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Chapter 1

Introduction

Manifold learning deals with the inference of geometrical properties from collec-
tions of data represented in vector form and embedded in an Euclidean space.
In this context this type of datasets are often called point clouds.

Some of the aims of manifold learning are determining if the data is on (or
close to) a manifold, estimating the dimensionality of the underlying manifold
[46], inferring the underlying manifold [14, 35, 62], finding lower dimensional
representations of data, intrinsic to the underlying manifold [14, 20, 23, 51, 63,
67, 73].

Much effort has been recently dedicated to these last aims: lower dimensional
representations of data are very important because they allow computations that
otherwise would be extremely costly, or even undoable. But these representa-
tions can also simplify operations beyond the gain in the computation cost. If
the data lies in a curvy manifold for instance, the linear interpolation between
two points on the manifold may lie outside it. With a representation of the data
that “unfolds” the manifold one can perform linear operations between the low
dimensional representatives and map them back to the high dimensional space.

The underlying manifold serves also as a model for the dataset, capturing
its main structure. Projecting onto the manifold can be a way of obtaining the
essence of a data point, in the same way that the projection over the principal
axes found by Principal Component Analysis (PCA) can be used to capture the
main structure of a linear manifold. The low dimensional coordinates of the
data may also reflect the main modes of variation of the dataset.

Dimensionality reduction algorithms have been applied to data of many dif-
ferent fields, in particular to image and video processing, both, as a way to
reduce computational complexity and to learn models that can be used as prior
knowledge in applications of segmentation [26, 25] and tracking [65, 24, 28],
among others.

Many dimensionality reduction algorithms are transductive learning algo-
rithms. They compute a low dimensional representation for a given set (this is
referred to as the training stage), but not a rule to generalize this representation
to new points, as an inductive learning algorithm would do. In most learning
algorithms the training stage is computationally costly and it is performed only
once. It is when the algorithm “learns” from the data.

However the training set is just a finite sample from all possible events.
Thus, a rule for extending the mapping to new points is highly desirable. The
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Figure 1.1: Representation of the out-of-sample and pre-image problems in
kernel methods. The darker plane in the feature space represents the principal
subspace.

problem of extending the low dimensional embedding to points absent in the
training set is called the out-of-sample extension problem. Its counterpart, i.e.
synthesizing a new high dimensional point from low dimensional coordinates is
the pre-image problem.

In these thesis we study the pre-image problem taking advantage of the link
between manifold learning and kernel PCA [10, 34], a technique born in the
bosom of the kernel methods field. Kernel PCA is a non-linear generalization of
PCA [55]. As all the kernel methods, it works by mapping the data into a space
fitted with a dot product. PCA of the mapped data is then permformed. It has
been noticed that some dimensionality reduction algorithms can be cast into
these framework: the low dimensional coordinates are the principal components
of the mapped data (kernel principal components).

As a kernel method, kernel PCA works without ever computing explicitly
the mapping [53]. The only necessary information about the mapping are the
dot products between mapped points. This information is encoded in a function
k called the kernel.

In the kernel methods literature [53, 57], the space where the data lies is
called the input space and we will denote it as X'. The so-called feature space
is the destination space of the mapping, denoted by H. Let ¢ : X — H be the
mapping. The kernel function assigns to a pair of input space points z, 2’ € X
a real value: k(z,z') = (p(z), o(2'))x.

This is a very general framework, but also an empty one. Its properties will
depend on the choice of kernel, which is equivalent to say on the choice of the
mapping. In fact, the kernel methods have successfully been used for pattern
classification and regression by increasing dimensionality instead of reducing it.

An example of a kernel can be the Gaussian kernel:

k(z,z') = exp <—%||m - x'||2) (1.1)

where o is a parameter we will refer to as scale parameter of the kernel. This is



an analytic kernel since it is given by an analytic expression that can be evalu-
ated anywhere in the input space and is independent of the input space. Many
kernel associated with dimensionality reduction algorithms are, in contrast, data
driven kernels: The value of the kernel is known only between training points,
and depends on the whole training set.

The benefit of the kernel PCA formalism is that it provides a natural solution
to the out-of-sample extension problem, which combined with an appropriate
kernel function can lead to an inductive dimensionality reduction algorithm.

We will focus on the pre-image problem for kernel PCA in manifold learning
applications, a problem there is still no satisfactory solution for. Our aim is
to compute the inverse of the kernel associated mapping ¢ 1. We study this
problem for analytic and data dependent kernels. The contributions of this work
are the following.

e We experimentally show that existing pre-image algorithms fail to preserve
the low dimensional coordinates. More formally the pre-image ¢~1(¢) of
a feature space point ¢ € H, when mapped back into the feature space
©(p~1(x))) will not have the same kernel principal components as 1.

This is something undesirable: the kernel principal components are the
low dimensional representation of the data, they encode the coordinates
of data inside the manifold. Failing to preserve them implies loosing all
the information of ¢ which is usefull to us.

e We propose a novel pre-image method that preserves the kernel principal
components. With this methodology we design an algorithm for projecting
points onto their underlying manifold. This can be usefull when observed
points are noisy. We apply it to manifold de-noising obtaining good results
in low dimensional data and encouraging results in higher dimensions,
where we applied it to image data.

e Another contribution is a simple framework for extending data dependent
kernels outside the training set, using classical kernel regression meth-
ods. Our whole kernel PCA plus pre-image framework is modular with
the kernel: it can be changed easily, following the philosophy of kernel
methods.

e Finally we also present approximate pre-images for the Gaussian and the
polynomial kernel. For the Gaussian kernel we compare its performance
with other existing pre-images.

This thesis is organized as follows. Chapter 2 starts with a brief overview on
kernel methods with special attention paid to the kernel PCA algorithm, since
it is the core of the manifold learning algorithms discussed here. This Chapter
also presents some of the dimensionality reduction kernels that are going to be
used later.

Chapter 3 discuss possible ways of extending data driven kernels, with more
detail on our choice: the Kernel Ridge Regression algorithm [17]. Tt also discuss
the issue of measuring the performance of the extension.

The core of this work is presented in Chapter 4. It begins by studying the pre-
image problem for analytic kernels. Then the standard pre-image methodology
is applied to data dependent kernels, where we show its inherent problems. The



8 CHAPTER 1. INTRODUCTION

chapter ends with the presentation of the proposed pre-image method and its
application to manifold de-noising with synthetic and real datasets. Finally,
future lines of research and concluding remarks are presented in Chapter 5.



Chapter 2

Kernel Methods

2.1 Introduction

In this Chapter we present an overview of some basic definitions and properties
of kernel methods, focusing on kernel PCA. We will also study explicit rep-
resentations of the kernel associated mapping. This escapes from the typical
treatment of kernel methods where the mapping is only of theoretical impor-
tance. In particular the pre-image algorithms presented in Chapter 4 make use
of representations of the empirical mapping which are presented here.

In the following section we will introduce kernel methods, providing a simple
example, as in [53]. Kernel PCA is presented in §2.3, followed by the represen-
tations of the mapping in §2.4. We will introduce two types of mapping: the
theoretical mapping and an approximation to it: the empirical mapping. The
latter is only known at the training set, therefore we will need out-of-sample
extension strategies for computing it at new points. These will be discussed
in §2.5, together with some results showing the relation between the theoreti-
cal and the empirical mapping with its out-of-sample extension. Finally some
dimensionality reduction kernels are presented in §2.6.

2.2 Definition and examples

A kernel is a function k : X x X — R, such that there exist a mapping ¢ : X —
‘H, where H is a Hilbert space and the following inner-product relationship holds

k(z,a') = (p(), o(@')n  z,a2"€X (2.1)

where (-, )3 is the dot product in H. The Hilbert space H is called the feature
space and X the input space.

The kernel function can be considered as a generalization of the dot product,
and therefore as a measure of similarity or correlation between input points. It
induces a geometry in X. This is useful mainly in two cases: to induce a
geometry in an input space with no geometry, or to modify the existing one.
An example of the first situation is the case of string data (chains of characters,
words, texts). For this type of data it is possible to define a similarity measure,
but not a dot product. By defining a kernel over pairs of strings, we can use
the geometry of the feature space representatives of the strings.
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Figure 2.1: A Pattern classification problem. The data on the left can be
separated with the line that bisects the segment joining the centers of each
class. The dataset on the right does not allow such simple classifier; however,
the Gaussian kernel (2.6) maps the set into a linearly separable one, and the
same classifier, when kernelized yields good results.

In some other cases X has already its own geometry (for example inputs
may be vectors in R?), but a given problem, complex with this geometry, could
be simplified with an appropriate mapping (which is equivalent to say with an
appropriate kernel).

This setting is useful in conjunction with algorithms that only take the dot
products between the points as input. Suppose for example that we want to
train a classifier for the dataset shown on the left of Figure 2.1. Let X =
{z1,..., 2} C X be the set of training points (shown as dots in the Figure).
This is the data we have at the moment of training. Depending on the applica-
tion the training set may have additional information. For instance labels in a
classification problem or functional values in a regression problem.

In this case each point z; € X has a label y; that only takes two values,
say y; = 1 or y; = —1. Therefore we can divide the training set X into two
classes 1, with ¢ = 1,...,m; and 29; with ¢ = 1,...,m2 and m = m; + ma.
The objective is to obtain a function over X (in the example X is the plane)
that predicts the label of new points depending on their position on the plane.
This is a supervised learning problem, because the label for each sample of the
training set is given.

This example is very simple and a line seems a very reasonable solution, as
shown in the Figure 2.1. The line can be determined by its normal direction v
and the distance to the origin b. The following function,

f(@) = (z,0) = b (2.2)

separates the input set X in two semiplanes: if f(x) > 0 then x is on one side
of the line and if f(x) < 0 it is on the other. The line is the set of points for
which f(z) = 0. Therefore, if we find a line that separates both sets, we could
build a classifier using the sign of f(x). In other words, sign(f) would be a rule
induced by the learning algorithm.

Just to show the concept, we are going to pick the line that bisects the seg-
ment joining the class centers, ¢; and cy. The normal vector v can be computed
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as:
1 & 1 &
V=¢C —C=—— E T14 — — E T2, (23)
mq 4 ma “
1=1 =1

We can determine the offset parameter b, imposing that the mean between
c1 and ¢y belongs to the line:

1
b= <1/2(C1 + CQ),’U> = 3 (<61,Cl> — (ca, €2))
1 1 my 1 mo
=5l m Z (T1,6,71,5) — P Z (T2,i, 2,5) (2.4)
ij=1 ij=1

The label on an unseen point = will be determined by the sign of f(z), given
by:

f(x) = (z,0) — b= mil > (@) - m% > (@, wa) — b (2.5)
i=1 =1

Note that the solution can be fully expressed in terms of the dot products
between the points. If we did not know the precise location of the points,
but knew their dot products (z;,x;) with ¢,j7 = 1...,m and (z,z;) with ¢ =
1,...,m, we still would be able to build the classifier. The dot products between
the training points can be encoded in a matrix G, such that G;; = (x;, ;). This
is called the Gram matrix and it is symmetric and positive semidefinite.

The problem on the right of Figure 2.1 is harder, in the sense that the solution
it is not as simple as a line. If we use the geometry of the input set, we would
have to develop a more complex algorithm to find the classifier. Another option
is to define on the input space a new geometry, in which our simple classifier
works well. In other words, concentrating the complexity on the geometry and
not on the learning algorithm.

The success of the kernel methods is due to the fact that they allow to do
that very easily. Substituting all the dot products in the Egs. (2.4) and (2.5) by
the kernel is equivalent to constructing the bisecting line (or more generally a
hyperplane) in the feature space between the mapped points ¢(z1 ;) and @(z2,).
This is called the kernel trick. Of course one question that rises immediately
is that of how to choose a kernel such that its associated mapping allows to
separate the classes with the bisecting hyperplane. It has been observed that
many kernels do that [53]. Some of the most commonly used kernels are:

: / |l — 2|2
Gaussian kernel: k(z,z") = exp o (2.6)
o
Polynomial kernel: k(z,z') = ({(x,2') + ¢)? (2.7)
Sigmoid kernel: k(x,z’) = tanh(x(z,z’) + 0) (2.8)

Figure 2.1 shows on the right the classifier found using the Gaussian kernel.
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The solution has been kernelized. Its new form is:

1 mi 1 ma
= — > ki) = — > k(w2
@) = o Sk = oY k(o aa)

mo

11 & 1
_ 5 mil Z k/’(l'l,iyl'l,j) - mig Z k(-rQ’Z‘,fL'Q’j) (2.9)

i,j=1 i,5=1

Note that f can be expressed as a kernel expansion:
fl@) =" aik(z, ;) — b (2.10)
i=1

Thus we have built our classification function as a sum of kernel functions cen-
tered in the training set points: k(-,z;). These kernel functions are a basis of
the set of solutions. Any linear classifier in the feature space can be expressed
as Eq. (2.10) and on the other hand, any kernel expansion can be interpreted
as being a linear classifier in the feature space associated with the kernel.

In this case the coefficient «; corresponding to a point z; will be 1/m; if it
is of class 1 or —1/my if it is of class 2. With the Gaussian kernel k(-, x;) is a
bump function centered in z;. Its width will depend on the scale parameter o.
A higher o yields a wider bump. The solution is made with the contributions of
positive bumps centered on the class 1 points and negative bumps on the class
2 points. The constant coefficient b sets the zero level of the classifier.

This is what happens in the input space. Let us now analyze the situation
in the feature space. Even if we do not know any explicit form of the mapping,
we can draw some conclusions based on the dots products between them. In
fact that is all we need to know. If the o parameter is smaller than the gap
between both classes, then k(x;,29;) = 0fori=1,...,myand j=1,...,ma.
This implies that both classes will lie in orthogonal subspaces of H. Thus, they
are linearly separable. In fact, any configuration of two classes can be mapped
into a linearly separable set if ¢ is small enough: each mapped point will be
orthogonal to the rest, therefore all the possible subsets are separable from their
complement.

Many kernel algorithms have been developed by kernelizing existing ones.
The most famous is probably the Support Vector Machine or SVM [13, 53, 56].
It is a linear classifier in the feature space which maximices the sum of the square
distances between the hypeplane and the convex hull of each class. Classifiers
found by SVM are sparse kernel expansions, i.e. «; # 0 in Eq. (2.10) only for
a small fraction of the number of points.

There are also kernel methods for regression (inferring a real function from
its samples) such as Kernel Ridge Regression [17], Support Vector Regression
[60]; for density estimation [25] among other applications [53].

It was not until recently that kernel methods begun to be applied in the
field of manifold learning and dimensionality reduction through the kernel PCA
method, as we are going to see in §2.6. In the following section we are going to
describe kernel PCA, and show its relation with manifold learning.
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2.3 Kernel Principal Component Analysis

Kernel Principal Component Analysis, or kernel PCA, was introduced first by
Schélkopf et al. in [54, 55] as a technique for doing non-linear component anal-
ysis (see [39] for more information on PCA). The main idea is to map the input
patterns into the feature space and compute the principal axes there. The
kernel PCA projections of the input patterns (referred to as kernel principal
components) can then be used as features for classification [55]. Kernel PCA
has also been applied to build generative models of a dataset in the input space
[47], to image de-noising and as a shape prior in segmentation [26]. It has also
been noted that many dimensionality reduction algorithms may be interpreted
as kernel PCA [34].

These type of applications motivate the pre-image problem. For instance
kernel PCA de-noising works by mapping a noisy input point z in the feature
space, ¢(z) € H, projecting it over the ¢ principal axes in the subspace, Pyo(z),
and mapping the projection back into the input space, obtaining a new (hope-
fully noiseless) point: 2/ = ¢~} (Pyp(x)). This last step is the pre-image of the
mapping. Recall Figure 1.1.

Although there is little understanding about the effects of this technique in
the input set, it has been empirically shown that for non-linear datasets, where
linear PCA would fail to capture the dataset structure, kernel PCA performs
better [47, 43, 26]. In [47, 53] it has been argued that one of the reasons
for kernel PCA to outperform linear PCA in de-noising applications is that
the dimensionality of the feature space can be much greater than that of the
input space. This may help at the time of separating the principal components
encoding structural information from those encoding the noise.

The results depend heavily on the choice of the kernel, differently from what
happens in pattern classification applications. See for example [38]. Among the
kernels presented before, the Gaussian kernel is the most used one [26, 40, 43, 47].

In this section we will show how to compute the kernel PCA projections.
This can be done in terms of kernel values among the input patters, and thus,
does not involve the explicit computation of the mapping. However, as we will
see in §2.5 the kernel PCA projections are itself a representation of the mapping.

Principal axes in the feature space

Suppose we have inputs X = {z1,...,z,,} C X. Using a given kernel function
k: X xX — R we map (implicitly) the data into the feature space ® =
{90('/131)’ T @(xm)} CH.

Usually principal axes are found by the diagonalization of the covariance
matrix or its empirical estimate. If we could treat the feature space elements as
vectors, we could express the estimate of the covariance matrix as:

C =23 p@pla)” (2.11)

m <
=1

The eigenvectors of C would be the principal axes, and their eigenvalues the
variance along each axis. However we can not think of ¢(z;) as a finite vector
(we will see in §2.4.1 that H may be an infinite dimensional space), thus we
need a more abstract formulation of the principal axes.
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Proposition 2.1 (Optimality properties of PCA [39]). The q first principal
azes are an orthonormal basis of the q dimensional subspace which maximizes
the variance of the projections of the data points onto it.

A consequence of the previous proposition is that the principal axes can be
found iteratively. The first one, as the direction that maximizes the variance of
projections onto it:

p; =argmax Z(go(mﬁm)% (2.12)
PER iy

subject to ||p|lx =1

where we are assuming that the ¢(z;) are centered. The second principal axis
can be found by maximizing the same objective function, constraining it to be
orthogonal to p;:

m

p2 =argmax » (p(z;),p)% (2.13)
PER i

subject to ||p[l% =1 and (p,p1)» =0

The third one can be found adding the constraint of being orthogonal to ps,
and so on.

However, we are still not able to use the kernel trick, since we can not
compute (p, p(z;))n: we know the feature space dot product only between the
mappings of the training points ¢(z;). The following proposition will help us
continue.

Proposition 2.2. The principal axes with non-zero variance lie on the span of
the dataset ® = {p(x1),...,p(xm)}-

Proof. To see why the proposition holds, suppose that the principal axis p; has
components in the orthogonal complement of the span of ®: p; = pf + p}bL.
Only p¥ contributes to the objective function of Eq. (2.12), since for each ¢(x;)

(b1, p(z))F = (7, p(2:))3 < (7, ()3, (2.14)

P 11%
where the last inequality holds because |[pF|/ < |p1lls = 1. Therefore, the
unit norm vector pf/||pf |7 yields a greater projection variance than p;, con-
tradicting our assumption of p; being the principal axis. A similar argument
can be used for other principal axes with non-zero eigenvalue. ]

This means that p; can be expressed as p; = Z;nzl a;p(z;), and we can use
the kernel trick to evaluate the objective function in Eq. (2.12):

(pr,o(@i))n =Y ajlp(a;), o) = Y ajk(xi,z;) = [Kali  (2.15)
j=1 i=1

where K;; = k(z;,2;) is the kernel matrix, o = [avq, ..., )7 is the expansion
coefficients vector of p; over ® and [K «|; denotes the ith component of vector
Ka. We are going to assume that the kernel matrix is symmetric and positive
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semidefinite. As we are going to see in §2.4, this is true from the definition of
kernel.

Thus, we can express the objective function in (2.12) as ||K«||?. Note that
this is the Euclidean norm of a vector in R™: we translated the problem from a
possible infinite dimensional space H to a vector problem. We can also express
the constraint over the norm of p in vector form, since:

m m m
Ipll3; = <Z ai¢($i),zajsﬁ($j)> = Y aiajk(zi,z;) = a" Ko (2.16)
i=1 j=1 5 Bd=1
Now we can rewrite the problem of Eq. (2.12) as a constrained optimization
problem in terms of the expansion coefficients vector a:

o) = argmax |[Ka|? = argmax o’ KK« (2.17)
aTKa=1 aTKa=1

The Lagrangian of this problem is:
L(a,\) = o’ K?a - MNa"Ka — 1) (2.18)

Thus, making zero the derivative w.r.t. a yields the following generalized eigen-
value problem:
K’a=)\Ka (2.19)

Note that for a a solution of (2.19) with generalized eigenvalue A the objec-
tive function of (2.17) takes A as value. Therefore the eigenvector associated to
the largest eigenvalue is the a we are looking for.

The following proposition is very usefull because it allows us to solve a
simpler problem. For a proof refer to §C.2 in [37].

Proposition 2.3. For a symmetric matriz K the generalized eigenvalue prob-
lem (2.19) is equivalent to the eigenvalue problem:

Ko =)\ (2.20)
for the cases of interest w.r.t. the optimization problem (2.17).

Using Proposition 2.3, we can compute the coefficients vector of the first prin-
cipal axis as the largest eigenvector of the kernel matrix K (i.e. the eigenvector
with largest eigenvalue A1). Note that if u; denotes the largest eigenvector with
Fuclidean unit norm, we will have to re-normalize it: the feature space norm of
p1 is given by ulTKul = \1. Thus

Uy (2.21)

The optimization problem for the second principal axis ps, (2.13), can also
be expressed in vector form. Denote a¢; and ay the coefficients vectors of p; and
p2. The additional constraint on ps can be expressed as (p1, p2)x = aTKas =
Aa;Tas = 0. The orthogonality between the principal axis translates into the
orthogonality between their corresponding expansion coefficients vectors. It can
be shown that the solution to the problem:

oy = argmax o’ K« (2.22)
a’Ka=1

subject to a] a =0
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is given by the second largest eigenvector of matrix K, properly normalized.
Similarly, the coefficient vectors of the following principal axes correspond to
the rest of the eigenvectors. For the ith principal axis we have that

1
VA
We can express this results in matrix notation. Denote by A the m x m matrix

with the coefficient vectors «; as columns and by U, A the eigenvector and
eigenvalue matrices of K. Then:

w;i (2.23)

o; =

A=UA? (2.24)

It may be the case that the last m — r eigenvalues are zero (or very small)
i.e. the kernel matrix K has rank r. Or we might as well be interested in just
the first » principal axes. In those cases, we can use the following expression:

A, =U., A (2.25)
where the subscript (- 1:7) denotes the submatrix built with the first r columns
and the subscript 1:7 (without the dot) indicates the upper left r x r submatrix.
Note that in this case A, is an m X r matrix, containing the coefficient vectors
for the r principal components. In the following, we are going to use expression
(2.24) indistinguishably in both cases unless the contrary is stated, because the
overall treatment is basically the same.

Kernel PCA projections

Now that we have computed a representation of the principal axes, we can easily
find the projection of the mapping of a test point x over the ith principal axis
in the feature space:

(@), pir = (p(2), > Ajio(x))r = > Ajik(w, ;) = [ATko]:  (2.26)
j=1 j=1

where k, = [k(x,21),...,k(z,2,)]" is the kernel vector between x and the
training set. Denoting by y, the vector with all kernel PCA projections, we
have that

y, = ATk, = A"V?U Tk, (2.27)

If we apply this to a point in the training set x;, we get
Yo, = ATVPUTk,, = AYPULT = [V Ui, VA U™ (228)
Denote Y (X) the matrix which ith column is y,, then:
Y (X) = AV2UTK = A"V2UTIUAUT) = AYV2UT (2.29)

The matrix AY2U7 encodes the projections of the m training points over the
m principal axes in the kernel space. If K has rank r, the Y (X) would be r x m
matrix with the projections over the first r principal axis.
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Centering in the feature space

In the previous sections we have assumed that the kernel corresponded to a
centered mapping. In general, the kernels will not be centered. Suppose for
example that we are working with the Gaussian kernel. Since all the kernel
values are greater than zero, the greatest angle between two points in the feature
space will be smaller than 7/2. Thus mapped points ¢(x1), ..., @(z,;,) will lie
inside a cone with angle smaller than 7/2. Besides all of them will have unit
norm, so they lie on the intersection with the unit sphere and the inside of the
cone. The vertex of that cone is the origin, therefore they can not be centered.

Centering the data in the feature space can be translated into the kernel.
Denote by % the centered mapping:

_ 1«
P(x) = ple) - — " olw) (2:30)
i=1
We can define a “centered” kernel w.r.t. the dataset X, denoted by k, as
3 ote)
i=1

L
m
P 1 <, 1
=k(z,2") — EZk(m,xl) - EZk(m ;) + poc Z k(z;, ;)

i=1 i=1 ij=1

Fa,a') = <<ﬂ(w) -3 el -

H

(2.31)

Using the vector notation, we have that the centered kernel matrix for the
training set is given by:

f =K — 1mmK - Klmm + 1mmK1mm
= (I = Lo ) K(I = 1) (2.32)

where 1., is a constant ¢ x r matrix filled with ones. The centered kernel vector
for test point x can be computed as:

Ey = ky — Loymks — K1yt + Lym K Lnm (2.33)

Results with the Gaussian kernel

In this section we are going to show some results for kernel PCA projections with
the Gaussian kernel (2.6). Figures 2.2 and 2.3 show the kernel PCA projections
over the first four kernel principal axes for two distinct datasets, indicated by
the cyan dots. The gray value in the images represents the magnitude of the
kernel PCA projection over the corresponding principal axis.

The images were constructed as follows. A 50 x 50 rectangular mesh was
defined covering the domain shown in each Figure. A pixel is associated to
each point x in the mesh. The gray value for pixel z indicates the kernel PCA
projection over the corresponding principal axis (p(z),p;)n, with ¢ = 1,...,4,
computed according to Eq. (2.26) (after centering the kernel). The green curves
are the level lines of the projection. The scale parameter o was computed as the
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average distance from each point towards its 10th nearest neighbor. Denoting
by x; 10 the 10th nearest neighbor of z;:

1 m

The behavior of the kernel PCA projections for the clusters dataset is very
interesting. The value of the projections over p; and p, separate the three
clusters. Points in the left cluster have a negative first principal component and
a positive second one. The center cluster has zero first principal component
and a negative second one. The right cluster has both principal components
positive. Higher components differentiate between regions inside the clusters.

Note that for points x far away from the training set the kernel vector k,
vanishes, causing the value of the projection to go to zero.

=== 0

1/ S

\ ) | —
i 0.2

Figure 2.2: Kernel PCA projections over the first four principal axes, using
the Gaussian kernel. Sinusoidal dataset. The gray scale of pixel x denotes
the value of the projection (p;, p(z))y with i = 1,...,4. Top: first and second
components, bottom: third and fourth. The green curves denote the level curves
of the projection.

2.4 Representations of the kernel mapping

There are many different mappings associated with a kernel k£ : X x & — R,
i.e. mappings that satisfy the dot product property (2.1). Next section deals
with the ways in which the mapping can be represented. These instances of
the mapping are of theoretical relevance because they are a constructive proof
that (under appropriate hypothesis) a mapping exist. However they can not be
computed explicitly.

In §2.4.2 we present the empirical mapping, and some vector representations
of it which allow computational work, and will be used later in the derivation
of pre-image algorithms.

Along the following sections we may use different notations to refer to the
different representations of the mapping. However although they may different
mathematical elements, they are equivalent from the kernel point of view, since
they all have the same geometry. Therefore in the kernel literature such different
notations are not common. We will use them whenever we are interested in
referring the the mathematical object itself.



2.4. REPRESENTATIONS OF THE KERNEL MAPPING 19

2 25 3 35 4 45 5

Figure 2.3: Kernel PCA projections over the first four principal axes, using the
Gaussian kernel. Clusters dataset. The gray scale of pixel  denotes the value of
the projection (p;, p(x))» with i = 1,...,4. Top: first and second components,
bottom: third and fourth. The green curves denote the level curves of the
projection.

2.4.1 Theoretical mappings
Reproducing Kernel Hilbert Space

One possible way of constructing the mapping is to assign every point x € X
the function ¢ (z) = k(x,-). In this case, we are going to define Hp as a linear
subspace of the set of real valued functions over the input space X, denoted by
AR =1{f: X - R}

!
HRZ{f:XHR|f:Zaik(xi,-), o €R, 7, € X, lEN} (2.35)

i=1

Note that even if Hp is built with finite linear combinations of elements k(z, -),
its dimension can be infinite.

We still have to define a dot product in Hr. We are going to define it among
the elements of the generator first:

<k(l’,'),k(1‘/,')>HR = k‘(ac,x') (236)

This definition can be linearly extended to the rest of the space. Consider
f=Yi aik(zi ) y 9= ajk(a),):

l 14
(Fo)mn =D > aialk(ai, o)) (2.37)

i=1 j=1

It can be shown that if the kernel satisfies the following definition, the defined
function (-, )3, is a dot product [53].

1Hp as defined below is a pre-Hilbert space. To turn it into a Hilbert space it must be
completed by adding the limits of all the Cauchy sequences. For now on we will refer with
‘Hr to the completion of the space defined in (2.35).
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Definition 2.1 (Positive definite kernel). A kernel k : X x X — R is a positive
definite kernel if for all finite sets {z1,..., 2, } C X the kernel matrix K w.r.t.
{z1,...,2m}, given by K;; = k(x;,z;) is a positive definite matrix.

This Hilbert space is called Reproducing Kernel Hilbert Space for its repro-
ducing property: (k(z,-), f)n, = f(x) for every f € Hg, and has been studied
deeply in the field of functional analysis.

Mercer Map

Another possible kernel mapping is given by the Mercer theorem [53]. We are
going to assume now that we have a density function p(z) defined over the input
space X.

To construct this mapping we are going to associate a linear operator Ty :
Lo(X) — La(X) to the kernel. Ly(X) is the set of squared integrable (according
to the density p(z)) real functions defined over X:

/ fA(z)p(z)dz < oo (2.38)
X

The mapping will be obtained from the eigenfunctions of the operator. We
are going to assume that the kernel function is bounded and continuous.

Theorem 2.1. [Mercer] Suppose k : X x X — R is a symmetric, continuous
and bounded function such that the integral operator Ty, : La(X) — La(X) given

by
nJuriLk@w&mwaMf (2.39)

is positive definite, that is for all f € La(X)

//%quWVWMﬂmmww>o (2.40)
X JX

Denote ¢;(x) € Lo(X) the normalized orthogonal eigenfunctions of Tj, asso-
ciated with the eigenvalues v; > 0, sorted in non-increasing order:

1650) = Tus(z) = [ klao,a)os (@ (') (2.41)

X
Then

1. Z;i17j <00

2. k(z,2') = Z;‘;l vipi(x)p;(x’) for all (x,2") € X x X. The series con-
verges absolutely and uniformly in X x X.

A kernel fullfilling the hypothesis of the Theorem is called Mercer kernel.
According to the second statement, if we define the mapping pp; : X — £o as:

om(z) = (V71 '91(x), \/W?%(@v ) (2.42)

The mapping ¢y is an infinite sequence. With the usual dot product in ¢5 we
have that

(ormr (@), orr(x'))e, = Z%‘fbj (2)¢j(2") = k(x,z") (2.43)
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for all (z,2') € X x X.

Note that in this case Hj; = ¢o has infinite dimensions as for the RKHS
map.

To compute this mapping more structure is needed than for the RKHS:
we need a density p defined in X' that allows us to integrate. The following
propositions elucidates the relationship between Mercer kernels and positive
definite kernels.

Proposition 2.4. Under the same conditions of Theorem 2.1 the kernel is also
positive definite [53].

Proposition 2.5 (Mercer map as kernel PCA). The Mercer map is aligned with
the principal axes. In other words, the principal axes are given by the canonical
coordinates of U2, and thus py; is already expressed in the principal components
coordinate system.

See for instance [15] for a proof. This means that Mercer kernels are also
positive definite kernels and they allow a RKHS representation. The Mercer
map can be viewed in this case, as the projections of the RKHS map over the
principal axes in the feature space.

2.4.2 Empirical Kernel Map

In the previous section we saw two representations of the kernel map of theoret-
ical relevance. Since these mappings are infinite dimensional they do not allow
any computation except those done through the kernel trick. In this section
we are going to present a finite dimensional approximation of the kernel map,
more suited for computation. Before going on, let us anticipate briefly the path
followed in the next sections.

The motivation for a having computable approximation of the kernel map is
mainly due to the dimensionality reduction problem, as we are going to see in
§2.6. However, these representations will also help us to understand and develop
pre-image algorithms in Chapter 4.

Suppose we have a finite sampling of the input space X', given by X =
{z1,..., 2y }. If we perform only linear operations between the mapped points
w(x;) with ¢ = 1,...,m, we can restrict the feature space to the finite dimen-
sional subspace generated by the set of m mappings ¢(z;) with i =1,...,m:

H™ = {E = Zaigo(a:i), o, €R, x; € X} (2.44)
i=1

We will refer to H™ as the empirical feature space. In the following para-
graphs we are going to discuss three ways to represent the elements of H™,
that correspond to coordinates in different bases. Strictly speaking the presen-
tation of the empirical kernel map that gives the name to this section, will be
completed in §2.5. There we review how to compute the finite dimensional rep-
resentations of H™ for a point x ¢ X (i.e. the out-of-sample extension). This
will be done by approximating the theoretical mapping ¢(x) by its projection
onto H™:

Pm () & Pymp(x) (2.45)

where ¢,,, is the empirical kernel map.
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Kernel vector and a-vector representations

The most straightforward way to represent an element ¢ € H™ is by expanding it
in the generator given by ® = {¢(z1),...,¢(2m)}. Denote by a the coefficients
vector of &:

£= Z[af]isﬁ(fm) (2.46)

The dot product between two elements £ and £’ of H™ with coefficient vectors
a¢ and o, can be expressed as:

<§7£/>H = Z Zagiagjk(xi,x;) = agTKagl (2.47)
i=1 j=1

where K is the kernel matrix (i.e. K;j = k(z;,z;) withi,j =1,...m), a =
[, ..., )T and analogously for o.

Eq. (2.47) shows that for computing the dot products among the elements
of H™ we need their expansion coefficients vector a. Let & € H™ for which we
want to compute the a coefficients. The coefficients can be obtained through
the following optimization problem:

a¢ = argmin F(a) = argmin || — ZCVZ(,O(CQ)”%‘ (2.48)
i=1

The objective function can be rewritten in the following way:

Fa) = 1§ =) aip(ai)ll} = <£ =D aip().€ ~ Zajso(wj)>
i=1 i=1 J=1 H

= (6:€) —2) @i (€ p(@a))p + Y aic {p(z)), 0(2i))y  (249)
i=1

i,j=1

If we define the vector® ke = [(§,0(%1))yy -, (& @(Tm))g]T we can express
(2.49) in vector form:

Fla) = a" Ko —2a ke + ||€])3, (2.50)
Making the derivative w.r.t. a equal to zero yields:
KOL& = kg (251)

Under the assumption that £ € H™ (the minimum of F' is zero), this vector
equation has a solution. However, depending on the rank of the kernel matrix,
the system can be underdetermined. A possible way to compute a unique o
is to choose the one with the smallest Lo-norm. This procedure is known as

2This is an abuse of notation: the dot product in the feature space (£,&')y equals the
kernel function value only if £ and £’ are in the image of the input space p(X), i.e. if £ and ¢’
have exact pre-images by the mapping. We will use also the notation k. to refer to the kernel
vector between a point z € X and the training set X. Due to the dot product property, if
& = p(x), then k¢ = kq.
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Tikhonov regularization. This can be done using the Penrose-Moore pseudo-
inverse Kt = UATU?T, where U and A are eigenvectors and diagonal eigen-
value matrices, respectively and A" denotes the Penrose-Moore pseudoinverse
of A, a diagonal matrix computed inverting all the non-zero eigenvalues of K?3.
Then

o = KTk (2.52)

Therefore we can use two vector representations for &, a¢ and k¢. If we use
the kernel vector representation, the dot product between & = 7" | agip(z;)
and & = > agrip(x;) can be expressed as:

(€& n=alKag (2.53)
— kK" KK ke = kI K ke (2.54)

In the last equality we have used that the pseudo-inverse of a symmetric matrix
is also symmetric, and that KT KK+t = K.

These representations correspond to different basis of H™. The basis of
the a representation is ® = {p(x1),...,¢(xm)}. We are going to refer to this
representation of the empirical map as the a representation and to k¢ as the
kernel vector representation of £ € H™.

Kernel PCA representation

Another basis of H™ is given by the principal axes P = {p1,...,pm}. The
coordinates on this basis are given by the orthogonal feature space projections
over the basis elements. In §2.3 we computed those projections for the mappings
of the training set ¢(x;) with i = 1,...,m as well as for the mapping of a new
point ¢(x). Generally, the latter will not belong to H™, and thus, its kernel
PCA representation is infact that of its projection over H™. We will return to
this point in §2.5.

In this section we will compute the kernel PCA projections of £ € H™. Note
that £ does not have to be the image of any x;, and therefore this case was not
covered in §2.3.

Suppose & = 31" ceip(xi). Let ye = [yer, ..., Yem]” be the vector with its
principal components. The jth principal component is given by

[yeli = (& pj)n = <Z agiw(wi)7ZAzjcp(xz)> = o/ KA (2.55)
=1 I=1

H

Therefore
ye = ATKae = A"PUT(UAU o = APU (2.56)

Equivalently, we can also find the kernel PCA projections vector y, from
the kernel vector ke:

ye = APUTK ke = A7V PU ke (2.57)

3Equivalently if the rank of K is 7:
K+ = U'I"‘A;}'U?;:r
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Note that this is the same as in (2.28), the expression for the kernel PCA
projection of input point x;. Once again, being the rank of K, r < m, A2
must be substituted with [AY/2]*.

The kernel PCA representation of the empirical map will be of particular
relevance to us. As we are going to see in §2.6, the application of kernel methods
to dimensionality reduction is precisely through the kernel PCA empirical map.
The low dimensional representatives are the kernel PCA map. Dimensionality
reduction is achieved by considering only the first principal components.

About the notation. In this section we have used the notations ag, k¢ and
Y, to denote the different representations of §. If § = o(x;) with z; € X we will
use @y, , k;, and y,. as a shortcut for (), ky(s,) and Yo(z:):

The topic of the following section is the computation of e, k, and y, for
a point = which is not in the training set X.

2.5 Out-of-sample extension

In §2.4.2 we presented three representations for the elements in the empirical
kernel feature space H™. As stated before, these representations can be consid-
ered as kernel mappings, if the input space is restricted to X = {z1,...,2m}.
In this section we are going to study the problem of extending these finite rep-
resentations outside the training set, when X is just a finite sample of X.

Generally the image of a new point will not be in H™. Consider for example
the Gaussian kernel (2.6). With the RKHS map (recall p(z) = k(zx,-)) it is
easy to see that ¢(x) ¢ span{p(x1),...,p(zm)} = H™. Infact adding = to
the training set modifies all the representations. In particular, recomputing the
kernel PCA projections would require recomputing the eigendecomposition of
an expanded kernel matrix to find the new principal axes. Since the principal
axes change, so do the kernel PCA projections of the original points. However,
if the initial training data is large enough, we can expect p(z) to be close to
H™ and to have a very small influence over the principal axes. We will base
on this idea to present out-of-sample extensions of the empirical kernel map
representations.

We are going to define the empirical kernel map ,, : X — H" as

() = Prmp(a) (2.58)

Projecting over H™ is equivalent to projecting over the span of the m princi-
pal axes in the feature space. Since ¢, () lies in H™, we can compute ., (z),
Yo, (z) A Ky (1) as we did in the last section.

We are going to start with the kernel PCA projections y,, (., since we
already know them through Eq. (2.24):

Yo(e) = Yo = NTTU R, (2.59)

Recall that k, = [k(z,21),...,k(x,2,)]T. We will consider the case when K
does not have full rank by using the pseudo-inverse of A.
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To compute the remaining representations of ¢,, () we are going to write it
as an expansion in the ® basis:

Z ygam x) 1pl = Z[ygam(ac)]i ZAJZ(IO(‘/EJ)

=Z<Z[ywm(x>l ) =3 Ay, e@) (@260

Therefore, we have the following relation between a-vector representation and
the kernel PCA projection:

1/2
U (2) =AYy, () = UA Ty, (0 (2.61)

Substituting (2.59) we obtain a, () in terms of k,:
oy () =Kk, (2.62)

We can compute the kernel vector representation k., () substituting last
equation in (2.52),

ko, ) =KK'k, (2.63)

This expression may suggest that if K is not invertible, k, may differ from
k.. (x)- However this is not the case. One way of seeing it is by looking at
the definitions of these kernel vectors. Their ith component of is given by
loali = k(. 2:) = (@), 9(w:)oe and [k, ()]s = (P(@), 9lw:)) e

Since ¢, (x) is the orthogonal projection of ¢(x) into H™, we have that
the difference vector ¢(z) — ., (2) must be orthogonal to every ¢(x;), with
t=1,...,m. Thus:

(p(x) = om(@), o(@i)n = (p(x), p(i))n — (om (@), (@) =0 (2.64)

and therefore k, =k, (,). In other words k, is the kernel representation of
the empirical map for z.
Equivalently note that Eq. (2.63) can be rewritten as

Ky (o) = (UAUT) (U.MA;iU,lTW) ky =U., ULk, (2.65)

where r is the rank of K. This equation is the Euclidean projection of vector
k. over the range of matrix K. It can be shown (see Appendix A) that k, is
always on the range of the kernel matrix K.

The fact the k, is itself an empirical kernel map is not surprising. It can be
seen as a finite version of the RKHS map. Besides it encodes all the information
needed to project p(x) over H™.

This also explains the abuse of notation used by denoting k., ¥y, and o, as
shortcuts for K, (2), Yo, (z) a0d Ay ().

2.5.1 Relation between ¢,, and ¢

In previous sections we presented the empirical mapping, and a way to extend
this mapping to unseen points by projecting the true, unknown mapping ¢(x)
onto the subspace spanned by the previous mappings H"™. We have argued that
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if the number of samples is large enough, ¢(z) should be close to its projection
P, (p()) = om(x).

The purpose of this section is to give a more formal justification for the use of
the empirical map ¢,, as out-of-sample extension by reviewing some asymptotic
results that show that ¢,, converges to ¢ in the limit when m — oo. This section
is based on Chapters 3 and 4 of M. L. Braun’s PhD Thesis [15]. For a more
detailed and comprehensive treatment refer there.

The kernel (or the kernel matrix for a finite sample) encodes the information
about the mapping. All the approaches thus focus on the convergence of its
spectral properties (eigenvalues and eigenvectors) to those of the kernel function
associated operator (2.39). Observe that this implies the convergence of the
kernel PCA representation of the empirical mapping to the Mercer map.

Asymptotic results

The asymptotic properties of the kernel PCA map are well known in the field
of integral equations. Interestingly, there is a way of approximating the eigen-
vectors and eigenvalues of the kernel operator called the Nystrom method [4],
which coincides with the kernel PCA projection. The convergence properties of
the Nystrom method thus apply to the kernel PCA projection. In the following
paragraphs we are going to present the Nystrom method and show its relation
with kernel PCA.

The Nystrom approximation of the operator [4] was presented by Nystrom
in 1930 [49] is based on a Monte Carlo approximation of the integral

m

1
105(@) = [ ko pla)de’ = S Ka)aye) (260
i=1
Evaluating ¢; in x4, ..., 2, yields a matrix eigenvalue problem:
) 1 m )
ﬂ/jqu(ﬂil) = E;k(xl,xz)%(m) [l = 1,...,m (267)

Denoting ébj (X) = [¢j(x1),...,0;(xm)]T we can express (2.67) in vector form:

A 5 14

956,(X) = —K,(X) (268)
Solving this matrix eigenvalue problem we can approximate the eigenvalues of
the kernel and the value of its eigenfunctions at the sample points. Note that
the ¢;(X) = U, is the jth eigenvector of K, whereas 4; = A;/m. We can also
extend the approximation outside the training set using

> =

éj(x) = LA Z k(:v,xl)gzgj(asl) = — Zk(l‘, l‘i)Uij (269)

mAs }
Rkt J =1

This is called the Nystrom extension. Besides its applications in the numer-
ical solution of integral equations, it has been applied to speed up the eigende-
composition of large kernel matrices [27, 72, 30], by solving a smaller problem
taken from a submatrix of the original kernel matrix and extending the eigen-
vectors. The idea is that the eigenvalues and eigenvectors of a large kernel
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matrix and its small submatrix are both approximations of the eigenvalues and
eigenfunctions of the kernel operator, and therefore, they must be similar.

Note from Eq. (2.28) that the kernel projection on the jth principal axis of
training set point z; is given by

Wi = VA Usj = /A 65(:) (2.70)

We could use the Nystrom extension to approximate the kernel PCA projection
that would have been obtained if z had been included in the training set,

1

. 1 & .
.l = VA 6(x) = ﬁ ;k(mvxl)%(xl) = W[U'j]Tkw (2.71)

which is exactly the jth component of Eq. (2.27). This is the reason why
sometimes the term Nystrom extension is used for the kernel PCA extension
(or projection). This has been noted by [72].

This link is very interesting for both fields. For the numeric field, it provides
a geometric interpretation of the Nystrom extension: the eigendecomposition of
the kernel matrix can be seen as the principal axes of the data feature subspace
‘H™. The Nystrom extension neglects the change in the principal components
by the inclusion of a new point (as our out-of-sample extension for the empirical
kernel map).

For the kernel methods field, it allows to borrow the known results from
the convergence of the Nystrom extension and apply them to the kernel PCA
projections. But it also sheds light about the relation of kernel PCA and the
Mercer map. As we saw in §2.4.2 the empirical mappings can be represented
by the kernel PCA projections y,. According to Eq. (2.71), we can see it as
a finite sample estimate of the Mercer map. This is also coherent with the
interpretation of the Mercer map shown in §2.4.1 where we saw that the Mercer
map is aligned with the principal axes.

The results we are going to present basically show the convergence of the
eigendecomposition of the kernel matrix to that of the kernel operator, and
therefore the convergence of the kernel PCA mapping to that of the Mercer
map.

Eigenvalues. The convergence of the eigenvalues is largely known in the field
of numerical analysis of integral equations [4]. However, the hypothesis on those
results are not suited for the context of machine learning. These results generally
assume a compact domain with uniform density. In the machine learning setting
the density is not uniform, and it is especially what we want to characterize.
The following result by Koltchinskii and Giné [42] considers more appropriate
hypothesis.

We will assume a sequence of random sets (X1, Xa, ..., X, ...) where each
X = A{z1,..., 2} is drawn i.i.d. from a data generating probability density
function p(x). For each set we compute a kernel matrix Ky with the values
of the kernel function on the set. The following theorem is about the allmost
sure convergence of the eigenvalues of this sequence of kernel matrices.

Theorem 2.2. If k is a Mercer kernel, then

MK x,,) = 7(Tk)lle; —as. 0 (2.72)
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where Kx, is the kernel matriz for o sample of size m, N(Kx,,) € {2 is an
infinite sequence with the eigenvalues of K x, in decreasing order as its m first
components and zeros in the rest, and v(T}) is the sequence of eigenvalues of
the operator Ty, defined in Eq. (2.39).

m

In the above theorem, the eigenvalues are compared as infinite sequences
using the £ metric:

oo

(@) — BuIE, = (i — bi)? (2.73)

i=1

Eigenvectors. The study of the convergence of the eigenvectors is more in-
volved. Eigenvalues of the operator with multiplicity ¢ greater than one, have
a whole ¢ dimensional eigenspace where each vector is an eigenvector. Fur-
thermore, a perturbation of the operator would generate ¢ different eigenvalues,
slight modifications from the original one.

To circumvent this problem Koltchinskii [41], clusters the eigenvalues ap-
propriately, so that each cluster corresponds to the perturbations of a single
eigenvalue of the kernel operator. He studies the projections over the subspaces
spanned by each cluster. The result states that the projection operator over the
ith cluster of K x, converges to the ith eigenspace of Ty. Refer to [41, 15] for
a detailed explanation.

Eigenfunctions. Bengio et al. [10] follow a different approach. They do not
only study the convergence of the spectral properties of the kernel matrix, but
also those of the Nystrom extension. This is interesting to us, because it pro-
vides a formal justification that supports our intuitive choice of the kernel PCA
projection (or the Nystrom method) as an extension for the empirical mapping.
The following propositions show firstly, that the Nystréom approximation of the
eigenfunctions of Ty, Eq. (2.69), are themselves the only eigenfunctions of the
operator associated to the Monte Carlo approximation of the integral equation
(2.66). Secondly, they give sufficiency conditions for the convergence of those
eigenfunctions to the eigenfunctions of Tj.

Proposition 2.6 (Bengio et al. [10], Proposition 1). Denote by L(X) C
Lo(X) the set of square integrable, continuous real functions over X. Let X =
{z1,...,2m} C X and K the kernel matriz for the set X. The operator
T x : L(X) — L(X) given by

Tex[(2) = 3 k(@ @) f (i) (2.74)

3=

has r < m non-zero eigenvalues given by 7;, the eigenvalues of the matrix %K

(r is the rank of K ). The corresponding eigenfunctions are qAbj, where (;Bj 18
defined in Eq. (2.69).

The interesting part of this proposition is that T} x has no other eigenfunc-
tions associated with a non-zero eigenvalue.

Before addressing the convergence of the eigenfunctions, we are going to
introduce some definitions, in order to consider a more general case which will
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be usefull for us soon. Suppose that the kernel function & is unknown. Instead
we compute empirical approximations to this function. These approximations
will be kernels computed from the available data. We are going to refer to them
as data dependent kernels. The functional form of a data dependent kernel will
depend on the input set X. Since we are dealing with asymptotic properties
when the number of points grows, we will use the notation X,, to explicit
the amount of data, as we did in Theorem 2.2. As before we are also going to
consider a sequence of random sets such that each set X, is generated randomly
from a i.i.d. process with probability density function p(x).

Denote by kx,, the data driven kernel, and Ty, x, its associate operator
as in Eq. (2.66). The subscript X, appears twice, because the operator de-
pends on X, in two ways: firstly through the kernel and secondly through the
discretization of the integral. Note that Theorem 2.2 deals with a sequence of
matrices built from random datasets, while now we have a sequence of kernel
functions built from random datasets.

Proposition 2.7 (Bengio et al. [10], Proposition 2). Suppose that the data
dependent kernels kx,, are uniformly bounded (kx,, (z,2') < ¢ for all Xy, x,x)
and that they converge uniformly in their arguments (x and x’) and in probability
to a kernel function k. Suppose that the eigenfunctions of Ty = x, associated
with non-zero eigenvalues also converge uniformly and in probability. Then their
limit are the corresponding eigenfunctions of Tj.

Note that the hypothesis of the Proposition are very strong and may be hard
to check?.

The case in which the & is unknown is common in the application of kernel
methods to manifold learning and dimensionality reduction algorithms.

Finite size bounds

The convergence results are important because they show that the approxima-
tions used behave as the true mapping for a large enough number of points.
However, in practice, we will have m data samples, and we would like to know
how far are we from the actual mapping. In this case, finite sample size bounds
are much more usefull. Most of the results for finite sample size were developed
recently. The latest works are those of Shawe-Taylor et al. [58], Blanchard et
al. [12] and Braun [15].

2.6 Dimensionality reduction kernels

As noted by [10, 34], some dimensionality reduction algorithms can be seen as
kernel PCA. These algorithms are given a set of input points X = {z1,...,2,,} €
X C R The aim of dimensionality reduction is to find a low dimensional rep-
resentation of the data Z = {z1,...,2,} C R? with ¢ < d, while preserving
the geometrical properties of the original set. The methods differ mainly in the
properties they aim to preserve.

41t should be noted that in [15] this result is considered

“...commonplace in the numerical approximation of integral equations and are
known at least since Nystrom’s initial paper [49].”
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The algorithms we are going to consider obtain the mapping as the solution
of an optimization problem, which can be computed as the eigendecomposition
of a matrix, usually referred to as transition or affinity matrix. Generally the
output dimension ¢ is a parameter, which has to be given by the user. The low
dimensional representative z; is computed from the ¢ largest or lowest eigenvec-
tors (depending on the algorithm), in the same way as the kernel PCA mapping
Y., of Eq. (2.25). Therefore it is almost straightforward to interpret the low
dimensional representations as kernel PCA projections:

T
where the kernel matrix is the affinity matrix or a simple transformation of it.
These algorithms are often called spectral dimensionality reduction algorithms
[52, 10].

In the following sections, we are going to give an overview of some of these
dimensionality reduction algorithms: LLE [51], Diffusion Maps [20] and MVU
[68]. Other methods such as IsoMap [63], Multidimensional Scaling (MDS) [23]
and Laplacian Eigenmaps [8] are also spectral dimensionality algorithms, but
we are not going to discuss them here.

Besides spectral dimensionality reduction, another new and related applica-
tion of kernel methods is in the field of clustering. The spectral clustering [48, 71]
and normalized cuts [59] methods are based on performing a simple clustering
algorithm, such as k-means, after the data has been non-linearly mapped. The
mapping is computed from the spectral decomposition of an affinity matrix, in
the same way spectral dimensionality reduction does. The term spectral em-
bedding is often used to refer to both spectral clustering and dimensionality
reduction techniques.

2.6.1 Locally Linear Embedding

Locally Linear Embedding, or LLE was presented first by Roweis and Saul in
[51]. The main idea is to find a low dimensional representation of the input data
that preserves its local linear structure.

For each point x; its n nearest neighbors are identified. Denote the n(z;)
the set of indexes of the n nearest neighbors of x;. The local linear structure of
the manifold around z; is defined by the weights that reconstruct x; as a convex
linear combination of its neighbors®. These weights are stored in the matrix W,
which is computed as

W ,; = arg min ||z; — Z Wiz, (2.76)
w i=1
subject to ZWU =1and W;; =01if j & n(x;) (2.77)
j=1

Note that each row of W can be computed independently from the others,
reducing the above optimization to m least squares problems with n variables
each.

5A convex linear combination must have coefficients which sum to 1.
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The embedding is computed trying to preserve the expansion coefficients for
each point. This can be formulated as the following optimization problem:

m
Z = argmin ||z; — Z Wiz (2.78)
Z1yeeesZm i=1

which is exactly the same function as (2.76) with the difference that in this case
W ;; is given and the z;’s are the variables. This problem is ill posed because
the objective function is invariant to affine transformations on Z. To remove
this ambiguities, two constraints are added: the low dimensional representation
must be centered and it must have unity covariance matrix.

The solution to the constrained optimization problem can be found from
the n + 1 bottom eigenvectors of the matrix: M = (I — W)T(I — W). The

lowest eigenvector is always the constant vector of value one: 1 =[1,1,...,1]7
and its corresponding eigenvector is zero: the rows of W sum to unity and thus
(I-WwW)1L=0.

To turn it into a kernel mapping, we define the matrix K = cI — W.
If (A\;,u;) is an eigenvalue-eigenvector pair of M, (¢ — A\;,u;) is going to be
one of K, turning the smallest eigenvalues of M into the largest of K. If
€ 2 Amax, then K will be positive semidefinite and symmetric, and thus it can
be considered a kernel matrix.

The matrix K can be modified to eliminate the eigenvector 1:

(I -11")K(I-117) (2.79)

It is easy to show that this operation on the kernel matrix K is the centering
operation of Eq. (2.31).

Performing kernel PCA with the centered version of K would yield basi-
cally the same mapping. There is only one difference: the mapping of LLE is
computed using only the rows of the reduced eigenvector matrix without the
normalization with the square root of the eigenvalues (recall for example Eq.
(2.28)). This corresponds to a different scaling of the axes in the feature space,
and thus can be ignored.

Actually the fact that the LLE mapping can be interpreted as kernel PCA is
not surprising, after looking at the conditions used in the optimization problem
that defines the mapping. Enforcing the convariance matrix of the mapped data
to be the identity yields a mapping expressed in the coordinate system given by
the principal axes, as kernel PCA does.

The algorithm has two parameters: n, the number of nearest neighbors
and ¢ the desired dimension of the embedding. The n parameter defines the
local scale. This is a crucial parameter of the algorithm. Setting it high in
cases when the manifold is poorly sampled can easily create wrong connections
between different parts of the manifold, which may be close in the ambient space
but far away w.r.t. the geodesic distance inside the manifold. This connections
are called shortcircuits. On the other hand setting it too low, does not generate
enough connections between the samples. The weight matrix will have less
information for reconstructing the low dimensional dataset.

The dimension of the output space g, is also important. It is very hard to set
in real situations, where the dimension of the manifold underlying the data is
unknown. Recall from Egs. (2.25) and (2.65) that the rank of the kernel is the
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number of non-zero principal components in the feature space, and therefore the
dimension of the kernel PCA mapping. The rank of the LLE kernel matrix will
be generally higher than the dimension of the underlying manifold. Thus when
imposing the dimension of the embedding to be ¢, even if it is the real dimension
of the underlying manifold, there is a lot of information in the higher principal
components that will be discarded. The LLE kernel matrix encodes much more
information than is actually needed. Besides the inefficiency problem, this also
makes the problem of choosing the embedding dimension ¢ hard, since there
seems to be no correlation between the rank of the kernel matrix and q.

This parameter however is present in almost every dimensionality reduc-
tion algorithm. There are works that approach the problem of estimating the
dimensionality of the underlying manifold [22, 46].

Out-of-sample extension

The authors of LLE proposed to compute the out-of-sample extension for a new
point = with the same idea used to build the mapping: find the w, coefficients
that approximate = as a convex combination of its n nearest neighbors in the
training set, and define z, as a linear combination of the z; with the found
coefficients. The same idea can be used to invert the mapping.

Contrary to the analytic kernels case, there is no simple kernel function k
such that K;; = k(x;,z;), needed for computing the kernel PCA projection
of x. Bengio et al. [11] defined such a function based on the w, coefficients
of z. They reported good results and showed that when the constant ¢ tends
to infinity, their kernel PCA-based out-of-sample extension converges to the
heuristic one.

2.6.2 Maximum Variance Unfolding

The Maximum Variance Unfolding algorithm was introduced by Weinberger
and Saul in [68]. The low dimensional embedding computed by this algorithm
preserves the local distances (i.e. the mapping is a local isometry), while maxi-
mizing the variance of the low dimensional representation. The intuition behind
this is that maximizing the variance stretches the manifold eliminating the cur-
vature.

As opposed to the rest of the spectral dimensionality reduction algorithms,
MVU was conceived as a kernel method. Instead of looking for the coordinates of
the mapping, they focus on the kernel matrix K, translating the requirements on
the mapping into requirements on the matrix. This can be done because all the
conditions imposed on the mapping can be expressed in terms of dot products.
The kernel matrix is found as the result of a semidefinite programming problem
[66], where the variable is the whole m x m matrix itself.

The objective function is the variance of the low dimensional representation
Z ={z1,...,2m}. Assuming that Z is centered we can compute the variance in
terms of the kernel matrix as:

D Nzl =D (zizin = Y Ki = tr(K) (2.80)
=1 1=1 1=1

To guarantee that the found matrix is a valid kernel matrix, it has to be
symmetric and positive semidefinite. The set of these matrices is a cone in the
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space of real m x m matrices. This is a convex set. Semidefinite programming is

an optimization technique designed for these kind of problems: linear functions,

with linear restrictions over the symmetric, positive semidefinite matrices cone.
To enforce the centering of the mapping the following condition is needed:

2

0= Zzi - ZZZ = Z <Zi7Zj>H = Z Kij (281)
i=1 i=1 H i,7=1 i,7=1

MVU is a local algorithm, and the local scale is defined by the number of
nearest neighbors n. As we did for LLE, let us define for each input point x; the
set of nearest neighbors indices n(x;). The low dimensional representation of
the whole neighborhood must be isometric. Thus for each x; and z; with j, j’ €
n(z;) (each pair of common neighbors of ;) we have the following constraints:

25 = 2 13 = lloj — e (2.82)
which can be expressed in terms of the kernel as:
Kjj + Kjrj — 2K = ||laj — a0 (2.83)

This defines a set of linear restrictions.

The matrix is then found as the solution to the semidefinite programming
problem of maximizing (2.80) subject to (2.81) and (2.83). This is generally
very costly, and its complexity increases with the number of nearest neighbors,
since this increases the number of restrictions. However this technique has some
benefits over LLE, regarding the choice of the embedding dimension. It has
been observed, although there are no formal results about it, that maximizing
the variance yields kernel matrices with low rank [61]. Thus, the rank of the
matrix can be used as an important guide for determining the dimension of the
embedding.

Weinberger et al. [70] propose to circumvent the problem of the prohibitive
computational cost by expanding the columns of the matrix in a data dependent
basis, and working with the coefficients vector. Modifications of the algorithm
that allow some stretching in the local distances were introduced in [69]. This
is a desirable feature when the samples over the manifold have noise.

Out-of-sample extension

The natural way of extending the mapping (and similarly for its inverse) for
a new point x, is to preserve the distances towards its nearest neighbors. Al-
though this is a kernel method, as with LLE, there is no simple way of finding
a corresponding kernel function with an analytic expression.

2.6.3 Diffusion Maps

Diffusion Maps [20, 44] is a modification from the Laplacian Eigenmaps tech-
nique [8]. To understand how it works, first we are going to start by a justifica-
tion of the Laplacian Eigenmaps algorithm given in [8].

We are going to consider the input dataset as a weighted graph whose ver-
texes are the input points. The weight between points will be stored in an
affinity matrix W, and can be establish by a nearest neighbors graph on the
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dataset: W;; = 1if z; € n(x;) or z; € n(z;), otherwise W;; = 0; or by a
weighted graph such that the weight between points z; and z; is given by a
Gaussian kernel:

Wij = exp (—||acl —il'jH2/2O'2). (284)

The only thing we are going to ask our embedding is to keep as close as
possible connected points. In order to have connected points lying close in the
embedding, we will minimize the following cost function

Y Nz = zl5 W (2.85)

1,j=1

It can be shown that the function in the last expression can be written as

>z — 23 Wiy = 2t(ZLZ7) (2.86)

i,7=1

where Z = [z1,..., zp] is the ¢ X m matrix whose columns are the embedding
coordinates, and L is the m x m Laplacian matrix on the input graph: L =
D — W. D is a diagonal matrix such that D;; = Z;nzl W ;, the degree of the
ith node x;.

The minimization of Eq. (2.85) on the matrix Z is not yet a well posed
problem: setting Z = 0 yields the optimum. To remove this degeneracy, the
authors add the following constraints:

zZDzZ" =1 (2.87)
ZD1=0 (2.88)

the first one fix the scaling of the mapping whereas the second is analogous
to a centering operation to remove translation ambiguities. The solution to
this problem is given by the bottom eigenvectors of the following generalized
eigenvalue problem

Lv = \Dv (2.89)

As in LLE, the lowest eigenvector is removed, since it is the constant vector of
value 1, with eigenvalue 0.

To transform the generalized eigenvalue problem into an ordinary one, con-
sider w = D'/?v. Then

Lv=\Dv = D Y?Lv = \D"%*v = D V2LD "?w = \w
=TI -D *WD V) w=x xw=D*WD "2w=_01-MNw (2.90)

Therefore, we can obtain the mapping (up to the scaling by the degree matrix)
from the top eigenvectors of the matrix K = D7 Y2WD™V2 If the weights
were computed with the Gaussian kernel, this matrix is symmetric and it can
be shown that it is also positive semidefinite [19]. Note that in this case the
entries of K are given by

W ..

K.. = ij
! \/27;1 le \/27;1 Wil'

(2.91)
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It has been shown [8], that in the case that the input points are uniformly
sampled from a manifold, the kernel converges to the heat diffusion operator
on the manifold, the Laplace-Beltrami operator when the number of samples
m tends to infinity and the scale parameter of the weight ¢ tends to zero. In
the case of non-uniform sampling density, as shown by Coifman and Lafon [20],
the limit of the kernel depends on the manifold density. In some cases this
may be undesirable. They generalized Laplacian Eigenmaps with the following
normalization in the weight matrix

P W..
Wa,i’ = ™ o7 - m a
! (21:1 le) (Zl:l Wil)

_ Wa)ij
a,ij - — 1 —_ 1
m m
VP Wiy S0 Wi

and have proved that setting o = 1 yields a density invariant kernel (and thus a
density invariant embedding). On the other hand oo = 0 recovers the Laplacian
Eigenmaps embedding.

The kernel matrix can also be exponentiated K*. This has an interesting
interpretation in terms of random walks [20]. The eigenvalues of this matrix
are all between 0 and 1. Thus while ¢ grows the variance of the higher princi-
pal components (lower eigenvalues) diminishes, and the energy of the mapping
concentrates in the first principal components.

The basic parameters of this algorithm are the scale of the Gaussian weights
o and the embedding dimension ¢. As with LLE, there appears to be no clear
correlation between the rank of the kernel matrix and the dimension of the
underlying manifold. In fact, the smaller the scale, the slowest the decay of
the eigenvalues. Recall that the eigenvalues of the kernel matrix represent the
energy in each principal axis. Thus, a slow decay means that the energy in
the feature space is distributed between several principal components, instead
of concentrated in a few of them. This does not mean that the first principal
components will not yield a good embedding. As in LLE, the kernel matrix has
much more information than the one we actually need.

(2.92)

K (2.93)

Out-of-sample extension

Coifman and Lafon use the geometric harmonics framework [21] to extend the
eigenvalues. This is based in the Nystrom extension for the eigenvectors of an
auxiliary kernel. In §3.2.1 we are going to discuss their approach more in depth.

Recently Etyngier et al. [29] proposed an analytic expression for the Dif-
fusion Maps kernel, which is an adaptation of an analytic kernel for Laplacian
Eigenmaps proposed by [11]. These expressions can be used to extend the kernel
PCA map using (2.27).
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Chapter 3

Data Dependent Kernels
Extension

3.1 Introduction

At the end of previous chapter, we presented a number of dimensionality reduc-
tion techniques that are kernel methods. However, the nature of these kernel
algorithms is different from the usual pattern recognition setting. In the latter
case the kernel matrix corresponds to the evaluation of a known kernel function
over the training set.

In the dimensionality reduction applications of §2.6 the kernel is an un-
known function. The kernel matrix is a result of the dimensionality reduction
algorithm and generally, each value K;; depends on the whole training set
X ={x1,..., 2} C &, and not just on z; and x;. If any point is modified,
the whole kernel matrix will change. This does not allow the out-of-sample
extension of the mapping using the empirical kernel map extensions of §2.5.

We may circumvent this problem by assuming that there is an unknown data
dependent kernel kx : X x X — R for which K;; ~ kx (z;, ;). We will refer to
the problem of finding such a kernel the kernel extension problem. Ideally, we
would like this kernel function to be an approximation of a limit kernel function
k, as in Proposition 2.6.

Note that for the out-of-sample extensions of the empirical kernel map,
we only need the kernel values between a new input point z and the train-
ing patterns, kx(x,x;) with ¢ = 1,...,m. In fact, the kernel vector kx , =
[kx(x,21), ..., kx(z,7,)]T is itself a representation of the empirical mapping,
as we saw in §2.5.

In this chapter we are going to review a few methods to extend data driven
kernel matrices to new points and select one. The objective is to compute the
kernel vector on an unseen point x. The criteria for the choice of the extension
method should take into account:

performance It should have a low prediction error, meaning that the extended
kernel vector for z, kx ,, should be close to the kernel vector that would
have been obtained if x was added to training set.

simplicity The purpose of the extension is to design pre-image algorithms for

37
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this type of kernels. The extension method should be simple enough to
allow the posterior analysis. For instance a simple closed form for kx ,
would be desirable.

low computational complexity The objective of out-of-sample methods is
to leverage the computational cost of an algorithm. Training (i.e. finding
the map for the training set) is costly since it involves at least the singular
value decomposition (SVD) of the kernel matrix. Therefore, this should be
done only once. Then each new point is mapped using the out-of-sample
extension, thus avoiding retraining.

In §3.2 we briefly review different ways of extrapolating the kernel matrix.
The selected method, Kernel Ridge Regression is described in §3.3. The Chapter
ends with some results and a discussion about the selection of the parameters
of the kernel framework.

3.2 Review of existing techniques

In this section we are going to study possible approaches to solve the kernel
extension problem. Basically we are going to distinguish between the following
types of approach:

o Kernel matriz completion algorithms: These methods impose that the ex-
tended new kernel matrix is a semipositive definite matrix. This problem
is more involved however. They can be considered as interpolation meth-
ods, since the new matrix will keep the same value in the entries that were
present in the old matrix. They just will interpolate new values on the
new points. Another characteristic of these methods is that they do not
provide an analytic extension function.

e Generic regression approach: The problem can be considered as m regres-
sion problems®. This approach considers each column of the matrix K
as an independent function and using some regression technique learns a
function for each column. Note that the ith column has the kernel values
between z; and the rest of the training set. Extending it will provide

kx(xi, )

The kernel matrix completion algorithms compute an approximation that
fullfills the symmetry and positive semidefinitness properties of kernel matrices,
however they have in general a greater computational complexity, and usually
involve a heavy computation for each new point, reasons for which we discarded
them. The interested reader may find a description of two algorithms of this
kind in Appendix B.

3.2.1 Generic Regression Approaches

The generic regression algorithms reviewed below are themselves kernel meth-
ods. We will denote by h the auxiliary kernel h used by the regression algorithm.

LA regression problem is the problem of fitting a function to a set of points
{(z1,y1),---, (Tm,ym)}. As opposed to the interpolation problem, the function does not
have to take the value y; in z;.
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To keep the notation simple, we are going to present the methods for the prob-
lem of learning a function f : R? — R, given m patterns (z;,v;) € R? x R.
Recall that the problem of extending the kernel can be reduced to m of these
problems. In our setting the y; would take the value of K;; for a fixed j, and
f(z) would be kx(x,x;).

The performance of a learned function f can be defined as the expected value
of the loss function, which measures the error incurred when predicting f(x)
instead of y, the true outcome. Examples of loss function can be the squared
error (f(z) — y)?, the absolute value of the error |f(x) — y|, or the so-called
e-insensitive loss |f(z) — yle = min{|f(z) — y|, €}, among others. The function
f should minimize the expected loss:

R(f) = E{loss(f(),y)} = . RIOSS(f(w),y)p(xyy)dxdy (3.1)

The expected loss R(f) is also referred to as the risk. The objective of a machine
learning algorithm is therefore to minimize the risk. However, in practice the
probability density function of the patterns p(x, y) is unknown, and the empirical
risk is minimized instead:

R() = = > loss(f(w). ) (32)

This problem is badly posed if we do not add any constraint. There are an infi-
nite number of different functions that would yield zero empirical risk. One triv-
ial example is a function which is zero everywhere except on X, where f(z;) = y;.
To exclude these solutions the search space must be reduced. Kernel regression
methods restrict the search space to the RKHS H},2, associated with a kernel
h. Recall from §2.4.1 that this was a subset of real functions over X.

However this may not be enough. There are kernels whose RKHS is so rich,
that we could find an f with zero empirical risk for any finite set of labeled
points (z;,y;). If the samples y; have noise, we would therefore learn the noise
and incorporate it in our function f. This is what is called overfitting.

Usually a regularization term is added, to prevent overfitting to the training
set. Thus, generally, the kernel regression problem can be stated as:

f=argminy loss(f(x:), i) + Y2 fllr0,) (3:3)
fe€HL ;=4

where the regularization term Q(|| f]|7, ) is a function of the feature space norm
of f. The regularization coefficient v determines the relative weight of the
regularization term.

The Representer Theorem [53] proves that in this setting (adding some con-
ditions on the loss function and §2) the minimum of the regularized risk can be
written as a kernel expansion using only the training set points:

@)= Bz, ;) (3.4)
i=1

27, refers actually to any feature space associated with h. We could be more precise in
this case, since we are dealing with functions, and use the notation H}IL%, for example. To keep
the notation simple we are not going to do that.
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This is equivalent to choosing the following kernelized linear function:

Zﬁz xz, xz = <Zﬁz@h )> = <w790h(x)>7'lh (35)
Hn

where w = Y"1 Bipn(xi) € Hy is a vector in the feature space of kernel h.
With this definitions, we can rewrite Eq. (3.3) in a more suitable way for
computational purposes:

f= al;gﬂr_;llnzloss W, @n (i) 1, ¥i) + YUwllre,) (3.6)
eR™ =1

_agg]glleoss Zﬁﬂ zi, %),y | +FYQ(|lwllx,) (3.7)
eR™ =1

The methods we are going to see below are variants of this general kernel
regression framework. They differ mostly in the loss function or the regularizer
used.

Applied to our kernel matrix extension problem, these type of methods would
yield m kernel expansions with coefficients vectors 3; for each of the kernel
functions kx (z;,):

m
kx(zj,2) = Y _[B;lib(x,z:) (3.8)

i=1

Through the use of an auxiliary analytic kernel h we are able to extrapolate the
kernel matrix.

The approach we implemented to perform the out-of-sample extension was
the Kernel Ridge Regression, mainly for its simplicity. However all these meth-
ods share the same type of solution: a closed form, analytic expression as in Eq.
(3.8).

Support Vector Regression

Support vector type algorithms [53] search for a sparse solution. They obtain
this with the e-insensitive loss:

ly = f(@)]e = max{0, |y — f(z)| — €} (3.9)

In words, the e-insensitive loss function penalize errors only if they are bigger
than e. The regularizer used is [|w|3,, .

The use of this loss function will cause many coefficients 3; to be zero. It
can be proved that (; takes a nonzero value, only if the prediction error in x;
is greater or equal than e. These are called support vectors. All other vectors
do not influence the solution. This causes the method to be robust to outliers.
The smaller €, the greater the number of support vectors, yielding a less sparser
solution. The optimization problem in this case requires solving a quadratic
program, although there are linear variants.
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Generalized LASSO Regression

The (not kernelized) LASSO Regression [36] corresponds to the minimization
of the following expression:

Qw) = [lwllx +

3=

> (i —w ) (3.10)

where w denotes now a vector in the input space and the L; norm of w as a
regularization term is used. This generates a solution which tends to be sparse
too. Its computation involves a linear optimization problem, which could be
costly when m is large. The same idea can be extended to the kernel setting,
substituting the ||wl|s, regularizer for ||3||1, the L1 norm of the coefficients
vector, and using the squared error as the loss function. This was proposed in
[50] with the name of Generalized LASSO Regression

Manifold Regularization

Belkin et al. [9] propose a framework for transductive learning, which generalizes
the model of Eq. (3.6). Transductive learning is when the unlabeled data has to
be present at the training stage together with the labeled data (for example semi-
suppervised clustering). If the unlabeled data is not available during training we
have inductive learning. As opposed to inductive learning, transductive learning
does not generalize to new data points.

Their approach is based on Kernel Ridge Regression §3.3, the main difference
being an additional regularization term which takes into account the geometry
of the input samples, both labeled and unlabeled, ensuring that the solution is
smooth with respect to the data distribution.

Suppose that from the m input samples, only ¢ < m are labeled. The aim
is to find the function f such that:

L
= arg min 7 > i = F@) I +vall £13g, + o £117 (3.11)
h i=1

where Hy, is the RKHS associated with the (auxiliary) kernel h and ||- ||, is the
norm of f in Hj, (recall that the space of functions defined as kernel expansions
is contained in the Reproducing Kernel Hilbert Space (RKHS)).

On the other hand, the term || - || is a measure of the complexity of f with
respect to the intrinsic geometry of the whole set of input points, labeled and
unlabeled. This is the novel manifold regularization term.

In the case when the data is sampled from a manifold M, a natural choice
of the term || - ||; would be the summation over the manifold of the norm of the
gradient of f

112 = /M<Vf7Vf> (3.12)

Note that the norm of this gradient, is the euclidean norm in the input space.
Even if we do not know the manifold, this can be numerically approximated
using discrete approximations.

With some smoothness assumptions on the manifold term, the authors prove
that the solution to the problem is a kernel expansion as Eq. (3.4).
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Geometric Harmonics

Geometric harmonics [21] is a generalization of the Nystrém extension to the
problem of learning a general function over a finite set X C X. The main idea is
to write the function in terms of a basis given by the eigenvectors of an auxiliary
kernel h, and then use the Nystrém method to extend that mapping.

The first step is to compute the eigenvectors uy ; and eigenvalues Ap, ; of the
auxiliary kernel matrix H. The vector of function values y = [y1, ..., ym]T, can
be expressed in the basis of eigenvectors

m

Y= Z(’% U i)W, (3.13)

i=1

Since the kernel h can be evaluated outside the training set, we can use the
Nystrom method to extend the eigenvectors

wpj(z) = — Z h(zi, ) [wn ;)i (3.14)

There is a problem with this expansion, and is that of dividing between A;.
Therefore we must exclude the smaller eigenvalues from expression (3.13). This
is equivalent to projecting y onto the space spanned by the principal eigenvec-
tors. The number of eigenvectors considered is given by a parameter ¢, that
measures the maximum condition number of the extension operator. The con-
dition number of the extension is given by the smallest A;, therefore fixing 0 is
equivalent to fixing, for a given kernel, the number of eigenvalues over which to
project.

However for some functions, by projecting over the largest eigenvalues we
may incur in a big projection error, extending a function which is a oversimplified
version of y. This can be fixed by changing the kernel. In particular, if h is
the Gaussian kernel, it is enough to use a smaller o, parameter (with a smaller
o, the eigenvalues decay slower, and it is possible to consider more eigenvalues
while having a smaller condition number). This however diminishes the distance
to which the function can be extended.

Therefore, for complex functions, a smaller o, will be necessary and the
extension will be shorter ranged. However, if the function is smooth, we can
use a larger o;, with a wider extension range.

The authors propose an iterative algorithm to set the value for oy, starting
with a large value and making it smaller if it is necessary. This is a costly
procedure, because for each o, the eigendecomposion of the kernel matrix H
needs to be computed.

In our case, for extending a data driven kernel k, we can use some heuristic
method based on what we know about the kernel. For instance for the diffusion
maps kernel, we could use the same ¢, parameter. We will discuss further this
issue in §3.3.2.

Lafon et al. [45] use the framework to compute an out-of-sample extension
for the Diffusion Maps embedding, treating each coordinate of the embedding
as a function defined over the training set.
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3.3 Kernel Ridge Regression

In the linear case (plain Ridge Regression) the objective is to find a linear func-
tion that minimizes the total Ly error between the predicted value (z;, f(x;))
and the corresponding pattern (z;,y;). The function is fully parametrized by a
vector w € R,

fl@)=w-x (3.15)

The parameter vector w is computed by minimizing the following regularized

empirical risk:
m

QW) = gll? + L 3 (3~ w-a:)? (3.16)
i=1
In the linear case, the regularization term penalizes solutions with high coef-
ficients. This is the Tikhonov regularization. It will be more usefull in the
kernelized version of this algorithm.

The method can be extended to handle nonlinear functions using the kernel
trick. The resulting algorithms is known as Kernel Ridge Regression (KRR)
or Regularized Least Squares [17]. Suppose we have a kernel h : R x R? — R
and its mapping ¢, : R? — Hj,. This kernel should not be confused with the
data driven kernel we want to extend. This is just an auxiliary kernel function
(with a known analytic expression), used to define a richer function family. For
example we can use the Gaussian kernel (2.6).

We are going to solve the linear regression problem in the feature space. The
corresponding cost function is:

Qw) = \wHHh

SR

Z (w, on(@i))m,)? (3.17)

Note that this expression is of the form of Eq. (3.6), with the squared error as
a loss function and the square feature space norm as a regularizer. This can be
stated as a constraint optimization problem:

L(w,&8) = 5llwlB, + ”Z@+Z@Z wron @), — &) (3.18)

subject to: & = y; — (w, goh(;vi»Hh (3.19)

The saddle point conditions for L are:

oL -

a3, — 0= w= ;ﬂuph(l’i) (3.20)
oL _ =D

87&_0:61— mgl (321)
0L

B 0= & =yi — (W, on(i))n, (3.22)

Substituting these relationships into (3.18) and (3.19), and solving for [
yields the following expression:

—1
8= (H + 2”;1) y (3.23)
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where H is the kernel matrix of h and y = [y1,...,ym]?. According to (3.20)
the function f is given by:

F(@) = {w,on(@))m, = Y Bilw(xi), o(@))n, = Y Bihlwi, @) (3.24)
i=1 i=1

This solution can be extended to a more general case, adding a constant b
to the kernel expansion:

fl@) =3 Bih(ws, )+ (3.25)

The following modification on Eq. (3.23) allows to find 8 and b:

"] e

One of the problems of this approach is that it involves the inversion of a
potentially large matrix. Recall that this kernel matrix is not the kernel matrix
we want to extend, thus we would need to perform the SVD of the kernel matrix
(needed for kernel PCA) and then invert the matrix in Eq. (3.23). However
there is a way to alleviate this problem using a low rank approximation of H.
The idea is to find a subset of {p(x1),. .., @n(zm)} which could serve as a basis
in the feature space.

It is possible that such a subset does not exist. The Gaussian kernel for
example is a full rank kernel. Therefore the set {¢n(21), ..., n(xm)} is linearly
independent. However one still can keep only a subset of n vectors ¢y, (x;) that
spans the subspace of principal variation. Finding this subspace is the aim of
kernel PCA, and this involves computing a SVD of H. In [7] an alternative
greedy algorithm is used to find an appropriate basis. Following this approach,
one can reformulate the whole problem using only n < m points, and thus
inverting an m X n matrix. The result is a sparse coefficient vector 3, with at
most n non-zero coefficients. The resulting function will be a sum of n kernels.

3.3.1 Application to the kernel extension problem

Suppose we have computed a kernel matrix K for the set X = {x1,..., 2}
K could be for instance, the kernel matrix of the Diffusion Maps method.

As was said before, we are going to “learn” m functions to extend each of the
m columns of K, using Kernel Ridge Regression. The jth function kx(z;,x)
will be expressed as a kernel expansion (3.25) with coefficients vector B; and a
bj. We are going to consider the same kernel h for all the m functions. Then:

m

kx (zj,x) = Y _[B,lih(w:, ) + b (3.27)

i=1

We will always use for our experiments the Gaussian kernel with scale parameter
op. The scale parameter is also constant for all m functions.

The coefficients vector 3, and the constant b; are computed according Eq.
(3.26), where the functional values y for the training set are given by K.;, the
jth column of K.
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Let us define the m x m matrix B having in its columns the coeflicients
vectors 3;, B = [3; --- B,,] and the vector b = [b1,-..,bm]T. Using Eq.
(3.26) we can find B and b as:

—1
B H+2T 1 K
B[] e
where 0 is a m dimensional vector of zeros.
We can also extend Eq. 3.27 to find the kernel vector kx , with this matrix
notation
kx.=B"h,+b (3.29)

where h, is the auxiliary kernel vector h, = [h(z1, ), ..., W@y, )]

Results

We have used the kernel vector kx , to extend the kernel PCA projections
according to Eq. (2.26), for the Diffusion Maps kernel. Recall that this kernel
has several parameters: the scale oy, the parameter « (see Eq. (2.93)) and the
exponent t. For these experiments we set @« = 1 and ¢ = 1. The former makes
the embedding density invariant. The scale parameter o) was set as the average
distance to the 10th nearest neighbor as in (2.34).

Lo
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Figure 3.1: Kernel PCA projections over the first four principal axes of the
Diffusion Maps kernel, extended with the KRR with two different o,. The gray
value of pixel x depicts the value of the projection (p;, ¢(x))7. The ith row
shows the projection over p; with ¢ = 1,...,4. On the left, small ;, and on the
right high oy,.

Figure 3.1 shows a noisy sinusoidal dataset X = {x1,..., 2., } together with
the kernel PCA projection over the first four principal axes for the Diffusion
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Maps kernel. For the extension we used the Kernel Ridge Regression with the
Gaussian kernel, using two different values of 0. The images were generated as
those in Figures 2.2 and 2.3, with the difference that those were for the Gaussian
kernel and these are for the Diffusion Maps kernel. We used Eq. (3.29) to
compute the kernel vector needed for the kernel PCA projection (2.26).

The images in the left column of the Figure were computed using o, = op, ~
0.52. The o}, on the right column was set to the average distance to the 30th
nearest neighbor, which yielded the value o5, ~ 0.99. Note that the smaller oy,
the projections go to zero faster because the kernel vector kx , vanishes. Recall
that this kernel vector is a linear combination of Gaussian kernels. A higher oy,
allows to extend the kernel farther away from the dataset. We will refer to oy,
as the extension scale parameter.

The top images depict the projection over the first principal component. For
points = far away from the training set, Points on the left part of the dataset
have a negative projection that gradually increases while traversing the manifold
towards the right. The projections over other principal components also vary
along the manifold, showing more oscillations.

Recall that the kernel PCA projections are the coordinates of the kernel PCA
representation of the mapping. The first coordinate of the mapping effectively
varies following the underlying sinusoidal manifold. Note that the level curves,
i.e. the set of points with the same first coordinate, intersect the manifold
“orthogonally” to this manifold.

3.3.2 Choice of the parameters

Kernel Ridge Regression has two main parameters: the regularization parameter
~ and the kernel function h. If we use the Gaussian kernel we have to determine
its extension scale oy,.

A common practice to choose the parameters of a learning algorithm, is to
separate the training test, into two sets. Train the algorithm with one set, and
test it over the other measuring the empirical risk. If this is done with several
parameters, we can at the end pick the set of parameters with a smaller empirical
risk. This is called cross-validation. A variation of the cross-validation is the
n-folded cross-validation. The idea is to divide the training set randomly into
n equal sets. For each set of parameters train the algorithm n times, each time
leaving one of the n subsets out of the training, and computing the empirical
error on the part that was left out. These errors are then averaged and the
parameters with the smallest average errors are chosen.

Leave One Out Kernel Ridge Regression

If n = m then we have Leave One Out (LOO) validation: the algorithm is
trained m times, each time removing a different point from the training set.
The error measured is the prediction of the functional value on the removed
point. Denote f( the function obtained removing x; from the training set.

The LOO cross-validation error, known also as the Predicted Residual Sum-of-
Squares (PRESS) [1], can be defined as:

P=> (i — fO(x:))? (3.30)

=1
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review Notice that the computation of the PRESS involves solving m learning
problems with a training set of m — 1 points. However, for the Kernel Ridge
Regression it can be computed in closed form, in terms of the auxiliary kernel
matrix [18]:

m m ) 2
P=3 - 1P =Y () (331)
i=1 i=1 Cii
where
C = { H;LTVI ; } (3.32)

Refer to [18] or the Appendix §C.2 for a proof.

The minimization of expression (3.31) allows to find the optimal parameters
of the Kernel Ridge Regression w.r.t. the PRESS criterion. This optimiza-
tion however is costly. If implemented with a steepest descent (see Appendix
§C.2.2), each iteration involves a matrix inversion. Generally, the PRESS will
be a nonlinear function of the regression parameters, and will suffer from local
minima.

Figure 3.2 shows two local minima found by a steepest descent algorithm,
for a simple regression problem. The data was generated by sampling a sinusoid
and adding Gaussian noise to the sampled value. The initial parameters g, o0
of both iterations where very close. The result on the right is better. However
it has a larger PRESS. This shows that the PRESS does not guaranties a good
generalization. The left result is a typical case of overfitting. The function has
“learned” the noise. The value of o, higher for the right Figure, is crucial to
prevent this to happen.

Figure 3.2: Results of the optimization. The PRESS value is 5.08 for the result
shown on left and 5.62 for the one on the right.

Application to data driven kernels

Let us analyze the PRESS for our problem of extending data driven kernels.
Suppose we have a set of extension parameters v and oy, for which we want to
compute the PRESS in order to evaluate if they are appropriate.
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We will denote by K x the kernel matrix computed with the training set X.
Consider the set X9 obtained by removing the x; vector from X. Let K% X@
be the (m — 1) x (m — 1) matrix obtained by removing the ith column and ith
row from matrix Kyx. The notation K §(i> indicates that this matrix is the
restriction to the reduced set X of a kernel matrix computed with the dataset
X.

We can compute the kernel vector at x;, as

kY, = [BXw]Th{) +bXe (3.33)
where th) = [h(x1,2:), . h(@io1, ), h(wit1, @), o, W@, 7;)]T, and the ma-

trix B§<i) and vector b))gm are computed according to Eq. (3.28) using Kﬁm
instead of K.

This kernel vector is compared against the “true” kernel vector for x;, ob-
tained from the ¢th column of matrix K x. Not that the kernel vector kg?m
does not have the kernel value between x; and itself, therefore we must exclude

the ith component from the column [K x|.;. Let us denote the true kernel vector

by
T
kxz = [[Kx1is- o (K x]-1)i K x) (1) - - - » K XJmi]

The PRESS error term corresponding to the removal of z; is given by:

(3.34)

m—1

(Iexds -~ 5,0,) (3.35)

j=1

m—1

This expression corresponds to the mean square error between the components of
both kernel vectors. The PRESS is obtained by averaging P®) withi=1,...,m

m m—1
1

1 o ; 2
PRESS = EZ:P@ EZ — (kzml - g()x]1> (3.36)

i=1 ]:1

Note however that the case of extending empirical kernels is not under the
assumptions of the PRESS, because the values of the functions we want to
extend depend on the whole training set.

When removing x; from that training set, the whole kernel matrix will
change. This is not considered in the PRESS error estimate: the reduced kernel
matrix K §(i) is the restriction of the matrix K x to the reduced set, assuming
that the rest of the entries remain constant.

A more appropriate estimate of the extension error, can be obtained by
recomputing the kernel matrix K y for the reduced set X (9. By plugging the
recomputed kernel matrix into Egs. (3.28) and (3.29) we obtain another kernel
vector extension Ky ... This vector, and not k:g?m is the one that we had
computed if z; was not part of the training set.

We will refer to this modification of the PRESS, as the Recomputed Kernel
PRESS or RK-PRESS.

m m—1

1
RK-PRESS = — 3 | ——

i=1 j=1

([kx.z,]; — [kxo 2,];) )2 (3.37)
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Although the RK-PRESS is a more appropriate criterion for our problem,
its computation is much heavier than the PRESS, since it does not have a
closed form expression. Therefore we are interested in studying the differences
between both approaches. We performed some experiments comparing both
measurements which are presented in the Appendix §C.3.

However in practice we selected the value of the extension parameters accord-
ing to other more intuitive considerations, explained in the following section.

Interpretation of the scale

The scale parameter o, in the KRR is related with the complexity of the function
we want to extend, and will also determine the range of the extension. We
use the term complexity in an informal way, referring to the variability of the
function. For instance the left function in Figure 3.2 is more complex than the
function in the right. A complex function will require a smaller ¢, and therefore
a shorter extension domain. This makes sense: the more complex the function,
the more uncertainty we will have about its value far from the training set.

The problem of manifold learning has naturally two scales. Dimensional-
ity reduction algorithms usually gather local information. The low dimensional
representation is found by “coordinating” the local information. This is evident
for LLE and MVU. Another example of that, although not a spectral dimen-
sionality reduction algorithm is the Locally Linear Coordination method [62].
Brand [14] presents similar idea and an interesting discussion for the choice of
the size of the local neighborhoods. Diffusion Maps also works in this way. Its
scale parameter oy defines the notion of locality. Note that a manifold is defined
as a set that locally looks like an Euclidean space.

The o}, parameter is related with the larger scale structure of the manifold.
If the manifold has high curvature, o5 should be low. On the other hand for
a simpler manifold, a higher o; can be used, thus enlarging the range of the
extension.

The columns of the Diffusion Maps matrix are complex functions to extend,
even if the manifold is simple. Criteria such as the PRESS or the RK-PRESS
would suggest to use a small extension scale o, ignoring the geometry of the
manifold underlying the data.

The reason for this apparent divorce between the complexity of the kernel
matrix and the geometry of the manifold is that some kernels encode much more
information than what is needed to describe the manifold. An example of this is
shown in Figure 3.3 comparing the decay of eigenvalues of two kernel matrices,
MVU and Diffusion Maps, computed for the same dataset shown in Figure 3.1
(the training points are the cyan dots in the Figure). MVU has encoded most of
the information in the first principal component. On the other hand, the slow
decay of the spectrum of Diffusion Maps indicates a complex kernel matrix.

Figure 3.1 compares the kernel PCA projections of the Diffusion Maps ker-
nels using two different extension scales. The value of o, in the right column
was computed as the average distance from each point towards its 30th nearest
neighbor. Such a large value for o, will have a high error on extending the ker-
nel values according to the PRESS or RK-PRESS criteria. However this kernel
PCA projections reflect geometric properties of the manifold.

These results show that altough according to the PRESS or the RK-PRESS
criteria the measured error is high we are still able to compute a meaningful
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Figure 3.3: Comparison of the spectrum of two kernels for the same dataset. The
eigenvalues shown were normalized dividing by the sum, showing the relative
energy encoded in each principal component. Note that the first eigenvalue for
MVU is allmost 1.

out-of-sample extension of the first kernel PCA projections. Projections over
higher principal axes are more complex, therefore the error in the extension will
increase for the higher principal axes.

This suggest that the Diffusion Maps kernel matrix encodes information
that may not be needed. If this intuition is true a lower rank approximation of
this matrix, discarding high eigenvalues may encode the necessary information.
We expect the PRESS and RK-PRESS values for this lower rank matrix to
better reflect the structure of the manifold. We did not verify this hypothesis,
although we did use this intuitive idea without any problems arriving to the
results presented in the next Chapter.



Chapter 4

The Pre-Image Problem in
Kernel PCA

4.1 Introduction

In this Chapter we are going to discuss the pre-image problem. As said be-
fore, the main motivation for the pre-image is to estimate estimate the input
point that corresponds to a new feature space point. A pre-image is needed
in applications in which the output is a new data element. For instance if the
kernel PCA map “unfolds” the manifold, we might perform an interpolation
inside the manifold by linearly interpolating the feature space representatives
and mapping back the result.

In particular we will apply the pre-image algorithm for projecting points into
the underlying manifold. This can be used for de-noising noisy samples from
the manifold. Besides its applications, the pre-image problem is also interesting
as a way to study the geometry induced by the kernel in the input space.

The pre-image of ¢ € H (feature space point) is a point x € X C R? such
that ¢(x) = 9. However such a point x might not exist. The set of points that
have an exact pre-image is given by

p(X) ={p(z) : weX} (4.1)

Consider for example a two dimensional input space X C R?, and a Gaussian
kernel. In this case, since ¢ is a smooth mapping (a direct consequence of the
smoothness of the kernel function) and X' is a two dimensional set, ¢(X) is a
two dimensional manifold, contained in the infinite dimensional space H. That
manifold is non-linear, as it is easy to see with the RKHS representation of the
mapping. The set p(X) contains all the functions k(-,z) with x € X. Any
linear combination of these elements will not be in ¢(X).

A way to circumvent this problem is to look for an approximate pre-image,
i.e. a point x € R? such that ¢(x) is “as close as possible” to 9. Different

51
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optimality criteria could be used, such as

Distance: x = argmin |¢(z) — |3, (4.2)
reX
o pl) 9
Collinearity: = = argmax <, > (4.3)
zex \e@)lln [[9ll3 /4

These are unconstrained optimizations. Such pre-images are going to be
discussed in the next section and we will see that they present some problems.
Section §4.3 describes a way to circumvent these problems by adding constraints
to the optimization. Along this Chapter we will focus on the Gaussian kernel as
an analytic kernel and the Diffusion Maps kernel as a data dependent kernel for
which we will use the KRR extension framework. Among the kernels we tested
these where the two representatives of both kernel classes that performed the
best. Some derivations performed for the polynomial kernel are presented in
Appendix D.

4.2 Unconstrained pre-image

Most of previous work in the pre-image problem in kernel methods was focused
in solving problems (4.2) or (4.3) for analytic kernels. In particular the Gaussian
kernel is the one that received most of the attention.

In this section we are going to review some of the approaches presented
previously in the literature, as well as some novel work developed during this
thesis.

4.2.1 Gaussian kernel

The Gaussian kernel belongs to the family of Radial Basis Function kernels
given by
k(') = k(2 — 2/|?) (4.4)

where Kk : R — R is a function. For these kernels the collinearity and the
distance criterion coincide:

llo(x) = w3, = (@), (@) + (W, V) — 2 (), Y)r (4.5)
= k(z,2) + |97 — 20 (), ¥)n 4.6

For Radial Basis Function kernels, k(z,x) = ||¢(z)|/% is constant, thus mini-
mizing the distance criterion is the equivalent to maximizing the collinearity.

Collinearity and distance criterion

Iterative methods. Mika et al. [47], present an analytic solution for the
Gaussian kernel. First, they assume that ¢ € H™, and therefore is a linear
combination of the mappings of the training set. Denoting by o, the linear
combination coefficients vector, we have that

m

b= leylio(a:) (4.7)

i=1
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As we saw before the cost function in (4.3) is equivalent to
(p(x),Y)yn = <¢(I)7Z[aw]i¢($i)> = laylik(z, z;) (4.8)
i=1 H i=1
where we used the dot product property (2.1). The maximum can be found by

taking the gradient, leading to the following expression for the optimal x:

[oeylik(z, )@, [ovyli exp(—||x — 24]|? /207

o
or

(R

(R

(4.9)
[wylik(z, ;) [auy)i exp(—|lz — x4 /207)
1 7

1

3

This implicit equation can be solved by a fixed point iteration, but suffers from
local minima and instabilities [26, 47].

Closed form approximations. In [26] an approximation to avoid the itera-
tion is proposed. The distance between the mapped points can be computed in
terms of the dot products, and therefore in terms of the kernel,

lp(@) — ()3 = k(z, ) + k(a',2") — 2k(z,2") (4.10)
Since the Gaussian kernel is normalized, we obtain:

lo() = @(a)7 = 2(1 = k(=,2")) (4.11)

This equation only holds for points in H that have an exact pre-image, i.e. for
the points that belong to the image of the mapping ¢(X). However, in [26]
the authors make the assumption that ¢ lies close to the manifold ¢(X), and
therefore it exists one x such that 1) & @(x). This is then used to estimate the
kernel values between = and the training points:

R, z:) = 52— [ — p(:)[13,) i=1,...,m (4.12)

Substituting this approximation in the iterative equation (4.9) leads to a direct
formula.

In [3, 2] we proposed a modification of the direct formula approximation of
[26] using the kernel estimate given by [43]. In [43], the authors use a similar
approach to estimate the kernel vector k, on the pre-image . However they do
not assume that ||¢|l% = 1. This norm can be computed in terms of the kernel,

assuming that ¢ = Y1 [ay]ip(z):

o113 = <Z[aw]is0(xi),Z[%]M(Ij)> = o Kay (4.13)
i=1 j=1 H

Therefore their kernel estimate between the pre-image x and x; is given by:

ke, zi) = 5L+ 113 = 19 — e(@)llF) = (¥, o) (4.14)
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Note that this is the kernel vector representation of t: kg (recall §2.4.2). In
other words, it is 1 itself expressed on a different basis of the H". The relation
between this estimate for k, and the one in Eq. (4.12) is the following.

k(i) = 5(2 = llo(z:) — ¢l1F)
=3(2—1— (Y, V) + 2(p(xs), V)n)
5(1—= (0, )w) + [[¥]l2ky (4) (4.15)

In the case that ¢(z) &~ 9, then ||[¢||x &~ 1, and the difference between both
approximations will be small.

Discussion: Kernel vector estimates

Both for the Gaussian and the polynomial kernel (see Appendix D) we used
the estimate k,; ~ ky to derive closed form approximations to the solution
of the iterative pre-images. We have already noticed that k, is the kernel
vector representative of ¢. In [3] we provided an alternative interpretation.
In this section we are going to discuss both interpretations and determine the
conditions under which the estimate is valid.

We are going to start by reviewing the justification we gave in [3]. Approx-
imating ¢(x) by the empirical kernel map ¢, () yields:

le(@) = Il = lom(@) = D117 = ly. —yyll? (4.16)

In the last equality we have just substituted ¢,,(z) and ¢ by their kernel PCA
representations. We can express vy, in terms of the kernel vector k, using Eq.
(2.27), obtaining

lom (@) =3, = [A™V2U Tk, =yl (4.17)

If we minimize this expression w.r.t. the vector k, we get the following
optimal kernel vector:

ki =UA"?y, =Y (X)"y,
= [e(@1), V)3, (@(am), )] T = ky (4.18)

where Y (X) is the matrix whose columns are the kernel PCA mappings of the
training set points y, , with i = 1,...,m (see Eq. (2.29)). Recall that with
this representation, the feature space dot product is the Euclidean dot prod-
uct: (@(x:), )% = Yu," Yy, Therefore ky is the kernel vector that minimizes
expression (4.17).

It should be noted that this fact can not be interpreted easily. Suppose that
instead of minimizing (4.17) w.r.t. the kernel vector we minimize it w.r.t. x
and then compute the kernel vector for the optimal z*, k.. This solution will
be different to k.

A simpler justification for the estimate k, ~ k, is that it comes from a
change of basis: ky and y,, are just representations of 1, in two different basis.
We now prefer this explanation over the one we gave in [3].

Using the latter, we can easily provide a geometric interpretation of the
assumption k, ~ k. It is equivalent to assuming:

om(z) = Prm (p(2)) = ¥ (4.19)
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The kernel vector estimate will be valid when ¢, (z) is close to 1. However,
as we saw in §2.5, when m is large enough, ¢,,(z) is an approximation of
(). Thus assuming the validity of the estimate is equivalent to assuming that
1 = p(x), or equivalently that ¢ has an exact pre-image (¢ € p(X)).

Other criteria

Kwok and Tsang [43] use the kernel vector estimate to obtain the distance in the
input space between the searched pre-image = and the n nearest neighbors of 1
in the Feature Space. They do this by inverting the Gaussian kernel expression
(2.6):

~
I
[y

1
[kyli ~ [kg]i = exp ——||x—x,-H2 e, m (4.20)
202

then
|z — z]|” = 20% log([ky)i) = 207 log((, p(xi)))  i=1,....,m  (4.21)

Finding  now reduces to a localization problem solved by standard MDS [32,
23]. For locating x they use only the distances the input points corresponding to
n nearest neighbors of ¢ in the Feature Space. The number of nearest neighbors
is a parameter of the algorithm. Note that this approach is not based in any of
the two optimality criteria mentioned above.

This idea can also be applied for the polynomial and sigmoid kernels. In
those cases, instead of locating x using the distances, they use the dot products
between x and the points in the training set.

Bakir et al. [5] use Kernel Ridge Regression to learn a mapping from the
kernel PCA representation of H™ to the input space X'. Their pre-image can be
applied to any kernel, including data dependent kernels. This approach follows
the inverse path that most of the approaches follow.

In fact, leaning the kernel with Kernel Ridge Regression, as we do for data
dependent kernels, is a way of learning the mapping: Recall from §2.4.2 that
the kernel vector k, (or its projection over the range of the kernel matrix)
serves as a representation of the empirical mapping. Thus, while we learn the
mapping Bakir et al. learn directly its inverse. The main advantages of leaning
the mapping will become apparent in §4.3, since it will allow us to controll the
kernel principal components of the pre-image. On the other hand the advantages
of learning the inverse directly, is that they can apply it to non-Euclidean input
spaces, as proposed in [6].

In [74] the authors propose an LLE-type pre-image. Basically they express
1) as a convex linear combination of its neighbors, and used the same coefficients
to interpolate the pre-image in the input space. In §4.2.2 we are going to discuss
a similar approach. The same authors propose in [75] a variation of the feature
space distance optimization in a weakly supervised setting by adding information
about the input patterns that the pre-image should be close to and far away
from.

Results

In this section we are going to show some results for the pre-images of the
Gaussian kernel. We are going to use synthetic datasets of two different na-
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ture: Samples from a smooth manifold, and from a clustered dataset, both in a
(relatively) high dimension (d = 10) and a low dimension input space (d = 2).

Manifold dataset. In the high dimensional setting, m = 800 points are sam-
pled from a uniform distribution in the d — 1 dimensional cube of side 2.
The 10th dimension is defined as

d—1

[Ii]lo = sin Z[x"]J (4.22)

j=1

Gaussian noise with variance o,, = 0.2 is added in all the components.
The same idea for the low dimensional dataset, with d = 2: m = 300
points [z;]1 are sampled from a uniform distribution in [0, 27], the second
component is defined as [x;]2 = sin([z;]1), noise with variance o, = 0.4 is

added.

Clustered Dataset. The dataset consist of ten clusters with Gaussian distri-
butions of fixed variance and random centers. The number of points per
cluster is constant, 40 and 80 in the low and high dimensional setting
respectively.

The scale parameter of the Gaussian kernel will be set as the mean squared
distance from a point to its 10th nearest neighbor. Denoting by x; 19 the 10th
nearest neighbor of z;,

1™
2

E P 4.23

0 m < ||l‘ ,10” ( )

To compare the pre-image algorithms we are going to compute, for each
point in the dataset its kernel PCA projection over the ¢ principal components
in the feature space: Pyp(x;), with ¢ = 1 and ¢ = 10. The pre-images of these
projections is computed. This is an arbitrary choice: All we need is to have new
points in the feature space to compute their pre-image. However, computing a
pre-image of the kernel PCA projection is one of the most common applications.
Let us denote by

kPg(z) = ¢~ (Pap()) (4.24)

where ¢~ will depend on the pre-image algorithm. We are going to compare
five methods:

1

A. Pre-image presented in [3]. Modification of the direct formula approxima-
tion used in [26] with the kernel vector estimate proposed in [43].

B. Pre-image by distance based localization in the input space [43]. The
number of nearest neighbors was set to n = 10.

C'. Direct formula approximation of [26].
D. Fixed point iterative pre-image [47].

E. Steepest descent of distance criterion (see 4.2.2).
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We are going to perform a numerical and a visual (in the low dimensional
setting) comparison. For the numerical comparison we will use the distance
criterion (4.2):

ea(x) = [lp(kPq(2)) — Pyep(x)ll3, (4.25)

computed over the whole training set: eq4(z;) withi = 1,...,m. Thus for a given
dataset, we will have m error measures for each method. Instead of comparing
the methods using a single number (as could be the average distance error) we
are going to compare the distributions of the errors eq(x;), by means of the
error histograms. The iterative approaches D and E are initialized with the
corresponding ;.

Low Dimensional Manifold Dataset. Figure 4.1 shows the error histograms
for the five methods with ¢ = 1 and ¢ = 10 principal componets (left and right
respectively). Each Figure shows the supperposition of the five histograms,
identified by the color legend. The numbers in the horizontal axis indicate the
centers of the bins'. For example, in the left figure, the first bin is centered at
eq = 0.54. This bin counts the number of times that the feature space distance
falls between e; = 0.51 and e; = 0.57. Each histogram has 10 bins.

For each bin, five bars are displayed, each one corresponding to one of the
five methods compared, according to the legend. For instance, methods B, D
and FE in the left Figure had a ey error between e; = 0.51 and ey = 0.57 around
40 times from a total of m = 300 trials. Pre-images A and C' did not have any
distance error in that range.

00.54 0.6 066 0.72 0.78 0.85 0.91 0.97 1.03 1.09 O0.16 0.29 0.41 0.54 0.66 0.79 0.91 1.04 1.17 1.29

Figure 4.1: Comparison of the five pre-image algorithms for the Gaussian kernel
applied to kernel PCA projections with manifold data in low dimensions. His-
togram of the feature space distance. Left: Kernel PCA projection with ¢ = 1
principal components. Right with ¢ = 10. See text for details.

As we can see, the behavior of the algorithms depends heavily on the number
of components q. With ¢ = 1 all the methods show higher e, values. Besides, the
performance with ¢ = 10 is much more homogeneous between different methods:

IThe bin centers are equidistant. Sometime the distance between adjacent centers do not
coincide: For instance in the left of Figure 4.1, the distance between the 6th and the 5th bins
is 0.7, whereas for the others it is 0.6. The reason for this is that the bin centers are rounded
to fit them in the plot.
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Figure 4.2: Pre-image results for the 2 dimensional manifold data with ¢ = 1.
Top: A and B, medium C and D and bottom FE. The blue points are the
original training set. The black dots are the computed pre-images. The dotted
lines connect z; with kP (z;)

Figure 4.3: Pre-image results for the 2 dimensional manifold data with ¢ = 10.
Top: A and B, medium C and D and bottom FE. The blue points are the
original training set. The black dots are the computed pre-images. The dotted
lines connect z; with kP (z;)

With ¢ = 1 algorithms A and B yield much worse results. Both phenomena
have the same cause.
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The feature space projection Py (z;) will generally lie outside ¢(X). This
means that P,p(x;) will not have an exact pre-image. The best we can do (in
terms of the distance criterion), is to find the point  such that ¢(z) is as close
as possible to Pyp(z;). Iterative approaches, as well as their direct formula
approximations, aim to minimize this distance. If we do not get trapped in any
local minima, ¢(x) will be the point on ¢(X) closest to Pyp(x;).

Naturally, Pygp(z;) will lie closer to the manifold than Pyp(z;). This ex-
plains why does the error distribution shifts when the number of principal com-
ponents increases. The kernel PCA projections are closer to ¢(X). Regarding
the iterative methods D and F, it should not be concluded that they give worse
results when ¢ = 1. In both cases they yield the best possible results, since by
design they minimize the error criterion.

Different is the situation for the closed form approximations (algorithms A
and C). These algorithms assume that Pyo(z) lies close to ¢(X). This is not
true for ¢ = 1, and that is the reason for which they are outperformed by the
algorithms D and E. When ¢ = 10, the approximation Pyp(z) ~ ¢(z) is valid
and their performance is equivalent to the iterative approaches’ one. Pre-image
B is based on the same assumptions, yet it yields very good results even with
q=1.

Figures 4.2 and 4.3 show the pre-images found for ¢ = 1 and ¢ = 10. We
can confirm that pre-images B, D and E yield similar results both with ¢ = 1
and ¢ = 10. Pre-images A and C are now closer to the iterative pre-images.
Pre-image C' shows some errors.

High Dimensional Manifold Dataset. Figure 4.4 show the error histograms
for the 10 dimensional sinusoidal manifold.

0 0
0.21 0.25 0.28 0.31 0.35 0.38 0.41 0.45 0.48 0.51 0.13 0.28 044 06 0.76 092 1.08 1.24 14 156

Figure 4.4: Comparison of the five pre-image algorithms for the Gaussian kernel
applied to kernel PCA projections with manifold data in high dimensions. His-
togram of the feature space distance. Left: Kernel PCA projection with ¢ = 1
principal components. Right with ¢ = 10. See text for details.

In this case, the behavior of the error distributions with ¢ = 1 and ¢ = 10
principal components is very similar. The decrease in the errors for ¢ = 10 is
much less important than in the low dimensional setting. A possible reason
for this because of the way the o is elected, Eq. (4.23). The bigger the scale
parameter, the simpler the mapping: A smaller o will define more localized
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kernel functions. Thus points relatively close in the input space will be almost
orthogonal in the feature space, increasing the dimensionality of the spaced
spanned by the data (¢(X)) as well as its curvature.

When the dimension of the input set increases, the points are farther appart
one from each other, and the distance to the 10th nearest neighbor is larger
related to the size of the whole set. Thus the mapping becomes simpler. Intu-
itively, the simpler the mapping, the closer we are from the hypothesis of the
direct formula approximations: Pgp(x;) will lie closer to ¢(X). Another con-
sequence of this is that pre-images A and C perform similarly to the iterative
pre-images.

Notice that the pre-image B has long tails that indicate some larger er-
rors. Recall that this algorithm determines the pre-image from its distance
to m points, chosen as the nearest neighbors of Pyp(x). When the dimension
increases, more distance constraints are needed.

The fixed point iteration pre-image never gets to the bin of smaller errors.
This may be corrected with a better stopping condition.

Low Dimensional Clustered Dataset. Figure 4.5 shows the histograms of
the error for the pre-image methods in the clustered dataset. Figures 4.6 and
4.7 show the computed pre-images for ¢ = 1 and g = 10 principal components.

00.36 05 0.63 077 09 1.04 1.17 1.31 1.44 158 00.12 0.25 0.37 0.49 061 0.74 0.86 098 1.1 1.22

Figure 4.5: Comparison of the five pre-image algorithms for the Gaussian kernel
applied to kernel PCA projections with cluster data in low dimensions. His-
togram of the feature space distance. Left: Kernel PCA projection with ¢ = 1
principal components. Right with ¢ = 10. See text for details.

The histograms of the error behave similarly than in the case of low di-
mensional manifold data, except that in this case, method B outperforms the
iterative methods with ¢ = 1. It doubles the number of errors in the bin cen-
tered at 0.77 and has less errors in higher value bins. However, the results seem
worse in Figure 4.6, in the center of the top row. The reason for this contra-
diction is that the distance criterion has several local minima centered in each
cluster, where the iterative approaches get trapped, and prevent the pre-image
of the kernel PCA projection of a point in one cluster to be in a different one.
Pre-image B instead is closer to the global minimum.

With 10 principal components the feature space distances are overall lower,
and the direct approximations A and C behave similarly to the iterative pre-
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images, although with some errors that generate the high tails (approximately
20 for A and 100 for C'). These can also be seen on the left and right plots at
the top row of Figure 4.7.

Figure 4.6: Pre-image results for the 2 dimensional cluster data with ¢ = 1.
Top: A and B, medium C and D and bottom FE. The blue points are the
original training set. The black dots are the computed pre-images. The dotted
lines connect x; with kP (x;)
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Figure 4.7: Pre-image results for the 2 dimensional cluster data with ¢ = 10.
Top: A and B, medium C' and D and bottom FE. The blue points are the
original training set. The black dots are the computed pre-images. The dotted
lines connect x; with kP (z;)

Notice also that pre-image E drags the points to the center of the cluster,



62 CHAPTER 4. THE PRE-IMAGE PROBLEM IN KERNEL PCA

when ¢ = 1. This happens also with ¢ = 10. It also appears a small curve in
the two clusters located at the center of the bottom right plot of Figure 4.7.

High Dimensional Clustered Dataset. The results for the pre-image of
kernel PCA for a 10 clusters dataset in R'? can be seen in Figure 4.8 for ¢ = 1
and ¢ = 10 principal components. In this case there is not a substantial change
in the error ranges w.r.t. the low dimensional setting, as opposed to what
happens between the low and high dimensional versions of the manifold dataset.
For this dataset we argued that the differences between the different dimensions
were due to the way in which the scale parameter ¢ is chosen. In that case, the
scale in the high dimensional setting was larger compared with the size of the
dataset, and therefore the mapping was simpler. This is not the case for the
clustered dataset.
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Figure 4.8: Comparison of the five pre-image algorithms for the Gaussian kernel
applied to kernel PCA projections with cluster data in high dimensions. His-
togram of the feature space distance. Left: Kernel PCA projection with ¢ = 1
principal components. Right with ¢ = 10. See text for details.

4.2.2 Data dependent kernels

Data dependent kernels do not have an analytic expression and their values are
known only at the training set X, through the kernel matrix K. A discussed
in Chapter 3, we are going to use a regression method to extend the empirical
kernel matrix. In particular kernel regression methods define an extension of
the kernel matrix as a linear combination of an auxiliary kernel h. Thus for
extending the ith column of K, we have

m

kix(x,l‘i) = Z[,@th(x,xj) +b; (426)

j=1

where 3, and b; are the coefficients of the kernel expansion model. All kernel
regression methods share this type of solution. In particular we used Kernel
Ridge Regression to compute the coefficients 3, and b;, but any other kernel
method for regression could be used, just as Kernel Lasso Regression or Support
Vector Regression.
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Recall from §3.3 that we could express the data dependent kernel vector
kx  as
kx.=B"h,+b (4.27)

where B;; = [8,];, b = [b1,...,by)T and h, is the auxiliary kernel vector
given. The ith column of B is the coefficients vector of the kernel expansion for
extending kx (-, z;).

For the auxiliary kernel h we are going to consider a Gaussian kernel h(z, z’) =
exp(||z — 2’||?/20%). The value of oy, the extension scale parameter, will be set
manually following the criterion mentioned at the end of §3.3.

Feature space distance minimization

We will assume, as before, that ¢ € H™. For computing a pre-image for the
mapping of a data dependent kernel, we are going to minimize the following
expression:

Dy () = [lpm(z) — 913, (4.28)

This is an approximation to Eq. (4.2). When working with analytic known
kernels we could compute the true distance by means of the kernel trick as:

D(z) = lp(x) — pll3; = (p(@) = v, o(x) — P)n

= k(z,x) + |v]3 — QZaik(a:,xi) (4.29)

i=1

However with data dependent kernels, using the kernel expansion framework we
can estimate kx (x,x;) with ¢ = 1,...,m but we do not know kx (z,z). We will
restrict our analysis to the empirical kernel feature space H", since we do not
need kx(z,z) to work in H™.

We have three possible representations of the empirical mapping that can
used to evaluate D,,(z). Using the kernel vector representation yields:

Dy (@) = lom(x) = 11 = (kx.o — k) K (kx.0 — ky) (4.30)

The gradient of this expression is given by

2
VDp(w) = =5 (kx.o - ky)T KT B Diag(h,)(X — 21y,,)" (4.31)
h

where Diag(h,) is a diagonal matrix whose diagonal is the vector hy, 11,, is a
1 x m matrix full of ones and X is a matrix which ith column is ;. The matrix
(X — 211,,)7T has in its ith row (z; — z)7.

Using this gradient in the steepest descent algorithm for the feature distance
function we can find pre-images of the data dependent kernels.

Note that this pre-image can also be applied to the Gaussian kernel. In fact,
the Gaussian kernel is a particular case of this framework with B =1, b =0
and op, = o. This is in fact the pre-image E (see §4.2.1).

Linear combination pre-image

We can also apply the LLE pre-image to any data dependent kernel. The idea
of this method is to express ¥ as a convex linear combination of its n nearest
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neighbors in the feature space:
Y Bip(T,m) (4.32)
i=1

where 7y C {1,...,m} is the set of the indices of the nearest neighbors of .
Assuming that ¢ = > | a;(x;) we have to solve the following problem:

n 2
/6 = arg min T/J - Z ﬂlgp(‘rmp(l))
Bern P o
2
m n
= arg min Z aio(x;) — Z Bie(Zn, i) (4.33)
BER™ 11551 i=1
H
subject to 11,8 =1 (4.34)

The constraint imposes that 8 sums to one. This problem has a closed form
solution, see Appendix E for details.

Results

We are going to focus on the Diffusion Maps kernel, for this is a data dependent
kernel which has no formal approach to its pre-image problem. As with the
Gaussian kernel, we are going to test both pre-image algorithms for manifold
and clustered data, in low and high dimensions also varying the number of kernel
principal components used.

The scale parameter of the Diffusion Maps kernel o, will be set as the average
distance from a point to its 5th nearest neighbor. The « parameter and the
kernel matrix exponent ¢t were both set to 1.

The KRR parameters were set to o, = Y. ||2; — 2,30/ and v = 0.01. Note
that the value of g, is larger than oy, following the ideas presented in §3.3.2.

We are going to refer to the pre-images with the following code:

SD. Steepest descent algorithm for the minimization of the distance criterion
(4.28).

LC. Convex linear combination pre-image of problem (4.33) and (4.34).

As we did in the last section, we are going to compare the pre-images nu-
merically and visually. The experiments are basically the same as before: we
project each training point x; onto the space spanned by the ¢ kernel principal
axes, Pyo(z;), and compute the pre-image of this projection. The initial point
for the SD pre-image is z; itself. The numerical comparison is done through
the inspection of the histograms of the empirical feature space distance errors
D,,.

Manifold Dataset. The feature space distance histograms are shown in Fig-
ure 4.9. We can see that with ¢ = 1 the SD pre-image has a better performance,
which can also be appreciated in Figure 4.10. The reason for this is very inter-
esting. Neighbors of Pyp(2;) in the feature space may lie in distant parts of the
input space dataset. The linear combination of those neighbors will lie close to
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Pyo(x;) in the feature space. However, the mapping is highly non-linear and
the same linear combination in the input space, when mapped back again to
the feature space may be far away from Pyp(x;). This is related with the high
non-linearities of the mapping, something we already discussed in §3.3.2. With
q = 10 the results of both pre-images are very similar. As for the Gaussian
kernel (recall Figure 4.3), it takes a high number of principal components to
discover the sinusoidal manifold underlying the samples.

The histograms for the high dimensional data show that contrary to the low
dimensional case, with ¢ = 1 principal components the LC pre-image outper-
forms the iterative approach. The reason for this will be explained later is §4.3.
They main idea is that since relative size of the oy is larger the mapping is
simpler (recall the discussion for results of the Gaussian kernel with manifold
data). This can be seen noting that the range of the distance errors is overall
much smaller with d = 10: the projection P,(z) is closer to the manifold (X)),
similarly to what happened with the Gaussian kernel. In the low dimensional
case this method failed because the neighbors of the projection Py(x) may be
in different locations of the manifold. This does not happen with a simpler

mapping.
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Figure 4.9: Comparison of the two pre-image algorithms for the Diffusion Maps
kernel applied to kernel PCA projections with manifold data in low (top) and
high (bottom) dimensions. Histogram of the empirical feature space distance.
Left: Kernel PCA projection with ¢ = 1 principal components. Right with
q = 10. See text for details.

Clustered Dataset. The feature space distance histograms are shown in Fig-
ure 4.11. As with the manifold data, the results in the low dimensional setting
show that with only one principal component the LC' pre-image performs badly.
Again, the reason is that the neighbors of Py¢(x;) may lie in different clusters.
This can also be seen in the top right plot of Figure 4.12. In high dimensions,
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Figure 4.10: Pre-image results for the 2 dimensional manifold data. Left: SD
and right LC. Top row: Results with ¢ = 1, bottom with ¢ = 10. The blue
points are the original training set. The black dots are the computed pre-images.
The dotted lines connect x; with kP (x;)

with ¢ = 1, the LC method outperforms notoriously the SD pre-image.

When ¢ = 10 both methods perform almost the same in terms of the feature
space distance measure, although there are some differences looking at the bot-
tom row in Figure 4.11. The most significant difference is with the twin clusters
in the upper right corner of the figure. The LC' maps the points in both cluster
to the center of the right cluster whereas the SD pre-image differentiate both
clusters.
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Figure 4.11: Comparison of the two pre-image algorithms for the Diffusion Maps
kernel applied to kernel PCA projections with clustered data in low (top) and
high (bottom) dimensions. Histogram of the empirical feature space distance.
Left: Kernel PCA projection with ¢ = 1 principal components. Right with
q = 10. See text for details.



4.2. UNCONSTRAINED PRE-IMAGE 67

5 5
4 " 4
% ;
% £
3 g ° ! 3 3
k)
:ﬁ"s .?-; .
2r 4 2
1 . 1
-.E .
.
» .‘
o Y 0
-1k L L L L L L L L L L I L L L L L L L L L L L
-0.5 0 0.5 1 15 2 25 3 35 4 4.5 -0.5 0 0.5 1 1.5 2 25 3 35 4 45
4 4
vi{ b ;'i{
< 8 e
% s %,
K
. H L [T
% 2
K K
o ¥ Fh s
2 2
1 1 .
o o
. s
. :
. .
of % | o &
-1k L L L L L L L L L L P L L L L L L L L L L |
-0.5 0 0.5 1 15 2 25 3 35 4 4.5 -0.5 0 0.5 1 15 2 25 3 35 4 45

Figure 4.12: Pre-image results for the 2 dimensional cluster data. Left: SD and
right LC. Top row: Results with ¢ = 1, bottom with ¢ = 10. The blue points
are the original training set. The black dots are the computed pre-images. The
dotted lines connect x; with kP (z;).

General remarks

As a general conclusion, it can be said that the LC pre-image works well if
¥ is close to the manifold ¢(H), as with the non-iterative pre-images for the
Gaussian kernel. Otherwise the neighbors may lie in distant parts of the input
space.

In this section we compared different pre-images approaches using the feature
space distance error as a performance measure. However we did not evaluate if
the obtained pre-images were meaningfull. For instance we can apply the kernel
PCA projection with ¢ = 10 principal components to project noisy samples of
the sinusoidal manifold dataset onto the underlying manifold. From this point
of view, the results using ¢ = 1 principal component were bad.

It is also noticeable that there seems to be no substantial changes between
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the Diffusion Maps and the Gaussian kernel. With manifold data, both need a
high number of principal components to remove the noise, taking into account
that the data comes from a noisy one-dimensional manifold. One could expect
this from the Gaussian kernel, but Diffusion Maps is a dimensionality reduc-
tion kernel, and the projection over the kernel principal components is the low
dimensional representation. For instance for the manifold dataset, we have al-
ready seen in Figure 3.1, that the first principal component for Diffusion Maps
varies encodes the position along the underlying sinusoidal manifold.

In the next section we are going to see a different pre-image that allows a
more efficient use of the information of the principal components.

4.3 Constrained pre-image

In this section we are going to propose an alternative pre-image criterion, to
circumvent the problems shown in the last section. Before that, we are going to
find out what are the reasons for the observed behavior.

We are going to use the sinusoidal manifold dataset and the Diffusion Maps
kernel to illustrate the ideas, since we are interested in applying the kernel PCA
projection to learn the manifold underlying the data.

In section §4.3.1 we are going to study the geometry induced by the kernel
in the input space. Then we will infer how things should look like in the high
dimensional feature space §4.3.2. In §4.3.3 the new pre-image with some initial
results will be presented.

4.3.1 Input space geometry induced by the kernel

Since the kernel PCA projections are the coordinates of the mapping, looking
at their values in the input space, allow us to infer some properties of the
mapping. Figure 4.13 shows the projection over the first principal components
for the Diffusion Maps kernel. The images were created as those in Figure 3.1.

Figure 4.13: Kernel PCA projections over the first four principal components.
The gray scale of pixel x denotes the value of the projection (p;, m (x))7 with
i =1,...,4. Top: First and second components, bottom: Third and fourth.
The green curves denote the level curves of the projection.

As we can see, the first principal components vary along the manifold. The
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level curves of the projections represent all the points that will have the same
coordinates in the kernel PCA representation of the mapping. These curves tra-
verse the dataset “orthogonally” to the underlying manifold. Thus, the mapping
did discover the geometry of the underlying manifold, and the projection over
the first principal component could serve as a lower dimensional (one dimension)
representation of the dataset.

Figure 4.14 shows the empirical feature space pre-image D, (z) = ||¢m (z) —
¥||3,, where in this case 1) = Py, (2;). The white circle shows the position of
x;. The iterations of the pre-image algorithm are shown as white dots. As we
can see, they converge to one of the local minima of the feature space distance.
The problem is that this minimum is not where we would like it to be for
projecting x; on the manifold. Furthermore the location of the local minima
will be allmost the same independently of x;. This is the reason why in the
top right plot of Figure 4.10 the pre-images are attracted to a few points in the
input space. These points are the local minima of the empirical feature space
distance towards the projection Py, (z;).

We can also observe that the value of the projection over the first principal
component is not conserved, meaning that if  denotes the resulting pre-image
P1om () # Prom(a;). The initial iterations of the pre-image algorithm follow
approximately the level curve, but then they keep on going along the center of
the manifold.

Figure 4.14: Kernel PCA projection of a point. Iterations of the pre-image of
the projection onto the first principal component. The colored image represents
the feature space distance to the projected point.

In order to find out the reason of this behavior, we decompose D,,(x) in the
sum of the norms of two orthogonal vectors:

D () = lpm (@) — Pppm (@)l
= [[pm(z) — Pp‘Pm(x)H%{ + IPppm (z) — Pp‘»om(xi)”%-t (4.35)

The first term measures the distance from ¢,,(x) to the subspace spanned by
the first principal components, while the second term measures the distance
between the projections of ¢,, () and @, (z;).

Since the first one does not depend on z; we can think of it as a regularization
term: The pre-image x should be such that ¢,,(x) is close to the principal
subspace. The information about z; is encoded in the second term, the data
fitting term. Figure 4.15 depicts both terms, as seen in the input space.

The complete distance map from Figure 4.14 corresponds to the addition of
both terms. It is very similar with the subspace distance map in the right of
Figure 4.15. The reason for this becomes apparent from the color scale bars in
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Figure 4.15: The magnitude of the data fitting term is much smaller than that
of the regularization term. When adding both terms, the data fitting term is
negligible.
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Figure 4.15: Components of the feature space distance (the scale is logarithmic
with base e). Left: Distance between the projections. Right: Distance to the
subspace.

So far we have seen that the first principal components encodes the one
dimensional underlying manifold in the dataset, and that the distance to the
principal component, as can be observed in Figure 4.15 captures the distance
to the underlying manifold. In the next section we are going to explain why the
data fitting term in the distance has such a small contribution.

4.3.2 Diffusion Maps’ feature space

Figure 4.16 shows a representation of what could be happening in the feature
space. The mapping ¢,, : X — H is continuous and differentiable, since it
is built from linear combinations of Gaussians. As in this case X C R?, the
image ¢, (&) is a 2D manifold in the feature space, which is the smooth curvy
manifold shown in the drawing. This manifold is the set of feature space points
that have exact pre-image.
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Figure 4.16: Schematic representation of the feature space. See text.
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The principal axis is drawn as the arrow that traverses ¢,,(X’). The dashed
line going through ¢, (X) is the mapping of the unknown sinusoidal curve un-
derlying the noisy samples in the input space. The input space level curves
of the kernel PCA projection are seen in the feature space as the intersection
of ¢, (X) with planes (or hyperplanes) orthogonal to the principal axis. For
example the red dot ¢, (z;) and the yellow dot ¢, (z.) in Figure 4.16 have the
same projection Py, (2;), which is depicted as the green dot. The yellow dot
is closer to the principal axis. In fact it is the point in ¢,,(X) which minimizes
the distance to the principal axis, while projecting on Py ¢y, (x;).

As we saw in Figure 4.15, the distance to the principal axis varies more than
the distance between the projections. This is represented in the drawing by
the strong oscillations of ¢,,(X) across the principal axis. A displacement of a
point on ¢, (X) will generate a large change in the distance distance towards
the principal axis (regularization term), and a small change in the value of the
P; projection (data fitting term).

Denote by x, the pre-image of ¥ = Pyp,,(x;) computed by minimizing
the empirical feature space distance. Its image ¢, (x,) (the blue dot) is the
closest point in ¢,,(X) to 1. Due to the strong variations of the distance to
the principal axis, getting close to it becomes more important than keeping the
projection constant.

This also explains the errors of the LC' pre-image. The orange dots repre-
sent the nearest neighbors of ¥. Recall that v was approximated by a linear
combination of its neighbors. Since the variation ¢(X) along the principal axis
is smaller than the variation across it, the neighbors may lie in different parts of
©(X) which are close in the feature space but can be distant in the input space.
This is a consequence of the high curvature of ¢(X’). Since the mapping is not
linear, the same linear combination in the input space can be mapped far away
from 2.

Although the mapping aligns the underlying sinusoidal manifold with the
principal axis in the feature space, it curves the manifold in other orthogonal
directions. The magnitude of the variations of ¢(z) in the orthogonal comple-
ment of principal axis is much higher than the the variations along the principal
axis itself. This seems contradictory since the principal axis maximices the
variance of the projections onto it.
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Figure 4.17: First 40 eigenvalues of the Diffusion Maps kernel applied to the
sinus dataset.
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Figure 4.17 shows the eigenvalues of the kernel matrix in descending order.
As can be seen in the Figure, the decay is very small. The energy of the first one
is only a 5% of the total energy. This explains the very small relative weight of
the second term in equation (4.35). Individually, the energy of the first principal
component is higher, but it is just a small fraction of the total energy.

4.3.3 Constrained pre-image

The first principal component of the Diffusion Maps kernel captures the posi-
tion of the points along the underlying principal manifold in the feature space.
The optimization of the distance criterion fails to preserve this information.
Generally speaking if we perform dimensionality reduction using the ¢ principal
components of the Diffusion Maps kernel, we are assuming that these principal
component somehow parametrized the position on the underlying manifold.

When computing the pre-image of a kernel PCA projection the pre-image
algorithm should keep the value of the kernel PCA projection constant. This can
be done by defining the pre-image as the solution of a constrained optimization
problem 2:

sy =argino(z) — VI, (436)
subject to Pyp(x) = Pyo (4.37)

We will refer as D(z) to the feature space distance [¢(x) — 1[|%,. This can also
be formulated in terms of ¢,, and D,, if the actual mapping is unknown.
The condition in Eq. (4.37) imposes ¢ constraints:

(p(@),pi)n = (ypi)n i=1,...,q (4.38)

In the case discussed in the previous section when ¢ = 1, Eq. (4.37) restricts the
search domain to the level curve of the kernel PCA projection. Adding more
constraints in this case would restrict the search domain to a few points given
by the intersection of the level curves of the projections.

However, more constraints may be necessary if the dimension of the input
space is higher. Consider the case in which the dataset consist of samples from
a ¢ dimensional manifold in X C R?. Assume that the ¢ principal components
in the feature space capture the intrinsic coordinates of the manifold. The
resulting search domain will be a d — ¢ dimensional manifold, coinciding with
the dimension of the normal space at any point of the manifold (the so-called
co-dimension of the manifold).

For example if the data was sampled from a curve in R? and we set the
number of principal components in ¢ = 1, the search domain will be a two
dimensional manifold. If the manifold is two dimensional and we set ¢ = 2 the
search domain will be a curve. Figure 4.18 illustrates these situations.

Pre-image algorithm for kernel PCA projections

The constraint pre-image problem as stated in Eqs. (4.36) and (4.37) is a
non-linear optimization problem with non-linear constraints. In this section we

2During the writing of this thesis a related pre-image method, applied to the Diffusion
Maps mapping was presented in [29]. It is also constrained optimization problem, with the
same constraints and a different objective function.
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Figure 4.18: Search spaces resulting from keeping the kernel PCA projections
constant. Left: Data sampled from a two dimensional manifold; the cyan surface
is the set of points that have the same projection over p; than the green dot, and
the magenta surface corresponds to the projection over po. The intersection is
a curve. Right: Data sample from a one dimensional manifold; the cyan surface
corresponds to the projection over p;.

propose a solution to that problem for a simpler case in which we already know
a point that meet the restrictions. This is precisely the case for the projection
of a point xy onto the manifold.

KPq(w0) = argmin||io(z) — Pyp(wo) 13 (4.39)
subject to Pyp(z) = Pyp(zo) (4.40)

The initial point of the iteration will be x itself. To keep the kernel PCA
projections constant, the direction of the displacement should be tangent to
the search manifold®. This can be achieved by projecting the gradient of the
objective function VD onto the tangent space to the kernel PCA projection
level manifold that passes by . Denote by P, 4 the search space:

Prog = {z € X | Pyp(2) = Pyp(x0)} (4.41)

The tangent space to the manifold P, , at point = is orthogonal to the
space spanned by the gradients of the functions (p(x),p;)n, with i = 1,...,¢q.
Defining the vector functions

ci(r) ={p(x),pi)n , i=1,...,q (4.42)

we must have that the modified gradient VD must be orthogonal to
”Pé;)’q(x) = span{Vei(x),...,Vey(z)} (4.43)
Let {v1,...,v4} be an orthonormal basis of P,. (). This can be obtained,

from example, with the Gram-Schmidt orthogonalization algorithm applied to

3We are assuming that the kernel PCA projections are differentiable functions. This is
true for the Gaussian kernel, and for the KRR extension of data dependent kernels.
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Ver(z), ..., Veg(x). Then we can compute the modified gradient by removing
from VD the components in the directions given by v; with i =1,...,¢:
ViD(x) )= (v, VD(x (4.44)
i=1

This yields the following algorithm:
Pre-Image for kernel PCA projection
Input arguments: xq, f, T, trr, q-
Algorithm:

L |IViD@)|=7+1;i=0; 2 = z0;

2. while |Vt D(z)| > 7 and i < iy do:

(a) compute VD(z) and Ve¢;(z), i=1,...,q

(b) compute {v1,...,v4} by orthogonalizing {ci(x),...,c,(2)}
(c) V+D(z) = VD(x) — 31 (vi, VD (@))v;

(d) z ==+ pV+D(z)

3. return x

Recall that the kernel PCA projection functions ¢;(x) = {(p(z), p;)» with
i =1,...,q are just the first ¢ components of the kernel PCA representation of
the empirical mapping of x, which we denoted as y, in §2.5:

ci(z) = [y,]; = {A‘l/QUTkzL (4.45)

The gradient of this function can be easily computed. In the Appendix F can be
found the calculus of the gradient for data dependent kernels, using the kernel
regression framework to extend kx ,.

Results on synthetic data

The results are shown in Figure 4.19 for the Diffusion Maps kernel. The same
figure displays the level curves of the kernel PCA projection over the principal
axis. As can be seen in the figure, the de-noised version of each point keeps the
projection value, with a small drift due to the discretization of the flow. We
can also see that in some parts the level curves never intersect the sinusoidal
manifold, and the flow is kept trapped (upper left corner).

There are some important aspects to consider regarding the choice of the
parameters. Basically there are two main parameters: The scale parameter of
the Diffusion Maps kernel o and the scale parameter of the auxiliary kernel oy,.
According to [20] the scale paremeter of the Diffusion Maps algorithm should
be small. However, we found good results with relatively high values of o). In
the Figure 4.19 o} was computed as the average distance to the 20th nearest
neighbor, as in Eq. 4.23. The numerical value was oy, ~ 0.8.

The extension scale oj, can be larger and still obtain good results. In fact,
setting it to a high value, prevents overfitting to the noise. In Figure 4.19 it can
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Figure 4.19: De-noising of the sinusoidal manifold using the proposed pre-image
algorithm. The level curves of the projection are depicted in white. The black
curves show the evolution of each point with the iterations.

be seen that level curves are affected by the outliers. An example of this are the
closed level curves in the upper left corner of the figure. For this experiment o,
was set to twice the average distance to the 30th nearest neighbor, yielding a
value of o, ~ 1.

This value can be set higher, resulting in a broader extension domain. The
domain of the extension can be seen in Figures 4.13. When the distance to the
dataset if greater than oy, the extension of the kernel PCA projection vanishes.
This causes the feature space distance function to suddenly drop (see Figure
4.14), and therefore points far away from the dataset can not be projected onto
the manifold.

On the other hand, o}, acts also as a regularizer. If oy, is too high, we may
oversimplify the learned manifold. In the sinusoidal dataset, this would result
in a flattened sinusoidal.

Figures 4.20 and 4.21 show results on manifold de-noising in R? for curves
and a two dimensional manifold. The de-noising was performed by assigning
each point z; its kernel projection over the manifold kP (x;) computed according
Eq. (4.36). For the curves 4.20 one constraint was used (¢ = 1). Notice that
the same framework can also be applied for the closed curve on the right.

Application to the Gaussian kernel

The Gaussian kernel can be seen as a particular case of the auxiliary kernel ex-
pansion framework. The expansion coefficients are B = I, the identity matrix,
and b = 0. Thus, all the formulas derived so far apply to this kernel.

Figure 4.22 shows the result of the constrained pre-image algorithm used
with the Gaussian kernel. As we can see, the constraint prevents the points to
accumulate in the local minima of the feature distance function. In this case
however, the kernel principal component do not encode the position along the
sinusoidal manifold. The feature space distance function also does not reflect
the distance to the manifold.

Observe that some level curves become parallel to the gradient of the func-
tion. In these regions the modified gradient V+D,, becomes zero and prevents
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Figure 4.20: De-noising of curves in R? with kernel PCA projection over the
principal axis; only one constraint was imposed in the pre-image algorithms.
On the left: Open curve. On the right: Closed curve.

Figure 4.21: De-noising of a two dimensional dataset in R?. Kernel PCA pro-
jection. The first two principal components were kept constant in the pre-image
algorithm. Left: Noisy data, right: Result of the de-noising.

some points from reaching the manifold.

4.4 Results on images

In this section we present some preliminary advances in the application of the
proposed framework to image de-noising, as an example of a high dimensional
input space. The images we will consider are part of a larger dataset of gray scale
images of size s = [s,, s,]. The images are represented as vectors z; € R%%v by
concatenating their columns. Denote by X = {x1,...,z,,} the set of images.
We will assume that the images lie on a lower dimensional manifold and will de-
noise image x; by computing the pre-image kP, (z;) of the kernel PCA projection
according.

The image datasets considered are shown in Figure 4.23, belonging to the
Teapots dataset. The dataset consists of m = 400 pictures from a teapot ac-
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Figure 4.22: De-noising of the sinusoidal manifold using the proposed pre-image
algorithm with the Gaussian kernel. The level curves of the projection are
depicted in white. The black curves show the evolution of each point with the
iterations.

quired while rotating the camera 360 degrees around the teapot. The rotation
angle between each pair of consecutive pictures is approximately the same. We
considered two variations of the dataset: The original size of s = [76,101], and
a subsampled version by a factor of three, s = [26,34]. The latter yields an
input space of d = 884 dimensions, whereas the former gives d = 7676. The
subsample images were previously filtered to prevent aliasing.

Figure 4.23: Teapots image dataset. Pictures taken from a teapot while rotating
the camera around it. Gray scale images obtained by averaging RGB channels.
White Gaussian noise added. The images of the bottom where obtained by low
pass filtering and down-sampling by a factor of 3.
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Gaussian noise was added before computing the kernel matrix . The stan-
dard deviation of the noise was o, = 0.02 for the subsampled images and
on, = 0.02 for the original ones. The gray value of the images is normalized
to [0,1]. The average energy of an image is approximately 0.2.

Since the images were obtained by rotating a camera smoothly, they should
lie on a one dimensional manifold. The embedding computed by the projec-
tions over the two kernel principal components is shown in Figure 4.24. The
embedding is a closed curve, representing the fact that the camera rotated 360
degrees. This supports the choice of ¢ = 1.

0.1
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Figure 4.24: Low dimensional representation of the teapots dataset by the pro-
jections over the two kernel principal axes of the Diffusion Maps kernel. Sub-
sampled images with noise.

Figure 4.25 shows results obtained with the Diffusion Maps kernel for the
subsampled images. The parameters of the kernel and its extension where:
o, = 0.5427, computed as the average distance to the the 3rd nearest neighbor;
and o5, = 0.6621, the average distance to the the 5th nearest neighbor. For
the constrained pre-image algorithm we used ¢ = 1 and ¢ = 2 constraints (left
and center images in the bottom row of Figure 4.25) and a step of u = 0.1.
The tolerance on the norm of the gradient for the stopping condition was set to
T=10"°.

The top row in the Figure shows the original noiseless image on the left
and the noisy image on the right. The bottom right image was obtained using
the unconstrained optimization pre-image of the projection over the two first
principal axes Pop(z;). The same step and stopping tolerance were used. As
can be seen, the result of the unconstrained pre-image is very noisy, and the
handle of the teapot is almost erased. The constrained pre-image has removed
the noise but also the details on the body of the teapot. However the main
structural elements are kept, like the light reflexes and shadows.

Observing carefully it can be seen that teapot in the pre-image obtained with
one constraint has rotated (the handle seems to be closer to the camera). The
pre-image obtained with ¢ = 2 constraints has not (at least not noticeable).
However it has some blurring on the handle. It has also preserved more the
details of the body of the teapot. According to our experiments on synthetic
data, for a ¢ dimensional manifold, constraining the ¢ principal components

4The subsampling was done before the addition of the noise, and after a low pass filtered
to prevent aliasing.
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Figure 4.25: De-noising by the pre-image of the kernel PCA projection, with the
subsampled images. Top row: Original image and with noise added. Bottom,
from left to right: Constrained pre-image with ¢ = 1, constrained pre-image
with ¢ = 2, unconstrained pre-image of the kernel PCA projection over two
principal axes.

of the pre-image should be enough. However in this case using two principal
components seems to work better.

The algorithm took around 2000 iterations to converge. The step was in-
tentionally given a small value to minimize the drift on the constrained kernel
projection values. With a step of ;1 = 1 (ten times higher) very similar results
can be obtained, as can be seen in Figures 4.26 and 4.27, with a number of
iterations between 80 and 300 depending on the image.

Figures 4.26 and 4.27 show a comparison between ¢ = 2 (second row in
each Figure) and ¢ = 2 (third row) constraints, for 14 images at equally spaced
camera rotation angles. It is notorious that ¢ = 2 yields better results. For
example, the last three teapots in the third row of Figure 4.26 are in the same
position. Although in both cases the results for the front and rear views of the
teapot are worse than the side views, with ¢ = 1 the results for these views are
particularly bad: The handle vanishes completely and there is a lot of noise.
Also in the 3rd and 5th positions in Figure 4.26 (before and after the rear view)
the angle is preserved with ¢ = 2 constraints, but not with ¢ = 1.

The fourth row of Figures 4.26 and 4.27 shows the results obtained with
the LC pre-image using n = 10 nearest neighbors. The reconstruction for
many different images is the same, similarly to what happened in our previous
experiments with synthetic data. As happened before, the feature space distance
can be missleading due to the high curvature of the embedding. Recall the
decomposition of the feature space distance of Eq. 4.35: The data fitting term
is negligible compared with the regularization term. Therefore the neighbors
found are close to the principal subspace, but may have a completely different
position in the input space.



80 CHAPTER 4. THE PRE-IMAGE PROBLEM IN KERNEL PCA

_r..r _E i'l'r -|-‘.ll-l--il'h:..-un-‘'.I...-l--|.|‘I

e

P d e G

- .
- -

"I—— Ll

Figure 4.26: Kernel PCA de-noising for the first 7 of 14 images. Top: Original
noisy images; second: Constrained pre-image using ¢ = 2; third row: Con-
strained pre-image using ¢ = 1; fourth row: LC pre-image with 10 nearest
neighbors.

Figure 4.27: Kernel PCA de-noising for the last 7 of 14 images.

Results without subsampling

To test the method in an even higher dimensional space, we performed kernel
PCA de-noising without subsampling the images. The results are shown in
Figure 4.28. Increasing the dimension of the input space with the same training
set makes this problem harder. For instance the de-noised image may not be in
the span of the training images. The right image in the Figure 4.28 shows the
projection of the clean image on the span of the training set. This is the best
de-noising result that can be achieved in the span of the training set (in terms
of Ly distance).

Figure 4.29 shows some results with the proposed constrained pre-image
varying the number of principal components g. From left to right ¢ = 2, ¢ = 30
and ¢ = 100. Again this results contradict our intuition: Fixing the first two
principal components (nor the first one) does not assure to capture the rotation
angle of the teapot. When adding more constraints the results get better until
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Figure 4.28: Result without subsampling. Left: Original image, center: Noise
with standard deviation o, = 0.08 has been added. Right: Projection of the
clean image over the span of the training set.

the noise begins to be captured, as with regular PCA. However when considering
¢ = 30 principal components better and faster results can be obtained with the
LC' pre-image.

Figure 4.29: First tree images: Constrained pre-image varying the number of
principal components q. From left to right ¢ = 2, ¢ = 30 and ¢ = 100. The kernel
parameter o was set as a fifth of the average distance to the nearest neighbor.
The right most image correspond to the LC' pre-image with 10 nearest neighbors
when projecting over ¢ = 30 principal components.

The datasets we worked with in this section are of a different nature than the
synthetic datasets used in the previous section. In this case, both for the original
images and the subsampled ones the dimension of the input space exceeds the
number of training set points m. Therefore the span of the training set will
not cover the whole input space. This is important: The pre-image is a linear
combination of the input samples, thus, they will be constrained to the span of
the training set.

On the other hand the situation in the empirical feature space H™ is the
opposite: Its dimension is the number of inputs m = 400. The image of the
input space by the actual mapping ¢(X') will be a d = 884 dimensional manifold
for the subsampled images. Its image by the empirical kernel map ¢,,(X") will
be the projection of ¢(X') over the empirical feature space H™.

The constrained pre-image algorithm was developed with the intuition gained
from the analysis of a problem that may have a different nature from this one.
For the examples we analyzed in §4.3, the image of the input space by the empir-
ical mapping ¢, (X)) was a manifold of dimension two, therefore a submanifold
of H™. This may be the cause of some of the unexpected behaviors observed.
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Results with the Gaussian kernel

The Gaussian kernel has been already used to perform kernel PCA de-noising
[47]. In this section we are going to apply it to the downsampled teapot images.
The results obtained are shown in Figure 4.30. The first column shows the
original image without noise and with noise added, and the second corresponds
to the de-noising results with the Diffusion Maps kernel, with ¢ = 2 both for
the constrained and the unconstrained pre-image. x

The results with the Gaussian kernel are shown in the third column, with the
constrained (top) and the unconstrained (bottom) pre-image. The advantage of
the constrained pre-image is not as significant as with the Diffusion Maps ker-
nel. The unconstrained pre-image looks a bit noisier and the teapot is rotated.
Comparing the constrained pre-images of both kernels Diffusion Maps yields
better results. The teapot’s handle is sharper, and the details on the body of
the teapot are more similar to the original.

Figure 4.30: Results with the Gaussian kernel. First column original clean and
noisy images. Center column: Results with the Diffusion Maps kernel using
q = 2 principal components, top constrained pre-image, bottom unconstrained;
right: Results with the Gaussian kernel with ¢ = 2 principal components, top
constrained pre-image, bottom unconstrained. The scale parameter of the ker-
nel was computed as the average distance to the third nearest neighbor. The
optimization step is p = 0.1.



Chapter 5

Conclusions

5.1 Concluding remarks

The kernel PCA interpretation sheds light over spectral dimensionality reduc-
tion techniques. The theory of kernel methods is well advanced. Its asymptotic
results and finite size bounds may provide a better understanding of spectral
dimensionality reduction. However the study of the induced geometry in the in-
put space seems to be harder than the geometry of feature space, known though
kernel function. Understanding the pre-image problem is crucial for control-
ling the input space geometric aspects of kernel methods. The work presented
contributes to this goal.

We showed experimentally that the unconstrained optimization of the fea-
ture space distance has problems with some kernels. We proposed a solution to
these problems by forcing the kernel principal components to remain constant
in the pre-image criterion.

It can be argued however, that the source of the problem is the kernel,
instead of the pre-image. The problems of the pre-image arise from the high
variations of the kernel mapping. Thus, another interesting line of research is
that of designing a kernel whose mapping does not have those variations.

To the time of writing we do not have enough experimental evidence nor
theoretical results to affirm that the proposed constrained pre-image provides
an effective solution or to tell the limits of this approach: which are the necessary
conditions needed for a good performance. We would like to address this issues
in the future.

The preliminary results for low dimensional datasets are good and encour-
aging: the developed algorithm project points onto the manifold, transforming
the kernel PCA projection in an input space projection according to the kernel-
induced geometry. However in very high dimensional settings, the results con-
tradict the intuition we have, even for simple datasets, such as the teapot images
dataset.

The proposed approach can be applied to both analytic and data dependent
kernels. To achieved this we extended data dependent kernels using Kernel
Ridge Regression, a standard and simple non-linear regression technique, which
is itself another kernel method. Any other kernel regression technique can be
used, such as Support Vector Regression of Kernel Lasso Regression, as long as
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the output is a kernel expansion function.

It would be interesting to see if the choice of the regression method for
extending the kernel has some influence in the results. Perhaps for some appli-
cations a sparse kernel expansion (such as those obtained with Support Vector
Regression) yields a better performance.

For the manifold learning kernels, the framework adds basically two pa-
rameters the scale of the extension kernel, o5, and the number of kernel PCA
projections p. The o}, parameter is related with the larger scale structure of the
manifold. If the manifold has high curvature, oj, should be low. On the other
hand the lower the o}, the smaller the domain of the extension.

A crucial parameter is the number of principal components p. According
to our experience with synthetic datasets, p should be the dimension of the
underlying manifold. For real high dimensional data we found better results
using more constraints. We are currently trying to understanding the reason
for this behavior.

5.2 Future work

In this section we enumerate some possible lines for future work:

e More experimental results are needed. Variations in the kernel function
and framework parameters need to be further tested.

e Study of the theoretical properties of the proposed framework. The asymp-
totic results of the kernel PCA could be used to study the convergence
of the learned manifold when the number of training samples tends to
infinity.

e So far, we have only implemented the proposed pre-image method for
projecting a point onto the manifold, because we have an initial condition
which belongs to the feasible set. However the same idea can be applied
to the computation of the pre-image of a generic feature space point. This
is usefull for applications such as interpolating inside the manifold.

e There are other ways of extending the kernel that would be interesting
to try. In particular it may be usefull to have a local extension length,
dependent on the local complexity of the manifold: in high curvature
regions a small o, should be used, but high curvature regions allow a
larger one.

e Inclusion of other terms in the optimization problem. For high dimen-
sional settings the solution is limited to the span of the training set. An
interesting way of lifting this restriction is by adding other type of priors
to the objective functions. An example of this could be a total variation
regularization term.



Appendix A

The range of the kernel
matrix

In the following we are going to prove the following proposition.

Proposition A.1. The kernel vector k, = [k(z,z1),...,k(z,2,)|" is in the

range of the kernel matriz for the set X = {x1,...,2m}, denoted by K.

By the range of a matrix we refer to the span of its columns.
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Appendix B

Kernel Matrix Completion

B.0.1 Euclidean distances: Semidefinite Programming

Graepel [33] presents an approach for completing a kernel matrix with missing
entries. The completion is forced to be a symmetric positive semidefinite matrix.
Suppose K is the incomplete kernel matrix. Let M be a mask matrix, that is
one on the missing entries and zero otherwise. Then we can formulate the
problem as:

K = argmin||M o (K — K)|? (B.1)
KeSp,
subject to AK =b (B.2)

where the o operator denotes the Hadamard product (i.e. point-wise multi-
plication of matrices), and the norm is the Frobenious norm. The constraint
AK = b can be used to add an equality constraint over the matrix. The oper-
ator A : S, — R? is a linear operator defined over the space S, of symmetric
positive semidefinite m X m matrices.

It turns out that this problem can be formulated as a standard quadratic
programming algorithm, the size being the number of missing entries. The
method, as stated by the authors, is very computationally costly.

B.0.2 Kullback Leibler Divergence [64]

The approach presented in [64] uses non-Euclidean Geometry in a space of
positive semidefinite (PSD) matrices to complete the missing entries while pre-
serving positive semidefinitness. The main idea is to associate each PSD matrix
with a probability density function (PDF), treating the matrix as the covariance
matrix of a Gaussian variable with zero mean. The Kullback-Leibler divergence
between this PDFs can be used as a dissimilarity measure between the covari-
ance matrices. The main advantage of this approach is that it allows the use of
the information geometry framework, and in particular the em algorithm (this
is not the same as the Expectation-Maximization algorithm, although in some
cases they coincide).

We briefly review some basics notions of information geometry needed to
understand this approach. Information Geometry is a field of statistics that
study information and probability by means of differential geometry. This is
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based in the fact that a space of probabilities can be considered as a differential
manifold endowed with a Riemannian metric. This provides interesting geo-
metric interpretations of some well known statistical algorithms. For instance,
the maximum likelihood estimate corresponds to a projection over a certain
manifold. The EM algorithm can be considered as a special case of the em
algorithm.

Let us consider two manifolds M7 and Ms. The em basically finds one point
My € My and Ms € Ms minimizing the KL divergence between M; and M.
The points M; and My correspond to PDFs, and therefore the KL divergence
can be used to compare them. The em finds M; and M, by iteratively alter-
nating projections onto the manifolds M; and Ms. Since the KL divergence is
not symmetric, there are two different type of projections over a manifold M:

e e-projection: 75,(B) = argmin 4 s KL(A, B)
e m-projection: 7 (B) = argmin 4, KL(B, A)

The em algorithm has the following steps, given a initial matrix, M°® =
MO = M),

o e-step: Ml = 75, (M3)
e m-step: MyT! = ™, (MEFD

Under certain hypothesis regarding the manifolds M; and My, the unique-
ness of each of the projections in each step can be proved. However the iterative
algorithm can converge to a local minima, and its sensible to the initialization.

The approach followed in [64] uses the em to complete the kernel matrix.
Suppose we have a matrix D with missing rows and columns:

- Knn (Kln)T

K - Kl’n Kll

(B.3)

where K"™ is the block formed by the known entries, and the rest is unknown.
Let us consider the manifold M; as the manifold of symmetric positive semidef-
inite matrices that coincide with K in the first n x n entries:

My = {K e R K" e R K e R (KT = KU K =0} (BA)

This is clearly the manifold on which the desired solution is. This is called
the data manifold. But still we need another manifold, Ms, which we are
going to refer to as the model manifold. This manifold encodes the a priori
information we have.

In [64] the authors assume that this information is given in the form of
another kernel matrix, H € R™*™. The manifold M, is defined as the spectral
variants of the kernel H. These are defined as the set of matrices which have
the same eigenvectors, but different set of (non-negative) eigenvalues.

The em algorithm is then applied between this two manifolds. The limit
point in the M; manifold is the completed kernel matrix. The e-step and the
m-step can be computed in closed form, however the final completion must be
found iteratively. The cost of each iteration depends mainly on the size missing
data.



Appendix C

Selection of the extension
scale

In this Chapter we present some of the work performed for estimating optimal
parameters for the data dependent kernel extension framework which finally was
not used.

C.1 Matrix Calculus

In this section we are going to briefly review some properties of matrix calculus,
those needed for the derivatives of the PRESS. We based on [16].

Definition C.1. In the following we are going to handle functions F : RP*? —
R™ ™ The output, as well as the argument of F are matrices. For computing
its differential, we are going to treat those both matrices as vectors by concate-
nating the columns. Consider Y = F(X). Then, dF/dX = dY/dX € R"m™*Pq
such that:

VYL, Y )

where A: refers to the vectorized version of matrix A.
Basic Properties. Before reviewing some basic properties of the calculus

with matrices, we need a few definitions. The Kronecker product A® B between
two matrices A € RP*? and B € R"*™ is a np X mq block matrix given by

AHB AlgB s AlmB
Ang AQQB s AQmB
A® B = , o , (C.2)

The Hadamard product, or component-wise product A o B between A, B €
R™ is a n X m matrix such that [A o B|;; = A;;B;;.

Chain rule If Z = Z(Y) and Y = Y (X), then dZ/dX = dZ/dYdY/dX.
Linearity d[aY (X)+ Z(X)]/dX = adY/dX + fdZdX where o, € R.
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Product dY(X)Z(X)]/dX = (I®Y)dZ/dX + (ZT @ I)dY/dX
Inverse dX!/dX = -X"1o X!
Product with a scalar function Let f:R"*™ — R. Then

dlY (X)z(X)]dX = 2dYdX 4+ Y: dz/dX

The following results are going to be used later.
o dlc"XTXc]/dX =2[XccT]:

e dXTCX|dX =T ® XTC+ XTC®I

C.2 Leave-One-Out Cross-Correlation for Ker-
nel Ridge Regression

In this section we are going to show that the LOO error can be computed
efficiently in a closed form that can be minimized to find the optimal param-
eters (w.r.t. the LOO performance measure). This derivation is based in [18],
presented here with more detail.

C.2.1 Closed for expression for the PRESS

Let X = {x1,...,2,} C X C R% be the set of input points. For given param-
eters v and oy, the coefficients 3 and b can be found by solving the following

equation:
EBIHRD

where M = H + I, and 1 is a column vector of dimension m whose entries
are all one. Let us define the following matrices as:

o M 1 o C11 C,{
C_|:1T 0:|_|: C1 Cl (04)

where ¢17 € R, ¢; € R™ and C; € R™*"™ Consider B(i), p®) parameters learned
when removing x; from the training set. For ¢ = 1 we have that:

Y2

(1) ;
[fm ]Cll , (C.5)
0

Therefore, the learned model predicts the following value for xy:

Y2
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On the other hand, the last m equations of the system (C.3) can be rewritten
as [e1C1][B,0)T = [y2, ..., Ym, 0]7, thus we have that:

B2
y = Iy e €4 { f } —cCilepi+en | (C.7)

m

b

We now consider the first equation on the system (C.3), which states that y; =
c1181 +cF'Ba, ..., Bm,b]T. As a result we obtain that

B
cy

ri=y — ") = Bilen —eTCler) = (C.8)
The last equality is a consequence of the block matrix inversion lemma [31]
applied to the matrix C. This equation can be generalized to any point in the
training set, by appropriately permuting the equations and the unknowns in the
linear system (C.3):
_ @ _ _Bi
ri=yi -y = C’-ivl (C.9)

(X3

C.2.2 Gradient of the PRESS

For minimizing the PRESS, we need express Eq. (3.31) in a more convenient
way. From Eq. (C.3) it can be seen that

lTMfl
1T Mm-11

B lTMfl,y

—1 —1

) y= Dy (C.10)

Using again the block matrix inversion lemma, it can be easily seen that D
equals the first m x m block of C~!. Therefore the PRESS can be expressed in
matrix form in the following way:

P =y D" Diag(D) 'Diag(D) "' Dy (C.11)
Recall from Eq. (C.11) that the PRESS can be written as
P(0,v) = y' DDiag(D) 'Diag(D) ' Dy =y TT Ty (C.12)

where T = Diag(D)~!D. Using the chain-rule, where need to compute the
following terms for computing the derivative:

P dPdT dD dM~'dM
O _dpdT_dp b i €19

and similarly for . The first term is the quadratic form from Eq. REF. The
derivative is an m? row vector given by:

dpP
— =2[Tyy"]:" C.14
o7 = 2Tyy'] (C.14)
The second term needs the calculation of dDiag(D)/dD which can be easily
computed using the definition. The result is a m? diagonal matrix, its diagonal
being I:. Using some basic properties it can be shown that
T dDiag(D)

— =I®Diag(D)' +(D®1I) D

i (C.15)
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For computing the term dD/dM ~! recall that
1

D=M'-M'11"M C.16
1TM-11 (€-16)
Thus,
dD ITeM—'11"+ M~ "117 @1  [M~'11T M) 11T T
aM-t 1TM 11 (1TM-11)2
(C.17)

The term dM~'/dM can be computed directly from Eq REF. Finally, we
only need the terms dM/do and dM/dry. Recall that M = H +~I, and H;; =
exp(—||z; — z;||*/20?%). Then:

aM M
— —_— N .1
> = E“oH and . 1 (C.18)

C.3 Comparison between the PRESS and the
RK-PRESS

In this section we show some results comparing the PRESS and the RK-PRESS
measurements. For performing the comparison we used synthetic datasets over
which we computed the Diffusion Maps kernel.

Two Gaussian clusters in R?. The centers of the clusters are [—1,0] and
[1,0], and the variances are 0.5 and 0.1. Each cluster has 100 points. The
Diffusion Maps kernel is computed using the average distance to the nearest
neighbor, which yielded o3 = 0.0658.

PRESS map RK-PRESS map

o
-2
-4
-6
-8
i -
N 10" 10" 107 10’
v

Figure C.1: PRESS and RK-PRESS map for the two Gaussian cluster dataset.
The logarithm is taken in both cases for visualization.

10

The PRESS and the RK-PRESS were computed for a 60 x 60 grid of param-
eters v and 0. The Figures C.1 and C.2 show the results. Figure C.1 shows
that the overall behavior is similar. A big value of o}, and a small v is in both
cases a bad combination. For o}, close to oy, there is a wide range of values of
~ for which the results are almost constant. The optimal parameters are in this
region.

Figure C.2 shows a cut with a fixed value of v comparing the PRESS and the
RK-PRESS. This shows that the major differences are in the region where both
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V= 15849e-07

Figure C.2: PRESS and RK-PRESS for the two Gaussian cluster dataset. The
logarithm is taken in both cases. The Figure shows the variation with oy, for
~ = 1.5810~7. The vertical black line shows the oy.

attain their best performance. In this case, the PRESS is a upper bound for the
RK-PRESS. This can be helpfull: by minimizing the PRESS we are bounding
the RK-PRESS. However, according to the Figure, using directly o}, = o would
yield a worse PRESS, but a better RK-PRESS than the minimizer of the PRESS.

Two Gaussian Clusters in R!?. The centers of the clusters are [-1,0, ..., 0]
and [1,0,...,0], and the variances are 0.5 and 0.1. Each cluster has 100 points.
The Diffusion Maps kernel is computed using the average distance to the nearest
neighbor, which yielded o3 = 0.7285.

In this case, expecting the same regularity as before, we computed the
PRESS and the RK-PRESS only for a coarser grid 30 x 24 grid of parame-
ters o and . The Figures C.3 and C.4 show the results. The behavior this
time has some differences. The PRESS map is almost flat, as can be seen also
in Figure C.4. The RK-PRESS has more variation (always bellow the PRESS),
and has a valley almost surrounding the oy.

Figure C.1 shows that the overall behavior is similar. A big value of o5, and
a small v is in both cases a bad combination. For oj close to o, there is a
wide range of values of v for which the results are almost constant. The optimal
parameters are in this region.

Figure C.4 confirms these observations, showing that there is almost a two
orders of magnitude difference between the PRESS and the RK-PRESS. Again,
using op, = o yields much better results (according to the RK-PRESS) than
the minimizer of the PRESS. As in the two-dimensional case, the profile shown
in Figure C.4 holds for a wide range of 7: at least from v = 107° to v = 0.1.

Thickened square in R?. This dataset is the one depicted in Figure C.5.
The number of points is m = 200.

The behavior for this dataset is similar to the one of the two clusters in R2.
Again there is a region of small PRESS and RK-PRESS around o) which is
almost invariant to . For the RK-PRESS slightly better results are obtained
with ~y close to 1 .

In a second experiment with this dataset, we increased the oy, computing it
as the average distance to the eighth nearest neighbor. The results are shown
in Figure C.8. For the RK-PRESS, there is a minimum around ¢ ~ o), = 0.12
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Figure C.3: PRESS and RK-PRESS map for the two Gaussian cluster dataset.
The logarithm is taken in both cases.

v=0.0001

02 04 06 08 1 12 14 16 18
o

Figure C.4: PRESS and RK-PRESS for the two Gaussian cluster dataset. The
logarithm is taken in both cases. The Figure shows the variation with o, for
~ = 11073, The vertical black line shows the oy.

-o.
2 o 02 04 06 08 1 12 14

Figure C.5: Thickened square dataset.

and 7 ~ 0.4. However, the PRESS shows a different overall shape, as can be
seen left in Figure C.8.

The experiments so far show that instead of minimizing the PRESS in ¢ and
v, using directly o = o, would yield better results, according to the RK-PRESS.
Using this o the regularization parameter is not relevant, at least in the first
experiments. In all the experiments, except the last one, choosing A\ between
1075 and 1072 gives similar results.

The last case shows a stronger dependency with A: the PRESS is grows with
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PRESS map
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Figure C.6: PRESS and RK-PRESS map for the thickened square cluster
dataset. The logarithm is taken in both cases.

V= 7.3564e-05

002 004 006 008 01 012 014 016 018 02
13

Figure C.7: PRESS and RK-PRESS for the thick square dataset. The logarithm
is taken in both cases. The Figure shows the variation with oy, for v = 7.35107°.
The vertical black line shows the oy.

PRESS map

RK-PRESS map

AN

Figure C.8: PRESS and RK-PRESS map for the thickened square cluster
dataset, with a larger o;. The logarithm is taken in both cases. Note that
in the left the ranges of o and v are wider.

A for any fixed 0. However the RK-PRESS behaves as in the previous cases:
there is a minimum for A between 0.1 and 1, and it is almost constant between
10~% and 10~2. This evidence shows that choosing o}, = o and A € [1076,1072]
would be a good strategy, even better that minimizing the PRESS.
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Appendix D

Pre-images of the
polynomial kernel

In this section we present the pre-images developed for the polynomial kernel.
This kernel did not yield good results on the kernel PCA de-noising applications,
and therefore we did not include these computations in the main body of this
work.

The (inhomogeneous) polynomial kernel is defined as

k(z,2') = ((x,2")? + ¢) (D.1)

Note that the dot product (x, 2’) is the input space dot product. The polynomial
kernel (as well as the sigmoid kernel) is one of the following class of kernels:

k(z,2') = g((z,2")) (D.2)
where in the case of the polynomial kernel, the function g is given by

g(s) = (s +¢)? (D.3)

D.1 Collinearity criterion

Iterative methods. We are going to consider our pre-image z € X as the a
maximizer of the collinearity criterion,

(e
T = AT X @) 6 e (D-4)

As before we are going to assume that v is a linear combination of the images
of the training set. Substituting in the previous equation, expanding the dot
product and using the kernel trick yields,

<¢,<P($)>H _ Z?ll aik(x7xi) _ Zgl aig(<x7xi>)
le@)linlldllze Ve 2) [vlln - Vg(le,2) 19l

97
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Computing the gradient of the this expression, and making it equal to zero
yields also an implicit approach

xmz
Zaz

m

2 o g m

For the this kernel, as well as for the Gaussian, the iterative formula can be
expressed in terms of k, since

g (@, a") = dg((z,2"))' 7/ = dk(a,a") 714 (D.7)

Therefore we obtain the following implicit equation:

" k(x,a) Y

Sa b,

; k(x,z)t-1/d

T == (D.8)

m k‘(l‘,IZ)
Zai k(z,x)

Closed form approximation. Following the same idea of [26, 3] we compute
a direct formula approximation of the iterative approach, estimating the pre-
image’s kernel vector k,. Note that for the polynomial kernel we need also the
value of k(x,z). As [43] we are going to set k(z,z) = ||¢||3,.

We can approximate Eq. (D.6) using k(z,z;) = (¢, ¢(x;))n and k(z,z) =
ll4]|3,. Note that that using this approximations, the denominator of the implicit
formula for the collinearity pre-image reduces to one:

D aik(z @) L i (@i _ (i aip(@i)ln _ (W )n
k(w, ) 1% l11% l11% 08

Then the following closed form approximation yields:
)>1 1/d

N, (e
i=1

Note that the kernel estimates were deduced minimizing the distance crite-
rion between the Nystrom extension and .

D.2 Distance criterion

We choose our pre-image x € X to be a minimizer of the distance criterion:

= argmin [[¢ — p(x)|3, = argmin (¢ — (), ¥ — p(2)),, (D.11)
zeX zeX
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If we suppose that v lies in the span of the images of the training set X =
{1,...,2m}, we arrive to the following expression for the distance criterion:

I = p@)Ilf, = k(z,2) =2 aik(z,z:) + 1[5

=1

= g((w,@)) —2 ) aig((w, ) + |[[I3, (D.12)

i=1
Taking the gradient with respect to the variable x yields
Ve = e(@)5 = 20 ((z,2))e =2 aig/ (@, )z, (D.13)
i=1

If we make the gradient equal to zero, we arrive to the following implicit relation
that the pre-image must satisfy:

Y g () )
T () (D-14)

)= 1/d
m—Zaz k(z, 1 1a® (D.15)

The implicit equation for the collinearity criterion is very similar as the one
for the distance criterion, the only difference being the factor:

k(z,z) o)l

Sy aik(z @) (@) (D.16)

Closed form approximation. Since the factor in which Egs. (D.8) and
(D.15) differs cancels when assuming that ¢(x) & 1, the closed form approxi-
mations for both criteria coincide.
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Appendix E

Convex Linear Combination
Pre-Image

In this section we are going to find a closed form expression for the expansion
coefficients of ¢ = >, a(x;) in terms of its n nearest neighbors in the
empirical feature space H™:

n

)~ Zﬁw(ﬂfw(i)) (E.1)

i=1

where 1y, C {1,...,m} is the set of the indices of the nearest neighbors of .
First not that to compute the distances in the feature space one can use the
kernel trick:

I = (@)} = (e — €:)" K (ay — e;) (E.2)

where e; is a vector with 1 in its ¢th component and Os in the rest.
Since we are looking for a convex linear combination, the problem to solve
is the following,

N 2
B =argmin |l — ) Bip(zy, )
BeR™ i=1 H
2
=argmin ||y | aip(ws) = 3 Bip(wn, () (E-3)
BER™ =1 i=1
H
subject to 11,8 =1 (E.4)

Expressing the norm as a dot product, expanding it and using the kernel trick
again, the objective function can be expressed as:

2

Z a;p(xi) — Zﬂiﬁﬁ(ﬂf%(i)) =8"K,,B-28"K,a+a"Ka (E.5)
=1 i=1 "

where K, is the n x n submatrix of K obtained by removing all rows and
columns except those corresponding to the nearest neighbors of v; and K,
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is the n x m submatrix of obtained removing the rows corresponding to the
non-nearest neighbors.
To find the optimum we introduce the Lagrange multiplier p:

L(B, n) = ,BTK,m,B - QﬂTKrro‘ +alKa+2u(1;,8 1) (E.6)
Solving for 8 and p yields:

1- 1£1K$7]K77‘:6
ILL P
1K 1

B =K., (K, + pla) (E.8)



Appendix F

Gradient of the kernel PCA
projection with the kernel
expansion framework

The constraints of the constrained pre-image are given by the kernel PCA pro-
jections over the first p principal components. This can be computed in terms
of the kernel vector as

Yo, = Ao UT kxa (F.1)

1:pl:p
where Aq.p1.p is a square submatrix formed with the first p rows and columns

of A and Uip‘ is the p X m matrix formed with the first p rows of U.
We are going to compute the Jacobian matrix of y, , since its rows are the
gradients of its functional components.

Vy,, = A2 UL Vi, (F.2)

1:pl:p

Recall that kx , = Bh, + b, where B and b are the coefficients of the kernel
expansion computed by the Kernel Ridge Regression algorithm, and h,, is the
auxiliary Gaussian kernel vector of width op,.

Vkx,, = BDiag(h,)(X — 211,)" (F.3)
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Appendix G

Notation

0,0

Pqﬁa(x)
Yz
PR, HR
o, Hur
p(z)
Tk
Vi Py

Input space

Dimension of the input space

Feature (Kernel) space

Kernel mapping ¢ : X — H such that k(z,z") = (p(z), (2'))n
Training points

Number of training points

Training set X = {x1,...,2m }. X, indicates the number of points
Mapping of the training set ® = {o(x1),...,¢(zm)}

Kernel function k : X x X — R

Kernel vector from = towards the training set k, = [k(z,11), ..., k(z, 2,,)]7
Kernel vector for a data dependent kernel kx ,

Kernel matrix. K;; = k(x;, ;) with 4,5 =1,...,m

Kernel matrix w.r.t. training set X, X,,

ith eigenvalue, eigenvector pair of K, in decreasing order of the eigenvalue
Figenvalues and eigenvector matrices of K

Rank of K

Scale parameter of Gaussian or Diffusion Maps kernels

Auxiliary kernel used for extending data dependent kernels

Scale parameter of the Gaussian auxiliary kernel

Coefficients of a linear combination in the Feature Space

Vector of coefficients

Number of principal components

ith principal component

Projection of ¢(x) over the span{pi,...,p,}

Vector with the kernel PCA projections of ¢(z) (y, € R™)
Reproducing Kernel Hilbert Space mapping and Feature Space
Mercer’s mapping and Feature Space

Probability density function of the input space

Linear operator associated to the kernel T}, : Ly — Lo

jth eigenvalue-eigenfunction pair of T},
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H™ H™(X)

kx,kx
Zi

Z? Zm
6’iub
B

m

APPENDIX G. NOTATION

Empirical kernel Feature Space H™ = span{¢(z1),...,¢(zm)}
Elements in ‘H or H™

a-vector representation of £ € H™

kernel vector representation of £ € H™. k, is a short notation for k)
Kernel PCA representation of § € H™. y, is a short notation for y,,
Empirical kernel map: ¢, (z) = Pymo(x)

Data dependent kernel functions: for a given X, kx : X x X — R

Low dimensional representation of x;

Set of low dimensional representations of the training set X
Coefficients of the kernel expasion for extending a data dependent kernel
Extension coefficients vector (only the (;’s)
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