the optimal solution was positive and less than 1%. Only in 
13% of the total tested cases the gap was superior to 1% and always less than 5%. 
Referring to the procedure efficiency we note that the solution was found in the first 

5.2=Rλ Low case (%) Medium case (%) High case (%) Average (%)

  T = 5 T = 15 T = 5 T = 15 T = 5 T = 15   

5=DRλ 0.19 0.62 0.26 0.35 0.09 0.37 0.31

5.7=DRλ 0.74 0.42 0.62 0.34 0.06 0.34 0.42

10=DRλ 0.15 0.34 0.10 0.25 0.07 0.26 0.20

5=Rλ Low case (%) Medium case (%) High case (%) Average (%)

  T = 5 T = 15 T = 5 T = 15 T = 5 T = 15   

5=DRλ 0.36 0.79 0.13 0.24 0.35 1.21 0.51

5.7=DRλ 0.88 1.16 0.39 0.89 0.19 0.45 0.66

10=DRλ 0.64 0.85 0.42 0.56 0.32 0.45 0.54

5.7=Rλ Low case (%) Medium case (%) High case (%) Average (%)

  T = 5 T = 15 T = 5 T = 15 T = 5 T = 15   

5=DRλ 0.44 0.20 0.18 0.19 0.17 0.61 0.30

5.7=DRλ 0.34 0.71 0.17 0.32 0.16 0.46 0.36

10=DRλ 1.09 1.17 0.58 0.48 0.46 0.44 0.70
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20 iterations for all the tested instances, and the running time was less than 250 
milliseconds.  

The successful of the procedure can be justified on the reasons explained below. First, 
the production and final disposal plans are the optimal for the remanufacturing and 
substitution plans determined. As the major costs are related to the production 
activity, it makes sense to produce in an intelligent way. Second, the rule applied for 
obtaining the quantities for the fixed remanufacturing periods. By maximizing the 
remanufacturing in those periods fixed as positive-remanufacturing periods we are 
reducing the number of items substituted, and thus the production-related costs. In 
addition, we are exploiting in practice the common situation that remanufacturing 
used items is more suitable than disposing of them and producing new items. 
Therefore, we are able to conclude that for cases where the remanufacturing costs are 
favorable, the divide and conquer is an effective technique for obtaining the different 
plans. We note that further analysis about how to identify the periods of positive 
remanufacturing, and conditions under which the above rule is optimal must be done 
in order to obtain high quality solutions by means of the divide and conquer 
technique. This analysis should take into account the impact of the substitution. 

6. Conclusions and future research 

In this paper we investigate the economic lot-sizing problem with product returns and 
one-way substitution (ELSR-S). We provide a mathematical model for the problem 
and show that it can be considered an extension of the ELSR, and then it is also NP-
hard for the same cases. By means of a numerical example, we show that unlike the 
ELSR, when substitution is allowed, maximizing the total remanufacturing quantity 
cannot be the most suitable option. However, we show that we can apply a divide-
and-conquer approach for solving the ELSR-S, similar to that applied in Piñeyro and 
Viera (2009) for the ELSR. In the case of the ELSR-S, if the remanufacturing and 
substitution quantities are known in advance, the optimal production plan and the 
optimal final disposing plan can be determined separately and in time-effective way. 
Thus, we suggest a Tabu-Search-based procedure for solving the ELSR-S, extending 
that of Piñeyro and Viera (2009) for the ELSR. The procedure explores different 
remanufacturing plans, guided by the rule of maximizing the useful remanufacturing 
quantity for each period fixed as positive remanufacturing-period. The substitution at 
each period is determined as the portion of the remanufactured demand that cannot be 
fulfilled by remanufactured items. The corresponding optimal production and final 
disposal plans are obtained by means of the Wagner-Whitin algorithm. The 
experiment conducted shows that the suggested procedure will be cost-effective for a 
wide-range of problem instances. We note that the optimal solution was found for 
nearly one third of tested cases and for most cases the gap with the optimal solution 
was less than 1%. We conclude that to maximize the useful remanufacturing quantity 
rather than to maximize the total remanufacturing quantity seems to be the best option 
when substitution is allowed. However, how to identify the periods with positive 
remanufacturing is not even clear.  

Despite the low running-time obtained for the procedure, we note that for larger 
problems, it could be necessary to replace the Wagner and Whitin algorithm for any 
of the new faster algorithm of O(TlogT) time developed by Federgruen and Tzur 
(1991), Wagelmans et al. (1992) or Aggarwal and Park (1993). From a theoretical 
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point of view, a detailed analysis about the structural properties of the ELSR-S 
optimal solutions must be done. In this sense, further analysis on the problem of 
obtaining the perfect-cost remanufacturing plan seems an important goal. Other 
possible direction is to extend the analysis of Yang et al. (2005) on the extreme-point 
optimal solutions of the minimum concave-cost network flow formulation for the 
ELSR in order to include substitution. Also the analysis of stability regions as in 
Konstantaras and Papachristos (2007) for the case of constant parameters and large 
returns available in the first period should be extended in order to cover more general 
situations as discussed in this paper. 
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Abstract. We consider the capacitated economic lot-sizing problem (CLSP) with 
stationary capacities and concave cost functions with non-speculative motives. Under 
these assumptions we show that there is an optimal solution of the problem that is 
composed only by subplans that can be computed in linear time, which means that the 
problem can be solved in O(T 3) computation time.

Keywords: Capacitated Economic Lot-Sizing Problem; Inventory Control; 
Optimization. 
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1. Introduction 

The capacitated economic lot-sizing problem (CLSP) refers to the problem of 
determining the quantities to produce at each period in order to meet the demand 
requirements of a single product on time, minimizing the sum of the costs involved. 
The number of units that can be produced at each period are limited by a maximum 
value. The CLSP is an NP-hard problem in general, and even for special cases on the 
cost functions and/or the capacity pattern (Bitran and Yanasse, 1982; Florian et al. 
1980). For the case of concave cost functions and stationary capacities (i.e., equal 
capacity upper-bounds for each period) Florian and Klein (1971) propose an effective 
algorithm of O(T 4) time. More recently, faster algorithms of O(T 3) and O(T 2logT) 
times have been suggested by van Hoesel and Wagelmans (1996) for the case of 
linear inventory holding costs and by Van Vyve (2003) for the case of linear costs 
with non-speculative motives, respectively. Bitran and Yanasse (1982) propose 
polynomial time algorithms for the cases NI/G/NI/ND, NI/G/NI/C, C/Z/ND/NI, and 

ND/Z/ND/NI of the CLSP, where the notation δγβα ///  represents the set-up costs, 

the holding costs, the unit production costs, and the capacity pattern, respectively. 
Letters G, C, ND, NI, Z are used to indicate arbitrary pattern, constant, non-
decreasing, non-increasing and zero, respectively. For the case NI/G/NI/ND of the 
CLSP, Chun and Lin (1988) provide an algorithm of O(T 2) time. van den Heuvel and 
Wagelmans (2006) also consider the NI/G/NI/ND case, providing other O(T 2) time 
algorithm which may run faster in practice. Chen et al. (2008) provide a pseudo-
polynomial time algorithm for the same CLSP case but with more general cost 
functions. For surveys on the CLSP, we refer the readers to Brahimi et al. (2006) and 
Karimi et al. (2010). 

The main contribution of this paper is to show that the subplans composing an optimal 
solution of the CLSP with stationary capacities and concave cost functions with non-
speculative motives (i.e. when it is profitable to produce as late as possible) have a 
particular structure and can be obtained by means of a linear time procedure. This 
result implies that the running time of the well-known algorithm of Florian and Klein 
(1971) for the CLSP can be improved from O(T 4) time to O(T 3) time for the case of 
non-speculative motives on the costs. According to our best knowledge, our approach 
can be applied over situations that are not covered by previous related works in the 
literature. In addition, we want to note that our approach is simpler than the approach 
of Van Vyve (2003). 

The remainder of the paper is organized as follows. Section 2 provides the notation 
used through the paper and the mathematical formulation for the CLSP. In Section 3 
we describe the kind of production subplans that compose an optimal solution of the 
CLSP under the assumptions mentioned above. In Section 4 we describe the linear 
time procedure for obtaining this particular kind of production sequences. Finally, 
Section 5 concludes the paper. 

2. Notation and mathematical formulation 

We consider the CLSP with a finite planning horizon of length T > 0. For each period 

Tt ,...,1= , there is a known customer demand 0≥tD  which must be satisfied on time by 

producing on the same period or in a previous period the quantity 0≥tx . Backlogging 

demand is not allowed and the production quantity at each period is limited by tC
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with +∞<< tC0  and Tt ,...,1= . There are costs for carrying out the production and for 

storing a positive quantity 0≥ty  at each period Tt ,...,1= . Henceforth, we assume that 

the production cost function )(⋅tf  and the holding inventory cost function )(⋅th  are 

non-decreasing concave functions on the interval [ )+∞,0 , and equal to zero when its 

argument is zero or negative, with Tt ,...,0= . It is also assumed that the initial 

inventory and the lead-time are equal to zero. The objective is to determine the 

quantities tx  to produce at each period in order to meet the demand requirements on 

time fulfilling the capacity constraints tC  and minimizing all the involved costs. The 

problem described above can be formulated as follows: 
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Constraints (1) state the well-known inventory equilibrium equation. Constraint (2) 
establishes that the initial inventory quantity must be zero. The capacity constraints 
are given in (3), and constraints (4) state the set of possible values for the decision 

variables. We note that the the decision variables ty  of the MILP above can be 

replaced by )( 11 tt Dx − , where ijx  denotes the accumulated production and ijD  the 

accumulated demand between periods i and j respectively, with Tji ≤≤≤1 . 

Therefore, the problem formulated above reduces to find the set of feasible plans 

),...,( 1 Txxx = . The set of feasible plans is not empty if and only if the accumulated 

demand of the first t periods does not exceed the accumulated capacities over these 
periods, formally:  

� �
= =

=∀≥
t

i

t

i

ii TtDC
1 1

,...,1,

  

Therefore, from now on we assume that expression (5) is fulfilled. Since the objective 
function of (P) is a concave function and the constraints (1) – (4) define a closed 
bounded convex set, there is an optimal solution of the CLSP that is an extreme point 
of this set. In addition, without loss of generality we can assume that the different 

feasible plans are composed by subplans ),...,( jiij xxS =  called sequences such that 

0== ji yy  and 0>ty , for all t in Tjti ≤<<≤0 . Periods i and j are commonly referred 

as regeneration points. Florian and Klein (1971) showed that the extreme-point 
solutions are composed only by sequences for which the production quantities of the 
periods are zero or equal to the capacity, except in at most one period, which is called 
the fractional period. This kind of sequence is referred as capacity constrained

sequence.  Based on this property, they provide an O(T 
4) time algorithm for solving 

the CLSP with stationary capacity-pattern. In the following sections we will see that 
the algorithm can be improved from O(T 

4) to O(T 
3) time if it is also assumed a non-

speculative type of cost structure. 

(5) 

(1) 

(P) 

(2) 

(3) 

(4) 
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3. The ascending capacity constrained sequences of the CLSP 

In this section we show that under the assumption of non-speculative motives on the 
costs and stationary capacity-pattern, there is an optimal solution of the CLSP that is 
composed only by a particular kind of subplans that we refer as ascending capacity 
constrained sequences, since the production level in these subplans is increasing over 
time.  

Definition 1. We say that the cost functions of the CLSP are non-speculative if the 
expressions below are fulfilled: 
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Expression (6.1) states that it is profitable to transfer forward all the production 
quantity from one active period to another period initially inactive, and (6.2) that it is 
profitable to transfer forward at least one unit between two active periods. 
Expressions (6.1) and (6.2) are fulfilled in different settings of practical interest, e.g., 
when all the costs involved are concave functions and either stationary or non-
increasing.  We want to note that there may be other cost structures that satisfy the 
conditions stated in Definition 1 which are not covered by previous related works. For 

example, consider a CLSP instance of T periods where xcKxf p

t

p

tt +=)( , with tK P

t = ,  

1=P

tc , the set-up and unit costs for production respectively, xxxht += 2)( , and 

stationary capacity C, i.e., Cxt < ,  for each period Tt ,...,1=  respectively. We can 

verify that expressions (6.1) and (6.2) are fulfilled for this particular cost structure, if 
we assume also integral demand values. First we note that increasing set-up costs are 
not covered by the algorithms proposed in Chung and Lin (1988), van den Heuvel and 
Wagelmans (2006) and Chen et al. (2008). Secondly, the analysis of van Hoesel and 
Wagelmans (1996) and Van Vyve (2003) do not consider non-linear cost functions.  

Since the CLSP is polynomial-time solvable in the case of stationary capacity (Florian 
and Klein, 1971), from this point on, for the remainder of the paper we consider a 

stationary capacity-pattern, i.e., CCt = for all Tt ,...,1= . Florian and Klein (1971) 

showed that in order to solve the CLSP we can focus only on those solutions 
composed only by capacity constrained sequences, i.e., sequences with at most one 
period below capacity. We show below that when the costs are non-speculative 
according to Definition 1, we can apply the algorithm of Florian and Klein (1971) to a 
particular kind of capacity constrained sequences defined below and introduced in 
Chung and Lin (1988) for the case NI/G/NI/ND of the CLSP. 

(6.1) 

(6.2) 
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Definition 2. We say that a capacity constrained sequence is an ascending capacity 

constrained sequence (ACC sequence) whenever the period with a positive quantity 
below capacity, if it exists, is the first among all the positive periods in the sequence.  

Proposition 1. Assume that the cost functions of the CLSP are non-speculative 
according to Definition 1 and stationary capacities. Then, the solutions of the CLSP 
with plans composed only by ACC sequences are dominant, i.e., given a feasible 
solution of the CLSP for which there is at least one plan that is not composed by ACC 
sequences, we can determine a new feasible solution with all plans composed only by 
ACC sequences with at most the same cost than the original. 

Proof. Consider a feasible solution ),...,( 1 Txxx =  of the CLSP composed only by 

capacity constrained sequences. Without loss of generality, suppose that x has only 

one sequence αβS  that is not an ACC sequence (the fractional period is not the first 

positive period in the sequence). This means that there are two consecutive periods i

and j such that 0>>= ji xxC  with Tji ≤≤<≤≤ βα1 . Then, define 

{ }jjii xCyyy −= −+ ,,...,,min 11ε  and consider the following definition of a new solution z : 
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We must note that z  is also a feasible solution for the same CLSP instance that x is 
feasible. In addition note that at least one of the two following cases is fulfilled: 1) 

Cz j = ; or 2) 0=ty , for some t in jti <≤ . If case 1) is fulfilled, then the production 

quantity of period i in the new solution z  is below capacity since C<< ε0 . In the case 

that period i is not the first positive period in the sequence, we can determine a new ε

for period i and the immediately previous period k of the sequence such that 

0>>= ik xxC , with βα ≤<≤ ik . We repeat this process until the first positive period 

in the sequence is reached. On the other hand, if case 2) is fulfilled, we note that the 

sequence αβS  has been decomposed into two new sequences tSα  and βtS  for some t

with jti <≤ . We note that sequence βtS  is an ACC sequence, since all the positive 

periods are at capacity. In the case of the sequence tSα , the period i is below capacity. 

If it is not the first positive period we proceed as we explained for case 1) for period i

and the immediately previous period k of the sequence for which 0>>= ik xxC . Since 

we are assuming that the costs are non-speculative with respect to the transfer, the 

cost of the new solution z is at most equal to the cost of the original solution x . 
Thereby, we have constructed another feasible solution with at most the same cost as 
the original one but composed only by ACC sequences.  

�

4. Computing the values of an ACC sequence 

In this section we describe a procedure for determining the values of an ACC 
sequence in linear time. First, by Florian and Klein (1971), we note that for any 

capacity constrained sequence ),...,,( 1 jiiij xxxS += , there are K periods at capacity, at 

most one positive period below capacity and the remaining periods equal to zero, with 



-85- 

ε+==++ CKDxx ijji .... , with ,...}2,1{∈K  and 0≥ε .  Then, in order to compute the 

values of an ACC sequence between any pair of periods i and j, we must determine a 

sequence ),...,( jiij xxA =  satisfying 1) ε+== CKDx ijij . , with ,...}2,1{∈K , 0≥ε ; and 2) 

0>ty  with jti <≤ . Without loss of generality assume that 0>iD . If 0>ε , then ε=ix , 

otherwise Cxi = . The next positive period t at capacity, i.e., Cxt = , will be the earliest 

period t such that iit xD > , with jti ≤< . We apply the same reasoning until all the K

positive periods at capacity have been reached. In the cases that either ii Dx <= ε  or 

for some period t, itit Dx = , then there is not a feasible ACC sequence between periods 

i and j. As we are producing as late as possible, by (6.1) the ACC sequence obtained 
is of minimum cost. We also note that there is at most only one ACC sequence 
between any pair of periods. Since all the feasible ACC sequences are at most (T + 
1)T/2 (Florian et al., 1980), the optimal solution of the CLSP can be determined in 
O(T 

3) time by means of the algorithm of Florian and Klein (1971), replacing the 
procedure for obtaining the production values of the capacity constrained sequences 
by the procedure described above for the ACC sequences. 

5. Conclusions and future research 

In this paper we show that for the CLSP under the assumptions of stationary 
capacities and concave cost functions with non-speculative motives, i.e. it is profitable 
to produce as late as possible, the algorithm of Florian and Klein (1971) can be 
improved from O(T 

4) time to O(T 
3) time. This result is supported by the fact that 

there is an optimal solution for which the plans are composed exclusively by a kind of 
sequences for which the only fractional period, if it exists, is the first among all the 
positive periods of the sequence. The type of cost structure that we assumed includes 
many cases of interest. In particular those cases for which the fixed costs of 
production are non-decreasing and non-linear functions, which according to our best 
knowledge, are not covered by the algorithms proposed in previous works in the 
literature. 
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