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Abstract: Hydrogen sulfide (H2S/HS–) can be formed in mammalian tissues and exert physiological
effects. It can react with metal centers and oxidized thiol products such as disulfides (RSSR)
and sulfenic acids (RSOH). Reactions with oxidized thiol products form persulfides (RSSH/RSS–).
Persulfides have been proposed to transduce the signaling effects of H2S through the modification
of critical cysteines. They are more nucleophilic and acidic than thiols and, contrary to thiols,
also possess electrophilic character. In this review, we summarize the biochemistry of hydrogen
sulfide and persulfides, focusing on redox aspects. We describe biologically relevant one- and
two-electron oxidants and their reactions with H2S and persulfides, as well as the fates of the
oxidation products. The biological implications are discussed.
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1. Hydrogen Sulfide: An Ancient Metabolite with Novel Regulatory Roles

Hydrogen sulfide (H2S) is the simplest molecule containing reduced sulfur among the wide
diversity of sulfur compounds. It was first synthesized as a gas, and its composition was identified in
the eighteenth century [1]. It is naturally occurring in geothermal sources [2] and has been related to
the emergence and evolution of organisms in Earth [3]. It is a crucial molecule in the metabolism of
several organisms, acting both as an electron donor in energetic pathways (anoxygenic photosynthesis
and oxidative phosphorylation in lithotrophs [4]) and as a sulfur donor in synthetic pathways (cysteine
and methionine synthesis, among others [5]). Furthermore, sulfur- and sulfate-reducing organisms are
able to produce H2S in assimilative or dissimilative processes [6].

H2S was identified as a toxic compound for humans centuries ago. High levels of H2S can
induce inhibition of cellular respiration [7]. Exposure of mammals to H2S from sewage, industrial
sources and domestic accidents have produced numerous cases of loss of consciousness and death [8].
However, some animals are able to tolerate elevated levels of H2S and have efficient systems for
its detoxification [9]. Indeed, in the human intestine, mitochondria are able to deal with the H2S
produced by the enteric flora [10], which diffuses easily through membranes [11–13] and represents
a hazard for neighboring tissues. The enterocytes are able to fuel the electronic transport chain
by oxidizing H2S to sulfate (SO4

2–) and thiosulfate (S2O3
2–) [14]. The discovery of endogenous

biogenesis of H2S in mammals [15,16] and the evidence of modulatory effects when administered
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at low concentrations led to the hypothesis of a regulatory role [17–19]. Numerous physiological
responses to H2S have been reported since, including interactions with several cation channels in the
nervous system, the attenuation of myocardial ischemia reperfusion injury, promotion of angiogenesis,
and the induction of pro-/anti-inflammatory responses [20]. Several reports assigned an antioxidant
role for H2S, which could be related to cytoprotective effects [21–26]; nevertheless, consideration of
the kinetics of the reactions suggests that the protective role is not due to direct reactions of H2S with
oxidants, as will be described below [27].

2. Persulfides as Potential Transducers of H2S Signaling

The observed physiopathological effects focused the research in the field on the identification
of cellular targets and on the underlying signaling mechanisms in order to develop plausible routes
for pharmacological intervention. H2S shows nucleophilicity and is analogous to thiols, albeit
weaker [27,28]. Among some possible targets in cells, H2S can react with metallic centers (iron,
copper, zinc, molybdenum) producing coordination complexes and, in some circumstances, donating
electrons. H2S is also able to react with oxidized forms of protein thiols such as disulfides (RSSR) or
sulfenic acids (RSOH), thus leading to the formation of persulfides (RSSH/RSS–) [28,29].

The persulfides, which are also intermediates in the synthesis of particular sulfur
biomolecules [30,31], are nowadays being considered candidate species for the transduction of the
signals triggered by H2S. Not only are these species suggested to be more nucleophilic and acidic
than the original thiols, but they also show an electrophilic character that is lacking in the original
thiols [32]. In addition, enzymatic pathways for the H2S–independent formation of persulfides
have been reported [33–42]. The generation of persulfides on critical protein cysteines constitutes a
posttranslational modification which could affect relevant activities in cells [43,44] and thus allow for
signal transduction and the modulation of processes. Furthermore, persulfides are able to react with
oxidants. Direct and indirect protective effects of persulfides have been hypothesized and possible
antioxidant roles are being surveyed [45–48].

The biochemistry of H2S and persulfides is now under intense scrutiny. In this work we describe
the characteristics of these species from a redox biochemistry perspective, focusing on the reactions of
H2S and persulfides with reactive species of biological interest.

3. Chemistry and Biology of H2S

H2S is recognized by its odor of rotten eggs. Humans can detect as low as 0.0005–0.3 ppm,
whereas concentrations higher than 10 ppm start to cause discomfort and higher than 500 ppm cause
rapid loss of consciousness and death [49].

The recommended names by IUPAC are dihydrogen sulfide and sulfane for H2S, and sulfanide or
hydrogen(sulfide)(1–) for HS– [20]. In this review, “H2S” will be used for the gas and for the mixture
of H2S and HS– in aqueous solution.

H2S may be considered at first sight to be similar to water, but there are several important
differences that lead to dissimilar physical and chemical properties. Sulfur is larger than oxygen
(van der Waals radii of 1.80 and 1.42 Å, respectively) [50], has a lower electronegativity (2.58 and 3.44 in
the Pauling scale, respectively), and is more polarizable [51]. Hence, the dipole moment of H2S is lower
than that of water, and hydrogen bonds in H2S are not formed at room temperature [51]; this explains
why H2S is a gas at ambient temperature and pressure. H2S can dissolve in water with a relatively
high solubility (101.3 mM/atm at 25 ◦C) [52], and the solvation is dominated by dispersive forces with
no hydrogen bonds with water [51]. The slightly hydrophobic character of H2S is further supported by
its twice higher solubility in organic solvents such as octanol and hexane than in water [12].

H2S is a weak diprotic acid with pKa1 = 6.98 at 25 ◦C and 6.76 at 37 ◦C (Equation 1) [53]. The second
pKa2 has been more difficult to determine exactly but lies between 17 and 19 (Equation 2) in aqueous
solution at 25 ◦C [20,53]. Therefore, S2– concentrations will be very low in biological settings and will
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not contribute significantly to H2S reactivity. At pH 7.4 and 25 ◦C, total sulfide exists 28% as H2S, 72%
as HS–, and as insignificant amounts of S2–.

H2S 
 HS− + H+ (1)

HS−
 S2− + H+ (2)

The hydrophobic character of H2S results in a higher solubility in membrane lipids than
in water that results in a rapid diffusion through cell membranes without assistance by protein
channels [11–13]. Permeability coefficients are estimated to be larger than 0.5 cm/s and probably larger
than 10 cm/s [11–13], which indicates that membranes could slow down H2S diffusion 10–100 times
compared to an equally thick layer of water. This is a low barrier that does not impede free diffusion
across cellular membranes and only becomes significant when considering diffusion across a large
number of membranes such as in a tissue [12].

The oxidation state of sulfur in H2S and in HS– is –2. Thus, H2S can only be oxidized; it cannot act
as an oxidant. Therefore, the statements in the literature regarding H2S oxidation of protein cysteines
to persulfides are not correct; either the thiol or H2S need to have undergone previous oxidation
for cysteine persulfide formation to occur. Oxidation of H2S can lead to various products in which
the sulfur can have oxidation numbers up to +6. The oxidation products include sulfate (SO4

2−),
sulfite (SO3

2−), thiosulfate (S2O3
2−), persulfides (RSS−), organic (RSSnSR) and inorganic (HSSnS−)

polysulfides, and elemental sulfur (Sn).

3.1. Biological Sources of H2S

Mammals obtain reduced sulfur from cysteine and methionine in the diet. The latter is an essential
amino acid, but cysteine can be synthesized from methionine through the transsulfuration pathway.
Two proteins involved in this metabolic pathway, cystathionine β-synthase (CBS) and cystathionine
γ-lyase (also called γ-cystathionase, CSE), can produce H2S. Another enzyme from sulfur metabolism,
3-mercaptopyruvate sulfurtransferase (MST), also produces H2S [20,32].

The canonical reaction of CBS is the β-replacement of L-serine by L-homocysteine to generate
L-cystathionine and H2O, but CBS also catalyzes other reactions using alternative substrates such
as cysteine instead of serine that leads to cystathionine and H2S [54]. Mutations in this protein
are the most common cause of hereditary homocystinuria [55]. CSE catalyzes the γ-elimination of
cystathionine to give cysteine, α-ketobutyrate, and ammonia, but, like CBS, can also catalyze other
reactions that lead to formation of H2S, such as the β-elimination of cysteine that is estimated to be the
major reaction involved in H2S synthesis by CSE [54]. MST catalyzes the transfer of the sulfur atom
from 3-mercaptopyruvate to a nucleophilic acceptor such as thioredoxin or glutathione (GSH), which
subsequently releases H2S [56].

There are some differences in tissue distribution and subcellular localization. CSE is considered
a cytosolic protein that predominates in cardiovascular tissue and liver; CBS is also cytosolic and is
considered an important source of H2S in the nervous system; MST has been found both in the cytosol
and the mitochondria and is the other important source of H2S in the nervous system [20].

3.2. Biological Sinks of H2S

There are several mechanisms that decompose H2S. The main pathway for H2S detoxification
is located in the mitochondria and involves oxidation of sulfide to sulfate and thiosulfate [20].
The enzyme sulfide quinone oxidoreductase (SQR) oxidizes H2S and reduces coenzyme Q.
An intermediate SQR-persulfide is formed and transferred either to glutathione to make glutathione
persulfide (GSSH) or to sulfite to form thiosulfate. GSSH is subsequently metabolized by persulfide
dioxygenase (PDO, also called ethylmalonic encephalopathy protein 1, ETHE1) to glutathione and
sulfite (SO3

2–), and the latter is oxidized to sulfate (SO4
2–) by sulfite oxidase. Rhodanese could use
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GSSH and sulfite to make thiosulfate. Alternatively, thiosulfate could be utilized by rhodanese to
produce GSSH [57–59].

H2S also reacts with ferric hemoglobin and myoglobin (methemoglobin and metmyoglobin,
respectively) through a complex mechanism that results in the formation of thiosulfate and
iron-bound polysulfides [60,61]. Though the proportion of methemoglobin is usually below 1% [62],
the concentration of total hemoglobin subunits in red blood cells is 20 mM, and thus up to 200 µM
methemoglobin may be available to react with H2S. Besides, several medications and diseases are
known to increase methemoglobin [62], so this may be an important sink for H2S in circulation.
Furthermore, in the presence of oxygen or hydrogen peroxide, H2S can modify hemes covalently
in these globins and some other hemeproteins, thus forming green sulfheme in which the sulfur is
covalently bound to one pyrrole ring. These processes will be further analyzed in Section 4.2.6.

3.3. Physiology and Pharmacology of H2S

Although early studies indicated that physiological concentrations of H2S in different tissues
were in the 30–100 µM range, improved detection methods suggest that actual concentrations are in
the 4–55 nM range for most tissues [63–66].

Externally added H2S at higher concentrations has been observed to have different effects. In the
cardiovascular system, H2S has multiple nitric oxide-dependent and independent effects that include
the relaxation of smooth muscle cells, regulation of blood pressure, promotion of angiogenesis,
and attenuation of myocardial ischemia reperfusion injury [19,67–72]. In the nervous system, H2S is
considered to be a neuromodulator. For example, it affects hippocampal long-term potentiation [18].
It has also been shown to inhibit HOCl- and peroxynitrite-mediated toxicity in neuroblastoma
cells [21,23]. Moreover, H2S protects neurons from oxidative stress by increasing γ-glutamylcysteine
synthetase activity and cystine transport, which induces the production of reduced glutathione [22].
In the respiratory system, H2S has potential therapeutic uses against fibrosis and chronic obstructive
pulmonary disease [73,74]. In the liver, a hepatoprotective effect of H2S has been observed against
ethanol-induced liver injury in mice [75].

H2S has shown both pro- and anti-inflammatory effects. In sepsis and acute pancreatitis,
a pro-inflammatory effect of H2S has been observed [76–78], whereas an anti-inflammatory effect has
been reported for intestinal ischemic damage and ethanol-induced gastritis [79–81].

The antioxidant effects cannot be attributed to direct reactions with oxidants since, from a kinetic
perspective, H2S may not be able to trap oxidative species, as rationalized below. The indirect
mechanisms underlying the observed antioxidant effects may be various. For example, H2S was
proposed to inhibit oxidative stress through the persulfidation of Keap1, which activates nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) signaling and promotes its translocation to the nucleus and the
expression of antioxidant pathways [75,82–85].

4. Oxidizing Species in Biology and Their Reactions with H2S

The formation of partial oxygen reduction products can occur in biological systems. These
free radical and non-free radical species are superoxide radical (O2•–), hydrogen peroxide (H2O2),
and hydroxyl radical (HO•). Together with secondary species such as peroxynitrite (ONOO–),
hypochlorous acid (HOCl), or organic peroxyl radicals (ROO•), they are in general called reactive
oxygen species (ROS); however, this term should be used with caution because it gives the erroneous
idea that there is only one ill-defined species that oxidizes all biomolecules. In contrast, the reactivity
of the oxidants varies, and their targets in biological settings are determined by kinetic aspects of rate
constants multiplied by the concentration of the potential target as well as compartmentalization and
membrane permeability aspects. The different species can be divided into two-electron or one-electron
oxidants. The latter are often free radicals that start oxygen-dependent chain reactions.

One important site of reactive species formation is the mitochondrial electron transport chain.
They can also be formed by ionizing and UV radiation, through the redox cycling of certain xenobiotics,
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and enzymatically through the action of NADPH oxidases, xanthine oxidase, hemeperoxidases,
and cytochromes P450. Nitric oxide synthase generates nitric oxide, which, by itself, is not highly
oxidizing, but it can react with superoxide radical generating peroxynitrite and secondary oxidants
derived from it.

The high reactivity of some of these species with biomolecules can lead to cell damage; this aspect
is exploited by immune cells in their warfare against microorganisms. Oxidant action can be
counteracted, in some cases, by antioxidants; for example, in the free radical process of lipid
peroxidation, peroxyl radical intermediates can be scavenged by the antioxidant vitamins E and C.
In addition to their cell damaging action, oxidants can have signaling roles, as becomes clear from
the evidence for the actions of hydrogen peroxide as a second messenger [86]. Thus, the classical
concept of oxidative stress as a disbalance between oxidant formation and antioxidant action has been
extended to include the concept of a disbalance in regulatory pathways.

In the following paragraphs, we briefly describe the oxidants potentially involved in the two- and
one-electron oxidation of H2S, we provide the rate constants of the reactions, and we discuss the fate
of some of the products formed. The reactions are summarized in Scheme 1.
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4.1. Two-Electron Oxidation

H2S is a strong reductant according to the two-electron reduction potential E◦’(HSS–, H+/2HS–)
= –0.23 V [87,88]. The disulfide HSSH/HSS– is not formed directly but in at least two steps. Rather,
sulfenic acid (HSOH) is formed, an unstable intermediate that reacts fast with a second H2S to form
HSSH/HSS–. The latter is also unstable and can disproportionate yielding polysulfides of different
chain lengths, elemental sulfur and H2S. Polysulfides can also react with reductants or be oxidized to
oxyacids. Several two-electron oxidants can react with H2S.

4.1.1. Hydrogen Peroxide

This two-electron oxidant (E◦’(H2O2, 2H+/2H2O) = +1.35 V) [89] is formed mainly by the
dismutation of superoxide radical, which can be spontaneous or catalyzed by superoxide dismutases.
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It can also be formed directly by some oxidases. Though it is a strong oxidant, hydrogen peroxide reacts
relatively slowly with most biomolecules, with the exception of peroxidases containing selenocysteine,
cysteine or heme. Accordingly, the reaction between H2S and hydrogen peroxide has a rate constant
of 0.73 M–1 s–1 at pH 7.4 and 37 ◦C [27]. The primary product is HSOH. The final products depend
on the initial ratios of hydrogen peroxide to H2S and consist mainly of polysulfides, elemental sulfur
and, in the presence of excess oxidant, sulfate. Curiously, the system can behave like a chemical
oscillator [90,91].

4.1.2. Hypochlorous Acid and Chloramines

Hypochlorous acid (HOCl) is formed from the oxidation of chloride ions by the neutrophil enzyme
myeloperoxidase. HOCl is a highly oxidizing species (E◦’(HClO, H+/Cl–, H2O) = +1.28 V) [92] and
reacts fast with HS– with a second order rate constant of 0.8–20 × 108 M–1 s–1 at pH 7.4 [27,93].
Hypochlorous acid usually reacts by transferring a Cl+ species to a nucleophile. Thus, the reaction
with HS– is likely to proceed through the formation of HSCl, which quickly hydrolyzes to HSOH.
The hypochlorite ion is in equilibrium with hypochlorous acid (pKa 7.47). Hypochlorite can also
react with HS–, albeit several orders of magnitude more slowly [93]. At an excess of H2S with
respect to hypochlorous acid, the main product formed is elemental sulfur, with the intermediacy of
polysulfides [93].

The reaction of hypochlorous acid with amines leads to chloramines (RHNCl and R2NCl). These
are less reactive and more selective oxidants than hypochlorous acid. Taurine chloramine reacts with
H2S with a rate constant of 3 × 102 M–1 s–1 at pH 7.4 and 37 ◦C [27].

4.1.3. Peroxynitrite

This anion (ONOO–) and its conjugate acid, peroxynitrous acid (ONOOH, pKa 6.8), are formed
from the reaction of superoxide radical with nitric oxide, which occurs at nearly diffusion controlled
rates. Peroxynitrous acid is unstable and can decay in buffer to nitric acid, hydroxyl radical,
and nitrogen dioxide. In vivo, peroxynitrite can either react directly with targets such as thiols or
metal centers, or it can react with carbon dioxide, leading to the formation of the secondary radicals,
nitrogen dioxide and carbonate radical [94]. Peroxynitrous acid reacts directly with HS– with a second
order rate constant of 6.7 × 103 M–1 s–1 (pH 7.4, 37 ◦C) [95] and, after a short lag, yellow products
are formed [96]. According to computational simulations, the process starts with the nucleophilic
substitution of HS– on ONOOH to give HSOH and NO2

– as initial products. In the presence of
excess H2S, HSOH reacts with a second HS– to yield HSS–/HSSH. It was proposed that the yellow
products originate from the secondary reaction of HSS–/HSSH with peroxynitrite, and that at least
one of the yellow products is HSNO2 or its isomer HSONO [95].

In addition to the direct reaction of peroxynitrous acid with HS–, the free radicals derived from
peroxyinitrite decay can also react with H2S and trigger oxygen dependent chain reactions that can be
evidenced, for example, by the consumption of oxygen [27].

4.2. One-Electron Oxidation

The one-electron reduction potential of H2S is (E◦’(HS•, H+/H2S) = +0.91–0.94 V) [87,97].
This value means that, in principle, only relatively strong one-electron oxidants such as hydroxyl
radical (HO•), carbonate radical (CO3•–), nitrogen dioxide (NO2•), and peroxidase oxoferryl
compounds I and II can oxidize H2S to HS•/S•–. However, further reactions of HS•/S•– can drive the
oxidation processes, extending the list of possible initial oxidants to, for example, metal centers with
lower one-electron reduction potentials than that of the HS•/H2S couple.

The initial product of the one-electron oxidation of H2S is the sulfiyl radical (HS•/S•–).
This is an oxidizing radical and can react with several electron or hydrogen atom donors (AH,
Equation 3). In addition, it can react with a second HS•/S•– radical and form HSSH/HSS– (Equation 4).
Alternatively, HS•/S•– can react with HS– to form HSS•2–, a reducing radical that can react with
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oxygen forming superoxide radical (Equations 5,6). HS•/S•– can also react with oxygen and form
SO2•–, which can again react with oxygen to form superoxide radical (Equations 7,8). The latter
dismutates to hydrogen peroxide and oxygen, which helps to drive the process.

HS•/S•− + AH→ H2S/HS− + A• (3)
HS•/S•− + HS•/S•− → HSSH/HSS– k = 6.5 × 109 M–1 s–1 [98] (4)
HS•/S•− + HS− 
 HSS•2− kf = 5.4 × 109 M–1 s–1; kr = 5.3 × 105 s–1 [98] (5)
HSS•2– + O2 → HSS– + O2•− k = 4 × 108 M–1 s–1 [98] (6)
HS•/S•− + O2 → SO2•− k = 7.5 × 109 M–1 s–1 [98] (7)
SO2•− + O2 → SO2 + O2•− k = 1 × 108 M–1 s–1 [99] (8)

In addition to these relatively well characterized reactions, several other reactions can occur,
which lead to a wide variety of possible radical and non-radical products and unstable intermediates.
It is clear that the one-electron oxidation of H2S can trigger oxygen-dependent free radical chain
reactions that can lead to the amplification of initial oxidation events. Several one-electron oxidants
can initiate these events.

4.2.1. Oxygen

The one-electron oxidation of H2S by oxygen (O2) is thermodynamically uphill, since the
E◦’(O2/O2•–) = −0.35 V (–0.18 V for a 1 M O2 standard state) [89]. It is also very slow because
of the spin barrier imposed by the diradical character of O2. Nevertheless, H2S autoxidation occurs
and is a major concern in practical work with H2S. The process is likely driven by the reactivity of the
initial products, HS• and O2•–, as well as that of secondary intermediates. Autoxidation is very slow
and dependent on pH. It is critically affected by the presence of trace metal ions that can act as catalysts.
It is also mechanistically complex due to the involvement of radical and non-radical intermediates.
The products formed are usually elemental sulfur (Sn), sulfate (SO4

2–), sulfite (SO3
2–), and thiosulfate

(S2O3
2–) [100,101].

4.2.2. Superoxide Radical

This species is the primary free radical formed from the partial reduction of oxygen. Superoxide
radical (O2•–) can dismutate to oxygen and hydrogen peroxide, spontaneously or enzymatically. It can
also react with nitric oxide yielding peroxynitrite. This radical can be both oxidizing and reducing,
with E◦’(O2•–, 2H+/H2O2) = +0.91 V and E◦’(O2/O2•–) = –0.18 V (1 M O2 standard state) [89]. It can
react with H2S with a rate constant of ~208 M–1 s–1 in dimethyl sulfoxide [102]. However, rather than
being scavenged by H2S, superoxide radical can be formed in H2S oxidation processes due to free
radical chain reactions, as described in Section 4.2.

4.2.3. Hydroxyl Radical

The highly oxidizing hydroxyl radical (HO•) is formed in biological systems mainly through the
Fenton reaction, i.e., through the reduction of hydrogen peroxide to HO• and H2O by reduced metal
ions (Fe2+ or Cu+). With a reduction potential of +2.31 V at pH 7 [89], hydroxyl radical is so oxidizing
that it can react with most biomolecules, and the rate constants are close to the diffusion limit. It can
react very fast with both H2S and HS–, according to Equations 9,10 [98,103].

HO• + H2S→ H2O + HS• k = 1.1 × 1010 M–1 s–1 [103] (9)
HO• + HS− → HSOH•− → S•−/HS• + H2O/OH− k = 5.4 × 109 M–1 s–1 [103] (10)

4.2.4. Nitrogen Dioxide

This free radical (NO2•) can be formed from the autoxidation of nitric oxide, from the decay of
peroxynitrite in the presence of carbon dioxide and from the oxidation of nitrite. It is an oxidizing
species with E◦’(NO2•/NO2

–) = +1.04 V [88]. The reaction between H2S and nitrogen dioxide was
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studied by pulse radiolysis. The rate constant is 3 × 106 M–1 s–1 at pH 6 (25 ◦C) and increases at more
alkaline pH, suggesting that HS– is the reacting species [27].

4.2.5. Carbonate Radical

The formation of carbonate radical (CO3•–) depends mainly on the decay of peroxynitrite in the
presence of carbon dioxide. It also depends on the oxidation of carbon dioxide/bicarbonate by the
peroxidase activity of CuZn superoxide dismutase or by xanthine oxidase [94]. Carbonate radical is a
strong one-electron oxidant (E◦’(CO3•–, H+/HCO3

–) = +1.77 V) [88]. It reacts with H2S with a rate
constant of 2.0 × 108 M–1 s–1 (pH 7, 20 ◦C) [97].

4.2.6. Metal Centers

Ferric hemeproteins with an open sixth coordination position, such as methemoglobin,
metmyoglobin, myeloperoxidase, and catalase, can oxidize H2S [60,61,104–106].

Depending on the protein, either protonated H2S or HS– can bind to ferric heme [107]. The binding
is stable enough in some hemeproteins to suggest a function in H2S storage and transport, as in
hemoglobin I from Lucina pectinata [108]. In the case of methemoglobin and metmyoglobin, H2S binds
quickly and reversibly to ferric heme. Deprotonation leads to a ferric-HS– complex that can slowly
evolve to ferrous-bound HS•. The latter species can react with a second H2S or with oxygen, which
leads to the formation of polysulfides and thiosulfate as products [60,61,107,109,110].

Remarkably, the hexacoordinated protein ferric cytochrome c can also oxidize H2S. The process is
mediated by reducing species derived from the HS•/S•– radical [111].

The oxoferryl compounds I and II of myeloperoxidase are formed in the peroxidase cycle of
the enzyme and have reduction potentials of +1.35 and +0.97 V [92]. They can react with H2S
with rate constants of 1 × 106 M–1 s–1 and 2.0 × 105 M–1 s–1, respectively (pH 7.4 and 25 ◦C).
Ferric myeloperoxidase can also oxidize H2S and is reduced to the ferrous state [105]. Under
aerobic conditions, compound III (ferric-superoxide or ferrous-dioxygen complexes in resonance)
is formed. This compound slowly evolves to the ferric enzyme, allowing the enzyme to turnover.
Myeloperoxidase-catalyzed oxidation of H2S leads to the formation of polysulfides and protein
persulfides [106].

In many cases, the interaction between a hemeprotein and H2S leads to the formation of
sulfheme, where one of the pyrroles in the porphyrin ring is covalently modified with a sulfur
atom. Such modification has been reported for some globins, lactoperoxidase, and catalase [112].
Many details need to be filled in regarding the mechanism of sulfheme formation. An adequately
positioned histidine in the distal heme site has been proposed to be critical [112]. It has also been
proposed that, in the case of myeloperoxidase, the presence of a sulfonium ion linkage between a
methionine and the heme ring determines that, in contrast to lactoperoxidase, the sulfheme cannot be
formed [106]. Computational simulations suggest that sulfheme formation occurs through a concerted
interaction between the distal histidine, H2S, and a ferric-bound hydroperoxide to form oxoferryl
compound II, H2O and HS•; the latter subsequently adds to a specific pyrrole site [113].

In addition to hemeproteins, CuZn and Mn superoxide dismutases are able to catalyze the
oxidation of H2S by oxygen [114,115].

4.3. Other Oxidants

Along with the species described above, other oxidants of biological relevance are likely to
react with H2S, by analogy to their reactions with thiols. Among these other oxidants, organic
hydroperoxides, other hypohalous acids such as HOBr and HOSCN, and free radicals such as peroxyl
and phenoxyl radicals are to be considered.
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4.4. Nitric Oxide

The crosstalk between nitric oxide and H2S is complex and can give rise to species that contain
both S and N atoms. Among these, thionitrous acid (HSNO) and perthionitrite (S2NO−) have received
particular attention [20,116–121].

4.5. Biological Implications of H2S Oxidation by Reactive Species

At the physiological pH of 7.4, the rate constants of the reactions of H2S with oxidants have similar
values as those of typical biological thiols such as cysteine and glutathione [27]. The pH-independent
rate constants corresponding to the HS– species are lower than those of the thiolates species (RS–),
probably due to the lack of the inductive effect of the methylene. However, the higher acidity
of H2S with respect to thiols (pKa of 6.98 for H2S compared to 8.29 for cysteine and 8.94 for
glutathione [53,122]), determines a higher availability of the ionized species. The net effect is that the
apparent rate constants at physiological pH are comparable.

To analyze whether H2S can be a scavenger of oxidant species, the rates instead of the rate
constants need to be taken into account, i.e., the products of rate constants times concentration. While
the rate constants are similar to those of thiols, the concentration of H2S in tissues is considered to
be submicromolar and several orders of magnitude lower than that of thiols, which is millimolar,
so H2S cannot compete with thiols for oxidants. Similar considerations apply for the comparison
between H2S and other oxidant scavengers such as ascorbic acid. Hence, H2S cannot be considered
a typical antioxidant scavenger except under exceptional situations that lead to high concentrations
such as exogenous administration together with enhanced oxidant production. Other mechanisms are
probably underlying the observed antioxidant effects of H2S; for example, interference with signaling
pathways. Furthermore, the one-electron oxidation of H2S can trigger free radical chain reactions,
opening the possibility for pro-oxidant effects of H2S.

5. Chemistry and Biology of Persulfides

Persulfides (RSSH/RSS–) are sulfane sulfur compounds, meaning that they have a sulfur atom
bound to two sulfurs or to a sulfur and an ionizable hydrogen [123]; the outer sulfur is the sulfane
sulfur according to this criterion. RSSH can also be referred to with the terms hydropersulfide or
hydrodisulfide. In this text, “persulfide” is used to designate mixtures of RSSH and RSS−. Their
chemical properties differ from those of thiols; hydropersulfides are more acidic and can either act as
nucleophiles when deprotonated (RSS–) or electrophiles when protonated (RSSH). They are formed in
biological systems through H2S-dependent and independent pathways. It is worth noting that the
reaction between H2S and thiols does not occur in the absence of an oxidant.

5.1. Reactivity of Persulfides

5.1.1. Persulfide Acidity

Protonated persulfides ionize in water and form the corresponding anionic persulfides
(Equation 11). Their acidity is predicted to be higher than that of the analogous thiols.
Thus, at physiological pH, the anionic species would predominate. For instance, the pKa of
2-[(3-aminopropyl)amino]ethane persulfide was estimated to be 6.2 ± 0.1, while the pKa of the
analogous thiol is 7.6 ± 0.1 [124].

RSSH 
 RSS− + H+ (11)

5.1.2. Persulfides as Nucleophiles

Anionic persulfides can act as nucleophiles (Equation 12). This is evidenced by their reactions
with thiol alkylating agents such as monobromobimane and iodoacetamide, which yield disulfides.
This is also evidenced by their reactions with disulfides such as 5,5-dithiobis(2-nitrobenzoic acid) and
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4,4-dithiodipyridine to produce trisulfides [20,28,33,125–129]. Moreover, persulfides react with two-
and one-electron oxidants as discussed in Section 6.

RSS− + E+ → RSSE (12)

Persulfides have been proposed to have an increased nucleophilicity compared to analogous
thiolates [126,130]. This can be explained by the alpha effect, namely, the increased reactivity of an
atom due to the presence of unshared pairs of electrons in the adjacent atom [131,132]. This effect has
been observed in the nucleophilicity of HOO– compared to HO– and NH2NH2 and NH2OH compared
to NH3 [131]. The first determination of the alpha effect in persulfides was observed in human serum
albumin, in which persulfide has an increased reactivity towards the disulfide 4-4’-dithiodipyridine
compared to the thiolate derivative [28]. The alpha effect, together with the predominance of
RSS– versus RSSH at physiological pH due to the relatively high acidity, make persulfides better
nucleophiles than thiols.

5.1.3. Persulfides as Electrophiles

Protonated persulfides are weak electrophiles. They can react with nucleophiles to give thiols
when the outer sulfur is attacked (Equation 13) or H2S when the inner sulfur is attacked (Equation 14).
Whether the attack is on one sulfur or the other appears to be determined by steric hindrance [133,134]
and by the acidity of the leaving group, with the better leaving group being the one with lower pKa.
Hence, as low molecular weight (LMW) thiols have higher pKas than H2S, i.e., the pKa of cysteine is
8.29 [122] and the pKa of H2S is 6.98 [53], the attack on the inner sulfur would predominate. In protein
persulfides formed in acidic cysteines, the attack on the outer sulfur would predominate and restore
the reduced protein.

RSSH + Nu− → RS− + NuSH (13)

RSSH + Nu− → RSNu + HS− (14)

The outer sulfur can react with cyanide, thiolates, sulfite [133,135], amines [136], hydroxide [137],
and tertiary phosphines [138,139]. Persulfides and cyanide react to form the corresponding thiol
and thiocyanate, which, in the presence of ferric ions, forms a colored complex that can be
quantified spectrophotometrically. This is the basis of the method of cold cyanolysis used to quantify
persulfides [123,140].

In the reaction of a persulfide with a thiol, the attack on the outer sulfur constitutes a
transpersulfidation reaction. In addition to forming thiol, the sulfane sulfur is transferred and a new
persulfide at the attacking thiol is formed (Equation 15). The reactions between persulfides and thiols
are plausible to occur in vivo. Intermediate persulfides formed in the proteins MST, SQR, and rhodanese
can be transferred to several acceptors including cyanide, sulfite, and thiols [34,57,58,141–144].
Cysteine desulfurases, such as those that participate in the synthesis of iron sulfur clusters,
are another example of enzymes transferring the sulfane sulfur to a thiol in specific compounds [145].
The reduction of protein persulfides by thiols could constitute a protective mechanism to avoid
irreversible cysteine modifications under oxidative stress [45,111,146]. A depersulfidase role for
thioredoxin has been suggested. One of the proposed mechanisms involves the transfer of the sulfane
sulfur from either LMW or protein persulfides to the nucleophilic cysteine of thioredoxin, which
regenerates the original thiol and forms thioredoxin persulfide. Subsequently, H2S and oxidized
thioredoxin are formed [29,147,148].

On the other hand, when the inner sulfur of a persulfide is attacked by a thiol, H2S is released
and a mixed disulfide is formed (Equation 16) [125,139,149]. This mechanism has been suggested for
the activation of Nrf2 by Keap1. Keap1 persulfide/Nrf2 was proposed to react with a protein thiolate
to form a mixed disulfide and release H2S and Nrf2, inducing its activation to protect neuroblastoma
cells from methylglyoxal-induced toxicity [150].



Antioxidants 2019, 8, 48 11 of 23

RSSH + R’S−
 RS− + R’SSH (15)

RSSH + R’S−
 RSSR’ + HS− (16)

5.1.4. Disproportionation of Persulfides

Persulfides are highly unstable in aqueous solution, making their study difficult. This is related
to their nucleophilic and electrophilic character that facilitate the reactions between them causing
spontaneous decay through a disproportionation process. Depending on which sulfur is attacked,
different products can be formed. The attack on the outer sulfur generates thiol and hydropolysulfides
that evolve to elemental sulfur (Equations 17,18), while the attack on the inner sulfur yields polysulfides
and H2S (Equation 19) [137]. The decay products are also likely to depend on steric effects and on the
acidity of the leaving groups. For example, cysteine persulfide predominantly decays through the
release of H2S instead of cysteine, which has a higher pKa [35].

RSSH + RSS−
 RSSS− + RSH (17)

RSSSH→ RSH + Sn (18)

RSSH + RSS−
 RSSSR + HS− (19)

5.2. Biological Sources of Persulfides

Several processes can give rise to persulfides in biological context; some are dependent on H2S
and some are not. These processes are described below. In addition, it was recently proposed that
cysteine persulfide can be generated from cysteine via cysteinyl-tRNA synthetase [41].

5.2.1. Radical Processes

Sulfiyl (HS•) and thiyl radicals (RS•) could be formed by the reaction of strong one-electron
oxidants and H2S or RSH, respectively. These radicals could rapidly react yielding a persulfide
(Equation 20). Nevertheless, this reaction is not expected to be relevant in vivo due to the low
concentration of radical species. A more likely radical pathway to form persulfides is the formation of
the reducing radical RSSH•– via the reaction of either HS• and RS– or RS• and HS– and the subsequent
reaction with oxygen (Equations 21–23) [20,151].

HS• + RS• → RSSH (20)

HS• + RS− → RSSH•− (21)

RS• + HS− → RSSH•− (22)

RSSH•− + O2 → RSSH + O2•− (23)

5.2.2. H2S and Oxidized Thiols

The reactions of H2S with oxidized thiols constitute biologically significant pathways for the
formation of persulfides. H2S can react with disulfides releasing thiol (Equation 24) or with sulfenic
acid eliminating water (Equation 25).

HS− + RSSR’ 
 RSSH + R’S− (24)

HS− + RSOH→ RSSH + OH− (25)

Protein persulfides are formed endogenously through these pathways. For example, a persulfide
intermediate of SQR is formed by the reaction of H2S with the active site disulfide of the enzyme.
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This reaction is ~106 fold accelerated compared to the reaction with cystine [57,58,152]. In the
endoplasmic reticulum, an environment with high concentration of disulfides, the reaction of H2S with
disulfides could be more relevant than in compartments with scarce disulfides like the cytosol [151].
In cultured cells, an increase in persulfide concentration was observed after treatment with H2O2 that
led to an increase in sulfenic acid and disulfide. However, this was not observed upon treatment
with diamide that only increased disulfide concentration, which suggests that persulfide was formed
by H2S and sulfenic acid [28,29]. The reaction of H2S with sulfenic acids could be a mechanism of
protection against its overoxidation to sulfinic acid (RSO2H) and sulfonic acid (RSO3H), which are
irreversible modifications. On the contrary, the oxidation of persulfidated residues leads to RSSO2H
and RSSO3H species that can be reduced to thiols restoring the protein [20,29,45,46,153].

The reactions of H2S with disulfides and sulfenic acids are common strategies to prepare
persulfides in the laboratory. Mixtures of LMW disulfides and H2S have been used as sources
of persulfides [28,66,126,154,155]. However, the facts that reaction (24) is reversible and that the
persulfides formed can react with disulfides to form trisulfides and thiols, need to be taken into
account [128,129]. The kinetics of the reactions between H2S and LMW disulfides such as cystine,
glutathione disulfide, homocystine, and 5,5’-dithiobis-(2-nitrobenzoic acid) to form LMW persulfides
are slower than the reactions of thiols with disulfides [28]. The incubation of H2S and mixed disulfides
of protein cysteines and acidic LMW thiols has been used to produce persulfides in papain [126],
glutathione peroxidase Gpx3 [125], and albumin [28]. The reaction of protein sulfenic acid with H2S
has also been used to prepare persulfides in albumin [28,151].

5.2.3. Thiolates and Oxidized Sulfur Derivatives

Thiolates and oxidized sulfur derivatives of H2S react to form persulfides. As described
previously, the attack of thiolates on the outer sulfur of persulfides produces a new persulfide at
the attacking thiolate (Equation 15). For example, the persulfide intermediate formed in SQR has
been proposed to react with different molecules. When it reacts with a thiol, a new persulfide is
generated [42,58]. In addition, organic and inorganic polysulfides (RSSnSR, RSSnS−, HSSnS−) can be
sources of persulfides. A few polysulfide-containing proteins have been detected, such as SOD1, IL-6,
and IgG2 [156]. Recently, the reaction between dibenzyl trisulfide and tetrasulfide with cysteine and
glutathione was shown to release H2S with a brief lag-time that was attributed to the formation of
persulfides as intermediates [157]. Cysteine trisulfide treatment of cultured cells led to an increase in
intracellular cysteine and glutathione persulfides [129].

5.2.4. Elimination of Disulfide

The disulfide cystine in the presence of the pyridoxal phosphate-dependent enzymes,
CBS and CSE, forms cysteine persulfide, ammonia, and pyruvate. In addition, CSE also catalyzes the
formation of homocysteine persulfide from homocystine. Nevertheless, these reactions are limited
in vivo [33,35,37–39,158]. Disulfides can also suffer a β-elimination process under alkaline conditions
yielding persulfide, a dehydroalanine (2-aminoacrylate) derivative, and water [159–161].

6. Reactivity of Persulfides with Oxidants

6.1. Two-Electron Oxidation

The enhanced nucleophilicity of persulfides versus thiols is also evidenced by the reactions with
two-electron oxidizing electrophiles such as H2O2 and peroxynitrite. Though the reducing abilities
of persulfides have not been fully studied, they seem to be better reductants than the corresponding
thiols [162]. The reaction of peroxynitrite with albumin persulfide is one order of magnitude faster
((1.2 ± 0.4) × 104 M–1 s–1 at 20 ◦C) than the reduced protein at pH 7.4 ((2.7 ± 0.3) × 103 M–1 s–1) [28].
Furthermore, it was observed that, under certain conditions, H2O2 did not react with glutathione but
rapidly reacted with glutathione persulfide [33]. Analogously to the reaction of H2O2 with thiols that
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forms sulfenic acid (RSOH), the reaction with persulfides is expected to produce perthiosulfenic acid
(RSSOH). In fact, density functional theory (DFT) calculations predicted that RSSH can be readily
oxidized to RSSOH. The reaction of H2O2 with the persulfide model ethyldisulfane (Et-SSH) to form
Et-SSOH was ~6.2 kcal/mol more favorable compared to the oxidation of the corresponding thiol,
ethanethiol (Et-SH) to Et-SOH. These calculations also predicted that RSOH and RSSOH are reactive
towards dimedone to form stable products. Moreover, the oxidation of cysteine persulfide residues to
perthiosulfenic acid was observed in tyrosine kinases such as epidemial growth factor receptor (EGFR)
in response to NADPH oxidase activation [163]. In the presence of excess oxidant, the perthiosulfenic
acid could be oxidized to perthiosulfinic and perthiosulfonic acids (RSSO2H and RSSO3H) [20,163].
These species have been detected in papain, albumin and glutathione peroxidase [28,125,151]. It is
noteworthy that while sulfinic and sulfonic acids (RSO2H and RSO3H) are generally considered
irreversible modification products, RSSO2H and RSSO3H can be reduced to thiols by common
reductants such as dithiothreitol and enzymes such as thioredoxin, and they can therefore allow
the restoration of the reduced protein. Thus, as it was previously mentioned, persulfides could protect
protein thiols [29,45,46,153]. The reactions of persulfides with two-electron oxidants are summarized
in Scheme 2.Antioxidants 2019, 8, x FOR PEER REVIEW 13 of 22 
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6.2. One-Electron Oxidation

Persulfides have enhanced one-electron reducing capability compared to thiols and H2S [164].
Firstly, persulfides have a lower S-H bond dissociation energy (70 kcal/mol) than thiols and H2S
(92 kcal/mol) [165]. Secondly, the one-electron reduction potential of persulfides (E◦’(RSS•/RSS–) =
+0.68 V) is lower than those of thiols (E◦’(RS•, H+/RSH) = +0.96 V) and H2S (E◦’(S•–, H+/HS–) =
+0.91 V) [87]. Finally, the resonance stabilization energy of RSS• is higher than that of RS•, as the
unpaired electron in RSS• is delocalized between the two sulfur atoms [124,164]. Hence, compared to
thiols and H2S, persulfides can be oxidized by weaker oxidants; the one-electron oxidation products
RSS• are less oxidizing than RS• and HS•, react more slowly, and possess an inherent stability.
In summary, persulfides constitute better reductants than thiols and H2S.

The reaction with one-electron oxidants gives rise to RSS• and can occur through hydrogen atom
or electron transfer mechanisms [164]. Persulfides can be oxidized by ferric ions and cannot oxidize
ferrous ions [166]. Ferricyanide [47], ferric cytochrome c [126,149,167], and metmyoglobin [47] can
oxidize persulfides. RSS• is also formed in the reactions with carbon centered radicals [124], peroxyl
radicals [164,168], and the nitroxide TEMPOL [47]. These oxidants react more slowly or not at all
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with the corresponding thiols, exemplifying the better reductant character of persulfides. For instance,
TEMPOL and metmyoglobin can be reduced by N-methoxycarbonyl penicillamine persulfide but not
by an analogous thiol, N-acetyl penicillamine [47]. Furthermore, glutathione persulfide was reported
to efficiently reduce ferric cytochrome c, while glutathione and H2S only slowly reduced it [126].
A theoretical study of the reactions of HO• towards a set of persulfides proposed that they could occur
through disulfide bond cleavage. In this scenario, RSS• would not be formed [169].

Perthiyl radicals rapidly decay forming tetrasulfide species (RSSSSR) with rate constants of 1–6× 109

M–1 s–1 [47,168,170]. In fact, dialkyl tetrasulfide was photolytically cleaved to produce the corresponding
RSS•, but dimerization rapidly occurred [168]. The efficiency of this reaction could explain why some
thermodynamically unfavorable RSS• formation reactions do occur, such as those of TEMPOL and
CH3SSH [47], N-methoxycarbonyl penicillamine persulfide and ferric cytochrome c [87,149], or RSS– and
O2 [171,172]. Moreover, the resulting RSSSSR can decompose to form RSSR and Sn [20].

Perthiyl radicals can react with RSS– to give the intermediate RSSSSR•– that reacts with O2 to yield
O2•– and RSSSSR. However, RSSSSR•– have not been experimentally evidenced [173]. Analogously,
RSS• and RS– react producing RSSSR•– [164]. The reactions are summarized in Scheme 2.

Perthiyl radicals, generated via radiolytic reduction of dialkyl trisulfide, were initially reported to
react with O2 with a rate constant of 5.1 × 106 M–1 s–1. Such reaction was proposed to form RSSOO•
species with subsequent formation of inorganic sulfate [170], which is analogous to thiyl radicals that
initially form RSOO• in reversible processes [174–177]. However, more recent studies suggest that
RSS• and O2 do not react. Photolytically produced RSS• exhibited the same decay in absence than in
presence of O2 [168]; besides, oxygen consumption was not altered by addition of perthiyl radicals [47].
Furthermore, computational analysis showed that the reaction between RSS• and O2 is endergonic by
16 kcal/mol [47].

The reaction of RS• and NO• to form S-nitrosothiols (RSNO) has been deeply studied [178].
The expected product from the reaction of RSS• with NO• would be S-nitrosopersulfide (RSSNO);
however, these radicals do not appear to react. Experimental approaches to synthesize RSSNO
failed, with formation of NO• and tetrasulfide. In addition, a solution generating RSS• did not
consume NO• [47]. Considering the weakness of the S-N bond determined by computational
analyses (3–4 kcal/mol) and the high stability of the radicals, RSSNO is unlikely to exist at room
temperature [47,179].

To conclude, persulfides are excellent one-electron reductants. In these reactions, relatively stable
perthiyl radicals are formed and can undergo different reactions that ultimately yield RSSSSR.

7. Conclusions

In the previous sections, we have summarized the properties of hydrogen sulfide and
persulfides, with a focus on redox aspects. A rationalization of the interactions of these species
with biologically-relevant reactive oxidants requires an understanding of the kinetics of the processes
as well as the elucidation of the fates of the oxidation products formed. While it is becoming clear
that direct antioxidant scavenging roles cannot be attributed to H2S except under exceptionally high
concentrations, many aspects are yet to be understood about persulfides and their rich biochemistry,
including their reactions with oxidants.
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