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Resumen

Las redes de pares son comunidades virtuales autogestionadas, desarrolladas en la capa de apli-
cación sobre la infraestructura de Internet, donde los usuarios (denominados pares) comparten
recursos (ancho de banda, memoria, procesamiento) para alcanzar un fin común. La distribu-
ción de video representa la aplicación más desafiante, dadas las limitaciones de ancho de banda.
Existen básicamente tres servicios de video. El más simple es la descarga, donde un conjunto
de servidores posee el contenido original, y los usuarios deben descargar completamente este
contenido previo a su reproducción. Un segundo servicio se denomina video bajo demanda,
donde los pares se unen a una red virtual siempre que inicien una solicitud de un contenido de
video, e inician una descarga progresiva en línea. El último servicio es video en vivo, donde
el contenido de video es generado, distribuido y visualizado simultáneamente. En esta tesis se
estudian aspectos de diseño para la distribución de video en vivo y bajo demanda.

Se presenta un análisis matemático de estabilidad y capacidad de arquitecturas de distribu-
ción bajo demanda híbridas, asistidas por pares. Los pares inician descargas concurrentes de
múltiples contenidos, y se desconectan cuando lo desean. Se predice la evolución esperada del
sistema asumiendo proceso Poisson de arribos y egresos exponenciales, mediante un modelo
determinístico de fluidos. Un sub-modelo de descargas secuenciales (no simultáneas) es glo-
balmente y estructuralmente estable, independientemente de los parámetros de la red. Medi-
ante la Ley de Little se determina el tiempo medio de residencia de usuarios en un sistema bajo
demanda secuencial estacionario. Se demuestra teóricamente que la filosofía híbrida de coope-
ración entre pares siempre desempeña mejor que la tecnología pura basada en cliente-servidor.
Se introduce un problema de optimización combinatoria, cuyo objetivo es minimizar el tiempo
medio de usuarios en el sistema, almacenando los contenidos de video en nodos caché. Este
problema es NP-Completo, y su naturaleza similar al problema de múltiples mochileros (asig-
nando items de video con capacidad de memoria limitada). Se desarrolla una solución golosa
aleatorizada con el fin de obtener una política óptima en nodos caché. Esta técnica se introduce
en un escenario de la vida real, que se basa en trazas reales de YouTube. Los resultados revelan
que la distribución basada en pares es económicamente atractiva.
Por otra parte, se analiza en profundidad un modelo matemático de cooperación para intercam-
bio de video en vivo. En este sistema cooperativo, un servidor difunde un canal ilimitado en
piezas de video, mientras que los pares reciben y redistribuyen estas piezas a otros pares. Ellos
desean visualizar sincronizadamente el canal de video, sin pérdidas y con baja latencia. Se
captura la calidad de experiencia del usuario final en un problema de optimización combina-
toria. Se desea decidir el orden en que se deben seleccionar las piezas de video, con el fin de
maximizar la calidad de experiencia del usuario final. La naturaleza del problema es similar al
de hallar el ciclo de menor costo en un grafo completo (problema conocido como TSP por sus
siglas en inglés Traveling Salesman Problem). Entonces, el problema es trasladado a un TSP
asimétrico (ATSP), que pertenece a la clase computacional de problemas NP-Completos. Este
último problema se resuelve heurísticamente mediante la técnica de Optimización por Colonia
de Hormigas. Su resolución tiene interpretación directa en el diseño estructural de políticas de
planificación de piezas de video en vivo. Los resultados evidencian que la calidad de la nueva
propuesta es ampliamente superior que las anteriores, como la política Golosa o la selección de
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la Primera Pieza Más Rara (ampliamente utilizada en BitTorrent). Finalmente, se introduce un
Modelo Extendido, y discuten brevemente la heterogeneidad de usuarios y efectos parasitarios.
Los resultados resaltan la importancia de la conciencia de contribución, a efectos del diseño de
redes de pares resilientes de video en vivo.

Palabras clave: Redes de Pares; Problema de Optimización Combinatoria;
Video bajo demanda; Video en vivo.
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0.1 Abstract

Peer-to-peer networks are self-organizing communities developed at the application layer over
the Internet infrastructure, in which users (called peers) share resources (bandwidth, memory,
CPU time), in order to meet a common interest. The most challenging application due to band-
width constraints is video distribution. There are basically three video streaming modes. The
most simple is called file sharing, where the video is owned by one or several source nodes,
and must be completely downloaded before its playback. A second streaming mode is video
on-demand, where peers join a virtual network once a video content is requested, and begin
a progressive download. The last streaming mode is called live-streaming, where the video is
generated, distributed and played simultaneously. These streaming modes sound similar from
a user’s viewpoint, but present different design issues. In this thesis we study design aspects
for on-demand and live video distribution.
The contributions of this thesis are two-fold. On one hand, we analyze the stability and capacity
of a swarm-assisted video-on-demand peer-to-peer network. Peers start one or several concur-
rent downloadings and disconnect when they wish. The expected peer evolution is predicted
assuming poissonian arrivals and exponential departure rates, with a deterministic fluid model.
The system turns to be stable under practical scenarios, and via Little’s law we can find closed
expressions for the expected peer-excursion time. We theoretically prove that the peer-to-peer
philosophy outperforms traditional Content Delivery Networks. A combinatorial optimization
problem (COP) is introduced. The existence of a feasible solution is an NP-Complete decision
problem. The issue is to store different video-types in caching nodes, trying to minimize the
mean peer-excursion times. The nature of this problem is similar to the Multi-Knapsack Prob-
lem, where the knapsack capacities are represented by storage caching capacity, and items are
video-types, which have different sizes. A greedy randomized resolution is here presented in
order to define an optimal caching policy. This technique is applied into a real-life scenario,
which is based on log traces taken from YouTube. The results reveal that the peer-to-peer dis-
tribution is economically attractive. On the other hand, a mathematical model for cooperation
in live-streaming networks is here deeply analyzed. In this cooperative system, a source node
broadcasts an unlimited video channel, and users store and forward video chunks. They wish
to display simultaneously the same video stream with no cuts and reduced buffering times.
The quality of experience is first captured by a COP. The issue is to choose the order in which
video-chunks should be requested, to maximize the quality of experience. The nature of the
problem is similar to finding the cheapest tour (node-permutation) of an Asymmetric Traveling
Salesman Problem (ATSP). Hence, the problem is then translated into a suitable ATSP, which
is inside the class of NP-Complete computational problems. The latter problem is heuristically
addressed with an Ant-Colony Optimization approach. Its resolution has a direct interpretation
in the design of chunk scheduling policies in live-streaming. Finally, the results state that this
new policy outperforms widely used chunk policies, for instance the Rarest First and Greedy
strategies. Finally, an Extended Model is introduced, discussing heterogeneity and free-riding
effects. The results remark the importance of contribution-awareness to design highly resilient
live streaming systems. Keywords: Peer-to-peer; Combinatorial Optimization Problem; Video-
on-demand; Live-streaming.
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Basic Terminology

In order to assist the readability of this written, a summary of key concepts of peer-to-peer
networks is here included:

- Peer-to-peer: Self-organized virtual communities developed on the Internet Infrastruc-
ture, where users, called peers, share resources (bandwidth, CPU-time, memory) to oth-
ers, basically because they have common interests.

- File sharing: a streaming mode in which peers must completely download the file before
its playback (in some related literature file sharing is not considered a streaming service).

- On-demand video streaming: the streaming mode in which users start a progressive
download whenever requested.

- Live video streaming: in this streaming mode, the video is simulaneously generated,
distributed and played by peers. It has the hardest real-time requirements, and peers
must play the video stream synchronously.

- Swarm: a connected component of a peer-to-peer network, in which all users download
the same stream.

- Swarming: Once a peer joins the network, it should discover peers with common inter-
ests. This is usually called swarming.

- Swarm-assisted peer-to-peer network: A P2P network organized in swarms, that con-
tains one or several distinguished nodes, called node-servers or super-peers. Those nodes
have higher resources than normal peers, thus contribute with higher streaming rates.

- Chunk: In order to distribute a video streaming (or file) to end-users, the video must be
chopped-into several blocks. These blocks are called video chunks, or just chunks.

- Chunk scheduling policy: in order to get the full video streaming, peers exchange video-
chunks. The strategy used to propagate video-chunks to end-users is called chunk-
scheduling policy. In its most structural way, it is the permutation-order in which the
numbered pieces should be requested.

- Peer selection policy: a characteristic element of peer-to-peer networks is cooperation
between peers. The way in which peers are chosen in order to cooperate in groups is
known as the peer selection policy.
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- Pull-process: There are two elementary modes of cooperation (push or pull-based).
When requesting peers force the communication asking for video chunks, we have a
pull-process.

- Push-process: When transmitter peers choose useful video-chunks from receivers, we
have a push-process. There is a rich number of mixed techinques, sometimes named
pull-push.

- Random policies: we refer to a random peer (chunk) selection policy whenever the peer
(or video chunk) is picked uniformly at random.

- Churn: Peers can join or leave the virtual network when they wish. Peer-to-peer net-
works suffer from node-churn, which represents the effects determined by peers because
of their unpredictable arrival and departures. Well-designed P2P networks must be re-
silient to node-churn.

- Resilience: the ability of effective accommodation to unpredictable environmental dis-
turbances.

- Scalability: The non-degradation property of a network, when the scale of the network
(number of peers, arrival rate) is increased. The non-degradation property covers a level
of performance and life of the network.

- Seeders: Peers that completely downloaded the streaming rate or file, and eventually
feed peers within the network.

- Leechers: Peers who download one or several concurrent streams (from souce servers or
seeders).

- Free-riders: Non-altruistic peers. They try to download as much files as possible, but do
not contribute with the system.

- Lifetime: Several peer-to-peer networks are only available temporarily, and their life
depends on the popularity of a file or stability of seeders. We say a peer-to-peer network
dies when joining users cannot download the file (or stream) completely (for instance,
by a fail in many seeders or mismatches)

- Starvation: A peer suffers from starvation when it cannot download one or several
chunks. In file sharing, the result is catastrophic: that peer completely looses the file,
and it dies. The complete unavailability of a data chunk in a swarm implies the death of
that swarm in a file sharing service. In on-demand streaming, it means higher buffering
times, whereas in live-streaming the user will have either a frame loss or image freezing.

- Younger/Older peers: Peer A is younger than Peer B when A joined within the network
later than B. In that case, B is older than A. This concept is widely applied in video on-
demand services, where there is no synchronization, and younger peers usually do not
have resources.
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- Prefetching: in on-demand video streaming, younger peers can rapidly insert into the
community not fetching the current video-chunks, but later chunks, that are desired by
older peers in the network. This technique trades buffering for bandwidth efficiency.

- Video Cassette Recorder (VCR): the user of a VoD service expects basic interactivity
options of the system. One of the most elementary interactions is the one offered by a
simple Video Cassette Recorder (VCR), i.e. pause, forward and rewind options.

- Anchor point: the interactivity of a VoD system will succeed thanks to anchor points,
which are pre-specified instants of a movie. The media player is re-directed to the nearest
anchor point whenever the user skips or goes back to a chosen point of the playback, thus
saving buffering times.

- In-order (or sequential) chunk policy: the video player in a VoD service requires video
chunks in-order to achieve continuous playback. A greedy scheduling policy is hence to
request for chunks sequentially.

- Rarest First policy: this policy tries to maximize the availability of data items, by means
of requests/sendings of the rarest chunks in the swarm (or connected neighbors). Given
that the neighbors are not always the swarm, this policy is sometimes called Local Rarest
First. The idea is applied to all services.

- Multiple Video Recorder (MVR): it is a caching technique frequently used in VoD sys-
tems, in which users can store multiple videos in their caches (even videos that they do
not watch or intend to watch).

- Single Video Recorder (SVR): the user in a VoD system only stores one movie in its
cache.
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Introduction

Our visual system has several limitations. For example, we cannot see ultraviolet nor infrared
waves. Moreover, our eyes do not detect very fast movements, a fact which is unfortunately
exploited by pickpockets, but essential for video deployment. This latter limitation has already
been understood by the Chinese since the second century [144, 149]. However, the first moving
pictures had to wait until the end of the nineteenth century.

Euclid and Aristotle supported that the light comes from the eyes toward the objects. The
Arab mathematician Alhacen proved that the opposite is correct, and introduced the word cam-
era for the first time (basically a cubic box with a small hole, which reflects an inverted image
on a face). The simple idea of the dark camera was highly sophisticated and improved during
years. The first moving pictures had to wait until 1888 by the hands of Eadweard Muybridge,
with “The moving horses”. This work founded empirical evidences of the discrete-continuous
visual dilemma. Seven years later, the brothers Lumière invented in 1895 the first cinemato-
graphic camera, based on photographic concepts, and formally presented in Paris simple scenes
on that year. They understood their product for scientific purposes. Paradoxically, they said
that their invention had no future... Studios like Metro-Goldwin-Meyer and 20th Century Fox
found the business face to the cinematographic camera. The cinema played an important social
place for entertainment, specially in Hollywood and then all over the world. A huge step to-
wards to deploy a visual service at home was the first commercial monochromatic television in
1928 and the NTSC color-compatible norm widely accepted for television broadcasting since
1953 [28].

On the other hand and in an apparently disconnected area, the ARPANET had its begin-
nings in the need of globally military strategies from the Pentagon in the second half of the
century [175]. The first computer connection was possible via the public switched telephone
network, and the first try was a login that failed and stucked in LOG... Where is the link
between this fact and television? This experimental network after some decades covered the
planet and so interconnected millions of personal computers. The invention of the World Wide
Web in 1989 by Tim Berners permitted to achieve a “dream”, that is, to link different web sites:
Internet navigation via hyper-links [13]. As a paradox, that original experimental platform de-
signed for military purposes with a very complex operation was transformed in the 90’s into
a friendly-guided navigation tool, which showed to be useful to communicate, learn, listen to
music and see videos, among many others. The client-server architecture was the dominat-
ing scheme for file sharing. The users simply centralized requests to a server, which returned
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the desired file. This architecture has some benefits. The service is both simple and highly
predictable. But what happens if a lot of users try to get several files at the same time? A
similar routine situation occurs if 100 people wait for the same bus with a capacity of 50 peo-
ple. Needless to say, better luck next time. The first idea to attack this scalability problem was
based on the content’s popularity. The most popular contents can be obtained from the users!
As a consequence, the server invites users to communicate and offer those contents which are
normally replicated in the network. This idea was developed by Napster, the first structured
and centralized peer-to-peer network [30]. Users were able to download MP3 music files and
many others. The Recording Industry Association of America (RIAA) highly criticized these
peer-to-peer networks complaining that the sales went down. Definitely, the digital music was
the killer application of Napster, which ended in the thumb after a legal process. Clearly, the
hierarchical structure of Napster avoided a key element in the design of peer-to-peer networks:
the anonymity. However, the new paradigm woke-up the imagination of platform providers
and users as well. Gnutella arrived with a very different concept. Now, all peers are clients
and servers at the same time, normally called servents [3]. These peers find neighbors with
elementary primitives of communication, and look for new contents via flooding. This com-
pletely distributed architecture showed its strength to disseminate popular contents, via the
cooperation of neighbors. However, flooding was not effective for rare contents. To make
things worse, the names could incidentally crash for different files, users were not forced to co-
operate, and malicious peers could even conspire with one peer, disturbing its neighbors [174].
Many other structured network overlays were deployed in the beginnings of this century: Cool-
Streaming [229], Emule/Edonkey [164] and BitTorrent [44] for instance. BitTorrent, created
by Bram Cohen, is an unstructured network overlay designed for fast distribution and repli-
cation of media contents [44]. The new concept is inspired in incentives: “give to get”. The
tit-for-tat solution of a game theory problem (the Iterated Dilemma’s Prisoner) was included
in this new design philosophy, and promotes an altruistic behavior of players [9]. Peers are
self-organized via swarms. Once they enter the network, they are included in a swarm. With a
pull-based technique, peers can get the rarest pieces of the file content first, in order to maxi-
mize the file availability. It exploits the robustness of random topologies, and peers cooperate
with each other as soon as possible (in previous networks peers could contribute only after
complete downloading).

BitTorrent faces many challenges, including the last piece problem [88, 138], fairness [71],
streaming rate bandwidth adaptation [192], free-riding [126], churn [203] and faking files [161],
among many others. However, it had enormous success, mainly because its usability for of-
fline downloading and on-demand services. Its applicability cannot be easily extended to live-
streaming applications, a hot topic that wakes the curiosity of the scientific community. When
designing live-streaming peer-to-peer services, the natural approach is to extend or at least
adapt the BitTorrent protocol. This is not a capricious idea: it is easier to extend than to
re-invent. Moreover, BitTorrent works fine in offline and on demand streaming applications,
where in the latter suffers subtle modifications, specially in its incentive-based mechanism.

The new dream is to have a triple-play system compatible with all streaming modes, cov-
ering offline downloading, on-demand and live-streaming. In the video market, the aim is to
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obtain High-Definition Television (HDTV) in a traditional PC, in a cost-effective way (not
wasting bandwidth resources) for a massive number of viewers. The nature of client-server
systems does not adapt to this purpose, because the capacity of servers does not increase pro-
portionally with respect to the number of entities in the network. An encouraging alternative is
peer-to-peer networks. They are self-organized communities developed at the application layer
and installed in the Internet infrastructure, in which the entities (usually named peers) act both
as clients and servers. They are strongly based on cooperation. Peers communicate basically
in a three-level based policy. In the first one, peers discover others interested in the same con-
tent, and is called swarming. Then, peers must select the best ones to cooperate, what is called
neighboring. Finally, peers cooperate sending data-chunks to each other, and the planning must
attend the chunk scheduling policy (or piece selection strategy in some literature).

Several scientific works suggest that the chunk scheduling policy is a key aspect of co-
operation in live peer-to-peer networks [1, 34, 57, 213, 233, 234]. The most widely spread
peer-to-peer systems are currently based on BitTorrent, whose chunk scheduling policy was
not originally designed for real time streaming urgencies. In this thesis new chunk policies are
designed, which outperform previous policies both theoretically and empirically, in the lights
of the GoalBit platform.

On the other hand, a caching policy should be exploited in on-demand scenarios, where the
video content is fully stored beforehand. Currently, YouTube offers video on-demand to end-
users following the traditional Content Delivery Network (CDN) architecture, and comprises
nearly 10% of the total traffic of Internet is due to YouTube videos. What is more, Google pays
more than one million dollars per day in bandwidth access to Internet Service Providers [40,
95]. In this thesis we suggest YouTube could save even a 90% of bandwidth costs with a smart
caching policy combined with peer assistance, exploiting user’s resources. The two following
sections contain the manuscript organization, production and main results of this thesis. The
remaining sections of this introduction present the common causes of concern in the design of
peer-to-peer networks, which show to be a promising alternative to offer bandwidth-sensitive
services as video streaming, in a highly scalable fashion.

0.3 Manuscript Organization

This thesis is structured in three parts, subdivided in chapters. Part I summarizes the State of the
Art, describing the main challenges and mathematical understanding of peer-to-peer networks,
focused in the design of core resilience mechanisms. Part II contains the main contributions of
this thesis, whereas Part III remarks the main conclusions, open problems and trends for future
work.

More specifically, this introduction defines the basic terminology, exposes different video-
streaming techniques and discusses possible architectures when choosing the taxonomy of a
peer-to-peer network. Chapter 1 details the performance analysis of file sharing, with scope
in the design aspects adopted in other streaming modes. BitTorrent shows to be an inspira-
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tional system. Chapter 2 discusses the main design issues related with on-demand streaming
services. The consequences of asynchronous playback of different peers combined with node
churn and need for interactivity adds complexity to the network design (for instance, to fast
forward or rewind like a traditional Video Cassette Recorder, VCR). A historic-driven mo-
tivation is provided, as well as a thorough real design in PPLive-VoD [97], covering those
issues. This chapter shows hints of economical savings using the peer-to-peer architecture ver-
sus traditional content delivery networks (CDNs). Chapter 3 discusses the main challenges
and trade-offs in the design of peer-to-peer networks for live streaming services. The original
BitTorrent ideas are projected and extended in a live video-streaming platform, named Goal-

Bit [18]. A conceptual exposition of the GoalBit protocol is included, and useful to understand
the contributions of this thesis, found in Part II. A characteristic element in the design of live
streaming is the importance of chunk scheduling policies, as can be revealed from the related
literature [1, 34, 57, 213, 233, 234]. It closes with a discussion of widely adopted claims that
have in fact a mathematical foundation. They include the fact that the local Rarest-First chunk
policy works appropriately in sharing, but this success cannot be extended to live streaming
systems. Those claims are motivation and point of departure for this thesis.

Part II has the main contributions of this thesis, which are two-fold. On one hand, Chapter 4
presents a cooperative fluid model for peer assisted on-demand video streaming. There, the sta-
bility and performance of P2P and CDN architectures are analyzed. We theoretically prove that
the P2P approach is globally stable and always outperforms pure CDNs. In the peer-assisted
architecture, peers cooperate and the system contains resourceful peers with large life-time,
called super-peers. These nodes are hosted in the cloud and managed by the service provider.
The issue is to choose whether a specific video-item should be stored in the a certain cache-
node (super-peers), in order to minimize the expected excursion time of peers. We present a
combinatorial optimization problem, called the Caching Problem, which captures this objec-
tive. This problem turns out to be NP-Complete, and its nature is similar to the Multi Knapsack
Problem [130]. A greedy randomized heuristic is developed to solve the Caching Problem.
Finally, the new caching policy is introduced in a real-life scenario, regarding more than 59000
video items taken from a passive YouTube-Crawler. The results confirm both the consistency
and cost-effectiveness of peer-assisted architectures, versus pure CDNs.

On the other hand, Chapter 5 is intended for the mathematical analysis of live-streaming
services in peer-to-peer networks. A novel chunk scheduling policy is designed, which out-
performs classical policies, like Rarest First and Greedy. This new policy is introduced in the
GoalBit platform, showing advantages when regarding playback delivery ratio and buffering
times. The chunk-scheduling design is evaluated in the lights of a simple cooperative model
for peer-to-peer streaming networks [233]. The reasons for this option are multiple. First, its
simplicity: it is the first tractable model for analyzing chunk scheduling policies. Second, it
captures the essential aspects of live-streaming systems: cooperation and synchronization. It
also captures the most shocking video-factors for quality of experience: playback continuity
and buffering times [181]. Last but not least, the model is proved to be highly robust [225]. We
analytically show hints for the poor performance of classical scheduling policies. Therefore,
an ideal design is first attempted to capture low buffering times and high playback continuity.
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It fails but gives a preliminary experience for the design of feasible solutions. A single-score
is defined trying to capture both playback continuity and latency. Then, a Combinatorial Opti-
mization Problem (COP) is proposed. The issue is to find the best order in which video-chunks
should be requested, and an exhaustive search among possible feasible solutions is computa-
tionally prohibitive. The COP is translated into a suitable Asymmetric Traveling Salesman
Problem (ATSP), and the latter solved heuristically following an Ant-Colony approach. The
result is a permutation-based chunk policy which outperforms classical policies, both theoret-
ically (in the lights of the cooperative model) and empirically, by emulations in the GoalBit
platform. A simple extension of the original model for cooperation is also introduced and dis-
cussed. It covers new ingredients: peers heterogeneity and presence of non-altruistic peers,
or free-riders. We analyze different cooperation strategies in multiple scenarios. The results
are intuitive, and confirm that when free riders represent a high proportion of this network,
the server should be able to recognize them as well as other peers in order to deploy a highly
scalable system. An optimistic conclusion is that the awareness of non-altruistic peers and
bandwidth resources help to punish free-riding behavior and make the system scalable. Es-
sentially, these results highlight the importance of contribution awareness in live streaming
systems, and the natural tree-based organization in order to speed-up the chunk propagation
when resourceful and altruistic peers can feed peers with limited bandwidth access.

Part III contains conclusions, trends for future work and an appendix. The concluding re-
marks and trends for future work are summarized in Chapter 6, whereas related open problems
are presented in Chapter 7. The Appendix contains algebraic details as well as a template for
the GRASP metaheuristic to address combinatorial optimization problems, which is used to
solve the Caching Problem of Chapter 4.
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0.4 Production and Main Results

The production of this thesis is basically summarized in the following items:

1. Mathematical modeling of peer-assisted architectures for on-demand video streaming,
via fluid models.

2. Analysis of the expected evolution of peer-assisted video on-demand services.

3. Analysis of stability for on-demand video streaming systems.

4. Theoretical prove that peer-assistance always outperforms raw CDN architectures.

5. Combinatorial specification of a Caching-Problem, to decide the video-items stored in
cache-nodes in order to minimize the expected waiting times for end-users in peer-
assisted networks.

6. Real-world simulations of caching-mechanism regarding traces taken from a YouTube
crawler, getting information of more than 59000 video items.

7. A mathematical analysis of chunk scheduling policies, in a pull-mesh cooperative system
for live video streaming.

8. Design of the best chunk scheduling policies so far, in the lights of the first tractable
mathematical model.

9. Introduction of feasible chunk scheduling policies in the GoalBit Platform, outperform-
ing classical policies.

10. Design of an Extended Model, including free-riding effects and node-heterogeneity.

Items 1 to 6 are presented in Chapter 4, whereas Chapter 5 contains items 7 to 10. In the whole
research process, accuracy is slightly compromised to gain simplicity. This is a natural fact in-
herent to the art of mathematical modeling, where the results give an overview of the system’s
behavior, and suggest hints for the network design.
As main conclusions, this thesis promotes the inclusion of peer-assistance in VoD-CDN archi-
tectures like YouTube (corollary of Items 3, 4 and 6), who comprises nearly 10% of all traffic
on the Internet, and spends millions of dollars per month in bandwidth from ISPs [40, 95]. We
confirm the strength of the peer-to-peer philosophy to address flash crowds and offload a cluster
of servers. In fact, we predict nearly 90% of bandwidth savings by means of peer-assistance
in YouTube for popular video-items, promoting the introduction of a hybrid architecture in
YouTube and similar on-demand streaming services.

In live streaming, the Rarest First policy from BitTorrent is not suitable (Items 7, 8 and
9), and we just give hints of high-performing chunk scheduling policies. We introduce new
scheduling policies in the GoalBit platform, and show the buffering times can be reduced to
five seconds or less (Item 9), which is clearly acceptable for most purposes. Here we ad-
dressed a static and structural analysis, but a dynamic buffer adaptation is a trend for future
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research. We believe a closed-look at successful proprietary networks such as PPLive would
give additional hints, which could be combined with the mathematical results here provided.
Additionally, we highlight valuable benefits of contribution and bandwidth awareness under
heterogeneous networks under presence of potential free-riders with the development of an
Extended Model (Item 10). Indeed, the cooperative system is highly scalable when the server
is able to discriminate different entities in the network. However, if free-riders are frequently
flavored peers (i.e. the server chooses them to send video-chunks several times), the perfor-
mance drops dramatically.

These contributions have been disseminated in refereed proceedings as well as interna-
tional journals. The point of departure of the research process in caching policies for P2P-VoD
systems is [182], where my colleagues Pablo Rodríguez-Bocca and Claudia Rostagnol propose
a combinatorial optimization problem to minimize the expected downloading times for end-
users. Some inconsistencies were detected in the model, specially in the treatment of band-
width bottlenecks (upload or download) and network stability, which was used there with no
proof. Consistency was added to the model, and the peer-assistance is proved to outperform the
traditional CDN architecture under quite general scenarios in a short paper [176]. However, the
stability of the fluid model was, up to that moment, an open problem. The peer-to-peer philos-
ophy is proved to always outperform CDN systems, and the first stability results were included
in a full paper [177]. The Sequential Fluid Model is finally proved to be globally stable, and the
combinatorial optimization problem (the Caching Problem) is inside the class of NP-Complete
problems, also proved for the first time in the journal [187].

A preliminary understanding of the cooperative chunk scheduling model for live stream-
ing, including a Follower System for the design of ideal policies, was first presented in [16].
The analytical expression for the expected extension of a peer-to-peer request and combinato-
rial optimization problem, including an Ant-Colony-based resolution was introduced in [17].
The main ingredients and problem translation to an Asymmetric Traveling Salesman Problem
(ATSP) is summarized in [186]. The GoalBit architecture is first presented to the research
community in [18], which represents the benchmark that supports the experimental results of
this thesis. Two compilation works, which include a historical revision of scheduling policies
and results in the real GoalBit platform are disseminated in journals [183, 184]. Specifically,
an in-detail design of the ant-colony exploration is presented in [183], whereas the compilation
work [184] is more suitable for an operational research audience. An extension of the coop-
erative model is introduced for the first time in [185], where the goal is to study the impact
of heterogeneity and free-riding effects. We highlight valuable benefits of contribution and
bandwidth awareness under heterogeneous networks under presence of potential free-riders.
The cooperative system is highly scalable when the server is able to discriminate different en-
tities in the network, even under presence of free-riders. The overlay is naturally organized in
a tree-based structure, where resourceful peers are parents of normal peer (or free-riders). It
is worth to remark that the network performance is dramatically deteriorated when the server
cannot recognize the different entities in the system (normal peers, double peers, free-riders
and super-peers). In fact, if free-riders are frequently flavored peers (i.e. the server chooses
them to send video-chunks several times), the performance drops dramatically.
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The remaining sections describe video streaming modes over the Internet infrastructure,
and cover essential challenges for the deployment of high-scalable peer-to-peer architectures,
as well as outstanding concepts to face a massive video streaming service in the Internet.

0.5 Three Video Streaming Modes

A video can be delivered from a source-node using the Internet infrastructure via three stream-
ing mechanisms, that differ in the generation, distribution and synchronization of media play-
ers. The simplest streaming mode is file sharing, in which the file is first generated in the
source, then distributed and finally played back. In file sharing, the user has to download com-
pletely the video-file before its use. The second mode is called on-demand video streaming.
The server forwards the video content whenever users demand it. Users can play the video on-
line, while downloading it. In this streaming mode the user’s media players are not necessarily
synchronized. In fact, users connect independently and asynchronously, and the asymmetric
nature of video on-demand services makes cooperation a challenging task, basically because
younger users do not have fresh information to serve older users, and request for the beginning
of the video stream (which is useless to several older peers).
The hardest real time constraints are imposed by the third mode, called live streaming, with
simultaneous generation, distribution and playback. All users must be synchronized in the
playback. From the user’s viewpoint, on-demand video and live video are quite similar ser-
vices. However, they are extremely different for design purposes. A remarkable difference
is that the video content is fully stored before its dissemination in video on-demand, whereas
the video stream is simultaneously generated, disseminated and played, with hard real-time
constraints in the distribution of live-streaming. As a consequence, the operator of a cluster of
servers can decide the video items stored in each server in an on-demand service beforehand.

Part I of this thesis is organized covering different streaming modes in each chapter. Specif-
ically, Chapters 1, 2 and 3 cover file sharing, video on-demand and live streaming respectively,
in turns. Although the design of live streaming distribution imposes hardest requirements than
other modes, the related problems in each chapter are described looking for ease of readability,
trying to elucidate the most challenging problems connected with the contributions from Part
II, that explores live and on-demand services. File sharing is not included in Part II of this
thesis. Nevertheless, Chapter 1 helps to understand the origins and mathematical foundations
of peer-to-peer computing, and learn smart solutions that are adopted from file sharing to other
streaming techniques.

0.6 Content Delivery Networks vs Peer-to-Peer

Consider a traditional Content Delivery Network (CDN) with m servers, each one working at
its full capacityCi [194]. Suppose in a certain instant, those servers should offer a video content
to M concurrent users. The minimum streaming rate to assure the customer expectations is R
(in compatible units). As a consequence, every user must receive a streaming of R if we wish
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to maintain a minimum quality of experience, and the sum-capacity of servers must be higher
than the sum-rate of users:

m
∑

i=1

Ci = C > MR. (1)

It is clear that each server can feed a limited population of peers, and the minimum stream-
ing rate cannot be kept under the presence of flash crowds (neither with some increase over its
limit Mmax =

⌊

C
R

⌋

). As a consequence, the performance of a CDN dramatically deteriorates
when the population exceeds a threshold. This argument is an evidence that a new paradigm
is needed for the delivery of highly popular contents. In Peer-to-peer networks, peers provide
an additional uploading capacity, and if the cooperation is effective, we say the network scales

well. A network is scalable when the quality of experience is unaffected with respect to the
size of the population. The interaction of peers inside a peer-to-peer system is so complex that
it is not practicable to determine on-line. Established providers need to understand the perfor-
mance of such a system before its deployment, as a frequent loss in quality would jeopardize
their reputation [205].

For those reasons, diverse mathematical models were developed, trying to understand scal-
ability, fairness in the solution between peers, measures of altruism-greediness in the network
and the presence of free-riders (i.e. peers that do not cooperate), among many other aspects.
The common design approach is to model the network considering one or more possible sce-
narios. The model gives hints for the network design, and some prediction of the users behavior
or network performance. Then, it is time to incorporate elements to the protocol and content
delivery mechanism. A cyclic-design is pushed by technology and users needs, making the
mathematical modeling a powerful tool.

There is an awesome mismatch between offer and demand when we refer to video distribu-
tion over the Internet. Indeed, the volume of video on the Internet doubles every year, while the
demand is increased by a factor of three 1. Currently, most of the video traffic carried over the
Internet is managed by Content Delivery Networks (CDN). In these networks, a set of servers
absorbs the load of the system, and are responsible of the distribution to end-users. Guided by
the offer-demand mismatch and the network effect [150], there is a fierce competition between
CDNs for the lucrative video distribution market.
There are basically two paradigmatic designs of CDNs. One is ISP-friendly, and driven by lo-
cality. Customers are served with the closest server with some metric (geographical, IP-based
or latency based, for instance), and some issues of major concern are the managing and net-
work maintenance in such a highly distributed architectural design. A relevant representative
of these kind of CDNs is Akamai [4, 61]. A second approach is sometimes called ISP to home,
where a few locations are strategically chosen to concentrate cluster servers, usually connected
with high speed private connections. This second approach trades lower maintenance costs
and overhead, at the price of possible higher delays to end-users. This approach is typified by
Limelight [116].

1See http://www.researchandmarkets.com.
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An alternative viewpoint to cope with massive demands and scalability is the peer-to-peer
philosophy. Completely distributed P2P systems (Gnutella-like) suffer from illness like uncon-
trolled flooding, high overheads and network dynamics (variable resources and node churn).
Regarding the great deployment of CDNs and recognizing their static resources which limit
scalability, an evident possibility is to combine the best of both worlds, extending CDNs in
an hybrid CDN-P2P architecture, as suggested by many researchers. The reader can find in-
spirational works on hybrid architectures in [96, 100, 155, 179, 190, 221]. In Chapter 4, we
will study the performance and scalability of pure CDNs and Hybrid P2P-CDN technologies
for on-demand video streaming services, showing clear advantages of the latter distribution
engine. The interested reader can find a thorough revision of video delivery networks in [181].

0.7 Design Challenges for Resilient P2P Systems

The resilience of a network represents its capability to adapt under dynamic environments (net-
work failures, variable resources, etc.). The peer-to-peer paradigm presents evident advantages
when we compare the global resources versus a traditional CDN. However, the design of a
resilient P2P network comes at a cost. The high penetration of ADSL services in the Internet
makes matching difficulties between neighboring peers, given that the upload capacity of peers
is usually five times smaller than their download capacity [21]. Peers arrive and depart the sys-
tem when they wish, producing variability in global network resources, a phenomenon called
node-churn. Some peers exploit network resources but do not contribute with the system (they
do not share resources), called free-riders. The network is developed at the application layer,
but network failures damage the service via congestion, network losses, link or router failures,
among many others. There is an explicit trade-off between the full knowledge of the network
(topology, peers bandwidth and file availability) and payload, which directly impacts in the
throughput and network performance. In networks with stringent real-time constraints such
as live video streaming, there is an additional challenge related with freshness of information.
Packets that out of date are indeed discarded, meaning either a playback stall or frame losses.

0.7.1 Bandwidth Availability

From the beginnings of this century, broadband DSL systems were spread all over the world,
specially ADSL. The asymmetric concept of ADSL provides a higher range of frequency spec-
trum for downloading, because normally users are expected to download more contents than
what they upload [21]. This fashion imposes a top-uploading capacity in a peer-to-peer sys-
tem. Moreover, the network in a P2P system is exposed to network failures. In a common
BitTorrent-based network, every peer posses a list between fifteen and twenty other peers. As
a consequence, if those peers do not need video content from the local peer, the uploading
bandwidth is wasted, a phenomenon called content bottleneck. A third element which reduces
the uploading resources still more is the malicious behavior of peers.
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0.7.2 Churn

Peer-to-peer networks are open systems. Peers connect and disconnect freely, a fact which
makes the network an attractive tool for them, but at the same time imposes many challenges
in the topological network design and information availability. The unpredictable and uncon-
trolled peer-arrivals and departures is usually known as node-churn. In peer-to-peer networks,
node-churn represents variability of network resources and more: losses of information. A
related concept is flash-crowd which means an instantaneous and massive peer-departure or
arrival. The consequences of a flash-crowd in ill-designed networks can be catastrophic. Just
in file sharing, if the flash-crowd means that a piece of information cannot be recovered, it
triggers the network’s death. When several resourceful peers depart the system, a topologi-
cal re-organization could be a solution. It is worth to notice that an intensive arrival rate in
a traditional CDN represents either a degradation of quality, or even worse, a collapse of the
system.

0.7.3 Malicious Peers

There are peers who do not contribute with the network (i.e. do not upload), and are called
free riders. Free riding is a major cause of concern in peer-to-peer systems, and the network
operator (or cooperative protocol) should promote incentives to avoid or control this undesired
phenomenon. In related literature, incentives represent a cross-layer resilience mechanism to
encourage peers to contribute with the global system (cross-layer because the peers’ behavior
is in the User Layer, but the application of incentives is in the overlay). Three alternative
incentives mechanisms are paying, punishing or service differentiation [1, 87, 158]. A common
approach is to press the nodes of the system with a give-to-get policy, so peers cannot departure
the network without sharing resources.
In unstructured flat systems like Gnutella, we can find other malicious behaviors. Contents are
shared via flooding, and if the neighbors of a certain peer do not share, it dies. This behavior
is called asphyxia. Fake peers and crashed-names are additional difficulties, specially when
the network lacks of a centralized entity (for example, a tracker). When the network presents
a centralized entity like a tracker, another malicious behavior is the misreport or report of
incorrect persuasive information in order to have better opportunities.

0.8 Centralized vs Distributed P2P Architectures

The design of peer-to-peer networks has an explicit trade-off between information availabil-
ity and control, churn robustness and the underlying infrastructure (i.e. pure or unstructured,
structured or hybrid). The history shows that in pure (totally decentralized) networks there is
little or nothing to control, and free-riding and malicious peers are major causes of concern.
On the other hand, a completely centralized network must have a special set of cluster servers,
and the stability of the service strongly depends on the peer-population, usually falling in bot-
tlenecks. These two opposite designs are typified by Gnutella and Napster respectively, which
established the beginnings of the deployment of peer-to-peer networks. The deficiencies of
both systems promoted the design of alternatives, like Distributed Indexing with Hashing ar-
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chitectures. The concept is to distribute among peers a hash table, which maps keys (usually
representing files) onto peers, promoting scalability, typified by CAN [169], Tapestry [230],
Chord [202] and Kademlia [139], among many others (discussed in Chapter 1).

An inspirational system for fast dissemination and file propagation is called BitTorrent,
created in 2003 by Bram Cohen [44]. In fact, both hashing and flooding architectures were
partially displaced by BitTorrent-based networks, which constructs one swarm with random
topologies for each torrent file. The BitTorrent’s success for file sharing applications is proved
repeatedly by several researchers, both theoretically and via experimental setup. However, it is
not suitable in its original specification for live streaming, due to its large latencies. Nowadays,
most of the peer-to-peer platforms are BitTorrent-based. For instance, GoalBit is the first open
source platform that widely offers live and on-demand video streaming to end users [18]. A
succinct description of the most determinant elements for the BitTorrent success are discussed
in Chapter 1. The GoalBit protocol specification and key ideas to extend its success to live
streaming are considered in Chapter 3.

0.9 Tree-Based vs Mesh-Based P2P Topologies

The topological structure of the network overlay is highly related with the core mechanism for
the design of resilient video stream. A possible topology is to construct a tree-based overlay,
always rooted in seeders (i.e. peers who fully own the file). Random neighboring leads to
an alternative mesh-based topology. The most popular peer-to-peer networks are mesh-based.
There are several reasons for that. The root-to-leaf delay is linearly increasing with respect
to the height of the tree. Therefore, in order to design short trees, high node-degrees must be
used. However, this solution carries new problems. First, the tree looses robustness, given
that a node disconnection means several components to be immediately repaired. Second, the
in-degree rate of a node must be divided into all successor peers, and a low capacitated peer
imposes the bottleneck of several branches. The system is highly sensitive to node-churn.
A third problem inherent to the design of single-rooted topologies is that leaf nodes never
upload information. To make the things worse, short trees with high order always have an
important number of leaf nodes, that are forced to free-ride. In multi-tree structures, leaf nodes
are encouraged to be in some branch of other node, in order to contribute with the system.
The design of multi-tree structures imposes many challenges, in order to recover from the
previous issues and guarantee network reliability, high throughput and reduced latencies as
well. Examples of multiple-tree designs are SplitStream [31] and CoopNet [154], both with
complicated maintenance algorithms which give raise to cross layer techniques. The reader
can find a compressed treatment with valuable references in [1], and a challenging related
network design with bounded degree in [121]. There, they reveal solved problems and try to
find the capacity of a node-degree constrained network, via multiple sub-trees. On the other
hand, mesh-based approaches enjoy the advantages of low costs and simple maintenance of
the network structure. Additionally, they are more resilient to node failures and departures.
However, a clear disadvantage is that peers need to periodically exchange buffer-maps, leading
to higher global overhead in the whole system. The trade-offs between network efficiency
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and latency is a main problem in mesh based approaches. We will explore this trade-off in
Chapter 5, where a simple cooperative model [233] is analyzed to address the playback-delay
trade-off. A comparative study of tree-mesh topologies for live streaming purposes can be
found in [131]. There are several realizations of mesh-based peer-to-peer network, for instance
PPLive [162], PRIME [132], CoolStreaming [229] and GoalBit [18], which will be described
in Chapter 3.
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Chapter 1

File Sharing

1.1 Introduction

File sharing represents the most “rudimentary” method for peer-to-peer file propagation. The
file is owned by a set of (or a single) source content nodes, or seeds, and they will try to
disseminate this content as soon as possible to a dynamic set of peers, usually called leechers.
An essential difference with respect to other streaming modes is that the file is limited, and
completely stored by the content source server beforehand. In this way, the distribution of
the content has a lifetime, which presents phases according to the file popularity and peers
dynamism.

Furthermore, users do not enjoy the content before complete downloading. Hence, the
most adopted measure of performance is the expected download time, or the worst waiting
time among peers. Other relevant parameters are the network capacity under flash crowds
(i.e. its survival properties), the payload and streaming rates, which are directly related with
the minimum download time, called the makespan in related literature. The major causes of
concern are churn, free-riding effects and malicious peers, trade-offs between fairness and
performance, the last piece syndrome or starvation, mismatches between the logical topology
and underlying physical resources, unbalanced upload-download capacities and push-to-pull
mismatch between neighboring peers. In order to address those issues, several strategies were
proposed, sometimes via a careful design of the network overlay and logical neighboring struc-
ture, choosing outstanding peers to share messages, others maximizing the total availability of
information, grouping users in accordance with bandwidth resources, even sometimes inviting
powerful and most contributing peers with incentives to join the network. The related literature
is vast, and surveys do not reveal the entire design aspects of file sharing dissemination in peer-
to-peer networks. In this chapter we will discuss the mathematical foundations of file sharing
revealing the most referenced works, and a brief revision of real implementations specially de-
signed for file sharing purposes. The intention is to capture the main design challenges, and
suggest ingredients which are inherited in other services.

35



36 Chapter 1. File Sharing

1.2 Mathematical Foundations of File Sharing Systems

Xiangying Yang and Gustavo de Veciana analyze the performance of file sharing systems under
transient and steady state regime [224]. The first one is specifically the survivability and service
capacity of the system under flash crowds, and the second is performance under variability on
demand. An exponential growth can be appreciated in the transient, in which parallel one-
to-one download and pipelining are remarkable survival elements. The expected latency is
obtained for different scenarios. The size of a piece is a critical design element: smaller pieces
suggest fast downloads, but they introduce overload to the system. In the transient analysis they
propose a deterministic model, where a closed network has n identical nodes in the network
with capacity b bps, and only one out of the n nodes owns a file of size s, measured in bits.
Peers can contribute with the system uploading the file only after full download. Intuitively, the
best cooperative strategy is one-to-one feeding. Specifically, the seeder first sends the file to
another peer; then both feed two different peers and so on. The authors state without proof that
the latter cooperative strategy is the best. The proof is simple, and we will include it here. First
note that in the one-to-one strategy, we can study the evolution in slots, where the seeder takes
τ = s/b seconds to feed another peer. Note that exactly 2i peers fully download the desired file
in time ti = iτ . Without loss of generality assume that n = 2k. Then, the average download
time is [224]:

T =
1

n

k
∑

i=1

2iti =
τ

n

k
∑

i=1

i2i = τ

(

log2(n)− 1 +
1

n

)

(1.1)

In a client-server architecture, users should increase the waiting times linearly with the numbers
of users. Equation (1.1) gives a hint of possible advantages to cooperative systems.

Proposition 1.2.1 The one-to-one strategy is the best.

Proof. Given that peers cannot cooperate unless they own the file completely, partial down-
loadings are never useful. All peers that fully downloaded the file must cooperate; otherwise
the performance of the system will be deteriorated. Therefore, we will assume that the seeder
equally sends the file to u− 1 ≥ 1 users simultaneously. Then, in the second slot, each one of
the u seeders send to u−1 different peers, and so on. Each time slot lasts τ ′ = (u−1)s/b = uτ .
Then, exactly ui − ui−1 peers fully download the file in time ti = iτ ′. The number of stages x
for the makespan must comply that 1 +

∑x
i=1(u

i − ui−1) = ux ≥ n, so the average download
time is:

Tu =
(u− 1)τ

n

x
∑

i=1

(ui − ui−1) =
τ

n

(u− 1)2

u

x
∑

i=1

iui

=
τ

n

(u− 1)2

u

u− (x+ 1)ux+1 + xux+2

(u− 1)2
=
τ

n
(ux(ux− 1− x) + 1)

≥
τ

n
(n(ux− 1− x) + 1) =

τ

n
(nx(u− 1)− (n− 1))

≥
τ

n
(n log2(n)− (n− 1)) = T ,

where the last inequalities use that ux ≥ n.
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Q.E.D.

In a closed network, this highlights the idea that peer-to-peer networks can be effective to
reduce expected waiting times experienced by end-users. Yang and de Veciana also suggest
that multi-part downloading can substantially improve the performance of the system. In fact,
under the same scenario, if we assume that the file is divided into m parts of equal size, and
peers can share parts whenever they own it, the average download time is now [224]:

T ′(m) =
τ

m

(

log2(n) +
2m− 1

2

)

(1.2)

It is interesting to check that T ′(m) tends to τ when the number of parts increases to infinity.
This ideal result would say that all peers wait the same as if only one peer were within the net-
work! Naturally, this is far from practice. The headers of TCP packets would be dominant in
the file size when the number of parts exceed a certain threshold [134]. Moreover, the statistics
of network failures would assure losses with massive retransmissions. In all cases, real systems
are exposed to node-churn, and the best strategy from Proposition 1.2.1 looses dramatically its
quality, because a failure in the starting nodes has enormous impact in the average waiting
times, or even worse, in the network’s life. The authors translate the deterministic approach
into a stochastic branching process, and discuss whether the network survives or not, in terms
of the number of branches, including node-churn in a simplistic but illustrative fashion. They
also propose a Markovian model to describe the peer evolution, which established the basis
of further research. Empirical results highly validate the common conclusions obtained from
both deterministic and stochastic models, and reinforce the fact that multi-part combined with
parallel downloading are desirable to handle bursty demands.

Another foundational paper has credits to Qiu and Srikant [168]. There, the authors model
BitTorrent-based networks under steady state and its variability, with empirical validation as
well. A steady state analysis is first presented with a simple fluid model, in which the peer
evolution is captured by poissonian arrivals and exponential departures in the system. They
consider homogeneous peers, and find a closed expression for the average downloading time.
The fluid model is captured with the two following differential equations, where the parameters
are summarized in Figure 1.1:

{

dx
dt = λ− θx(t)−min{cx(t), µ(ηx(t) + y(t))},
dy
dt = min{cx(t), µ(ηx(t) + y(t))} − γy(t).

(1.3)

The essential idea is to treat the number of peers and seeds in the system as a dynamic fluid
inside a recipient, where λ represents the fluid entry rate, θ and γ the respective peer and seed’s
output rates. Additionally, the minimum function plays the role of the bottleneck, which is
either in the download (cx(t) in peers per second) or global upload µ(ηx(t) + y(t)), which
takes into account seeders as well as incomplete information owned by peers (captured by
an effective factor η ∈ [0, 1]). The authors find first the rest point for the system (solving
dx
dt = dx

dt = 0) and by means of Little’s law they relate the average download times T with the
number of peers under steady state:

T =
1

θ + β
, (1.4)
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being 1
β = max{1c ,

1
η (

1
µ −

1
γ )}. A sensitivity analysis of Expression (1.4) with respect to

different design parameters offers one of the first valuable insights of the BitTorrent’s correct-
ness [168]. Surprisingly, the download time is independent of the arrival peers rate, giving
hints for the BitTorrent’s scalability. The download time monotonically decreases when η is
increased, and T increases when γ does. Another valuable remark is that the performance
improves when the download bandwidth is increased, but after certain threshold β does not
depend on c, neither the average download T . A similar argument holds for µ.

x(t) number of downloaders at time t.
y(t) number of seeders at time t.
λ arrival rate of peers.
θ departure rate of peers.
γ departure rate of seeders.
c downloading bandwidth of each peer.
µ uploading bandwidth of each peer.
η sharing effectiveness of file sharing (η ∈ [0, 1]).

Figure 1.1: Parameters in the inspirational model from Qiu and Srikant [168]

A special treatment is included for the file sharing efficiency between peers, and confirm
that random peer selection is translated into a high file sharing efficiency. Indeed, Qiu and
Srikant also find a rough expression for the file sharing effectiveness η, which is defined as the
probability of not needing any piece from all other directly connected peers, assuming uniform
piece distribution in the system (exactly what BitTorrent tries with its Rarest First policy):

η ≈ 1−

(

logN

N

)k

, (1.5)

being N the number of pieces in the system, and k the number of neighbors of a given peer.
The steady state of the system given in (1.3) is partially characterized as locally stable, and
they conjectured that it is globally stable as well. The authors also include a game-theoretical
approach and discuss incentives effects. Specifically, they model BitTorrent as a competitive
system, and prove the system achieves a Nash equilibrium point, in which free-riders are pun-
ished with lower rates than cooperative peers. This work is directly complemented by Tewari
and Kleinrock [205], Qiu and Sang [167], and cited by more than one-thousand other works.
Tewari and Kleinrock easily show that with peer groups higher than 15-20, the file sharing effi-
ciency increases with respect to the number of chunks, strongly based on Expression (1.5) and
simulations. BitTorrent tries to maintain 20 peers, so Tewari and Kleinrock support the pro-
tocol [205]. Qiu and Sang prove that the conjecture of global stability for (1.3) is true, which
suggest both consistency of the results given in [168] and stability of peer-to-peer networks.
They identified the fluid model as a switched linear dynamical system. As a consequence, local
stability is easily proved, but global stability has several tricks. They discovered a Lyapunov
function in order to complete the global stability. The reader can find a friendly approach to
the stability of dynamic systems in [128], and an in-depth study of linear switched systems
in [115]. These works have been extended in this thesis in Chapter 4, where the model is
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adapted to on-demand video streaming, adding node churn, special caching nodes and multiple
concurrent video transmissions. The system is proved to be globally stable as well, and a novel
caching technique is applied into the first free and open-source live peer-to-peer platform called
GoalBit, currently offering on-demand services as well [11, 18].

The models developed by Laurent Massoulié and Milan Vojnović are similar in spirit than
the ones of Yang-de Veciana [224], and Qiu-Srikant [168], via coupon replication systems,
with rigorous mathematical results [136]. They propose a deterministic fluid model for a large
scale limit, in both layered and flat systems. In a layered system, users exchange coupons
only if they have the number of coupons, whereas peers are uniformly selected at random in
the flat system. In order to understand the flash crowd, a closed system is considered, and
Poissonian processes are used for a steady state analysis. The models assume that joining
peers are awarded from the server one random coupon. A remarkable conclusion is that both
flat and layered systems are stable even under random blind coupon selection, so the Rarest
First policy, though intuitive does not represent the reason of robustness in BitTorrent. An
additional analysis of the complete layer system with all but one coupon missing shows that
the population geometrically decreases, strengthening the robustness of swarming systems that
were previously predicted by Yang and de Veciana [224].

Di Wu details a trade-off between fairness and performance of peer-to-peer streaming sys-
tems [217]. Experimental analysis show that the most resourceful and altruistic peers normally
upload nearly ten times more than other peers, but download the similar streaming rates. It
sounds unfair to keep altruistic peers as long as possible in the system in order to achieve better
performance, and a fairness index is considered in his exposition. Using only traffic conserva-
tion and statistical assumption of poissonian arrivals, an average streaming rate is found with
heterogeneous peers (with different uploading and downloading capacities). The discussion is
then focused on the fairness score under given performance, and vice-versa. A convex opti-
mization problem is presented, and a water-filling approach1 gives the best trade-off (found via
the Karush-Kuhn-Tucker optimization technique). There, users with uploading rates lower than
a certain threshold must contribute at their full capacity, whereas the other peers must stream
with the same rate (the threshold streaming rate). The introduction of this cooperative scheme
in a real platform should use a tracker, who must estimate peer resources, find a threshold
and return the task to the peer. However, the author points out it is not practical, just because
selfish peers might not report their statistics, and the centralized tracker could collapse in a
flash crowd. Besides, an efficient perfect-matching is assumed (where no uploading resources
are wasted). A similar trade-off is studied by Fan, Lui and Chu, where the service capacity is
measured with the total download time [72]. The authors prove that the best performance is
achieved when the strongest peer (with the highest download bandwidth) downloads a limited
rate, lower than its full capacity, whereas all the other peers must download as fast as possible.
This is extremely unfair (the best peer can even download at the lowest rate). Then, a min-max
problem is proposed in order to find trade-offs, falling again in an optimum water-filling tech-
nique. The authors argue that BitTorrent works in a feasible space of rates, which are between

1Curiously, water filling is the best strategy to share information with multiple uncorrelated independent Gaus-
sian channels subject to additive white Gaussian noise. See [46] for an excellent book covering network information
theory.
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fairness and performance optimality. A design using knobs is considered to build up a protocol
including those outstanding points, which can be implemented in a distributed way. The au-
thors explain that BitTorrent is just one point between the whole space, which is not necessarily
fair.

Minghua Chen et al offer a survey dedicated to single source multicast scenarios over P2P
networks, with perfect links and node upload capacity constraints [36]. They do not treat net-
work coding, and argue that it is not applicable unless extreme changes in both IP routers
(which need to encode) and end-hosts (to decode). An optimal solution can be obtained when
no degree constraints, with the presence of helpers [114] or without them [106, 135]. The
structure of both solutions are multi-tree based, rooted on the source node. An extension of this
problem is to limit the per-tree degree, which sounds more realistic in peer-to-peer networks,
given that peers cannot maintain connection with all the other peers. If all nodes are identical,
it is illustrated that CoopNet and SplitStream achieve optimal solutions (in a static network
without node-churn), via multiple trees where each node is interior only once, called interior-
node-disjoint trees. The complexity of the problem increases dramatically in the general het-
erogeneous network with bounded node-degree. In fact, the determination of the streaming
capacity is NP-Complete [121], and the Bubble algorithm proposed by the authors achieves
an approximation factor. If the uploading peer capacities are assumed to be a random variable
with first and second moment known, then a pragmatic grouping algorithm is designed, whose
streaming capacity is near the mean peer upload capacity. The solution assumes that the bound
degree is logarithmic in the number of peers within the network, and also proposes a merge-
break scheme to re-organize under node-churn. A similar work not covered by the survey is
conducted by Mundiger, Weber and Weiss [146, 147]. There, the authors study the minimal
makespan, that represents the necessary time to share M messages from a source node of up-
load capacity CS (measured in MBps) to N end-users, with limited uploads C1, . . . , CN but
unlimited downloads. In the special case of identical peer capacities, the minimum number of
rounds required to complete the dissemination of all file parts is M + log2(N). Each round
takes 1

M units of time, and then the minimal makespan for all M and N is:

T = 1 +
log2N

M
(1.6)

Basically, the idea of the proof is to note that the server requires M rounds to distribute all
parts, and the last part (owned first by a single peer and the server) will take log2(N) addi-
tional rounds to distribute each part to the whole population. A complete proof including a
construction of the distribution is detailed in [147], and reveals the optimum technique is quite
similar to the BitTorrent matching for exchange. There, the authors also prove two lemmas
that permit to treat distribution with slots (in a discretized fashion). The heterogeneous case is
more complex. They prove that the minimal makespan can be obtained by an analogous dis-
cretized problem - a Mixed-Integer Linear Problem - in which new uploads to occur only after
other uploads finish. When the number of messages M is large in relation with the number of
end-users N , then the minimal makespan can be obtained via a limit fluid model:

T ∗ = max

{

1

CS
,

N

CS +
∑

iCi

}

. (1.7)
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In a similar fashion, if every end user has a file to share of size Fi, i = 1, . . . , N (with no
distinguished server), the minimal makespan is:

T ∗ = max

{

F1

C1
, . . . ,

FN

CN
,
(N − 1)

∑

i Fi
∑

iCi

}

. (1.8)

The authors are interested in finding makespan of real-life platforms in order to measure pos-
sibilities of optimization. Additionally, they propose decentralized solutions to be carried out
in a practical network, and confirm that random peer selection possesses high performance.

However, real platforms are exposed to node churn, and the models here developed do not
include departures nor arrivals2.

Kumar and Ross observe that closed expressions for the makespan have only been obtained
for highly simplified scenarios, with infinite download bandwidth or identical peers [107].
They consider a peer-assisted distribution problem, in which there are S seeds with streaming
rates rs that completely own a file of size F , and L leechers with (possibly different) down-
loading capacities dl and uploading rate rl. Their objective is to find the makespan, regarding
users that depart the system immediately when they fully download the file. Three elementary
remarks characterize a lower bound for the makespan:

1. A leecher cannot download at rates faster than dl, so Tmin ≥
F
dl

for all leechers.

2. A leecher cannot receive more than the whole available resources: Tmin ≥
F∑
i rs

.

3. The L files are downloaded with the global uploading resources: Tmin ≥
LF∑

s rs+
∑

l rl
.

A lower bound can be trivially obtained from those remarks. A hard task is to prove that the
equality holds [107]:

Tmin = max

{

F

dl
,

F
∑

i rs
,

LF
∑

s rs +
∑

l rl

}

(1.9)

Kumar and Ross compare Equations (1.9) and (1.6), with a single seed and equal capacities.
The difference is due to their continuous model versus the chunk-model developed by Mundi-
ger, Weber and Weiss. The relative error is log2(L)

M . Kumar and Ross conclude this relative
error is negligible (one percent or less) considering realistic scenarios. Specifically, the typical
chunk size in BitTorrent is 256 KBytes [109], and with less than 10000 leechers and file sizes
of 350 MBytes (or more), the relative error is not bigger than one percent. Lingjun Tsang and
King-Shan Lui further explore the makespan (1.9) obtained by Kumar and Ross, designing
a grouping problem. They try to find k packs of seeds and leechers such that the following
conditions are met [119]:

Tmin(Si, Li) ≤ Tmin(S,L), ∀i ∈ {1, . . . , k}

TG
avg < Tmin(S,L),

2It is interesting to notice that their results extend telephonic models [73], proving results in a brief and elegant
way.
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being Tmin(Si, Li) the makespan for a group with Si ⊆ S seeds and Li ⊆ L leechers, and
TG
avg the averaging among all those makespan (Si, Li). If there is such partition G they call it a

grouping. They prove that no grouping exists when the equality for Tmin holds in Cases 2 or 3.
However, when the equality holds for Case 1 (i.e. Tmin = F

dl
for some leecher l), the existence

of a grouping is an NP-Complete decision problem, as can be proved with a reduction from Set
Partition [119]. The authors also design an algorithm that looks for feasible groupings and re-
organizes grouping when a leecher failure occurs. The results of the grouping algorithm shows
to be encouraging when compared with the BitTorrent protocol via simulations. Note that free-
riding is completely neglected in most works, and the focus in just a few. Free-riding is a major
cause of concern in peer-to-peer networks. However, it is rare to find works that measure the
streaming capacity of the system under free-riders. Creus, Casadesus and Hervas propose a
game with elementary rules and two entities: free-riders and sharers [47]. Entities have scarce
unit download and infinite upload, and choose a single target sharer to download. If s and f
denote the number of sharers and free-riders respectively, they show that the average download
among all stable topologies is tightly similar to s/(s+ f), being a topology stable whenever a
peer cannot improve re-connecting to another sharer. The model is extremely simple, and does
not consider heterogeneity, file sharing efficiency nor topological constraints. The reader can
have an overview of works on free-riding for file sharing in the references therein [47].

Other works focus on a phenomenon sometimes present in BitTorrent-based networks,
called starvation: a peer owns the whole file but a missing data-chunk, waiting very long
to get that chunk, or never getting it. Mathieu and Reynier explain the hazard of starvation
under flash-crowd in a simple way [138]. They propose an upload-oriented approach for a
swarm-based network with P peers, S seeders and K data-chunks to be shared. Specifically,
the sender chooses the chunk to be uploaded. The upload-oriented model is there justified
because an uploader peer is altruistic, hence able to choose the best piece and peer to upload
in order to help the collectivity (and the pragmatic assumption that the upload is the bottle-
neck but the download). They further assume identical peers with unit uploading capacity, no
exogenous arrivals, and instant departures once the file is fully downloaded. Under globally
random strategies, the network is either expected to reach a safe regime or starvation. In the
former, the seed can fail and the network survives. Otherwise, under a starvation scenario the
network dies if the seed departs the system, given that a missing chunk cannot be recovered.
Starvation can be triggered in BitTorrent if the entry rate is high, peers depart before they are
healed, and starving peers accumulate. The authors conclude that discriminant chunk-oriented
policies are more resilient than globally random policies, giving credits to BitTorrent (when
compared with eDonkey). Bruce Hajek and Ji Zhu develop a Poissonian model so understand
the missing piece syndrome [88]. They theoretically prove that the missing piece syndrome
occurs almost surely (i.e. with unit probability) whenever the seeder rate λS is lower than the
arrival rate λ, so the bottleneck for stability is the upload capacity of the seed. On the other
hand, if the arrival rate of new peers is less than the seed upload rate, the Markov Chain is
ergodic, and the mean number of peers in the system in equilibrium is finite. They assure that
the result holds for random useful piece (in which the uplink or downlink models are equiva-
lent), but for the Rarest First and Greedy policies as well. When using network coding with
Galois fails Fq, the stability condition is λ < λS(1 −

1
q ). Nevertheless, network coding has
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the advantage that no exchange of state information among peers is needed because there is no
need to identify useful pieces. They conjecture the tit-for-tat policy greatly helps to tackle the
missing piece syndrome, and turns the system stable, but the mathematical tools developed do
not cover tit-for-tat nor peer-selection. The stability for different two-chunk based models is
presented in [151]. There, the authors show 5 different strategies to download a file with only
two chunks, focusing on the stability, and suppose that entering peers are awarded with one
chunk once they join the network.

1.3 Inspirational Systems for File Sharing

It is instructive to understand the origins and inspirational platforms of peer-to-peer networks.
We briefly visit the first widely spread networks: Gnutella and Napster, discussing their benefits
and drawbacks. Hashing architectures were designed to address the major problems in both,
distributing a hash table among peers in order to facilitate the routing and item availability.
Then, a description of BitTorrent, the most successful protocol for file sharing purposes, is
here included, discussing experimental results.

1.3.1 Napster, Gnutella and Hashing Architectures

In Napster, a centralized entity invites users to communicate and offer those files which are
normally popular in the network. Napster represents the first structured and centralized peer-
to-peer network [148]. Users were able to store several MP3 music files and retrieve them with
the help of Napster. As soon as this network achieved an enormous success with hundreds of
millions of users sharing MP3 files, it became a threat against traditional business models sup-
ported by the record companies [30]. The Recording Industry Association of America (RIAA)
highly criticized peer-to-peer networks, complaining that the sales went down. Definitely, the
digital music was the killer application of Napster, which ended in the tomb after a legal pro-
cess. Clearly, the hierarchical structure of Napster avoided a key element in the design of
peer-to-peer networks: the anonymity. However, the new paradigm woke-up the imagination
of platform providers and users as well.
Gnutella is the first unstructured peer-to-peer network. The developers (fans of a dessert named
Nutella, and followers of the GNU project) introduced the concept of servents, in which nodes
are servers as well as clients [3]. Via flooding or back-propagation, servents communicate
exchanging very basic primitives: ping-pong, query and get-push messages. Studies of so-
cial dilemmas have shown it is hard to generate spontaneous cooperation in large anonymous
groups [98]. Via experimental measurements, Adar and Hubermanthe show that Gnutella is
not an exception [3]. They found that nearly 70% of Gnutella users share no files, whereas the
half of all responses are returned by the top 1% of sharing hosts. Due to its power-law topol-
ogy [45], Gnutella is robust to random disconnections. However, this network is vulnerable
to well-planned attacks, and flooding carries enormous overheads. Furthermore, an entropy-
based measure highlights the fact that the shape of this self-organized network is independent
of (hence, it does not match with) the underlying physical infrastructure [174]. Another critic
for Gnutella is presented in [228]. There, the authors use a sophisticated crawler, and point
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out that the overload due to ping-pong messages is enormous, occupying a 63% of the net-
work utilization. Summing up, the great freedom of peers and random topology in Gnutella is
translated into free-riding and malicious peers, payload in handshaking and evident mismatch
between the logical topology and the underlying network resources. An incentive-based mech-
anism is needed in order to deter free-riders and keep strong peers alive. Regarding Gnutella’s
deficiencies, new architectures were proposed, for example Chord, CAN, Pastry and Tapestry.
They represent a third architecture, called Distributed Indexing with Hashing. The concept is
to distribute among peers a hash table, which maps keys (usually representing files) onto peers,
promoting scalability. The Distance Vector (DV) and Link State (LS) were IP-routing algo-
rithms at disposal in that moment. However, they require every router to have a global level of
information about the topological structure of the network level [204]. Chord is a distributed
lookup protocol to efficiently locate the node that stores a particular data item [202]. Peers in
Chord can find a desired file in a path with logarithmic length with respect to the number of
nodes, in a similar way than a bipartition search and with smart memory savings. Chord lacks
anonymity, and does not exploit network locality for its routing. However, its correctness is
robust in the face of partially incorrect routing information. The heart of Chord is the fast dis-
tributed computation of a hash function mapping keys to nodes responsible for them. The load
balancing is achieved with Consistent Hashing [113]. CAN (Content Addressable Network)
uses a dynamic discretization of a d-dimensional torus in the euclidean space to address churn
and item location [169]. Peers are assigned one or several zones of the torus, and they have log-
ical neighbors in accordance with adjacent zones. The item search is based on request to logical
neighbors. The authors propose several design extensions in order to improve round-trip times
(RTT), average path length and robustness. The node updating costs O(d), and the lookup cost
is O(dN1/d), being N the number of peers in the network. The dimension of the torus d can
be chosen beforehand. However, the peer population should be predicted to choose the best
dimension d. The hash table’s size managed by a CAN node does not depend on the network
size, but the lookup cost increases faster. Note that the routing table has neighbors, and does
not increase with the network size (it is twice the dimension of the torus or less). CAN requires
an additional maintenance protocol to periodically remap the identifier. Globe is similar to a
DNS lookup, and exploits network locality, but works in a hierarchical manner [211]. Pastry
is completely decentralized, and exploits network locality minimizing the number of IP-hosts.
The average number of IP-hops is logarithmic in the number of nodes. Each peer has an iden-
tifier, and forwards messages to one out of k peers, whose keys are similar to its identifier. The
node-ids are randomly assigned, so peers with similar keys are likely to have diverse geograph-
ical distance. Nevertheless, a smart heuristic for routing is proposed, selecting the nearest peer
with high probability [188]. Tapestry is designed in a similar spirit, and trades-off complexity
and anonymity [230].
In [80], the authors develop mathematical models to understand different peer-to-peer architec-
tures. They consider three different infrastructures: Centralized Indexing Architecture (typified
by Napster), Distributed Indexing with Flooding Architecture (eg. Gnutella) and Distributed
Indexing with Hashing Architecture (Chord, Pastry, Tapestry and CAN, for instance). They
assume a closed queuing system with multiple classes, and find approximate expressions for
service rates and probability of fail during a query. They also include free-riding effects, and
conclude that the system does not suffer much performance degradation, in contrast with pre-
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vious works. A system with flooding cannot exploit the full capacity of peer-to-peer systems,
whereas centralized architectures achieve acceptable performance in a limited population of
users. The authors argue the framework is flexible enough to analyze further features in file
sharing. Both the centralized and hashing architectures can support a much larger ratio of
freeloaders than the flooding mechanism in pure decentralized networks. A widely used DHT-
based system is Kademlia [139]. The routing structure resembles the algorithms of Pastry and
Tapestry. However, Petar Maymounkov and David Mazières pointed-out that those algorithms
require a secondary routing table whose size is increased with the network scale. Kademlia
is a DHT-based system which includes a novel XOR metric to facilitate search and lookup, in
a symmetric node relation. This solution permits to learn useful routing information, hence
avoids the rigidity of node’s finger and static routing in Chord. Routing in Kademlia is latency-
based, and parallel queries can be asynchronously sent from a peer to a several target receivers.
Kademlia is strongly based-on the XOR metric, which is the bitwise exclusive or, interpreted
as an integer written in binary. It is clearly a non-Euclidean metric (associativity implies the
property (x

⊕

y)
⊕

(y
⊕

z) = x
⊕

z = d(x, z), and the triangular inequality). As in Chord,
it is unidirectional: given a certain distance ∆ > 0 and a 160-bit x, there is only one 160-bit
y such that d(x, y) = x

⊕

y = ∆. The unidirectionality property ensures that lookups for
the same key converge to the same path, and caching < key, value > pairs alleviate hotspots.
Each node keeps for each integer i : 0 < i ≤ 160 a list, called bucket, which contains nodes
who are both alive and the XOR distance is between 2i and 2i+1 from the local Node-ID. All
buckets have a top-size k, and the members of the buckets are periodically updated using alive
messages as well as full information of queries. A curious element in Kademlia is that older
alive peers are preferred to be in the buckets, because previous studies in Gnutella show they
are more stable peers [191]. Another incidental advantage is that the system is resistant to
certain DoS attacks, given that fresh nodes play a secondary role. Kademlia has provable per-
formance: the order of operations is logarithmic with the number of nodes, and lookups returns
a key with overwhelming probability. See [139] for details of the lookup algorithm and sketch
of the proof.
Some modern BitTorrent clients support distributed hash-table extensions implementing a
Kademlia-style structure overlay network. The interested reader can find details and concerns
in the design of Kademlia-style structured overlay networks in [49].

1.3.2 BitTorrent

In this section we will briefly describe the BitTorrent protocol and give an insight of the differ-
ent experimental setups and results, in order to complement the previous mathematical under-
standing of file-sharing systems.

1.3.2.1 Protocol

Bram Cohen, the developer of BitTorrent, affirms that BitTorrent includes the tit-for-tat policy
seeking for Pareto efficiency (i.e. trying to reach a stable configuration in which no two coun-
terparts can trade and be both better than before). He also assures its success is not only due to
the core design, but the simple interface [44]. Users are forced to use the BitTorrent client (that
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must be downloaded before its first use) once a publisher decides to upload a .torrent file in a
web server, presented as a hyperlink. The user just clicks on the link and is presented a Save-as
dialog. Once it is confirmed with OK, two progressive bars appear: one for download and other
for upload. The .torrent file contains the file name, size, a SHA1 hash code, the IP address of
a tracker, and more. Peers cooperate with the help of a tracker, that sends a random list of
other peers interested in the same file (typically a random list of 50 peers). Normally the client
seeks to maintain communication with 20-40 other peers. The bandwidth requirements of the
tracker and web server are very low, but the seed must send out at least one complete copy of
the original file. The pure tit-for-tat strategy was first designed by Axelrod, who proposed it to
solve the Iterated Prisoner’s Dilemma [9]. His program consisted of a three-line BASIC code,
and has been proved to be optimal, winning that competition (other proposals were scripted in
hundreds or thousands of lines!). In peer-to-peer networks, a pure tit-for-tat policy would mean
that peers would share the file only with others who serve it. The swarming of BitTorrent com-
bines tit-for-tat with a special ingredient, called optimistic unchoking. The peer’s handshaking
is managed over TCP connections. Peers can either upload or choke neighboring peers. A
choke is a temporary refusal to upload. If two peers are getting poor downloading rates in
relation with their upload, they can both cooperate and find better exchange. Note however that
the TCP connection is still active, and the other part can still upload data.

From a single peer’s viewpoint, all peers are choked but four peers (some recent BitTorrent
versions slightly modify the choking process [111]). These peers are the ones with the highest
download counting the last twenty seconds. Once these four peers are chosen, the choke state
remains for at least 10 seconds, in order to saturate the TCP connections at their full capacity.
Every 10 seconds, a peer re-evaluates the upload rates for all the peers that transfer data to
him. Then, the choking algorithm is repeated in cycles. Additionally, peers can discover new
opportunities via one optimistic unchoke every thirty seconds. It is strictly related with the first
step in the prisoner’s dilemma: always cooperate in the first step. In this way, entering peers
are normally welcome.

Now we concentrate in the piece selection policy of BitTorrent. A file is normally divided
into pieces of size a quarter of a megabyte. Each piece is also subdivided into blocks, typically
of 16 kilobytes. A peer always chooses to download the rarest piece, which is the less available
among its neighbors. This is called the Local Rarest First policy. In this way, there is a uniform
balance of availability in the network. There are exceptions to the rarest first rule: at the
beginning and at the end of a file download. At the beginning, a peer joins the network with
no piece, and this peer will not be capable to cooperate unless a fast download takes place. To
that purpose, a random piece is first selected, which is possibly more available than the rarest
and hence several peers are able to send blocks to the new peer. This random first policy is
applied just to download the first piece; then switched to the rarest first policy. At the block
level, BitTorrent uses a strict priority policy, which means that once a block of a piece is
downloaded, the other blocks of that piece are requested with the highest priority. A second
rule that escapes the rarest first is the last piece. When a peer has all the file but one piece, that
peer sends requests to all peers to recover that piece, so its download velocity is increased. That
peer is now a seed, and chooses to upload to the most contributing peers. Seeds can leave the
system when they wish. However, if the user is polite, it will remain within the system for some
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time, improving the system performance. A nice and more-detailed description of BitTorrent
written by Bram Cohen can be found in [44]. The reader can find further information and
description of other BitTorrent flavors in [99, 111, 168, 217].

1.3.2.2 Validation

Several experimental works validate the BitTorrent’s success for file sharing purposes. Here
we enumerate a non-exhaustive list of empirical and related theoretical results, to illustrate the
BitTorrent performance.
Izal et. al. assess the performance of the algorithms used in BitTorrent through several metrics,
concluding that both a high throughput per client during download and the ability to sustain
high flash-crowds [99]. Arnaud Legout et. al. spread all the success of choking algorithms
via several experimental setups [110]. Specifically, the choking algorithm enables clustering
of similar-bandwidth peers, fosters effective sharing incentives by rewarding peers who con-
tribute, and achieves high peer upload utilization for the majority of the download duration.
Additionally, a bad-provisioned seed can be compensated by clustering, which is achieved by
the BitTorrent-choking algorithm. Legout, Urvoy and Michiardi present a further experimen-
tal work on BitTorrent. They guarantee close to ideal piece diversity with Rarest First, and
network resilience to free-riders thanks to choke algorithms. Therefore, the authors conclude
it is not necessary to apply network coding or other cooperative scheme different to Rarest
First [111]. Tewari and Kleinrock study the file-sharing efficiency of BitTorrent, extending the
original work [168] of Yang and de Veciana. They easily show that with peer groups higher
than 15-20, the file sharing efficiency increases with respect to the number of chunks. BitTor-
rent try to maintain 20 peers, so they support the protocol [205]. Qiu and Srikant [168] analyze
file-sharing systems via fluid models and game-theory, providing a strong mathematical sup-
port of BitTorrent. Jiadi Yu et. al. develop a fluid model to study the evolution of free-riders
and normal peers [227]. They find closed expressions for the average waiting times of normal
peers and free-riders, under the assumption of regime. The results show BitTorrent is resilient
against free-riding effects, and the performance of normal peers is not significantly affected by
the presence of free-riders. The stability of the fluid there developed is an open problem. The
authors Chehai, Xianliang and Hancong propose a mathematical framework to maximize the
global availability in the network [35]. They measure availability to the capacity of exchanges.
The problem turns to be NP-Complete. However, they prove that random overlays are likely to
achieve near-optimal availability. The lower bound of 4 peers in BitTorrent is supported with a
rigorous mathematical model for stratification [78]. P. Pouwelse et. al. study the flash-crowd
phenomenon presented in the .torrent from the file “The Lord of the Rings III”, and confirm the
global BitTorrent/Supernova components can handle very large flash-crowds efficiently [161].
With the help of moderators in the Supernova website, fake-files are avoided. Cameron Dale
and Jiangchuan Liu take logs from both the Internet and PlanetLab. Their results validate that
the downloading policy of BitTorrent is quite effective from a piece distribution and evolution
perspective [55]. The proportion of leechers with some piece increases with time, and follows
a normal law. They assure enhancements are still possible to achieve the ideal piece distribu-
tion. David Erman, Dragos Ilie and Adrian Popescu present a statistical analysis of a BitTorrent
session [69]. They considered a goodness-of-fit test more robust to parametrization errors for
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large sample sizes than the classical Kolmogorov-Smirnov and Kramér-von Mises [54]. They
conclude that session interarrivals can be accurately modeled by the hyper-exponential distri-
bution, while session durations and sizes can be reasonably well modeled by the log-normal
distribution, with a significance level of α = 5%. Independently, Daniel Stutzbach and Reza
Rejaie developed a statistical analysis of BitTorrent inter-arrival and session lengths in order
to understand node-churn in BitTorrent-based networks [203]. They assure exponential inter-
arrival fit quite well in some torrents (but in Debian, for example), and the random variable
representing session lengths is better described by Weibul or log-normal distributions.

Works that point-out BitTorrent’s weaknesses are though not absent. However, some corpo-
rations support their business with traditional client-server architectures, and the results could
not be completely objective. Tian, Wu and Ng empirically observe the network sometimes dies
when the last seed departs the system [206]. In order to address this issue, the authors pro-
pose a trade-off between file availability and file-sharing efficiency, that replaces the tit-for-tat
policy. Via simulations they show the new proposal helps to extend the lifetime of the system.
Ashwin R. Bharambe from Carnegie Mellon, together with Cormar Herley and Venkata Pad-
manabhan from Microsoft Research also agree that the seed bandwidth is critical to conserve
when it is scarce. They add that the Local Rarest First policy is critical in eliminating the
last block problem and ensuring that arriving leechers quickly have something to offer other
nodes [20]. The same authors conducted experiments and conclude BitTorrent is near optimal,
but tit-for-tat is not as effective, failing to prevent unfairness [19]. Eytan Adar from Hewlett
Packard considers a simplified BitTorrent-like system with one seed that owns M pieces, and
leechers arriving/departing the system stochastically [2]. He measures the performance of the
system by seed overload, upload/download peer ratio and average download time, and suggests
that the poorest first strategy (i.e. always to send piece to the peer with less information) out-
perfoms both random and other preferential strategies, concluding that the BitTorrent protocol
deserves further improvements. The literature even reveals careful design of publicly available
malicious clients, trying to show some BitTorrent deficiencies. Michael Piatek et. al. develop
a strategic free-rider for BitTorrent-based networks, called BitTyrant, which is publicly avail-
able [159]. The title is a challenging question, replying to Brahm Cohen [44]. Thomas Locher
et. al. develop BitThief [126], which is available in the web [22]. The authors affirm they can
outperform the streaming rate of other clients while not contributing even a single bit to the
system. The paper motivates to feel guilty when sharing because of the distribution of copy-
righted media content is unlawful in certain countries, hence promoting the use of centralized
systems. It is interesting to mention that one of the authors works for Google corporation.
A counterattack is presented by Nikitas Liogkas et. al. The authors present three BitTorrent
clients that attempt to abuse existing protocol mechanisms in order to achieve higher download
rates. Although in some cases the exploits delivered significant benefits, BitTorrent proved to
be quite robust against them [120].
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1.4 Conclusions

The makespan (minimum download time) for cooperative sharing swarms is a logarithmic
function with the population size, versus a linear relation in traditional client-server systems.
Additionally, peer-to-peer networks show to be resilient against flash crowds.
Via multi-part downloading the cooperation is more dynamic and possible as soon as one part
is owned by a peer. Therefore, real-life platforms split files into different pieces, called chunks.
Pure peer-to-peer networks (completely decentralized) rely on flooding to sustain file search,
and their overload has serious drawbacks, without mentioning the problem of malicious peer.
On the other hand, centralized systems suffer from limited scalability. The presence of a tracker
in BitTorrent facilitates the coordination of incentives to promote peers to cooperate. The local
Rarest First policy is intuitive, in order to balance the chunk availability in the network. It
has received merits from both mathematical models (showing near-optimal performance) and
experiments. The tit-for-tat and optimistic unchoking policies are hard to model. However, it is
proved experimentally that they work quite well, and have game-theoretical reasons for its use.
Random networks have strong connectivity properties. Free-riding and starvation are special
causes of concern, and BitTorrent addresses them via incentives and the end-game mode. It
can be observed that few models take the underlying network failures into consideration. The
assumption of perfect network is widely adopted, mainly because it is negligible with respect
to the challenging design issues of peer-to-peer networks.
Summing up, there is already a vast comprehension of the BitTorrent’s success for file sharing
purposes. Some elementary ideas are useful for all streaming modes, as multi-part download-
ing, pipelining, early cooperation, incentives to encourage peers to cooperate and the trade-off
between payload and overlay information. All these tools are naturally exploited in live and
on-demand streaming services, and its main features and flavors are discussed in Chapters 2
and 3.
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Chapter 2

On-Demand Video Streaming

2.1 Introduction

In file sharing, a user should wait until the file is fully stored in its personal computer. The
behavior of a user under a video on-demand (VoD) service is quite different. The user pretends
to choose some movie, enjoy it once he executes a click on it, and pause, fast-forward, rewind
(as in a Video Cassette Recorder, VCR), disconnect or switch to other movies when he or she
wishes, with a corresponding fast answer of the video player. The network design must be
effective, bandwidth efficient and transparent to the user.

There are several challenges shared in off-line downloading and video on-demand. For
instance, node churn, heterogeneity and malicious behaviors are causes of concern in both ser-
vices. However, there are additional challenges inherent to on-demand video streaming. Users
join the system at different times, so their video players work in different times (they see dif-
ferent parts of the movie in a certain instant). This asynchronous nature of VoD imposes a
difficult cooperative scheme in peer-to-peer architectures. The amount of video content in the
user’s storage is asymmetric. Therefore, younger users (the ones that recently joined within
the system) cannot contribute to the system. Moreover, older users will surely watch advanced
instants, so they will never receive useful information from a younger user, unless a clever
strategy is applied to accelerate the growth of joining peers. The information usually describes
directed forests, rooted in the server. The bandwidth of the youngest users is a resource some-
times hard to use. A remarkable corollary is that the tit-for-tat policy widely applied in BitTor-
rent is not practical, and the introduction of peer incentives to cooperate must be re-designed
(considering paying, punishing, quality differentiation or a combination). Additionally, the
video player must receive chunks in-order. However, a greedy in-order chunk scheduling pol-
icy does not maximize the availability of information, because younger users will never upload
resources. In VoD, the Rarest First policy is highly related with a concept called caching with

prefetching, which is basically to request for chunks far away from the current video play-
back (which are usually the rarest in the system). Peers that are not necessarily on the same
part of the video may have chunks to exchange because of the data stored in the cache. Clearly,
prefetching facilitates availability and cooperation, and trades delivery ratio for buffering times.

51
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However, the dynamic behavior of users sometimes makes the prefetching technique a wastage
(because of departures). The Rarest First policy carries unacceptable buffering times, as several
works confirm. Summing up, the major concerns in a P2P VoD service is the caching policy,
the overlay building to facilitate chunk diversity and the chunk scheduling policy to both attend
urgencies and assure the global diversity of the whole buffer map within the nodes. The result
form the user’s viewpoint should be a high quality of experience (related with low buffering
times and continuous media playback).

This chapter is structured as follows. Section 2.2 presents a historic-driven motivation of
the inclusion of peer-to-peer architectures for the deployment of on-demand video streaming,
discussing outstanding contributions in this area. The chore design and operation of VoD-
PPLive is illustrated in Section 2.3. Section 2.4 contains a revision of mathematical modeling
of peer-assisted video on-demand systems. Concluding remarks are included in Section 2.5.

2.2 Historic Motivation

On-demand video streaming was born in the 90’s, with one-to-many architectures as the client-
server and IP-multicast [91]. The evident weaknesses of those systems (single-point of failure
and non-scalability) became obvious with the increasing popularity of video contents through
the Internet. The requests in IP multicast are assumed synchronous, but VoD is asynchronous
in nature. Batching [56] and Patching [86] were two alternative proposals. Batching groups
requests to execute them together, carrying high latencies. In Patching clients receive a patch of
the video stream by means of a unicast server, which can easily be overwhelmed with patching
requests [41].

To cope with network layer problems, application layer multicast was introduced, in an
infrastructure or peer-to-peer version [94]. The infrastructure base is supported by overlay
routers, which need to have maintenance. Chaining is the first collaborative system that offers
video streaming to end-users, developed in 1996 [195]. The main idea is to construct chains so
that users can relay the media stream. The developers of Chaining do not explicitly mention
the concept peer-to-peer, and they even do not include a failure recovery. Nevertheless, that
work is extremely mature.

Mohamed Hefeeda, Bharat Bhargava and David Yau describe unicast systems (single-
source, proxies and CDNs) and multicast systems (IP multicast, application level multicast)
in detail [91]. They conclude the load distribution of those systems is not acceptable for high-
scalable on-demand media streaming. Therefore, they propose an efficient distribution of me-
dia streaming by means of a hybrid architecture, combining scalability aspects of peer-to-peer
computing with swarm assistance provided by powerful super-peers, which help with item
search and forwarding. This hybrid architecture can handle flash-crowds in a cost-effective
fashion, as experiments confirm. The power of peer-assistance for on-demand services be-
came obvious, but the design imposes several trade-offs, and the user behavior should be first
understood.

Hongliang Yu, Dongdong Zheng, Ben Zhao and Weimin Zheng offer a complete statistical
analysis of the user behavior in a high scale on-demand system from China Telecom in 2004,
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with a client-server architecture and a total of 1,5 million users [226]. Quite predictably, the
users connect massively during break-times and after work (7 p.m. - 10 p.m.), but practically
do not exploit the VoD system between 0-7 a.m. The joining and departure rates have a peri-
odic pattern, with a period of one day. The arrival process is non-Poissonian, but the authors
propose a modified Poisson distribution. They could also confirm the 80-20 Pareto behavior in
popularity: an 80% of requests correspond to the most popular 20% of video files. Besides, the
video popularity matches the Zipf distribution, as shown via the Kolmogorov-Smirnov good-
ness of fitness for one sample, with a level of significance of 5% [32]. The users take their time
to scan several items in order to select one, and the most popular are usually the shortest video
clips. The authors discovered there are external factors (recommended videos, new available
videos) that greatly impact to define the video popularity. Interestingly enough, the operator
has some control on the popularity.

Both analytical and experimental results converge to the fact that peer-assistance offloads
the server and provides high scalability. Paradoxically, the most successful VoD service in the
world is expected to work far away from optimal. Established in 2005, YouTube has become
the most successful Internet site providing a new generation of short video sharing service,
comprises approximately nearly 10% of all traffic on the Internet [40]. However, the network
access is yet working with a client-server architecture, and the operator (Google corporation)
must afford more than one million dollars per day just for bandwidth requirements, which is a
clear motivation to add cooperation in YouTube’s users [95].

The first analytical model for a mesh peer-to-peer VoD systems is presented by Yue Lu, Jan
David Mol, Fernando Kuipers and Piet Van Mieghem [127]. With a similar spirit to other fluid
models, they study an on-demand peer-to-peer system in phases: start-up, first seed appearance,
first seed departure and steady state. The authors confirm the seed departure rate is critical for
the life and stability of the system.

A valuable step towards the deployment of VoD services with the peer-to-peer philoso-
phy is the experimental exposition of benefits obtained from Microsoft Research. The authors
Cheng Huang, Jin Li from Microsoft Research and Keith W. Ross from the Polytechnic Univer-
sity of Brooklyn, present the first measurement of a large-scale video on-demand system, using
real traces taken from a client-server from MSN videos, and simulations of a peer-assisted net-
work [95]. This paper supports the peer-to-peer architecture is promising to save bandwidth
even in an ISP-friendly way, providing better streaming rates. Developers had that prediction
clear, since several P2P-VoD systems were currently deployed at the same time of the publi-
cation. The authors measure the 95 percentile of bandwidth usage from nine months of study,
counting 52 million video requests. They found a 95 percentile bandwidth of 2.2 Gbps in De-
cember 2006, which potentially could be reduced to 79 Mbps with a peer-to-peer architecture
combined with prefetching, as simulations predict. The simulated strategy uses prefetching
when there are idle uploading resources, which are distributed either from older to younger
generations or via water-filling. The authors also prove both strategies achieve near optimal
results, in the lights of a simple mathematical model and simulations. An ISP-friendly P2P
system can both reduce cross-traffic and save bandwidth.

Several real peer-assisted platforms were developed for VoD services at the beginning of the
21st century [39, 41, 57, 68, 86, 89, 112, 145, 153, 160, 171, 213], with variable complexity and
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self-sustainability. Anwar Al Hamra, Ernst W. Biersack and Guillaume Urvoy-Keller present
a pull-based approach (PBA) [89]. A joining user sends requests to the server, unless it is
overloaded, in which case the server responds with a set of servants. The authors defended the
algorithm is easy, but it has clear weaknesses inherent of centralized architectures.

Lei Guo, Songqing Chen and Xiaodong Zhang present PROP, which is not entirely peer-
to-peer [112]. They argue that the disadvantage of a client-based P2P system is its unreliable
quality of streaming media delivery due to the dynamic nature of peers. P2Cast is a patching
scheme for peer-to-peer networks, which disseminates fragments in an application level mul-
ticast tree structure, looking for the best fit failure recovery. An entering peer is a leaf-node
of the tree, and obtains a patch (the first video chunk). However, the server both distributes
the streaming and keeps track of the clients offering the first path, becoming a single contact
point [86]. Similarly, PALS [171] and CoopNet [153] rely on the server too often, hence do
not exploit the cooperation efficiently. On the other hand, Cui et. al. propose oStream, a
multi-source distribution to alleviate the server, and performance via simulations [50]. Chen
et al. describe a topology-aware algorithm that encourages peers to contribute providing eco-
nomic incentives [37]. Several works try to extend the BitTorrent success from file sharing to
VoD services. However, they either publish ad-hoc solutions or give partial information, via
simulations. BitOS defines a nice trade-off between urgency and rarest pieces, but lacks of
a backing server [213]. The purpose of Toast (Torrent Assisted Streaming) is to reduce the
burden of a VoD server with a BitTorrent extension [41]. Their experiments confirm the Rarest
First policy is not suitable to address time urgencies. Though its simplicity of extension, the
authors conclude that Toast can alleviate the load of a VoD server between 70% and 90%.
BitTorrent-Assisted Streaming System (BASS) is similar to Toast but more conservative in its
extension [57]. The server disseminates the stream using a rarest-first policy, which induces
buffering times. Despite, the authors show a linear load of the server better than a pure client-
server architecture. Another BitTorrent-based system is called BEST (BitTorrent Extension for
Streaming). The authors compare chunk selection policies via simulations, and the VoD design
is partially covered [68].

A new peer-selection policy for mesh-based P2PVoD systems is introduced in 2010 by
Igor Moraes and Otto Carlos Duarte [145]. The authors explain the random peer selection in a
mesh-based VoD is not as efficient as in live streaming, by the asymmetric state of peers. They
propose a LIfetime-based Peers Selection (LIPS). The goal is to maximize the probability of
choosing partners interested in the same chunks. The parents are chosen with similar lifetime.
Therefore, it is highly probable they should be able to cooperate, and they can also discard
the old cache, thus reducing the cache needs in peers. The authors show improvements when
compared only with a random selection policy in simplified simulations. However, to their
knowledge, they claim to propose the first implementation of a peer selection policy in a VoD
system. A nice concept to tackle free-riding is Give To Get (G2G [143]). The authors propose a
peer selection policy to encounter an analogous for “tit-for-tat”, in a video on-demand system.
Basically, every peer has a neighbor list and builds a ranking with them, according to the
number of video chunks offered to the system (a level of altruism). In order to avoid lies, the
local peer does not ask directly to their children (potential downloaders), but to their grand-
children. The local peer pushes video chunks to the most scored peers first, and updated the
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neighbor list in a BitTorrent-based fashion (it periodically selects the best 4 in the ranking, with
an optimistic unchoking). Therefore, peers have incentives to cooperate, and the G2G policy
works indirectly. Three chunk policies are considered, with low, mid or high priority to the
order. The G2G system is compared with BiTOS via simulations, with video clips of 5 minutes
and Poisson peer arrivals (departures at the end of the playback). It can be noticed that G2G
punishes free-riders, and its performance is better than BiTOS when measuring both buffering
times and playback losses. However, G2G introduces higher overheads, that were neglected in
the simulations. Additionally, the performance degradation is unavoidable under the presence
of free-riders (representing a 20% of the population), requiring 33 seconds of buffering versus
14 seconds without free-riders. However, these non-cooperative peers had to wait 89 seconds
of buffering time on average. The authors added G2G into Tribler and contrasted this peer
selection policy with a proportional uploading (the notion of tit-for-tat), showing important
benefits of the new proposal [53].

A third alternative to mesh or tree-based topology is Rindy [39]. The main idea is to
construct a logical ring-based concentric topology, with power law radius, and peers within a
same radius share the same length of buffer video. Rindy is designed to offer VCR functions
with low overhead and therefore reduced buffering times. Neighbors periodically exchange an-
nounce messages with a snapshot of their buffers, and forward messages to send video chunks.
With the help of simulations the authors show a reduced overhead when compared with tree-
based systems, a server offload of 90% and better start-up latencies than pure client-server
architectures.

Another sophisticated design is called P2VoD, which tries to be a fault tolerant peer-to-peer
VoD service [62]. It assumes a single unicast server, and introduces the concept of generations

of peers. Two peers are in the same generation only if they posses the same older video chunk.
Each peer sends requests to their parents: peers from the nearest older generation. In this
way, the data traffic travels in a multi-tree topology. Peers cache only the latest chunks, hence
it works with limited memory resources. The peer selection policy is not periodic, and uses
polling: round robin, least latency or least loaded parent. The three peer selection policies have
similar performance, and the peer selection with least latency has been chosen. Children must
know the IP addresses of the previous generation of peers. In order to recover from network
failures, P2VoD applies the same technique proposed in P2Cast, based on primitives that are
used to communicate children with their parents (a test message, recover and wait). The pro-
tocol tries to minimize the load of the main server. Simulations were carried out considering
Poissonian arrivals of peers randomly distributed in the network, and entities of the underlying
network (backbones, routers and shortest routing). They show that the server is more stressed
when the workload is reduced. This counter-intuitive result is a corollary of the multi-tree
structure: more joining users will contact the server when they have no parents (a low arrival
rate is translated into high distant peers in the genealogical tree). Simulations suggest the new
proposal outperforms P2Cast.

A considerable different approach based-on network coding is given in [196]. The authors
(from Microsoft and Telefonica) support that mesh-based P2P systems perform poorly when
used for VoD. However, PPLive-VoD does not include network coding, and seems to be an
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exception to that rule.
There are at least three insightful reasons to understand PPLive-VoD. It is the first high-

scalable peer-to-peer VoD system reported in the literature. Its design is so complex that it
revisits practically all challenges in the VoD design. Additionally, the live service of PPlive is
proprietary. The study of their VoD service give perhaps some hints of the design complexity of
PPlive, whose success for live streaming is nowadays a mystery for the scientific community.
Section 2.3 describes the PPLive-VoD architecture and its main design ingredients.

2.3 PPLive-VoD

This section presents a summary of the work from Yan Huang, Cheng Huang (from PPlive),
Tom Z. J. Fu, Dah-Ming Chiu and John C. S. Lui from the Chinese University of Hong
Kong [97]. They achieved millions of concurrent users enjoying a VoD service with some
interactivity, acceptable quality of experience and reduction in the burden of servers.

The authors first explain basic components present on the PPLive-VoD system: a bootstrap
with a distributed hash table, trackers, servers and peers. The data is encapsulated with high
level of granularity. Video chunks are divided in pieces, which are subdivided in sub-pieces.
The system exploits the user’s cache massively. Peers should have 1 GB of free-space to start
the VoD-PPLive client, and the system works via Multiple Video Cache (MVC), meaning that
peers could be downloading and contributing with movies that are not being watched (the
cache accepts multiple movies). A user can surprise to notice that after a session, he or she has
another movie in his hard drive disk. Curiously, they do not use any pre-fetching technique.
The authors have at least two reasons to support this decision. It is known that most peers
do not connect more than one hour. Therefore, pre-fetching could waste precious bandwidth
resources with high probability. Moreover, more than one-half of the connections from China
are ADSL, and the upload capacity is affected by concurrent downloading. A related issue is
which movie we must discard if the cache is full. Common approaches tend to discard the least
recently used (LRU) or least frequently used (LFU) movie. At the beginning PPLive-VoD used
LRU, but after further studies they changed by a weighted function, which is inversely related
with the needs of that movie. The authors introduce an Availability to demand ratio (ATD): if c
peers own movie m and n peers need it, then ATD(m) = c/n. The weights are not specified
by the authors, but they assure a movie might be discarded without losses when ATD > 8.
The best change in design so far has been this weighted discard, reducing the load from 19% to
7-11%. The content discovery (item lookup and advertising) strategy adopted in PPLive-VoD
is both complex and instructive. The authors observe that all peer-to-peer networks use at least
one of the following rules for content discovery:

- Tracker (sometimes called super-node)

- Table (DHT), or

- Gossip protocol.

The different strategies offer different level of robustness and freshness. Interestingly enough,
PPLive-VoD combines the three strategies for different purposes. The node-trackers are used



2.4. Mathematical Models for On-Demand Video Streaming 57

to track the movies owned by different peers, as well as to measure the health of the system
and statistics. The buffer-map is exchanged among neighboring peers to find useful chunks,
with gossiping in a pull-based process. Finally, trackers (and also peers in the current version)
are assigned movies with a distributed hash table (DHT). It is worth to mention that there is a
hidden notion of redundancy: if a tracker fails, peers are able to find the movie switching to the
gossip strategy to that purpose.
The piece selection policy applies first greedy requests (sequential download governed by ur-
gency) followed by rarest first requests. This policy seems to be in agreement with BitOS, but
the authors do not give more details of this trade-off. Other systems study the user’s behavior
to determine outstanding clips in a whole video and predict in advance a high probable skip of
parts of a certain movie (in other words, a fast-forward), to support VCR. Once a user skips a
part, the system should track a pre-specified near point (called anchor points) to re-start buffer-
ing, as fast as possible. PPLive-VoD does not apply anchor, because the user interactivity is
not often (just 1,8 times per movie), and the user should wait 18 seconds in average for each
jump 1.

There are aggressive transmission techniques (request the same chunk to all neighbors) and
conservative (non-concurrent requests). Naturally, the latter does not exploit the bandwidth
resource efficiently, whereas the former carries unnecessary retransmissions. PPLive uses an
intermediate approach, in which different contents are simultaneously requested to different
peers. The mass of requests is proportionally shared regarding round-trip-times (i.e. better
RTT means more requests). The authors heuristically found their optimal size for the neighbor
list, between 8-20 for streaming rates of 500 Kbps, and 16-32 for 1Mbps. Data integrity is
added at a chunk level by message digest, to avoid pollution attacks [60]. Recognition of
NAT peers and Firewall is extremely useful (between 60% and 80% users are behind NAT). A
weaker form of piece-level authentication is applied in PPLive-VoD. The quality of experience
is poorly captured via a concept of fluency, which represents the ratio of watching time and
connection time, using statistics taken from the trackers. They finally measure the health of the
system, success of the replication strategy and user’s behavior. Most users download less than
ten minutes per content (because of scanning). Despite most users have high fluency, one-fifth
of them have poor fluency. The authors argue the buffering times are long for some users, and
this point need further research. The reader can find experimental results and discussion in the
paper [60].

2.4 Mathematical Models for On-Demand Video Streaming

The first analytical model for a mesh-based P2P-VoD system is introduced in 2008 by Jue Lu
et. al. [127]. It is similar in spirit to the fluid model from Qiu and Srikant [168], but proposes
some ingredients inherent to VoD systems, with different file size, variable arrival rates and
seeders aborting the system as a function of time, which makes it non-linear. They find closed
expressions for the average excursion of different downloaders, and study the peer evolution
in phases: i) start-up, ii) first seed appearance, iii) first seed departure and iv) steady state.

1The reader might wonder if he would accept 18 seconds to re-start watching the movie. The system here
presented refers to 2008, and it is not rare to guess several enhancements up to date.
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Peers cannot skip parts of the movie or download different video-types. The authors prove the
equivalent linearized version of the model is exponentially globally stable. However, the linear
version is not suitable for aggressive seed departure. The authors conclude the seed departure
plays a critical role for the stability of the system.

A probabilistic model for P2P-VoD systems is introduced by Yipeng Zhou, Tom Fu, Z.
Chiu and Ming Dah [235]. The scenario is quite simplified, assuming a closed system with
peers wishing videos movies of identical sizes and poissonian number of requests incoming to
all peers. Despite, they prove an amazing result under these circumstances. In order to mini-
mize the server’s load heterogeneous scenarios behave exactly as an equivalent homogeneous
system. An Adaptive Random with Low Balancing is proposed and outperforms the PPLive-
VoD design, as simulations show. However, it is not so realistic and needs global network
information. The assumptions are similar to works from Di Wu, Chao Liangz, Yong Liuz and
Keith Rossy [218, 219]. They Propose View-Upload Decoupling (VUD) to re-Design multiple
channels. VUD strictly decouples peer downloading from uploading, trying to bring stability
to multichannel systems and enabling cross-channel resource sharing. The authors propose
peer-assignment using different substreams (swarms) in order to minimize the bandwidth over-
head. This technique is though inspired in live streaming. In fact VoD shares challenges with
live: sequential playback delivery, dynamic churn of heterogeneous nodes. However, VoD is
a multiple-source system with retrieval and request diversity. Recall that the tit-for-tat policy
is impractical, due to the asymmetric relation of exchange (an older peer is never benefited
by a younger one). By means of combinatorics and simple probabilistic distributions, Nadim
Parvez, Carey Williamson, Anirban Mahanti and Niklas Carlsson show that naive piece selec-
tion strategies (random and in-order selection) have either poor sequential progress or unac-
ceptable expected download times [157]. The authors help the understanding with intuition:
older peers receive too many requests from younger peers, but only can serve few of them,
and with in-order selection the idle up connections of younger peers are wasted. Consequently,
young peers consume scarce resources of seeds and senior peers, impeding the progress of
middle-aged peers [157]. An in-order First-Come First-Served (FCFS) queuing model finds
a trade-off, with lower start-up delay but similar download time compared with Rarest First.
Valuable mathematical analysis is there presented, including simulations with close agreement.
Several authors are based on a live-streaming result to extend the fact that the file-exchange ef-
ficiency is near the unit [205]. Some works are theoretically sound but far from practical in
VoD systems. The authors use a layered coding network to maximize the streaming band-
width [51]. They prove Heterogeneous-Rate Layer Allocation problem is NP-complete, and
find an algorithmic resolution. However, they particularly focus on the streaming problem,
but do not address caching techniques or interactivity, which are key elements in the design of
VoD-P2P systems.
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2.5 Conclusions

Nowadays, the VoD service is immensely popular, with YouTube, Google Videos, MSN Videos
and PPLive-VoD. There are strong evidences to support the incipient efforts of the peer-to-peer
design for VoD services are in the right way, both promoting scalability and offloading the
server. However, the design of P2P-VoD imposes technical challenges. BitTorrent has been
widely adopted for file sharing purposes, but it cannot be used in its primitive specification,
mainly because the tit-for-tat and rarest first policies are not suitable. BitOS shows a trade-off
between availability and urgency, combining the rarest first policy with greedy requests, as
an alternative chunk scheduling policy. The authors of Tribler propose Give-To-Get (G2G),
that nicely explores the asymmetric nature of peers to ranking potential downloaders using a
gossip-protocol, polling all its grand-children.

Researchers from PPLive and the University of Hong Kong conducted the first practical de-
sign and measurement issues deployed by a high-scalable real-world P2P-VoD system (2008).
The peer-to-peer introduction to the VoD world is practically in an experimental stage, and the
literature reveals scarce mathematical foundation of these systems.

Chapter 4 proposes a mathematical framework to understand trades-off in the stability and
capacity of peer-to-peer systems for Video on-Demand. There, we will confirm the strength of
the peer-to-peer philosophy to address flash crowds and offload a cluster of servers. Addition-
ally, a combinatorial optimization problem is proposed to determine an optimal Multiple Video
Cache (MVC) solution.
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Chapter 3

Live Video Streaming

3.1 Introduction

In live video streaming, the generation, dissemination and playback occur simultaneously. As a
consequence, the system must comply with stringent timing requirements, and users should be
synchronized in the playback, which is a characteristic difference with respect to on-demand
video streaming. In live peer-to-peer systems, the core mechanisms are scheduling policies,
specifically, the neighboring policies which determine the overlay structure and the chunk
scheduling policy, which trades efficient bandwidth allocation, latency and overheads. A gen-
eral rule is that the availability of information always helps to make better decisions (neighbor-
ing and scheduling policies). However, the knowledge and overlay awareness come at a cost,
which is major overhead in the global system, and possibly the need of centralized entities.
Successful commercial platforms like PPLive [162], PPStream [163], TVAnts [208], TVUNet-
works [209] and SopCast [199], offer live video streaming to several thousands of users, with
proprietary protocols not revealed in the literature. A different paradigm is offered by Goal-
Bit, an open-source peer-to-peer streaming platform that widely delivers live streaming to end
users [18].
The available literature related with live streaming in peer-to-peer networks is really vast. In
this chapter we discuss the main features of scheduling and general aspects of live peer-to-peer
systems. The design of resilient live-streaming services must face all those features together.
However, in order to keep simplicity we will cover them one-by-one (in fact, the public litera-
ture rarely focuses on several challenges simultaneously).

This chapter is organized as follows. Section 3.2 presents a performance comparison of
tree-based and mesh-based topologies. An analysis of pull and push schemes, their combina-
tions, pros and cons, are presented in Section 3.3. The capacity and performance of live stream-
ing systems is briefly discussed in Section 3.4. A revision of existing chunk scheduling policies
is provided in Section 3.5. Peer neighboring policies are covered in Section 3.6, whereas an
overview of incentive policies to encourage contribution are presented in Section 3.7. Sec-
tion 3.8 describes two real platforms for live streaming: GoalBit and PPLive. GoalBit is a
BitTorrent-based open-source platform that currently offers live streaming to end-users, and is
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considered as a benchmark in this thesis. PPLive, on the contrary, is a commercial widely used
platform with proprietary protocols. We describe briefly the Goalbit protocol with scope in its
scheduling policy, and show hints of experiments from PPLive. Finally, Section 3.9 contains
the main conclusions of this chapter.

3.2 Tree or Mesh?

In a tree-based peer-to-peer approach, participating peers logically organize in one or several
trees. In streaming, the single-tree approach is discarded, because the delay increases linearly
with its size and the bandwidth resources are not appropriately exploited. The multi-tree topol-
ogy is just an extension of end system multicast [94]. Each tree is rooted, and the seed pushes
video chunks towards the different branches. All peers are within diverse directed trees, and
they participate as internal nodes only once, and as leaf nodes in the others. The content dis-
tribution mechanism is extremely simple: peers push messages to the children peers as soon as
they receive it. However, the tree construction and repairing algorithms show to be challeng-
ing. As in file sharing, the diameter of the network should be reduced in order to keep latency
under control. Additionally, the fan-out degree should be roughly balanced in order not to load
excessively certain nodes and make the stability of the system vulnerable to node churn. On the
other hand, the mesh-based approach is inspired in BitTorrent, where peers connect in a ran-
dom fashion. The main idea is to inherit the stability and robustness of random networks [25].
Peers cooperate in an epidemic style, where the information is propagated sequentially, and
chunks are intended to reach the whole peer population.
Tree-based systems are typified by SplitStream, which is proved to be optimal in an homoge-
neous scenario with no churn [31]. A joining node is a leaf of all trees, but one. If all trees are
regular and peers were homogeneous, withm+1 directed trees every peer uploads a streaming
rate of λ and recovers a rate of m × λ

m = λ. The construction in SplitStream tries to build
balanced trees. A worst case scenario occurs when a huge amount of internal nodes depart the
system, which can be catastrophic, and is called deadlock event [131]. In those cases leaf nodes
periodically try to reconnect to the tree, and the payload can be surprisingly high. An illustra-
tive example of mesh-based live peer-to-peer platform is PRIME [132]. There, peers report
their status with push messages and the children request for chunks pulling from their parents,
in accordance with their ranking weighting bandwidth and availability. A comparative study
of SplitStream and PRIME is given by Nazanin Magharei, Reza Rejaie and Yang Guo [131].
They point out a key difference: the mesh-based approach is able to give a dynamic shape to the
different delivery trees, in a bandwidth-driven fashion. The authors conduct a fair comparison
of both systems via simulations, and show that the mesh-based approach consistently outper-
forms trees, regarding different metrics as bandwidth utilization, average delay and resilience
to node-churn.

3.3 Pull or Push?

Sanghavi, Hajek and Maussolié describe push, pull and hybrid schemes probabilistically, un-
der different scenarios [189]. They assume soft or hard uploading constraints and one-sided



3.4. Streaming Rates and Delays in Live Streaming 63

or two-sided algorithms (where the information is needed in either one or both terminals for
each request or forward). In the soft constraint the upload capacity is unlimited, whereas in the
hard constraint peers have unit upload bandwidth. Their results are remarkable, and suggest
push schemes have fast dissemination at the beginning but the ending even may not come (for
instance and intuitively, in a highly biased pushed selection). On the other hand, pull schemes
start slowly but the time completion is accelerated at the end. The authors introduce Interleave,
which basically applies a push scheme with nearest-to-the deadline first in even slots, and a
pull scheme requesting the latest chunk not in the buffer, in odd slots. Additionally, The source
pushes a new piece in every even slot, and it replies to pull in odd slots. The performance
of Interleave is within a constant factor of 3,2 times the best completion time. In two-sided
algorithms, the payload is increased at the cost of near-optimal performance. In [125], the
authors relax synchronization and homogeneity assumptions from [125], and wonder whether
Interleave can be extended or applied into a stringent real time application. They outstand the
decentralized nature of Interleave, and show an extended version for a more realistic scenario,
and point-out Interleave could be flavored with efficient requests with two sided protocols
avoiding the waste of some time-slots, hence being a lower bound in the achievable perfor-
mance. It is worth to notice that both papers focused on time completion, but do not measure
losses with a playback delivery ratio, which is a fundamental impact factor of live streaming.
In this thesis we will stick to the two-sided pull-based approach, for its efficiency, its payload
trade-off and the huge empirical evidences of applicability in real platforms confirm [18, 162,
163, 209].

3.4 Streaming Rates and Delays in Live Streaming

Yong Liu presents additional reasons to prefer mesh-based rather than tree-based topologies
[122]. With a quite elementary systematic analysis, the author provides the minimum and
worst-case achievable latency in peer-to-peer systems in an elegant way, in both homogeneous
and heterogeneous environments. Actually, with a discrete-time model it is proved that the best
branching process is achieved by means of a Snow-ball algorithm, in which the accumulation
of the aggregated uploading bandwidth mimics the formation of a snow-ball, in a mesh-based
scenario [122]. The dynamic delivery tree makes the mesh-based approach near from the ap-
plicability of this optimal delay algorithm. Remarkably, it is also proved that heterogeneous
networks always achieve lower latencies than its corresponding average homogeneous network.
Intuitively, the bandwidth of the most resourceful peers are available first, and they dissemi-
nate the message faster. Yong Liu also shows that a network with dominant propagation delay
has lower performance but the bandwidth at disposal increases exponentially again, with lower
rates. The bounds here obtained are suggested as reference for future design of distributed
protocols. Jun Luo cites Snowball, a dissemination protocol that achieves the best delay, and
points out a weakness: it is completely centralized, thus impractical [129]. The intuition is
replication and relay to newest peer, so one message could be sent in O(log2(N)) time slots
to N peers. If we could guess which peers do not have the message, a selective push would
achieve. However, that binary information needs global availability. First, an ideal centralized
solution with multiple trees is proposed, and then it is extended to a distributed fashion with se-
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quential relay with round-robin. The server also pushes messages to the roots of different trees
in a round-robin fashion. In order to contrast its performance, the authors construct an under-
lying topology with GT-ITM [85], and consider not only the best Snow-Ball delay but PPlive
delay, based on an insight of this proprietary protocol [92]. The new algorithm outperforms
PPLive.

Other works consider separately the propagation delay (or path delay) and the chunk-
scheduling delay (i.e. the request time), trying to reduce the propagation delay with a network-
aware methodology [192]. Another common approach is to exploit network locality, pick-
ing neighbors from the same autonomous system whenever possible [42, 220]. For instance,
the Proactive Provider Participation methodology (P4P) specifies a bilevel optimization prob-
lem to minimize the maximum link utilization, keeping the max-flow between peers within
the network. The P4P problem has a fully polynomial time approximation scheme (FPTAS),
and the corresponding solution figures-out tempting bandwidth savings and better global per-
formance [14, 15]. David R. Choffnes and Fabián E. Bustamante present a latency-driven
neighbor selection policy, that avoids costly cross-ISP traffic without sacrificing system per-
formance [42]. The basic idea is to manage a set of CDNs, and count the number and time
of DNS lookups for different peers. Via ICMP pings the RTT is measured, and a score vector
is assigned for each peer, whose coordinates are different CDNs. The scores are based on the
percentage of time connected to each CDN (in practice, different Class-C IP addresses). Two
peers are encouraged to communicate if their vectors are similar (specifically, if the dot product
is low). The authors developed Ono, a Java plug-in for Azureus, and deployed extensive exper-
imental studies. They came-up with reduced cross-ISP traffic with insignificant overhead.
A complementary approach is to minimize the chunk scheduling delay. Zhengjun Chen, Kaip-
ing Xue and Peilin Hong introduce a chunk scheduling policy pressed by delay and urgen-
cies [38]. Using elementary primitives, peers request the nearest-to-deadline chunks first, and
avoid retransmissions with decline messages. They theoretically prove the delay achieves the
lower bound proposed in [122] for homogeneous scenarios, and via simulations they confirm
near optimality for heterogeneous cases. The authors focus on delay, and do not study playback
losses. However, they simulate the Rarest First policy, and show it has high delays.

Laurent Massoulié, Andy Twigg, Christos Gkantsidis and Pablo Rodríguez propose ran-
domized decentralized broadcasting algorithms to maximize the streaming rate, and prove their
optimality analytically [135]. Formidably, they prove a more general version of the classical
Edmonds’ theorem, which states that in a single-source edge-capacitated network, the maxi-
mum streaming rate is exactly the min-cut for the node source. Edmonds proved his result in a
centralized manner using packing edge-disjoint arborescences, which is not suitable for peer-
to-peer systems for instance. Massoulié et. al. developed a completely distributed algorithm in
which nodes forward packets randomly without duplication. The unit transmissions conform
a Markov Chain (all edge capacities are integer), and the authors prove this chain is ergodic
whenever the transmission rate is below the min-cut. In the limit of equality, Edmonds’ theo-
rem is retrieved. They also prove that random forwarding to the most deprived peer achieves
the optimal streaming rate in a node-capacitated fully-connected network. The results have
theoretical importance by itself, and the authors correctly believe they give hints for the design
of practical peer-to-peer systems as well. Additionally, they studied node capacitated systems
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and propose a linear programming problem to maximize the streaming rate. In an optimistic
viewpoint, distributed systems can achieve optimal performance.
Bonaldy, Massoulié, Mathieuy, Perino and Twigg developed a mathematically rigorous model
to study the scheduling design of peer-to-peer live streaming in an epidemic fashion [26]. The
system has a single server which injects video chunks at rate λ, and peers with limited upload-
ing bandwidth si. With a push-scheme, peers choose a neighbor and send a chunk regarding
different policies. They prove a surprising result: the random peer selection combined with
the latest useful chunk sending achieves both optimal diffusion rates and the lowest possible
source delay, up to an additive constant term, when peers are identical. The authors argue that
epidemic (or gossip style) protocols achieve unbeatable rates and delay. A drawback to their
analysis of chunk scheduling policies is that their metrics are not suitable for live streaming
protocols. The source latency does not represent the time needed to configure the buffering
times (the user could find poor playback continuity in this case). Instead, a useful measure is
to consider the time a joining peer needs to attain a similar performance when compared with
peers within the system [233].

3.5 Chunk Scheduling Policies

Aggelos Vlavianos, Marios Iliofotou and Michalis Faloutsos even support that BitTorrent is the
King of the protocols, but the chunk scheduling policy should be adapted for streaming pur-
poses. They propose a minimalistic design called BiTOS (Bit TOrrent for Streaming), which
tries to keep all the advantages of file sharing in BitTorrent, including a priority-based chunk
policy [213]. The buffer is partitioned in high-priority and remaining sets. Peers either receive
the rarest piece from high-priority set with probability p, or the rarest from the remaining set.
The operator can choose the importance-to-urgency parameter p and cardinal of priority set s.
In this way, the authors trade availability and playback urgency. In practice, this simple pro-
tocol extension could work for on-demand video streaming, but in live streaming the tracker
cannot identify current video chunks in the system beforehand, so its protocol deserves further
modifications. A valuable result obtained from simulations is that the limited Rarest First has
better continuity index than a purely sequential strategy, which might result counter-intuitive.
The main reason is that Rarest First tries to maximize the global chunk availability, whereas a
greedy sequential request will not replicate rare chunks, which will be finally missed.

Yipeng Zhou, Dah Ming Chiu and John C.S. Lui provide the first tractable analytical model
to capture the characteristic buffering-playback trade-off from live streaming peer-to-peer sys-
tem [233]. The discrete-time model assumes a single server that periodically pushes video
chunks in playback order to a randomly picked peer of a fully connected swarm (with iden-
tical upload capacities and buffer sizes), and the playback is synchronized between all peers.
Peers cooperate exchanging one video chunk in each time slot, following a pull-based scheme.
The mathematical model sounds simplistic at the first sight. However, the authors prove an
identical buffer size is the only Nash equilibrium in the corresponding game of trying the best
individual performance in a more recent journal [234]. In particular, a peer with high buffer
capabilities will not improve its playback if it decides to use higher buffer sizes than all other
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peers (intuitively, the downloading will be limited by other peers). What is more, a lack of
synchronization in neighboring peers degrades the global performance, which makes the coop-
erative model optimistic in both aspects, and valuable to study. The authors focus on the chunk
scheduling policy, inspired in previous works [44, 57, 213]. They suggest a Greedy policy
(or nearest-to-deadline) and the classical Rarest First widely adopted in BitTorrent, which is
the most representative influential work in academic circles [71]. On one hand, they show via
simulations that BitTorrent is scalable but does not comply with real-time requirements proper
from live streaming. On the other, Greedy presents good performance for low-scale scenarios,
but miserably fails with massive populations, with poor playback continuity. Therefore, they
propose a Mixture policy combining the best of both worlds, showing nice properties. The
Mixture policy is quite similar to the BiTOS proposal. A chosen set of m rarest chunks are re-
quested, and immediately after the nearest-to-the-deadline chunks are sequentially requested.
BiTOS breaks the buffer into two disjoint areas (high or low priority) and then picks chunks in
one of the areas using the rarest first policy. A further insight in the design of chunk policies
is presented in [231]. There, Bridge Q. Zhao, John C.S. Lui and Dah-Ming Chiu propose a
continuous version of the model from Zhou et. al. They conduct the research with a focus on
playback continuity, and find exponentially large sets, called V -shaped policies, that include
asymptotically optimal policies. However, they do not cover latency aspects, and the search in
the optimal sets turns prohibitive for high-resource peers (with large buffer size). A valuable
insight is that the optimal solution turns more greedy when the server capacity is increased.
In a similar fashion, Ilias Chatzidrossos, György Dán and Viktoria Fodor propose a discrete-
time push-based model to design chunk scheduling policies [34]. They consider an open system
with churn, in which nodes connect to d neighboring peers. At the beginning of every time-
slot every peer makes a forwarding decision, i.e., chooses a neighbor and a packet, and sends
the chosen packet to the chosen neighbor. They also include out-dated buffer maps, which
gives additional realism to the model. Via simulations they conclude random packet policies
outperform fresh-data-first policies. Additionally, the possession of imperfect information dra-
matically deteriorates the overall performance. The authors study four policies, and the model
does not seem flexible enough to treat a rich number of scheduling policies. It is worth to men-
tion there are alternative approaches to the design of chunk scheduling policies, with layered
stream [123, 124]. The basic idea is to send multiple streams with different priority, and peers
could display a video stream even with limited bandwidth resources. The technique is promis-
ing to achieve convergent multi-device service for cellular systems, set-top-boxes and personal
computers, which clearly have different bandwidth requirements. Although it is useful to solve
heterogeneity, it still waits to changes in the client-side. Though not covered in this thesis,
layered techniques offer interesting perspectives for future work.

3.6 Neighboring Policies

In order to build a robust network overlay, several approaches are analyzed, from ISP-friendliness
and locality, to content availability, latency-driven aspects and clustering, contribution aware-
ness to incentive altruistic peers with higher degrees, among many others. Usually, the band-
width awareness provides smart designs, based on special clustering attaining resilient network
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topologies. However, the global awareness comes at the cost of high overheads, which are
sometimes prohibitive in systems with scarce resources and real-time requirements.
The point of departure of Darshan Purandare and Ratan Guha is the paper [198], that sug-
gests the interaction between peers within a similar bandwidth range lead to optimal resource
utilization. They propose BEAM (Bit strEAMing), a BitTorrent-style protocol which seeds
resourceful peers called power nodes, in order to speed-up the propagation and cope with the
content bottleneck problem [165]. A tracker periodically ranks resourceful peers, to choose and
potentially replace power nodes, based on a score considering volume of uploaded content, in
relation with its downloaded content. Therefore, peers are encouraged to contribute, so as to be
directly fed by the source server. Once a peer joins the system he connects to the tracker, who
sends a list of 40 peers. Peers are grouped into sub-sets of small size h, called alliances, and
peers can be either accepted or neglected to a certain alliance, regarding a maximum number k
of simultaneous alliances. Fixing the pair (h, k) appropriately, the system turns to inherit prop-
erties of a Small World Network, which include a low diameter and dense clustering [214].
The authors argue the system is both robust to network failures like node churn, and provides
a fast chunk dissemination. Simulations are carried-out in a network-level, using BRITE uni-
versal topology generator [140] to contrast the QoS between BEAM and CoolStreaming. The
results show reduced amount of jitter and latency with respect to CoolStreaming. However, the
authors do not include the chunk scheduling sensitivity in their analysis.

Purvi Shah and Jehan-François Pâris propose modifications to the original BitTorrent pro-
tocol to extend its success for live streaming services [193]. They explain the Rarest First
policy is not suitable, given its non-sequential distribution by the server. At the same time, the
optimistic unchoking policy should be replaced as well, given that resourceful peers achieve
higher downloads, but peer with scarce resources suffer from isolation. They introduce a slid-
ing window to collect video-chunks, and suggest to apply the Rarest First policy within the
chunks of that window. Although they recognize BitTorrent’s efficiency is reduced looking
for less chunks, timing requirements are addressed now. The buffering technique is combined
with randomization in the peer selection during the bootstrap, and tit-for-tat under regime. The
authors measure playback-delivery ratio and bandwidth efficiency (the global upload volume
related with the bandwidth availability), comparing via simulations three chunk scheduling
policies: Sequential request, Rarest First in the buffer and the classical Local Rarest First but
with all chunks. Both the sequential request and the raw Rarest First have poor delivery ratios,
whereas Rarest First combined with sliding window achieves 83,3% of delivery ratio. With
separate simulations they confirm the randomized-tit-for-tat policy achieves higher bandwidth
efficiency than a raw tit-for-tat. The authors do not measure buffering times, which is precisely
the main drawback of the Rarest First policy, even with a sliding window.

Zhenfeng Ren, Ju Liu, Fenglin Qin and Yanwei Wang discuss the impact of node-degree
and buffer size in the cooperative model from Yipeng Zhou [233], via simulations. They con-
firm the buffer size is a more important parameter than node-degree [172]. They also find an
expression for the expected number of peers owning a fixed chunk. Curiously, if they consider
a static buffer with no playback and infinite buffer-capacity, they recover a file-sharing model,
in which the issue is to completely distribute the whole video with minimum time, and the
playback continuity immediately lacks of interest. This observation was not further exploited
by the authors, who focused the study on live-streaming, concluding the number of neighbors
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does little to the playback continuity, but can reduce latencies. This result is not in contradiction
with the one from [225]. Indeed, Zhenfeng Ren et. al. study the system for low node-degrees,
whereas Zhou Yipeng states there is a neglecting effect above a certain threshold. Both works
are complementary, and confirm there is a threshold where the network behaves as fully con-
nected.
Menasché et. al. suggest that swarm-based systems can attain higher throughput when publish-
ers adopt the most deprived peer selection, combined with rarest first (or random useful) chunk
scheduling policy [141]. They first find an upped bound for the throughput of the system, and
observe via simulations that the bound can be achieved, being that bound higher than the one at-
tained by random peer selection policies. The system does not capture timing constraints, and is
more suitable for file sharing than live streaming. Simon Koo, George Lee and Karthik Kannan
support content availability is the most important factor for BitTorrent-based networks [104].
A combinatorial problem is proposed whose objective is to maximize the sum of disjointness
among all neighbor peers. They solve the problem with a Genetic Algorithm-based heuristic.
The authors from [35] prove the maximum disjointness problem is NP-Complete, and show a
naive random overlay can build near-optimal content availability, being well adapted to the real
nature of Internet.

Sylvia Ratnasamy et. al. propose a binning scheme for network overlay, based on mini-
mum latency [170]. The success of this technique is tested regarding overlay construction and
server selection. The authors are focused on CAN, and the scope is not live-streaming. Hassan
Barjini et. al. develop a rigorous mathematical analysis of flooding-based techniques for con-
tent searching in unstructured peer-to-peer networks [10]. It includes a neat classification and
analysis of redundancy. They show a probabilistic TTL limited scheme can improve the perfor-
mance of traditional flooding with high TTL. However, the authors do not treat real scenarios,
and its applicability to live-streaming seems far from real, given the high level of redundancy
(for instance, a naive flooding in Gnutella carries 70 percent of packet redundancy, as previous
works show).

Nazanin Magharei and Reza Rejaie propose an Overlay Monitoring and Repair (OMR)
mechanism as a distributed and scalable approach to maintain proper overlay connectivity in
swarm-based peer-to-peer streaming systems [133]. The key idea is to use delivered quality
to individual peers as an indicator of poor connectivity from other regions of the overlay. The
point of departure is the inclusion of traffic localization in an ISP-friendly way suggested by
some works [220]. Nevertheless, the delivered quality is not implied in the objective. Addi-
tionally, peer-to-peer swarming systems are naturally organized in clusters, possibly by local-
ity reasons or content matching in a random mesh-overlay. Basically, the repairing algorithm
studies the structure of delivery trees, and gives the opportunity to resourceful nodes to re-
locate in a higher position, whenever its available resources cannot be gracefully exploited, in
a probabilistic manner. The authors show by simulations that the QoS perceived is consistently
increased in each round, and the number of repairing is decreased with time, hence the system
is stable. However, they do not measure the quality of experience (QoE) of end-users, nor
include node-churn. Additionally, P4P is ISP-friendly but its QoE is indeed increased, as we
could confirm [14, 15].
Ana Paula Couto da Silva, Emilio Leonardi, Marco Mellia and Michela Meo study large-scale
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mesh-based P2P systems pressed by timing requirements, with deterministic fluid models [52].
They discuss the performance of Random Choice (RC), Locality Awareness (LA) and a Hy-
brid (Hy) peer selection policy, where peers are randomly distributed in a bi-dimensional torus.
Different policies are translated into special families of random graphs. The authors study the
performance of the three peer selection policies regarding diffusion rates and chunk latency
(inversely proportional to the RTT, or its square root), and remark the importance of peers
bandwidth and location awareness to increase the network overall efficiency. The authors pro-
vide valuable insights for the design of a robust neighboring policy, which is discriminated in
scenarios. Specifically, they suggest that random topologies have excellent performance when
the peer upload capacity is the transmission bottleneck, which is a usual scenario for mesh-
based peer-to-peer streaming systems. Location aware topologies usually take the lead when
the bottleneck is due to the congestion control mechanism (consequently, when the network
imperfections cannot be neglected, a structural design based on P4P provides a useful alter-
native). Additionally, hybrid schemes take the best of both cases. While it is never the best
one, it always presents performance very close to those of the best scheme. The creation of
a cluster of large-bandwidth peers can be convenient when heterogeneous peer capacities are
considered. A careful design should guarantee the connectivity of large-bandwidth peers with
narrow-bandwidth peers.
Our results are independent but extremely aligned with the works from Ana Paula Couto et.
al. [52]. In Chapter 5, a naive random overlay is considered together with special chunk
scheduling policies, and the mesh-overlay attains excellent performance, for homogeneous
scenarios. Under heterogeneous systems with free-riding, we could confirm the importance of
contribution awareness, and the system is highly scalable whenever free-riders can be correctly
recognized. Interestingly, the best neighboring schemes in heterogeneous scenarios can be ob-
tained with clustering, as predicted in [52]. Last but not least, we could witness an improved
quality of experience when regarding an ISP-friendly bandwidth allocation mechanism in the
GoalBit system [14, 15]. We believe the effects of heterogeneity and free-riding are more ag-
gressive than network bottleneck problems, so we stick to random building in homogeneous
systems, and clustering-based overlay building in heterogeneous systems [185].

3.7 Incentive Policies

Free-riding and fairness are distinguished causes of concern in the design of peer-to-peer net-
works. Incentive policies encourage cooperation and peers not to free-ride. A possible classifi-
cation of incentive policies is based on actions targeted to individual peers: punishing, payment
or service differentiation [1]. Other works classify incentive policies in distributed systems re-
garding direct or indirect communication among peers, in order to take actions [232]. The
design of incentives is extremely diverse, and is usually inspired in game theory and economi-
cal models, where a process tries to detect anomalies or poor contributions from certain peers
and react. In this section we will sketch alternative approaches, in the lights of live-streaming
distribution.

The mechanisms to encourage peers to contribute has been a cause of concern in peer-to-
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peer systems even before the introduction of BitTorrent. C. Buragohain, D. Agrawal and S.
Suri model a P2P system as an N -player competitive game, and study qualitatively properties
of its Nash equilibrium, where users only wish to maximize their bandwidth usage [27]. Sab-
rina Lin, Vicky Zhao and Ray Liu study the Nash equilibrium of a competitive P2P system,
where peers can even cheat in order to maximize their own benefits [118]. A proof-cheat is in-
cluded, where peers are encouraged to cooperate in order to achieve their objectives. However,
only 2 peers are considered, in a far from real scenario. Yang-hua Chu and Hui Zhang argue
altruism must by quantified, in order to address the design and performance of peer-to-peer
streaming [93]. They show via simulations a considerable impact in the system’s performance
when the level of altruism (ratio between contribution and reception) moves from K = 1 to
K = 2, with substantial improvement in streaming rates, and no damage in the dynamism of
path adaptation (which would occasionally cause instability).

Zhengye Liu et. al. propose a layered incentive mechanism for pull-based scenarios, in
which altruistic peers receive more layers [123]. The system forces all peers receive lower
layers which are more important, where altruistic peers receive additional layers. The authors
show via simulations that the layered mechanism is more effective than multiple descriptor
coding (MDC).

Yang-hua Chu, John Chuang and Hui Zhang propose an economical-guided taxation model,
where resource-rich peers contribute more bandwidth to the system, and subsidize for the re-
source poor peers [43]. This redistribution of wealth improves social welfare. The issue is
to address the ill-conditioning behavior of tit-for-tat in streaming environments. The authors
observe taxation provides a direct mapping between contribution and benefit, in contrast to
other incentive mechanisms based on currencies [7, 84, 212, 215] or reputation [27, 87], which
provide indirect mappings between contribution and benefit. They assume a rationale peer’s
behavior, which try to maximize the individual utility of the system (the difference between
benefit and cost). In contrast, the publisher wants to maximize the social welfare of the sys-
tem, and defines a taxation policy. The authors use a linear taxation, which is both simple and
robust [142, 201]. They defend it is effective, and can be easily implemented in a real P2P
streaming environment. To address peer heterogeneity, MDC is used, where sub-streams are
sent in a multi-tree approach like SplitStream, and each peer is an internal node only once [31].
In order to study the performance of a linear taxation scheme, a lower-bound is given by the Bit-
for-Bit policy, whereas a completely altruistic behavior of peers is an upper-bound. The novel
taxation scheme is proved to improve the social welfare, with reasonable overhead. However,
the authors recognize a structural instability due to variable rates in different paths, and altruis-
tic peers could change their behavior because of their new rules, elements which need further
research. Shuang Yang and Xin Wang propose an incentive mechanism for tree-based live
streaming system [222]. The basic idea is to rotate nodes, which is a smart way to swap the
position of nodes in the tree, keeping the maximum number of previous connection to other
children of rotating peers. They proved in a previous paper that the blocking probability of a
certain user only depends on the number of free-riders and their height [223]. Therefore, the
rotation is both effective and cheap. They do not include a discrimination mechanism between
free-riders and normal peers, which are all identical.
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Robbert van Renesse, Maya Haridasan and Ingrid Jansch-Porto present and evaluate an au-
diting model based on sampling the system and using the sampled information to build a global
view of how the system is currently behaving [210]. Based on it, auditors employ strategies
to identify the misbehaving nodes that should be punished. More specifically, untrusted local
auditors request for information about previous rounds to local neighbors, and send the infor-
mation to global auditors. The latter process accusations from several peers to a potential target
free-rider, and determines whether it should be expurged from the system or not. Global audi-
tors define an uploading threshold under which peers are punished, which is related to the live
streaming rate and the information of local auditors. The authors assure the auditing system is
scalable, mainly because the workload of local auditing does not increase with the size of the
network, and the payload can be neglected, achieving at the same time a fixed streaming rate
punishing free-riders. However, they do not include latency or playback delivery in a chunk
level.

Fenglin Qin, Liansheng Ge, Qi Liu and Ju Liu develop a neat mathematical analysis of
free-riding effects for live-streaming P2P networks [166]. Their motivation is supported by
the massive presence of free-riding in certain P2P networks, but the lack of knowledge in its
effect (although there are several works providing incentive-based mechanism to encourage
contribution). For instance, in Gnutella the ratio of free riders increased from 66.7% to 85%
and to 97% in 2000, 2005 and 2007 respectively [108]. Additionally, T. Silverston, F. Olivier
and J. Crowcroft carried out traffic measurement and analysis on three popular P2P streaming
applications: PPStream, PPLive, and SopCast, and concluded that fairness is not achieved in
P2P streaming systems [197]. The authors find a rough expression for the network efficiency
and chunk delivery ratio, as a function of the percentage of peers within the system. They show
via simulations that the efficiency and delivery ratio falls down dramatically when the number
of free-riders is increased. The model is in some way pessimistic. For example, they use the
exchange efficiency from [168] and include the factor (1 − ρ), meaning that peers indepen-
dently select neighbors to cooperate, but this is in contradiction with the fact that peers will not
choose free-riders following a tit-for-tat policy. Therefore, it is concluded that an incentive-
based policy is mandatory for live-streaming services in P2P networks.

Bridge Zhao, John Lui and Dah-Ming Chiu propose a general mathematical framework to
evaluate the stability and evolution of a family of shared history based incentive policies [232].
They recall the micro-payment system, which is suitable only for highly centralized systems
with resourceful servers [84]. The tit-for-tat policy is included in a most general class of in-
centives, there called private history-based mechanism, where the resource is shared if certain
historic conditions of generosity between two peers are met. They point-out that in a massive
distributed system, two peers rarely contact many times, so that class of incentives has visible
limitations. A second class of incentives is called shared history based mechanism, where a
peer may infer the reputation of a requester based on the past experience of other peers. The
mathematical model is both simple and tractable, with enough flexibility to test the stability and
resilience of families of incentives working simultaneously in the system by different peers. It
is assumed peers can periodically switch to another strategy, i.e. peers can learn, trying to imi-
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tate the most cost-effective strategies. For each scenario with different set of incentive policies,
a different differential equation governs the evolution of peers from different classes (which
applies different policies). The system is composed by cooperative, reciprocated and defec-
tor peers. A cooperative peer always sends information when requested; a reciprocated helps
whenever the requester does it; and defectors never contributes. The most interesting behavior
is the one of reciprocators. The authors propose two behaviors of reciprocated peers, called
Image and Proportional policies. In the Image policy, reciprocators probabilistically help re-
questers, with equal probability as if requesters help other peers (a probabilistic version of
tit-for-tat); the Probabilistic policy was first presented for Electronic Commerce applications
in [74], and reciprocators probabilistically help regarding the ratio between contribution and
consumption of requesters. The authors finally study the stability and performance of the Image
and Proportional policies. They show that the population of defectors rapidly increases follow-
ing the Image policy, and the system is unstable. On the other hand, the proportional policy
leads to a robust and scalable system. A possible reason is that the latter policy considers both
consumption and contribution.

3.8 Two Paradigmatic Platforms

We will give two samples of real live streaming platforms that propose completely different
paradigms. On one hand we have PPLive, a commercial platform that offers live streaming
with proprietary protocols not available to academia. The following subsection describes the
little known aspects from PPLive that could be learned from some experimental setups and
reverse engineering. On the other hand we have GoalBit, which is the first peer-to-peer network
that widely offers live streaming to end-users, and their codes and protocols are open, hence
available to academia. We will briefly describe its main characteristics, focusing on its chunk
scheduling policy.

3.8.1 GoalBit

GoalBit is the first free and open-source that offers live media streaming to end hosts. A source
node (broadcaster) by means of special intermediate nodes called super-peers dynamically
broadcasts multiple channels to peers, which are the raison d’etre of the whole system. The
broadcaster is responsible to access the live media stream to be distributed and put it into the
network, whereas super-peers have the dissemination task, together with normal peer. Goal-
Bit works in a BitTorrent-based fashion, and includes super-peers, which are resourceful peers
managed by the service provider (it is desired to dynamically promote helpful and stable peers
as super-peers in future specifications). The peer excursion of a system is kept as simple as
possible: it clicks on a .goalbit channel often available in the web Server. The tracker immedi-
ately offers a list of potential seeds, including super-peers. The chunk dissemination is done in
a gossip-style, with buffer bitmap periodically exchanged and pull requests. It is worth to men-
tion that GoalBit is compatible with multiple encoding formats and devices transparently to the
end-user, which makes it suitable to broadcast user-generated streaming as well as operator-
generated. The complete GoalBit suite for live media generation, encapsulation, distribution
and playback is described in [18]. The GoalBit Packetized Stream (GBPS) takes care of the



3.8. Two Paradigmatic Platforms 73

encapsulation, whereas the distribution is provided by the GoalBit Transport Protocol (GBTP).
Here we will focus on the core scheduling mechanism (i.e. neighboring and chunk scheduling
policy), pointing out the main differences with BitTorrent. The primitives for communication
between peers are quite simple though enough to have valuable control of the local swarm state.
The reader is referred to [18] for more details.

The peer selection policy follows the traditional tit-for-tat principle from BitTorrent. The
most generous neighboring peers are unchoked, hence enabled, to download from the local
peer. Generosity is easily measured by counting the number of downloaded chunks from that
neighboring peer. With regular intervals of T seconds, every peer decides to award unchoking
the N most contributing neighboring peers. Additionally, a diversification mechanism is in-
cluded optimistically unchoking a random peer within the network every MT seconds, being
M a positive integer.
There is a common agreement in the scientific community that BitTorrent is appropriate for
offline applications but does not comply with timing requirements of live and on-demand sys-
tems [57, 213, 233]. The main reason is its chunk scheduling policy, namely Rarest First. In
Rarest First, peers always request first the rarest chunk from its neighbors, trying to balance
the availability of the system and converge to a uniform chunk distribution. However, it is both
empirically and theoretically proved that Rarest First has unacceptable buffering times, which
makes it unsuitable for live streaming. A practically opposite policy is the nearest-to-deadline
rule, which represents a Greedy notion for the replication problem. This policy is intuitively
economic, given that it needs no counting, and the buffering times can be reduced. Neverthe-
less, the delivery ratio is not satisfactory when Greedy is adopted in the whole live system. The
intuition here is that the uniform chunk availability (from Rarest First) is completely broken
with Greedy, because chunks far away from the playback are rare in the system. GoalBit pro-
poses a hybrid policy, specified next. The buffer is categorized in three ranges: urgent, normal
and future. If some urgent chunk is missing, the local peer requests the nearest-to-deadline
chunk first. Otherwise, a missing chunk is picked sampling an exponentially distributed ran-
dom variable, where the probability is monotonically decreasing from usual along to the to
future buffer range. An illustration of the current GoalBit chunk scheduling policy is presented
in Figure 3.1.

Figure 3.1: Chunk scheduling policy in GoalBit.
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3.8.2 PPLive

The PPLive web site provides limited information about its proprietary technology [162]. With
passive packet sniffing, Xiaojun Hei et. al. found PPLive has a not unusual bootstrap to get
access to different channels, but the TV engine is sophisticated and the starting cooperation is
aggressive [92]. The layout of the passive monitoring test was rustic: 2 home PCs with ca-
ble modem and 2 University campus with 100 Mbps Ethernet access. They used Ethereal for
packet sniffing, carefully filtering cross traffic and counting TCP SYN connections with affir-
mative answer coming from exchanging between other IPs [70]. Two PCs (one residential and
other form the campus) where connected to a 5-star top channel, whereas the other two were
connected to a 3-star channel, in both cases for 2 hours. The main difficulty is that the TCP con-
nections contain both signaling and chunk messages, and they cannot be easily discriminated.
Hence, they propose a simple heuristic: only sessions that exchange more than 10 packets with
sizes higher than 1200 bytes are considered session instead of signaling. The empirical distri-
bution shows that the median length of a session is 20 seconds, so it is concluded that peers
can exchange only few video chunks during a session. A TCP connection has many streaming
variations, also the content availability of a certain peer. This imposes a variable streaming
rate of the messages exchanges between peers. Nevertheless, with this statistical analysis it is
also proved that peers have concurrent downloading from multiple peers. The TCP fluctuations
are absorbed by both the aggregated downloading and double-buffering mechanism, which is
similar to a token bucket. The result in PPLive is a quite smooth video-playback.

A performance analysis shows that the pop-up channel delay is 10-15 seconds, while the
buffering delay additional 10-15 seconds. The potential upload from the campus’ peers is
highly exploited, offering 4,4 GBytes and 3,7 GBytes during the global sessions. Indeed, the
campus peers have a complete mis-balance, uploading even ten times more that what they
upload. The residential peer from the less popular channel practically does not contribute with
the system, but plays the video channel correctly. These results show a main difference with
BitTorrent, where users are encouraged to contribute via tit-for-tat, and should keep a balanced
contribution with the system. What is more, this opposite behavior of upload/download with
respect to the ADSL access might affect the ISPs business.

The buffer size is suspected to be dynamically adjusted, varying between 10 and 30 MBytes.
Interestingly enough, the residential peer from the 3-star channel experimented a drop-out of
1 active peer in minute 33, and the PPLive system immediately recovered the state, by find-
ing several active peers. The streaming rate consequently decreased in that minute but rapidly
increased to the playback streaming rate. A primitive analysis of traffic locality was imple-
mented, with a prefix matching of IP addresses. It suggests the traffic generated in U.S.A.
mostly stays in U.S.A., whereas the majority of the download traffic comes from Asia. Noth-
ing is here revealed about the gossiping protocol or chunk scheduling policy from PPLive.

The same authors publish valuable additional information about the behavior of users and
scheduling policies of PPLive, by means of a sophisticated active crawler [92]. They discov-
ered that the peak times of network utilization occur during 9 P.M. to 1 A.M. at China time,
with scarce peaks between 9 P.M. and 2 P.M. in USA time. The number of active peers in dif-
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ferent channels is intensified during weekends. The results confirm that people enjoy PPLive
during their leisure time (other measures show VoIP is most used at office). The annual Spring
Festival Gala on Chinese new year is one of the most popular programs in the Chinese com-
munity all over the world. The lifetime of users vary from seconds to 16 hours, but 90% users
disconnect before 1,5 hours. The peer population comes from Asia in a high dominant propor-
tion, following U.S.A. and other minorities. In January 28 2006, the Festival Gala on Chinese
new year was broadcast by PPLive, maintaining 200.000 concurrent users during more than
4 hours! This fact confirms the peer-to-peer cooperative scheme can be highly scalable. The
playback continuity was measured counting the number of freezings. The authors confirm the
loss delivery ratio is in the order of 10−3, and the PPLive system rapidly improves the storage
when an incidental screen freezing occurs. It is suggested that PPLive adaptively builds buffer
levels as a function of streaming quality degradation. The resourceless peers face more often
freezings than resourceful peers, so peer heterogeneity is translated into different playback per-
formance. In all cases, the playback losses are under acceptable margins. The authors conclude
that lower start-up delays are needed to offer IPTV to achieve efficient channel switching, and
the upload of resourceful peers will be even less-balanced with the tendency of higher stream-
ing rates. Additionally, the lag behind different peers reach the order of minutes. Summing all,
they feel live-streaming peer-to-peer applications are yet in the infancy.

3.9 Conclusions

We are all witnessing an explosive increment in television through the Internet. The most
similar service from a traditional television is live streaming. It sounds disappointing that the
most successful commercial live streaming peer-to-peer platforms are closed for academia and
general public [162, 163, 209]. Consequently, the universal access of traditional television in
multiple devices comes slowly. The most deployed topology for live streaming distribution is
the mesh-overlay. It provides robustness under churn and dynamic tree diversification to ex-
ploit the bandwidth resource of the whole system. This robustness usually comes at the cost of
high network overheads, in order to keep the necessary awareness of the available resources.
Indeed, better scheduling decisions can be obtained with more information at disposal. There
are two traditional modes of peer cooperation in live streaming, namely push or pull-based. In
the first one, peers must pick a target peer (possibly at random) and then pushes one or sev-
eral chunks. This method is one-sided, hence very cheap when regarding network overhead.
Gracefully, it also provides a fast adaptation when a peer has an empty buffer. However, some
works predict it has poor performance when the buffers are filled with abundant chunks, and
push-systems suffer from unbounded duplication (the same peer receives a non-desired chunk
from several sources). Pull-based systems are pressed by requests: receivers choose a (possible
random) peer and then select a desired chunk to be downloaded from it. Most deployed systems
are pull-mesh based [18, 162, 163, 209], and the information exchange occurs in an epidemic
(gossip)-style, where chunks dynamically visit directed acyclic paths. Perhaps guided by in-
tuition rather than mathematical foundation, because pull requests, though bidirectional, are
driven by needs and easy to understand. The core resilience mechanism for pull-mesh based
live systems is peer selection and chunk scheduling policies, where the neighboring is often
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predetermined as random, exploiting the connectivity properties of random networks [25]. In
2007, the first tractable model for the analysis of chunk scheduling policies is proposed [233].
It is proved to be robust, and captures the playback-buffering trade-off, which is highly related
with the two most important factors of the human behavior: a person feels extremely annoying
to watch several video-cuts, and is not intended to wait minutes to connect a video channel.
There is a common agreement in the scientific community that BitTorrent is appropriate for
offline applications but does not comply with timing requirements of live and on-demand sys-
tems [18, 57, 213, 233]. Moreover, the authors from the first mathematical model have recently
recognized that the problem of meeting real-time streaming requirements while preserving
scalability is a challenging problem still not well understood [234]. With a different approach
and taking the source latency as a measure, Maussolié classifies open problems that born from
epidemic models of chunk propagation [137]. Chapter 5 provides a modest contribution to
the understanding of the playback-buffering trade-off, in the lights of the model [233]. At the
same time, the open-source paradigm for peer-to-peer networks is here promoted, showing the
performance of new chunk scheduling policies in GoalBit. We hope in the future the design of
live-streaming peer-to-peer systems will be as clear as in file-sharing.
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Chapter 4

Stability and Capacity of Peer-Assisted

Video-On-Demand Networks

4.1 Introduction

Video on-demand distribution over the Internet has several challenges, as we discussed in
Chapter 2. The video replication policy must cope with the asymmetric playback nature from
different peers of these systems. Smart solutions were proposed during the short-life of exis-
tence of highly-scalable on-demand peer-to-peer systems, like grand-children gossiping [62],
sophisticated Multiple Video Cache policy in PPLive-VoD [97], anchor-based solutions for
VCR interactivity and caching policies to maximize global availability [95], among others.

In this chapter we focus on the design of a Multiple Video Cache (MVC) policy to max-
imize availability. Basically, we manage a set of heterogeneous cache-nodes (super-peers in
the GoalBit system), and want to define the best caching policy (the video-types that should
be stored in each cache node), given the statistics of the demand and peer population. For that
purpose, we will consider a simple fluid model to understand the streaming rates and expected
peer excursion times. Then we introduce a combinatorial optimization problem, trying to find
the caching policy that minimizes the expected excursion time between peers. The statistical
data is taken from a passive YouTube Crawler, specifically designed to understand the session
dynamism and video popularity. The results show to be encouraging: peer-assisted systems
outperform nearly ten times the throughput of a traditional Content Delivery Network (CDN).
This suggests peer-assisted systems are cost-effective, and YouTube would have valuable ben-
efits encouraging users to contribute.

This chapter is structured as follows. Section 4.2 presents a motivation of this work,
whereas Section 4.3 contains a summary of related work. Section 4.4 introduces a general fluid
model, in which peers can concurrently download several videos, and are classified according
to the number of simultaneous downloads. Two special sub-models are discussed in-depth in
Section 4.5. The first is a concurrent model for BitTorrent-based networks. The second derived
from the most general is a sequential fluid model, in which each peer downloads video con-

79



80 Chapter 4. Stability and Capacity of Peer-Assisted Video-On-Demand Networks

tents sequentially. The sequential model is globally stable, and we can find closed expressions
for the expected waiting times, regarding P2P and CDN systems separately, and prove that the
performance of a P2P system is never worse than that of a CDN. A combinatorial optimization
problem (COP) captures the Caching Problem in Section 4.6, trying to allocate video replicas
in super-peers in order to minimize the expected waiting time. We prove the feasibility of the
Caching Problem is an NP-Complete decision problem, and therefore we develop a greedy
randomized heuristic to solve it. Real-life scenarios based on YouTube traces are analyzed in
Section 4.7. Finally, Section 4.8 contains the main conclusions and discusses several aspects
for future research.

4.2 Motivation

In the Client-Server architecture, servers offer a simple and predictable service to their users.
However, this service can be easily collapsed by a mismatch between the download require-
ments and upload server capacity. Established in 2005, YouTube has become the most suc-
cessful Internet site providing a new generation of short video sharing service, comprising
approximately nearly 10% of all traffic on the Internet [40]. However, the network access is
yet working with a client-server architecture, and the operator (Google corporation) must af-
ford more than one million dollars per day just for bandwidth requirements, which is a clear
motivation to add cooperation in YouTube’s users [95]. Peer-to-peer networks represent an
attractive paradigm for the deployment of high-scalable video-on demand services. They are
self-organized communities developed at the application layer, in which users, called peers, of-
fer their resources (bandwidth, memory and CPU-time) to others, basically because they share
common interests. The cooperation between users reduce the operational costs, and promote
scalability. Nevertheless, the design of these networks imposes many challenges. Peers join
and leave the network when they wish in an unpredictable manner (known as node churn).
Therefore, the global network resources is a function of time. Moreover, peers are heteroge-
neous, and the uplink/downlink capacities are not similar, in part due to the high penetration
of ADSL services [21]. Some selfish peers exploit the resources of the whole system but do
not contribute, called free-riders. The topological design and cooperative schemes are consid-
ered core-mechanisms in order to address those issues. A neat survey covering the design of
resilient peer-to-peer video streaming can be found in [1].

Some commercial P2P networks for on-demand streaming are available. The most suc-
cessful are VoD-PPlive [97], VoD-PPstream [163] and Spotify [105].

An inspirational system for replication and fast dissemination of files is BitTorrent, created
by Bram Cohen [23, 44]. BitTorrent was originally designed for offline downloading. However,
nowadays most of the P2P applications over the Internet are BitTorrent-based. One of such ap-
plications is the GoalBit Video Platform, the first free and open source peer-to-peer streaming
Network [18]. In these systems, peers are either downloaders when they actively download
content, or seeders, once they finished the download process but remain connected, sharing
already downloaded items. GoalBit introduces a third node-type to the network named super-

peer. These kind of nodes have higher bandwidth resources than a normal peer, and usually
join the network with longer life-times (very stable peers). Super-peers are encouraged to store
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and forward video streaming to end-users (with a short life-time). In the current GoalBit proto-
col specification, super-peers are nodes managed by the operator of the platform, hosted in the
cloud, and implement a specific caching policy [18]. Therefore, super-peers is the GoalBit’s
name for the cache-servers. In GoalBit, there is also an entity or software named tracker, which
knows all the peers that are seeding or downloading an item. The reader can find summary of
GoalBit’s design philosophy in Section 3.8.1, and a thorough description in [18]. The moti-
vation of this chapter is to explore the best caching policy for on-demand video streaming, in
order to minimize the expected download times experienced by end-users. Our framework is
general enough to be applied either into GoalBit or other peer-assisted cooperative architectures
as well.

4.3 Related Work

Usually, the development of experiments in real P2P systems is expensive, and a large deviation
from customer expectations would be detrimental to their reputation [205]. As a consequence,
the scientific community works to develop mathematical models in order to predict the behavior
of the system. In [58], Yang and de Veciana justify mathematically the consistency of the
service capacity of P2P file sharing services. They propose a branching process, and state
that a P2P system highly outperforms a traditional CDN. A basic Markovian model is also
introduced to describe peer evolution. Qiu and Srikant analyze BitTorrent-like systems under
steady state and its variability, showing empirical validation as well [168]. A steady state
analysis is first presented with a simple fluid model, in which the peer evolution is captured
by exogenous poissonian arrivals and exponential departures in the system. They consider
homogeneous peers, and find a closed expression for the expected waiting time. A sensitivity
analysis of this performance measure with respect to different design parameters offers one of
the first insights of the BitTorrent’s correctness. A special treatment is included for the file
sharing efficiency between peers, and states the robustness of random peer selection. They
develop a fluid model whose steady state is partially characterized as locally stable, and it
was conjectured that it is globally stable as well. The reader can find the fluid model and the
mentioned results in Section 1.2 (Mathematical Foundations of File-Sharing Systems). The
conjecture is true, and proved for the first time in [167]. The fluid model proposed by Qiu and
Srikant is generalized in a first stage by [207], extending the model for several concurrent multi-
torrents. The authors argue that most BitTorrent users download several files at the same time.
A second generalization is proposed by Pablo Rodríguez-Bocca and Clauda Rostagnol [182],
where the authors introduce the presence of super-peers in the network, and study the steady
state of a video on-demand application.

Here, we propose a further generalization of [182]. A general fluid model is presented,
adding node churn. We prove both mathematically and empirically that the peer-to-peer ar-
chitecture outperforms traditional Content Delivery Networks (CDNs), in a general environ-
ment. Then we explore optimal caching policies in sequential systems (in which users can
either download zero or one video file at a given time). We propose the Caching Problem,
and prove its NP-Completeness, showing its performance via simulations regarding real-traces
from YouTube.
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4.4 General Fluid Model

Consider an open network which offers K video items with sizes {s1, . . . , sK}. Peers join
the network, download progressively one or possibly many concurrent video items and abort
the system when they wish. Peers are then classified in exhaustive and mutually disjoint sets
C1, . . . , CK , where Ci is the set of peers that download i video items simultaneously. De-
note xij(t) the number of peers from class Ci that are downloading video j in a certain instant
t. They join the network following a poissonian process of respective rates λij , and abort the
system with exponential law, and respective rates θij . The number of seeders owning exactly i
video items, and seeding video j at instant t is denoted by yij(t), and depart the system expo-
nentially with rates γij . We shall assume identical peers, with respective upload and download
capacities denoted by µ and c. Peers also contribute with the system uploading video stream-
ing. The exchange effectiveness between peers is a coefficient η : 0 ≤ η ≤ 1 that indicates the
amount of uploaded bandwidth successfully exploited in the system1. All seeders from class
Ci that own video j can decide a portion ρj of their available uploading capacity, in order to
feed downloaders of video j. Super-peers behave like seeders, but they do not leave the system.
The number of super-peers from class Ci seeding video j are denoted by zij , and have upload
capacity ρ. All this information can be summarized in a General Fluid Model (GFM), specified
as follows:
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where additionally:

1. µij =
µi

sj
is upload rate for video j from peers in class Ci , and

∑

k∈Ci µk = µ.

2. cij =
ci
sj

is the download rate for item j from peers in class Ci, and
∑

k∈Ci ck = c.

3. ρij =
ρi
sj

is the streaming rate for item j from super-peers in class Ci, and
∑

k∈Ci ρk = ρ.

4. θij is the disconnection rate for item j from peers in class Ci.

5. γij is the disconnection rate for item j from seeders in class Ci.

Observe that the General Fluid Model is a non-linear switched system of 2K2 ordinary differ-
ential equations, where the terms are expressed in peers per second, in compatible units. Videos
with higher size are normally slower to download, so the video sizes sj appear in the denom-
inator. The GFM is just a balance of entrance and departure of peers in the system, including

1Note that due to asymmetric reasons, this parameter is not near the unit as predicted by Tewari and Kleinrock
for file sharing [205].
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the presence of special components, like seeders and super-peers. As soon as peers completely
download the video stream, they are promoted to seeders, explaining the additive term on the
right hand of (4.1b). The minimum function means that the bottleneck is either in download-
ing or uploading. A peer (seeder) disconnection from a certain video-item does not imply the
complete abortion of the system. We will prove an elementary result for the GFM which turns
to be useful in particular sub-models of it. For simplicity we will denote [K] = {1, . . . ,K}
throughout the rest of the chapter.

Proposition 4.4.1 The GFM is a positive system.

Proof. We must prove that given an arbitrary starting condition with xij(0) ≥ 0 and yij(0) ≥
0 for all i, j ∈ [K], then necessarily xij(t) ≥ 0 and yij(t) ≥ 0 for all t ≥ 0 and i, j ∈

[K]. Suppose in a certain variable from the set {xij}i,j∈[K] gets null in some time t0. By
the corresponding Equation (4.1a) the minimum function is null in that instant, and hence
dxi

j

dt = λij > 0. Analogously, suppose now that yij(t1) = 0 for a certain t1 > 0 and i, j ∈ [K].
The right side of Equation (4.1b) assumes in t0 the value of the minimum function, which is

non-negative, and
dyij
dt ≥ 0 again. As a consequence, the peer and seeder populations under the

GFM never take negative values.

Q.E.D.

4.5 Two Outstanding Sub-Models

4.5.1 Concurrent Fluid Model (CFM)

The number of variables involved in the GFM force us to assume further hypothesis in order
to analyze the stationary state of the system and have an insight of the super-peers optimal
operation, which are the only nodes that can be managed by the network operator. Inspired in
BitTorrent-based systems, we will strictly stick to the following assumptions:

1. “Fair transmission”: the resources are equally distributed in the different concurrent
videos: µi =

µ
i , ci = c

i and ρi =
ρ
i .

2. “Tit-for-tat”: Peers in class Ci that at time t are downloading video j receive from all
other downloaders a streaming rate proportional to the upload bandwidth µij and their
population:

(
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3. “Fair Seeders”: Peers from class Ci that at time t are downloading video j receive from
all the seeders a streaming rate proportional to the download bandwidth and their popu-
lation:
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4. “Fair Super-peers”: Analogously, peers from class Ci that at time t are downloading
video j receive from all the super-peers a streaming rate proportional to the download
bandwidth and their population: αi

j(t)
∑

k ρ
k
j z

k
j .

5. “Peers Departures”: the peers and seeders departures follow the Zipf law, being linearly
decreasing with respect to the number of concurrent video streaming: γij = γ/i, and
θij = θ/i.

Let us briefly discuss the reasons for these assumptions. Under a homogeneous system, fair-
ness is a natural hypothesis, in order to preserve the same opportunities and expected perfor-
mance. Assumption 2 is an ideal approximation of the corresponding tit-for-tat concept from
BitTorrent (in file-sharing [44]). Recall that in video on-demand the playback is not symmetric.
Nevertheless, a well-design incentive policy will encourage peers to contribute. Thus, Assump-
tion 2 represents an ideal and well-design incentive mechanism, and a complementary notion
of fairness. Assumptions 3 and 4 are similar in spirit. Assumption 5 captures the user’s behav-
ior. Intuitively, the worth of the connection is increased when the user downloads more video
streams. We model the interest-relation as linearly with the number of concurrent streaming,
following the Zipf’s law as in other works in peer-to-peer computing [226]. Figure 4.1 sum-
marizes the symbolic notation.

K available videos
sj size of video-item j
xij(t) downloaders in class Ci downloading video j at time t
yij(t) seeders in class Ci seeding video j at time t
zij(t) super-peers in class Ci seeding video j at time t
λij arrival rate for peers in class Ci requesting video j
θij departure rate of peers in class Ci requesting video j
γij departure rate of seeders in class Ci seeding video j
c total download bandwidth for each peer.
µ total upload bandwidth for each peer.
ρ total upload bandwidth for each super-peer.
η exchange effectiveness between peers (η ∈ [0, 1]).

Figure 4.1: Symbolic notation for the Concurrent Fluid Model.

After including these BitTorrent-based assumptions to the GFM we get the P2P Concurrent
Fluid Model (P2P-CFM):
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where αi
j(t) =

xi
j(t)/i∑

k xk
j (t)/k

, and the independent variable t was omitted for short.

A traditional CDN (with a client-server paradigm) can be viewed as a particular case of this
analytical approach. Specifically, users do not cooperate (µ = 0), seeders do not participate in
the network (yij(t) = 0) and the previously named super-peers are now static servers. Replac-
ing these parameters in Expression (4.2a), the CDN Concurrent Fluid Model (CDN-CFM) is
defined by the following system of ordinary differential equations:
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4.5.1.1 Rest Point Analysis for CFM

A Corollary from Proposition 4.4.1 is that both the P2P-CFM and CDN-CFM are positive

systems. If we find a time t such that simultaneously dxj
i (t)
dt =

dyji (t)
dt = 0 for every pair

i, j ∈ [K], the system will rest indefinitely in the same constant vector state (xij , y
i
j). This is

called a stationary state. Now, we will find the stationary state for the P2P-CFM.

Proposition 4.5.1 The rest point for the P2P-CFM is:
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Proof. Expression (4.4b) is directly obtained summing Equations (4.2a) and (4.2b). When
the download capacity is the system’s bottleneck the steady state for the P2P-CFM can be found
solving the following linear system of equations:
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From Equation (4.5a) we get immediately that:

xij =
iλijsj

θsj + c
(4.6)
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On the other hand, when the upload capacity is the system’s bottleneck, we must solve the
following non-linear system:
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Denote for short ρj =
∑

k
ρ
sj

zkj
k and φj =

µλj

γsj
. Summing (4.7a) over all classes i ∈ [K]:
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Additionally, Equation (4.7a) can be re-written:
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Replacing (4.8) into (4.9) and taking a common denominator, we obtain the desired result.

Q.E.D.

The expressions for the steady state in the CDN can be obtained either making µ = 0 in

Equation (4.4a) or solving Equation (4.3) with
dxi

j

dt = 0:

xijCDN
= max
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,
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}

(4.10)

Now we can compare the capacity of the P2P-CFM and CDN-CFM systems. Let us as-
sume stability for a moment (we prove global stability of a special but important case in the
following subsection). Denote TP2P

CFM and TCDN
CFM the expected waiting times under regime for

the respective systems P2P-CFM and CDN-CFM. The following proposition is intuitive, and
sounds:

Proposition 4.5.2 TP2P
CFM ≤ TCDN

CFM .

Proof. Consider the random variable T i
j that represents the waiting time for user-type (j, i)

(a member of class xij). By Little’s law we relate the mean waiting time with the number of
users under regime:

E(T i
j ) =

xij
λij
. (4.11)
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Equation (4.11) holds for both systems (P2P and CDN), where the number of users are
xijP2P

and xijCDN
respectively. Let us denote X to the random variable that represents the

class of certain arrival in the GFM. It has range RX = {(j, i) : j, i ∈ [K]}, and P (X = (j, i))
is the probability that a certain new arrival is from class xij . The poissonian arrivals with

intensity rates λij imply that P (X = (j, i)) =
λi
j

λ , being λ the global sum rate. The mean
waiting time of a user in the P2P-CFM can be found via conditional expectation [77]:

E(T ) = E(E(T/X))

=
∑

i

∑

j

P (X = (j, i))E(T/X = (j, i))

=
∑

i

∑

j

λij
λ
E(T i

j )

=
∑

i

∑

j

λij
λ

xij
λij

=
1

λ

∑

i

∑

j

xij ,

where we used Little’s law. Notice that equalities hold again for both systems:

TP2P
CFM =

1

λ

∑

i

∑

j

xijP2P
,

TCDN
CFM =

1

λ

∑

i

∑

j

xijCDN
.

Hence, it suffices to prove that the number of downloaders in the P2P fluid model is never
greater than the one in the CDN model: xijP2P

≤ xijCDN
. We use Expressions (4.10), (4.4a)

and elementary algebra. If the download is the system’s bottleneck then the equality is obvious.
Otherwise, the second argument of the maximum function in Expression (4.10) must dominate,
and in particular by positivity λj − ρj must be positive. Therefore, the following chain of
inequalities holds:

xijP2P
=
iλij(λj − ρj)− iλ

i
jφj

λj

(

θ + µ
sj
(η − θ

γ )
)

<
iλij(λj − ρj)

θλj

= xijCDN
.

This inequality holds if and only if

(−iλijφj)(θλj) < iλij(λj − ρj)(λj
µ

sj
(η −

θ

γ
)).
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Using that φj =
µλj

γsj
and canceling common factors, the inequality holds if and only if

λj
θ

γ
+ (λj − ρj)(η −

θ

γ
) > 0.

Equivalently: ηλj > ρj(η −
θ
γ ). But the latter inequality is obviously true, since λj − ρj > 0.

Q.E.D.

Observe that when the upload is the bottleneck, the cooperative system always outperforms
raw CDN technology. Naturally, when the download is the bottleneck the effect of peers con-
tribution is null, and both systems are equivalent. The remaining of this chapter focuses on
an outstanding case, defined by a single-class system, where each peer downloads exactly one
video item at a time.

4.5.2 Sequential Fluid Model (SFM)

In this subsection we will study the GFM in the particular case in which peers download exactly
one video item at a time (the single-class case - i = 1). We will call it P2P-Sequential Fluid
Model (P2P-SFM):















dxj(t)

dt
= λj − θxj(t)−min

{

c

sj
xj(t), η

µ

sj
xj(t) +

µ

sj
yj(t) +

ρ

sj
zj

}

(4.12a)

dyj(t)

dt
= min

{

c

sj
xj(t), η

µ

sj
xj(t) +

µ

sj
yj(t) +

ρ

sj
zj

}

− γyj(t). (4.12b)

A direct calculation shows that:



















xj
P2P
SFM = max

{

λjsj
θsj + c

,
λj(γsj − µ)− γρzj
θ(γsj − µ) + ηγµ

}

, (4.13a)

yj
P2P
SFM =

λj − θxj
P2P
SFM

γ
. (4.13b)

Recall that an equilibrium point x of a dynamic system is locally stable if there exists a
positive radius R such that x(t) → x whenever ‖x(0)− x‖ < R. An equilibrium point x is
globally stable if the orbit x(t) converges to x for every starting point. In linear systems of
differential equations (i.e. ẋ = Ax), local stability is equivalent to global stability, and occurs
if and only if all the eigenvalues of the characteristic matrix A have negative real parts. The
reader can find further definitions and examples in [128].

The P2P-SFM is a linear-switched system, i.e. a special class of dynamic system. The
global stability of a special sub-system of the P2P-SFM has been studied in [167]. More
precisely, it is the P2P-SFM when a single video item is distributed and with no super-peer
assistance (i.e. the unidimensional case with no terms ρjzj). There, the global stability is
proved, but the authors do not address any performance analysis. We will prove here that the
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P2P-SFM is always globally stable. The only assumption is that γ > 0. Otherwise, seeders
accumulate and never leave the system, leading to non-stability (this case is non-realistic as
well). The proof will follow closely the ideas from Dongyu Qiu and Wei Qian Sang [167],
although some subtle details are different (mainly the manipulations of inequalities). Here we
prove a useful lemma which makes the difference with that work (the remainder of the proof is
in the Appendix).

Lemma 4.5.3 The P2P-SFM is locally stable if (c− ηµ)xj
P2P
SFM 6= µyj

P2P
SFM + ρzj .

Remark 4.5.4 In fact, the P2P-SFM is also locally (and globally) stable in general. The proofs

are tricky because the behavior of the system is switched many times when the equality holds.

Proof. The P2P-SFM is a set of K pairs of independent ordinary differential equations in the
(x, y) plane. In the product topology of finite sets, point-wise convergence is equivalent to
convergence coordinate-wise. Therefore, the P2P-SFM is locally (globally) stable if and only
if each block is locally (globally) stable. Without loss of generality, we will study the following
linear switched system:











dx

dt
= λ− θx(t)−min{cx(t), ηµx(t) + µy(t) + ρz} (4.14a)

dy

dt
= min{cx(t), ηµx(t) + µy(t) + ρz} − γy(t), (4.14b)

where x and y are respectively:















x = max

{

λ

θ + c
,
(γ − µ)λ− γρz

(γ − µ)θ + ηµγ

}

(4.15a)

y =
λ− θx

γ
(4.15b)

The system switches between two linear systems. If c−ηµ
µ x(t) ≤ y(t)+ ρz

µ the dynamic system
is governed by System I:

I











dx(t)

dt
= λ− (θ + c)x(t) (4.16a)

dy(t)

dt
= cx(t)− γy(t). (4.16b)

Otherwise, the dynamic system is governed by System II:

II











dx

dt
= λ− (θ + ηµ)x(t)− µy(t)− ρz (4.17a)

dy

dt
= ηµx(t) + (µ− γ)y(t) + ρz. (4.17b)



90 Chapter 4. Stability and Capacity of Peer-Assisted Video-On-Demand Networks

First, we will study the stability of both linear systems separately. The solution of System I can
be immediately obtained for an arbitrary starting point (x(0), y(0)):

x(t) = k0e
−(θ+c)t + k1;

y(t) = k2e
−γt + k3e

−(θ+c)t + k4, if γ 6= θ + c

y(t) = k5e
−γt + k6te

−γt + k7, if γ = θ + c,

for certain real numbers ki. The eigenvalues are−γ < 0 and−(θ+ c) < 0. Hence, System I is
always globally stable. Moreover, if c < µη then cx(t) < ηµx(t)+µy(t) for all t ≥ 0 because
y(t) ≥ 0, and the P2P-SFM is governed by System I hence globally stable in this case.
Recall that a linear system is locally (or globally) stable if and only if the real part of all its
eigenvalues are negative. By direct calculations the characteristic polynomial of System II is:

p(λ) = λ2 + (θ + γ + (1− η)µ)λ+ µηγ + (γ − µ)θ

The stability of System II must be discussed regarding the network parameters. Note in partic-
ular that if γ ≥ µ, the quadratic polynomial p(λ) has all real positive coefficients, and conse-
quently both eigenvalues are negative. Therefore, System II is globally stable when γ ≥ µ.
Now we return to the P2P-SFM. Let us call m = c−ηµ

µ and y0 =
ρz
µ .

On one hand, if the rest point (x, y) is in Area I: mx < y+y0 and we choose (x(0), y(0)) near
the rest point, then the P2P-SFM is governed by System I, which is globally (hence locally)
stable. In this case, the P2P-SFM is locally stable.
On the other hand, if the rest point is in Area II: mx > y + y0, and we choose a starting
condition near the rest point, the P2P-SFM is governed by System II, which is globally stable
whenever γ ≥ µ. Suppose for a moment that γ < µ. Without loss of generality we assume
c > µη (otherwise we will have that the P2P-SFM is globally stable). By Equation (4.15b),
γy = λ−θx, so the condition of Area II is equivalent to (mγ+θ)x < λ+γy0, or equivalently:

0 < x =
(γ − µ)λ− γρz

(γ − µ)θ + ηµγ
<

µλ+ γρz

µθ + γ(c− µη)
.

Given that we assumed γ < µ, the numerator of x is negative. Therefore, by positivity its
denominator must be also negative. The following equivalent inequalities can be obtained
canceling several common terms. All of them state that the rest point (x, y) is in Area II:

[(γ − µ)λ− γρz][µθ + γ(c− µη)] > [µλ+ γρz][(γ − µ)θ + ηµγ],

µθ(λ− ρz) + (c− µη)(λγ − µλ− γρz) > µλθ + µ2ηλ+ ρz(γ − µ)θ + ρzηµγ,

γλ(c− ηµ) > µλc+ γρz(c+ θ),

λc(γ − µ) > γλµη + γρz(c+ θ),

where the second inequality of the chain is obtained canceling first the common term −µ2λθ
and then the common factor γ > 0. But the latter inequality is impossible, since γ < µ and its
right hand is positive. Then necessarily γ ≥ µ whenever the rest point is in Area II, in which
case System II is stable and hence, the P2P-SFM is again locally stable in this case.

Q.E.D.
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The analysis of the special case mx = y + y0 is not straightforward, and is tied to global
stability. However, a more general result is true (recall that we only require γ > 0; otherwise,
the P2P-SFM is trivially unstable, because the number of seeders will increase indefinitely).

Theorem 4.5.5 The P2P-SFM is globally stable.

Proof. The main idea is to prove that the evolution (x(t), y(t)) (for each block of the P2P-SFM)
rests indefinitely after a certain t0 either in Area I or Area II, and finally use Lemma 4.5.3 to
conclude. The reader can find the complete proof in the Appendix. The proof is close to that of
Dongyu Qiu and Wei Qian Sang [167], where the authors study a very similar system, but with
a single file and no super-peer assistance (i.e. without the constant term ρz in the minimum
argument).

Q.E.D.

The prove can be reproduced from [167], and is included in the Appendix for completeness
and self-contained reasons. Lemma 4.5.3 can also be obtained from that previous work, but the
most difficult case (local stability in Area II) has its own difficulties as could be appreciated in
the end of its proof. The curious reader can find a careful analysis of Linear Switched Systems
and a vast number of references in [115].

We briefly review the traditional CDN for this important single-class system (CDN Se-
quential Fluid Model, or CDN-SFM):

dxj(t)

dt
= λj − θxj(t)−min

{

c

sj
xj(t),

ρ

sj
zj

}

As a corollary of Theorem 4.5.5, the CDN-SFM is globally stable. The user population con-
verges to the rest point xj :

xj
CDN
SFM = max

{

λjsj
θsj + c

,
λjsj − ρzj

θsj

}

4.5.3 Expected Waiting Times

The performance of the Peer-to-Peer Video on-demand sequential system is never worse than
its equivalent CDN version:

Proposition 4.5.6 TP2P
SFM ≤ TCDN

SFM .

Proof. By Theorem 4.5.5 the system converges to the rest point. Again, the equality
holds when the download is the system’s bottleneck. Otherwise, it is enough to show that
xj

P2P
SFM < xj

CDN
SFM , and the result follows from Little’s law.

We will construct an auxiliary inequality to conclude linearly the proof.
Observe that ηµλj > 0 > −ρjzjθ. Adding the term θsjλj we have:

(θsj + ηµ)λj > (λjsj − ρjzj)θ.
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Multiplying by the negative factor−γµ on both sides: −γ(θsj+ηµ)λjµ < −γ(λjsj−ρzj)µθ.
Now, we add the term (γθsj + ηµγ)(γλjsj − γρzj) on both sides, to get:

(γλjsj − γρzj)(γθsj + ηµγ − µθ) >

(γθsj + ηµγ)(γλjsj − γρzj − λjµ)

We can rewrite the last inequality as follows:

γλjsj − γρzj
γθsj + ηµγ

>
λj(γsj − µ)− γρzj
γθsj − µθ + ηµγ

and the proof follows linearly:

xj
P2P
SFM =

λj(γsj − µ)− γjρjzj
θγsj − µθ + ηµγ

<
γλjsj − γρzj
γθsj + ηµγ

=
λjsj − ρzj
θsj + ηµ

<
λjsj − ρzj

θsj
= xj

CDN
SFM .

Q.E.D.

In order to understand the consistency of the obtained results we will analyze the sensi-
bility of the expected time TjSFM for video j, with respect to the network parameters: entry
rates, abortion rates, file sharing efficiency, sizes of the different video items and super-peers
capacities. We would like to firstly remark that the number of peers under the rest point does
not depend on the seeders aborting rate if it is large enough. In fact, when γsj >> µ we have
that

xjSFM ≈
γ(λjsj − ρzj)

γ(θsj + ηµ)
=
λjsj − ρzj
θsj + ηµ

. (4.18)

In real-life networks, the seeders usually abort after complete downloading, and Expres-
sion (4.18) is indeed a good approximation. Additionally, the upload is the system’s bottleneck,
and γsj >> µ is a reasonable assumption. On the lights of Theorem 4.5.5 we conclude that
sequential video on-demand networks are globally stable. Via Little’s law we can find a rough
approximation for the expected download times for video j ∈ [K] in the SFM:

TjSFM =
xj

P2P
SFM

λj
=

1

λj

λjsj − ρzj
θsj + ηµ

(4.19)

By direct derivation of Expression (4.19) with respect to the network parameters, it can be
observed that:

1. The waiting times are monotonically increasing with respect to the videos sizes. This is
consistent with our intuitive idea that bigger files will take more time.
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2. If the entry rates increase, peers will wait more. This is a common element of waiting
systems with limited resources.

3. When the abortion rates of peers θ is increased, the expected waiting times are conse-
quently reduced. It is evident that peers that depart before downloading will experience
lower time excursions, whereas the number of peers under steady state is hence reduced.
The departure rates play the role of a decay in the entry rate.

4. Naturally, when the sharing efficiency η is increased, the throughput of the system is
increased as well, and the mean waiting times are consequently reduced.

5. Finally, the throughput of the system increases with the super-peers capacity ρ, and the
number of replicas for video j in the network, zj .

4.6 Combinatorial Optimization Problem

4.6.1 Description

The main goal of this work is to minimize the mean waiting times in a progressive video on-
demand system, assisted by super-peers managed by the operator. For the sake of simplicity
and efficiency, we will focus on the P2P sequential fluid model (P2P-SFM), in which closed
forms can be obtained for the mean waiting times.

Let us denote X to the random variable that represents the class of an entry peer in the
SFM. The poissonian process with intensity rates λi imply that P (X = i) = λi

λ , being λ the
sum rate. The mean waiting time of a user in the P2P-SFM can be found analogously to the
GFM (by using Little’s law and conditional expectation):

E(T ) =
1

λ

K
∑

j=1

xj
P2P
SFM

Accordingly, the mean waiting time is proportional to the whole population size, so we will
minimize the latter. We must decide the number of video replicas among P super-peers. The
decision variable is a binary matrix E of size P ×K, whose entries are E(p, j) = 1 if and only
if we store video item j ∈ [K] in super-peer p ∈ [P ]. We also impose that every video item
must be duplicated, for availability and redundancy reasons. Let un be the unit column vector
of n elements (all its entries are 1), s = (s1, . . . , sK)t the video sizes and S = (S1, . . . , SP )

t

the super-peers’ storage capacity.
We define the Caching Problem in matrix form as follows:

min
E

K
∑

j=1

max

{

λjsj
θsj + c

,
λjsj − ρzj
θsj + ηµ

}

s.t.
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E × s ≤ S (4.20a)

Et × uP = z (4.20b)

z ≥ 2uK (4.20c)

E(p, j) ∈ {0, 1}, ∀p ∈ [P ], j ∈ [K]. (4.20d)

The objective is to minimize the mean waiting times. Constraint (4.20a) states that super-
peer’s storage capacity cannot be exceeded. Constraint (4.20b) relates the number of replicas
for video item j, named zj , with the matrix E (summing its columns). Constraint (4.20c)
imposes that each video item must be available in the network at least twice, whereas Con-
straint (4.20d) just states E is a binary matrix. We will prove that the feasibility problem is
NP-Complete. As a corollary, we will have that the decision problem whether exists or not a
solution that achieves a lower bound is also NP-Complete. The following decision problems
will be useful.

Definition 4.6.1 PARTITION : Given a set of positive integers A = {a1, . . . , an}. Is there

a subset B ⊂ A such that
∑

B ai =
∑

BC ai?

PARTITION is an NP-Complete decision problem [79].

Definition 4.6.2 CACHING−FEASIBILITY : Given an arbitrary instance of the Caching

Problem. Does it accept a feasible solution?

Definition 4.6.3 CACHING − QUALITY : Given an arbitrary instance of the Caching

Problem and a positive real c. Does it accept a feasible solution whose score is at least c?

Theorem 4.6.4 CACHING− FEASIBILITY is NP-Complete.

Proof. We will prove both thatCACHING−FEASIBILITY is in NP and find a reduction
from PARTITION , hence proving its hardness. Given an arbitrary instance of the Caching
Problem and a binary matrix E, we can determine in polynomial time by a non-deterministic
Turing Machine whether the solution is feasible or not. In fact, we find E × s in O

(

K2
)

operations, so Constraint (4.20a) can be checked in polytime with the input K. The vector z
can also be computed by a matrix times a vector, in O

(

K2
)

sums, and compared with 2uK in
O(K) operations. Therefore, CACHING− FEASIBILITY is in NP.
We will find a reduction from PARTITION now. To close the proof, we will show that if
we can determine feasibility of an arbitrary instance of the Caching Problem in polynomial
time, then we would solve PARTITION in polynomial time as well. Consider an arbitrary
set of positive integers A = {a1, . . . , an} and let us call asum =

∑n
i=1 ai. We construct the

following Caching Problem instance, with P = 3, S1 = S, S2 = S3 = asum/2 and sj = aj
for all j ∈ [n]. It is clear that this transformation is polynomial. Given that S1 + S2 + S3 =
2
∑n

i=1 si, Constraint (4.20c) forces the three super-peers to store video items at their full
capacity. Therefore, a feasible solution complies that S2 =

∑

B ai =
∑

BC ai = S3 =
asum/2, for a certain B ⊂ A. As a consequence, if CACHING − FEASIBILITY can
be solved for every instance in polynomial time, then every instance of PARTITION can be
solved in polynomial time as well. This concludes that the decision problem CACHING −
FEASIBILITY is NP-Complete.
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Q.E.D.

Corollary 4.6.5 CACHING−QUALITY is NP-Complete.

Observe that the objective function depends on the variable zj =
∑

pE(p, j) if and only if the
objective function of the Caching Problem is dominated by its second argument. This is true if
and only if:

λjsj − ρzj
θsj + ηµ

>
λjsj
θsj + c

. (4.21)

Inequality (4.21) can be re-written to obtain:

2 ≤ zj <
λj
ρ

c− ηµ

c+ θsj
, (4.22)

where we added the constraint zj ≥ 2.
The following remarks are corollary of Expression (4.22), and help to understand the limits

in the design of a P2P Video-on Demand assisted service:

1. Unless c > ηµ, the peers contribution to the system can be neglected without sacrificing
performance. In practice the peers download capacity is always higher than its upload,
so the inequality holds.

2. If the super-peers’ capacity ρ (or server capacity in a CDN) is extremely high in relation
with the peers needs λj , the cooperation can be neglected again.

3. The decision variable zj is also upper-bounded. In fact, the streaming rate is divided in
the down-link once a new video item is included in the super-peers’ storage. Inequal-
ity (4.22) represents a threshold for zj .

We will solve the Caching Problem under different scenarios in order to show the strength
and limitations of a P2P Video-on-Demand assisted service.

4.6.2 Greedy Randomized Resolution

GRASP (Greedy Randomized Adaptive Search Procedure) is a well known metaheuristic,
which has been applied for solving many hard combinatorial optimization problems with high-
performance. A GRASP is an iterative process, in which each iteration consists of two phases:
construction and local search. The construction phase builds a feasible solution, whose neigh-
borhood is explored by local search. The best solution over all GRASP iterations is returned as
the result. Details of this metaheuristic can be seen in the Appendix.

We present a GRASP resolution for the Caching Problem. The metaheuristic can be stud-
ied in two stages. The first one constructs a seed of our GRASP-heuristic, and it is named
GreedySeed. The second stage is a classical local search improvement, named LocalSearch.

In GreedySeed every video is greedily stored in the two fattest super-peers (i.e. the ones
with the highest remaining storage capacity). Note that in this multi-knapsack flavored problem
the costs are the item’s sizes sj , whereas the profits are the reduction of the population xj .
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Then, we introduce the benefit-to-cost vector W = (w1, . . . , wK) such that

wj =
1

sjxjP2P
SFM

.

Note that an increment in the benefit-to-cost ratio represents cache or time savings. The pop-
ulation size xjP2P

SFM depends on the number of super-peers zj seeding video j, which a priori

is unknown. For that reason, we compute first an approximation W ′ = (w′
1, . . . , w

′
K) for the

vector W :

w′
j = wj |zj=0 = min

{

θsj + c

λjs2j
,
θsj + ηµ

λjs2j

}

(4.23)

In practice the peer’s upload capacity is always lower than its download, so ηµ < c, and:

w′
j =

θsj + ηµ

λjs2j
(4.24)

Without loss of generality, we will assume that w′
1 > w′

2 > . . . > w′
K (in other words,

videos are numbered in decreasing benefit-to-cost ratio when zj = 0).

GreedySeed is specified in Algorithm 1. The vector W ′ is computed in Line 1, using
Equation (4.24). The video items are sorted in decreasing cost-benefit ratio, in Line 2. In
the iterative block (Lines 3 to 8) each video item is assigned in turns to the two fattest super-
peers, named p1 and p2. Video item j is then stored in both super-peers: the decision variables
E(p1, j) and E(p2, j) are turned-on in Lines 5 and 6 respectively. Finally, the super-peer
resources {Si}i=1,...,P are updated in Line 7. Under optimistic scenarios (enough memory in
cache nodes), Algorithm GreedySeed returns a feasible solution, contained in the decision
matrix E.

Algorithm 1 E = GreedySeed(λ, θ, γ.η, s, S, µ, c, ρ)

1: W ′ ← FindW(λ, θ, γ.η, s, µ, c, ρ)
2: SortV ideos(W ′)
3: for j = 1 TO K do

4: (p1, p2)← TwoFattest(S1, . . . , SP )
5: E(p1, j)← 1
6: E(p2, j)← 1
7: Update(S1, . . . , SP )
8: end for

9: return E

In order to improve the solution E returned by GreedySeed, a local search improvement
is introduced in a second stage. The idea is very simple: in each step we first try to add, delete
or swap video-items in super-peers. The pseudo-code for this local search stage is shown in
Algorithm 2.
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Algorithm 2 E∗ = LocalSearch(E)

1: (E, improve)← Add(Rand(SP, V ideo))
2: IF improve GO TO Line 1
3: (E, improve)← Delete(Rand(SP, V ideo))
4: IF improve GO TO Line 1
5: (E, improve)← Swap(Rand(SP1, V 1), Rand(SP2, V 2))
6: IF improve GO TO Line 1
7: E∗ ← E
8: return E∗

Remark 4.6.6

1. Functions Add, Delete and Swap work only if the new solution is feasible and better.

2. The effects of Functions Add and Delete never cancel-out.

4.7 Results in a Real-Life Scenario

Currently, GoalBit supports high-quality Live and on-Demand video streaming to end users.
We wish to improve the performance of the VoD distribution by adding or removing video
replicas in the system. In order to predict the behavior of our new storage-scheduling technique,
we picked up real-life traces taken from YouTube. A crawler script was designed to collect
some useful information as follows:

(1) We take a video URL to start.

(2) From this URL we get useful video data (size, time online, number of views, and others).

(3) We save this data in a database.

(4) We collect all the related videos URLs, and go back to Step (1) with a new video URL.

This process was executed during 3 days, allowing us to have useful information of more than
59.000 YouTube videos. With this information we estimated videos’ popularities λj based on
the number of views and on-line time. We stress the system introducing a popularity factor β
to the vector (λ1, . . . , λK). In this way, we can contrast the performance of a CDN vs P2P
deployment in flash-crowded, low-populated and intermediate scenarios. We use an abortion
rate of θ = 0, 1 peer per second, file sharing efficiency of η = 0, 5, download rate of c = 1
Megabytes per second, d = c/4, and a system with P = 4 super-peers (or servers) with
a capacity of ρ = 10 Megabytes per second, storing K = 59000 video items. Figure 4.2
shows the estimated download time for the P2P and CDN models (with solid and dashed lines
respectively) versus i, where the stress factor β takes values 10i, i = 1, . . . , 15. Figure 4.2
underlines two essential features. First, the expected time for a P2P sequential system is never
worse than the one of a traditional CDN system, as can be predicted by Proposition 4.5.6.
Second, the performance of both systems is quite similar for low-populated scenarios, whereas
the time savings for peers are remarkable in high-populated scenarios.
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Figure 4.2: Download time for CDN and P2P when increasing popularity
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A second experiment was conducted to figure-out how the system’s performance can be
affected in terms of scalability. For a fixed popularity factor we want to find the mean waiting
time for different number of super-peers (servers). Figure 4.3 illustrates the average waiting
time for both P2P and CDN systems (with solid and dashed lines respectively) versus P , where
P is the number of super-peers (servers) in the system. We fixed the popularity factor β = 103,
but a similar behavior can be appreciated for other popularities. From this experiment, we
can conclude that P2P system can work similarly with less resources, while CDN has a very
important variability in its performance when increasing the number of servers. The results
suggest that peers can download the desired video item nearly ten times faster than users in a
traditional CDN, in massive scenarios. This suggests that the average waiting time in the P2P
system is consistently low, whereas the CDN performance is effectively improved distributing
the load to more servers. All tests where executed in a home-PC (Intel Core i7, 8 GB RAM),
getting more than 300.000 modifications during the LocalSearch phase, with a running-time
of 14 hours for each experiment.

Figure 4.3: Download time for CDN and P2P versus the number of cache-servers
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4.8 Conclusions and Future Work

In this chapter a general framework for the analysis and design of concurrent and sequential
video on-demand assisted services is provided. Under this framework of expected evolution,
the sequential system is always globally stable, converging to a known rest point. We found
closed expressions for the expected waiting times in both CDN and P2P approaches, and theo-
retically confirmed the peer-to-peer philosophy always outperforms traditional CDNs, showing
the first hint of effectiveness in the assisted cooperative network.

An experimental validation of the P2P and CDN systems and their performance is presented
regarding real-traces passively taken from a YouTube Crawler. The results are encouraging,
showing that a P2P assisted platform preserves its resilience against adverse environments like
flash crowds. However, an end-user is predicted to wait even five times longer in a pure CDN
when a flash crowd is encountered.

There are several aspects and open problems that deserve further research. We are inter-
ested in the peer-assisted performance in concurrent scenarios, when users enjoy (or better
progressively download) more than one video content simultaneously. The multiple-video ap-
plication could be useful for the monitoring of security systems, or to better exploit peer re-
sources, while they play one movie and completely download other video items. We proved
the cooperative philosophy outperforms the traditional client-server architecture, but we could
not determine the conditions to state global stability for the concurrent fluid model. Addition-
ally, we address a static Multiple Caching Problem, where video items are stored before-hand.
However, a challenging design would dynamically adapt the cache contents by monitoring or
predicting changes in a controlled system, regarding the video popularity and transient number
of peers. Our trends for future work include stability and capacity analysis in concurrent video
on-demand assisted scenarios, and the implementation of concurrent services in the GoalBit
platform.
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Chapter 5

A Pull-Mesh Model for Live Streaming

P2P Networks

5.1 Introduction

In Chapter 3 we have discussed the main challenges in the design of both effective and efficient
peer-to-peer networks to offer live video streaming. Mesh-based overlays show to provide
flexibility enough to address a tree delivery in a dynamic way, hence better exploiting the
bandwidth capabilities of the overall network [122, 131]. Peers in the system can either com-
municate in a one-sided way with reduced overheads, or two-sided way, trading overhead for
information availability and better opportunities in the design of scheduling protocols. Push
systems are suitable for one-sided communication, in which the sender chooses both the the
chunks to send and target peer. However, there are rigorous works suggesting that one-sided
push protocols suffer in live streaming a problem similar to starvation in file sharing (the last
chunks are hard to be found), whereas one-sided pull protocols are slow at the beginning of
the dissemination process [189]. Additionally, in the real-world there are already successful
commercial platforms such as PPLive [162], PPStream [163], SopCast [199], TVAnts [208]
and TVUNetworks [209], offering live video streaming to hundreds of thousands of concur-
rent users. Unfortunately, all of them have proprietary protocols not available for academia.
Nevertheless, by reversal engineering there are strong evidences to support that all of them use
a gossip-style two-sided communication protocol, in a mesh-based fashion. They are all con-
sidered BitTorrent-based networks, as a reference to the many similarities they share with the
BitTorrent’s philosophy [44].

However, there is a common agreement in the scientific community that BitTorrent is near-
optimal for file-sharing, but does not comply real-time requirements for live-streaming ser-
vices. Several works confirm its main drawback for live streaming is its chunk scheduling
policy: Rarest First [34, 57, 213, 229, 233]. As a consequence, a great research effort has been
focused on the best design of chunk scheduling policies, given a certain peer selection policy
(usually, approaching a random overlay). The first tractable chunk scheduling model for live
streaming is presented by Yipeng Zhou, Dah Ming Chiu and J.C.S. Lui [233]. The system there

101
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proposed takes into account foundational characteristics of live streaming, such as cooperation,
synchronism, real time constraints, playback continuity and chunk scheduling policy. Specif-
ically, it is a two-sided pull based cooperative process where peers have scarce resources, and
the metrology includes the two most important video factors, namely start-up latency and play-
back continuity [181]. Different chunk scheduling policies determine different network states
under regime, hence the model can discriminate and contrast the performance of different poli-
cies. Other models similar in spirit are [26, 34, 136, 189, 213]. Bonald, Massoulié, Mathieu,
Perino and Twigg study the performance of peer selection and chunk scheduling policies in
an epidemic-style [26]. They measure the playback continuity counting chunk losses, but the
delay is measured from source to end-user, not capturing the needed time for a peer to reach the
state of others when joining the system. Massoulié and Vojnović study the stability of flat and
layered systems (i.e. in which the interaction takes effect between peers with the same number
of coupons). They provide valuable theoretical results, with focus on file-sharing rather than
live services. Furthermore, peers are welcome with one coupon from the server, which turns
the system non-scalable [136]. Sanghavi, Hajek and Massoulié study a gossip-based peer com-
munication [189]. They show pros and cons of push and pull-based schemes for mesh overlays
and one or two-sided protocols, but the chunk policies are not structural but stochastic or de-
scriptive (random useful, blind chunk, most deprived peer, etc.). Their work is complementary
to the original from [233]. BitOS is a BitTorrent-based system were new chunk policies are
provided, that outperform Rarest First only via simulations, but without introducing a math-
ematical model [213]. The most similar approach is given by Chatzidrossos, Dan and Fodor,
with a slight more complex system [33, 34]. They also introduce node churn and study chunk
policies in a buffer-level. However, only 4 policies are there designed and compared, and the
model does not seem flexible enough to measure the performance of a wide variety of chunk
policies.

In this chapter an in-depth analysis of the cooperative model from [233] is performed.
Sections 5.2 and 5.3 are essentially adapted from [233], introducing respectively model de-
scription and classical scheduling policies. Section 5.4 summarizes a robustness analysis of
the model, detailed in Zhou Yipeng’s thesis [225]. The main novelties of this chapter are pre-
sented in Sections 5.5 to 5.9, and were disseminated in proceedings [16, 17, 185, 186] and
journals [183, 184].

Specifically, Section 5.5 contains a preliminary analysis of the simple model. Bounds
in the playback continuity and start-up latency are there provided. An Ideal policy is intro-
duced, and provides a universal bound for playback continuity not achievable by any feasible
policy. A stochastic policy is introduced for didactic reasons, where peers can skip useful
chunks trying to maximize information availability. We mathematically show its performance
is poor, and give an insight that a forced pull is mandatory once a useful chunk is found. As
a consequence, a deterministic family of Permutation-based policies is our universe to search
for high-performing policies, which contains previous classical policies (named Rarest First,
Greedy and a Mixture). A Follower System is introduced, trying to reflect the performance
achieved by desired buffer states under regime (the buffer states statistically determines the
performance of the system). This first preliminary approach works as a dirty mirror. However,
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via experimental setups the results outstand a special subfamily of policies, called the Subfam-
ily ofW -shaped policies, which has polynomial cardinality. Section 5.6 presents a feasible and
more sophisticated approach to address the playback-buffering trade-off. First, a single-score
is defined for chunk scheduling policies which captures this trade-off, in an intrinsic-system
way, counting the number of steps during a peer request. A combinatorial optimization prob-
lem is then proposed, which is suitably translated into an Asymmetric Traveling Salesman
Problem (ATSP). The latter problem is finally solved heuristically, following an Ant Colony
Optimization-inspired approach. This resolution returns chunk scheduling policies with better
performance than classical ones, both in a theoretical and empirical way. Indeed, the metrics
from the model confirm this theoretical breakthrough, and the new policy is introduced in a real
live streaming platform called GoalBit in Section 5.7. The cooperative model in its purest form
has identical nodes. Section 5.8 extends the model, giving basic insights of heterogeneity and
hints to deal with free riders. The Extended Model outstands the importance of full knowledge,
showing that the system is scalable even under presence of free-riders, whenever servers can
recognize (and punish) them. The results highlight trade-offs between contribution awareness
and overhead (in order to monitor peers resources and level of altruism). The section con-
cludes with simulations regarding networks in which normal peers interact with double-peers
(who doubles the resources of the formers). Finally, Section 5.9 contains concluding remarks.

5.2 Model Description

Consider a closed system with a single source-node (the server), and a fully-connected mesh
with M > 1 identical peers, with buffer capacity N . All peers are connected to the server,
and wish to display the same live video channel. The server iteratively organizes the unlimited
video channel in chunks of equal size, and picks a peer uniformly at random to push the current
chunk. The time is slotted, and it is assumed the server periodically disseminates one video
chunk in playback order, and the period (i.e. one time slot) lasts exactly one chunk consumption
in the media player. At the end of a time slot, all chunks are shifted up one step closer to the
deadline, and the last chunk being played is removed from the buffer. All media players are
assumed to be synchronized with time. The user will experience a video-cut whenever the
chunk at position N is missing, hence skipped by the media player. Figure 5.1 illustrates the
buffer structure. Note that if the chunks are numbered 1, 2, . . . and the time slot is t ≥ N − 1,
then the chunk being played has number t−N + 1.

Figure 5.1: Buffer structure for each peer. Buffer-cell 1 has the newest video chunk of the system,
whereas buffer-cell N contains the chunk currently being played on the screen.
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The buffer state can be represented by a binary word of N bits, where the symbol 1 means
that the corresponding buffer-cell is filled with a chunk, whereas the symbol 0 means an empty
buffer-cell. For example, the bitmap 00101 means that the buffer size is N = 5, the local peer
is currently playing a correct video chunk, will certainly watch another correct video chunk
two time slots later but will have a video cut in the next time slot, unless it requests in this
time slot from another peer. Naturally, all peers possibly have different buffer states, but if
the cooperation is symmetric, the states will be statistically similar. Peers want to fill buffer
cell N as many times as possible, in order to have a continuous playback with no cuts. The
following definitions provide means to measure the overall network performance, under regime
and symmetric peer conditions.

Definition 5.2.1 Let us denote with pi the occupancy probability of buffer-cell i ∈ [N ] =
{1, . . . , N}, where the buffer set is denoted by [N ] for short. The vector p = (p1, p2, . . . , pN )
will be called bitmap probability, or just bitmap when there is no danger of confusion.

Definition 5.2.2 The playback continuity or playback-delivery ratio is measured by c = pN ,

and represents the ratio between chunks correctly played and chunks delivered by the server,

when the number of chunks tends to infinity.

Suppose for a moment that peers do not cooperate. This is the case of a server with scarce
resources, which can feed at most one peer. It is clear that under this scenario, each buffer cell
will be filled one time slot out of M , and pi = 1

M for all i ∈ [N ] and all peers. In particu-
lar, the playback continuity will be pN = 1

M . Therefore, the performance of the client-server
architecture is miserable with scarce upload resources, and peers will eventually experience
several video cuts. Therefore, peers are forced to cooperate in order to enjoy the video stream
reasonably. In this model peers cooperate following a pull-based scheme, basically, pressed by
requests. At the beginning of each time slot, all peers choose a peer uniformly at random to
request for chunks. Peers can either finish the time slot with no additional chunk (a failed slot)
or with one chunk (a successful slot). A request works as follows. Suppose peer A picked a
random partner, which we call B, to pull one chunk. Following a specified chunk scheduling
policy, peerA can check en empty buffer-cell, and ask peerB whether it has the corresponding
chunk or not (recall peers are synchronized with time). If peer B does not own that chunk, A
can try other buffer position, and the process is repeated. If peer A is lucky, it will download
one chunk from B in that time slot. On the contrary, if A could not find a chunk after an ex-
haustive revision of the buffer, that time slot was not useful for him (peer A cannot connect to
other peer different from B in the same time slot).

Assume all peers follow the same chunk scheduling policy, and the system reaches a regime
with bitmap p. If an exogenous peer C joins the network, we would like to know how many
time slots will be necessary for that peer to reach the same bitmap. The key observation here
is that peers within the network have an expected number of L =

∑N
i=1 pi chunks in the whole

buffer, and C will have all successful slots at the beginning. A rough approximation is to
consider that C will in fact have L successful time slots.

Definition 5.2.3 The latency or buffering time, is the expected time for an exogenous peer to

reach the bitmap of the system under regime, and will be measured by L =
∑N

i=1 pi
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Now we will measure the playback continuity and latency for any given chunk scheduling
policy. Under a cooperative regime, peers can get chunk at position pi+1 either by promotion
with time (i.e the buffer cell at position i was already filled in the previous time slot) or pulling
that chunk in the previous slot, with probability qi:

pi+1 = pi + qi, ∀i ∈ [N − 1]. (5.1)

We need to find an explicit expression for the cooperative terms qi. Consider the following
events:

• WANT (A, i): peer A has no chunk at buffer-cell i.

• HAV E(B, i): peer B owns the chunk at buffer-cell i.

• SELECT (A,B, i): peer A pulls chunk at buffer-cell i from B.

We shall use the first capital letters for short. Therefore, peer A pulls chunk i exactly when the
three simultaneous conditions are met, i.e. qi = P (W (A, i) ∩H(B, i) ∩ S(A,B, i)), or using
conditional events:

qi = P (W (A, i))P (H(B, i)/W (A, i))P (S(A,B, i)/(W (A, i) ∩H(B, i))). (5.2)

Clearly, under regime and fair network conditions we have P (W (A, i)) = 1 − pi for all
peers, and with high number of peers it is reasonable to consider that P (H(B, i)/W (A, i)) =
P (H(B, i)) = pi. We will further assume that the chunks are independently distributed in the
network, so: P (S(A,B, i)/(W (A, i) ∩H(B, i))) = P (S(A,B, i)).
Equation (5.2) can be re-written:

qi = (1− pi)pisi, ∀i ∈ [N − 1]. (5.3)

Replacing Equation (5.3) in (5.1), we get a recursive formula for the bitmap:
{

p1 = 1
M

pi+1 = pi + (1− pi)pisi, ∀i ∈ [N − 1]
(5.4)

Definition 5.2.4 Given a chunk scheduling policy, the strategic sequence si represents the

probability to select chunk at buffer-cell i.

The recursive bitmap formula (5.4) will be used several times in this chapter. We encourage
the reader to keep in mind the following interpretation for it: buffer-cell at position i + 1 can
be filled either by promotion with time (with probability pi) or pulling from one peer (with
probability qi). The latter event occurs exactly when the local peer does not own buffer-cell i
(event with probability 1− pi), the requested peer does (event with probability pi) and there is
not better chunk to be downloaded (event with probability si).
Given a scheduling policy, we will have a different strategic sequence si. The aim of this
chapter is to find chunk policies which achieve high playback continuity pN and at the same
time low buffering times, given by L =

∑N
i=1 pi. The reader might feel the model has an

excessive number of assumptions. However, Section 5.4 shows the robustness of the model.
First, we will get some familiarity with the model presenting classical policies and finding
explicit expressions for the strategic sequence si in each case.
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5.3 Classical Policies and a Mixture

This section presents two classical scheduling policies, named Rarest First and Greedy, and a
mixture of them (named simply Mixture). Rarest First enjoys a prestigious place nowadays,
being highly deployed in currently file-sharing systems like BitTorrent [44]. In the Rarest First
policy, all peers try to pull the rarest chunk among the neighboring peers, in this case, the rarest
chunks in the global network (the network is fully connected). Given that the cooperative term
qi is a probability, the bitmap increments when we get closer to the playback deadline. More
specifically, pi+1 ≥ pi for all i ∈ [N − 1]. Therefore, a peer following the Rarest First policy
tries to pull first chunk at buffer-cell i = 1. If it fails, the next rarest chunk is i = 2, and so on,
until getting a chunk or loosing the time slot. The strategic sequence for Rarest First is then:

si = (1−
1

M
)

i−1
∏

j=1

[1− (1− pj)pj ], ∀i ∈ [N − 1]. (5.5)

Observe that a success occurs at position j only if the local peer does not own that chunk and
the requesting peer does, with probability (1−pj)pj . Expression (5.5) has a clear interpretation.
In order to reach the buffer-cell i during a request, the local peer should not be chosen by the
server (event with probability 1− 1/M ) and a fail must occur in all previous buffer-cells. It is
subtle but important to notice that a peer cannot download more than one chunk during a slot,
hence a request is not suitable for the peer chosen by the server.
An alternative selfish-nature policy is the Greedy notion for this problem. As soon as we know
we want to minimize losses, a greedy solution would always ask the nearest-to-deadline chunk
first. In this case, Greedy is the opposite policy to Rarest First, and the request starts at the
closest-to-deadline position i = N − 1 (buffer-cell N is actually being played and cannot be
requested, cause it will not be useful in the next time slot). The strategic sequence for Greedy
is:

si = (1−
1

M
)

N−1
∏

j=i+1

[1− (1− pj)pj ], ∀i ∈ [N − 1]. (5.6)

The interpretation is analogous to that of Rarest First. Figure 5.3 shows a structural buffer
representation of both classical strategies.

Figure 5.2: Request order following classical policies. Greedy requests the nearest-to-deadline first
(buffer-cell N − 1), whereas Rarest First applies an opposite rule (starting from position 1).

Expressions (5.5) and (5.6) can be substantially simplified:
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Proposition 5.3.1 For Rarest First we have that:

si = 1− pi, ∀i ∈ [N − 1]. (5.7)

Proof. By induction over the finite set [N − 1]. The product from Expression (5.5) has no
factors hence equals 1 when i = 1. Therefore s1 = 1 − 1

M = 1 − p1, and the base step
holds. If we assume the result holds for some positive integer h < N − 1, then using again
Expression (5.5) we get that:

sh+1 = sh[1− ph(1− ph)] = (1− ph)[1− ph(1− ph)]

= 1− [ph + ph(1− ph)
2] = 1− ph+1.

Q.E.D.

An analogous result holds for Greedy.

Proposition 5.3.2 In Greedy:

si = 1− (pN − pi+1)− p1, ∀i ∈ [N − 1]. (5.8)

Proof. By induction over the finite set [N − 1], starting in the base step i = N − 1 down-to
i = 1. By evaluation from Expression (5.6) we get that sN−1 = 1 − 1/M = 1 − p1, so the
base step holds. Assume that the result is correct for certain h such that 1 < h < N , i.e.
sh = 1− (pN − ph+1)− p1 Combining the general bitmap recursion (5.4) and (5.6):

sh−1 = sh[1− ph(1− ph)] = sh − ph(1− ph)sh

= (1− (pN − ph+1)− p1)− (ph+1 − ph) = 1− (pN − ph)− p1).

Q.E.D.

Alternative proofs for Propositions 5.3.1 and 5.3.2 can be found in [233]. It is well-known that
Greedy achieves low buffering times, but is not as scalable as Rarest First [216, 233]. Intu-
itively, Greedy pulls urgent chunks, conditioning the buffer fast, but rarest chunks are difficult
to get. On the other hand, Rarest First presents good playback at the cost of higher buffering
times, not suitable for live streaming purposes. A Mixture of both classical policies is fea-
sible, cutting the buffer into two parts, applying Rarest First in buffer cells [m] for a certain
m ∈ [N − 1], and finally applying Greedy in the buffer-set [N − 1] − [m]. This policy offers
a lower start-up latency than Rarest First, and simultaneously a good playback. It is suggested
to see [233] for more details of the three policies.

Figure 5.3 shows graphically the bitmap for both classical policies and the Mixture, with
common network values of M = 1000 peers with buffer capacities N = 40.

5.4 Model Robustness

At first, the model sounds extremely simplistic. In Yipeng Zhou’s thesis the robustness of this
model is thoroughly covered [225]. In this section, we will sketch the major concerns there
addressed, to better understand the strength of this simple cooperative model. Specifically, we
would like to answer the following questions:
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Figure 5.3: Bitmap for classical policies and Mixture, with M = 1000 peers and buffer size N = 40.

1) Does the system reach a stationary state?

2) The model assumes infinite upload bandwidth. Is it realistic?

3) Is synchronism the best option for peers?

4) Can we assume without loss of generality that all peers own an identical buffer?

5) Are the independence assumptions good enough?

6) Is the expression L =
∑N

i=1 pi a fair approximation for the start-up latency?

All the answers are affirmative, when the peer population M is big. For the first one, a great
deal of validations are provided, while the rigorous mathematical prove remains open.

For the second one, fix an arbitrary peer A in the network. A random peer selection pol-
icy implies the random variable XA counting the times A is selected to upload is binomially
distributed, specifically XA ∼ Bin(M − 1, 1

M−1). Hence, the expected number of peers pick-
ing peer A to upload is 1. At the same time, A could be picked more than three times with
a vanishing probability when M is large enough. Indeed, for M large enough the Poisson
approximation holds, and XA ≈ P (1) with P (XA ≤ 3) > 0, 98. This gives evidence that
the model works similarly in an upload-unconstrained version. Validations further strength this
probabilistic facts, regarding unit bandwidth peers and letting the system evolve. This property
is exploited in an extended version of this model in Section 5.8.

The third and fourth questions are deep, and related. A fair comparison between an hetero-
geneous buffer system and homogeneous equivalent one shows advances to the latter. Indeed,
when the swarm is synchronized, peers have no incentives to change their offsets (in this way,
keeping the greatest buffer overlap to cooperate) and therefore the synchronized cluster is a
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Nash Equilibrium (in fact, the only one), so the answer for the third question is affirmative. If
peers are synchronized in the playback and peers could choose to have different buffer sizes, it
is interesting to compare an heterogeneous buffer system with its corresponding homogeneous
average-buffer size. Assuming a rationale peer selection condition in the heterogeneous envi-
ronment (peers always send request to useful potential uploaders), the system is equivalent to
the homogeneous case (the recursive buffer-map holds again). However, there are disadvan-
tages when an heterogeneous buffer system is considered: the average playback continuity is
lower than its equivalent homogeneous system, at least, on the lights of the Rarest First policy.
The independence assumption and rough approximation for start-up latency are quite realistic
for large population sizes, as validations show.

In order not to extend the list, we just point-out that the connectivity of the system can be
relaxed, and simulations also show that over a lower-bound degree the bitmap gaps are negli-
gible. The model is not strongly affected under resourceless peers who cannot download the
streaming rate but a factor f ∈ (0, 1) of it.

The reader can find more precise statements to support the robustness of the model in
Yipeng’s thesis [225]. In Section 5.8 an extended model is introduced, providing some insights
of peer heterogeneity and free-riding effects.

5.5 Preliminary Approach

In this section an ideal search for high-performance policies is proposed. Two performance
endpoints are given in Subsections 5.5.1 and 5.5.2. The former an Ideal policy, whose play-
back continuity is not achievable and provides a universal bound. The latter a Weighted Greedy
policy which is theoretically proved to have poor playback continuity. In Subsection 5.5.3 the
performance of the Ideal policy is then compared with Rarest First, showing their playback
capabilities when the peer’s buffer size increases without bound. In the lights of the poor
performance of stochastic policies, a deterministic Family of permutation-based policies is de-
fined in Subsection 5.5.4. There, we show properties that evidence the richness of this family.
Relying on these properties, we provide a Follower System in Subsection 5.5.5, whose main
characteristic is trying to reflect the behavior of target bitmaps. We carried-out some tests to
measure the capacity of the Follower System to provide outstanding policies. We will conclude
the result is negative: the Follower System behaves like a dirty mirror. However, these tests
suggest the high performance of a special Subfamily of chunk policies, named W -shaped be-
cause of the request order which takes into account for closest to deadline chunks first (the /
part of theW ), then the least urgent chunks (the \ part of theW ) and finally a ∧-zig-zag started
in the middle of the buffer. For example, if N = 7 and the priority of request is given by the
order 651342, then I = 2 represents the / part (buffer positions 6 and 5) of the W -member,
J = 1 represents the \ part of the W -member and 342 is the ∧-zig-zag, picking the remaining
positions in the middle of the buffer.
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5.5.1 Universal Bound

Although the model does not permit to pull more than one chunk in one time slot, relaxing
this assumption we can find a universal bound for the playback continuity. As we will see, this
bound is below the unit, hence strengthening the idea that real systems cannot obtain perfect
continuity.

Definition 5.5.1 In the Ideal policy, whenever peer A contacts peer B, it pulls all possible

chunks at a go. Mathematically, the Ideal policy is defined by: si = 1, ∀i ∈ [N − 1].

The Ideal policy is not achievable by normal peers, who have unit download capacity. Never-
theless, a special system whose peers have N times the capacity of normal peers provides us a
mean to find universal bounds.

Definition 5.5.2 A super-peer is a peer that has both infinite download and upload bandwidth

capacities.

Super-peers are entities able to perform the Ideal policy. Replace the normal peers from the
cooperative model with super-peers, with unit strategic sequence. We have two useful results,
that together state a universal bound for the playback continuity.

Proposition 1 The Ideal policy outperforms all other scheduling policies.

Proof. Introduce only super-peers in the cooperative model, and let them apply the Ideal policy,
with si = 1. The bitmap recursion is then:

{

p∗1 =
1
M ,

p∗i+1 = p∗i + (1− p∗i )p
∗
i , ∀i ∈ [N − 1].

(5.9)

The performance of the normal network is governed by the bitmap recursion given in (5.4).
If peers do not follow the Ideal sequence, there exists some integer j ∈ [N − 1] such that
sj < 1. A direct induction then shows that pi < p∗i for all i > j.

Q.E.D.

Proposition (1) is not surprising: just confirms the Ideal policy is the best. In order to find
a universal bound for the playback continuity, we must solve the non-linear recursion (5.9)
explicitly for any given positive integers M > 1 and N , and then evaluate to get p∗N . Then by
Proposition 1 we are sure that no other policy would achieve that bound.
Non-linear recursions appear in several combinatorial problems and dynamic systems, and
finding explicit solutions is more an exception that a rule. In this opportunity we will include a
trick, which identifies the recursion with probabilities of constructed simple events.

Theorem 5.5.3 The universal bound for playback continuity is p∗N = 1− (1− 1
M )2

N
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Proof. We will solve explicitly the non-linear recursion (5.9), and then evaluate at i = N to
get the result. The main trick is to rewrite (5.9) in the following way:

{

p∗1 =
1
M ,

p∗i+1 = p∗i + p∗i − (p∗i )
2, ∀i ∈ [N − 1].

We can observe that p∗i+1 = P (A1 ∪ A2), being A1 and A2 independent events in a certain

probability space, both with probability p∗i . By induction, we have that p∗i = P (∪2i
j=1Aj),

being {Aj}1≤j≤2i a set of independent events with probabilities 1
M . The prove does not need

to construct such a probability space and events: this way leads to the desired sequence. By the
Inclusion-Exclusion principle we get that:

p∗i = P (∪2i

j=1Aj) =

2i
∑

j=1

P (Aj)−
∑

1≤j1<j2<2i

P (Aj1 ∩Aj2) + . . .+ (−1)2
i

P (∩2i

j=1Aj)

=

(

2i

1

)

p11 −

(

2i

2

)

p21 + . . .+ (−1)2
i

(

2i

2i

)

p2
i

1

= 1−
2i
∑

j=0

(

2i

j

)

(−1)2
i−jpj1 = 1− (1−

1

M
)2

i

.

Replacing i = N we get the result.

Q.E.D.

A trivial upper-bound for the start-up latency in normal peers is N , given that the latency
L =

∑N
i pi is a sum of N probabilities. However, the Ideal system with super-peers provides

a more rigid upper-bound:

Corollary 5.5.4 The universal bound for start-up latency is L = N −
∑N

i=1(1−
1
M )2

i

Proof. A direct induction shows that pi ≤ p∗i for any given feasible chunk policy and index
i ∈ [N ]. Summing all over i, we get the desired upper-bound.

Q.E.D.

Observe also that super-peers achieve the smallest buffering times as well, because a joining
super-peer reaches the state of another just in one time slot (pulling all their chunks).

5.5.2 An Ill-Designed Stochastic Policy

To illustrate the design complexity and gain intuition with the problem, let us study the perfor-
mance of a Weighted Greedy policy. With this stochastic weighted policy the peer looks for
nearest-to-deadline chunks first, but can skip sometimes one chunk even if it is useful, trying
to exploit both Greedy and Rarest First advantages. Consider a weight factor q : 0 < q < 1

and the discrete power-law probability mass r = (r1, . . . , rN−1), being ri = qi
∑N−1

j=1
qj

. The
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Weighted Greedy policy works as follows: peer A tries to pull chunk N − 1. If it is feasible,
it tosses a coin with probability of success rN−1. If it succeeded, the pull takes place and the
request finishes. Otherwise, the same process is applied, tossing a coin with probability success
rN−2, and so on. The strategic sequence for the Weighted Greedy is:

si = (1−
1

M
)ri

N−1
∏

j=i+1

[1− (1− pj)pjrj ], ∀i ∈ [N − 1] (5.10)

The reasoning of Expression (5.10) is analogous for the ones of the classical policies, where we
add the Bernoulli condition in each step during the request. The following proposition discards
all intention to use the Weighted Greedy policy for practical purposes.

Proposition 5.5.5 Weighted Greedy never achieves a playback continuity higher than 3/4.

Proof. By Expression (5.10) we have for all i < N−1 that si =
si+1

q [1−(1−pi+1)pi+1ri+1] <
si+1

q . A direct induction over the finite set [N − 2] shows that si <
sN−1

qN−i−1 , for all i < N − 1.

Observe that sN−1 = (1− 1
M )rN−1 < rN−1 =

qN−1

∑N−1

i=1
qi
< qN−2.

Therefore si < qi−1 for all i ∈ [N − 2]. Replacing in the recursive bitmap yields:

pi+1 − pi = (1− pi)pisi <
si
4
<

sN−1

4qN−i−1
, ∀i ∈ [N − 1].

We can then construct a summation to express the playback continuity:

pN = p1 +
N−1
∑

i=1

(pi+1 − pi) <
1

M
+

sN−1

4qN−1

N−1
∑

i=1

qi

<
1

2
+

1

4

rN−1

qN−1

N−1
∑

i=1

qi =
3

4
.

Q.E.D.

As a consequence, the playback-buffering trade-off cannot be attained with an elementary
stochastic sampling, like a Weighted Greedy. Observe that the final bound 3/4 is far from
rigid in massive networks (we used that M > 1 to find the first term of 1/2). The intuition
suggests to pull one chunk whenever it is feasible; otherwise there is a non-negligible proba-
bility to have a failed-slot. This is the main reason why we will restrict our search world to
deterministic policies.

5.5.3 Convergence to Perfect Playback

By technological reasons, it is natural to ask what happens in the case of unlimited storage,
when the buffer sizeN tends to infinity. Although we know real policies cannot achieve perfect
continuity, we have the optimistic result for Rarest First:
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Proposition 5.5.6 Following Rarest First, peers tend to have perfect continuity when the buffer

tends to infinity. Moreover, the convergence order is linear.

Proof. In Rarest First we know from Equation (5.7) that the bitmap complies:

pi+1 = pi + (1− pi)
2pi, ∀i ∈ [N ] (5.11)

The extended sequence p̂1 = 1
M and p̂i+1 = p̂i+(1− p̂i)

2p̂i to the natural domain is increasing
and bounded by 1, hence has a limit α. For any fixed buffer size N we define a sequence
extending the bitmap, such that pNi = pi for all i ≤ N but pNi = pN whenever i > N . All the
sequences {pN}N≥1 are increasing and bounded (each one by a different the universal bound).
The sequence p̂ is Cauchy. Therefore, by elementary topology the sequence of sequences
{pN}N≥1 inherits the Cauchy property in the uniform topology for the space sequences of
real numbers, and by completeness converges to the sequence p̂. Formally, the sequence of
continuities is captured by p̂. Taking limits on both sides from (5.11) yields α = α+(1−α)2α,
so either α = 0 or α = 1. But p̂ is increasing and p̂ > 0. As a consequence, α = 1. Finally,
the convergence order is linear, given that:

lim
n→∞

1− p̂n
1− p̂n−1

=

lim
n→∞

1− p̂n−1 − p̂n−1(1− p̂n−1)
2

1− p̂n−1
= 1.

Q.E.D.

The previous topological argument is a technical engine to define a notion of convergence
starting from finite sets [101]. We will omit this process and treat directly the sequence of
playback continuity, taking the limit with N , when necessary.

Theorem 5.5.7 Super-peers tend to have perfect continuity when the buffer tends to infinity.

Moreover, the convergence order is quadratic.

Proof. The first part is obvious (the Ideal Policy dominates Rarest First, and the latter converges
to perfect continuity). Super-peers can apply the Ideal policy, characterized by si = 1. Finally,
its convergence order can be found easily by using Expression 5.9 for the Ideal policy:

limN→∞

1− pN
(1− pN−1)2

=

limN→∞

1− pN−1(2− pN−1)

(1− pN−1)2
= 1.

Hence, its convergence order is 2, and the result holds.

Q.E.D.

Proposition 5.5.7 can also be obtained with the explicit expression for the Ideal policy, found
in the proof of Theorem 5.5.3. As a consequence, the scheduling policies will always work
with convergence order p between linear and quadratic when the buffer increases (i.e. such that
1 < p < 2). In fact, there are better policies than Rarest First, and the Ideal policy is the best
(pull the whole buffer at a go).
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5.5.4 A Family of Permutation-based policies

A natural way to obtain diversity is to use an arbitrary permutation to decide the order of a
request. Let us consider the set of permutations ΠN−1 of the first N − 1 buffer positions:

ΠN−1 = {π : {1, . . . , N − 1} 7→ {1, . . . , N − 1}, π(i) 6= π(j) ∀i 6= j}.

For each permutation π ∈ ΠN−1 we can associate the following chunk scheduling policy. In
the first step, A examines its buffer at position π(1). If that chunk is missing and B owns
it, the download is performed. Otherwise (either because peer A owns that chunk or B does
not), A shifts to position π(2) and the process is repeated (until there is either success or
failure, the two only possible final results). This scheme leads to (N − 1)! different chunk
scheduling policies. We call them permutation-based policies. For the chunk policy associated
with permutation π ∈ ΠN−1, the corresponding strategic sequence is related with the bitmap:

sπ(i) = (1−
1

M
)

i−1
∏

j=1

(

1− pπ(j)(1− pπ(j))
)

. (5.12)

Equation (5.12) can be interpreted in this way: peer A will ask for position π(i) only if
it was not selected by the server and every buffer position Bi such that j < i meets one of
the following two conditions: peer A already owns the chunk at position π(i), or neither A
nor B owns it. It is interesting to notice that other policies could be considered, for example
using random variables to decide which position of the buffer to ask for next. In this thesis we
will restrict the attention to deterministic policies, inspired in the poor performance attained
by the Weighted Greedy policy. We suspect that under this model, permutation-based policies
capture all the deterministic possibilities. Moreover, some permutation-based policies outper-
form classical ones, as we will confirm in the final results of our proposal. Indeed, the family
of permutation-based policies ΠN−1 enjoys many useful properties, which guide us to define
algorithms to find efficient ones. The first is that they are a super-set that includes previous
classical policies (and their mixture). Observe that the identity permutation π(i) = i and the
reverse one (π(i) = N − i) define the Rarest First and Greedy policies, respectively. For any
given index m : 1 ≤ m ≤ N − 1, there is a Mixture between Greedy and Rarest first, captured
with the following permutation πm:

πm(i) = i, i = 1, . . . ,m;

πm(i) = N − (i−m), i = m+ 1, . . . , N − 1.

Clearly, all mixtures of the classical policies are permutation-based policies. This trivial fact
confirms that the quality of the best permutation policy will not decay. In fact, better policies
can be found.

Lemma 5.5.8 Degradation in the Selection

The sequence sπ(i) is strictly monotone decreasing.

Proof. By (5.12) we have that sπ(i+1) = sπ(i)[1− pπ(i)(1− pπ(i))] < sπ(i).



5.5. Preliminary Approach 115

Q.E.D.

Definition 5.5.9 The Cayley distance d(π1, π2) between permutations π1 and π2 is the mini-

mum number of transpositions needed to obtain π2 from π1.

Let x = (x1, . . . , xN−1) and and y = (y1, . . . , yN−1) be injective real-valued vectors.
There are unique permutations πx and πy such that xπx(1) > xπx(2) > . . . > xπx(N−1) and
yπy(1) > yπy(2) > . . . > yπy(N−1)

Definition 5.5.10 The Cayley pseudo-distance between the vectors x and y is d(x, y) = d(πx, πy).

Corollary 5.5.11 Approximation Strategy Property

For every injective real-valued sequence (x1, . . . , xN−1), there is only one permutation π
whose strategic sequence s verifies that d(x, s) = 0.

Proof. By Lemma 5.5.8 the evidence is the only permutation π that complies:

xπ(1) > xπ(2) > · · · > xπ(N−1)

Q.E.D.

So far, we know how to approximate a given injective vector choosing an appropriate per-
mutation policy. However, we want to have a full comprehension of the relation between our
permutation π and the bitmap p = (p1, . . . , pN ), which determines both the delivery ratio pN
and buffering times by L =

∑N
i=1 pi. Additionally, we know a pessimistic result of universal

playback bound, and have an insight of the convergence order to perfect playback continuity
when the buffer size is increased. A simple link between the bitmap and strategic sequence is
offered by the bitmap recursion (5.4).

Definition 5.5.12 Given a desired bitmap p, the corresponding ideal strategic sequence sid can

easily be obtained with a restatement of (5.4):

sidi =
pi+1 − pi
(1− pi)pi

, ∀i ∈ {1, . . . , N − 1} (5.13)

This reverse-viewpoint of the problem will be exploited to introduce a Follower System, trying
to reflect the behavior of a desired bitmap.

5.5.5 The Follower System

Let us recall that we search for permutations which achieve high continuity and low latency.
The Approximation Strategy Property leads us to invert the search order, following these stages:

1. Choose an ideal bitmap p = (p1, . . . , pN−1, pN ).

2. Find the corresponding ideal strategic sequence sid with Equation (5.13).

3. Find the only permutation π such that sidπ(1) > sidπ(2) > . . . > sidπ(N−1).
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Thanks to the Approximation Strategy Property, we have that the strategic sequence s associ-
ated with permutation π verifies that d(s, sid) = 0. Hence, we are able to “imitate” the ideal
vector sid with a feasible strategic sequence s. Nevertheless, this imitation does not assure that
the respective bitmaps are similar. In order to solve the puzzle of searching for high quality
permutations, it is necessary to evaluate the continuity and latency of a given permutation:

Definition 5.5.13 For every permutation π, the Non-Linear System NLS(π) consists of the

recursive bitmap (5.4) and recursive expression for the strategic sequence given by (5.12), with

unknowns {pi}i=2,...,N ∪ ({si}i=1...,N−1 −
{

sπ(1)
}

):

NLS(π) :























p1 = 1
M

pi+1 = pi + (1− pi)pisi, ∀i = 1, . . . , N − 1

sπ(1) = 1− 1
M

sπ(i+1) = sπ(i)(pπ(i) + (1− pπ(i))
2) ∀i = 1, . . . , N − 2

Solving the non-linear system NLS(π) (for example with the Newton-Raphson method), it is
possible to evaluate the performance for any particular permutation.

In a first attempt to find an optimal permutation, we consider the control system illustrated
in Figure 5.4. This system shows the reverse design recently stated: the input is the desired
bitmap pi, and the output is its best approximation p∗i . We call this serial blocks the Follower

System.

Figure 5.4: Follower System: receives a desired bitmap p and returns a feasible bitmap p∗, with the
nearest result to the input. Observe that it permits to obtain the permutation policy π that achieves p∗

(in Step 3).

5.5.6 A Subfamily of W -Shaped policies

Several inputs were injected into the Follower System to test its performance. An ambitious
design of the input vector p is an exponential sequence with unit playback continuity, because
its regularity and low values of latency:

pǫi =M
N−i
1−N , i = 1, . . . , N. (5.14)

The output can be analytically found in this case. Note that pǫi+1 =M
1

N−1 pǫi > pǫi , and the
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corresponding ideal strategic sequence sid respects the following identity:

sidi+1

sidi
=

pǫi+2 − p
ǫ
i+1

(1− pǫi+1)p
ǫ
i+1

(1− pǫi)p
ǫ
i

pǫi+1 − p
ǫ
i

=
1− pǫi
1− pǫi+1

> 1, ∀i ∈ {1, . . . , N − 2}

This means that the strategic sequence to simulate is increasing, so the output permutation
is π(i) = N − i. The output falls into the Greedy policy, something not desirable.
Then we input the Ramp Vector shown in Figure 5.5(a) for the case M = 1000 and N = 40.
The corresponding ideal strategic sequence is not feasible, because its magnitude exceeds the
unit (it is not a probability). However, the output shows a key element of this system. The two
pairs of functions p, p∗, s and sid, are contrasted in Figure 5.5(a) and Figure 5.5(b) respectively.

The first observation from Figures 5.5(a) and 5.5(b) is that this Follower System fails again
when trying to follow the segmented bitmap, and shows that the first idea does not work as
desired. However, the experience with the Follower System shows us how a direct peak in
the permutation policy (see Figure 5.5(b)) generates an abrupt change in the bitmap (change
in slopes of Figure 5.5(a)). The position of the peak plays a critical role, because if it is next
to the playback the continuity will be poor (as in the case of Greedy). On the other hand, a
high latency will be carried out whenever the peak is chosen far away from the playback (for
instance, with the Rarest First policy). Absolute maximums are avoided in order not to get high
latencies. These observations motivate us to introduce the following:

Definition 5.5.14 For each pair of naturals (I, J) : I + J ≤ N − 1, there is one permutation

of the W -Shaped Policies, that can be expressed as follows:

π(i) = N − i, i = 1, . . . , I,

π(I + j) = j, j = 1, . . . , J

π(I + J + k) =

⌊

N + J − I

2

⌋

+

⌈

k

2

⌉

(−1)k+1,

k = 1, . . . , N − I − J − 1.

The reader can check that these permutation-based policies present aW -shaped buffer-priority.
The I buffer-cells nearest-to-the-deadline have the highest priority, whereas the J far-away
follow in priority. Then, a zig-zag priority is defined in the middle of the buffer (the ∧-part
of the W priority). Curiously, in [231] the authors analyzed the same model via Markov-
Chains in a continuity-driven fashion, and suggest another sub-family of V -Shaped policies
simultaneously and independently:

Definition 5.5.15 Let k ∈ [N − 1] be the buffer-cell with the lowest priority (i.e. π(N − 1) =
k). A permutation member is V -Shaped if the priority increases as the position moves away

from k.

The authors prove that the V -Shaped policies contain the asymptotically optimal policy when
the buffer size tends to infinity. The number of V -Shaped policies is exponential with the buffer
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(a) Segmented bitmap and its output.
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(b) Ideal and feasible strategic sequences sid and s.

Figure 5.5: Ideal vs feasible bitmaps and strategic sequences for the case M = 1000, N = 40.

capacity N . Hence, an exhaustive search among the V -Shaped policies is computationally
prohibitive for large buffer sizes. Note that the number of W -Shaped members is the cardinal
{(I, J) : I + J ≤ N − 1}, or the cardinal of natural solutions to the equality I + J +K =

N − 1. By elementary combinatorics, this number is
(

N+1
2

)

= N(N+1)
2 , polynomial in the

buffer capacity N .



5.6. Feasible Approach 119

5.6 Feasible Approach

5.6.1 A Single-objective Combinatorial Problem

The cooperative system is fully characterized by a scheduling policy π, which must be chosen
regarding playback and buffering times. Equation (5.4) assures that the bitmap is monotoni-
cally increasing. Then, there is a trade-off between the continuity pN and the buffering time
L =

∑N
i=1 pi. The following analytical result will determine a natural single-objective measure

for this cooperative system:

Proposition 2 Let π be a permutation of the natural set {1, . . . , N − 1}, and Xπ the random

variable that represents the number of steps in a successful request. Then, its expected value

E(Xπ) is:

E(Xπ) =
M

M − 1

N−1
∑

i=1

π(i)
(

pi+1 − pi
)

.

Proof. Let αi be the probability of having a successful request in step i. Then:

E(Xπ) =

N−1
∑

i=1

iαi

i−1
∏

j=1

(1− αj) =

N−1
∑

i=1

ipπ(i)(1− pπ(i))
i−1
∏

j=1

[1− pπ(j)(1− pπ(j))]

=
1

1− 1
M

N−1
∑

i=1

ipπ(i)(1− pπ(i))sπ(i) =
M

M − 1

N−1
∑

i=1

i(pπ(i)+1 − pπ(i))

=
M

M − 1

N−1
∑

i=1

π(i)(pi+1 − pi).

Q.E.D.

Then, Q(π) = E(Xπ) is a linear combination of the jumps pi+1 − pi. Moreover, it is
monotonically increasing with the continuity pN , for its derivative with respect to pN is π(N−
1) > 0. Interestingly enough, this measure takes a natural trade-off when the Rarest First
policy is considered. In Rarest First we have π(i) = i for all i ∈ [N − 1], and the single score
is:

E(Xπ) =
M

M − 1
(

N−1
∑

i=1

ipi+1 −
N−1
∑

i=1

ipi) =
M

M − 1
(NpN − L) (5.15)

As a consequence, the number of steps in a successful request is highly related with our orig-
inal performance metrics. Let us recall that all requests take place in one time slot, so long
requests do not affect the time response of the system. Then, it is convenient to maximize
the quality Q(π), which defines the score of a combinatorial optimization problem, where the
chunk scheduling policy represents the decision variable.

Definition 5.6.1 The Score for the Cooperative Network Game (CNG) with a permutation π is

the expected number of steps in a successful request Q(π) = E(Xπ).
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In order to find the best chunk scheduling policy, the following Cooperative Network Game
(CNG) must be solved:

CNG : max
π∈ΠN−1

E(Xπ) (5.16)

s.t. (5.17)























p1 =
1
M

pi+1 = pi + pi(1− pi)si, ∀i ∈ {1, . . . , N − 1}

sπ(1) = 1− 1
M

sπ(i+1) = sπ(i) + pπ(i) − pπ(i)+1, ∀i ∈ {1, . . . , N − 2}

(5.18)

5.6.2 Problem Translation

From now on, we will solve the CNG stated in (5.16), trying to find the best chunk scheduling
policy π. In this section we will translate the CNG into a suitable Asymmetric Traveling
Salesman Problem (ATSP). Recall that a tour in a complete graph is a closed simple walk,
where all nodes are visited exactly once (except, naturally, the first node).

Definition 5.6.2 HAMILTONIAN − TOUR: Does an arbitrary graph G contain a

Hamiltonian tour?

Definition 5.6.3 ATSP : Find the cheapest tour of a fully-connected directed weighted graph

G = (V, V × V ), with positive costs wi,j in every edge (vi, vj), vi 6= vj .

The Traveling Salesman Problem is the undirected version of the ATSP, and is NP-Complete,
given that it is in NP and it can be seen as a restriction from the Hamiltonian-Path decision prob-
lem, which is an NP-Complete decision problem [79]. Clearly, taking wi,j = wj,i for every
i 6= j we see the ATSP is at least as hard as the TSP, and it is an NP-Complete optimization
problem as well. The ATSP can be solved heuristically following an Ant Colony Optimization
(ACO) approach, which is inspired in the way ants find the shortest path between their nests
and their food [12]. The reader can find a deep analysis of this nature-inspired metaheuristic
in [24, 64–66]. A complete graph of N nodes allows to get a bijection between a hamilto-
nian tour and a given permutation. We translate the CNG into an instance of the Asymmetric
Traveling Salesman Problem (ATSP [152]) using the following bijection.

Proposition 3 There is a bijection between the space of permutations ΠN−1 and the set of

directed hamiltonian tours of an N -Clique.

Proof. Let KN be an N−clique with labeled nodes {1, . . . , N}, and N an auxiliary node,
from which all directed hamiltonian tours T start. Both sets are finite with cardinal (N − 1)!.
By counting, it suffices to find an injection ϕ : T 7→ P . Let us define for every directed
tour t = {N, v1, v2, . . . , vN − 1, N} the permutation π(i) = vi, i = 1, . . . , N − 1. Function
ϕ(t) = π is one-to-one, and the result holds.
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Q.E.D.

Consider the composition law in the permutation space ΠN−1. Some trivial facts on the
group of permutations (ΠN−1, ·) will be very useful in order to define a neighborhood structure
in the space ΠN−1, that will be introduced in a metaheuristic resolution. All permutations are
generated by a product of a finite number of transpositions. There are several metrics adopted
for permutation spaces. For an overview of distances on permutation groups we refer the
reader to [8]. Recall that the Cayley distance d(π1, π2) between permutations π1 and π2 is the
minimum number of transpositions needed to obtain π2 from π1.

Definition 5.6.4 A distance d on ΠN−1 is graphic if d(π1, π2) is the length of a shortest path

joining π1 and π2 in the simple graph with vertex set ΠN−1 and edges (π1, π2) : d(π1, π2) = 1.

Lemma 5.6.5 The Cayley distance is graphic.

Proof. Take two arbitrary permutations πx 6= πy, and call l = d(π1, π2) > 0. By its definition,
there exists transpositions t1, . . . , tl such that πy = tltl−1 . . . t1πx. Define recursively the
family of adjacent intermediate permutations π0 = πx and πi+1 = ti+1πi, such that πy = πl.
Then clearly d(πi, πi+1) = 1, and there exists a path of length l between the nodes πx and
πy. If there were a shorter path of length r < l, the r-path from πx to πy would provide
intermediate permutations that differ in only one transposition, obtaining that r ≥ d(π1, π2) =
l, a contradiction. Hence, πx = π0, π1, . . . , πl = πy is the shortest path between πx and πy,
and the Cayley distance is graphic.

Q.E.D.

The previous lemma can be strengthened. In fact, every integer-valued distance on any set X
is graphic if and only if d(a, b) > 1 implies d(a, c) + d(c, b) = d(a, b) for some c (see [59]).

Definition 5.6.6 A neighborhood structure for the CNG with feasible set ΠN−1 is a collection

{Nπ}π∈ΠN−1
of subsets of ΠN−1 such that:

1. The resulting hypergraph is connected: given πx, πy ∈ ΠN−1, there exists a sequence of

solutions πx = π0, π1, . . . , πl = πy such that πi ∈ Nπi−1
for all i = 1, . . . , l.

2. For every π ∈ ΠN−1 we can decide in polytime whether there exists a better neighbor

π′ ∈ Nπ such that Q(π′) > Q(π), whenever it exists.

The previous algebraic objects are useful to define a neighborhood structure in our space
of permutations ΠN−1. Consider for each permutation π the unit ball Nπ = {π′ ∈ ΠN−1 :
d(π, π′) = 1}.

Proposition 5.6.7 The set of unit balls B = {Nπ, π ∈ ΠN−1} is a neighborhood structure for

the CNG
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Proof. By Lemma 5.6.5 the Cayley distance is graphic, and consequently B generates a con-
nected hypergraph. Suppose that we reach a solution π for the CNG maxΠN−1

Q(π). There are
exactly |Nπ| = CN−1

2 neighbors, a quadratic polynomial in N . In order to evaluate the quality
of a neighbor the non-linear system NLS(π) must be solved. We can decide if a neighboring
solution is better than π in polytime, because the Newton-Raphson method is a polynomial
approximation scheme, with quadratic order of convergence to the solution. Hence, B is a
neighborhood structure for the maximization problem maxΠN−1

Q(π).

Q.E.D.

All these tools are used to define an ACO-based Algorithm, which finds high competitive
policies for the CNG.

5.6.3 An Ant-Colony Resolution

We propose and Ant-based algorithm that returns high-quality chunk scheduling policies. The
Main Algorithm can be studied in four blocks (see Algorithm 3). In the first block (Line 1),
a weighted network is defined, translating in this way the original CNG into a suitable ATSP.
A non-negative cost is assigned to each edge when Function Edges is called, with a learning
mechanism based on ant exploration. The second block prepares the Ant-Colony application
calling Function Pheromones, which will allow to trace high quality tours. The Subfamily of
W -Shaped policies from Definition 5.5.14 will be considered here as a seed for the pheromone
trails. The third block (Line 3) is the AntWorkers application itself, which returns a permu-
tation π. Finally, a local improvement is introduced exploiting the neighborhood structure of
the permutation group by means of Function LocalSearch. Note that two neighboring permu-
tations are translated into two tours that visit all nodes exactly in the same order, but two of
them [48].

Algorithm 3 π =MainAlgorithm(M,N, d, τ, α, β, ρ, ants, iterations)

1: d(E) = Edges(M,N, ants)
2: τ(E) = Pheromones(M,N, ants, SubFamily)
3: π = AntWorkers(M,N, d, τ, α, β, ρ, ants)
4: πout = LocalSearch(π,M,N, iterations)
5: return πout

FunctionsEdges, Pheromones,AntWorkers and LocalSearchwill be presented in the
following subsections.

5.6.3.1 Edges

The whole solution is designed following an ant-worker’s philosophy. The basic idea is that
several artificial ants start a tour in the auxiliary nodeN , and measure distances (or leave traces)
according to the quality of the recently visited tour.

During Edges, the translation from the CNG to an ATSP takes place. It returns a non-
negative matrix d(E) whose entries d(i, j) contain the edge-costs of a directed N -clique. A
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unit-cost is assigned to all edges in Line 1, and the Greedy policy (π(i) = N − i) is considered
as a reference score in Line 2. In Lines 3 to 6 several ant-tours are built in order to update
costs for edges. Each ant stochastically chooses the next node to visit with Tabu-nodes (in
order not to visit the same node twice). During Function V isitCycle, ants choose the next step
according to the following probability distribution:

p(xj+1) =
d(xj , xj+1)

−1

∑

i∈NoCycle d(xj , xi)
−1

(5.19)

This means that shorter tours are desirable. In Line 5 the matrix d is updated. UpdateCost
finds the best policy so far. Then, all edges inside the tour π are updated according to its scores:

d(π(j), π(j + 1)) = 10(N − j)×
Qmax

Q(π)
,

where Qmax is the best score obtained so far. The additional ladder-factors N − j avoids
re-visiting a cycle several times.

Algorithm 4 d(E) = Edges(M,N, ants)

1: d(E) = 1
2: Quality = Greedy
3: for i = 1 to ants do

4: π = V isitCycle(d(E))
5: d(E) = UpdateCost(π(1), . . . , π(i))
6: end for

7: return d(E)

5.6.3.2 Pheromones

The main ingredient of Function Pheromones is that tours are deterministic, given by the
Subfamily of W -Shaped policies from Definition 5.5.14, exploiting the smell of high quality
that provides this SubFamily. In this way, the preliminary analysis is incorporated as a seed in
this sophisticated algorithm. It returns a matrix τ with the trail of pheromones for each edge.
The notion of pheromones helps ants in the main block calledAntWorkers to build tours with
better quality. See Algorithm 5 for details.

5.6.3.3 AntWorkers

FunctionAntWorkers has several similarities with Ant-System, originally proposed by Marco
Dorigo and Luca Maria Gambardella in 1997 [65]. There, the authors distribute m ants into
n cities of a TSP instance, and each ant builds a tour using a Tabu list, in order not to visit
twice the same node. Ants leave trails of pheromones, and select stochastic tours weighting
both shorter paths and pheromones. The diversification of the metaheuristic depends on a set
of parameters:
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Algorithm 5 d(E) = Pheromones(M,N, ants, SubFamily)

1: d(E) = 1
2: Quality = Greedy
3: for each π ∈ SubFamily do

4: Q = Quality(π)
5: τ = UpdatePheromones(π(1), . . . , π(i))
6: end for

7: return τ

1. The visibility of the path β ≥ 0.

2. The relative importance to the trail α ≥ 0.

3. The trail persistence ρ : 0 ≤ ρ ≤ 1 or evaporation factor 1− ρ, and

4. A constant Q related to the quantity of trail laid by ants.

Let x1, x2, . . . , xj be the first j nodes visited by an ant. Each ant builds a biased tour according
to the following jump-probability distribution:

p(xj , xj+1) =
τ(xj , xj+1)

αd(xj , xj+1)
−β

∑

i>j τ(xj , xi)
αd(xj , xi)−β

, (5.20)

where τ(xi, xj) is the trail of pheromone for edge (xi, xj), and the constraint i > j over the
sum is the Tabu List of nodes, in order not to visit twice the same node. It is interesting to notice
that under perfect visibility and discarding the trail (i.e. β → ∞ and α = 0), Ant-System is
exactly the Greedy heuristic for the TSP. In this way, the parameters α and β impose a trade-off
between greediness and the smell of ants, based on pheromones. The updating of pheromones
in its classical implementation is strictly based on the evaporation factor ρ : 0 ≤ ρ ≤ 1 and the
quality of each tour. More specifically, each visited edge receives, per ant, a trail proportional
to the trail persistence and quality of the tour. Given that the TSP is a minimization problem:

τ(xi, xj)
t+n = ρτ(xi, xj)

t +

m
∑

k=1

Q

Lk
1(xi,xj)∈Cyclek, (5.21)

where LK is the length of the tour visited by ant k and τ(xi, xj)t denotes the pheromone trail
for edge (xi, xj) at time t. Note that only the edges visited by ants contribute to the sum (the
indicator 1X is one only if X is true), and the trails of the others receive a trail evaporation, by
the factor 1− ρ. We refer the reader to [65] for an overview of the Ant-System design, and its
performance with respect to other classical metaheuristics for the TSP. The book [66] contains
an in-depth analysis of the properties of this population-based metaheuristics. Now, we will
show our particular implementation of Function AntWorkers, paying particular attention to
the differences with the original Ant-System. Basically, our implementation introduces four
differences, in order to address the nature of our problem and its translation:
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1. Attractor Nest: the network has an auxiliary node N , that plays the role of an attractor
nest. All ants start and finish the tour at this node. In fact, every tour has a corresponding
permutation-based policy, in accordance with Proposition 3.

2. Serial walk: in the original Ant-System implementation, all ants walk simultaneously.
In this design, ants explore the network serially, and each ant updates the trails only after
finishing its tour.

3. Weighted Tours: in order to increase the diversification of the biased tours, we avoid ants
to visit the same edges in their first step. This is an artificial guide to ants, so as to visit
all edges of the network at least once. In this way, the trail of every edge is updated at
least twice.

4. Massive Population: the authors of the original implementation suggest to use n ants
(i.e. one ant per node). Here, we will consider at least three times the number of nodes.
In fact, the network has N(N − 1)/2 edges, but each ant visits exactly N edges. The
probability of visiting all edges is increasing with the population of serial ants in this
single-run system.

AntWorkers is presented in Algorithm 6.

Algorithm 6 π = AntWorkers(M,N, d, τ, α, β, ρ, ants)

1: Quality = Greedy(M,N)
2: for i = 1 to ants do

3: πi = AntCycle(d, τ, α, β)
4: τ = NewPheromones(ρ, τ,Q,Qmax)
5: end for

6: return π =MostV isitedCycle(π1, . . . , πants)

A reference score is the Greedy policy (Line 1). The serial implementation covers Lines 2
to 5, where the nest-node is an attractor (all ants start and finish in this node). During Function
AntCycle (Line 3), each ant builds a stochastic tour according to the probability vector defined
in Equation (5.20). A technical difference with respect to the original Ants-System is defined
in Line 4, where the trail update takes place. Specifically, only the trails of those edges visited
by ant i are modified in Function NewPheromones. The new trail for the edge (xj , xj+1) is:

τ(xj , xj+1) = (1− ρ)τ(xj , xj+1) + ρ×
10(N − j)Q(π)

Qmax
, (5.22)

where the factor 10(N − j) provides a similarity of magnitudes between pheromones and
distances. Notice that the ladder-factors 10(N − j) were fixed during the network construction
in Function Edge of the Main Algorithm. In this way we do not give priority to pheromones
or distances. Additionally, we are mainly interested in the shortest hamiltonian path (the order
in which the N − 1 nodes are visited).
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5.6.3.4 LocalSearch

The output permutation of AntWorkers is locally improved via a simple Local Search phase.
It looks for the best permutation among their neighbors. If the maximum number of iterations
is not reached, a local optimum policy is returned. LocalSearch is very simple, and exploits
the properties of the Cayley distance. See details in Algorithm 7.

Algorithm 7 πout = LocalSearch(π,M,N, iterations)

1: Quality = Greedy
2: while iterations not reached and improves do

3: π = BestNeighbor(π,M,N)
4: end while

5: return π

5.6.3.5 Computational Effort

In order to understand the trade-off between the computational effort and the quality of the
solutions that offers the Main Algorithm, let us count the quantity of operations, taking the
number of score evaluations as the basic operation. The following result summarizes the block
that imposes the biggest computational effort, and the convergence order with respect to N .

Proposition 4 Let N be the buffer size and T (N) the mean computing-time for the quality

E(Xπ). If ants and iterations have order O(N), then the mean total time for running the

Main Algorithm is T = O(N3T (N)).

Proof. The Local Search phase imposes the largest computational effort. The number of neigh-
bors of a given permutation is

(

N−1
2

)

= (N−1)(N−2)
2 . In order to find the best neighbor, it is nec-

essary to evaluate all those neighbors in each iteration. If the number of iterations is linear with
N , then this block imposes the biggest computational effort, and is cubic in N . If the mean
computing-time for a score evaluation is T (N), the total running time is T = O(N3T (N)).

Q.E.D.

5.6.4 Discussion of Chunk Scheduling Policies

It is well known the Local Rarest First policy introduced by BitTorrent is capable of provid-
ing high performance for file sharing, but is not suitable for networks with stringent timing
requirements, as live video streaming. A very basic solution was proposed in BiTOS, splitting
the buffer into two parts: an urgent, which captures a set of k chunks that are close to the dead-
line, and the remaining buffer set. Peers either receive the rarest chunk from the high-priority
set with probability p, or the rarest from the remaining set (with probability 1 − p). In this
way, BiTOS trades real-time urgency for availability, which is known a strength when running
Rarest First. The parameters p and k can be tuned as desired, even adjusted dynamically as
a function of monitoring losses. A similar idea is proposed by Sanghavi, Hajek and Maus-
solié, called Interleave. It basically interleaves a push scheme with nearest-to-the deadline first
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in even slots, with a pull scheme requesting the latest chunk not in the buffer, in odd slots.
Observe the trade is now given deterministically, by interleaving two techniques in time slots.
The playback-buffering trade-off is also captured by Yipeng Zhou, Dah Ming Chiu and John
C.S. Lui, which provided the model we are studying here [233]. They identify the nearest-to-
deadline with the Greedy policy, and predict poor playback performance of this policy under
massive peer populations. On the other hand, Rarest First is proved again to fail with real time
urgencies. They associated the solution with a Mixture of both policies, running the Rarest
First policy at the beginning, until a fixed buffer-cell m, and complete the remaining buffer
following the Greedy policy. The effort is then focused on the scalability of a sequence of
Mixture policies adjusting m as a function of the network parameters (M,N), finding asymp-
totically optimal solutions [225]. Bridge Zhao, together with John Lui and Dah-Ming Chiu,
provided a continuous version of the cooperative model [231], when the server broadcasts a
channel with a required streaming rate f , possibly sent to multiple peers concurrently, accord-
ing to the server upload bandwidth and peers downloading capacity. The authors notice the best
solutions for finite sets becomes more greedy when the server turns more resourceful, with an
exhaustive list of permutation-based policies for a limited buffer capacity N . Their approach
exploits properties of Density Dependent Jump Markov Processes (DDJMP), and the objective
has only playback continuity as target. Their results suggest a subfamily of V -shaped schedul-
ing policies, where the name is justified to the priority of a request: the first element is a certain
buffer-cell x < N , and the priority is decreased when we move away from x along both sides.
Again, they show optimality when M →∞ for playback continuity.

However, we know that even Rarest First has optimal playback continuity when M →∞,
so, the start-up latency must necessary be weighted in the design. We stick to the discrete
model, and a preliminary approach (Section 5.5) suggests a polynomial size subfamily of W -
shaped policies, in order to search for a playback-delay trade-off. The name is justified because
Greedy is runned at I < N chunks, followed by Rarest First in J chunks, and finally applying
a deterministic zig-zag in the middle of the buffer, along its sides.
The V -shaped policies and our family of W -shaped policies share certain similarities as the
reader can appreciate. An evident similarity is the presence of a fixed element x < N of the
buffer-cells, from which the priority is decreased along both sides. We also give condition to
the buffer taking some chunks on both sides before a deterministic zig-zag scheme (whereas in
the V -shaped policies, the priority can be decreased taking more than one chunk at left and then
others at right along the fixed element x < N ). An important difference is that an exhaustive
search among V -shaped members is computationally prohibitive (the size is exponential with
the buffer), whereas our subfamily of W -shaped policies is polynomial in the buffer capacity.

Curiously, it is worth to mention that both works introducing the subfamilies were first
presented practically in simultaneous conferences in 2009 [16, 231], and both teams were not
aware the advances of the other1. Nevertheless, we will show the performance of classical
policies can be outperformed theoretically with our Ant-Colony inspired resolution. However,
a self-critic is valid here: the structure of the ACO-based output permutation cannot be deter-

1The writer recently exchanged mails with Dr. Yipeng Zhou, and our publishings were news for his team.
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mined in advance (the permutation policy has no clear pattern), and the computational effort of
the Main Algorithm increases as the cubic of N to return an answer. This means that in order
to tune a high-performing policy dynamically with the peer population M (or buffer size N ),
a high amount of computational effort should be performed off-line (and the system should be
capable to absorb the variable behavior of the permutations when N or M are shifted). The
subfamily of W -shaped policies is quadratic with N , hence an exhaustive search among them
can trade quality for CPU time.
In order to figure-out these concerns and study the performance of chunk policies so far encoun-
tered, we will contrast policies theoretically (in the lights of the cooperative model), and also
empirically, introducing different chunk policies in the real GoalBit platform, in the following
section.

5.7 Results in a Real Platform

5.7.1 Comparison with Historical Policies

In P2P networks, two classical chunk scheduling policies are Rarest First: π(i) = i, and Greedy:
π(i) = N− i. The former works properly in downloading, but not for streaming purposes. The
same authors [233] of the original model propose in [231] a slight modification of the model,
in which the server can offer video chunks to a randomly chosen fraction f of the M peers in
the network. There, they find an asymptotic approximation to the optimal chunk scheduling
policy when the buffer size increases. They measure quality only regarding playback conti-
nuity, and conjecture that the optimal policy is inside a subfamily of V -shaped policies, and
becomes more greedy when f increases. Let k be the buffer-cell with the lowest priority. Then
a permutation member is V -Shaped if the priority is increased as the position moves away from
k. The exhaustive search among the V -shaped subfamily of policies is still computationally
prohibitive (it has exponential size with N ).

We tuned the parameters of the Main Algorithm inspired in [67], and adapted to our partic-
ular problem. Our final implementation used the Main Algorithm with α = 0.4, β = 1.5, ρ =
0.5 and 100 ants, for the common-network parameters N = 30 and M = 100. Figure 5.6
presents the bitmaps for different chunk scheduling policies. Table 5.1 shows that the obtained
permutation achieves an excellent continuity and at the same time a latency comparable to the
one reached by Greedy, outperforming classical policies as well as an average of randomly
chosen V -shaped policies.

We include in Table 5.1 the mixture with the highest continuity. The Average V -Shaped
refers to the average performance over one-hundred randomly chosen V -Shaped policies. Over
those one-hundred samples, our permutation-policy has better playback continuity than 88 sam-
ples, and achieves lower latencies than 86 samples. Additionally, we could not find even one
V -Shaped sample with both better continuity and latency than our permutation-based policy.
This results confirm a highly competitive trade-off between playback continuity and buffering-
times of our proposal. The V -Shaped members define both high playback policies but high
buffering times as well. Recall that the authors of [231] focus the design on playback continu-
ity only.
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Figure 5.6: Bitmaps for different chunk scheduling policies.

Table 5.1: Performance of different chunk scheduling policies.

Policy Continuity Latency

Rarest First 0.9571 21.0011

Greedy 0.9020 4.1094

Mixture 0.9970 14.4798

Average V -Shaped 0.9670 17.6683

Main Algorithm 0.9998 7.9821

5.7.2 Results in a Real-Life Scenario

It is well known the BitTorrent’s success for content downloading. However, it does not com-
ply with the requirements of video streaming applications. GoalBit maintains the BitTorrent’s
philosophy mixing the tit-for-tat strategy with optimistic unchoking, extending the success in
the peer selection process, that is a key element in the design of protocols for cooperation [44].
The clear weakness of BitTorrent for streaming applications is its chunk scheduling policy:
Rarest First. The analysis of this section shows its unacceptable latencies. We carried-out
real-life experiments based on a GoalBit emulator, to figure-out the main characteristics of
different chunk-scheduling policies. First, we took real traces from a previous GoalBit dis-
tribution of a football match. Therefore, we completely reproduce the real distribution (even
with the identical protocol specification), but with a different chunk scheduling policy. The
emulator reproduces all but network failures. Recall from Section 3.8.1 that GoalBit keeps
three buffer categories: urgent, normal and future. If some urgent chunk is missing, the lo-
cal peer requests the nearest-to-deadline chunk first. Otherwise, a missing chunk is picked
sampling an exponentially distributed random variable, where the probability is monotonically
decreasing from usual along to the future buffer range. The main idea of the test is to keep
the structure of the GoalBit buffer, and compare the classical policies with a chosen member
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of our design, easy to include in the GoalBit protocol. Observe the W -shaped policies have
a structure in three-phases, hence is suitable to introduce in the GoalBit protocol with minor
changes. By a polynomial search among the set of W -shaped policies, we could determine the
one with highest score when N = 40, which is defined by (I, J) = (16, 1). Therefore, three
different deterministic chunk scheduling policies were considered: Rarest First, Greedy and
the W -Shaped member defined by (I, J) = (16, 1). This test case considers a buffer capacity
of N = 40 and 45 peers joining the network. In GoalBit, the video player halts when a video
chunk is missing, and the player will skip frames. Therefore, users will have a re-buffering
whenever a chunk is lost. Figures 5.7, 5.8 and 5.9 show respectively the first buffering time (or
start-up latency), number of re-bufferings and their corresponding duration (in seconds), for
each user.
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Figure 5.9: Average re-bufferings (in seconds) for 45 peers using different chunk scheduling
policies.

Figure 5.7 shows clearly that the Rarest First policy has unacceptable start-up latencies
for streaming purposes. In fact, users should wait more than one minute in average to start
playing the video content following the Rarest First policy. The new policy is competitive in
relation with the Greedy policy, having more reduced start-up latencies than Greedy for most
of the peers. These latencies last no more than five seconds, which is a reasonable waiting
time for users. Figure 5.8 illustrates the interruption of the video signal. The Greedy policy
clearly presents interruptions more often. Most of the peers experience between four and six
video interruptions when the Greedy Policy is introduced. Rarest first trades-off video cuts
with buffering times. However, this policy is discarded for live streaming purposes regarding
start-up latencies in the order of minutes. When GoalBit follows the new permutation-based
policy, peers experience an intermediate number of video cuts, practically always lower than
the Greedy policy (more specifically, only Peers 15 and 35 had just one cut higher than Greedy
following our Permutation policy). Finally, Figure 5.9 shows that four peers experienced longer
cuts when our permutation policy is introduced. However, the performance of the Permutation
policy is higher in the rest of the peers, with respect to both classical policies.

5.8 Extended Model

5.8.1 Introduction

Suppose a static network that has M peers of Class X , M ′ peers of Class Y and a server that
has the original video content (where X,Y ∈ {0, 1, 2, 3}). The server cuts the video into small
chunks, and shares them in turns. In each time slot, the server chooses one peer at random from
Class X with probability α, or one peer at random from Class Y with probability 1 − α, and
sends one chunk to that peer. As in the simple model, peers can cooperate. More precisely,
one peer from Class X either chooses with probability β another peer at random from its own
class or a peer from Class Y at random with probability 1 − β. Symmetrically, peers from
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Class Y can request other peers from their own class (chosen at random) with probability β′,
or from Class X (with probability 1− β′). Every peer tries to download the highest number of
chunks during each time slot, and that number will depend on the uploading bandwidth of the
contacted class. For example, if a peer requests a double-peer (with double bandwidth), it will
be able to download two chunks during the same time slot. The request process is identical to
that of the simple model, but it may continue after one chunk is obtained.

Definition 5.8.1 A free-rider is a peer that has infinite downloading bandwidth, but no upload-

ing bandwidth. When a peer requests a free rider, it will get no chunk on that time slot.

In other words, it is a selfish peer, that asks for chunks but does not share them.

Definition 5.8.2 A normal peer has infinite downloading bandwidth and unit uploading band-

width. When a peer requests a normal peer, the time slot works as in the simple model.

Definition 5.8.3 A double-bandwidth peer has infinite downloading bandwidth and double up-

loading bandwidth. When a peer requests a double-bandwidth peer, it can get zero, one or two

chunks.

For example, if one peer follows the Rarest First policy and requests a double-bandwidth peer,
then the request works as in the simple model. However, if a download occurs, the peer goes
on asking for the next chunks, until downloading another one or reaching position N − 1 of
its buffer. An analogous request occurs when the chunk scheduling policy is identified with an
arbitrary permutation.

Definition 5.8.4 A super-peer has both infinite downloading and uploading bandwidth. When

a peer requests a super-peer, it will take all chunks in only one time slot.

5.8.2 Definition of the Extended Model

The optimization problem is specified as follows. The two classes X and Y , the number of
peers M and M ′ and the buffer size N are given. We want to plan the network by choosing
the parameters α, β and β′ as well as the permutation π, in order to maximize the average
playback continuity in the network. More specifically, the Extended Model (from now on the
EM) is captured by the following optimization problem:

max f(π,M,N, α, β) =
MpN +M ′p′N
M +M ′

(5.23)

s.t.






























p1 =
α
M

p′1 =
1−α
M ′

pi+1 = pi + (1− pi)[βpis
(X,X,π)
i + (1− β)p′is

(X,Y,π)
i ]

p′i+1 = p′i + (1− p′i)[β
′p′is

(Y,Y,π)
i + (1− β′)pis

(Y,X,π)
i ]

α, β, β′ ∈ [0, 1]
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where s(X,Y,π)
i is the strategic sequence for a peer from classX using permutation π requesting

a peer from class Y . This expression will be found for each possible pair of classes (X,Y ).
The objective is to maximize the average quality of experience of all peers in the network (iden-
tifying quality with playback continuity). If we recall that the server sends with probability α
one peer from Class X at random, then obviously p1 = α/M and p′1 = (1 − α)/M ′ hold.
The following equations are correct under steady state, and take into account the fact that the
requested peer can be from their own class or the foreign class. We shall fix the parameters β
and β′ according to random peer selection (i.e. β =M/(M +M ′) and β′ =M ′/(M +M ′)).
In fact, we will show that under a full knowledge assumption, the network can work in optimal
conditions and the combinatorial problem is reduced to the simple model, which has been ex-
tensively analyzed in previous works [16, 17, 180, 186]. The intuition here is that if the server
as well as the peers can discover which peers have the highest bandwidth, then the server will
send chunks to them, and all peers will direct requests to this powerful peers (which play the
role of intermediate nodes of a tree-like structure).

There are exactly 42 −
(

4
2

)

= 10 different interaction of pairs of the four classes (we are
considering only once the cases of interaction between classes X and Y , when X 6= Y ).
Moreover, the cases of self-interaction can be reduced to the simple model. More precisely, the
self-interaction between free-riders is strictly inadmissible, and does not deserve our attention.
The interaction between normal peers behaves exactly as in the simple model, and between
double-bandwidth peers translates proportionally to the case of the simple model (in fact, cut
the time slot into two half). There is something to say for the case of self-interaction between
super-peers. As a consequence, we will focus on 7 scenarios: the six different pairs of classes,
and the simple model with infinite bandwidth.

5.8.3 Extended Model under Full Knowledge

From now on, we study the EM (Extended Model) when different classes interact (i.e. X 6= Y ).

Definition 5.8.5 The network in the EM has full knowledge when the server can recognize the

different classes of peers in the network, and peers can deduce the best class-request (if it is

better to ask one peer from its own class or the foreign class).

Definition 5.8.6 A peer-class has higher level than other when it has higher uploading band-

width.

Definition 5.8.7 The server is fair when each peer in the network has the same probability of

getting a chunk from it.

Definition 5.8.8 The network is balanced when the peer selection policy is at random.

Theorem 5.8.9 The EM is computationally more complex than the Simple Model.

Proof. We will prove that the EM is trivially reduced to the simple model under full knowledge
and fairness. Without loss of generality, supposeX has higher class than Y . Then clearly a peer
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has more chances to download chunk at position i requesting peers from class X rather than
from class Y , and s(X,X,π)

i ≥ s
(X,Y,π)
i . Given that peers can recognize the highest class, they

will always choose peers from class X to ask for chunks, so β = 1 and β′ = 0. By symmetry,
observe that s(Y,X,π)

i = s
(X,X,π)
i . Denote this number with sπi for brevity. Replacing in the EM

we have that:































p1 = α
M

p′1 = 1−α
M ′

pi+1 = pi + (1− pi)[pis
π
i ]

p′i+1 = p′i + (1− p′i)[pis
π
i ]

α ∈ [0, 1]

Assuming fairness, the server will send chunks with probability α = M/(M +M ′). As a
consequence, p1 = p′1 = 1/(M +M ′). Hence, both recursive expressions are the same, and
the sequences pi and p′i coincide. Moreover, the problem was reduced to:

{

p1 = α
M

pi+1 = pi + (1− pi)pis
π
i

(5.24)

being π a permutation, which is exactly the simple model with M +M ′ peers.

Q.E.D.

So far, we know that the peers with higher class perform better under the simple model,
and super-peers achieve the best performance, with unit strategic sequence (si = 1).

5.8.4 Dealing with Free Riders

As we said before, the self-interaction of free-riders is not admissible (it is evident that without
cooperation the network does not work). The reader can check that if all peers are free-riders
then pi = p1 = β/M < 1/M, ∀i, and this performance is not acceptable since the network
normally works with hundreds or thousands of peers. Similar results are obtained for the sec-
ond class: p′i = (1− β)/M ′ is constant.

The interaction between free-riders and other classes has a special treatment. Particularly,
suppose that X = 0 (free-rider class) and Y 6= 0. Under full knowledge, the server will always
choose to send chunks to peers from class Y , so α = 0. Moreover, free-riders will choose to
complete requests considering peers from Class Y , which will prefer to do self-requests, so
β = 0 and β′ = 1. Replacing in the EM:























p1 = 0

p′1 = 1
M ′

pi+1 = pi + (1− pi)p
′
is

(X,Y,π)
i

p′i+1 = p′i + (1− p′i)p
′
is

(Y,Y,π)
i
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As a consequence, the quality of all non-free-riders in the network is equivalent to that of the
simple model. Note that p1 = 0 but p2 > 0. For example, if the Rarest First policy is applied,
then the sequence {pi}1≤i≤N converges to 1 as N tends to infinity, and behaves exactly the
same as {p′i}1≤i≤N but with a shift. In this way, the free-riders follow the performance of the
other class, and the network scales.

The previous discussion shows that under full knowledge, the planning of the network is
reduced to choose a chunk scheduling policy, or a permutation π, as in the case of the simple
model (which has been extensively analyzed already). However, if the server cannot identify
classes, it will tune α 6= 0, and the performance of the network dramatically decreases, because
chunks given to free-riders will be missing for all but only one peer. Hence, the network
scales if and only if α = 0. This results outstand the importance of the recognition of free-
riders, under this new extension of the simple model. The full-knowledge hypothesis is strictly
necessary in this case. This is an evidence of the empirical complexity of designing a scalable
streaming network: normally the broadcaster does not have full knowledge, and peers neither.

5.8.5 The Presence of Super-Peers

Naturally, when one of the classes working in the network are super-peers, the cooperation is
easier. Under full knowledge of the network (i.e. the server as well as peers can recognize
classes of different peers), the server will always send chunks to super-peers, and the other
class will be pleased to complete full requests to them, making the network scalable. The
quality of experience of every peer in the network follows, under these circumstances, the one
of super-peers (as if there were no other class) in the simple model. As a consequence, all peers
will have (discarding the small initial shift) the following bitmap:

{

p1 = 1/M

pi+1 = pi(2− pi), ∀i ∈ [N − 1],
(5.25)

being M the number of super-peers in the network and pN the playback continuity for each
peer. When free-riders or super-peers are present inside the network, the analysis of the EM
is trivial (because the strategic sequence is reduced to 0 or 1 respectively). In the following
section we analyze the most complex interaction.

5.8.6 Interaction Between Normal and Double-Peers

This case is clearly the most complex to analyze. Intuitively, the server should send chunks to
the double-bandwidth peers, and the request always directed to them. Under full knowledge
this will happen, and normal-peers will tend to follow the quality of double-bandwidth peers.
Let us focus on a more realistic scenario. Choose X as normal peers and Y double-bandwidth
peers. Now, we will find an expression for the strategic sequences s(X,Y,π)

i and s(Y,Y,π)i (the
other two cases are self-requests, and expressed as in the simple model). For brevity, si denotes
the probability that normal-peers have to take the first chunk from a double-bandwidth peer. If
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k is such that πk+1 = i then:

si = (1− α/M)
k
∏

j=1

[1− (1− pπj
)p′πj

] (5.26)

Expression (5.26) deserves an explanation. One peer from class X will download the first
chunk at position i from class Y following permutation π whenever it fails in all previous
positions (and success at position i) and is not chosen by the server (with probability p1 =
1 − α/M). Hence, a fail at all positions πj , j = 1, . . . , k − 1 such that πk = i must occur.
Moreover, a fail at position πj occurs when it is not the case that the requesting peer does not
have that chunk (with probability 1− pπj

) and the requested peer does (event with probability
p′πj

). Then, a fail at position πj has probability 1− (1− pπj
)p′πj

.

Now, we are ready to express the sequence s(X,Y,π)
i :

s
(X,Y,π)
i = si + si

k−1
∑

j=1

(1− pπj
)p′πj

1− (1− pπj
)p′πj

(5.27)

When asking a double-bandwidth peer, we can download chunk at position i in the first chance
(the first term) or we downloaded a previous position πj , j = 1, . . . , k − 1 with success. The
factor

(1− pπj
)p′πj

/[1− (1− pπj
)p′πj

],

represents a replace of a success instead of a fail at position πj in the expression si.

In a similar way, the strategic sequence s(Y,Y,π)i is:

s
(Y,Y,π)
i = s∗i + s∗i

k−1
∑

j=1

(1− p′πj
)p′πj

1− (1− p′πj
)p′πj

, (5.28)

where

s∗i = (1− (1− α)/M)

k−1:πk=i
∏

j=1

[1− (1− p′πj
)p′πj

]. (5.29)

The EM can be obtained for this interaction by substitution.

5.8.7 Empirical Results

We will concentrate on a worst case scenario, by taking the Rarest First policy (i.e. πi = i), and
analyzing the scalability of the network under different mass of double-bandwidth peers, with
no knowledge of the network, which implies that the peer selection is balanced: β =M/(M +
M ′) and β′ =M ′/(M+M ′). Consider the common-network valuesM+M ′ = 1000 andN =
40. Table 5.2 presents the objective function f(α,M) = (MpN +M ′p′N )/(M +M ′) when
the mass of double-bandwidth peers is variable accordingly with M ′ ∈ {350, 250, 150, 100, 0}
double-bandwidth peers and correspondinglyM = 1000−M ′ normal peers. Table 5.3 contains
the function pN − p′N taking the same set for M and probability α.
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Table 5.2: Expected continuity f(α,M) for a balanced network with different number of
double-bandwidth peers.

α 350 250 150 100 0

0.0 1.0000 0.9998 0.9979 0.9941 0.9666
0.1 1.0000 0.9998 0.9979 0.9940 0.9665
0.2 1.0000 0.9998 0.9978 0.9939 0.9663
0.3 1.0000 0.9998 0.9978 0.9938 0.9661
0.4 1.0000 0.9998 0.9977 0.9937 0.9658
0.5 1.0000 0.9998 0.9977 0.9936 0.9655
0.6 1.0000 0.9998 0.9976 0.9934 0.9651
0.7 1.0000 0.9997 0.9975 0.9932 0.9646
0.8 1.0000 0.9997 0.9974 0.9929 0.9638
0.9 1.0000 0.9997 0.9972 0.9925 0.9625
1.0 1.0000 0.9997 0.9970 0.9918 impossible

Table 5.3: Difference in continuity pN − p′N between double-bandwidth peers and normal
peers, with different number of normal peers.

α 350 250 150 100 0

0.0 0.0002 0.0013 0.0067 0.0117 0.0006
0.1 0.0001 0.0010 0.0055 0.0094 0.0005
0.2 0.0001 0.0008 0.0041 0.0071 0.0004
0.3 0.0001 0.0005 0.0028 0.0048 0.0002
0.4 0.0000 0.0003 0.0014 0.0024 0.0001
0.5 0 0 0 0 0
0.6 -0.0000 -0.0003 -0.0015 -0.0025 -0.0001
0.7 -0.0001 -0.0006 -0.0030 -0.0051 -0.0003
0.8 -0.0001 -0.0009 -0.0047 -0.0077 -0.0004
0.9 -0.0002 -0.0013 -0.0065 -0.0106 -0.0006
1.0 -0.0002 -0.0017 -0.0086 -0.0140 impossible

It can be appreciated from Table 5.2 that the network always scales, although the server
cannot recognize peers and tunes incorrectly the parameter α. Certainly, the performance is
the best when α = 0 (that is, to choose always double-bandwidth peers to send chunks). It
can be noticed that the average continuity is higher than 96% in all instances, so the video
quality is high. It is interesting to analyze if the video quality of normal peers is similar to
double-peers or not. Table 5.3 contains the difference of continuity pN − p′N . It is obvious that
when the parameter α is increased, the quality of normal peers is increased as well. Moreover,
in the case α = 0.5 both classes of peers experience the same video quality, and there is a
symmetry in the instances α = i/10 and α = (10 − i)/10. It is evident that peers can follow
double-bandwidth peers, and peers have better continuity than super-peers when α > 0.5. This
empirical analysis shows that the network scales when peers and double-peers interact, even
under pessimistic scenarios. A further experiment with the balanced case of α = 0.5 shows
the scalability property of this network when the storage size increases. Figure 5.10 reveals the
average continuity of normal (and double-bandwidth) peers as a function of the buffer size N ,
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considering again different amounts of double-bandwidth peers. It can be appreciated that the
average continuity is higher than 90% when the storage capacity is higher than 25, even when
the number of double-bandwidth peers is small.

Figure 5.10: Evolution of the average continuity of peers as a function of the buffer storage capacity
N .

5.9 Conclusions

In this chapter an in-depth analysis of the mathematical model [233] is detailed. The system ad-
dressed is pull-mesh based, as many successful commercial peer-to-peer live video streaming
services. The model is simple yet robust, and captures the design of chunk policies, showing
explicitly the buffering-playback trade-off, which represent the most shocking parameters to
measure quality of experience [181]. The most valuable results are performance bounds, the
best chunk scheduling policies so far in the lights of the model, nice performance results in the
GoalBit platform and an overview of major causes of concern in live peer-to-peer systems not
included in the original model, as free-riding and heterogeneity.

First it is theoretically proved a pessimistic result, that states the impossibility to play a
perfect video, without cuts. However, future breakthroughs related with storage-technology
will provide us near-perfect playback continuity. On the other hand, higher buffer capacities
necessary increment the start-up latency. A brief visit to stochastic-based chunk policies (a
Weighted Greedy policy) suggests a pull should occur whenever possible during a request, oth-
erwise peers could examine the whole buffer having fails in several time slots. Therefore, our
whole world is the set of deterministic Permutation-based policies, that exploit the structural
viewpoint of the buffer model. A preliminary study outstands a subset of W -shaped chunk
scheduling policies, which are then used as a trail in a more sophisticated heuristic resolution.
The problem suffers several translations, by means of a key element which is the expected ex-
tension of a request. Exploiting the similarity between permutations and tours in a weighted
graph, an alternative ATSP was faced to find effective chunk scheduling policies. The results
are encouraging, confirming that the ATSP formulation was suitable, and the combinatorial
problem useful to decode the playback-delivery trade-off.
An Extended Model is also introduced, in order to have an insight of the effects of free-riding
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and heterogeneity. This model assumes a swarming policy based on uploading bandwidth,
classifying peers as free-riders, normal, double-bandwidth and super-peers with infinite band-
width (which achieve the playback universal bound). A primitive analysis demonstrates the
strength of the full knowledge hypothesis in the network. In fact, the scalability of the net-
work is guaranteed whenever the server as well as peers can recognize different classes. When
free-riders interact with other classes, peers will always experience a non-negligible number of
cuts in the video content, unless the server sends chunks to non-free-riders. On the other hand,
when super-peers take part of it, the network always scales.
The performance of the Rarest First policy was contrasted with the one of super-peers. Partic-
ularly, the convergence to perfect playback continuity is faster for super-peers. Indeed, there
is no feasible policy that can achieve quadratic convergence to the perfect continuity, even
with high buffer size. Finally, the most complex scenario considered the interaction between
normal and double-bandwidth peers, and was analyzed via simulations. The results outstand
the importance of full knowledge, and further analysis is needed to have a comprehension of
the possibility to achieve a full-knowledge, and the compromise with controlled overheads. A
major challenge is to dynamically adjust the buffer capacity to adapt the population’s needs,
as seems to occur during transient time in some real networks like PPLive. The subset of W -
shaped policies is suitable to include in a real-time dynamic chunk scheduling policy, given
that they are polynomial in cardinality, and a fast search for optimality is feasible.
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Chapter 6

Concluding Remarks and Trends for

Future Research

The original concept of Internet was suitable for the client-server architecture, that cannot cope
with massive flash crowds, or bandwidth sensitive systems as video streaming. Concretely,
their resources do not scale with the size of the network. The introduction of peer-to-peer net-
works is a promising solution, where peers self-organize in a network overlay topology, being
both clients and servers.

There are three video streaming modes suitable for Internet distribution. All of them share
common concerns like node churn and variable asymmetric downlink/uplink resources. File
sharing represents the most rustic mode, in which the video file is stored by a set of node
servers, and should be completely downloaded before its playback. The usual performance
metric is the makespan or time completion of peers (average or worst case time completion).
New challenges are added when different streaming modes are considered (in some literature
file sharing is not included as a streaming mode). On-demand video streaming copes with
asymmetric nature of peers, who progressively download the video stream and watch it online.
Finally in live video streaming the video is simultaneously generated, distributed and played
by all users, with stringent real time requirements.

In this thesis, a mathematical analysis of the two most challenging streaming modes was
provided, namely on-demand and live video streaming. For video on-demand, a deterministic
fluid model is introduced, to understand the advantages of peer-assistance in relation with a
raw Content Delivery Network (CDN). The attention is focused on the stability and capacity of
both systems, under different levels of complexity. In the concurrent model (where users even
can watch multiple video contents at the same time), the peer-assistance is proved to outper-
form the CDN always, which is an intuitive result (it is better to exploit idle users capacity).
However, we could not fully characterize the stability of concurrent systems. In the sequential
level (where users do not watch more than one content simultaneously), the system turns to
be always globally stable, and again CDNs are outperformed by the peer-to-peer philosophy.
By means of Little’s law, a combinatorial optimization problem is here provided, which tries
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to minimize the peer excursion times, deciding which video-items should be stored in cache
nodes (super-peers in the GoalBit system). The problem is NP-Complete, and is heuristically
solved with a GRASP methodology. Interestingly enough, the results suggest even a 90% of
savings in server bandwidth, showing the peer-assistance in VoD services are a highly promis-
ing alternative, and should be integrally included as a solution to cope massive populations,
specially in the distribution of popular files.

In live streaming, the chore resilience mechanism is scheduling, i.e. neighboring and chunk
scheduling policies. Following the BitTorrent’s philosophy, live streaming networks tend to
use a random overlay topology. As a consequence, a key element in the design of live video
streaming is its chunk scheduling policy. A pull-mesh cooperative system is deeply analyzed
here. The mathematical model is robust, and gives a tractable characterization of the network
in steady state under different chunk scheduling models. Additionally, it includes playback
continuity and start-up latency as performance metrics, which represent the most shocking pa-
rameters to measure quality of experience for video distribution. An ideal approach helps to
find universal bounds for both metrics, and a Follower System, which suggests a subfamily
of W -shaped policies. They were used as a trail in a more sophisticated ad-hoc Ant-Colony
resolution, which returns high-performing policies, when compared with previous classical ap-
proaches.

The production of this thesis has been disseminated in several proceedings as well as jour-
nals. The point of departure of the research in caching policies for P2P-VoD systems is [182],
where my colleagues Pablo Rodríguez-Bocca and Claudia Rostagnol propose a combinatorial
optimization problem to minimize the expected excursion times for end-users. Some inconsis-
tencies were detected in the model, specially in the treatment of bandwidth bottlenecks (upload
or download) and network stability, which was used there with no proof. The model suffered
improvements, and the peer-assistance is proved to outperform the traditional CDN architecture
under quite general scenarios in a short paper [176]. However, the stability of the fluid model
was, up to that moment, an open problem. The peer-to-peer philosophy is proved to always
outperform CDN systems, and the first stability results were included in a full paper [177]. The
Sequential Fluid Model is finally proved to be globally stable, and the combinatorial optimiza-
tion problem (the Caching Problem) is inside the class of NP-Complete problems, also proved
for the first time in the journal [187].

A preliminary understanding of the cooperative chunk scheduling model for live stream-
ing, including the Follower System, was first presented in [16]. The analytical expression
for the expected extension of a request and combinatorial optimization problem, including an
Ant-Colony-based resolution was introduced in [17]. The main ingredients and problem trans-
lation to an ATSP is summarized in [186]. Two compilation works, which include a historical
revision of scheduling policies and results in the real GoalBit platform are disseminated in
journals [183, 184]. Specifically, a carefully detailed design of the ant-colony exploration is
presented in [183], whereas the compilation work [184] is more suitable for an operational re-
search audience. An extension of the cooperative model is introduced for the first time in [185],
where the goal is to study the impact of heterogeneity and free-riding effects. The system turns
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to be highly scalable under full knowledge, even when free-riders take part of the network. The
overlay is naturally organized in a tree-based structure, where resourceful peers are parents of
normal peer (or free-riders). It is worth to point-out that the network performance is dramati-
cally deteriorated when the server cannot recognize the different entities in the system (normal
peers, double peers, free-riders and super-peers). The GoalBit architecture is first presented to
the research community in [18], which represents the benchmark that supports the experimen-
tal results of this thesis.

In the whole research process, accuracy was compromised to gain simplicity. This is a nat-
ural fact inherent to the art of mathematical modeling, where the results give an overview of the
system’s behavior, and suggest hints of the system design. As main conclusions, this thesis pro-
motes the inclusion of peer-assistance in VoD CDN architectures like YouTube, who spends
millions of dollars per month in bandwidth from ISPs. Additionally, the Rarest First policy
from BitTorrent is not suitable for streaming, and we just give hints of new chunk scheduling
policies. However, the playback-delivery trade-off is not well understood yet. Indeed, here we
addressed a static and structural analysis, but a dynamic buffer adaptation was not provided.
We believe a closed-look at successful proprietary networks as PPLive would give additional
hints, which could be mixed with the mathematical results here provided. Additionally, we
highlight valuable benefits of contribution and bandwidth awareness under heterogeneous net-
works under presence of potential free-riders. Indeed, the cooperative system is highly scalable
when the server is able to discriminate different entities in the network. However, if free-riders
are frequently flavored peers (i.e. the server chooses them to send video-chunks several times),
the performance drops dramatically.

As trends for future work, we would like to perform a rigorous analysis of dynamic chunk
scheduling policies with buffer adaptation, tuned in accordance with peer populations and their
needs. Additionally, the theoretical proof of global stability in the General (and Concurrent)
Fluid Model would reinforce the peer-assistance in VoD systems, and open new way towards
the deployment of multiple video sessions in a single home-PC, which seems to be common
practice for near future, guiding by users behavior.
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Chapter 7

Open Problems

Several problems remain unsolved, and are issued from this thesis. We will enumerate in
Sections 7.1 and 7.2 open mathematical problems related with Chapters 4 and 5 respectively.
A brief discussion of open technological concerns is included in Section 7.3

7.1 Simple Fluid Model for On-Demand Video Streaming

1. Fully characterize the conditions for global stability, for the General Fluid Model.

2. Fully characterize the conditions for global stability, for the Concurrent Fluid Model.

3. Provide an analysis of variance in a neighborhood of the expected system-evolution.

4. Find a polynomial-time algorithm to compute feasibility for an arbitrary instance of the
Caching Problem, or prove this is impossible. This challenging problem would solve the
millennium dilemma problem for classical complexity theory.

7.2 Cooperative Model for Live Video Streaming

1. Does the cooperative model running with a deterministic Permutation-based policy even-
tually converges to a regime state, for all permutations? We believe this is true, but a
formal proof is missing, and it remains as a conjecture.

2. Find an exact closed expression for the start-up latency.

3. Find all the coefficients of the polynomial pN of degree 3N−1 such that
pi+1 = pi + pi(1− pi)

2, as a function of p1 = 1
M .

4. Find all the coefficients of the polynomial pN such that
pi+1 = pi + pi(1− pi)(1− pN + pi+1 − p1), as a function of p1 = 1

M .

5. Find the ordinary generating function of the sequence cn = (1 − 1
M )2

n
, being M a

positive integer (this could be useful to provide an alternative expression for the universal
upper-bound for start-up latency).
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6. Find the pattern of permutation-based policy with best playback-continuity (start-up la-
tency) in terms of the positive integers M and N .

7. Solve the non-linear system NLS(π) exactly, given an arbitrary permutation π.

8. Solve the Combinatorial Problem maxπ∈ΠN−1
E(Xπ), being Xπ the random variable

that represents the number of steps during a request.

7.3 Discussion of Technological Concerns

A deep understanding of successful proprietary live streaming networks would possibly facil-
itate the peer-to-peer computing field. There are works that strongly suggest PPLive uses a
dynamic buffer policy, with a variable buffer size starting from N = 10 and reaching N = 110
chunks. In this thesis only static solutions are provided for fixed buffer sizes. However, the
number ofW -shaped scheduling policies is polynomial with the buffer size. A time-consuming
but feasible solution is to find the best W -shaped policy off-line, for every N over a finite set,
and dynamically (on-line) adjust the policies when moving N . The structure of the W -shaped
policy is simple, and has similarities with previous structures. There is a small subset dedicated
to chunk urgencies, controlled by a positive integer I . Immediately, the requests proceeds look-
ing for the J chunks farthest from the playback deadline, trading urgency for chunk availability.
Until this moment, the policy is quite similar to the Mixture, only reversing the order (the Mix-
ture policy starts the request running Rarest First and then Greedy; all W -shaped policies run
Greedy first and then Rarest First). Nevertheless, a great difference with respect to other so-
lutions is the “zig-zag” priority used in the rest of the buffers. The implementation of these
policies should first find a function φ : (M,N) → (I, J) which would determine a complete-
and-dynamic chunk scheduling policy.
On the other hand, the adaptation of a Dynamic Multiple Video Cache (MVC) sounds an ambi-
tious task. Until the best of our knowledge, so far the MVC techniques are all based on heuris-
tics (usually considering the least used video item, or last used through a historic database,
etc.). Here we gave a first step, with a formal state of a combinatorial optimization problem
(the Caching Problem from Chapter 5). However, our solution is static, in the lights of a sta-
tionary state. A dynamic approach for the caching problem in video-streaming design starting
from the transient state is an unknown task yet.
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Appendix

8.1 Proof of Global Stability of the P2P-SFM

Here we will conclude the proof of the statement:

Theorem 8.1.1 The P2P-SFM is globally stable.

As commented before, we skip the case in which γj = 0 for some j ∈ [K], given that in this
case the number of seeds increases without bound, and is clearly unrealistic. Hence, we will
prove the result when γj > 0 for all j ∈ [K]. By convergence in the product topology, it
suffices to prove that the following linear switched system is globally stable:











dx

dt
= λ− θx(t)−min{cx(t), ηµx(t) + µy(t) + ρz} (8.1a)

dy

dt
= min{cx(t), ηµx(t) + µy(t) + ρz} − γy(t), (8.1b)

We recall that if c < µη the system is linear and globally stable. Hence, without loss of
generality we mas consider c ≥ ηµ. Consider The following Areas of the (x, y)-plane:

I = {(x, y) ∈ R
2 : mx < y + y0},

II = {(x, y) ∈ R
2 : mx > y + y0},

being m = c−ηµ
µ and y0 =

ρz
µ . When (x, y) is in Area I the system is governed by System I:

(I)











dx(t)

dt
= λ− (θ + c)x(t) (8.2a)

dy(t)

dt
= cx(t)− γy(t). (8.2b)

Otherwise, it is governed by System II:

(II)











dx

dt
= λ− (θ + ηµ)x(t)− µy(t)− ρz (8.3a)

dy

dt
= ηµx(t) + (µ− γ)y(t) + ρz. (8.3b)
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We already proved that System I is globally stable, whereas System II is globally stable
whenever γ > µ. Additionally, we proved that the P2P-SFM is locally stable either in Area I
or Area II, but when the equality holds for the rest point (x, y) (i.e. mx = y + y0), even local
stability needs further analysis, and is linked with the global stability of the system.
In order to prove global stability of the P2P-SFM, the main idea is to prove that the orbit
(x(t), y(t)) governed by Equations (8.1a) and (8.1b) rests either in Area I or Area II indefinitely
after a certain finite time t∗. As a consequence, the local stability of both areas conclude the
global stability of the linear switched system. Let us consider ψ such that tg(ψ) = m, and the
following linear transformation:

{

x′ = xcos(ψ) + (y + y0)sin(ψ) (8.4a)

y′ = −xsin(ψ) + (y + y0)cos(ψ) (8.4b)

The linear transformation maps the line mx = y + y0 onto the x′ axis, and Area I (II) onto the
semi-plane y′ > 0 (y′ < 0). In this way, the switchings can be studied easily. Let us find the
derivative of y′, when y′ = 0:

ẏ′ = −(λ− (θ + c)x)sin(ψ) + (cx− γy)cos(ψ)

= (−mλ+ (θ + c)mx+ cx− γy)
sin(ψ)

m

= (−mλ+ (θ + c)mx+ cx− γmx+ γy0)
sin(ψ)

m

= ((
c

m
+ θ + c− γ)x− λ+

γy0
m

)sin(ψ)

When the system switches from Area I to Area II we must have ẏ′ > 0, and as a consequence
x > mλ−γy0

c+m(θ+c−γ) . When the system switches from Area II to Area I, the opposite equality
holds. Therefore, the switches occur only in special parts of the plane.
The following lemmas are just re-written, and in some parts adapted, from the journal of
Dongyu Qiu and Wei Qian Sang [167]. All the merits are for them.

Lemma 8.1.2 If the rest point (x, y) is in Area I, the P2P-SFM is globally stable.

Proof. If (x(0), y(0)) is in Area I and the evolution rests in that area, the global stability of
System I guarantees convergence to the rest point. Otherwise, if (x(0), y(0)) is in Area II (or
in Area I but switched to Area II in a certain instant), we can divide the analysis whether γ > µ
or not. If γ > µ System II is stable, but the rest point is in Area I, so necessarily the orbit must
return to Area I. Otherwise (γ < µ), System II is unstable, and y(t) increases exponentially
whereas x(t) vanishes to 0, so the return to Area I is guaranteed. Let us call t0 the instant
where the system is switched from Area II to Area I. We know that y′(t0) = 0 and ẏ′(t0) > 0.
If γ 6= θ + c, we have that y′(t) = y′ + k1e

−(θ+c)t + k2e
−γt, which together with the initial

conditions assures that it has no more than one extremal point, so we cannot find another instant
t1 > t0 such that y′(t1) < 0, and the orbit stays in Area I forever. The situation is analogous
when γ 6= θ + c and y′(t) = y′ + k1e

−γt + k2te
−γt.

Q.E.D.
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Lemma 8.1.3 If (x, y) is in the line mx = y + y0, the P2P-SFM is globally stable.

Proof. In this case γ > µ, and both linear systems are globally stable. The previous reasoning
leads again to observe that the orbit rests indefinitely in Area I, unless it never enters Area II
(in which case it will rest in Area II).

Q.E.D.

The most tricky case is where the rest point is in Area II. If the eigenvalues of System II
are real negative, the same previous reasoning holds to prove global stability. Otherwise, we
must play with a Lyapunov function and trigonometry. Without loss of generality, we will
assume that (x(0), y(0)) is in Area II (otherwise, given that Area I is stable, we would have
a certain instant where the system is switched to Area II). We will use even indices t2i to
denote the instants where the system is switched from Area II to Area I, and odd indices t2i+1

for the return instants. From now on, we will assume the rest point (x, y) is in Area II (i.e.
mx > y + y0).

Lemma 8.1.4
∣

∣

∣

˙y′(t2i+1)
∣

∣

∣
≤
∣

∣

∣
ẏ′(t2i)

∣

∣

∣
, ∀i. (8.5)

Proof. Without loss of generality we will prove that
∣

∣

∣ẏ′(t1)
∣

∣

∣ ≤
∣

∣

∣ẏ′(t2)
∣

∣

∣. We will choose

two positive reals λ1 and λ2 such that the function V (t) = λ1(y
′(t) − y′)2 + λ2(ẏ′)

2 is a
Lyapunov function. The result then follows because V (t1) ≤ V (t2), and as a consequence
∣

∣

∣ẏ′(t1)
∣

∣

∣ ≤
∣

∣

∣ẏ′(t2)
∣

∣

∣.

Consider the vector z(t) = [y′(t) − y′, ẏ′(t)]t. Given that System I is stable, in Area I we can
consider the system

ż = Az, (8.6)

where A has non-negative real values, and for some real numbers a1 and a2

A =

(

0 1
a1 a2

)

We know that the characteristic polynomial p(λ) = λ2− a2λ− a1 must have eigenvalues with
negative real parts, hence both a1 and a2 must be negative. Now we can find the derivative of
V (t) in terms of the coefficients a1 and a2:

V̇ = 2λ1ẏ′(y
′ − y′) + 2λ2ẏ′ÿ′

= 2λ1ẏ′(y
′ − y′) + 2λ2ẏ′(a1(y

′ − y′) + a2ẏ′)

= 2ẏ′(y′ − y′)(λ1 + a1λ2) + 2λ2a2

(

ẏ′
)2

Choosing λ1 = −a1λ2 > 0 we finally get that

V̇ (t) = 2λ2a2(ẏ′)
2(t) ≤ 0.
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Q.E.D.

Recall that the case left for study is when the eigenvalues of System II are conjugated. As
a consequence, the expression for y′(t) is known beforehand:

y′(t) = −y′ +Ae−α(t−t1)cos(w(t− t1) + φ)

We know that its derivative at y′(t1) = 0, so cos(φ) = y′

A > 0, and φ ∈ [−π
2 ,

π
2 ].

Lemma 8.1.5

• If

∣

∣

∣ẏ′(t2i+1)
∣

∣

∣ < αy′, the system will rest indefinitely in Area II.

•

∣

∣

∣ẏ′(t2i)
∣

∣

∣ < e−
απ
w

∣

∣

∣ẏ′(t2i−1)
∣

∣

∣

Proof. Let t̂ be the first relative maximum for y′(t) after t2i+1. Then 2π = w(t̂ − t2i+1 + φ)

and y′(t2i+1) = −y′ + Ae−α(t̂−t2i+1). By its definition we know that y(t2i+1) = 0, so y′ =
Acos(φ). Additionally by derivation we have that ẏ′(t2i+1) = −Aasin(φ+β). Let us assume

that
∣

∣

∣
ẏ′(t2i+1)

∣

∣

∣
< Aasin(β). Then sin(φ+ β) < sin(β), so 0 < φ+ β < β, or −β < φ < 0.

As a consequence we get that A = y′

cos(φ) ≤
y′

cos(β) , or Acos(β) ≤ y′. Replacing we get that:

y′(t̂) ≤ −y′(1− e−α(t̂−t2i+1)) < 0, (8.7)

and the evolution (x′(t), y′(t)) keeps under the axis x′, or equivalently the system keeps in
Area II forever. Observe that:

∣

∣

∣

˙y′(t2i+1)
∣

∣

∣ = Aasin(φ+ β)

= Aa[sin(φ)cos(β) + cos(φ)sin(β)

≤ Aasin(β)cos(φ) = Acos(φ)asin(β)

≤ y′asin(β)

= ǫ ≤ Asin(β),

where we observe that a2sin2(β) = (α2 + w2) tg2(β)
1+tg2(β)

= α2, and hence ǫ = y′asin(β).

Therefore, our assumption ẏ′(t2i+1) < ǫ is weaker than our hypothesis
∣

∣

∣ẏ′(t2i+1)
∣

∣

∣ < αy′, so

the first statement holds.
Suppose now that t2i+2 is finite, so y′(t2i+1) = y′(t2i+2) = 0. Replacing we get that:

y′ = Acos(φ) = Ae−α(t2i+2−t2i+1)cos(w(t2i+2 − t2i+1) + φ), (8.8)

and necessarily 0 ≤ φ ≤ π
2 (otherwise, t2i+2 would not be finite). By trigonometric relations

we get that |sin(w(t2i+2 − t2i+1) + φ+ β)| ≤ |sin(π + φ+ β)| and finally,
∣

∣

∣

∣

∣

ẏ′(t2i+2)

ẏ′(t2i+1)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Aae−α(t2i+2−t2i+1)sin(w(t2i+2 − t2i+1) + φ+ β)

Aasin(φ+ β)

∣

∣

∣

∣

∣

≤ e−α(t2i+2−t2i+1)

≤ e−α π
w

< 1.
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Q.E.D.

Corollary 8.1.6 If the rest point is in Area II, the P2P-SFM is globally stable.

Proof. Combining Lemmas 8.1.4 and 8.1.5, we get that:
∣

∣

∣ẏ′(t2i+1)
∣

∣

∣ ≤
∣

∣

∣ẏ′(t2i)
∣

∣

∣

< e−iαπ
w

∣

∣

∣
ẏ′(t1)

∣

∣

∣

As a consequence, if we choose i > w
2π ln(

ẏ′(t1)
ǫ ), we find that

∣

∣

∣ẏ′(t2i+1)
∣

∣

∣ < ǫ,

so the orbit rests after t2i+1 in Area II, and the system is globally stable.

Q.E.D.

Combining Lemmas 8.1.2, 8.1.3 and 8.1.6, we obtain the desired conclusion:

Theorem 8.1.7 The P2P-SFM is globally stable.
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8.2 GRASP

Combinatorial optimization problems arise in several real-world problems (economics, telecom-
munication, transport, politics, industry), were humans-beings have the opportunity to choose
among several options. Usually, that number of options cannot be exhaustively analyzed,
mainly because its number increases exponentially with an input size of the system. Much
work has been done over the last six decades to develop optimal seeking methods that do not
explicitly require an examination of each alternative, giving shape to the field of Combinatorial

Optimization [156]. Usually, the problem is computationally intractable (i.e. NP-Hard), or suf-
ficiently large to admit an exact algorithm, and a smart search technique should be considered
exploiting the real structure of the problem, via heuristics. Optimality is not guaranteed, but
compromised at the cost of computational efficiency.
Metaheuristics are an abstraction of search methodologies which are widely applicable to op-
timization problems. The most promising are Simulated Annealing [103], Tabu Search [82],
Genetic Algorithms [83], Variable Neighborhood Search [90], GRASP [75], Ant Colony Op-
timization [63] and Particle Swarm Optimization [102], among others. The interested reader
can find a complete list and details in the Handbook of Metaheuristics [81].

Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start or iterative pro-
cess [117], where feasible solutions are produced in a first phase, and neighbor solutions are
explored in a second phase. The best overall solution is returned as the result. The first im-
plementation is due to Tomas Feo and Mauricio Resende, were the authors address a hard set
covering problem arising for Steiner triple systems [75]. They introduce adaptation and ran-
domness to the classical Greedy heuristic for the set covering problem (where P1, . . . , Pn cover
the set J = {1, . . . ,m} and the objective is to find the minimum cardinality set I ⊂ {1, . . . , n}
such that ∪i∈IPi = J).

GRASP is a powerful methodology to address hard combinatorial optimization problems,
and has been successfully implemented in particular to several telecommunications problems,
such as Internet Telephony [200], Cellular Systems [5, 6], Connectivity [29] and Wide Area
Network design [178]. Here we will sketch the GRASP metaheuristic based on the work from
Mauricio Resende and Celso Ribeiro, which is useful as template to solve a wide family of
combinatorial problems [173]. Consider a ground set E = {1, . . . , n}, a feasible set F ⊆ 2E

for the optimization problem minA⊆E f(A), and an objective function f : 2E → R. The
Pseudo-code 8 illustrates the main blocks of a GRASP procedure for minimization, where
Max_Iterations iterations are performed, α ∈ [0, 1] is the quantity of randomness in the
process andN is a neighborhood structure of solutions (basically, a rule that defines a neighbor
of a certain solution). The cycle includes Lines 1− 5, and the best solution encountered during
the cycle is finally returned in Line 6. Lines 2 and 3 represent respectively the Construction
and Local Search phases, whereas the partially best solution is updated in Line 4.
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Algorithm 8 S = GRASP (MaxIterations,N )

1: for k = 1 to Max_Iterations do

2: S ← Greedy_Randomized_Construction(α)
3: S ← Local_Search(S,N )
4: Update_Solution(S)
5: end for

6: return S

A general approach for the Greedy Randomized Construction is specified in Pseudo-code 9.
Solution S is empty at the beginning, in Line 1, and an auxiliary setC has the potential elements
to be added to S. A carefully chosen element from C is picked up during each iteration of
the While loop (Lines 3 − 9), which is finished once a feasible solution is met. A Greedy
construction would choose cmin, which is the element with the lowest cost to be added to the
partial non-feasible solution (Line 4). On the other hand, cmax is the most expensive element
to be added (Line 5). The Restricted Candidate List RCL is defined in Line 6, and has all the
elements whose cost are below a certain threshold (see Line 6). In Line 7, a random element
from the RCL is picked and added to the solution S. The process is repeated until a feasible
solution S is found. It is worth to notice the effect of the input parameter α ∈ [0, 1]. When
α = 0, the Greedy construction is retrieved. On the contrary, α = 1 means a completely
random construction. Therefore, the parameter α imposes a trade-off between diversification
and greediness.

Algorithm 9 S = Greedy_Randomized_Construction(α)

1: S ← ∅
2: C ← E
3: while C 6= ∅ do

4: cmin ← minc∈C f(S ∪ {c})
5: cmax ← maxc∈C f(S ∪ {c})
6: RCL← {c ∈ C : f(S∪{c}) ≤ f(S∪{cmin})+α(f(S∪{cmax})−f(S∪{cmin}))}

7: S ← S ∪Random(RCL)
8: Update(C)
9: end while

10: return S

The Greedy Randomized Construction does not provide guarantee of local optimality. For
that reason, a Local Search phase is finally introduced, in order to return a locally optimal
solution (which could be incidentally globally optimal). In order to define this phase, a rule to
define neighbors of a certain solution is mandatory, called a neighborhood structure. A better
neighbor solution is iteratively picked until no improvement is possible. A general local search
phase is presented in pseudo-code 10.
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Algorithm 10 S = Local_Search(S,N )

1: H(S) = {X ∈ N (S) : f(X) < f(S)}
2: while H(S) 6= ∅ do

3: S ← ChooseIn(H)
4: H(S) = {X ∈ N (S) : f(X) < f(S)}
5: end while

6: return S

The success of the local search phase strongly depends on the quality of the starting solu-
tion, the computational cost for finding a better local solution, and naturally, on the richness
of the neighborhood structure. The interested reader can find valuable literature and GRASP
enhancements in [76, 173] and references therein 1.

1The reader can find a generous number of references in the web-site http://www2.research.att.com/ mgcr/grasp/
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