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Preface

The original DUDE was developed jointly by my advisor Gadiel Seroussi and his coleagues
at Hewlett-Packard Laboratories, Palo Alto' (Marcelo Weinberger, Erik Ordentlich, Tsachy
Weissman? and Sergio Verdi?) as a very general and elegant way to denoise signals of many
types and dimensions.

In 2004 T was accepted for an internship at Hewlett-Packard Laboratories, Palo Alto. The
primary purpose of this internship was to continue the adaptation of the DUDE algorithm to
continuous tone images that Giovanni Motta had started on the northern summer of 2003.
Giovanni had already set up the basis for the new framework, and good results were already
available in his version. My assignments as an intern were to improve his intial results and to
make the overall process more efficient so that the DUDE could be used for real-time image
restoration from within popular image processing programs.

The present thesis is a continuation of the work done during the internship and spans the
period between August 2004 to August 2005. It addresses issues not solved at the end of the
internship, and extends it to other types of noise not originally included (uneven Salt & Pepper,
g-ary symmetric, Z-Channel), and finally includes improvements in both quality of the results
and efficiency.

LAt the time of writing, Gadiel Seroussi retired from Hewlett-Packard Laboratories and is now an Associate
Director of the Mathematical Sciences Research Institute, Berkeley, California 94720, USA

2Currently with Stanford University, Stanford, California 94305, USA.

3Princeton University, Princeton, New Jersey 08544, USA.






Abstract

The problem of image denoising is a field of research with more than 50 years of history.
It is considered part of the more general problem of image restoration and, ultimately, image
processing. As such, it has been addressed traditionally by the signal processing community,
starting from the works of Wiener [35] in the late 1940’s and Kalman [13]. in 1960.

The Discrete Universal DEnoiser (DUDE) [34] proposes a denoising method which can be
applied to any kind of discrete sequences of any dimension, including digital signals, and in
particular to digital images. This algorithm has been shown to achieve asymptotically the per-
formance of any fixed sliding-window denoiser for any given sequence corrupted by a memoryless
channel, as the length of the sequence approaches infinity.

This work proposes variants to the basic algorithm for its application to continuous tone
images, for which the source alphabet is typically very large and the asymptotic properties of
the DUDE as originally presented become less relevant. The goal is achieved by exploiting a
priori knowledge of the structure of such sequences.






1 Introduction

1.1 Some history

The problem of image denoising, included in the more general problem of image restoration
and ultimately of image processing, is a field of research with more than 50 years of history
since the appearance of television which has drawn considerable attention since the advent of
digital images in the late 1970’s. Today there are thousands of publications on the field, and
many practical applications have benefited from their results.

This problem has been addressed traditionally by the signal processing community starting
from the works of Wiener [35] (1949) and Kalman [13] (1960), and most of the existing methods
to address it are derived from the classical tools of the field of (Digital) Signal Processing.
Among these tools are:

e Probability and statistics: Random Procesess, Ergodic Theory, Markov chains, Markov
fields, Hidden Markov models.

e Control Theory: Tracking and prediction (Kalman).
e Signal Processing: Digital/Analog Linear Filters, Wiener Filters, Fourier Analysis, Z-
Transform.
In the last 10 years many more mathematical tools have been added to the arsenal. Among
these are

e Signal Processing: Wavelet/multiresolution analysis

Statistics: Advanced probability models

Functional Analysis: Total Variation

Dynamic Systems: Partial Differential Equations

Information Theory: Entropy, Minimum Description Lenght, Prediction

1.2 Digital Images

The description of the problem of digital image denoising begins with the definition of the
subject of the problem: digital images. A digital image x™*™ is defined as a two-dimensional
array (grid) of m € N rows and n € N columns, where N = {1,2,3,...} is the set of natural
numbers. Each position in the array (a sample or “pixel” —for “picture element”-) is referred
by a two-dimensional index i = (i1,i2) € N? and is denoted as x;. The color of each pixel is
determined by the value at its position in the array. There are three common interpretations
of this value:
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Figure 1.1: “Niquel Nausea”, an indexed image with a 4-bit (16 colors) palette. Each color in
the comic (left) corresponds to a 4-bit index to a position in the palette (right).

e As an index into a palette of colors. These are indezed images (Figure 1.1).!

e As a light intensity measure of a monochromatic light. Tmages of this type are called
continuous-tone images (Figure 1.2).

e As a vector of light intensities in n color bands, usually: red, green and blue (RGB).
Images of this type are called truecolor. These images can always be decomposed into n
monochromatic continuous-tone images, one for each band (Figure 1.3).

This work is restricted to the second case, since its analysis is simpler than the truecolor case,
and truecolor images can always be treated as an n-uple of continuous-tone images.?

Computers store numerical values with finite precision. The light intensity at each pixel is
no exception and it will have to assume one of a finite set of values A = {0,1,..., M — 1},
where 0 represents the minimum intensity (black), M — 1 is the maximum intensity (white),
and the symbols between 0 and M — 1 represent continuously increasing intensities from black
to white. The set A is called an alphabet, and its size |A| = M defines the precision available to
represent the different intensities. This size is determined by the number of bits-per-pixel (bpp)
as M = 2P A typical continuous-tone image has 8 bpp, which yields M = 28 = 256 possible
intensities. Such is the case of the images studied in this work.?

1.3 The problem of image denoising

Digital images such as digital photographs or scanned documents are subjected to a series of
phenomena that result in some or all of their pixels being modified in undesired ways (corrupted).
An example of this problem is the thermal noise at the CCD (Charge-Coupled Devices) arrays
which sense the incoming light in most digital cameras. In these devices, the intensity of each
pixel is proportional to the number of photons that hit each cell in the CCD array. The thermal
noise is produced by photons arriving from nearby atoms and is an effect which happens at any
temperature above absolute zero, increasing proportionally to the temperature of the device.
Figure 1.4 shows a scheme of this process.

'Tmage taken from http://niquelnausea.terra.com.br as of August 2005

2This does not mean that working with all bands at once is equivalent. Algorithms based directly on color
can exploit the fact that bands are not independent of each other.

3There is nothing special about this value, however, most of the techniques described would apply to other
values of bpp.
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Figure 1.2: “Coffee Cup”, a continuous tone image of 512 x 512 pixels. The graph to the right
corresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of its
height).

Another typical case is the degradation of negative film by dust, scratches or fungi, which
introduce tiny specks that can be very notorious, degrade the aesthetics of the image or hide
vital parts of it. This type of noise also appears in some faulty digital cameras where some of
the pixels in the sensing device are defective. This noise is usually called “dust and scratches”
or “salt and pepper” for its visual effect.

The effect of both types of noise can be seen in Figure 1.5 for the “Coffee Cup” image.

The problem of image denoising is to correct or guess those faulty or deleted pixels so that
the resulting image is closer to the original image. Ideally, the result should be more inteligible,
and/or more pleasant to the human eye than the observed noisy image.

The general process of image degradation can be described as in the diagram of Figure 1.6.
In this diagram, the noisy image z™*™ is the result of the clean (unknown) image x™*" after
going through a transmission channel. Throughouth the rest of this document, x™*™ will be
used to refer to the clean image and z™*" to the noisy image.

The transmission is carried out sample by sample (for example from top to bottom and from
left to right), and the channel substitutes each clean sample x; with a noisy sample z; with
a given probability P(Z = z;|X = x;). The channels considered in this work are discrete
memoryless channels (DMC). They are memoryless because the probability of z; depends only
on the value of the x; and is independent of the noisy value at any other position in the image.
They are also discrete, as the as the alphabet of the input and output images (normally the same
for digital images) is discrete. A DMC is characterized by its transition matriz I1 = ((7i)); ;c 45
where each element 7; ; = P(Z = j|X = 1) is the probability that the channel outputs a noisy
sample with value 5 when the clean (unknown) sample value was i.
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a) Color image. b) Red component/band.
g

(¢) Green component/band. (d) Blue component/band.

Figure 1.3: “Kalimbas”, a truecolor RGB image. Each band is represented as an 8-bit continuous
tone image.

Electrons Photons Electrons
emmited by from picture emmited due to
photoelecric thermal noise
effect

1 cell=1 pixel

Figure 1.4: Scheme of thermal noise in CCD arrays.
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Figure 1.5: Examples of “Coffee Cup” corrupted by different types of noise.
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Figure 1.6: Theoretical scheme of the image degradation process.
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Example The Binary Simmetric Channel (BSC) operates with 4 = {0,1} as the input and
output alphabet. The channel inverts the value of the each input symbol x; with probability p,
and leaves it untouched with probability 1 — p. Thus for each input symbol x,

P(Z=1z=0) = P(Z=0lz=1)=p
P(Z=0z=0) = P(Z=1z=1)=1—-p

and the channel transition matrix IT is

o[58
p 1-p

Example The Z-Channel. Here again the input and output alphabets are A = {0,1}. In this
case a clean symbol with value 0 has a probability p of being substituted by a 1, and probability
1—p of going through the channel untouched. However, the symbol 1 is always kept untouched.
This results in the following channel transition matrix:

| 1=p»p
n=['57 1]

1.4 Notation

This section formalizes the notation to be used throughout the rest of the document. Some
of it has already been introduced previously in this chapter, and is repeated here to provide a
reference.

Concepts that appear for the first time are shown in italic text. Text that appears in
typewriter font denotes a configurable parameter of an algorithm, for example cond_tex bits.

Sets of numbers are represented by letters such as N, Z or R. The set of integers is Z =
{...,=2,-1,0,1,2,...}, the set of naturals (strictly positive integers) N = {1,2,3,...}, and R
represents the set of real numbers.

Indexed arrays (or vectors) are enclosed in parenthesis. Example v = (1,0,0). When speci-
fied, the indexing domain is specificed as a subscript expression: (h;)i<;<¢. For multidimensional
arrays a similar notation with a number of parenthesis corresponding to the dimension of the
array is used. For instance, matrices are denoted as II = ((ij)); ;c 4, Where m;; is the element
at position i, 7. When appropiate, the alternate notation 7 (4, j) is used to refer to such element

Set definitions are enclosed in {}. Example A = {cloudy, sunny, rainy}.

An image of size m x n is shown in bold face with its dimensions specified as a superscript,
as in x™*™. To simplify notation, the concept of multidimensional indexes i = (iy,142) is used
to refer to a particular symbol in the image, such as x;. As images are represented as arrays of
size m x n, x™*" is equivalent to ((X));<;, < 1<ip<n and X; is equivalent to x(i1, i2).
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1.5 Document organization

After this brief introduction to the problem of image denoising, Chapter 2 presents the various
types of noise studied in the denoising literature. Chapter 3 gives a short review of image existing
denoising algorithms. Chapter 4 describes the basic DUDE algorithm and its problems. Chapter
5 presents the general tools used to address these problems and Chapter 6 follows by describing
the resulting proposed solution. Chapter 7 shows the results that were obtained, Chapter 8
give the conclusions obtained from the former results, and finally the future lines of research
are outlined in Chapter 9.






2 Noise models for digital images

2.1 Additive noise

2.1.1 The Gaussian channel

The discrete Gaussian channel is modeled after the continuous additive white gaussian noise
model. The latter is of special importance to many real life problems since it models many
natural processes, such as transmission over analog channels [4, pp. 239-265], and has been
extensively studied since the beginning of the field of signal denoising [13]. The discrete gaussian
channel serves as a model for the effect of the continuous channel on the physical aspects of
signal level discretization present in digital acquisition devices. Such is the case of the thermal
noise in CCD devices described in Chapter 1. Since the advent of digital images, this channel
has also become a classical model for image degradation, and many of the algorithms studied
in this work (to be described in Chapter 3) are designed specifically to attack this type of noise.

The additiveness of the channel means that each corrupted pixel z; is the result of the addition
of the clean (unknown sample) x; and a random noise sample n;. The noise is white when its
samples are statistically independent of each other, and their mean value is zero. Finally,
the channel is Gaussian because the probabilities of the noise sample values obey a Normal
continuous distribution N, , of mean y and variance o,

1 (n=w)?
exp o2

pln) = Nyo(n) = ——

The white nature of the noise implies ;1 = 0 so that p(n) = Ny . As the channel is additive,
the random variable modeling a (continuous) noisy sample Z is related to its corresponding
discrete (non random) clean sample x and the random variable for the noise sample N by
equation (2.1)

Z=N+z,zc A (2.1)

Using (2.1), the resulting (continuous) probability density function of Z conditioned on z = a
is

p(Zlx =a) = Nyg

As the channel is discrete, the continuous value of Z has to be mapped to return to the
original discrete alphabet. This model assumes that the value of the continuous random variable
is rounded to the nearest integer value in the alphabet,
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0 ,Z <0
Z={ M-1 | Z>M-1
round(Z) ,otherwise

Defining the round(:) operation as

round : R = Z,round(y) =j € Z,j — 0.5 <y < j+0.5
the elements of the channel transition matrix are obtained as
P(—oc < Z < 0.5) ,j=0

mj=P(Z=jlz=i)={ P(IM-1-05<Z<+00) ,j=M-1
P(j—05<Z<j+05) ,0<j<M-1

Using (2.1), N = Z — z and

P(Z=0|X =i) = P(—00o<N < —i+0.5) (2.2)
PZ=M-1X=i) = P(M-1-i-05<N < +0) (2.3)
P(Z=j|X=i) = P-i-05<N<j—i+05),1<j<M-1  (24)

These probabilities are obtained by integrating the continuous normal density function of
the noise over the specified interval,

y=a

Pz <a) = / No ()
Yy

2.2 Non-additive noise

2.2.1 The erasure channel

The noise models described from subsections 2.2.2 through 2.2.5 are non-additive, meaning
that the random variable modeling the noisy samples Z is not related to the r.v. modeling the
clean sample X through an operation involving the addition of an indenpendent noise variable
N. Note that thelatter definition of non-additivity includes any relationship that is not a sum
(for example multiplicative noise where the relationship could be Z = N % X).

Here, The discussion will be focused on the cases where each noisy sample z; is either equal
to x; or is replaced by an erasure value which has no relationship with the value of x;. One
channel commonly used as an example of this behavior is the Erasure Channel [4, pp. 187-189].
Although it is not studied in this work as a channel by itself, it captures the main properties
that are common to the non-additive channels presented here.

Given an input alphabet A = {1, a9,...,anm—1}, |A| = M, the Erasure Channel substitutes
each input symbol x; by an erasure symbol e & A, regardless of the value of x; with probability
P, or leaves it untouched so that z; = x;. Thus the output alphabet of the Erasure Channel is

A* ={aq,a9,...,an—1,e}, |A| = M + 1 and the resulting transition matrix is
1-PF, 0 e 0 P,
0 1-P -~ 0 P
= . )
0

0 0 o 1-P, P,
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Because the event Z = e does not depend on X, a noisy symbol z; = e does not contain any
information about x;. This is an important difference with respect to additive channels such as
the Gaussian Channel and has many practical implications.

2.2.2 Impulse (Salt & Pepper) channel

In the Impulse Channel - often named “Salt and Pepper” after its visual effect —, each pixel
of the image is randomly replaced by either the maximum symbol in the alphabet (salt), or the
minimum (pepper), with a total probability of error A which is evenly distributed among the
two cases (i.e. A/2 for each of the two possible corrupted symbols); and it is left untouched

with probability 1 — A. The channel transition matrix for this case is

[1-)/2 0 0 A/2
A2 1=X 0 0 :
= : 0 .0 A2 (2.5)
2/2 0 0 1-X )/2
2/2 0 0 1-X/2]

It is useful to view this channel as a variant of an erasure channel, where the “erasures” are
symbols from the clean sequence alphabet. Being erasures, the noisy samples do not provide
any information on the corresponding clean samples.

2.2.3 Asymmetric impulse channel

This channel is a simple extension of the Salt & Pepper Channel in which P(Z = salt) = A
and P(Z = pepper) = X, are not equal. The total probability of error is redefined as A = A\;+\,,.
In this case, the transition matrix is

1-X 0 0 A
A 1-XA 0 0
= 0 .0 A (2.6)
N 00 1o
N 0 0 1o,

2.2.4 The Z Channel

This is a special case of the asymmetric impulse channel in which A, = 0 and Ay = A, and
thus its treatment is the same as the latter. Despite this, the Z channel is one of the classical
channel models used in information theory and thus it is worth including it as a case of study
by itself.

2.2.5 The g-ary symmetric channel

This is a type of non-additive channel where the total probability of error A is distributed
evenly among the noisy symbols. For an alphabet of size M and a clean symbol z, the channel
will substitute the latter with a noisy symbol z # = with probability Ay = M);l or leave it
untouched with probability 1 — A. This results in the following matrix
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[1-X Ay o A AMm
v 1=X Ay Au :
= )\M )\M )\M (27)
AN Av Av 1—=X Au
AM Av o Am 1—=A

As will be seen later, it presents some additional challenges since its “erasure” nature is less
evident than the Impulse Channel and its variants.

2.3  Noise measures

When comparing different denoising methods one must define some criterion of what is con-
sidered to be a good result. As the ultimate goal is to produce an image that looks “better”
to the human eye, the best possible criterion is certainly subjective. However, the problem of
finding an objective criterion which approximates the best subjective criterion is a very difficult
one. Because of this, and because they are of general use in other problems of image and sig-
nal processing, a few objective performance measurements are generally used: MSE/SNR and
PSNR. The MSE (Mean Square Error), is defined as follows:

N
MSE(z™*") = %Z(xi — 7). (2.8)
i—=1

The SNR (Signal to Noise Ratio) measures the relation between the power of the “signal”
(the clean image) and the power of the “noise” (which is the MSE).

N 02
SNR(z™") = 10log (Ziﬂ Sff QZZ) ) (2.9)
i=1 %

Finally, the PSNR (Peak Signal to Noise Ratio) is equivalent to the MSE, expressing it in
relative logarithmic units (dB) with respect to the “peak” power of the signal. For an 8-bit
image, this is

(2.10)

mxn
PSNR(z"*") = 10log <%>

2552

All those measures give more weight to bigger differences than to smaller ones due to their
quadratic nature. This is usually considered to be akin to the subjective perception of noise.
Of the three, the PSNR and MSE are the most popular as they do not depend on the power
of the image to be denoised and thus they can be averaged throughout a set of test images to
produce an “average performance measure” for the test suite. Of them, the PSNR will be the
preferred one as it is the most common of the three.



3 A review of image denoising

The problem of image denoising has been given an extensive treatment in the literature which
makes it impossible to include a comprehensive set of references in this document. Therefore,
the discussion will be restricted to some of the more representative denoising algorithms: the
classical ones described in text books such as [9] or [10], and the ones which are considered the
current state-of-the-art.

An image filter is any algorithm which takes some image as input and produces an output
image as a result. A denoising filter is a filter that, given a noisy input image z™*", produces an
output X™*™ that is closer to the unknown clean image x™*™ that was fed to the transmission
channel.

First, the filter techniques which form the basis for most of the common filters found in the
literature are presented. Then follows a description of specific filters designed to attack each
type of noise.

3.1 Neighborhood and window filters

The principle of these filters is to infer the clean pixel x; based on the information provided by
some pixels on the noisy image located in a neighborhood of its position 7. Let W = (i, )1<,<x
be a vector of indexes which are “near” i under some criterion. W is a window index vector
and use x(W) to denote the vector of the values of the pixels at the locations specified in W,
ie., x(W) = (z4,,zi,,...,%i). If W includes i, x(W) is called a window and if not, it is a
neighborhood or contezt.

These filters exploit the common assumption that pixels which are close to each other tend
to have similar values (for example in smooth regions of the image). In principle, the number
and relative location of the pixels which are used by the algorithm can vary for each location i.

3.2 Sliding-window filters

This is a common case in which the window/neighborhood shape is fixed for every index i,
and its position is centered at 7. This shape is defined by a window template, which is a vector
of offsets T = (d,), ., of indez offsets d, € Z>. For a given window template and the position
i, the corresponding window index vector W; 1 is obtained by adding i to each index offset in
the template

Wi’T:(i+d1,i+d2,...,i+d[() (3.1)
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Figure 3.1: A window template 7" = {(0,0),(-1,0),(-1,1),...,(0,—-1),(=1,-1)}, a neigh-
borhood template 7" = {(-1,0),(—=1,1),...,(0,—1),(=1,—-1)}, an image x™*", a window, a
neighborhood and a context.

The window at position i is obtained as x(W; 1), provided with some convention for the values
of the pixels outside the image range R,,x, = {z = (i1,42) € N? 1 ip < m,ig < n} (for example,
repeating the value of the closest border pixel).

Finally, a sliding-neighborhood filter is the case when the template does not include the center,
i.e., the offset (0,0). These concepts are depicted in Figure 3.1.

3.3 Linear (convolution) filters

These are a special case of the sliding-window filters where the estimated value of the center
pixel is a linear function of the window samples. If for each 4, j, denotes the r-th element of W; 7:

K
)A(Z' = Zhrzjr (32)
r=1

where h, € R are coefficients assigned to each position (offset) j, and independent i. These
filters are also called convolution or FIR (Finite Impulse Response) filters, as (3.2) can always
be written as a linear convolution

Uy Us

ﬁi = Z Z ﬁkzi,k s k= (kl,kg) (3.3)

ki=—L1 ko=—Ls

where k = (ki, ko) are index offsets covering the smallest rectangular region that contains the
window template T

{(k1,k2) : =Ly < k1 <Uy,—Ly < ko < Us}
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Figure 3.2: From templates and windows to linear convolution kernels. The example here
corresponds to the Laplacian operator used to detect borders in images.

and hy, = h, if T contains the offset k at position r or 0 otherwise (see Figure 3.2 for a graphical
explanation).

The rectangular 2D array (lALk),L1<k1<U1’,L2<k2<U2 constitutes the linear convolution kernel.
It is also called the impulse response of the filter as it coincides with the output of an impulse
signal (image) d™*", (§(0,0) = 1 and 0 everywhere else) when the filter is applied to it (trivial
by substituting 6”*" in equation (3.2)).

These filters are at the core of classical digital signal processing. See [20] for more details on
the theory and application of these filters.

3.4 Frequency domain filters

One classical tool for signal processing in general, and for digital images in particular, is the
frequency domain analysis or Fourier analysis (see [20] for a review). It consists of decomposing
the image into a set of sine waves

M N . .
j27ru11 ].27rv12
X(i1,i2) sz(u,v)e Moel N (3.4)
u=1v=1

where e/% denotes complez exponentiation and each term X(u,v) 18 the (u,v) term of the Fourier
Transform x™*" = F(x™*"), computed as

]_ M N Znuzl _ s2muig
(u.) :M—Z Z (i1,i2) e (35)

Each coefficient X, ,) of the Fourier Transform represents the power of the image at the
discrete spatial frequency (2mu/M,2mwv/N). Figure Figure 3.3 shows an image and its Fourier
Transform (the Fourier Transform is usually displayed shifted so that the center pixel represents
X (0,0), — called the “DC” term as its value is the average of x™*™).
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(a) Continuous-tone image. (b) And its Fourier transform.

Figure 3.3: Fourier transform of an image. The “DC” component is at the center of the DFT.

The frequency domain filters use this representation of the image to try to sepparate the noise
from the clean image. One example is the family of lowpass filters, which assumes that the noise
is white and additive of mean 0. In this case, the power of the noise is spread evenly among all
frequencies in the Fourier Transform of the noisy image. The lowpass filters assume that the
clean image information is concentrated in the lower frequencies and thus the denoising process
reduces to removing the higher frequency components of the Fourier Transform while keeping
the lower frequencies intact. The many different variants of lowpass filters (see [20] for some
of them) differ in the way they define the transition from “low” to “high” frequencies. For
instance, a simple “cutoff” filter is defined as

X )={Z(u,u) , VuRto? < fe

0 , otherwise

where f. is the cutoff frequency. An example of this filtering technique is shown in Figure 3.4.
This filter has a number of problems related to the sharp fall between the “bandpass” region
and the “bandstop” region. An inspection of Figure 3.4 shows this effect, known as “ripples”,
“bandings”, or Gibbs oscilations. Please refer to signal processing books such as [20] for a
theoretical explanation.

Note that frequency domain filters can be implemented in a perfect or approximate way as
linear convolution filters of the type described in the previous section (see [20] for a general
method). Furthermore, every linear filter has an associated frequency response defined as the
Fourier Transform of its impulse response,

]_ M N *j 2muiy *j 2mvig
H(u’v) = W Z Z h(il,iz)e M e N (36)

i1=1122=1
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(a) Noisy image. (b) Denoised.

(c¢) Fourier transform of noisy image. (d) Fourier transform after cutoff.

Figure 3.4: Effect of the cutoff filter. Notice the ripples surrounding the borders and the
ondulations produced by this filter.
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The filtering process of equation (3.2) can be expressed in the Fourier or frequency domain
using the transforms of the image X = F (%) and H = F(h) as

% =F "X ®H) (3.7)

where ® denotes element-wise product. This formulation has practical and theoretical impli-
cancies. For instance, it can be used to analyze the frequency behavior of a linear filter in a
graphical way.

3.5 Bounded variation methods

These are methods which impose constrains on the magnitude of the overall fluctuations in
the image. Thinking of the denoised image as an R?> — R function, a solution is found which
tries to meet two goals at once: to approximate the clean image as best as possible, and to
minimize its Total Variation [28]. Roughly speaking, the total variation of an image is a global
measure of how much does it change its value from sample to sample. One possible way to
define this is by summing the absolute magnitude of its gradient at each position:

The idea is that most of the small fluctuations on the image are due to the noise. By reducing
these fluctuations incrementally, a solution can be found in which most of the noise is smoothed
out and the bigger fluctuations (borders, etc.) are preserved. The denoising problem is posed
as a minimization of a function F(Xx™*"),

FER™™M) = > [xi—%+8 >, Y. ¢&i—%)) (3.8)

iERan ’iGRanjEWi,T,jii

The first summation in (3.8) is minimized when the denoised image X™*" is as close as possible

to the unknown clean image x™*", while the second summation accounts for the total variation
measure of the solution. W, r is a small neighborhood window where the variation of each
sample 7 is measured, and the function ¢(.) models the penalty assigned to high fluctuations.
Examples of ¢(.) are ¢(t) = Va+1t2),a > 0or (t) = [t|*,1 < a < 2.

These algorithms tend to destroy the small details and fine textures present in an image. On
the other side, they produce good results when the noise power is high.

3.6 Statistical filtering methods

Many image denoising algorithms are derived from the theory of Statistical Signal Processing
[11]. Under this theory the image (signal) is modeled as a ramdom process, i.e., a vector
(possibly of infinite length) of random variables. This is implicit in the description of the noisy
channels described earlier in this chapter, where the noise is considered to be a sequence of
independent and identically distributed (i.i.d.) random variables n™*". In fact, any of the
previously presented algorithms has a statistical interpretation. This section concentrates on
those algorithms which are based on statistical models to produce their output.
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The unknown clean image is considered to be a random process itself, and it is expected to
exhibit a set of statistical properties (high correlation between samples, repeated patterns) which
distinguish it from the properties of the noise process that corrupts it (small or no correlation).
Two common assumptions on the properties of clean images are:

e Markovicity, which means that each sample, when conditioned on a neighborhood of some
(fixed) size, is statistically independent of the rest of the image.

e Stationarity, meaning that the statistic properties of the samples of the image are the
same for all samples regardless of their position in the image.

Examples of statistical filters are the Wiener Filter [35], the Lee Filters [14] (also known as
Local Wiener filtering), the Gaussians Scale Mizture (GSM) filters [25] which will be described
later in this chapter, and last but not least the DUDE [34] which forms the basis of the present
work.

To fix ideas the classical Lee Filter is described. The Lee Filter estimates each clean sample
in a two-step way:

mxn

1. Using a fixed-size sliding window W; 7, estimate the local mean of the image z at each

position ¢,

1 K
i = 7z 221 z(Wir),
r=

2. Estimate the local variance 022 as

T

The contexts z(Wj 1) are column vectors, z(W; r)" are their transposed (row) versions,

and K is the size of the contexts.

3. Using p;, 07 and the noise power o2 which is considered constant throughout the whole
image, estimate the clean sample as

1

n

N

Equation (3.9) is the minimum expected square error (MSE) solution of %; — x; given o2, o2

7
and p;. Both the local mean and variance are derived from the Markov assumption since they

are computed only from the local context. The second assumption is not used in this filter.

The Lee filter gave rise to many other algorithms which combine optimization, statistics
and structural priors to obtain optimal estimations of the clean image, includinig those which
comprise the current state of the art as is the case of the GSM-based algorithms [25].
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(a) Noisy image. (b) Denoised by average filtering, window size
5 X d.

Figure 3.5: Average Filter of an image corrupted by gaussian noise of o = 20.

3.7 Filters for additive noise

3.7.1 Window average

This is the simplest way to reduce the amount of additive noise in an image. Given a window
template T of size k = |T'|, each pixel is substituted by the average of the values within the
window centered on it.

k
. 1
% = Ezzﬁ (3.10)

r=1

This is a special case of (3.2) where h, = %, Vr . As the noise is considered additive, z; = x;+n;
and

1< 1< 1<
ii=zzzjr=gzxy‘r+zznjr (3.11)
r=1 r=1

r=1

Here the first summation will be close to the clean value if the clean samples in the window
are also similar, and the second summation will converge to the expectation of the noise which
is 0 as k increases. If the pixels in the window are not similar (which happens in borders and
high contrast areas), the details of the image are blurred. This effect increases with the size of
the window, which implies a tradeoff between noise remotion and detail preservation in terms
of k. Figure 3.5 shows the result of this filter for a square window of 5 x 5 pixels.

This example shows the motivation behind each of the algorithms in subsections 3.7.2 through
3.7.6 : how to remove the noise without destroying the details of the image?
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(a) Noisy image. (b) Denoised by a Gaussian Isotropic Filter, win-
dow size 5 x 5.

Figure 3.6: Effect of the Gaussian Filter (w = 1.4) on an image corrupted by gaussian noise
with o = 20.

3.7.2 Isotropic gaussian filtering

A plain average of the window samples is generally not a good solution. There are two
main reasons for this: first, the assumption that the neighboring samples are similar to the
center sample becomes weaker as the distance from the center increases. Second, the frequency
response of the average filter is not as in a sharp cutoff filter, but decays slowly and is significant
all over the frequency spectrum including those parts where the noise is high and the image
power is low, leading to undesired high frequency effects in the image (blocking). The idea is
to solve the first problem by giving more weight to the samples which are nearer to the center
pixel, and less weight to the ones which are farther. In principle, every pixel in the image
is taken into account, but practical implementations usually approximate them as linear fixed
window filters.

An isotropic filter assigns the weight of each sample of the image based only on its euclidean
distance to the center pixel ||i — j||2. If a linear window filter is used, the window kernel terms
h, are obtained using the corresponding index offsets d in place of i — 5. One common choice
to assign the weights is the 2D Gaussian kernel G;:

Gu() = —e w? (3.12)

in which case this is called a Gaussian filter. The paramenter w controls the radius of the
Gaussian kernel and defines the tradeoff between noise removal and detail preservation for this
case. Figure 3.6 shows a sample image denoised by Gaussian filtering.
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dx=(0.0) T dx=(0.-A)

dx=(-A,0)

Figure 3.7: Scheme of the basic edge-preserving anisotropic filtering concept.

3.7.3 Anisotropic filtering

The Gaussian filter is able to solve the first problem of the window average filter: the high
frequency artifacts. However, it does not solve the problem of detail and border preservation.
The anisotropic filters, as the term implies, assign the weights considering the distance but also
a preferred direction of filtering.

The basic idea was described in [23], where the direction of filtering is determined by the
output of a local edge detector. By modifying the shape of the kernel according to the local
gradient, the kernel assigns more weight to the pixels “along” the gradient and less weight to
the pixels “across” the gradient so that the filter does not “cross the borders”. This behavior
is depicted in Figure 3.7. Let dx; and dxy the vertical and horizontal derivatives of x™*". Let
Vz(i) = (dx,dx3) denote the gradient of x™*" at index 7. Using the more general definition
of the Gaussian kernel

1 ,(i—j)Tz;l(i—j)

Gul) = Sosne®

(3.13)

where the eigenvalues and eigenvectors of the matrix ¥ control the shape and orientation of the
kernel. The matrix X is constructed so that the two eigenvectors #; and 5 are in the direction
of the gradient (the normal direction ) and the tangent,

91 = in/\Vmi\
0 = V)|Vl

and the respective eigenvalues A\; and Ay are proportional to the stretching along each of
these directions,

1
1 X =7
)\2 X ‘VQJZ|

A
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(a) Noisy image. (b) Denoised by PDE anisotropic filtering.

Figure 3.8: Effect of the GREY Cstoration Anisotropic Filter on an image corrupted by gaussian
noise with o = 20.

The resulting matrix has the following form:

d —d
5 [ A 0 ] % [ \Vdgz\ \Va:lj\ ]
- d
0 X V] Ven

The value Ay can be chosen so that |X| is constant (which means that, roughly speaking, the
“area” of the kernel is always the same), or || o |Vz;]. One common choice is Ay = e~ |V7il*/0
where o is a threshold above which the kernel starts to stretch and avoids the effect of the noise
itself in the value of |Vz;|. In this case, the amount of denoising is controlled by |X|.

Another way of performing anisotropic filtering is by using PDEs (Partial Differential Equa-
tions) [29]. When used for denoising, PDEs are able to define anisotropic behaviors which
depend on features more complex than local borders such as local curvature [31]. The image in
Figure 3.8 was obtained using a curvature-driven anisotropic PDE filter, made publicly available
by the author in the form of a GIMP (GNU Image Processor) plugin.!

3.7.4 Non-Local Means

All of the previous filters use local information to compute the denoised pixels. The Non-Local
Means is a recent method to remove additive noise and is described in full detail in [1] (which

also serves as a good review of additive noise removal algorithms including many not listed
here).

"http://www.gimp.org/
http://www.haypocalc.com/wiki/Plugin_Gimp_GREY Cstoration as of August 2005
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Here, in contrast to the previous filters, each denoised pixel X; (the target) is obtained as a
weighted average of all the other pixels of the image, where the weight of each pixel is deter-
mined by a measure of similarity between its neighborhood and the neighborhood of the pixel
to be denoised:

) Wi
}A(i — ZJERan:.]?él v ) (314)

D i€ R it Wid

Let the operator * denote inner vector product. The weights are defined as

wij = f(Go(Wir) * [2(Wir) — 2(W;r)|) (3.15)

where f is a monotonically decreasing function, usually 67% for some w > 0 and G, is a 2D
Gaussian kernel of parameter a which weights the difference of the samples at each location
according to their distance to the center of the window. If N is the number of pixels, this
algorithm requires O(N?) operations to produce a result, which makes it impractical for medium
sized images as originally proposed. However, it gives very good results and serves as a reference
for other denoising algorithms. Figure 3.9 shows some examples taken directly from [1].

3.7.5 Wavelet thresholding

The name Wawvelets refers to a general family of transforms whose characteristic is to combine
spatial and frequential information in the transformed data [16][5]. As with the frequency
(Fourier) domain filters, the idea is to concentrate the information of the “true” clean image in
some coefficients, and discard or atenuate the coefficients which are more affected by the noise
addition process. The Wavelet thresholding method [6] does this by simply discarding all those
coefficients which are below a certain threshold and reconstructing the image with the remaining
coefficients. Some enhancements to the basic idea have been proposed [3]. In particular, the
Wavelet- Curvelet thresholding [30] gives results comparable to the state of the art for this type
of noise, at least for the Lena image. Figure 3.10 shows the results published in [30].

3.7.6 Mixture of gaussians

This is another wavelet-based approach, although very different from the one previously
described. Three novel elements appear in this algorithm:

e An overcomplete decomposition of the image into what is called a steerable pyramid. Tt
is overcomplete because the resulting representation has more samples than the original
image (this does not happen with ordinary transforms such as Fourier decompositions or
orthogonal wavelets).

e A probability model of the coefficients of the pyramid based on a Gaussian Scale Miz-
ture (GSM) probability distribution. This model assumes Markovicity in terms of 3D
neighborhoods in the pyramid and uses the GSM to model each vector of neighborhood
coefficients. The GSM is a generalization of the multivariate Gaussian distribution. A

vector v is distributed according to a GSM if v 2 \/zu where < means equality in distri-
bution, u ~ N (0, ) and z is a scalar multiplier obeying some other arbitrary distribution.
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(c) Noisy image. (d) Denoised by NLM.

Figure 3.9: Effect of the NLM Filter on two images corrupted by gaussian noise with o = 20.
The results are obtained using the whole images (barb and lena respectively), although only a
small representative patch is shown.
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(a) Noisy Lena. (b) Lena denoised by Wavelet-Curvelet threshold-
ing.

(c) Detail of (a). (d) Detail of (b).

Figure 3.10: Effect of the Wavelet-Curvelet Thresholding Filter on “Lena” corrupted by gaussian
noise with o = 20.
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Having the noisy image decomposed as a steerable pyramid, and a model for the noise, the
algorithm proceeds much like the Lee Filter, estimating the parameters of the GSM for each
context and then computing an expected least squares error estimate for the denoised output
sample. The details of the algorithm are beyond the intentions of this intruduction. Please refer
to [25] for these and for other references regarding GSMs and GSM-based denoising.

3.8 Filters for non-additive noise

Non-additive noise channels have two properties which are exploited by all of the algorithms
described in subsections 3.8.1 — 3.8.4:

e An important fraction of the pixels in the noisy image are left untouched, i.e., have the
same value as the corresponding clean pixels.

e The noisy pixels have no correlation with the corresponding clean (unknown) pixels.

These two facts are used to detect the noisy pixels and sepparate them from the clean pixels,
and to estimete these noisy pixels with a few clean neighboring pixels.

3.8.1 Median filter

The idea of this filter is very similar to that of the average filter. As with the average filter, this
is a fixed sliding-window algorithm which depends on a window template T' yielding different
windows z(W; 7) for each index i. Because the non-additive noise samples take on arbitrary
values, a window would contain many outliers (samples very different in value with the majority
of the samples in the window), and the average of the samples would not be a good estimate.
Instead, the median estimator (med(.)) of the window samples is used, as it is more robust to
the presence of outliers. The median estimator of a vector of samples z(Wj; r) is computed as
follows:

e Order the samples of the vector z(W;r) in decreasing (or increasing) order. Call this
vector m.

e Let kK = |T| be the size of the vector. If k is even, X; = % (mk/g + mk/2+1); otherwise
5&2' = m(k+1)/2.

This filter does not use the first property explicitly, which means that all the pixels of the
resulting image are the result of their window median. As with the average filter, this results
in a blurring effect (although non-linear), with the same tradeoffs implied . The following
algorithms try to use this information to improve the results.

3.8.2 Selective median (basic)

The selective median approach can be considered a general enhancement to the previous filter
which tries to keep those pixels which were not modified by the channel. The problem of finding
out which pixels are clean and which are noisy can be attacked in various ways. For example,
if the noise is impulsive such as in the Salt & Pepper case, the values of the noisy pixels are
known a priori, and a trivial scheme can be implemented in which only those pixels in the noisy
image which have the maximum value (white) or the minimum value (black) are substituted by
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the median of the window.

N { med(Wi,T) , Z; = 0or Z; = M -1 (316)

X; = .
Z; , otherwise

Another slightly more robust approach is to consider as noisy all those pixels above or below
a certain threshold. In this case

. P ;> -1 -
X {med(Wl,T) , zi<Torzi2M—1-7 (3.17)

X = .
! Z; , otherwise

3.8.3 Adaptive Median

The basic selective median filter uses a fixed window to denoise each noisy pixel. The noisy
pixels are previously detected using any of the previously described methods. The adaptive
median [12] chooses an optimal window size depending on how many noisy pixels there are in
the neighborhood, starting with a square 3 x 3 window and increasing its size gradually until a
fixed maximum. For each noisy pixel z; The algorithm can be summarized as follows:

- Initialize w = 3
- Compute a = min(z(W; wxw)), m = median(z(W; wxw)) and b = max(z(W; wxw))
- If a < m < b go to Step 5, otherwise set w = w + 2.

- If w < wmae g0 to step 2, otherwise set x; = m.

- If a < z; < bset X; = z;, otherwise set X; = m.

Figure 3.11: Adaptive Median Algorithm.

This type of filter is usually suitable for images corrupted with Salt & Pepper noise with high
probability of error .

3.8.4 Adaptive Median and Total Variation Combined

The idea of this scheme, as proposed in [2], is to combine the Adaptive Median scheme with
the Total Variation approach described earlier in this chapter. The pixels of the image are
divided into two groups using the selection criterion of Algorithm 3.11: the noisy N and the
clean N¢ (both groups are defined in terms of the indexes of the image). Then, (3.8) is used
with a slight modification:

FyE™) = xi—%[+ 6> > k%) +6 Y > P(Xi — 7))

iEN iEN jEW; r NN j#i IENC jeW; p MN€ j#i
(3.18)

Here the last two summations correspond to the total variation. The first of these is expressed
in terms of variation between noisy samples, while the second measures the variation of the noisy
samples with respect to the clean ones. The overall expression is also constrained only to those
indexes 7 that correspond to noisy pixels. Figure 3.12 shows two example images obtained by
this method, taken from [2].
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a) Noisy image. b) Denoised by MDN-DP.
8

Figure 3.12: Effect of the MND-DP Filter on an image corrupted by Salt & Pepper noise with
A = 70%. Image taken from [2].






4 The Discrete Universal DEnoiser

4.1 Description of the algorithm

The Discrete Universal DEnoiser (DUDE) algorithm [34] operates over the noisy output
sequence of a known discrete memoryless channel, estimating the noiseless input sequence to that
channel without any assumption on the statistical properties of this noiseless input sequence.
This algorithm has been shown to achieve asymptotically the optimal finite sliding window
denoiser performance for any input sequence as the length of the sequence goes to infinity.

Here is a brief outline of the algorithm, full details of which can be found in [34].

For clarity the DUDE is described for the case where the unknown image x™*™ has an asso-
ciated “clean” probability distribution (stochastic setting), although the results also apply for
the case where x*" is an individual image not assumed to have been emmited by a stochastic
source (semi-stochastic setting).

The DUDE operates in two passes: An analysis pass and a denoising pass. Both passes are
parameterized by the same neighborhood template 7. In the theoretical analysis of [34], the
size of the template grows with the length of the data, and has to obey certain growth rate
restrictions to guarantee the asymptotic convergence of the algorithm to the optimal denois-
ability. This is discussed in [34, Sec VII-A] for one-dimensional data, and in [21, Sec. 3] for
two-dimensional (2D) images.! However, the determination of the exact size (and shape) of T
that yields the optimum denoiser performance for a given image is a difficult open problem.
Possible approaches to the problem are discussed in [34, Sec. VII], together with a compress-
ibility heuristic which is also employed in [21, Sec. VII-B], and in this work in Section 7. More
recently, an approach for optimizing context size based on an estimate of the residual noise after
application of the DUDE was presented in [22].

The first pass uses a sliding neighborhood window W; 7 to determine the context C; =
z(Wir),C; € AX of each pixel z;. For each different context C' appearing in in the image, a
vector of statistics m¢ is built where m¢[i] counts the occurences of all the values of z; whose
context C; is equal to C. Note that |m¢c| = | Al.

Input probability estimation

!For the case of 2D images over an alphabet of size M, and using L» (Euclidean distance) balls of radius r as
the template shape, the asymptotic optimality as the size of the image m x n grows to infinity is guaranteed if
r has the form r(m,n) = g(min{m,n}) where g(t)M?® = o(t'/*). For instance, a choice of r = g(t) = clog,, t,
with ¢ < 1/4 satisfies the requirement.
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After the first pass is done, each statistics vector m¢ is normalized to yield an estimated
context-conditional output distribution Py, which is a row vector of size | A| where Py c[i] =
PZ\C(Z = Z)a

molil e 4 (4.1)

Pyo(Z =1i) = > camcli]

By knowing the channel through its transition matrix II and its memoryless nature, the
DUDE is then able to estimate the correspoding clean sequence context-dependent distribution
Px ¢ for each context C by solving the following linear system

Px Il = Pyc (4.2)

After the context-conditional input probability is estimated, the next step is to condition it
also on the noisy sample, . Using ® as the vector element-wise product operator, the resulting
distribution can be shown to be

1
P N & . 4.3
X|C,a Pyc(a) X|c © Ta (4.3)

With these elements, a denoiser function is then defined which minimizes the expected loss
for each possible combination of the context C' and the noisy symbol a. The term Pz o (a) is
dropped from (4.3) since it doesn’t depend on the minimizing argument, to obtain

g(a, €) = argmin(Px|c[Aa © Ta)) (4.4)

(note that A\, ® 7, is a column vector, and Py|¢ is a row vector, thus the preceding expression
is the inner product of the two).

If the channel is invertible, the above expression becomes

g(a,C) = arg T%iﬂ(PZ\CH_l[Aa O Ta) (4.5)
a

The second pass of the DUDE applies the denoiser function (4.4) based on the statistics
gathered in the first pass for each observed context C.

The algorithm is summarized in Figure 4.1.

The DUDE has been applied to binary (1 bit per pixel) images [21] outperforming other
existing denoising schemes for this type of data. Figure 4.2 shows a sample result performed
on a halftone image transmitted over a simmulated Binary Symmetric Channel. This channel
flips each sample bit value with probability p, and leaves it untouched with probability 1 — p.
In this case, p = 2%.
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- Initialization: For each possible context C that can arise from a window defined by the
template T', define a vector of counts of size | A| and initialize its elements to 0.

- Pass 1: for each pixel z;
- Obtain the current context C' = z(W; ) using the neighborhood template T" and index
i
- Increment mc|(z;].
- Normalize m¢ for each possible context C' to yield Pz ¢ using (4.1).
- Pass 2: for each pixel z;
- Obtain the current context C = x(W; r) using the neighborhood template T" and index
i
- Compute Px|c using the channel transition matrix IT and (4.2).
- Compute Px| ¢ 5, using the loss matrix A and (4.3) with a = z;.

- Compute the denoised pixel using (4.4).

Figure 4.1: Baseline DUDE algorithm.

4.2 lssues of the DUDE with continuous tone images

The asymptotic optimallity of the DUDE applies to images whose symbols range over any
finite alphabet. However, this asymptotic behavior is governed by a decay term which increases
rapidly with the size of the alphabet and the size of the context window.

Sequences such as digital images or audio tracks are finite and have alphabets whose size range
from 256 (8 bits) to 65536, or even 16 million symbols for audio signals. If such sequences were
normally long enough for the DUDE to perform well even with the slow convergence implied by
the size of such alphabets, then there would be no problem in applying it as originally proposed.
Unfortunately, this is not the case and the optimal performance will not be achieved.

These kind of sequences are normaly drawn from continuous processes that are later dis-
cretized. As a result, continuous-tone images have structural properties that can be incorpo-
rated as prior knowledge in the denoising process to avoid the mentioned problems.

4.3 Goal of this work

The goal of this work is to augment the DUDE framework, by including the prior knowledge
derived from the structure of continuous-tone images, so that it can be applied to this kind of
data with success.

This primary goal is to be met while keeping the framework efficient in terms of computational
cost, resulting in a practical implementation.
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(a) Clean image. (b) Noisy image.

(c) Denoised by the binary DUDE.

Figure 4.2: Images obtained from [21]. Here the window template is a line of 7 samples to each
side of the center sample (a 1 x 15 template)
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5.1 Context modeling

The main goal of this work is to exploit the a priori information about the structure of
continuous-tone images (piecewise continuity, repeated texture patterns, etc.) in order to reduce
the convergence problems that arise when applying the original DUDE algorithm to sequences
with such large alphabets.

To denoise an image, the DUDE relies on the conditional distributions estimated in the first
pass for each context. Determining conditional distributions of samples given their contexts is
also a key component in lossless data compression where the number of conditioning contexts
plays a fundamental role in the convergence of the code length to the entropy. This code length
includes either implicitly or explicitly a model cost [26] which is proportional to the number of
free statistical parameters in the model.

The model cost reflects the price paid for learing the statistics of the data: if there are many
parameters to estimate, more data samples will be required to accumulate significant statistics
for each parameter (hence the problem is sometimes described as one of “sparse statistics”).

The model cost is particularly affected by the size of the alphabet, as it affects both the
potential number of different contexts and the number of parameters per context.

The other component of the code length, a model fitness component, is determined by the
degree to which the elements of the model (the parameters) capture the statistical properties
of the data (i.e., how does it “fit” the data). From the theory and practice of universal lossless
compression arises the fundamental trade-off between the two components: a richer model can
fit the data better, yielding a shorter model fitness component at the expense of a greater model
cost component.

In denoising, and particularly in the DUDE, there exists a similar trade-off. This trade-off
is described in [34] in terms of the context size. Given the size of an image, a greater context
size implies less occurences of each context in the image, thus reducing the average number of
available samples to describe each conditional distribution. This results in a “denoising model
cost”, where the price paid in this case is a poorer denoising performance.

The number of contexts, and the number of parameters per context increase as the alphabet
size grows. For instance, in the DUDE, the number of possible contexts grows as A% and the
size of each context-conditional count vector gathered grows linearly with A. This results in a
total of O(AX+1) parameters to be estimated in the model produced by the first pass of the
DUDE.
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To address this problem, prior information on the structure of continuous-tone images is used
to let contexts share their information , allowing the statistical information of many contexts
to contribute in the estimation of the conditional distribution at each image location.

As the problem of modeling in continuous-tone images has been treated extensively in the
field of lossless image compression, it is natural to borrow techiques from this field to address
the same problem in denoising. In lossless image compression, two techniques are often used:

context clustering partitioning the space of contexts A% into a much smaller set of condi-
tioning classes T' = {v1,72,...,yn}, where the contexts in each class are related by a
certain similarity criterion. A context classifier G : AK — T is defined which maps each
raw context into one of the context classes:

v=G(C),Ce AKX veT

prediction exploits the assumption that groups of conditional distributions depend on the
conditioning context only through a context-dependent offset, given by the predicted value.

These techniques are used, for example, in state-of-the-art compression schemes such as [33]
and [36].

The problem of model cost in the DUDE is addressed by augmenting its baseline algorithm
to include two additional components: a prediction component and a context clustering com-
ponent.

Once the context classifier is defined, the sets of counts of all the contexts that are assigned
to the same class are added together to build a single class-conditional distribution per class ~
which we will denote as Py|,. The pixels of the image whose contexts belong to the same class
~ will be said to have the same conditioning class or state .

5.1.1 Similarity criteria and the structure of images

In order to define the context classes, a context similarity criterion is defined using following
common a priori assumptions on the structure of continuous-tone images:

Distance between symbols As they represent physical magnitudes (light intensity), the sym-
bols are ordered by value and a distance can be defined between them. For example, Figure
5.1 shows an image and the intensity graph of one of its rows as a N — N function.

Distance in context space As the contexts are made of samples, and each sample is an
integer magnitude, a distance can be defined in the context space (for example Euclidean
distance).

Local intensity or DC offset Contexts are localized in the image around a reference pixel.
As the image can exhibit similar structures under different local illumination levels, con-
texts that arise from these structures can also be related if the local illumination level is
removed from them. This is known as DC cancellation. Figure 5.2 gives an example of
this concept.
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(a) Continuous-tone image. (b) Pixel value (intensity) graph for row 130.

Figure 5.1: “Coffee Cup”, a continuous tone image of 512 x 512 pixels. The graph to the right
corresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of its
height).

Figure 5.2: DC offset: (a) and (b) are two similar context appearing at different illumination
levels. (a) appears in the shadow, while (b) is hit by direct light.
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Figure 5.3: Spatial position : (a) and (b) are two similar context appearing at different orien-
tations.

Spatial position Contexts can be considered to be “rotation-independent”, as many natural
and artificial images show similar patterns repeated at different orientations. By exploiting
this assumption, contexts can be rotated or scaled before computing the distance between
them. As with DC offset, this can result in a smaller number of classes needed to describe
the contexts of the image. Figure 5.3 shows two sample contexts which differ only in their
orientation.

The way in which these (and possibly other) principles are combined to form a “useful”
context model depends on the particular context clustering scheme. If the contexts are to be
used to build context conditional probabilities, “useful” means to merge contexts which share
“similar” statistics.

5.2 Prediction

A predictor is defined as a mapping from the set of possible contexts AKX, to the image
alphabet A, y = p(C),p : AX — 2. Predictors can have a fixed structure (for example, one
possible predictor is the mean of the context samples) or can vary as a whole or in part depending
on the actual context around the pixel to be predicted. The latter are called context-dependent
predictors.

Images have discontinuities (borders, edges), but in many cases the majority of the pixels
belong to smooth areas whose intensity vary with, for example, different illumination angles.
By exploiting this fact, it is possible to predict a pixel using a function of a few neighbors.

This makes it possible to gather the empirical statistics of the image in terms of prediction
errors (residuals) instead of the original sample values. Furthermore, if the predictor is accurate,
then the prediction errors will be highly concentrated around zero, and the larger errors will
have smaller probability. This helps in reducing the sparsity of the statistics, as the majority
of the residuals will lie in a small subrange of the prediction error alphabet.
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© )

Figure 5.4: Bias cancellation. (a), (b) and (c) are three distributions of prediction residuals
with the same shape but centered at different places (biases). By removing these biases, the
three distributions can now be merged in only one.

From the work in [19] it has been an accepted fact that prediction error distributions often
obey a Two-Sided Geometric Distribution (TSGD) centered around 0. As mentioned in [17] and
[32], when the prediction error distribution is also considered context-dependent, the resulting
distribution of each context is still TSGD-like but centered around a context-dependent bias.
The TSGD is defined as

1-0
_9175_'_95

where 6 (decay term) and p (the center, which corresponds to the mean of the distribution)
are parameters of the distribution and s = [u] — p is a term between 0 and 1.

Py, (z) g~ lo—nl (5.1)

Suppose now that there are many contexts in which the prediction error has approximately
the same shape, but centered at different offsets depending on each context. If those shapes
correspond to the same distribution, they are centered around 0 and merged to obtain a better
estimation of the distribution. This is illustrated in Figure 5.4.

This gives rise to a special case of context-dependent prediction called bias cancellation.
In this scheme, used in many succesful compression tools such as LOCO-I [33], the predictor
consists of a fixed part and a context-dependent adaptive bias term that is used to center the
prediction residual distribution around 0.

When working with context-dependent prediction, and for the same reasons (the growth in
the number of contexts with the size of the alphabet), the same context classification approach
that was used to relate similar contexts in the conditional distribution estimation problem is
used. The objective in this case is to adjust the bias term of the predictor for each possible
context class. To avoid confusion, these classes will be called prediction conditioning classes.

Note that the probability conditioning clases, and the prediction conditioning classes need not
be the same. One approach is to define the latter classes to be a refinement of the former classes
(i.e., each probability conditioning class is broken into disjoint prediction conditioning classes).
This can be justified by the assumption that the classification used for the context-conditional
distributions joins contexts in which the prediction errors have the same distribution shape
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Figure 5.5: Role of context-conditional prediction (bias cancellation).

(same shape and moments except the mean), but have their center (mean) at different places;
and the classification used for bias cancellation produces a partition of each class in a set of
sub-classes where the predictor bias is the same for all the contexts in the same sub-class. This
is the kind of scheme used in the LOCO-I algorithm and is exemplified in Figure 5.5.

5.3 Prediction and denoising

Assume that the context class, the noisy value and the prediction for the current noisy symbol
are v; € AKX, z; and 2, respectively. Notice that 2; is the prediction of the noisy sample at the
center of ;. This might seem counter-intuitive at first, since the exact value of z; is known.
As mentioned in the previous section, the idea here is to reduce the sparsity of the context-
conditional statistics by concentrating them around 0.

The prediction error for z; is defined as

€, = Z; — iz (52)

Let Z, Z and E be the random variables modeling these three values, and v be a random
vector modeling the possible values of the context classes 7;.

In the second pass of the DUDE, the denoiser function for the current sample is defined in
terms of the empirical distribution of the input alphabet conditioned on the current context.
In the augmented framework, the sample is conditioned on the context class ;.
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In order for the second pass to work properly in the augmented framework, the prediction
error distribution for the noisy samples has to be reinterpreted in terms of the original noisy
distribution.

In Section 5.1 it was mentioned that prediction can be seen as a way to merge similar distri-
butions centered at different offsets, where the offsets are given by the predicted value. Thus
the prediction error distribution for the current context class «; and the current prediction Z;

A

P(E =12, — %i|y =7, Z = %)

can be assumed to be a centered version of the original noisy distribution when conditioned
on the prediction value

that is

P(Z =zily =i, Z =2;) = P(E = z; — 2|y = v, Z = %) (5.3)

In principle, the current prediction z; could be used as an additional element to characterize
the current context besides the conditioning class. This would increase the potential number
of conditioning classes from |I'| (the number of context clusters) to [I'| x |A| (since there are A
possible prediction values). In this framework this option will not be considered, assuming that
the prediction error distributions are independent of the actual predicted value Z;,

P(E =ej|y=",2Z =1%;) = P(E = ey = ). (5.4)

Sllowing all the statistics of class v to be gathered in one vector m.,.

With this assumption and (5.3), the estimated noisy conditional distribution for the current
sample z; will be

P(Z = zily = vi) = P(E = ejly = 7).

5.4 Prefiltering

The modeling tools that were mentioned in the previous sections (context classification and
prediction) assume a certain degree of smoothness in the images to be denoised. To give an
example, one of the tools used for grouping contexts is Vector Quantization [15] which joins
contexts that are close in terms of their Euclidean distance in context space. Another example
is to use the context average value (the average of the context samples) to predict the center
pixel. If the image is corrupted by additive noise of relatively small variance (low SNR), these
tools will still work, as the contexts which were originally near in the clean image will still be
close in the noisy image (since they are vectors of slighty displaced samples). However, if the
noise is not additive (such as the “Salt & Pepper” noise), the smoothness assumption will not
hold and these tools will not work properly.
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To address this issue, the augmented framework includes an optional prefiltering pass in the
algorithm which takes the noisy input image and produces a prefiltered image y™*™ using some
denoising filter. When this scheme is applied, the context class 7; and the prediction Z; for each
noisy pixel z; are computed from the prefiltered context at the same position ¢, y(W; r) instead
of the noisy context z(W; ). Statistics are still computed with respect to the original noisy
values z; as in (5.2).

Prefiltering can also be seen as a way to “expand” the effective contextual information when
building the contexts, since the samples in each neighborhood of the prefiltered image would
include information from samples outside the neighborhood window. For instance, if the pre-
filter is based on a sliding window (such as the linear filters described in 3), the “effective”
neighborhood would grow up to the radius of the window defined by the filter window size.

5.5 Noise preclassification

In some cases it is possible to detect or estimate which pixels of the image are corrupted by
noise. This makes sense when dealing with non-additive noise such as impulse noise in which
not every pixel is corrupted and, when corrupted, its noisy value is always one of 0 or M —1 for
an alphabet A = {0,1,..., M}. In this case, a simple detection scheme would be to mark each
pixel whose value is either 0 or M — 1 as a noisy candidate. Clearly both values can happen in
a clean, uncorrupted image, thus resulting in pixels can be marked as noisy when they are not.
A preclassification mask p™*™ is a binary meta-image where a symbol value of 1 means that
the pixel is deemed to be noise, and 0 means that it is not. When available, this meta image is
a valuable tool for the following stages of the denoising process.

5.6 Loss model

In denoising problems such as binary channel denoising or DNA sequencing denoising there
is no sense of proximity between the symbols, and the cost incurred is either the same in all
the cases (Hamming cost) or dictated by specific rules. In contrast, continuous-tone images
have a distance relationship between their symbol values, which can be used to define a metric
between the noisy and the clean images. In a grayscale image, choosing symbol a + 1 in place
of a correct a is usually unnoticeable when working with 256 levels of gray. Generally speaking,
bigger differences (errors) are more visible than smaller ones.

Because of this, and also because they yield very fast closed form solutions for the argument-
dependent minimization used in the denoiser function (4.4) (see Section 6.7 and Appendix B
for details), two loss models for continuous-tone images are used:

absolute difference Setting each element of ((A)) as A;; = |i — j| an L; norm is stablished as
the distance between the noisy and the clean image. Thus we will refer to this loss model
as L.

quadratic difference Here A;; = (i — j)? and the associated distance corresponds to the
square Lo norm between the noisy and the clean image. This will be referred to as the Lo
loss model.



6 Proposed solution

In this section the details of the augmented DUDE framework for continuous-tone images, or
DUDE-I for short, are described.

6.1 Description of the framework

The block diagram for the DUDE-I is depicted in Figure 6.1.

The Prefilter takes the noisy image z™*™ as input and produces a prefiltered version of it,

y"™*" that can then be used by the Modeler for context extraction and prediction.

The Preclassifier , when used, computes a binary mask p™*"

are deemed to be corrupted noise and p; = 0 otherwise.

where p; = 1 for those z; that

The Modeler classifies each sample of the image z; into a context class ;, producing a meta-
image v™*"™ named conditioning map. The number and characteristics of each class is defined
by the Modeler and may vary with the actual data.

Along with the conditioning map, the Modeler also produces an optional prediction z™*"
of the image which can be used to further simplify the probabilistic model of the image.

The Denoiser depends on the Channel Model and the Loss Model to select between
different strategies that are suitable for each case. For instance, the second pass of the DUDE-I
for the Gaussian Noise contains special steps and subalgorithms not found in the corresponding
second pass for the Impulse Noise (and its variants).

. y mxn
Prefiter —— v
o .
e Modeler Denoiser
Preclas. ——— — gmxn
» Z
men

Channel I ? ? Loss A
Model Model

Figure 6.1: Block diagram for the DUDE-I.
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6.2 Preclassification schemes

6.2.1 Trivial S&P detection scheme

This is the most straightforward prefiltering scheme to apply when confronted to an image
corrupted by impulse noise. As the only possible noisy values are 0 and M — 1, this algo-
rithm marks all those pixels of z™*" with a those values as noisy. Despite its simplicity, this
simple approach improves the overall performance significantly compared to the case where no
preclassification is done.

0, 0<zi<M-—1
ui={ z (6.1)

1, otherwise

6.2.2 Thresholding

This is a variant of the preceding algorithm where the symbols are marked as noisy if their
values are a certain threshold 7 appart from the extreme values 0 and M — 1:

0, 7<z; <M-1-71
uz:{ (6.2)

1, otherwise

6.2.3 Binary DUDE

The Impulse channel, as described in Section 2.2.2, is not exactly the same as an Erasure
channel, since the erased symbols take valid input alphabet values (0 for pepper and M — 1 for
salt) instead of a special erasure value that is added to the output alphabet.

This fact motivated approaches such as [24], where the main goal is to determine which of
the symbols of the output having an erasure value are actually noisy symbols (and thus should
be replaced), or clean symbols that happen to have one of those unfortunate values.

The DUDE-I does not change any symbol which has not the erasure value, but it may change
symbols that have it.

This scheme uses a binary DUDE similar to the one used in [21] to produce the actual
preclassification. For simplicity, consider the Z-Channel with probability of error A\. Consider
a sequence x"*™ that has been corrupted by this noise yielding a noisy sequence z™*"™. The
erasure symbol of the Z-Channel has a value e € A. Now take the noise mask meta-image as
produced by the trivial preclassification scheme described earlier, p*"™. This meta-image will
be called p7'*™. This is a binary meta-image where p; = 1 indicates that z; is a potential noisy
sample.

The key is to consider the u7"*™ meta-image as a noisy binary image itself. For this, consider
the noise mask which would be obtained from the (unobserved) clean image x™*™ by the trivial
scheme. This meta-image will be called p**".

This is also a binary sequence but now it marks those clean pixels that coincide with the
erasure symbol e. If a pixel in the clean mask was 1, then it can only be 1 in the noisy mask
because it would also be e. If it was 0, however, it has a probability of exactly A of becoming
1. Thus, for each index i,
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oot
Sl = 1pgli] =1 1
P(ZZ[Z] = O‘Z'LM = 0) 11— (6'3)
P(p,[i) = 1lpg[i] = 0) = A

This itself corresponds to the behavior of the binary Z Channel and its transition matrix is,
according to (6.3),

=

L=A A‘. (6.4)

0 1

The binary DUDE for this channel can be applied to obtain a denoised mask ,umX” from the
noisy mask p7"*".

The denoised mask will keep those pixels that coincide with the erasure value but are not
noisy. However, the denoised mask is defined to contain only the noisy pixels. To obtain the
final noise mask mu™*™ observe that

e 1.[i] = 1 indicates either a false or a true noise detection.

e 1;[i) = 1 indicates (ideally) only a false detection.

Thus, the i-th symbol of the desired noise mask, p;, will be 1 if p,[i] is 1 but pz[¢] is 0. This
can be expressed as a logical symbol-wise operation between the two masks:

Man — H?Xn /\ MTXTZ

where a indicates the bitwise negation of a operation and A the bitwise and operation.

To obtain a mask for a multivalued erasure-like channel such as the Salt and Pepper, the
scheme is easily extended using a g-ary Z-Channel or by obtaining separate masks for each
erasure value using the previous scheme, and combining them with a bitwise or operation
between the masks.

6.2.4 Discrimination by homogeneity level

This scheme, which was described in [24] for the detection of Salt & Pepper noise, can also be
used with more difficult non-additive noise models such as the g-ary symmetric channel. The
basic idea is to mark pixels as noisy when their values are not likely to occur given their context.

To do this, the co-occurence matriz [9, pp. 416-417] of the noisy image is computed. This
tool has been given many interpretations and variants in the literature, usually using the same
name. The approach followed is that of [24] where the co-occurrence matrix is an M x M matrix
H = {h;;} where h;; corresponds to the number of times the symbol j occured in a 3 x 3 context
whose center symbol is i (denoted by C;3x3 with |C; 3x3| = 8) all over the image:

8
> > Cisuslk] (6.5)

1€ERmxn jZO
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Each row r of H can be seen as a a histogram of the context samples conditioned on the
event that the center sample has a value of r. The basic idea is to use these histograms as
conditional distributions of the context samples in order to detect outliers. After this matrix is
obtained from the noisy image, for each value r € A an upper U, and lower L, bound for the
values that each context sample can take in order for it to be homogeneous with r is computed.
Assuming that each histogram is monomodal and centered at the center symbol value r, the
upper and lower bounds are searched as those columns where the histogram values fall below a
given threshold 7. More precisely, the distribution at the j column of row r is estimated as an
average in a window of size 3 centered around j:

k=j+1
L, = argmin ¢ h;; : g hpp > 7
J ,
k=j—1

k=j+1
U, = argm]ax hyj Z hpp > T
k=j—1

Let H;3x3 = {c € Ci3x3 : Ls; < ¢ < Uy, } be the set of context samples homogeneous with the
center sample at position 7 for a 3 x 3 square context template. With these bounds computed
for each symbol r, and this definition of #;, a primary classification px"™*™ of the noisy pixels
is performed as follows

_ 1, [Higxs| >4
i = { 0 , otherwise (6.6)

this classification produces an important number of false detections. A refinement pass is
then performed using 5 x 5 square contexts. In this pass, each pixel initially marked as noise
is unmarked if the majority of the context samples marked as homogeneous with it are not
marked as noise. This results in the final mask p™*"

i = { 0 , |{c€Hisxs:cclean}| > |H;5x5]/2
;=

1 , otherwise viip =1 (6.7)

6.3 Prefiltering schemes

6.3.1 Basic prefiltering

The DUDE-I framework accepts any image filter as a prefilter. The tested prefilters include
the classical schemes described in Section 3 such as the Window Median or Window Average.
When a preclassification mask is available, the filters are applied only to those pixels marked
as noisy.

6.3.2 Recursive prefiltering

The prefiltering process can be based on any filter as long as it produces an output that is
smoother than the noisy image. If the output of the DUDE-I is indeed closer to the unobserved
clean image than the noisy image, its output can used as the prefiltered image used to build
the context model in a following stage. This scheme is depicted in Figure 6.2.
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Note that the noisy input to each denoising pass is always the initial noisy image. This is
not a recursive denoising scheme.

| |
| |
| |
. X !
Prefilter ! - Y |
mxn b .
y Modeler Denoiser |
b |
Preclas. ——— L
IN mxn amXn ouT
1% z fmxn
- TL
z X" Loss A
Channel I Model
Model

Figure 6.2: Block diagram for the Recursive Prefiltering setting. The loop is closed for the first
N-1 cycles and in the N-th cycle the two switches change positions in order to work as in the
normal configuration of Figure 6.1.

6.4 Modeling schemes

The following sections describe the different modeling schemes which were applied in this
work.

Being a continuation of the work started by Giovanni Motta [18], the present work inherited
some of the tools used in the former. These are referred to as the Legacy tools. Of these tools,
the Legacy Modeling scheme is the first modeling approach to be described here in Section 6.5.

The original work in this thesis is comprised mainly by what the so called Napkin Modeling
Scheme, described in Section 6.6 below. This scheme was created using the techniques described
in Section 5.

6.5 The Legacy Modeling Scheme

6.5.1 Summary

Given a window size and shape, the Legacy Modeling Scheme gathers all the contexts from
the image as vectors, performs a canonical spatial transformation, a DC cancellation of its
samples, and and then uses a vector quantization (VQ) strategy to classify the resulting contexts
into a fixed number of clusters (classes). An optional prediction is computed using an arbitrary
filter as a predictor.

A block diagram of this modeling approach is depicted in Figure 6.5. Folloging is a detailed
description of each stage of the algorithm.
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6.5.2 Canonical transformation

When gathering the contexts, a transformation is performed to match similar contexts with
different orientations (rotation and/or reflection). The idea is to combine a set of four rotations
(0,90,180 and 270 degrees) and an optional axial symmetry, so that in the end, the four quadrants
of the context are ordered in decreasing intensity. Figure 6.5.2 gives a graphical example of this
concept. The algorithm itself is given in Figure 6.3,

- Take the current context as defined by a neighborhood template 7" and compute the sum of
the intensities of its quadrants: Spw, Spe, Ssw,Sse- Here, each quadrant is defined by the
relative position of the context sample to the center (to-be-conditioned) pixel. The axes are
not taken into account, and the context shape (defined by the template T') must have central
symmetry for the algorithm to work well.

- Rotate the context so that the upper left (nw) quadrant has the higher overall intensity S.

- If, after the rotation, the lower-left (sw) quadrant has more overall intensity than the upper-
right (ne), then flip the context along the nw—se axis so that both quadrants are now swapped.

Figure 6.3: Canonical Transformation algorithm.

6.5.3 DC cancellation

Once the context has been canonically transformed, its average sample value is subtracted
from the samples that comprise it. This is a way to exploit the similarity between contexts
regardless of the local intensity level.

6.5.4 Quantization

After all the contexts have been gathered, rotated and their DC has been removed, they are
quantized into a fixed number of clusers (which is a key parameter of the algorithm) using the
LBG algorithm developed by Linde, Gray and Buzo [15]. The LBG defines the context clusters
by finding a set of corresponding cluster centers (one per cluster) in an iterative fashion. The
algorithm stops when either there is no further change in the position of the centers on each
iteration, or when a maximum number of iterations is reached.

NW | | NE

S=6| |S=8| | S=8| | S=5| |S=8| | S=6

SW | [SE

S=3| |S=5| | S=6| | S=3| |S=5| | S=3
(@) (b) (©)

Figure 6.4: Canonical transformation. (a) The four quadrants and their sums. (b) After the
rotation, the upper-left quadrant has the largest sum (in this case the rotation was 90 counter-
clockwise). (c) Finally, the context is mirrored along the nw-se axis so that the upper-right
quadrant is brigther than the lower-left one.
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------- > LBG

cluster centers
canonized Y
DC Canonical Ci Vector conditioning
cancel > Transform ™| Quantizer—* map
Ci

prefiltered > Filter >{ prediction

Figure 6.5: Block diagram for the Legacy modeling. The prefiltered noisy sequence is fed to
the prediction filter to produce the prediction. The raw contexts from the whole sequence are
quantized using the LBG algorithm (dashed line) and then a second pass classifies each context
into one of the resulting context classes to form the conditioning class map.

6.5.5 Prediction

Prediction is optional and based on an arbitrary filter applied to the noisy or prefiltered
image (if prefiltering is used). Common filters such as the Average or Median filters described
in Section 3 were tested in this scheme, but also special ones such as the Napkin filter (to be
described later in this chapter) were adapted to the Legacy scheme with good results.

6.6 The Napkin Modeling Scheme

6.6.1 Summary

This algorithm takes the techniques applied in low-complexity image compression algorithms
such as [33] and [36], and adapts them to a noisy environment to produce both a context
modeling scheme and a prediction scheme that are robust under noisy contexts, and, at the same
time, fast so that modern digital images can be processed with practical time and computational
requirements.

For instance, a fixed scalar quantization scheme is used to compute the context classes, instead
of a vector quantization scheme. Prediction is inspired on the MED predictor used in JPEG-LS
[33], extending it to non-causal contexts.

A general block diagram of this modeling scheme is depicted in Figure 6.6. Each block is now
described in detail.

6.6.2 The Context Wings

The Napkin Modeling Scheme derives its name from the fact that it divides the context window
in four wings; N,S,E and W as shown in Figure 6.7. It then computes four directional gradients;
dn, dg, dg and dy according to Equations (6.8) to (6.11) which use the local differences
between the samples at each wing. Each sample within the context is referred to as ¢y, where
Tr = n,s,w,e,nw,ne,... indicates the relative position of the sample in the context with
respect to the center sample (for instance, ¢, indicates the sample which lies to the northwest,
i.e., at relative position (—1,—1)).
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Figure 6.6: Block diagram for the Napkin modeling.

dN = ¢p — Cpn + Ce — Cpe + Cy — Cpuw (6'8)
ds = 55— Cs+ Cse — Ce + Coy — Cu» (6.9)
dp = Cee — Ce+ Cpe — Cp + Cge — Cg (6.10)
dw = €y — Cyw + Cn — Cnw + €5 — Copy- (6.11)

This directional gradient information is then used both to to determine the way in which the
center sample value will be predicted, and the context class to which the sample belongs.

Each gradient is a signed sum of three adjacent local gradients in the same direction. This is
a tradeoff between locallity of the gradient and noise resilience, because a signed sum will tend
to reduce the relative influence of white noise since it acts as a low pass filter. In contrast, in
the compression applications that have been mentioned many differences are added in terms of
their absolute values.

Broad variant If the noise is additive and its power is high, the average of three local
differences may not be enough to reduce its influence. Because of this, a Broad Variant exists
which computes each wing gradient using five samples. In this case the gradients are obtained
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Figure 6.7: Wing gradient computation. The 12-pixel diamond-shaped context at the center is
broken into four (overlapping) wings. For each wing, a gradient is computed as the average of
three local differences. The small arrows show the direction and the samples involved in each
local difference computation for each wing.
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Figure 6.8: Wing gradient computation for the Broad variant. Eight additional samples are
required: nnw,nne,ssw,sse,see,nee,sww and nww.

using Equations (6.12)—(6.15). The context and the wings used in this variant are depicted in

Figure 6.8.
AN = ¢n = Cpp + Ce = Cpe + Cuy — Cnw + Cne — Cnne + Cpw — Conw
ds = cCg5— C5+ Coe = Ce + Coup — Cuy + Csse — Cse + Csswy — Cow
dp = Cee = Ce+ Cpe — Cp + Cse — Cs + Cpee — Cpe + Csee — Cse
dw = cw— Cow + Cn — Cnw + s — Cow + Cpw — Cnww + Csw — Csww-

The four directional gradients are combined into two orientation gradients dy and dy in

absolute terms,

Finally, an overall activity level is also computed from these two gradients,

dn

dy

= |dg|+ |dw|
= |dn|+ |ds].

AL =dy + dy.

(6.18)

The reason for having such hierarchy is to be able to recombine them so that different tradeoffs
can be selected in terms of precision in the characterization of the region and noise resilience.
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Figure 6.9: Texture bitmap computation: The predicted value is compared to the raw context
samples producing either a 1 (above prediction) or a 0 (below prediction) for each sample. (a)
shows a given context, (b) shows the result of the comparison, (c¢) shows the order of the samples
in the context vector and (d) the resulting texture bitmap.

6.6.3 Context Modeling

In the current classification-based context modeling framework, the modelers aim at produc-
ing a minimal set of characteristics for which the contexts that fall in a same group (class)
are similar in a way useful to the system, i.e., share similar empirical probabilities of the noisy
center sample conditioned on the noisy contexts.

As a classification problem, the goal is to find these optimal characteristics. With model
cost [26] added to the problem, the optimal set of characteristics stems from a tradeoff between
context description power and the possible number of contexts. If noise is taken into account,
sensitivity in the measures of these characteristics is another problem to deal with.

The complexity of this scenario led to the development of a flexible scheme for the selection
of these characteristics. The result is that context classes can be formed from the combination
of three measures: quantized activity level, quantized wing gradients and texture bitmap. Each of
these measured characteristics represent a different tradeoff between precision and expresiveness.

Activity Level (AL)

This measure represents a global activity level of the region spanned by the current window
context.

Being a global magnitude that results from the combination of many other measures, this
measure should be the least affected by noise from the three, while its ability to characterize a
context is limited to its global nature (no hint of spatial structure can be derived from it).

Texture Bitmap

The texture bitmap tries to capture a basic texture pattern from the context. In contrast to
the Activity Level, it is highly expressive but also highly sensitive to noise. It can be used in
conjunction with the other features to regain some of the structural information that they do
not capture.

To compute the texture bitmap, each pixel in the window is compared to the predicted value.
A single bit is used per pixel to indicate if its value was above or equal (1) or below (0) the
predicted value. Finally, the bitmap is unrolled into a binary word by traversing the bitmap in
a spiral fashion, i.e., as concentric circles of increasing radius. Figure 6.9 shows this procedure
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Figure 6.10: Example binning for the quantization scheme used in the Napkin modeler. The
histogram, built from 60 hypothetical non-quantized gradients, is partitioned into 4 bins so that
each region that correspond to the same quantized value has roughly 15 samples in it.

Wing gradients

The four wing gradients are independently computed and, in combination, can give useful
information not only about the overall activity of the region in but also about the shape of this
region. For example, if the North gradient is positive, and the South gradient is negative, there
is a local maximum in the vertical direction. If, at the same time, both the East and West wings
gradients have the same sign or are flat,then there is continuity in that direction, a situation
that could arise if a line of the image is traversing the context.

This scheme is a tradeoff between the two previous features since it gives a better description
of the contextual structure than the activity level by itself, while being more robust to noise
than the binary texture component.

Gradient direction

Another descriptive element which proved to be useful is the estimation of the direction of
the overall context gradient. This is computed as

¢ = tan~! (i—:) . (6.19)

Quantization

To quantize the magnitudes involved in the context modeling (activity level, wing gradients
and gradient direction), a non-uniform quantization algoritm was developed.

The main idea of this algorithm is to produce a quantization in which the resulting quantized
values yield a uniform distribution (thus having maximum empirical entropy), i.e., so that each
quantized level has roughly the same occurence within the image.

To achieve this goal, the algorithm takes the histogram of the magnitude to quantize as it
appears for the whole image and breaks it into regions (also called bins) which have roughly the
same number of samples inside of them. This idea is depicted in figure Figure 6.10 for a sample
gradient histogram.

The algorithm takes as input the unquantized histogram of the magnitude to be quantized
H that goes from 1 to N, and a number of bins to where the raw values will be put into, B.
The histogram is assumed to be a monotonically decreasing function of 1 < n < N. An outline
of the algorithm is shown in Figure 6.11.
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- Compute T = S-_ Hin].
- Set t = N, the threshold pointer.
- while ¢t > B,

- Compute M = [T/B], the target number of hits per bin.
- while A < M and t > B,

- add HJ[t] to A.

- decrement t.
- Set the current value of ¢ as one of the quantization thresholds.
- Decrement B.
- if the number of remaining levels t = B,
- Assign all the remaining levels as thresholds, yielding ¢ one-level quantization bins.
- END.

- Update T =T - M
- Update M = [T/ B]
- Set A=0

Figure 6.11: Maximum entropy binning algorithm.

Pathological situations (such as B = 0) are ommited for the sake of clarity.

Conditioning class computation

When the Activity Level, the Texture, gradient Direction and the Wing Gradients have been
computed, a conditioning class is defined for the current pixel which combines the four features
into a unique numerical signature by concatenating their binary representations (Figure 6.12).

Lo [ Jana [t [~ [t |1 [ | buo [wi[-- [ wnw]

Figure 6.12: Conditioning class computation. na stands for number of activity level bits, nt for
texture bits, n¢ for gradient direction bits and nw for wing gradient bits.

6.6.4 Prediction

Prediction in the Napkin Modeler was broken into a fixed predictor term and a context-
dependant variable term (bias cancellation, whose general description was given in Section 5.2).
This is similar to the approach used in LOCO-I [33].

In a first pass, a fixed prediction is computed for the whole image and a complementary
context model, the “bias cancellation model”, is used to perform a context dependant bias
cancellation.

For the fixed part of the predictor, a baseline algorithm was developed, called Average Napkin,
along with two variants: the Sharp Napkin and the Smooth Napkin, which are tailored for the
two main types of noise studied (non additive and additive respectively).
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The basic idea of the three variants is to predict the center sample using only those samples
from its surrounding window which are smooth, and not part of rapidly changing regions (edges,
lines, etc.). To measure the smoothness of each region, the wing gradients that were described
earlier are used to produce a wing weight proportional to the smoothness of the region. These
weights are defined as

wy = 1/(1+|dn]|) (6.20)
wg = 1/(1 + ‘ds‘) (6.21)
wrp = 1/(1+|dg|) (6.22)
wy = 1/(1+ |dw]). (6.23)

6.6.5 Fixed prediction variants

The Average Variant computes a per-wing average and then produces a prediction using
only the averages from those wings that are deemed to be flat, i.e., whose sample values do not
vary more than a certain amount. The idea is to predict the center sample using only those
samples whose values are deemed to be close to its (unknown) value.

The flatness criterion is based on the relative magnitudes of the four wing gradients. First,
the minimum wing gradient magnitude is computed,

A wing is considered to be flat if its gradient magnitude is no greater than d,, by a fixed
threshold, 6, defined as

6 = grad_thres x 3 x |A| (6.25)

or, if the broad variant is used,

6 = grad_thres x 5 x |A| (6.26)

where |A| is the alphabet size and 0 < grad thres < 1 is a parameter of the algorithm.!
To produce a final result using only the flat wings, a second set of weights is obtained,

o= {0 020
O o2
A 620
wyy = {?)UW : |dW‘;fl§lg;w<isz' (6.30)

!The maximum possible gradient is three times the alphabet size because it is the signed sum of three local
differences which can only differ in |A|. The case of the broad variant is analogous.
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Figure 6.13: Average Napkin variant. (a) raw context. (b) wing gradients. (c) the fixed
prediction z is computed as a weighted average of the flat wings.

The wing averages are computed as follows:

an (cn + cnn + (Cnw + ¢ne) /2) /3 (6.31)
ap = (ce+ cCee+ (Cne +cse)/2) /3 (6.32)
as = (cs+ css+ (Cow +Cs5e)/2) /3 (6.33)
aw = (cw+ cww + (Cnw + Csw)/2) /3. (6.34)

The ne,nw,sw and se context samples are divided by two because wings overlap at those
positions. Finally, with all these values calculated, the fixed prediction produced by the Average
Napkin is

wiyay + wyas + whap + wyaw
! / ! /
Wy + Wg + W + Wy,

(6.35)

Z =
A graphical scheme of this prediction is shown in Figure 6.13.

The Sharp Variant differs from the Average Variant in that the weights of the samples of
the context can take only two possible values: 0 or 1. The prediction is then computed using
only those samples whose weight is 1. The weights are defined as follows: first,a wing gradient
sign is computed for each wing as,

-1 , d; < —grad_thres
Sz =14 41 , d, > grad_thres (6.36)
0 , otherwise

where z is one of N, S,W, E. In the Sharp Variant, a wing is said to be flat only if its corre-
sponding wing gradient sign s, is equal to 0. Depending on the flatness of the four wings, the
algorithm switches between two modes of operation: flat mode or nonflat mode.

If any of the wings is classified as flat, the predictor works in flat mode. In this mode, all the
samples belonging exclusively to flat wings will be used in the prediction (i.e., will have weight
1). This discards samples that overlap two wings and one of them is not flat. The result is a
plain (i.e., non-weighted) average of the selected samples which can be written as,

ZCEC wee

Z =
ZCEC We

(6.37)

where C' is the current context, ¢ are the context samples and w, is 1 if ¢ belongs only to flat
wings and 0 otherwise.



64 Chapter 6. Proposed solution

If none of the wings is classified as flat, the predictor switches to the nonflat mode. In this
ase, the region is characterized into either a ridge, or a saddle by looking at the relationship
between the two gradients of each main direction (horizontal or vertical). In the first case, the
gradient signs match in one direction and are opposite in the other. This would represent a
ridge since there is continuity in one direction and a local maximum/minimum in the other,
and thus it would be appropiate to use only the samples aligned with the continuous direction
(dimension) to predict. In the other case, there can be no distinction between the importance
of the wings, but as the gradients are high in all directions it seems clear that farther samples
would not improve the prediction so only the four closest neighbors are used to compute the
result. An example of these ideas is depicted in Figure 6.14.

@ (b) ©
0] 0] 0]
o[ojo o[1]0 o[1]0
(L[a] 23] [o[x] [1[o] [0[1] [1]0]
o[o[o o[1]0 o[1]0
O] O] 1
(d) (e) ®

Figure 6.14: Sharp Napkin variant. (a) is a ridge, (b) is a local minimum and (c) is a saddle
point. (d), (e) and (f) are the corresponding weights for each case.

The Smooth Napkin , in contrast to the previous variants, produces the prediction using all
the window samples (which can include more samples than the ones used in the wing gradient
computation). Tt assigns a weight to each sample using a per-sample gradient estimation (in
contrast to a per-wing approach) and the relative distance of the sample to the center sample
to be predicted. This idea is inspired on the anisotropic filter described in Section 3.7.3.

If ¢; € C is a sample of the current context C with relative position j € 7.2 (for example the
nne sample has relative position j = (—2,1)), its associated weight is defined as

/lil
i 639
/lil?

jo>0,51 >0 ,  (wsjo+wrj
jo =1 <0, (wsjo— wwii
Jo<0,51 >0 , (~wnjo+dej
Jo < 0,51 <0 , (~wnjo — wej

~—

where wy, wy, wy, wy are defined in equations (6.20) through (6.23) This results from con-
sidering one weight vector per quadrant (NE,NW,SE,SW) and having each sample weighted by
the inner product of its relative position with the vector that corresponds to its quadrant, nor-
malized and then divided by its distance from the center (thus dividing by |j| twice). The idea
is depicted in Figure 6.15. With all the weights calculated, the prediction is just the weighted
average of the samples,
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Figure 6.15: Smooth Napkin variant. (a) The wing gradients are computed, (b) their corre-
sponding weight vectors are derived from them, in (c) the weight vector for the quadrant of
j = (—=1,1) is computed and (d) shows the relative coordinate vector j and the weight vector
W. The final weight is the internal product of these two.

Context dependent prediction: Bias cancellation

The context-dependent part of the predictor consists of a bias cancellation term which is
adapted for each possible prediction context class. Following the discussion in Section 5.2, the
scheme adopted is that where the context classes used for this adaptive part of the predictor
are a refinement of the classes used for building the conditional probability distributions. Thus,
the number of bits assigned to describe each of the descriptive components (activity level, wing
gradients, gradient orientation, texture) has to be at least the same as those used to build the
probability conditioning classes. The prediction conditioning class for a sample z; is denoted as
p; and all the p; for the image z™*" form the prediction conditioning map meta-image p™>™.

The bias term b, for each prediction class p is computed as the average prediction error of the
fixed predictor output z; and the noisy value to be predicted, z; for each sample z; that belongs
to that prediction class. For this, a bias counter is defined which accumulates the differences
between z; and z;, and a class counter is incremented to contain the number of occurences of
each prediction class. Finally, the bias term is computed as the quotient of both values:

. accumulated error for class p (6.39)
P occurences of class p '

The bias cancellation techique, being one of the tools used in image compression, is designed
to work well with smooth piecewise-constant data such as digital images. Because of this, when
the noise is non-additive, the contribution of the noisy samples to the bias term degrades the
effectiveness of the technique.
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To avoid this problem, the noise mask ™*™ produced by the preclassifier is used to exclude

those samples marked as noise from the bias term computation. Thus, for a given sample z;, its
fixed prediction z; and its prediction class p; the associated bias cancellation term is updated
as

by, if u; =1
= Lo, 6.40
Do {bpz.—l—zi—zi if p; =0 (6.40)

After the first pass is done, the biases are computed by dividing these bias counters by the
number of occurences of each prediction conditioning class (which were not deemed to be noisy
samples).

With the biases computed, a second pass is performed in which each predicted sample is
corrected by the bias which corresponds to its prediction class.

Algorithm outline

Figure 6.16 summarizes the whole Napkin algorithm for the case of the Average Prediction
variant.
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mXxn

- Let z™*™ be the noisy input and y its prefiltered version.

- Initialize wing gradient and activity level histograms.
- Initialize the gradient threshold using (6.25)
- First pass

- For each z; in z™m*":

- Extract the context z(W; r) according to the neighborhood template T' (the tem-
plate definition can be any as long as it includes the wing samples w, n, e, s, nw,
ne, se, SW, ww, nn, ee, ss).

- Compute the wing gradients dg, dy,dg, dw, the directional gradients dy and dy,
the gradient direction ¢ and the Activity Level AL using equations (6.8) through
(6.18).

- Add the wing gradient absolute values and the activity level to their respective
histograms.

- Fixed prediction:

- Compute the minimum wing gradient, d,, = min (dy,dg,ds,dw)
- Compute the four wing gradient weights as indicated in (6.20) to (6.23)
- Compute the fixed prediction, Z;, using (6.31) and (6.35)

- Obtain the texture bitmap, 7, from the current context and fixed prediction using

the method described in Setion 6.6.3.

- Compute the quantization bins for the activity level, wing gradients and gradient direction,
based on their corresponding histograms, according to the algorithm described in Figure 6.10.
These define three corresponding non-uniform quantization functions @,,Q. and Q4.

- Second pass: classification and bias estimation

- Initialize the conditioning map v™*" to hold the probability conditioning class of each
pixel in the noisy image. The elements of this map will be referred to as 7;.

- Initialize the prediction conditioning map, p™>*", to hold the prediction class of each
pixel in the noisy image. The elements of this map will be referred to as p;.

- Initialize the bias for each prediction class, b, = 0.

- Initialize the counter for each prediction class, n, = 0.

- For each z; in z™m*"™:

- Quantize the wing gradients using @,,, the gradient direction using @4 and the
activity level using Q,.

- Compute v; as a concatenation of the cond_act_bits MSB (most significant bits)
of A, the cond tex bits MSB of 7, the cond_ang bits MSB of ¢, and the
cond_wing bits of dn,0m, ds and dy .

- Compute p; as a concatenation of the pred_act_bits MSB of A, the pred_tex_bits
MSB of 7, the pred_ang bits MSB of ¢, and the pred_wing bits of dn, dg, ds
and 5W

- Update the bias for the current prediction class b,, according to (6.40). If the bias
was updated, increment prediction class counter for the current class, n,,.

- Third pass: bias cancellation

- normalize the biases as b, = b,/n, for each prediction class p.

- For each z; in z™*", adjust z; = z; + b,,.

Figure 6.16: Outline of the Napkin Modeling Scheme.
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6.6.6 Combined LBG/Napkin

This scheme uses the a simplified version of the Napkin predictor (or any of its variants)
as the prediction filter of the Legacy Modeling Scheme. In some cases, this combination has
yielded better results than any of the other two modeling approaches. This will be discussed in
Section 7.

6.7 Denoising Stage

After the probability modeling is defined for the current noisy image, the second pass of the
DUDE is performed. There are three variants for doing so, which depend on the selected loss
model: Lo , Ly or exhaustive search. For the first two cases, fast closed forms of the denoising
function (4.4) are available (see Appendix B for a derivation of these closed forms).

For instance, if squared error (Ls) is used, (4.4) takes the form of the expectation of the
posteriori input distribution Py/|¢, z:

(6.41)

here E(.) denotes expectation.

If absolute difference is used, (4.4) corresponds to the median of the posteriori input distri-
bution:

g(a, C') = median ( (6.42)

where Pz ¢ (a) term is needed to normalize the resulting vector back to 1 after the element-wise
multiplication with 7.

Finally, if any other loss model is used, an exhaustive search is done for (4.4) using a precom-
puted lookup table for w, ® A3, which is computed only once for each possible combination of z;
(the current noisy pixel) and %; (the potential denoiser output).

6.7.1 From prediction error to original noisy distribution

For each symbol in the noisy sequence z;, its corresponding prediction z; and conditioning
class ; equation (5.3) and the assumption in (5.4) are used to compute each element of Py,
in terms of Pp, as

Pz, (z) = Pgy (2 — 2) (6.43)
The prediction error distribution ranges over an alphabet

M ={-M+1,...,-1,0,1,...,M — 1}

For a given Z, there will be elements of Pp, that do not correspond to an element in Py ,.
In particular, all those elements of Pg, above M — 1, e € {M—-2M-2+1,...,M —1} and
below 0, e € {—M +1,...,—% — 1} would be lost. One approach to this problem is to assume
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that those elements are all mapped to z = M —1 and z = 0 respectively. Thus (6.43) is modified
in the following way:

Sl Pepe) . 2=0

ch(z) = PEW(Z—,?AJ) , 2= 1,...,M—2 (644)
Sl Pg(e) , z=M-1

6.7.2 Channel Inversion

The Channel Inversion problem which is that of obtaining an estimated input probability
distribution Py, for each context class v requires different strategies for the different types
of channels, as the condition number [8] of the channel transition matrix, which measures the
stability of the solution of the inversion problem, varies greatly depending on the type of channel.

For instance, the Gaussian channel yields transition matrices with very high condition num-
bers (numerically unstable) for any significant value of its parameter o (significant meaning
that the noise is actually noticed in the image by visual inspection). In contrast, the non-
additive channels yield matrices which do not present numerical problems in their inversion.
Furthermore, the inversion can be computed efficiently using closed form solutions for each
channel.

Because of this, the problem of Channel Inversion will be discussed for each channel type in
subsections Section 6.7.3—Section 6.7.5.

6.7.3 Denoising stage for the Gaussian Channel

The transition matrix of the gaussian channel has a high condition number even for small
noise variance values (e.g., 0 = 1), which makes the channel inversion problem numerically
unstable. Because of this, the channel inversion procedure has to rely on heuristic approaches
to obtain input probabilities which capture that part of the information that is still reliable
under such conditions.

The greedy algorithm

Let P be the set of probability distributions over the alphabet A and Pz a channel output
probability distribution. When an exact solution can not be found, one possible approach is
to obtain an approximation of the input distribution Px, P*, which minimizes the difference
between the corresponding approximated output distribution and the true output distribution,

P*x = argminpep (|II" P — Py|) (6.45)

The greedy algorithm relies on this scheme by doing an exhaustive search on the transition
matrix columns that generate the output probability subspace. It is defined in Figure 6.17.

The greedy algorithm requires many iterations to converge, which makes it a costly operation.
Furthermore, as prediction is performed and so statistics are gathered in terms of prediction
errors, the channel inversion has to be computed for each possible combination of context class
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- set m = Py
- set Px =0
- while [/m| >0

- Find the column of II which maximizes the projection of m on it, ime, =

T
arg max;e 4 <<m W>> < .,.> means dot product and 7; is the i-th row of II.

[mi

(m” Tima )
]

- Compute an update term as, A =g , where n < 1 is used to avoid premature

convergence.

- Update input probability estimation, Px (imaz) = Px (imaz) + A.

- Update the projection residual of Pz, m=m — A -m;, ...

Figure 6.17: Pseudocode for the the Greedy Algorithm.

and prediction value. These two facts, when combined, make it impossible to implement any
feasible solution for this channel without some further simplification.

The simplification used is the one proposed in [18]. This approach assumes that the transition
matrix for this channel is circulant, i.e., of the form

Po p1  PM—-2 PM-1

PmM—-1 Po -+ PM-3 PM-2
IT = . ) . .
b1 p2 - PM-1 DPo

Given a probability distribution Py over the alphabet A = {0,..., M — 1}, its circular shift
of magnitude a is defined as

P(a+X)M(x) = PX(('Z' + a)M)

where (.)as denotes modulo M arithmetic. Under the circulant matrix assumption it can be
shown that,

M7 Pt x)y = Plasz)aVa € A (6.46)
Equation (6.46) means that the circular shift and inversion operations are interchangeable.

Until now, when denoising using prediction error statistics, those statistics had to be shifted
by the value Z before inverting the channel for each possible 2. As each reconstructed distribution
yields different input distributions, the inversion process had to be carried out for each possible
combination of prediction value and conditioning class.

Using the circulant matrix assumption, shift and inversion are interchangeable and the channel
can be inverted only once for each conditioning class in terms of the prediction error distribution
estimated directly from the prediction error statistics, and leave the shifting as the only per-pixel
prediction-dependent operation.
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pO0+pl p2 0O 0O 0 O 0
0 p0O pl p2 0 O 0
0 0 p0 pl p2 O 0
0 0 0 p0O pl p2 0
0 0O 0 0 p0O pl p2
0 0O 0 0 0 p0 pl+p2

Table 6.1: Approximate circulant matrix. The assumption holds for the central part of the
maftrix.

It must be noted that the circulant assumption is an approximation as the transition matrix
generated by the Gaussian channel is not strictily circulant. The circulant assumption holds
for most of the “central” symbols of the alphabet because the machine precision reduces the
support of the probability mass function (the range of values where p(z) > 0) to a small range of
about 4 X ¢ and the channel is additive. Table 6.1 shows an example of how the approximation
works.

The effects of such assumption have not been fully investigated, but currently this is the best
available mechanism for making the DUDE-I work with Gaussian channels while running with
practical computational requirements.?

The parametric approach

Another approach to this problem is to make certain assumptions on the context-class-
conditional input probability distributions Py|,. One possibility is to assume that Px is an
instance of a given family of parametric distributions. As mentioned in Section 5.2, a good
candidate is the two-sided geometric distribution (TSGD). Recall that the TSGD is defined as

1-6
Px,(z) = 01— + 05

where 0 (decay term) and j (center) are parameters of the distribution and s = [u] — u is
a term between 0 and 1. When Py, is modeled in this way, the parameters 6 and p can be
obtained directly in terms of the mean and variance of Py,

—|z—pl

(a)
px = pz = Ep, [Z] (6.47)

b
ox Yo} = 0* = Bp, (7 - )?] - o

ox +1—+/1+4dox

ox — 2

H =

where 1z and oz are the mean and variance of PZW and o is the channel noise variance.
(a) and (b) are immediate using that the noise is white (additive, independent of the clean data
and with zero mean). The full details of the derivation of 6.48 are given in Appendix C.

This alternative has the advantage of being much faster and to run in constant time when
compared to the greedy algorithm.

“Disabling the circulant matrix assumption and doing a per-pixel inversion takes tens of hours to run on
a 2.2GHz Pentium 4 HP Xeon station with 1GB of RAM for a 512 x 512 image. Using the assumption, the
execution time on the same machine and for the same image reduces to about 5 minutes.
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- for each conditioning class ~y

- Invert the channel in terms of the (noisy) prediction error distribution, Pg,, using
either the greedy algorithm or the parametric approach. Store the result as Pg, |,

- for each noisy symbol z;

- Take the precomputed input prediction error distribution for its conditioning class ~;,
Py,

- Reconstruct the original context-class-conditional input distribution P/, using (5.4)
for the current prediction ;.

i *

- Apply the denoiser function in (4.4) to Px|, for the current noisy pixel, a. If L or Ly
norms are used, use instead (6.42) or (6.41) respectively.

Figure 6.18: Second pass of the DUDE-I for the Gaussian Channel.

Having only two parameters per distribution instead of M, the overall number of parameters
to be estimated is greatly reduced and their estimations are more reliable. On the other hand, it
puts heavy constrains on the shape of Px|,. This is related to the model cost problem described
in Section 5, and some of its practical implications can be seen in Section 7.4.5.

Algorithm outline
The second pass of the DUDE-I for the gaussian channel is described in Figure 6.18

6.7.4 Denoising stage for the Salt & Pepper channel

Contrary to the Gaussian channel, the Impulse or so called Salt €& Pepper channel is easily
invertible and there is a very efficient closed form solution for it. It is easy to show that the
inverse of (2.5) for a given parameter \ is

[1-3 0 0 -3
_2 :
o' = ! >0 6.48
-3 0 0 1 -3
A A
L -3 0 0 1-3% ]

Given an output probability distribution for a given context vy, Pz|,, an Impulse Channel
parameter A\, and an input/output alphabet A = {0,..., M — 1},

Pay = 2 l(Pal0] = 3). P 1] Py [M =20 (Pp M 1] = 3] (6.49)

The above result has an intuitive interpretation: as A/2 black (index 0) and A/2 white (index
M — 1) counts are due to noise rather than to the clean sequence, to revert the channel effect
means subtracting these amounts from the noisy distribution and re-normalizing (dividing by

the resulting sum, namely 1 — X). Furthermore, a closed expression for Px|y.o can also be
obtained using (4.3). For o =0,

[(1 - %)(PZM[O] - %)v %PZW[”’ Tt %PZW[M B 2]7 %(PZW[M - 1] - %)]
(1 =X) Pz, ()

Pxjy0 = (6.50)
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fora=M —1,
Py 1 = [3(Pz5[0] = 3), 3Py (1], 3 Py [M = 2], (1 = §)(Ppy[M = 1] = 3)] (6.51)
” (1 =X Pz ()
and for the rest of the values,
a—th
A~
Pxjya=10,...,0, 1 ,0,...,0] (6.52)

Again, there is an intuitive interpretation of this result: as the only possible noisy symbols
are 0 and M — 1, any other observed symbol in the noisy sequence is clean and thus should be
left untouched (i.e. g(a,y) = ). In the case that the observed value corresponds to one of the
noisy symbols, the resulting probabilities are essentially a scaled down version of (6.49) where
the only position that has a relative change is that of the noisy value.

Tail gathering

When prediction is used for Salt & Pepper channels, and because the noisy samples have a
fixed, uncorrelated value, the prediction error statistics that correspond to the black and white
pixels (the extremes) get smeared. To obtain an approximate picture of how this happens,
consider the distribution of the prediction error E for some conditioning class v, Pf, also
conditioned on the three possible channel events: ’clean’ when the sample gets out of the
channel untouched, 'pepper’ when it is substituted with z = 0 and ’salt’ when it is substituted
with z = M — 1,

Pgiy(e) = P(E = elsalt,y)P(salt|y)+

(
P(E = e|pepper, )P (pepper|y)+ (6.53)
P(E = e|clean,~y)P(clean|y)

where P(pepper|y) and P(salt|y) are the probabilities of error of the channel as described in
Section 2.2.2 for the conditioning class . Assuming that the context classification is not affected
by the noise,® it can be further assumed that both probabilities are independent of the class
v and thus equal to the global salt and pepper probabilities: P(pepper|y) = P(pepper) = \/2
and P(salt|y) = P(salt) = A/2. Thus (6.53) becomes

Pp(E=¢) = 3P(E = e|salt,y)+
5P(E = e|pepper,y)+ (6.54)
(1 = X\)P(E = e|clean, )

The prefiltered image will consist of clean samples and filtered samples. Carrying on with
the assumption that the preclassifier accurately detects the noisy samples, the filtered samples
will be based on other clean samples, and thus they will also be uncorrelated with the noisy
samples they are substituting. As the prediction is built from this prefiltered image, it can be
assumed that the predicted values will also be uncorrelated with the noisy values:

P(Z = |salt,y) = P(Z = 3),V2 € A

*The goal of the prefiltering and preclassification blocks is to avoid this.
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P(Z = |pepper,v) = P(Z = 2),V2 € A

Using these results and the definition of the prediction error, e = z — 2,

P(E = e|pepper,y) = P(E=0-z%y) = (6.55)
P(E =e|salt,y) = P(E=M—-1-2]y) (6.56)
(6.57)

Assuming that the prediction is reasonably accurate, the distribution of the predicted values
will be similar to the noisy distribution for the cases where the samples are uncorrupted

P(Z = aly) = P(Z = aly, clean),Ya € A (6.58)
and thus
P(E = e|pepper,y) = P(E=0-2y)~ P(E =0 — z|y, clean) (6.59)
P(E =e|salt,y) = P(E=M—-1-2y)~P(E=M —1-z|]y,clean)  (6.60)
(6.61)

Finally, using (6.53) through (6.61),
Pgy(e) = 3P(E =0 — z|y, clean)+

%P(E =M —1— z|y, clean)+ (6.62)

(1 = X\)P(E = ey, clean)

This approximation makes it possible to obtain a graphical representation of (6.53) by know-
ing the distribution of the noisy sequence z™*" and the distribution of E for some 7. This
approximate representation can be seen in Figure 6.19 and provides a justification for the tail
gathering heuristic described below.

The final result is that, if no action is taken, equation (6.49) may yield negative probabilities in
the black and white components. To avoid this, a heuristic scheme referred to as tail gathering
was devised as a simple attempt to gather back the smeared statistics. This algorithm is
described in Figure 6.20.

The use of this algorithm led to a consistent increase in the denoising performance in all the
experiments performed with Salt and Pepper noise and is now considered an integral part of
the second pass of the DUDE-I for Salt & Pepper noise.

The full second pass of the DUDE-I for the Salt & Pepper channel is developed in Figure
6.21.
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P(E|clean, class = v) P(Z|clean, class = ~)
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|
P(E|class = ) %P(E\salt, class = v)
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(©)
Figure 6.19:

noisy image z™m*"

Approximate shape of the conditional prediction error distribution Pp, when the
is the output of an Impulse Channel of parameter A.

- set d =3 — Pz ,[0]
-seti=1

- whiled>0and it < M -1

- if PZ\'y[Z] <d,
d = d — Py [i];
Pgz,[i] = 0;
i=i+1
else

END
set d = 3 — Py, [M — 1]
set i =M —2

- whiled >0 and 7 > 0

- if PZ\’y[i] <d
PZ\’y[M_ 1] = PZ\'y[M —1] +PZ\’y[i]§
d:d_PZ\’y[iL
PZ\'y[i] = 0;
1=1—1
- else

Py, [i] = Py [i] — d;
END.

Figure 6.20: Tail Gathering algorithm.
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For each z; € zm*"

- Take the conditioning state for current pixel 7; from the conditioning map ~™*"™.
- Retrieve the prediction error distribution for it, Pg|,.

- Obtain Py, from Pg),, using (5.4)

- Obtain the estimated channel input distribution Px,, using (6.49).

- Add the conditioning on the current noisy sample, z;, according to one of (6.50), (6.51) or
(6.52).

- Compute x} as symbol which yields minimum expected loss for v; and a = z; using (4.4) or
one of its faster forms (6.41) or (6.42) if Ly or L; norms are used as the cost function.

Figure 6.21: Second pass for the Impulse Channel.

Since inverting this channel is relatively inexpensive in terms of computation when compared
to the rest of the denoising process, it can be done for each single pixel with no noticeable increase
in computation time. This eliminates the need for approximations such as the circulant matrix
assumption needed for Gaussian Channels or the precomputation of the denoising function
for the possible different combinations of noisy sample value, prediction and context class,
(zi,Zi, i), that may appear in the image.

6.7.5 Denoiser function for the g-ary channel

As for the impulse channel and its variants, the inverse of the g-ary channel can be computed
directly and expressed in terms of the channel parameters as well:

c d ... d
. d ¢ ... d
I R )
x| (6.63)
d d ¢
d d ... ¢

where ¢ = ]‘]/{4;’:2 and d = Agp;il with p = 1 —perr and M = | A|. This yields a simple closed

form for the calculation of Py, and Px|, z—..

G _ | APxy 2=l , i=2
PX"Y,Z:z[Z] - { BPX")/,Z:Z[Z'] . i#z

where A =1 — perp and B = pepr /M.

(6.65)

While testing this channel, the initial denoised images showed very noticeable noisy pixels
that where left untouched by the algorithm, while most of the less noticeable ones were correctly
denoised.

After further investigation, it was observed that the tail gathering procedure described in
(6.44) was the source of the problem.
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To explain this fact, first observe that the coefficients of (6.65) are of very different orders
of magnitude. For instance, for an 8-bit alphabet and p.,, = 10%, A = 0.9 and B = 0.1/256 =
0.0004. Thus, even if the prediction distribution is highly concentrated around 0, a small tail
can grow to a point where it dominates the solution. This only happens when z =0 or z = M —1
as the tails are gathered at those values. Figure 6.22 shows this concept for a real case

For the g-ary symmetric channel, the tail gathering algorithm, which had improved the
results for the other non-additive noise types, produced the undesired effect of amplifying the
influence of the outliers when their values was exactly in the borders of the alphabet.

As a result, when using this channel, the best solution was to disable the tail gathering
algorithm.

6.7.6 Denoising function cache

The original DUDE implementation proposes the precomputation of the denoiser function
for each possible combination of its arguments which are the noisy context of the noisy sample
and the value of the noisy sample itself. When working with continuous tone images the size of
the alphabet represents a problem for this approach, namely:

1. The number of possible contexts is |A|* for a context of size K.

2. The number of possible noisy symbols, z, is | A].
This results in |.A|**! possible combinations.

The first of the two problems is already reduced by the context classification approach used in
this work, where the possible context classes v € T" and thus the number of possible combinations
is reduced to |T'||Al, provided that |T| << |A|*. However, the use of prediction makes the
denoising function depend on yet another variable: the predicted noisy symbol 2. Because of
this, the final size of the cache would be |T'||A|? which, for the common 8-bit grayscale images,
and |T'| = |A| = 256 would be 256% = 16777216.

One way to reduce this problem is by observing that, if the prediction errors are highly
concentrated around 0, a partial cache which includes only those combinations of (z, 2,~) for
which |z — 2| < € can still cover the majority of the cases while reducing its size to |I'||4](2¢+1)
if 2¢ +1 << A

The inclusion of this strategy in the augmented DUDE yields an important reduction in
computational cost and at the same time reduces the memory needed to a degree where it is
not significant with respect to the requirements of the other components of the algorithm.
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7 Results and discussion

7.1 Design of the experiments

This chapter presents the results of applying the proposed solution to the different noise
models described. When available, the current state of the art resutls for each noise model
are presented, and the discussion continues by comparing them to the ones obtained with the
DUDE-I for each modeling approach (Legacy, Napkin or Combined LBG+Napkin).

All the results, excluding those of Section 7.5, are based on simulated noise over the images,
so there is no noise or type parameter estimation implied, and thus the noise model parameters
assumed by the DUDE-T are the “real” ones. Because of this, a sensitivity analysis of the DUDE-
I when tuned to the wrong channel parameters is also presented at the end of the discussion of
each type of noise.

The results are presented in terms of PSNR (Peak Signal to Noise Ratio) with respect to
the clean image, as it is the standard objective measure of denoising performance used in the
literature. Recall from Section 2.3 that given a clean image x™*™ and a noisy version of it
z™*™ the PSNR is defined as

MSE(z™<") =

(x; —zi)2.

N
=1

2=

)

The PSNR is expressed in dB (deciBells). The number of significant digits in all the results
is 1, as the experiments indicate that differentrandom simmulations (different random seeds)
yield a variance of 0.1dB in all the results. This is discussed later in Section 7.2.6 and Section
7.4.7.

The PSNR is the standard measure for comparing the performance between different algo-
rithms. However, it is desirable to have a measure of performance which does not require the
knowledge of the clean image, since the latter may not be available (such as in a real problem
where the noise is not simmulated), and thus the selection of the parameters which give the
best denoising performance could not be based on the PSNR. Motivated by the results in [34,
Sec. VII-B], the compressibility arises as a possible measure which has the desired properties:

e As a measure the compressibility of an image we use the average bpp (bits per pixel)
obtained by compressing it using the lossless compression algorithm JPEG-LS. Clearly,
this measure does not depend on the knowledge of the clean image.

e The fact that the compressibility is a good measure of denoising performance is shown in
[34, Sec. VII-B] for the binary DUDE in halftone images and for the size of the context. In
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the latter work, an empirical experiment shows that the local minimum of the compress-
ibility roughly coincides with the local minimum of the difference between the denoised
image and the clean image. As the results in this chapter will show, this empirical result
extends to the other parameters present in the DUDE-I.

When comparing performances, the best value for a given setting is shown in bold face.

The test images are taken from two standard test suites: the one mantained by the Signal
& Tmage Processing Institute of the University of Southern California! which contains most of
the classical images used in image processing papers, and the one used in the development of
the JPEG-LS standard?.

Results will be presented in tabular and graphic form. For the sake of brevity, the tabulated
results are given for a small representative subset of the full test suites: the smaller Lena, Barb,
Boats and Bridge, of about 1/4M P (MP stands for Mega Pixel,i.e., 1 million of pixels) are
shown in Figure 7.1, and the bigger Bike with 4M P is shown in Figure 7.2.3

For each type of noise, the best results are shown for a small set of typical parameters used in
the literature. Then, the algorithm parameters which yield the best results are specified, along
with the tests that were performed to obtain them. The latter set of tests are shown only for
one noise parameter, except for a few specific cases.

When denoised images are shown for visual inspection, they are accompained by the noisy
and clean images, and also for the image of the absolute difference between the denoised and the
clean image. Darker values in this image indicate higher differences, and clearer regions indicate
good denoising performance. This serves as an additional tool to study the performance of the
algorithms when visual inspection of the denoised image alone is not enough.

The different types of noise can be divided into two groups: non-additive noise (even and un-
even Salt and Pepper, Z-Channel, g-ary Symmetric) and additive noise (Gaussian). Some tests
were performed only once per group, using the Salt and Pepper channel as the representative
of the latter group, and (obvioulsy) the Gaussian channel for the former.

"http:/ /sipi.usc.edu/services/database/

“http://www.jpeg.org/

3 All the experiments presented in this chapter were performed on a larger subset of the SIPI suite, and for the
Napkin modeling, also for the JPEG-LS set. The selection of the best parameters was based on the full results.
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(a) Boats (720 x 576). This is an interesting image (b) Lena (512 x 512). This widely used image is
which is rich in edges at different angles. notorious for its smoothness, which makes it an
“easy” image for denoising purposes.

(c) Barbara (720 x 576). This imagewas designed (d) Bridge (512 x 512). The version included in

to include small details and dominated by fine tex- the SIPI suite of this image has been subject to

tures. It is thus a more challenging image. contrast enhancement using histogram equaliza-
tion [9, pp. 146—152], thus including many pure-
black and pure-white pixels.

Figure 7.1: Test images.
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Figure 7.2: "Bike” (2048 x 2460).This large image belongs to the JPEG-LS test suite and was
designed to include many different patterns.
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A image | noisy | SM | GIO | CSAM | MND-DP

10% | lena 15.4 | 39.9 - 39.2 -
boats 15.4 | 38.5 - - -
bridge | 15.2 | 33.2 - 37.2 -

barb 15.3 | 33.5 - - -
30% | lena 10.7 | 33.9 | 35.7 34.3 -
boats 10.6 | 32.1 | 34.6 - -

bridge | 10.5 | 27.9 - 31.5 -
barb 10.6 | 28.0 - - -
70% | lena 7.0 | 16.7 - - 29.3
boats 7.0 | 16.7 - - -
bridge 6.8 | 15.8 - - 25.0
barb 6.9 | 16.0 - - -

Table 7.1: Reference base for impulse noise removal. The noisy image PSNR is also included
for further comparison.

7.2 Salt and Pepper noise

7.2.1 Reference results

The main results are presented for the cases A = %10, A = %30 and the more extreme case
of A = %70, which are common settings found in the literature. For the sake of brevity, only
the best results will be shown for all the three parameters. For the rest of the experiments, the
“average” case A = 30% will be used.

As a basis for the discussion, the results of applying a simple selective median filter (SM) to
the test images and the results from other works in the field are summarized in Table 7.1. The
keys to the column labels are:

GIO Previous version of the DUDE for continuous tone images [18]. This is basically the
Legacy Scheme described in Section 6.5 without enhancements such as the prediction error
distribution clipping described in Equation Section 6.43, the Tail Gathering algorithm
described in Section 6.7.4, or the recursive prefiltering scheme (Section 6.3.2).

CSAM Median filtering of noise using the co-occurence matrix method for impulse noise de-
tection [24].

MND-DP Median Noise Detection with Detail Preserving [2].

The best values obtained in each case will be used as the reference against which we will
compare the proposed algorithms under the same conditions.

7.2.2 Legacy results

Table 7.2 shows the best results obtained by using the Legacy modeling scheme using an
Average Filter to predict the center sample, when applied to images corrupted by 30% impulse
noise. The best configuration in this case was found to be the following:
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image | reference | Legacy
lena 35.7 37.5
boats 34.6 36.7
barb 28.5 33.9
bridge 31.5 30.0

Table 7.2: Best results in terms of PSNR for the Legacy modeling scheme under A = 30%.

pred. barb boats bridge lena || pred. barb boats bridge lena
average | 4.9 4.2 5.6 4.3 || average | 32.1  35.5 296  36.7
median | 4.9 4.2 5.6 4.3 || median | 31.7  35.0 29.4 364

Table 7.3: Performance of Legacy vs. prediction filter. Left: Compressibility (average bits per
pixel); Right: Denoising performance (PSNR in dB)
e The trivial preclassification scheme is used to obtain a noise mask.

e A 256 cluster set is obtained after 25 LBG iterations on raw 5 x 5 pixel contexts present
in the prefiltered sequence.

The filter used for prediction is an Average Filter applied to a 5 x 5 square context.

The cost function is L.

e Four recursive applications of the DUDE-I as a prefilter, with the initial prefilter set to a
Selective Median filter over square windows of 5 x 5 pixels.

Selection of the parameters

These tests show how the performance varies with respect to the different parameters of the
Legacy Scheme.* The following parameters are of special interest:

Predictor The Legacy Scheme uses a simple sliding neighborhood filter to predict each pixel.
Figure 7.3 shows the results of denoising using a window average and a windom median filter as
a predictor. The special case of the Combined Modeling will be described in detail in Section
7.2.4.

As can be seen, despite the 0.5dB difference, there is no noticeable visual difference between
the two images. Only a detailed inspection of the whole image (impossible to observe here)
reveals that the difference lies in the borders of the image. This is also dependent on the
way in which the image samples are extrapolated for the context samples that fall out of the
image (which happens in the borders). As a simple replication of the border pixels is used as
the strategy for the window samples falling outside the range of the image, the median filter
could be more affected than the average. Note also that the prediction is performed over an
already median-prefiltered image. As this advantage of the Average over the Median prediction
is confirmed in all the test images, the Window Average was chosen.

*Note that, in each experiment, the results are obtained with no recursive prefiltering performed. Obviously,
this does not apply for the experiments whose subject is the recursive prefiltering behavior.
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(a) Median. Denoised PSNR=35.5 (b) Average. Denoised PSNR=35.0

(c) Absolute difference of Median. (d) Absolute difference of Average.

Figure 7.3: Legacy performance vs. predictor.
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Number of context clusters In the augmented framework, this number determines the
number of free parameters in the probabilistic model used for the image to be denoisedm and
is related to the model cost described in Section 5.1. In the baseline DUDE, the number of
paramerters depends on the number of possible contexts, which in turn is determined by the
size of the context template used. As described in Section 4, this results in a restriction on the
size of the template if asymptotic optimality is to be guaranteed. Thus, it is natural to believe
that the optimal number of context clusters should be related to the size of the images to be
denoised (not for a particular image but for a given size). The results shown in Figure 7.4 seem
to confirm the existence of an optimum value for the number of context clusters, as all of the
images are of similar size. Note that the compressibility heuristic, which is described in [34,
Sec. VII-B], gives an optimum which coincides with the optimum obtained by computing the
PSNR with the clean image also in this case. This parameter also has an important impact in
the computational complexity, requiring O(m x n) additional operations for each class defined.
So, it is desirable to keep it at a minimum. Based on this observation and the results in Figure
7.4, a value of 256 was chosen as a good tradeoff.

Size of the contexts As the number of context classes is not affected by this parameter, it
does not play a role in the model cost as it does in the baseline DUDE algorithm. However, it
affects the characterization of the contexts, and affects linearly the complexity of the algorithm.
From the results in Figure 7.5 it can be seen that a context size of 3 x 3 pixels yields the best
denoising performance in all the cases. However, as the Legacy Scheme is currently limited in
practical terms (not theoretically) to a small range of image sizes, it cannot be said that this
size of context is optimum for other sizes of images.

LBG iterations This parameter implies a tradeoff between the computational complexity
(number of operations) and the representativeness of the cluster centers. More iterations al-
low the LBG algorithm to better approach a stable solution. As this stage of the algorithm
dominates the total execution time of the Legacy Scheme, with each iteration taking O(m x n)
operations, the cost of each new iteration is high and it is desirable to keep the number of
iterations at a minimum. Figure 7.6 shows the effect in terms of PSNR for the test images and
Figure 7.7 shows a detail of Boats. Based on the results a number of 25 iterations was chosen
as a good tradeoff between denoising performance and execution time.

Canonical mapping This procedure was presented in Section 6.5 as a way to join similar
contexts found at different orientations across the image. Figure 7.8 shows the effect of its
application in the way in which it affects the context classification of the pixels of a sample
image. Although only shown for Lena, this mapping has improved the performance for all the
images of the test suite and thus it is activated by default.

Number of prefiltering recursions The recursive prefiltering can improve the performance
significantly, at the cost of multiplying the computation time by the number of recursions. The
results, however, do not increase in a monotonic way but reach a saturation point which varies
with the image and, as will be seen later, the modeling scheme (context and prediction). Figure
7.9 shows the results for a maximum of five iterations.

Summary of the Legacy Scheme for Salt and Pepper The preceding results in this
section show a significant improvement in the results of the Legacy Scheme when compared to
the results obtained in [18]. For the majority of the images and channel parameters studied,
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(a) Contexts of 3 x 3 pixels. (b) Contexts of 5 x 5 pixels. (c) Contexts of 7 x 7 pixels.
Denoised PSNR=33.8 Denoised PSNR=36.4 Denoised PSNR=35.4

Figure 7.5: Legacy performance vs. size of the contexts.

the results also surpass the best available results in the literature and, in many cases, by ample
margins (over 2dB of PSNR).

On the counter side, this scheme has high computational resources requirements for the
current standards which make it impractical for images of over 1MP.
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Variation in Compression (% bpp) w. r. to leftmost value
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(a) Compressibility.

Variation in PSNR (% dB) w. r. to leftmost value

barb —— boats --%-- bridge ---- lena -8 average —a—
(b) Fidelity.
Figure 7.6: Legacy performance vs. LBG iterations. (a) shows the percentual variation in com-

pressibility with respect to the smallest (leftmost) value and (b) shows the percentual variation
in denoised PSNR w.r.t. the leftmost value
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(a) Conditioning map after 8 iterations. Denoised (b) Conditioning map after 50 iterations. De-
PSNR=36.2 noised PSNR=36.5

Figure 7.7: Legacy vs. LBG iterations, detail of Boats. (a) and (b) show how the conditioning
map looks after 8 and 50 iterations respectively. Notice how the map is more “ordered” as the
iterations are increased.

(a) With canonical mapping. PSNR=36.7 (b) Without canonical mapping. PSNR=36.2

Figure 7.8: Conditioning maps for Lena when modeling using (a) and not using (b) canonical
mapping.
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Figure 7.9: Legacy performance vs. recursive prefiltering applications.
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7.2.3 Napkin

The best results obtained for the Napkin Modeler described in Section 6.6, for the case
A = 30, are shown in Table 7.4, and three sample denoised images presented in Figures 7.10,
7.11, and Figures 7.12 through 7.14. These were obtained with the following configuration:

e Th Activity level (AL), defined in Section 6.6.3, is quantized into 8 levels (i.e., to 3 bits)
using the quantization algorithm defined in Section 6.6.3 and the resulting value is used
to define 8 possible probability conditioning states.

e The same 3 AL bits are combined with 8 texture bits (TB) of the Texture Bitmap defined
in Section 6.6.3 to produce 2048 context-dependent bias cancellation terms. As define,
the resulting prediction classes are refinements of the 8 probability conditioning classes.

e The Average Napkin prediction variant (Section 6.6.5) is used with a gradient threshold of
8% of the maximum possible gradient magnitude to determine the flatness of each wing.

e Seven recursive applications of the DUDE-I as a prefilter are used, with the initial prefilter
set to a selective median over 5 x 5 windows.

image | reference | Legacy (x2) | Napkin (x7)
lena 34.3 37.7 38.2
boats 32.2 36.8 38.3
bridge 31.5 30.0 30.6
barb 28.0 33.7 32.2
bike 26.0 - 29.6

Table 7.4: Best Napkin results for A = 30.

The results for the Napkin modeling scheme are significantly better than those of the Legacy
scheme for all the images in the test suite (also those not shown here) with the exceptions of
“Barb” and “Barb2”, where the Legacy scheme is clearly better. This gives an overall advantage
to the Napkin modeling scheme but also signals a potential pitfall of the modeling algorithm
when confronted with high frequency patterns such as those present in Barb.

As a way to isolate the problem found with the two versions of “Barb”, a third modeling
scheme was defined which combined the context classification method of the Legacy Scheme
(LBG) with the Napkin predictor. This scheme was called Combined LBG/Napkin. The results
for this scheme (which ended up being the best in terms of denoising performance) are given
later in Section 7.2.4.
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(b) 30% of noise

(c) Napkin x7 (d) Absolute difference.

Figure 7.10: Boats denoised using the Napkin modeling scheme.
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(b) 30% of noise

(c) Napkin x7. (d) Absolute difference.

Figure 7.11: Barb denoised using the Napkin modeling scheme.
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Figure 7.12: Bike under Salt and Pepper noise with A = 30%
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E

Figure 7.13: Bike denoised. PSNR=29.5dB.
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Figure 7.14: Absolute difference between clean bike and denoised bike.
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Selection of the parameters

The Napkin modeler has many parameters. Only the ones that have shown a greater impact
on the performance are shown. As for the Legacy case, the number of context classes has a
different optimal value for each different image size. We show the parameter selection results
for two image sizes: the four small images (Boats, Barb, Bridge and Lena, of about 0.25M P)
and the large Bike (of 4M P pixels, which is the size of the images produced by the current
digital cameras of many of the images in the JPEG-LS test suite).

Context class features The context modeling stage (described in Section 6.6.3) produces
a set of features which describe aspects of the context centered at each pixel. Each of these
features can be described with a selectable number of bits (including 0) and the result is then
concatenated to build the final context class. This can be done independently for the probability
context class and the adaptive prediction context class. The following graphs show how the fixed
part of the predictor behaves with respect to each one of these features. For this, the adaptive
bias cancellation was disabled and the distribution of the prediction residuals was studied for
each class when the probability context classes were solely determined by one feature at a time.
Figures 7.15 to 7.18 show conditional prediction error distributions when the context classes
are determined from each feature.

The results show a clear dependency with the activity level and gradient angle component.
The first affects mostly the shape of the distribution while the second has a stronger effect on
the bias, with a lesser effect on the shape of the distribution. The texture element, although
less clear, also has an important influence on the bias term. The results with the different com-
binations have shown that a good combination is to use activity level as the “base” feature used
both in distribution conditioning and bias cancellation, with an added texture bits signature
for the bias cancellation terms. The gradient angle has not shown to be as relevant as could
have been expected, and remains as a subject for further experimentation.



7.2. Salt and Pepper noise

bias

Q

biases

.8
2.4
2.0
1.6
1.2
0.8
0.4+
0.0q

-0.4

distributions

4 8 12 16 20

24

28

nd class
2

0.32
0.28-
0.244
0.204
0.164
0.124
0.084
0.04

0.00-
-300

Figure 7.15: Prediction error distributions conditioned on 32 quantized activity levels.
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Figure 7.17: Prediction error distributions conditioned on 4x64 wing gradient magnitudes.
Because of the canonical mapping, not all combinations actually appear.

bias biases variance variances
30 1400
207 12001
107 10004
0] 800-
-101 600
-20 4OOJ
-30- 2007
-40 T T T T T T nd class [0} T T ;i T T 7 nd class
0 40 80 120 160 200 240 280 0 40 80 120 160 200 240 280
p(x) distributions countour of p(x)
0.5 20
0.41 S PN
0.3 PR e
LR .
0.21 20703 :
0.1 .
-401 !‘ I.
: i
0.0 T T T T X -50 T T T T T T
-300 -200 -100 0 100 200 300 0 400 800 1200 1600 2000 2400 2800

Figure 7.18: Prediction error distributions conditioned on 8-bit (256 possible) texture bitmaps.
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pred. barb boats bridge lena || pred. barb boats bridge lena
average | 4.4 3.7 5.1 3.8 || average | 29.4  35.1 29.1 357
sharp 4.5 3.8 5.2 3.9 || sharp 29.1  33.9 28.7  34.6
smooth | 4.5 3.8 5.3 3.9 || smooth | 28.7 33.3 28.1 345

Table 7.5: Performance of Napkin vs. prediction filter. Left: Compressibility (average bits per
pixel); Right:Denoising performance (PSNR in dB)

Number of conditioning classes Figure 7.19 shows how the denoiser performance varies
when the activity level bits are increased for both the distribution conditioning classes and the
adaptive predictor conditioning classes.

An intersting result from this experiment is the clear dependency between optimal number of
conditioning classes and image size. Observe that the Bike image is better denoised with a high
number of states, while the rest see their performance dropped after approximately 8 states.
This behavior also holds for the rest of the JPEG-LS suite (the bigger images).

Now, Figure 7.20 shows a slightly different experiment in which the distribution conditioning
classes are fixed for the adaptive prediction, and vary from 0 (no distribution conditioning, only
one context) to 3. Surprisingly, this parameter has no effect on the overall performance. Thus,
the real improvement lies in the prediction part, while the distribution conditioning which is
the base of the DUDE algorithm has no effect on the final result.

This result can be explained by examining the form of the denoiser for the impulse channel for
the noisy cases, (6.50) and (6.51). The decision of the DUDE for each noisy pixel is practically
that of substituting it with the average of the distribution of the error prediction centered at
the predicted value, which in turn yields a value very close to the predicted value itself. In
this framework, the context modeling plays the role of refining the overall prediction by letting
many different predictors work specifically for a set of similar contexts (those of the same class).
When these contexts are indeed similar in terms of predictor behavior, the context modeling
increases the denoising performance.

Canonical mapping, DC offset removal The results for the Legacy modeling also apply
to this case, with the same (relative) results.

Predictor variant The fixed part of the Napkin has three variants described in Section
6.6.4: the Average Variant, the Sharp Variant and the Smooth Variant. The Smooth variant,
in particular, was designed to be more robust to additive noise. In any case, the three variants
were tested with each type of noise (additive and non-additive). The results are detailed in
Table 7.5.

Gradient threshold Figure 7.21 shows the experiment which led to the selection of 8% as
the optimal value for the overall case.

This is a rather nonintuitive parameter. Basically, it controls the sensitivity of the Napkin
predictor. A low value makes the Napkin consider more wings as nonflat, thus making it work
more like and edge detector (see 6.6.4 for details). On the converse, a higher value will make it
behave more like a window average filter.
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Variation in Compression (% bpp) w. r. to leftmost value
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Figure 7.19: Performance measures for different number of conditioning classes.
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Performance vs. no. of prediction conditioning states
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Figure 7.21: Napkin performance vs. gradient threshold.
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Recursive prefiltering applications Figure 7.22 shows the recursive behavior of the DUDE-
I when using the Napkin modeling scheme. A first remark is that its performence does not reach
a saturation as soon as the Legacy modeling. The algorithm is also significantly faster and thus
recursion is not an expensive operation in this case. This will be shown to be very important
to achieve good results under higher noise rates.
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Figure 7.22: Napkin performance vs. number of recursive prefiltering applications for A = 30%.
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image | reference Napkin (x60) ‘
lena 29.3 30.7
boats 16.7 30.3
bridge 25.0 24.5
barb 16.0 24.9

Table 7.6: Napkin results for the case A = 70%.

image | MND-DP Napkin (x60)
lena 25.4 22.4
boats - 20.4
bridge 21.5 20.1
barb - 20.3

Table 7.7: Best Napkin results for the case A = 90% compared to the MND-DP algorithm.

Extreme Salt and Pepper: very high probability of noise

The case A > 50% is an interesting setting and special algorithms have been developed for it.
The best results of the proposed solution when A = 70% and A = 90% are compared with the
results in [2] as a reference. For this case, the recursive prefiltering scheme was applied up to
60 times. The rest of the parameters are the same as the previous results.

Figures 7.23 and 7.24 show how the denoised Boats and Barb images look for the case when
A = 70%, while Figure 7.25 shows the result for Lena corrupted by A = 90% of noise.

The results are also good for this extreme setting. For A = 70%, the state of the art for the
Bridge image is matched, and the results for Lena are improved with only an increase in the
number of recursive prefiltering applications (which could be determined automatically using
the compressibility criterion). Finally, while the results for A = 90% do not reach the state-
of-the-art, they are obtained using our tool, which is more flexible and generic than [2], an
algorithm that is aimed specifically at this type of noise in this extreme setting.
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(a) Clean (b) 70% of noise.

(c) Napkin x60. (d) Absolute difference.

Figure 7.23: Results for Boats corrupted by S&P with A = 70
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(b) 70% of noise

(c) Napkin x60 (d) Absolute difference.

Figure 7.24: Results for Barb corrupted by S&P with A = 70
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(a) Clean (b) 90% of noise.
e F
! <$ -
# ;fp‘rr‘ ¥
: . “ &
; |
ek | r | 'IT
i -] ¥ '
t = Fat
A bel ]
i A .
!
§ ‘\_'
L) W]
(c) Napkin x60. (d) Absolute difference with clean.

Figure 7.25: Results for Lena corrupted by S&P with A = 90%



110 Chapter 7. Results and discussion

image | reference | Legacy (x2) | Napkin (x7) | Combined (x5)
lena 34.3 37.7 38.3 37.8
boats 32.1 36.8 38.3 38.5
bridge 31.5 30.0 30.6 30.7
barb 28.1 33.7 32.2 34.7

Table 7.8: Combined LBG+Napkin

7.2.4 Combined LBG+Napkin

While the results for the Napkin scheme surpassed the Legacy results in the ample majority
of the cases (from the full test suite), they fell short of Legacy for the two versions of “Barb”.
The visual inspection of the denoised Barb for both methods revealed some notorious errors
produced by the Napkin model in certain regions of the image. To isolate the problem, and given
that the prediction and context modeling parts of both modeling schemes could be interchanged,
a Combined LBG/Napkin scheme was implemented where the modeling part was the LBG used
in the Legacy Scheme (Section 6.5.4), and the predictor was the Average Variant used in the
Napkin Scheme (Section 6.6.4).

In this modeling scheme, the fixed prediction part of the Napkin Modeling, namely the
Napkin filter, was used as the predictor filter of the Legacy scheme to yield the results of Table
7.8. With this modification , the number of recursive prefiltering applications rose to 5 before
reaching a saturation point.

Of the results in table 7.8, which give an overall advantage to the Combined Scheme, the
difference between the two modeling approaches is very important for the Barb image.Indeed,
the results for this case are better than the Legacy results. Thus, the problem of the Napkin
Scheme with Barb lies in the context modeling part. Figure 7.26 shows a detail of both denoised
images in which the source of the difference is clearly seen: the Napkin modeler was jittered by
the highly changing sections of the image located mostly at the stripes and checkers around the
image. This in turn affected the conditional distributions which grew too wide favouring the
noise patterns and thus decreased the overall performance in those areas.

7.2.5 Comparison of the modeling approaches

Up to now, one could say that the best modeling scheme is the one which combines LBG
with Napkin prediction. However, when computational resources are important, especially
execution time, the best tradeoff is obtained with the Napkin Modeling scheme. Table 7.9
shows the time consumed in the first pass (modeling) and the second pass (denoising) for each
modeling scheme and a series of images of different size. Even the largest one is below 1 MP
(megapixel), the lowest resolution any digital camera can take pictures at. The required memory
and computational time required to denoise a 4 MP image (bike) with the Legacy modeling was
simply too much for the machine in which these tests were performed (Pentium 4 at 2.2 GHz,
1 GB of RAM, compiled with the GNU C++ Compiler V3.3 at maximum optimization). Even
when dealing with the smaller images, the higher noise cases (A = 50% or A = 70%) could not
be attacked with this scheme because of the large number of recursive applications needed.
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(a) Napkin x7 (b) Combo x5

(c) Absolute difference:Napkin x7 (d) Absolute difference:Combo x5

Figure 7.26: Detail of barb as denoised by Napkin and Combo. The difference is clearly observed
in the stripes all over the image.
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size (pixels) | LBG (s) | Napkin (s) | 2nd. pass.(s)
95052 57.0 0.7 0.7
190134 113.0 1.5 1.5
380208 223.0 3.0 3.0
760285 441.0 6.0 6.0

Table 7.9: Execution time vs. image size for the different modeling schemes in the first pass
and for the second pass. The number of conditioning classes is 256 for the LBG Scheme and 8
for the Napkin Scheme.

7.2.6 Sensibility to pseudo-random noise generation

The above results use the same simmulated noisy images for each noise type and parameter.
A final validation that applies to all of the above schemes is to study how much do the results
vary with different samples of the noise simulated by the pseudo-random numbre generator
(different initial random seeds in the pseudo-random number generation function). Table 7.10
shows show this analysis for the common setting of A = 30%, for 16 different random seeds and
for two different number of recursions. The modeling scheme used for this test is Napkin, due
to the large number of tests required.

recursions | image | min  max mean std. dev.
0 lena 36.74 37.11 36.92 0.11
boats | 35.79 36.20 36.00 0.12
barb | 30.74 30.82 30.78 0.04
bridge | 29.80 30.05 29.96 0.07
1 lena 3749 3796 37.70 0.14
boats | 36.95 37.41 37.24 0.12
barb | 31.25 31.46 31.37 0.05
bridge | 30.19 30.43 30.34 0.06
4 lena 37.81 38.27 38.10 0.14
boats | 37.87 38.41 38.20 0.13
barb | 31.71 31.94 31.83 0.06
bridge | 30.36 30.61 30.52 0.06

Table 7.10: Sensibility of the result for 16 different random noise simmulations. These results
are obtained using the Napkin modeling scheme.

The first interesting result is that the standard deviation is roughly independent of the number
of iterations. This gives some sort of “stability” measure for the recursive denoising process.
On the overall, it is seen that a variation of around 0.1dB is not significant in any of the
experimental results for the impulse noise and this modeling scheme.

Preclassification of impulse noise

When possible, preclassification is a valuable tool. However, it is a difficult tool to use, mostly
when used to perform a selective denoising, as a miss (i.e., to mark a noisy pixel as clean) could
lead to very noticeable noisy pixels left untouched. On the other side, when used only as an aid
to the modeling stage, for instance to avoid jittering in the bias cancellation term adaptation
that apperars in the Napkin predictor, it can improve the overall performance significantly.
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The following experiment, whose results are shown in Table 7.11 is a side test that focuses
only on the preclassification performance for the Salt and Pepper case. As mentioned before,
the best approach in this case is to use the Trivial preclassification scheme described in Section
6.2.1, which has a high number of false hits (i.e., clean pixels marked as noisy) but no misses.
The homogeneity preclassification, however, will prove to be a valuable method when confronted
with more difficult noise types such as the g-ary symmetric described in Section 7.3.

image | noise trivial homogeneity DUDE

lena, A | false misses | false misses | false misses
10% 0 0 23 0 0 0
20% 0 0 32 8 0 0
30% 0 0 39 29 0 0

bridge | 10% 97 0 35 47 | 122 37
20% 92 0 42 84 | 108 88
30% 86 0 49 127 | 146 109

Table 7.11: Preclassification results for the different approaches.

Note that Lena does not have any black or white pixels and thus the trivial classification is
perfect in this case. This explains the poor performance of the CSAM algorithm (which is more
“fair”) with Lena when compared even to a selective median (which is based also on this trivial
preclassification scheme). As the number of false hits in Bridge corresponds to the white and
black regions which are always the same, this number can only decrease for the trivial classifier,
as more of those pixels will eventually be corrupted (although with the same resulting value).?

Sensibility to the channel parameter

Up to now the DUDE-I had perfect knowledge of the channel paramenters. The purpose of
the following experiments is to see how the performance is affected when the channel parameter
is not the correct one but lies within a range centered at the true parameter. Table 7.27 shows
the case where the true A = 30% and the estimated parameter )\ varies from 20 to 60.

The experiment shows a high sensitivity to values lower than the true parameter, but virtually
no impact for higher ones. This result can also be explained by inspecting (6.50) or (6.51) in
Section 6.7.4. A value of X' greater than the true A will yield negative distribution values at 0
and M — 1. When the distribution is later corrected to be a valid probability distribution, this
will only have a scale effect which does not affect the denoising function. On the converse, a
value of )’ smaller than A will leave nonzero residuals in distribution at those points which will
disturb the following calculations in a noticeable way (as the denoising function results in the
average of the final distribution, two similar peaks at 0 and M — 1 will move the result towards
M/2).

7.2.7 Asymmetric impulse and the Z-Channel

The purpose of this experiment is to study how the asymmetry of the impulse channel affects
the denoising performance. The impact should affect mostly the prefiltering stage, as more

®The false hits and misses counts are computed when comparing the resulting masks with the true noise
masks, which are computed along with the noisy image and thus the concept of “noisy” pixel includes every pixel
that is touched, even if it ends up with the same value it had before going through the channel.
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denoised PSNR Sensitivity at 30% noise for lambda between 20 and 60
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Figure 7.27: Performance vs. X for A = 30%.

asymmetric channels will favour bursts of one of the impulse noise values (“salt” or “pepper”)
which could confuse the median filter.

The preclassification should not be affected in the average, as both noise values are equally
non additive and will appear equally “strange” within their contexts.

To focus on the asymmetry, the overall probability of error is fixed to A = 30% and let the
probability of “salt” range from 0 to 30% (thus “pepper” will range from 30% to 0). The results
are shown in Figure 7.28(a) for a nonrecursive prefiltering approach.

A quick examination of Figure 7.28(a) shows that the result is worst for “all salt” than for “all
pepper”. This is due to the fact that the clean test images are closer to black than to white, and
a nonrecursive execution will leave “all salt” bursts which decrease the PSNR. As the recursive
prefiltering gradually removes the bursts, the result should be more and more symmetric. This
is verified in Figure 7.28(Db).

7.3 g-ary symmetric channel

This channel is more difficult than the other non-additive noise models presented so far, as
the corrupted samples can take any value. The flexibility of the DUDE-I (and of the baseline
DUDE scheme) is demonstrated in this case, which so far has not treated by other methods in
the literature. Table 7.12 shows the different denoising performances for various noise levels. As
there are no reference results from other works, the the results of applying a simple median filter
are used as a reference. The DUDE-I was configured to use the homogeneity preclassification
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7.3. g-ary symmetric channel

Performance vs. Salt & Pepper asymmetry

denoised PSNR

robability of Salt

bridge

lena
boats
barb

(a) Nonrecursive DUDE-I

Performance vs. Salt and Pepper asymmetry

denoised PSNR

robability of Salt

bridge

lena
boats
barb

(b) Recursive DUDE-I (x7)

Figure 7.28: Napkin results for the asymmetric impulse channel.
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scheme but only for bias cancellation adaptation purposes. Figure 7.29 shows a sample denoised
image for this type of noise.

image 10% 20% 30%
median DUDE-I | median DUDE-I | median DUDE-I
lena 30.0 37.0 203 34.2 283 31.8
boats 28.5 36.3 27.7 33.0 26.8 30.6
barb 23.5 31.4 23.2 28.4 22.8 26.4
bridge 23.4 30.6 23.0 28.0 22.4 26.3

Table 7.12: Denoising performance for the g-ary symmetric channel and different probabilities
of error.
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(a) Clean (b) Noisy

(c) Napkin x4 (d) Absolute difference.

Figure 7.29: Results for Boats corrupted by g-ary symmetric channel with pe,., = 10%
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o | image | noisy Wiener GIO WCC SMG NLM FOE

10 | lena 28.1 33.6 34.0 - 35.6 - 35.0
boats 28.1 33.2  33.7 - - - 33.0
barb 28.1 31.5  32.0 - 34.0 - 328

20 | lena 22.1 30.0 30.6 32.7 327 299 319
boats 22.2 29.4  30.2 - - - 299
barb 22.2 272 279 - 30.3 - 283

25 | lena 20.2 289 294 - 31.7 - 308
boats 20.4 283  29.1 - 30.8 - 287
barb 20.3 26.0 26.6 - 291 29.6 270

Table 7.13: Reference results for the Gaussian channel.

7.4 Gaussian channel

The Gaussian noise is usually studied with a standard deviation o that goes from 5 to 25 in
the 8 bit, 256 graylevel scale, with ¢ = 20 being the typical setting for “high” noise.

7.4.1 Reference

Table 7.13 shows the current state of the art in gaussian denoising. The algorithms are:

Wiener Wiener filter (as defined by the wiener2 function of MatLab TM) applied to 5 x 5
square windows.

WCC Wavelet-Curvelet Combination [30] .
SMG Scale Mixtures of Gaussians [25] .
NLM Non Local Means [1] .

FOE Field of Experts [27] .

GIO DUDE adaptation to continuous tone images, previous version [18].

7.4.2 Legacy

Table 7.14 shows the best results for the Legacy modeling scheme compared to the best values
of Table 7.13, while Figure 7.30 shows a sample result. The best parameters for this case were
found to be the following;:

e 128 conditioning classes.
e The clusters are obtained after 25 LBG iterations.

e Prefitering is not performed. The noisy input is used as is to produce the conditioning
classes.

e Prediction is performed using an Average filter over 5 x 5 windows.

e The square error function (Ls) is used as the loss model.
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(a) Clean (b) o =20%

(c) Wiener (d) Legacy (x1)

Figure 7.30: Sample denoised image using the Legacy scheme for Gaussian noise.
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o | image | reference Legacy (x1)
10 | lena 35.6 34.2
boats 33.0 34.0
barb 34.0 32.4
20 | lena 32.7 31.0
boats 29.9 30.5
barb 30.3 28.6
25 | lena 31.7 30.0
boats 30.8 29.3
barb 29.6 27.3

Table 7.14: Tabulated legacy results for Gaussian noise. Note that there is no available infor-
mation for the denoising performance of the SMG algorithm for Boats when o = 10.

As can be seen, the results for this setting do not reach the best available objective perfor-
mances attained by the other algorithms. On the positive side, they are better than a “standard”
Wiener filter.

7.4.3 Selection of the parameters

The results given in this section will focus on the case 0 = 20 and the images Boats and
Lena.

number of conditioning classes Figure 7.31 shows the effect of this parameter for the case
o = 20. This behavior is repeated for the other values of o.

LBG iterations 7.32 shows the effect of this parameter for the case ¢ = 20. Again, this
behavior is repeated for the other values of o.

prediction scheme The results of 7.15 show the effect of this parameter when the prediction
scheme is the average filter. At a late stage of this work, a Gaussian lowpass filter was added
which increased the overall performance.

image | average median gaussian
lena 30.6 30.4 30.6
boats 30.0 29.8 30.2
barb 28.0 27.9 28.3

Table 7.15: Results for different prediction schemes.

recursive prefiltering Figure 7.33 reveals that the performance actually decreases after one
iteration.

Figures 7.34 through 7.36, which show how Lena, Boats and Bar look when denoised recur-
sively, give a hint of what could be the problem. Although a more in-depth analysis is required,
one possible explanation is that an unstable closed-loop behavior is affecting the recursive ap-
plication of the DUDE.
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Figure 7.31: Legacy performace vs. number of context clusters. The value which attains the
minimum is near 128 clusters.
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Variation in Compression (% bpp) w. r. to leftmost value
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Figure 7.32: Legacy performace vs. LBG iterations.
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Figure 7.33: Legacy performace vs. number of recursive prefiltering applications.
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(a) Boats (x1) (b) Boats (x2) (c) Boats (x4)

Figure 7.34: Recursive denoising for the gaussian channel and its effect: Boats.
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(a) Lena (x1) (b) Lena (x2) (c) Lena (x4)

Figure 7.35: Recursive denoising for the gaussian channel and its effect: Lena.
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(a) Barb (x1) (b) Barb (x2) (c) Barb (x4)

Figure 7.36: Recursive denoising for the gaussian channel and its effect: Barb.
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In other words, because each denoised sample Z; depends on the prediction,
X = 9(2i, Vi, i)

then the denoised image is a function of the prediction
)’*{an — f(Zan Zan)
)

On the other hand, the prediction 2Z™*" is a function of the prefiltered image y™*",

imxn — ¢(ym><n)

If the output of the denoiser in iteration n — 1 is used as the prefiltered image of iteration

n, yp ™ = %" ,and the result is a nonlinear recursive equation on the sequence of denoised

images X"*" (here the subindex indicates recursion level),

)*{an :f’(Zan A77'l><n)

n s -1

where the prefiltering in the first iteration (n = 0) is done by some non-recursive filtering
function ¢(-)),

mxn

Yo =g(z

an)

This closed loop can be seen in Figure 6.2. If the prefiltering or prediction functions produce
similar side effects in each recursion, the effect can become more and more noticeable.
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o |avg/12 avg/24 napl nap3/12 nap3/24
5 37.8 37.9 38.0 38.0 37.9
10 33.9 34.1  33.8 33.9 33.9
20 30.1 30.2 294 29.4 29.9

Table 7.16: Results for different prediction schemes for different o values.

7.4.4 Napkin

Although the DUDE-TI was designed with all the channel models described earlier in mind, the
experimentation was mainly focused on tuning the DUDE-I to the non-additive noise channels
for which the DUDE-I yielded outstanding results when compared to the state-of-the-art. The
experiments on the Gaussian channel, and especially the application of the Napkin Scheme to
it, were performed at the final stages of the present work and are to be considered preliminary.

The initial results for the Napkin modeling approach applied to a Gaussian channel were not
as good than those obtained with the Legacy Scheme described earlier when the noise is above
certain threshold.

The following experiments in this section are designed to pinpoint the main responsible for
this degradation, i.e., either the context modeling component or the prediction component.

Fixed classification scheme and different prediction schemes Table 7.16 shows differ-
ent results in PSNR terms for the Boats image under three different channel parameter values.
These results were obtained by fixing the context model using LBG and 256 clusters, and then
varying the prediction scheme among five possibilities: average-of-12 (avg/12), average-of-14
(avg/14), Average Napkin Variant (napl), Smooth Napkin (nap3) (both described in Section
6.6.5) using either the same 12 (nap3/12) or 24 (nap/24) samples.

As can be seen, under low noise levels (less than o = 10), the Smooth Napkin does a reasonable
work as a predictor. For ¢ = 20 the results fall below any of the two average predictors. This
indicates that the Smooth Napkin prediction, whose design was aimed at this type of noise, needs
further development and experimentation in order to perform well under high noise conditions.

Fixed prediction scheme and different classification scheme Table 7.17 shows how the
performance varies with the context classification scheme when the prediction scheme is fixed
(in this case, to an average of 24). The first is the LBG with 256 clusters (the same used in
the previous table), and following it: 16 activity levels (AL/16), 256 activity levels (AL/256)
and 256 conditioning classes out of four 2-bit quantized wing gradients (WG/256), and the
Broad Variant described in Section 6.6.3 (Broad). The latter was the last of the experiments
performed for the Napkin Scheme, and uses 16 Activity Level bits as in the AL/16 case.

The results of Table 7.17 indicate that the Broad Variant is the best configuration for the
Napkin modeling scheme in order to perform nearly as well as the LBG scheme . Note that
only for the case 0 = 25 the difference between the LBG and the Broad Napkin surpasses 0.5
dB.

If the Napkin context modeling is used, the DUDE-I can be applied to large images. Thus,
we finish the discussion with a sample result for the Napkin/Broad variant on Bike (using a
window average as the predictor) . The result is shown in Figures 7.37 and 7.38.
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Figure 7.37: Bike corrupted by Gaussian noise with o = 20.
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Figure 7.38: Bike denoised using the Napkin/Broad variant as the context classification scheme
and a window average as the predictor.
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o |LBG AL/16 AL/256 WG/256 Broad
5 | 37.8 37.00 36.9 36.6  37.5
10 | 33.7 325 32.5 322 335
20 | 30.1 288 28.7 28.7  29.6
25| 29.1 278 27.7 278 284

Table 7.17: Results for different modeling schemes for different o values.

o | image | parametric greedy
10 lena, 33.9 34.2
boats 33.5 34.0
barb 31.8 32.4
20 lena, 30.9 31.0
boats 30.0 30.5
barb 28.0 28.6
25 lena, 29.8 30.0
boats 29.1 29.3
barb 26.8 27.3

Table 7.18: Comparative results for the parametric and greedy channel inversion algorithms.

7.45 Other results

Input distribution parametrization

One of the goals for the Gaussian channel was to remedy the ill conditioning of the channel
transition matrix for this case. By assuming that the input distribution is a parametric dis-
tribution rather than any distribution over the 8-bit inpt alphabet, its parameters are directly
obtained from the statistical moments of the output distribution. This eliminates the instability
of the solution and, furthermore, the computational cost of a full 256 x 256 matrix inversion or
the greedy algorithm (which is a costly operation), at the cost of imposing heavy constrains on
the input distribution.

Figure 7.39 shows the comparison of two sample real conditional input distributions (com-
puted using the noisy context classification as the conditioning classes but over the clean image)
and their respective greedy and parametric approximations. In this case, the parametric ap-
proximation is very close to the clean distribution. Figures 7.39(c) and 7.39(d) show two cases
where the parametric distribution is not as good.

Finally, Table 7.18 shows some sample results using the two approaches. Even tough the
input distribution parametric estimations seem to be better than the greedy ones, the results
are clearly and consistently better for the greedy algorithm. As the greedy clearly favours
the center value, it could be argued that, as in the impulse case, the prediction is the main
responsible for the results. However, the results of using the true distributions for denoising
(cheating the channel inversion process) are better than those of the greedy. One possibility is
that the cases of 7.39(c) and 7.39(d) is actually so bad that it drops the overall performance
even tough the estimation is good in other cases, but this is still speculation and no sound
conclusion is available at this time.
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Figure 7.39: a) Sample true input distribution and its parametric estimation. b) The high
peak is the greedy approximation, the other two are the real distribution and its parametric
estimation (smoother). c¢) and d) are two cases where the parametric estimation is not so good.
This example was produced with the Baboon image.
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7.4.6 Sensibility to the channel parameter

Figures 7.40 (for 0 = 10) and 7.41 (for 0 = 20) show how the denoising performance is
affected when the true channel parameter is o and the denoising is performed using an estimated
parameter o’.

As expected, the performance is decreased as the difference between o and ¢’ increases. In
any case, the performance is never below the performance of a Wiener filter for an error in the
parameter o’ of 15%, and is above the image noisy PSNR (i.e., it still performs some denoising)
even for an error of 30% (see Table 7.13).

7.4.7 Sensibility to pseudo-random noise generation

As for the impulse noise, the dependency of the results with respect to the random seed of
the random noise generation function used to produce the noise is studied. Table 7.19 shows
the results.

image | min max mean std. dev.
lena 30.62 30.69 30.66 0.02
boats | 30.04 30.17 30.12 0.04
barb | 28.01 28.11 28.05 0.03

Table 7.19: Sensibility of the result for 8 different random noise simmulations. These results
are obtained using the Legacy modeling scheme with no recursive application.
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Figure 7.40: Sensibility of the denoiser for the case o = 10. a) absolute value, b) decrease in
performance proportional with respect to the case o' = o.
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denoised PSNR Performance for sigma=20%
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Figure 7.41: Sensibility of the denoiser for the case o = 20. a) absolute value, b) decrease in
performance proportional with respect to the case o' = o.
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7.5 Real life denoising

The discussion so far has been centered on the application of the DUDE-I algorithm to
simulated noisy images where all of the properties (especially memoryless nature) on the channel
and its parameters are perfectly known. As a practical application, the ultimate goal is to
apply it to images corrupted by real noise. This section presents some preliminary results for
the DUDE-I when applied to the image shown in Figure 7.42. This is a scanned page of an
ancient translation of the work of Euclides to the Spanish language where the ink from the
reverse page has filtered thru to the front page. Clearly, this is not memoryless noise as the
noisy samples mantain the rough shape of the reverse page letters. However, this structure is
revealed at a higher scale, a fact that could be exploited by the DUDE-I framework by restricting
the memoryless attribute of the channel to be “local”. Even under this assumption, there are
two more questions to answer: which channel model to use? which paremeters? As there is
no “real” noise channel here, a channel has to be selected which performs best and thus the
channel and its parameters become parameters of the algorithm rather than part of the problem
specification.

Figure 7.43 shows one of the best results obtained for this image. As there is no clean version
of the image, a hand cleaned version of this image is used as a reference. Figure 7.44 compares
this result with other methods. The parameters for this result are:

Channel Gaussian with o = 20.
Prefilter Median of 3 x 3 square window.
Modeler Legacy modeling with the following configuration:

e 5 x b square neighborhood contexts.
e Only 8 context classes.

e Average of 7 x 7 square neighborhoods filter as a predictor.

As can be seen, the denoised version is closer to the hand cleaned version than the original one
than the output of any of the other algorithms. Another interesting point is that the parameters
are quite different to the ones that have been used to denoise “real gaussian” noise so far. These
were obtained after many experiments on the different parameters in the proximity of certain
initial guesses.

The DUDE-I as an interactive denoising tool The results in this section are clearly
appart from the rest of the discussion and must be considered only as a first hint on the utility
of the DUDE-I framework as a semi-automatic denoising tool for real life image denoising. In
this case, the channel type and parameters are additional user selectable aspects of the algorithm
that could, for example, be chosen interactively in appropiate dialog boxes (such as in the Adobe
PhotoShop or GIMP filters).
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Figure 7.42: Scanned Euclides page (page034)

137



138 Chapter 7. Results and discussion

EVCLIDES 77 £EVCLIDES

el el

a ! a

I I

Y\ R i

B 13’ B 1

N1 € G

jifinicion quinze) luego ef i:x‘imcmn qamze)laego el
,_propo‘iﬂm)ﬂ] angulo.C T '-PI'OPOG‘"”‘)?J angalo.CT

dviacd i alai dnvees e E“.,.A it 1A AR A A e - L.‘n‘. 4

(a) Hand-cleaned (b) Noisy (original). PSNR=23.2dB.

-

EVCLIDES B
&

fifinicion (ainze luego el
;.prop:)"lf‘m)gl angualo.C T

3
r‘l"!"l +£ Q{E“ﬁ.{\ i~ ‘-.‘,—.- B |

(c) DUDE-I. PSNR=23.3dB. (d) Absolute difference.

Figure 7.43: Best result for the Euclides page. The PSNR is interpreted as the difference
measure with to the hand cleaned version.



7.5. Real life denoising 139

r

EVCLIDETS 7" EVCLIDES
el
a
I

N {
L ST, 1a

s ' C
ii‘imcmn qamze) luego el iiﬁnlclon quinze?) luego el

,,Propoﬁﬂm)gl &[]05_‘110 CT u.prOPOGC!(i)al angt alo.C T

mvada aleai i veiva: L.-.AA kY mnAada R AR ceina I-“n_ R &

77 EVCLIDES ~ EVCLIDES
&
el
Y
I

B la

C
lifinicion Liat.,lze)luego el fifinicion qamze)luago el
».propoficm)al angalo.CT ;.propaﬁcm)al angalo. C T

PSRG0T T Ili‘n‘ R 2, L B S .-G R M ‘..-...‘ s

Figure 7.44: Clockwise starting with top-left: scanned image; GSM [25]; DUDE-I; Wiener Filter
(MatLab wiener2 function). PSNR relative to hand-cleaned version: 23.2 dB(scanned), 22.6
dB(GSM), 25.9 dB(DUDE-I) and 25.2 dB(Wiener).






8 Concluding remarks

8.1 Overall

The main goal of this work was to adapt modeling tools used successfully in image compression
such as context modeling and prediction to the DUDE algorithm in the hope that, by doing this,
it would be possible to address the denoising of continuous tone images using this paradigm.

An augmented framework was defined, and it proved to give good results for various types
of noise, surpassing the current state-of-the-art in some cases. Furthermore, this framework
can be extended, and better modeling schemes can be built on top of it which could solve its
current limitations. Although several problems remain that require further research, significant
progress was achieved towards this the goals defined.

Of the channel models that were used to test the new system, the results that were obtained
are very good when compared to the state of the art in the case of non-additive noise types.
For the additive Gaussian channel , the results are below the best available results, although,
at the same time, significantly above the results that can be obtained using a classical Adative
Wiener filter.

The results for the impulse channel indicate that the main contribution to the performance is
due to the success of the prediction scheme rather than in the context modeling part. However,
this is a side effect of the very particular case of the impulse channel where the DUDE-I auto-
matically chooses the correct behavior by letting the predicted value be the main influence in the
decision of the output. The added computational burden is small and the resulting framework
is more flexible than a hard-coded specific filter for impulse noise removal.

8.2 Modeling approaches

At a general level, the Canonical Transformation and DC cancellation tools, which are ap-
plied in every modeling algorithm used, have proven to improve the overall performance, which
indicates that one of the main aspects to look at when doing a context model is to exploit the
potential symmetries that exist in the structure of images.

The first attempt at context modeling was to use the LBG algorithm to do a vector quanti-
zation of the contexts. Even tough its use led to some of the best results in terms of denoising
performance, this model has shown to be impractical, mainly because its computational require-
ments are too high even for small images.

The Napkin modeling has shown to be a good scheme for the Impulse noise. In this case, most
of the performance gain is credited to the prediction scheme, including the role of the context
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modeling scheme when applied to the predictor context-dependent bias cancellation. Of the
different features that the context model of the Napkin scheme has to discriminate contexts,
the texture and activity level components were found to be the most useful. The first is specially
useful for bias cancellation, while the second helps to sepparate the flat regions of the image
from the borders, resulting in a good adaptive prediction scheme. Despite this, the results in
Section 7.2.3 indicate that features such as the gradient direction or wing gradients provide
useful information on the structure of the contexts, and thus these features should be subject
to a deeper analysis before ruling them out.

This model needs further development to achieve the desired robustness to additive noise,
performing about 0.3dB below the Legacy results when using the Broad Variant described in
Section 6.6. However, this disadvantage could be overweighted by the reduced computational
requirements implied by this method, which allow the application of the DUDE-I to large images
such as Bike.

8.3 Noise types

8.3.1 Non-additive noise

As mentioned, the results for the impulse noise are very good. These results also extend
to the case of asymmetric impulse noise and the Z-Channel, and also to the more difficult ¢-
ary symmetric channel. All those results benefit from the preclassification schemes, where a
simple thresholding was used for the impulse noise and its variants, and the more sophisticated
homogeneity classification for the g-ary symmetric channel. The prefiltering scheme proved
to be specially useful, being always a simple median filter (in the first iteration). All of this
combined with the recursive prefiltering scheme allowed toe DUDE-I to reach and surpass the
state of the art.

It must be noted that any denoising algorithm could be used for the prefiltering stage, possibly
rising the overall performance. This includes simple but yet better algorithms such as the
Adaptive Median described in Section 3. Furthermore, this observation applies to any type of
noise.

Of the two modeling schemes, the LBG gives slightly better results than the Napkin at the
cost of being much heavier in terms of computational resources. The only exception among
all the images of the test suite (not only the ones shown here) is the Barb image, where the
difference is very noticeable between the two approaches. On the average, the best tradeoff
between the two, for the impulse noise, is the Napkin scheme.

8.3.2 Gaussian noise

The gaussian channel has proven to be more challenging to the proposed scheme, and while
the results are not bad when compared to “simple” denoising strategies like a Wiener filter,
they are always below the state of the art.

Of the available modeling schemes, the slower LBG yielded the best results. The faster
alternative provided by the Napkin context modeling scheme (using the broad version of the
gradient wing computations and a context average as the prediction scheme) decreases the
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overall performance by about 0.5 dB with respect to the LBG approach, but also enables the
application of the DUDE-I to large images where the Legacy scheme results impractical.

A simple prediction scheme such as an average of the context samples was seen to be more
suitable than the Napkin edge-detection approach, which appeared too sensitive to the additive
noise.

Although the prefiltering scheme, whose purpose original purpose was to attack the non-
additive noise cases, did not give good results as an initial prefilter when the filter used was a
simple median or average, one recursive prefiltering application of the DUDE-I did increase the
performance in all the cases. More prefiltering applications only degraded the performance.

Another difficult aspect of this channel was the computation of the context-conditional input
distributions as the transition matrix is ill conditioned even for small values of ¢ and the
inversion is not reliable numerically. Of the two alternatives proposed to solve this problem, the
greedy algorithm as proposed in the first approach to this problem by Giovanni Motta is the
one that gives the current best results. The parametric approach, which can be considered as a
preliminary attempt, yields slightly lower results (less than 0.5dB, with an average of 0.3dB).
On the other hand it is considerably faster and requires less memory.






O Future work

9.1 Modeling schemes

9.1.1 Napkin enhancements

The Napkin modeling scheme was strongly influenced by the tools and concepts that are
used in compression. Specifically, the context modeling scheme was meant to produce a good
discrimination in terms of prediction error statistics. However, these tools are not designed
to work for noisy images, and the measurements taken in the Napkin model to give it some
robustness have not worked as expected. One possibility is thus to continue on this line, trying
to achieve the desired robustness while still using tools such as activity level, texture bits, and
edge-detecting predictors. The case of non-additive noise does not count since the prefiltering
stage produces a reasonably smooth image for these tools to work with.

9.1.2 Other classification approaches

Still under the context classification approach, other classification schemes can be investi-
gated which produce better results under noisy environments (again, mostly for additive noise).
Frequency domain techniques [9], wavelets [16] are examples of tools that can give useful context
information in the presence of noise.

9.1.3 All for one, one for all

The probability models defined by both LBG and Napkin perform a partition of the context
space into disjoint context classes. However, there is no compelling reason for the disjointness of
the classes. The extreme case of this paradigm is given in [1], where every context contributes,
in an appropriately weighted form, to the denoising of every location in the image. However,
this algorithm requires O(n? operations to denoise an image with n pixels. This approach is
also known as the Parzen Window method for distribution estimation [7, pp. 164-173].

An interesting direction of investigation is to obtain a context modeling scheme that lever-
ages the disjointness of the context classes as the two proposed models do, while keeping the
complexity of the algorithm below O(n?) (for example requiring O(nlogn) operations for an
image with n pixels).

9.1.4 Context codebooks

The vector quantization performed by the LBG algorithm should yield a small set of repre-
sentative contexts. This could be applied to a large number of (non necessarily noisy) images
in an offline fashion and the resulting context “codebook” be used to produce a fast context
classification to be used to denoised any new image that may appear. This could also be applied
to the distribution estimations as well.
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Figure 9.1: Statistics blending concept. Here the context classes are characterized by quantized
vectors formed of the vertical and horizontal gradient estimations for the raw contexts. An
example context is characterized and its feature vector falls in the middle of two clusters, thus
giving a fraction of the “count” to each cluster.

0.2 C(Context statistics

9.2.1 Distribution parametrization

It was shown that the use of a simple parametric approach to the problem of gaussian
channel inversion is possible. However, the results are still below the ones achieved by the
greedy algorithm. Other parametrizations of the empirical distributions should be investigated
which give better results. For instance, the proposed two-sided geometric distribution model
could be extended to admit nonsymmetric geometric distributions (i.e., where the decay factor
6 is different to each side of the mode of the distribution).

9.2.2 Statistics blending

Currently, the probability conditioning model implies a “hard” classification of the raw
contexts present in the image into a fixed number of classes. Once this is done, however, the
original raw contexts are still available. If the context classes are made up of a certain set of
measures (e.g., activity level), and the raw context measures fall at an even distance from more
than one context class cluster center in the measures space, then assigning the current pixel to
one of those classes would incur in a loss of useful information.

Instead of doing this, the contribution of the statistics for each pixel could be divided among
several conditioning classes in a way proportional to the likelyhood of the pixel being in each
of them (the overall contribution should sum to 1, naturally, as one pixel counts as “1” in the
overall statistics). The overall concept is depicted in Figure 9.1.

9.2.3 Statistics interpolation

The same idea of 9.2.2 can be used in the second pass when recovering the conditional
statistics for the current pixel. If the raw context is recovered (again, for example, an unquan-
tized activity level), a point in the measure space that makes up the context classes can be
recomputed. Now, instead of using the nearest class statistics as the conditional statistics for
the current pixel (which is what is being done through the conditioning map in the current
implementation), one could use a mizture of more than one nearest class. Schemes like linear
interpolation could be used if the context clusters were produced by scalar quantization on the
measure space’s dimension. If the quantization is vectorial (e.g., using LBG), then slower but
more general algorithms like the Parzen Window scheme [7] could be used to produce an interpo-
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Figure 9.2: Statistics interpolation. Here, each cluster center in the context class feature space
has an associated statistics vector to it. By recovering the unquantized feature vector, an
interpolated statistics vector can be built out of a number of nearest neighboring clusters.

lated version. Other possibilities are to model the whole image statistics as a multidimiensional
field over the conditioning class measure space and apply some Spline or polynomial fitting to
it. Some of these ideas are depicted in figure 9.2.

9.2.4 Tail Bucketing

This is a possible technique to reduce the number of parameters of the overall model. It
is based on the idea that the tails of the prediction error density functions would be normally
sparse and so the statistics of each symbol on it. On the other side, if the behavior of the
predictor (for example, the approximate shape of the prediction error) is known in advance,
the sparseness could be reduced by merging all these tails between classes and then redistribute
the resulting shape among the statistics for each class in lieu of the previous tails. The idea is
depicted in Figure 9.3.

9.3 Heuristics for noise model type and parameters

A practical issue that needs to be addressed for the DUDE to be used as, for example, a
commercial plugin, is to have some sort of noise model and parameter estimation. An ordinary
user should not know anything about noise models or parameter, and even a technical user may
find it cumbersome to have to specify such parameters each time.

There are many simple techniques for estimating the parameters of channels like the Impulse
or the Gaussian channel that could be easily included in a future version.

9.4 Automatized parameter selection

This is more a general issue and deals with all the parameters that make up a certain config-
uration of the DUDE, for example, the size and shape of a context, the number of conditioning
states, number of iterations, etc. This has also practical implications if the aim was to obtain
a plugin that could be used by non-technical persons.

Many of the current parameters could be automatically chosen once their behavior under
different settings (for example, image size) has been studied.
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Figure 9.3: Tail bucketing scheme. (a) Prediction error statistics for the two hypothetic context
classes. (b) tails are merged into one smoother version, taking scale into account. (c) the
resulting shape replaces the original tails.



A Software implementation

A.1 Organization

The application was developed in C++ using the GNU C Compiler (GCC) as the main
development tool, mantaining cross-compatibility with MS Visual C++ 7.1 (included in MS
Visual Studio .NET 2003). For the compilation, both GNU Makefile files and Visual C++
project files are included in the source tree.

The source code is extensively documented and conforms to the format used by some
autodocumentation tools, specifically, with the Doxygen documentation tool (also available
under the GNU Public Licence) which automatically produces a reference manual in various
formats including LaTeX and HTML.

The source code tree is backed by the Concurrent Versions System (CVS) which is the de
facto standard used for version control in most software projects.

A.2 Source tree

As a general guideline, all the algorithms, including the DUDE implementation itself, were
implemented in a modular way without any dependency on the execution environment or user
interface. This also applies to the base concept models (sequence, alphabet, channel, etc.)
making not only the algorithms but the objects used by them easy to port to other applications.

Almost all the code uses generic programming techniques (C++ templates), as it enables
conceptual flexibility while avoiding the overhead related to other common techniques. For
example, the Sequence class has been generalized to any dimension and symbol type. Fur-
thermore, template metaprogramming techniques are used to make any dimension-dependent
calculations (for example, D-dimensional indexation) unrolled at compile time.

A.3  Compatibility

The source code complies with the ANST C++ standard and currently compiles under GNU
Compiler Colection (GCC) 3.x, 4.0 and Visual C++ 7.x. GNU Make makefiles are included for
automatic building using GCC, and a Visual C++ Solution is included for VC++ compilation.

A.4  \Version control

The Concurrent Versions System (CVS) version control system was used to manage the
project files throughout its development. This is a valuable tool which simplifies the development
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and update of the project by many programmers and adds redundancy that prevents the loss
of data.

A.5 Prototyping

The Scilab package' was used to perform simulations and to analize the results of the
experiments. This is a high quality and performance free software alternative to other common
simulation environments.

A.6 Design

The implementation is written in C4++ and makes heavy use of generic programming concepts
(i.e., C++ templates and related techniques) to maximize flexibility and speed at the same time.
The design is driven by the Object Oriented Programming paradigm, breaking the problem in
a few conceptual families (data, processing blocks, algorithms, utilities) with specific classes
representing entities such as Image, Index, Context, Algorithm, Filter. Each concept family is
englobed in a respective C++ namespace to clarify the relationship among its members.

Algorithms are the central part of the implementation, and are usually broken up into sub-
algorithms or strategies that can be configured at run time to change specific aspects in the
behavior of the algorithm they are part of. They belong to the algo namespace. Besides the
sequence-specific algorithms (such as Filter), several generic algorithms are also included in this
module. Examples of these are vector comparison criterions, vector quantization, etc.

The data types orbit around the Sequence concept, of which Image is a convenient specializa-
tion for 2D sequences. To ease the development, classes such as Sequence contain declarations
for their compatible parameterized related classes. For example, for a 2D sequence, Sequence
defines an Index type which is itself parameterized by D=2. All the sequence-related concepts
lie in the seq module.

The DUDE-I is implemented as a macroscopic algorithm where the key stages (prefiltering,
context modeling, prediction) are governed by corresponding strategies, and the denoising stage
depends on the type of noise. Because it is the central algorithm, and because its subalgorithms
are actually very complex by themselves, the DUDE is contained in a specific module, the dude
namespace.

A.7 Documentation

The full source code is well documented and formatted in a way that enables the automatic
generation of printable and/or user-friendly documentation through the Dozygen? open source
automatic documentation tool. The documentation is placed under the doc/api directory in
the source tree and can be regenerated at any time by typing

doxygen dude.dox

"http://scilabsoft.inria.fr/
*http://www.doxygen.org/
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with the root of the source tree as the current directory. The documentation is generated in
HTML and IATEX, and placed in doc/api/htlp and doc/api/latex respectively. The I TEXtool
has to be run in order to produce a printable document. To do this, type

latex refman.tex

from the doc/api/latex directory.

A.8 parameterization

As was mentioned, most of the core classes are C++ templates. Two parameters were consid-
ered in the generalization of the algorithms: the dimension of the sequences, and the type used
for the symbols. In this way, the current implementation is potentially applicable to arbitrary
dimensional sequences (from audio to multidimensional images), and arbitrary symbol types
(from bytes to double values).

However, some minor changes are needed to be able to use the implementation for dimensions
other than 2. This is mainly because some 2D-specific algorithms (for example, the Napkin pre-
dictor) are defined only in terms of 2D sequences, and because the code includes the generation
of some debugging images which rely on 2D-specific output formats. It is very easy to com-
ment out these parts, and the included 2D-specific algorithms so that the rest works for other
applications.

A.9 utilitles

Flexibility, ease of configuration and runtime debugging output were considered of key im-
portance in the development, as this implementation is an experimentation tool above anything
else. A set of general purpose utilities were included that deal with such tasks. These utilities
are grouped under the util namespace and, because they do not rely on generic parameters,
can be precompiled into a library whose name is simply “dude” (actually, the system dependent
name may vary: for Windows it is dude.lib, and for Unix/linux libdude.a).

A.9.1 configuration

All the algorithms are configurable in a hierarchical fashion. Each algorithm can have its
own parameters, and its subalgorithms as well. The parameters are organized in a hierarchi-
cal, domain-like structure that reflects the aggregation of algorithms and subalgorithms. For
example, the DUDE algorithm has its parameters in the “root” domain, thus the name of its
parameters appear directly as, for example, “recursion_level” or “recursive”. The DUDE in-
cludes a prefilter as one of its subalgorithms, configured through the parameter “filter”. Filter,
in turn, has its own parameters, for example, “template”. The latter would appear as a global
configuration parameter under the name “filter.template”, showing that it is a parameter of the
subalgorithm “filter”. This same scheme can continue to any depth.

The Configuration tools enable us to use a uniform interface to configure the algorithms
and publish the available parameters, regardless of the “front-end”. For example, the current
implementation can read and write unix-like ASCII configuration files, parse command line
arguments and produce help messages to the console without the need to write specific code



152 Appendix A. Software implementation

in the command line interface. The same implementation is used by the GUI to configure the
underlying implementation.

A.9.2 logging

The Logging facilies outputs information, error and debugging information to the console or
to a file. The level of verbosity can be configured at run time. The implementation includes
facility methods to build complex debugging output strings, tracking time between calls, and
output preformatted data such as vectors and matrices.

A.9.3 input/output formats for images and matrices

The current implementation includes a generic interface for reading and writing images, and
a specific implementation for the PGM format usually found as the “raw” image format under
Unix or its variants. It also includes Windows Bitmap (BMP) read and write capability.

Also included are utilities to read and write Matlab (4.2) matrices, which are also handled by
Scilab (an open source Matlab clone), to communicate data between these development tools
and the C++ program.

A.10 command line interface

As the whole implementation is modularized, the command line interface is just a small
program which accepts the full set of configuration parameters through a configuration file
and/or command line parameters, a noisy image to be denoised or else a clean image to add
simulated noise and then denoise it, producing the denoised output as well as optional analysis
information for experimentation purposes. Some of the common usage cases are described
below.

Without arguments , the command

dude

runs a demo by creating a uniform 128 by 128 gray image, adding noise to it and then
denoising it with the default configuration.
To obtain online help |, type

dude -h

The execution will terminate immediatly. All the parameters are of the form -key=value,
although the -help option shows the parameters without the hypen prefix.

To obtain help for the full set of parameters use -X before -h:

dude -X -h

To simmulate noise on a clean image and then denoise it using the default configuration:

dude some_image.pgm
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This will use the default noise type and parameters (Salt and Pepper noise with A = 30%,
Napkin modeler). The following example

dude -channel=gaussian -channel.sigma=5 ...
-outdir=gauss5_test some_img.pgm

will corrupt the image using a Gaussian channel with o = 5, denoise it and place the output
in the gauss5_test directory.

To create a default configuration file dude -create=name of the file

The “.cfg” extension has been adopted by convention, but it is not a requirement. Both the
-help option and the generated configuration files give detailed information on each parameter
and are a good source of information to learn how to use the program.

To use a specific configuration file

dude -config=some_cfg file

To avoid the addition of noise (to clean an already noisy image), use

dude -add_noise=false ...

A.10.1 configuration files

Configuration files are simple ASCII files where the lines are of the form key=value (whitout
the preceding hypen). If a “#” appears on a file, the rest of the line in which it appears is
ignored. Any line that begins with a “#” is considered a comment. The best way to use the
command line interface is to produce a default configuration file with the -create command.

A.11 graphical user interface

A graphical user interface (GUI) is included for ease of use. The GUI is written in the Java
language as it is very easy to write such applications in that language and also highly portable
as a way to produce graphical user interfaces.

The GUI is easier to use than the command line interface, although it doesn’t give access
to the full range of parameters. The interface shows a twin display which pans and zooms
synchronously so that comparison between images is easy at any resolution or even pixel by
pixel. The basic operations are presented as buttons in the main window, while the rest is
contained in the menu bar.

The GUI also contains some basic tools for the analysis of the denoising process (image differ-
ences,standard measures such as PSNR, etc.). Finally, the rest of the configurable parameters
that are not accesible can be set by creating a custom configuration file and loading it with the
GUI (these files are the same used by the command line interface).
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A.11.1 Java/C++ integration (JNI)

The C++/Java communication is carried out using the JNI standard (Java Native Interface)
mechanism that comes with the development kit. The GUI implementation is thus divided in
a series of Java classes and a series of C files which interface the Java classes with the DUDE
implementation. The compilation of such a program is rather complicated and requires the
use of some specific Java tools to complete the process. These steps are included in both
the GNU Make makefile and Visual C++ Solution file for the GUI so no real knowledge is
needed to compile it, but certain special requirements are still needed. For instance, the Java
Development Kit® (1.4 or above) is needed to compile the GUI, the JAVA_HOME environment
variable must be defined, and the Java compilation tools (javac, javah) need to be included in
the PATH environment variable.

*http://javasoft.sun.com/



B Fast closed forms for the denoising
function

In the following derivations it is assumed that the expected loss is computed with respect to a
distribution P over an alphabet A = {0,..., M — 1}.

B.1 For the L loss model

Consider the expected loss for the L error and a chosen denoiser output a. In this case
each term of the loss matrix A;, = | — «| and the expected loss R, can be written as

r=M-—1
Ry= Y P(X=z)z-0f (B.1)
z=0
this can be rewritten as
r=a—1 -1
Ry= Y PX=uz)(a-1)+ P(X =z)(z — a) (B.2)
x=0 r=a-+1

Consider the definition of the median of P, aeq for which

1. P(X < Gimed) > 1/2

2. P(X > amed) > 1/2

To prove that ameq yields the minimum expected loss, it suffices to show that R, is a mono-
tonically decreasing function for o < ameq, and monotonically increasing for o > ameq. For
this, take the difference R, — Ro_1:
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r=a—1 M-—1
Ry — Ray = PX=z)a-2)+ » PX=z)(z-a)- (B.3)
=0 r=a+1
rT=a—2 " M-1
Y PX=a)a-1-z)+ Y P(sz)(w—(a—l)))
m:amflo m:a72x_a
= P(X =z)(a—x) — PX=z)a-1—-x)+
e Vet
PX =2x)(z—a) — P(X =z)(z — (a—1))
r=a+1 r=o
r=a—1 r=a—2 a—2
= P(X =z)(a—x) — P(sz)(a—m)—i—ZP(X:x)—l-
e Mot iy
PX=z)(z-a)- Y P(X=z)(z-0a)- > PX=uz)
r=a+1 =« r=au
: -2 M-1
= P(X=a-1)+) P(X=12)— ) P(X=u)
a—1 ]\I/[:—Ul o
= Y P(X=2)- > P(X=ux
=0 =«

Using the definition of aypeq,

_J <0, a> amne
Ra Ra—l —{ >0 — S Cmed (B4)
Thus, the global minimum is a = ayyeq-
B.2 For the L, loss model
In this case Ayo = (z — @)?. Using Ep(.) to denote expectation over P,
Ro = Ep[(z - a)’] (B.5)
which can be developed using the basic properties of expectation
R, = Ep[(z* - 2az + o’ (B.6)
= Ep[z?] - 2aEp + o?
(B.7)

2

if o is relaxed to be a continuos value between 0 and M — 1, (z —«)“ is a strictly convex function
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of @ and a global optimum can be found by differentiating (B.7)

dR,
da

= 2a — 2Ep|7] (B.8)

where the optimum corresponds to %, i.e., « = Ep. When this optimum is not integer, some
strategy is used to map it to an integer value within A, for example, rounding.






C Parametric second pass for Gaussian
distributions

The purpose of this section is to obtain an expression for 6, the parameter of the Two Sided
Geometric Distribution, in terms of the variance of this distribution, 0. For this, consider a
TSGD with parameter § and mean 0,

P(X =z) = (1 —6)6/" (C.1)
Its variance is given by the following expression:
=00 =00
ol =(1-0) Y 0lz?=2(1-0) ) ol (C.2)
T=—00 =0

the series expanson of (C.2) yields

0(0+ 1)

o’ = 2(1—0)9_13
o2 = 29(97_'_;)
6—1

6—1%2 = H(H+1)

which is reordered to obtain a second order polynomial on 6

(62 —2)0? —2(c> +1) + 02 =0 (C.3)

and finally







D Full results

This appendix presents the full set of results obtained in the experiments. For the Legacy
Modeling scheme, the set of images includes a subset of the images of the SIPI database
(http://sipi.usc.edu/services/database/), but exludes the bigger images contained in the
JPEG-LS test suite since the computational resources required were too much for the machines
used to run the tests. The Napkin results were obtained for both test suites as the computational
resources required for this scheme are much smaller.

Most of the images of the SIPI database are of about 1/4 million pixels (512 x 512 or
720 x 576), excepting “Camera”,“us” and “house” whose size is 256 x 256 (four times smaller).
This has an impact in the parameters which depend on the size of the image such as the number

of context classes.

D.1 Best results

A baboon barb2 barb boats bridge camera  goldy  hotely
10% 32.8 37.1 39.2 42.1 35.0 33.8 41.3 40.3
30% 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.2
A house lena  peppers splash tulips us average

10% 37.4 42.2 38.1 39.4 42.1 33.4 38.1

30% 34.7 37.5 33.8 39.3 37.2 28.6 33.8

Table D.1: Best results for the Salt and Pepper channel. Legacy scheme.

A baboon barb2 barb boats  bridge camera goldy hotely
10% 33.5 39.4 38.7 45.3 36.1 36.7 43.1 42.9
30% 27.8 32.9 31.7 38.3 30.6 31.1 36.9 36.3
A house lena  peppers splash  tulips us aerial2  bike3
10% 46.2 44.3 37.5 48.4 45.2 34.2 39.2 35.4
30% 38.4 38.2 33.5 41.5 37.9 28.7 32.8 30.7
A bike cafe cats tools  average

10% 33.4 32.9 38.3 29.2 39.0

30% 29.6 27.6 31.8 24.5 33.0

Table D.2: Best results for the Salt and Pepper channel. Napkin scheme.
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A baboon barb2 barb boats bridge camera goldy  hotely
70% 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.3
A house lena  peppers splash tulips us average

70% 30.4 30.7 25.7 33.3 29.8 18.9 27.0

Table D.3: Best results for extreme Salt and Pepper channel. Napkin scheme.

A baboon barb2 barb boats bridge camera  goldy  hotely
10% 33.5 39.6 41.0 444 35.9 34.4 42.7 42.4

30% 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.5

A house lena  peppers splash tulips us average

10% 38.0 43.0 40.1 44.5 44.5 33.6 39.8

30% 35.4 37.8 35.8 39.7 37.7 27.4 34.5

Table D.4: Best results for the Salt and Pepper channel. Combined scheme.

9. baboon barb2 barb boats  bridge camera goldy hotely
10% 27.8 32.6 31.4 36.4 30.6 28.1 36.6 35.1
20% 25.3 29.3 28.4 33.0 28.1 26.0 33.5 31.3
30% 23.6 26.9 26.4 30.5 26.3 24.5 30.9 28.3
P, house lena  peppers splash  tulips us aerial2  bike3
10% 33.9 37.1 36.1 38.1 36.2 24.5 31.2 29.4
20% 31.8 34.2 32.9 35.9 32.8 22.1 28.3 27.2
30% 30.4 31.7 30.2 33.5 30.0 19.7 25.6 254
P, bike cafe cats tools average

10% 27.2 26.1 32.8 24.7 31.3

20% 25.2 23.6 29.5 21.9 28.6

30% 23.9 21.9 27.0 20.4 26.4

Table D.5: Best results for the g-ary symmetric channel. Napkin scheme.

o | baboon barb2 barb boats bridge camera  goldy  hotely
10 29.9 30.8 32.4 34.0 30.3 32.5 32.9 33.4

20 25.6 26.6 28.6 30.4 26.4 28.5 29.7 29.8

25 24.4 25.7 27.3 29.3 25.3 27.4 28.7 28.6

o house lena  peppers splash tulips us average

10 34.1 34.2 34.6 34.7 33.6 32.4 32.8

20 31.1 31.0 31.3 30.4 30.4 29.3 29.2

25 29.8 29.9 30.6 29.4 29.3 27.8 28.1

Table D.6: Best results for the Gaussian channel. Legacy modeling scheme.
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D.2 Selection of the parameters

D.2.1 Legacy for Salt and Pepper

NC | baboon barb2 barb boats bridge camera goldy  hotely
64 5.9 4.8 4.8 4.0 5.5 4.3 4.5 4.4
128 5.9 4.7 4.8 4.0 5.5 4.3 4.5 4.4
192 5.9 4.7 4.8 4.0 5.5 4.4 4.4 4.4
256 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4
320 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4
NC | house lena  peppers splash tulips us average

64 4.1 4.2 3.9 3.8 4.3 3.0 4.4

128 4.2 4.2 3.9 3.8 4.3 3.0 4.4

192 4.2 4.2 4.0 3.9 4.3 3.1 4.4

256 4.4 4.2 4.0 3.9 4.3 3.1 4.4

320 4.4 4.2 4.0 4.0 4.3 3.1 4.5

Table D.7: Legacy for Salt and Pepper. Compressibility vs. number of context clusters.
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Variation in Compression (% bpp) w. r. to leftmost value

baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ---- camera --©-— house ---4--- splash ---<-- average —e—

Figure D.1: Legacy for Salt and Pepper. Compressibility vs. number of context clusters.
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NC
64

128
192
256
320

baboon barb2 barb boats bridge camera goldy  hotely
26.9 30.9 31.1 35.1 294 29.6 35.1 33.5
27.2 31.1 31.8 35.4 29.5 29.9 35.3 33.9
27.2 31.2 31.9 35.4 29.6 29.5 35.3 33.9
27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0
27.2 31.3 32.2 35.5 29.6 29.2 35.3 34.0

NC
64

128
192
256
320

house lena  peppers splash tulips us average
34.7 36.5 32.2 38.7 35.8 26.9 32.6
34.8 36.6 32.6 38.4 36.1 26.8 32.8
34.1 36.7 32.6 37.8 36.2 27.1 32.7
33.3 36.7 32.4 38.0 36.3 27.1 32.7
33.2 36.6 32.5 37.1 36.3 27.0 32.6

Table D.8: Legacy for Salt and Pepper. PSNR vs. number of context clusters.

Variation in PSNR (% dB) w. r. to leftmost value

Figure D.2: Legacy for Salt and Pepper. PSNR vs. number of context clusters.

_x ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ]
; o
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50 100 150 200 250 300 350
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ---- camera --©-— house ---4--- splash --<-- average —e—
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Context | baboon barb2 barb boats bridge camera goldy  hotely
3x3 6.0 4.9 4.9 4.1 5.6 4.6 4.5 4.5
5x5 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4
77 6.0 4.8 4.8 4.1 5.6 4.5 4.5 4.5
Context | house lena  peppers splash tulips us average

3x3 4.4 4.2 4.1 3.9 4.4 3.1 4.5

5x5 4.4 4.2 4.0 3.9 4.3 3.1 4.4

77 44 4.2 4.0 3.8 4.3 3.5 4.5

Table D.9: Legacy for Salt and Pepper. Compressibility vs. radius of the contextss.

16

Variation in Compression (% bpp) w. r. to leftmost value

I S S S A

baboon —+—
barb2 --x--
barb ----

boats -8 goldy -- -
bridge — =& —- hotely ---&
camera --©-- house ---4---

lena —s—

- peppers —-v--
splash --<--

tulips -
us —e—
average —e—

Figure D.3: Legacy for Salt and Pepper. Compressibility vs. radius of the contexts.
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Context | baboon barb2 barb boats bridge camera goldy  hotely
3x3 26.7 29.7 29.9 33.7 28.8 28.1 33.9 314
5x5 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0
77 26.8 31.2 32.1 35.0 29.1 28.9 34.7 33.2
Context | house lena  peppers splash tulips us average

3x3 32.1 34.9 31.5 37.0 34.1 26.2 31.3

5x5 33.3 36.7 32.4 38.0 36.3 27.1 32.7

77 32.9 36.1 31.7 38.6 35.5 26.7 32.3

Table D.10: Legacy for Salt and Pepper. PSNR vs. radius of the contexts.

Variation in PSNR (% dB) w. r. to leftmost value

1 15 2 25 3
baboon —— boats -8 goldy -- - -- lena —v— tulips -+
barb2 --x-- bridge —-=—- hotely ---a-- peppers --v-- us —-e—-
barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.4: Legacy for Salt and Pepper. PSNR vs. radius of the contexts.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
1.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.4
2.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.3
3.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.4
4.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.4
5.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.3
6.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.4
Tter. | house lena  peppers splash tulips us average

1 4.4 4.2 3.9 3.8 4.2 3.1 4.4

2 4.3 4.2 4.0 3.7 4.2 3.1 4.4

3 4.3 4.2 4.0 3.8 4.2 3.0 4.4

4 4.4 4.2 3.9 3.8 4.2 3.1 4.4

5 4.3 4.2 3.9 3.8 4.2 3.1 4.4

6 4.3 4.2 3.9 3.8 4.2 3.0 4.4

Table D.11: Legacy for Salt and Pepper. Compressibility vs. number of prefiltering iterations

Variation in Compression (% bpp) w. r. to leftmost value

2 | | | |
1 2 3 4 5 6
baboon —— boats -8 goldy ---e-- lena —v— tulips -

barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ----- camera --©-— house ---4--- splash ----- average —e—

Figure D.5: Legacy for Salt and Pepper. Compressibility vs. number of prefiltering iterations
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
1 27.6 32.4 33.4 36.4 30.0 29.7 35.8 34.9
2 27.7 32.7 33.7 36.6 30.0 30.1 36.0 35.2
3 27.7 32.9 33.9 36.7 30.1 30.0 36.0 35.2
4 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.2
5 27.7 32.9 33.9 36.7 30.0 30.1 36.0 35.2
6 27.7 32.9 33.8 36.7 30.0 30.2 36.0 35.1
Tter. | house lena  peppers splash tulips us average

1 34.2 37.3 33.4 38.6 37.0 28.3 33.5

2 34.8 37.5 33.3 39.4 37.2 28.5 33.8

3 35.2 37.4 33.6 39.4 37.2 28.4 33.8

4 34.7 37.5 33.8 39.3 37.2 28.6 33.8

5 34.6 37.4 33.7 39.1 37.2 28.6 33.8

6 34.9 37.5 33.5 39.4 37.2 28.5 33.8

Table D.12: Legacy for Salt and Pepper. PSNR vs. number of prefiltering iterations.

Variation in PSNR (% dB) w. r. to leftmost value

-0.5

25 |1 S -

baboon —+—
barb2 --x--
barb ---*--

Figure D.6: Legacy for Salt and Pepper. PSNR vs. number of prefiltering iterations

boats -8
bridge —-&-—-
camera --©--

lena —v—
peppers --v--
splash -----

average =—e—
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
2 5.9 4.8 4.8 4.0 5.5 4.6 4.5 4.4
4 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.4
8 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.4
20 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4
40 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.4
80 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.4
Tter. | house lena  peppers splash tulips us average

2 4.4 4.2 4.0 3.9 4.3 3.2 4.5

4 4.4 4.2 4.0 3.9 4.3 3.2 4.5

8 4.4 4.2 4.0 3.9 4.3 3.2 4.4

20 4.4 4.2 4.0 3.9 4.3 3.1 4.4

40 4.4 4.2 4.0 3.9 4.3 3.1 4.4

80 4.3 4.2 4.0 3.9 4.3 3.0 4.4

Table D.13: Legacy for Salt and Pepper. Comp. vs. number of LBG iterations.

Variation in Compression (% bpp) w. r. to leftmost value

0 10 20 30 40 50 60 70 80
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ---- camera --©-— house ---4--- splash --<-- average —e—

Figure D.7: Legacy for Salt and Pepper. Comp. vs. number of LBG iterations.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
2 27.0 30.9 31.4 35.2 29.5 29.2 35.1 33.8
4 27.1 31.0 31.8 35.2 29.6 29.3 35.2 33.8
8 27.2 31.2 31.9 35.3 29.6 29.3 35.3 33.9
20 27.2 31.2 32.1 35.5 29.6 29.3 35.3 34.0
40 27.2 31.3 32.1 35.5 29.6 29.2 35.3 34.0
80 27.2 31.3 32.2 35.6 29.6 29.3 35.3 34.0
Iter. | house lena  peppers splash tulips us average

2 33.8 36.4 32.0 38.4 35.9 26.6 32.5

4 33.8 36.5 32.2 38.4 36.1 26.9 32.6

8 33.8 36.6 32.2 38.3 36.2 27.0 32.7

20 33.6 36.7 32.3 38.1 36.3 27.0 32.7

40 33.5 36.7 32.7 37.5 36.3 27.1 32.7

80 33.5 36.7 32.7 37.4 36.4 27.2 32.7

Table D.14: Legacy for Salt and Pepper. PSNR vs. number of LBG iterations.

Pred. baboon barb2 barb boats bridge camera goldy  hotely
average 6.0 4.9 4.9 4.2 5.6 4.6 4.6 4.6
median 6.0 4.8 4.9 4.2 5.6 4.6 4.6 4.5
gaussian 6.0 4.8 4.9 4.2 5.5 4.6 4.6 4.5
Pred. house lena  peppers splash tulips us average

average 4.4 4.3 4.2 4.0 4.5 4.1 4.6

median 4.4 4.3 4.2 3.9 4.5 4.1 4.6

gaussian 4.4 4.3 4.1 4.0 4.4 4.0 4.6

Table D.15: Legacy for Salt and Pepper. Comp. vs. type of predictor.
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Figure D.8: Legacy for Salt and Pepper. PSNR vs. number of LBG iterations.

Pred. baboon barb2 barb boats bridge camera goldy  hotely
average 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0
median 26.9 30.8 31.7 35.0 29.4 29.0 35.1 33.4
gaussian 27.3 31.4 32.2 35.7 29.8 29.4 35.4 34.2
Pred. house lena  peppers splash tulips us average

average 33.3 36.7 32.4 38.0 36.3 27.1 32.7

median 32.9 36.4 32.0 38.2 35.9 26.4 32.4

gaussian 33.5 36.9 32.5 38.5 36.6 27.2 32.9

Table D.16: Legacy for Salt and Pepper. PSNR vs. type of predictor.
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D.2.2 Napkin for Salt and Pepper

Iter. | baboon barb2 barb boats bridge camera goldy  hotely
0 6.1 5.5 5.6 5.1 6.0 5.5 5.3 5.4
10 5.7 4.7 4.8 3.9 5.4 4.3 4.7 4.4
20 5.7 4.6 4.7 3.8 5.3 4.4 4.5 4.2
30 5.6 4.7 4.6 3.8 5.3 4.4 4.4 4.2
40 5.6 4.5 4.6 3.8 5.3 4.3 4.3 4.1
60 5.7 4.8 4.6 3.8 5.3 4.2 4.2 4.2
80 5.6 4.6 4.6 3.7 5.3 4.2 4.2 4.2
Tter. | house lena  peppers splash tulips us average

0 5.4 5.2 5.1 5.0 5.4 5.3 5.4

10 4.4 4.2 3.9 3.8 4.4 4.4 4.5

20 4.3 4.1 3.8 3.6 4.2 3.8 4.4

30 4.4 4.1 3.8 3.4 4.2 3.6 4.3

40 4.2 4.1 3.8 3.4 4.2 3.4 4.3

60 4.2 4.0 3.7 3.4 4.2 3.3 4.3

80 4.1 3.9 3.7 3.4 4.2 3.5 4.2
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Table D.17: Napkin for Extreme Salt and Pepper. Compressibility vs. prefiltering iterations.
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Variation in Compression (% bpp) w. r. to leftmost value

0 10 20 30 40 50 60 70 80
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ----- camera --©-— house ---4--- splash ---<-- average —e—

Figure D.9: Napkin for Extreme Salt and Pepper. Compressibility vs. prefiltering iterations.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
0 18.8 19.9 19.8 21.3 19.5 18.9 20.6 19.5
10 21.5 24.4 23.2 28.2 23.5 23.6 22.9 25.6
20 21.8 25.1 24.2 29.6 24.2 24.1 24.5 27.6
30 21.9 25.2 24.6 30.0 24.3 24.2 26.1 28.1
40 21.9 25.3 24.7 30.1 24.4 24.3 27.7 28.2
60 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.3
80 21.9 25.3 24.9 30.3 24.4 24.3 29.7 28.3
Tter. | house lena  peppers splash tulips us average

0 20.8 21.6 20.5 20.8 20.3 15.5 19.9

10 28.2 29.0 25.7 26.3 27.7 17.5 24.8

20 29.6 30.4 26.2 30.1 29.6 18.5 26.1

30 29.9 30.6 26.1 32.9 29.8 18.9 26.6

40 30.3 30.7 26.0 33.3 29.9 19.1 26.8

60 30.4 30.7 25.7 33.3 29.8 18.9 27.0

80 30.5 30.7 25.6 33.3 29.9 18.2 27.0

Table D.18: Napkin for Extreme Salt and Pepper. PSNR vs. prefiltering iterations.

70 T T T T T T T

Variation in PSNR (% dB) w. r. to leftmost value

0 10 20 30 40 50 60 70 80
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-=—- hotely ---a-- peppers —-v-- us —-e—-
barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.10: Napkin for Extreme Salt and Pepper. PSNR vs. prefiltering iterations.
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ALB | baboon barb2 barb boats  bridge camera goldy hotely
1 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.3
3 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.3
5 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.3
7 6.0 4.8 4.8 4.0 5.5 4.4 4.4 44
ALB | house lena  peppers splash  tulips us aerial2  bike3
1 4.0 4.1 3.8 3.5 4.2 3.0 4.1 4.2
3 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.2
5 4.0 4.1 3.8 3.5 4.1 3.0 4.1 4.2
7 4.2 4.2 3.9 3.6 4.2 3.2 4.2 4.2
ALB bike cafe cats tools  average

1 4.2 5.0 5.1 5.4 4.4

3 4.1 5.0 5.0 5.3 4.4

5 4.1 5.0 5.0 5.3 4.4

7 4.1 5.0 5.1 5.3 4.5

Table D.19: Napkin for Salt and Pepper. Compressibility vs. prefiltering number of context
classes. The number of context classes is 2478 where ALB are the activity level bits.

Variation in Compression (% bpp) w. r. to leftmost value

baboon —+—

barb2 --x--
barb ---x--
boats -8
bridge — =& —-
camera --©--

goldy ---e--
hotely ---2--
house ---4---

peppers —-v--
splash -----

cats.ropped —e—
tools --@--
average —@—

Figure D.11: Napkin for Salt and Pepper. Compressibility vs. prefiltering number of context
classes.The number of context classes is 2477 where ALB are the activity level bits.
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ALB | baboon barb2 barb boats  bridge camera goldy hotely
1.00 274 30.8 30.7 35.9 30.0 30.1 35.8 33.8
3.00 274 30.9 30.8 36.0 30.0 30.0 35.8 33.9
5.00 274 30.9 30.8 35.9 30.0 29.9 35.8 33.9
7.00 26.8 30.4 30.2 35.5 29.5 29.2 35.4 33.6

ALB | house lena  peppers splash  tulips us aerial2  bike3
1 35.7 36.8 32.4 39.6 36.4 27.3 31.8 29.9
3 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.1
5 35.6 36.9 32.3 39.7 36.6 27.4 32.0 30.2

-3

34.8 36.3 32.1 39.5 36.2 27.2 31.7 30.0
ALB bike cafe cats tools  average

28.3 26.4 31.1 23.4 31.7

28.4 26.5 31.3 23.6 31.8

28.5 26.5 31.3 23.6 31.8

28.5 26.5 31.2 23.5 31.4

~J Ot W =

Table D.20: Napkin for Salt and Pepper. PSNR vs. prefiltering number of context classes.The
number of context classes is 2477 where ALB are the activity level bits.
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Figure D.12: Napkin for Salt and Pepper. PSNR vs. prefiltering number of context classes.The
number of context classes is 2477 where ALB are the activity level bits.
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Pred. baboon barb2 barb boats  bridge camera goldy hotely
average 5.6 4.4 4.4 3.7 5.1 4.0 4.1 4.0
sharp 5.6 4.4 4.5 3.8 5.2 4.0 4.2 4.1
smooth 5.6 4.5 4.5 3.8 5.3 4.1 4.2 4.2
Pred. house lena  peppers splash  tulips us aerial2  bike3
average 3.9 3.8 3.6 3.2 4.0 3.1 4.0 3.9
sharp 3.8 3.9 3.6 3.3 4.1 2.8 4.1 4.0
smooth 3.9 3.9 3.6 3.3 4.1 2.9 3.9 4.0
Pred. bike cafe cats tools  average

average 3.8 4.8 4.8 5.1 4.2

sharp 3.8 4.8 4.8 5.1 4.2

smooth 3.9 4.9 4.8 5.2 4.2

Table D.21: Napkin for Salt and Pepper. Compressibility vs. prediction variant.

Compression (bpp)

25 !

1 15 2 25 3
baboon —+— goldy -- - -- tulips e catscropped —e—
barb2 --x-- hotely ---a-- us —-e—- tools --©--
barb ----- house ---a--- aerial2 --#-- average --9®--
boats -8 lena —s— bike3 -- ©-- average —@—
bridge —-&—- peppers —-v-- bike ---o--
camera --©- - splash --<¢-- cafe ---o---

Figure D.13: Napkin for Salt and Pepper. Compressibility vs. prediction variant.
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Pred. baboon barb2 barb boats  bridge camera goldy hotely
average 26.4 29.7 29.4 35.1 29.1 29.8 34.8 33.4

sharp 26.2 29.5 29.1 33.9 28.7 29.5 33.9 32.5
smooth 25.8 28.3 28.7 33.3 28.1 28.7 33.6 31.1
Pred. house lena  peppers splash  tulips us aerial2  bike3

average 34.9 35.7 32.6 39.2 35.1 27.6 30.9 29.6
sharp 33.9 34.6 31.8 38.0 33.7 27.6 30.3 29.3
smooth 33.1 34.5 32.0 38.0 33.5 26.4 29.6 28.7

Pred. bike cafe cats tools  average
average 28.2 26.3 29.7 23.5 31.1
sharp 28.0 26.2 29.0 23.4 30.5

smooth 27.1 25.0 28.9 22.4 29.8

Table D.22: Napkin for Salt and Pepper. PSNR vs. prediction variant.

40 ] ] ]

PSNR (dB)

1 1.5 2 25 3
baboon —+— goldy -- - -- tulips e catscropped —e—
barb2 --x-- hotely ---a-- us —e—- tools --©--
barb ----- house ---4--- aerial2 --e-- average --@--
boats & lena —s— bike3 -- ©-- average —@—
bridge —-&—- peppers —-v-- bike ---o--
camera --©- - splash ----- cafe ---o---

Figure D.14: Napkin for Salt and Pepper. PSNR vs. prediction variant.
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Iter. | baboon barb2 barb boats  bridge camera goldy hotely
0 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.3
1 5.8 4.6 4.7 3.9 5.4 4.2 4.3 4.2
3 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.2
5 5.8 4.6 4.7 3.9 5.4 4.3 4.3 4.2
7 5.8 4.6 4.7 3.8 5.4 4.3 4.3 4.2
9 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.2
Tter house lena  peppers splash  tulips us aerial2  bike3
0 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.2
1 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.2
3 4.0 4.0 3.8 3.5 4.1 2.9 4.0 4.1
5 4.0 4.0 3.8 3.5 4.1 2.9 4.1 4.1
7 3.9 4.0 3.8 3.5 4.1 2.9 4.1 4.1
9 4.0 4.0 3.8 3.5 4.1 3.1 4.2 4.1
Iter bike cafe cats tools  average

0 4.1 5.0 5.0 5.3 4.4

1 4.1 5.0 5.0 5.3 4.4

3 4.1 5.0 5.0 5.3 4.3

5 4.1 5.0 5.0 5.3 4.3

7 4.1 5.0 5.0 5.3 4.3

9 4.1 5.0 5.0 5.3 4.4

Table D.23: Napkin for Salt and Pepper. Compressibility vs. iterative prefiltering applications.

Variation in Compression (% bpp) w. r. to leftmost value

Figure D.15:

baboon —+— goldy -- - tulips e cats.ropped —e—
barb2 --x-- hotely ---a-- us —-e—- tools --@--
barb ----- house ---a--- aerial2 --e-- average —@—
boats 8- lena —s— bike3 -- ®--

bridge — =& —- peppers —-v-- bike ---e--

camera - o - splash ----- cafe ---o---

Napkin for Salt and Pepper. Compressibility vs. iterative prefiltering applications.
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Iter. | baboon barb2 barb boats  bridge camera goldy hotely
0 27.4 30.9 30.8 36.0 30.0 30.0 35.8 33.9
1 27.7 31.9 31.4 37.2 30.4 30.7 36.5 35.3
3 27.8 32.6 31.7 37.9 30.6 31.0 36.8 36.1
5 27.8 32.8 31.7 38.2 30.6 31.1 36.9 36.3
7 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.3
9 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.4
Iter house lena  peppers splash  tulips us aerial2  bike3
0 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.1
1 37.1 37.7 32.9 40.7 37.5 28.2 32.5 30.6
3 38.0 38.1 33.3 41.3 37.9 28.5 32.8 30.8
5 38.3 38.2 33.4 41.5 38.0 28.7 32.8 30.8
7 38.4 38.2 33.4 41.5 37.9 28.7 32.8 30.7
9 38.5 38.2 33.4 41.6 37.9 28.7 32.8 30.7
Iter bike cafe cats tools  average

0 28.4 26.5 31.3 23.6 31.8

1 29.2 27.2 31.7 24.1 32.5

3 29.5 27.5 31.8 24.4 32.9

5 29.6 27.6 31.8 24.5 33.0

7 29.6 27.6 31.8 24.5 33.0

9 29.7 27.6 31.7 24.5 33.0

Table D.24: Napkin for Salt and Pepper. PSNR vs. iterative prefiltering applications.

Variation in PSNR (% dB) w. r. to leftmost value

baboon —+—
barb2 --x--
barb --x--
boats -8
bridge —-=—-
camera --©--

Figure D.16: Napkin for Salt and Pepper. PSNR vs. iterative prefiltering applications.
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Appendix D. Full results

Iter. | baboon barb2 barb boats bridge camera goldy  hotely
1 5.9 4.7 4.8 4.2 5.4 4.5 4.5 4.4
3 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.4
5 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.4
7 5.9 4.7 4.8 4.1 5.4 4.6 4.5 4.5
Iter house lena  peppers splash tulips us average

1 4.4 4.3 4.1 3.8 4.3 3.5 4.5

3 4.2 4.3 4.1 3.8 4.4 3.8 4.5

5 4.2 4.3 4.0 3.9 4.4 4.0 4.5

7 4.3 4.3 4.1 3.9 4.4 4.1 4.5

Table D.25: Combined LBG/Napkin for Salt and Pepper. Compressibility vs. iterative pre-
filtering applications.

Iter. | baboon barb2 barb boats bridge camera goldy  hotely
1 27.9 32.9 33.9 37.2 30.6 30.2 36.5 35.8
3 28.1 33.5 34.6 38.0 30.7 30.2 36.8 36.4
5 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.5
7 28.1 33.7 34.9 38.1 30.7 30.4 37.0 36.4
Tter. | house lena  peppers splash tulips us average

1 34.3 37.6 34.4 39.6 37.5 28.5 34.0

3 34.8 37.9 35.4 39.8 37.8 28.8 34.5

5 35.4 37.8 35.8 39.7 37.7 27.4 34.5

7 35.1 37.7 36.0 39.4 37.6 25.1 34.3

Table D.26: Combined LBG/Napkin for Salt and Pepper. PSNR vs. iterative prefiltering

applications.

D.2.3 Combined LBG/Napkin for Salt and Pepper
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20 ! ! ! ! !

Variation in Compression (% bpp) w. r. to leftmost value

= | | Iy Sy |

1 2 3 4 5 6 7
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ----- camera --©-— house ---4--- splash ---<-- average —e—

Figure D.17: Combined LBG/Napkin for Salt and Pepper. Compressibility vs. iterative pre-
filtering applications.
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Variation in PSNR (% dB) w. r. to leftmost value

baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge — & —- hotely ---a-- peppers --v--
barb ----- camera --©-— house ---4--- splash ---<-- average —e—

Figure D.18: Combined LBG/Napkin for Salt and Pepper. PSNR vs. iterative prefiltering
applications.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
4 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.6
8 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.6
16 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.6
32 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6
64 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6
Tter. | house lena  peppers splash tulips us average

4 4.6 4.4 4.2 4.1 4.5 4.0 4.7

8 4.6 4.4 4.2 4.1 4.5 4.2 4.7

16 4.6 4.4 4.2 4.1 4.5 4.1 4.7

32 4.5 4.4 4.2 4.1 4.5 4.2 4.7

64 4.6 4.4 4.2 4.1 4.5 4.3 4.7

Table D.27: Legacy for Gaussian noise. Comp. vs. LBG iterations.

D.2.4 Legacy for Gaussian noise
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Variation in Compression (% bpp) w. r. to leftmost value

0 10 20 30 40 50 60 70
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ---- camera --©-— house ---4--- splash ---<-- average —e—

Figure D.19: Legacy for Gaussian noise. Comp. vs. LBG iterations.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
4 25.4 27.6 27.8 29.9 26.4 28.1 29.6 29.4
8 25.4 27.6 28.0 30.0 26.4 28.1 29.6 29.4
16 25.4 27.7 28.0 30.0 26.4 28.1 29.7 29.5
32 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.5
64 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.5
Tter. | house lena  peppers splash tulips us average

4 30.1 30.5 31.1 31.2 30.2 28.9 29.0

8 30.2 30.6 31.2 31.1 30.2 29.0 29.1

16 30.3 30.6 31.3 31.1 30.3 29.0 29.1

32 30.3 30.6 31.3 31.1 30.3 29.1 29.1

64 30.3 30.6 31.3 31.1 30.3 29.0 29.1

Variation in PSNR (% dB) w. r. to leftmost value

Table D.28: Legacy for Gaussian noise. PSNR vs. LBG iterations.

-0.2

i i i i i i
0 10 20 30 40 50 60 70
baboon —+— boats -8 goldy ---e- lena —v— tulips e
barb2 --x-- bridge —-&-—- hotely ---2-- peppers --v-- us —-o—-
barb ----- camera --©-— house ---4--- splash ----- average —e—

Figure D.20: Legacy for Gaussian noise. PSNR vs. LBG iterations.
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Appendix D. Full results

Pred. baboon barb2 camera  goldy  hotely
average 5.9 5.1 4.8 4.4 4.6
median 6.0 5.1 4.8 4.5 4.7
gaussian 5.9 5.0 4.7 4.3 4.5
Pred. house lena us average
average 4.6 4.4 4.3 4.7
median 4.7 4.5 4.6 4.8
gaussian 4.4 4.2 4.3 4.6

Table D.29: Legacy for Gaussian noise. Compressibility vs. predictor.
Pred. baboon barb2 camera goldy  hotely
average 25.5 27.7 28.1 29.7 29.5
median 25.4 27.7 27.9 29.5 29.2
gaussian 25.5 27.8 28.2 29.8 29.6
Pred. house lena us average
average 30.3 30.6 29.0 29.1
median 30.0 30.4 26.4 28.8
gaussian | 30.4 30.8 29.2 29.3

Table D.30: Legacy for Gaussian noise. PSNR vs. predictor.
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Iter. | baboon barb2 barb boats bridge camera goldy  hotely
0 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6
1 5.7 5.0 4.8 4.2 5.4 4.5 4.3 4.3
2 5.7 5.1 5.0 4.6 5.4 4.9 4.7 4.7
4 5.7 5.1 4.9 4.4 5.3 4.7 4.4 4.5
Iter. | house lena  peppers splash tulips us average

0 4.6 4.4 4.2 4.1 4.5 4.3 4.7

1 4.1 4.0 3.9 4.0 4.4 3.6 4.4

2 4.3 4.5 4.4 4.3 4.6 4.3 4.7

4 4.5 4.3 4.2 4.2 4.4 3.8 4.6

Table D.31: Legacy for Gaussian noise. Compressibility vs. iterative prefiltering applications.

10 ] ] ] ] ] ] ]

Variation in Compression (% bpp) w. r. to leftmost value

20 | | | | | | |

0 0.5 1 15 2 25 3 35 4
baboon —— boats -8 goldy ---e-- lena —v— tulips -
barb2 --x-- bridge —-=—- hotely ---a-- peppers —-v-- us —-e—-
barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.21: Legacy for Gaussian noise. Compressibility vs. iterative prefiltering applications.
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Iter | baboon barb2 barb boats bridge camera goldy  hotely
0.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5

1.00 25.6 27.6 28.3 30.3 26.4 28.5 29.7 29.7

2.00 25.6 27.3 28.3 29.9 26.4 28.2 29.1 29.3

4.00 25.6 27.2 28.1 29.8 26.4 28.1 29.2 29.1

Iter. | house lena  peppers splash tulips us average

0 30.3 30.6 31.3 31.1 30.3 29.0 29.1

1 31.0 31.0 31.7 31.5 30.3 29.3 29.3

2 30.8 30.3 30.8 30.8 29.9 29.1 29.0

4 30.4 30.2 30.7 30.2 29.8 29.1 28.8

Table D.32: Legacy for Gaussian noise. PSNR vs. iterative prefiltering applications.

Variation in PSNR (% dB) w. r. to leftmost value

B e T — i, .
» . . . a a a a
0 0.5 1 1.5 2 25 3 35 4
baboon —+— boats & goldy ----- lena —v— tulips e
barb2 --x-- bridge —-=—- hotely ---a-- peppers --v-- us —-e—-
barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.22: Legacy for Gaussian noise. PSNR vs. iterative prefiltering applications.
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Clusters | baboon barb2 barb boats bridge camera goldy  hotely
32 6.0 5.1 5.2 4.4 5.5 4.7 4.4 4.7
64 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.6
96 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.6
128 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6
192 5.9 5.3 5.1 4.4 5.5 4.8 4.4 4.6
256 5.9 5.5 5.1 4.4 5.5 4.9 4.5 4.6
288 5.9 5.4 5.1 4.4 5.5 4.9 4.4 4.6
Clusters | house lena  peppers splash tulips us average

32 4.4 4.3 4.2 4.0 4.5 4.0 4.7

64 4.5 4.3 4.1 4.0 4.4 4.2 4.7

96 4.5 4.3 4.2 4.1 4.5 4.3 4.7

128 4.6 4.4 4.2 4.1 4.5 4.3 4.7

192 4.6 4.4 4.2 4.2 4.5 4.2 4.7

256 4.7 4.4 4.3 4.4 4.5 4.2 4.8

288 4.8 4.4 4.3 4.4 4.5 4.2 4.8

Table D.33: Legacy for Gaussian noise. Compressibility vs number of context clusters.

12 T T T T T

Variation in Compression (% bpp) w. r. to leftmost value

4 | | | | |
0 50 100 150 200 250 300
baboon —— boats -8 goldy ---e-- lena —v— tulips -

barb2 --x-- bridge —-=—- hotely ---a-- peppers —-v-- us —-e—-
barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.23: Legacy for Gaussian noise. Compressibility vs number of context clusters.
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Clusters | baboon barb2 barb boats bridge camera goldy  hotely
32.00 25.3 27.4 27.3 29.8 26.3 27.9 29.6 29.1
64.00 25.4 27.5 27.8 30.0 26.4 28.0 29.6 29.3
96.00 25.4 27.6 28.0 30.1 26.4 28.1 29.7 29.4
128.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5
192.00 25.5 27.0 28.1 30.2 26.4 28.1 29.7 29.5
256.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6
288.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6
Clusters | house lena  peppers splash tulips us average

32 30.1 30.5 31.1 31.1 30.0 28.5 28.9

64 30.3 30.6 31.2 31.1 30.2 28.9 29.0

96 30.3 30.6 31.2 31.1 30.2 28.9 29.1

128 30.3 30.6 31.3 31.1 30.3 29.0 29.1

192 30.3 30.6 31.2 30.8 30.3 29.3 29.1

256 30.2 30.6 30.8 29.9 30.4 29.3 29.0

288 30.1 30.6 30.9 29.7 30.4 29.5 29.0

Table D.34: Legacy for Gaussian noise. PSNR vs number of context clusters.

Variation in PSNR (% dB) w. r. to leftmost value
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baboon —— boats -8 goldy ---e-- lena —v— tulips -+
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barb ---*-- camera --© - house ---4--- splash --<-- average —e—

Figure D.24: Legacy for Gaussian noise. PSNR vs number of context clusters.
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