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Abstra
tThe problem of image denoising is a �eld of resear
h with more than 50 years of history.It is 
onsidered part of the more general problem of image restoration and, ultimately, imagepro
essing. As su
h, it has been addressed traditionally by the signal pro
essing 
ommunity,starting from the works of Wiener [35℄ in the late 1940's and Kalman [13℄. in 1960.The Dis
rete Universal DEnoiser (DUDE) [34℄ proposes a denoising method whi
h 
an beapplied to any kind of dis
rete sequen
es of any dimension, in
luding digital signals, and inparti
ular to digital images. This algorithm has been shown to a
hieve asymptoti
ally the per-forman
e of any �xed sliding-window denoiser for any given sequen
e 
orrupted by a memoryless
hannel, as the length of the sequen
e approa
hes in�nity.This work proposes variants to the basi
 algorithm for its appli
ation to 
ontinuous toneimages, for whi
h the sour
e alphabet is typi
ally very large and the asymptoti
 properties ofthe DUDE as originally presented be
ome less relevant. The goal is a
hieved by exploiting apriori knowledge of the stru
ture of su
h sequen
es.





1 Introdu
tion
1.1 Some historyThe problem of image denoising, in
luded in the more general problem of image restorationand ultimately of image pro
essing, is a �eld of resear
h with more than 50 years of historysin
e the appearan
e of television whi
h has drawn 
onsiderable attention sin
e the advent ofdigital images in the late 1970's. Today there are thousands of publi
ations on the �eld, andmany pra
ti
al appli
ations have bene�ted from their results.This problem has been addressed traditionally by the signal pro
essing 
ommunity startingfrom the works of Wiener [35℄ (1949) and Kalman [13℄ (1960), and most of the existing methodsto address it are derived from the 
lassi
al tools of the �eld of (Digital) Signal Pro
essing.Among these tools are:� Probability and statisti
s: Random Pro
esess, Ergodi
 Theory, Markov 
hains, Markov�elds, Hidden Markov models.� Control Theory: Tra
king and predi
tion (Kalman).� Signal Pro
essing: Digital/Analog Linear Filters, Wiener Filters, Fourier Analysis, Z-Transform.In the last 10 years many more mathemati
al tools have been added to the arsenal. Amongthese are� Signal Pro
essing: Wavelet/multiresolution analysis� Statisti
s: Advan
ed probability models� Fun
tional Analysis: Total Variation� Dynami
 Systems: Partial Di�erential Equations� Information Theory: Entropy, Minimum Des
ription Lenght, Predi
tion1.2 Digital ImagesThe des
ription of the problem of digital image denoising begins with the de�nition of thesubje
t of the problem: digital images. A digital image xm�n is de�ned as a two-dimensionalarray (grid) of m 2 N rows and n 2 N 
olumns, where N = f1; 2; 3; : : :g is the set of naturalnumbers. Ea
h position in the array (a sample or \pixel" {for \pi
ture element"{) is referredby a two-dimensional index i = (i1; i2) 2 N2 and is denoted as xi. The 
olor of ea
h pixel isdetermined by the value at its position in the array. There are three 
ommon interpretationsof this value:



8 Chapter 1. Introdu
tion

Figure 1.1: \Niquel Nausea", an indexed image with a 4-bit (16 
olors) palette. Ea
h 
olor inthe 
omi
 (left) 
orresponds to a 4-bit index to a position in the palette (right).� As an index into a palette of 
olors. These are indexed images (Figure 1.1).1� As a light intensity measure of a mono
hromati
 light. Images of this type are 
alled
ontinuous-tone images (Figure 1.2).� As a ve
tor of light intensities in n 
olor bands, usually: red, green and blue (RGB).Images of this type are 
alled true
olor. These images 
an always be de
omposed into nmono
hromati
 
ontinuous-tone images, one for ea
h band (Figure 1.3).This work is restri
ted to the se
ond 
ase, sin
e its analysis is simpler than the true
olor 
ase,and true
olor images 
an always be treated as an n-uple of 
ontinuous-tone images.2Computers store numeri
al values with �nite pre
ision. The light intensity at ea
h pixel isno ex
eption and it will have to assume one of a �nite set of values A = f0; 1; : : : ;M � 1g,where 0 represents the minimum intensity (bla
k), M � 1 is the maximum intensity (white),and the symbols between 0 and M � 1 represent 
ontinuously in
reasing intensities from bla
kto white. The set A is 
alled an alphabet, and its size jAj =M de�nes the pre
ision available torepresent the di�erent intensities. This size is determined by the number of bits-per-pixel (bpp)as M = 2bpp. A typi
al 
ontinuous-tone image has 8 bpp, whi
h yields M = 28 = 256 possibleintensities. Su
h is the 
ase of the images studied in this work.31.3 The problem of image denoisingDigital images su
h as digital photographs or s
anned do
uments are subje
ted to a series ofphenomena that result in some or all of their pixels being modi�ed in undesired ways (
orrupted).An example of this problem is the thermal noise at the CCD (Charge-Coupled Devi
es) arrayswhi
h sense the in
oming light in most digital 
ameras. In these devi
es, the intensity of ea
hpixel is proportional to the number of photons that hit ea
h 
ell in the CCD array. The thermalnoise is produ
ed by photons arriving from nearby atoms and is an e�e
t whi
h happens at anytemperature above absolute zero, in
reasing proportionally to the temperature of the devi
e.Figure 1.4 shows a s
heme of this pro
ess.1Image taken from http://niquelnausea.terra.
om.br as of August 20052This does not mean that working with all bands at on
e is equivalent. Algorithms based dire
tly on 
olor
an exploit the fa
t that bands are not independent of ea
h other.3There is nothing spe
ial about this value, however, most of the te
hniques des
ribed would apply to othervalues of bpp.



1.3. The problem of image denoising 9

(a) Continuous-tone image. Row 130 isshown dashed. (b) Pixel value (intensity) graph for row 130.Figure 1.2: \Co�ee Cup", a 
ontinuous tone image of 512 � 512 pixels. The graph to the right
orresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of itsheight).Another typi
al 
ase is the degradation of negative �lm by dust, s
rat
hes or fungi, whi
hintrodu
e tiny spe
ks that 
an be very notorious, degrade the aestheti
s of the image or hidevital parts of it. This type of noise also appears in some faulty digital 
ameras where some ofthe pixels in the sensing devi
e are defe
tive. This noise is usually 
alled \dust and s
rat
hes"or \salt and pepper" for its visual e�e
t.The e�e
t of both types of noise 
an be seen in Figure 1.5 for the \Co�ee Cup" image.The problem of image denoising is to 
orre
t or guess those faulty or deleted pixels so thatthe resulting image is 
loser to the original image. Ideally, the result should be more inteligible,and/or more pleasant to the human eye than the observed noisy image.The general pro
ess of image degradation 
an be des
ribed as in the diagram of Figure 1.6.In this diagram, the noisy image zm�n is the result of the 
lean (unknown) image xm�n aftergoing through a transmission 
hannel. Throughouth the rest of this do
ument, xm�n will beused to refer to the 
lean image and zm�n to the noisy image.The transmission is 
arried out sample by sample (for example from top to bottom and fromleft to right), and the 
hannel substitutes ea
h 
lean sample xi with a noisy sample zi witha given probability P (Z = zijX = xi). The 
hannels 
onsidered in this work are dis
retememoryless 
hannels (DMC). They are memoryless be
ause the probability of zi depends onlyon the value of the xi and is independent of the noisy value at any other position in the image.They are also dis
rete, as the as the alphabet of the input and output images (normally the samefor digital images) is dis
rete. A DMC is 
hara
terized by its transition matrix � = ((�ij))i;j2A,where ea
h element �i;j = P (Z = jjX = i) is the probability that the 
hannel outputs a noisysample with value j when the 
lean (unknown) sample value was i.
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(a) Color image. (b) Red 
omponent/band.

(
) Green 
omponent/band. (d) Blue 
omponent/band.Figure 1.3: \Kalimbas", a true
olor RGB image. Ea
h band is represented as an 8-bit 
ontinuoustone image.

Figure 1.4: S
heme of thermal noise in CCD arrays.
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(a) Co�ee 
up 
urrupted by thermalnoise. (b) Intensity 
urve of row 130 (about 1/3 of heightfrom the top).

(
) Co�ee 
up 
urrupted by dust ands
rat
hes. (d) Intensity 
urve of row 130.Figure 1.5: Examples of \Co�ee Cup" 
orrupted by di�erent types of noise.
source channel destination

noisePSfrag repla
ements xm�n zm�nFigure 1.6: Theoreti
al s
heme of the image degradation pro
ess.



12 Chapter 1. Introdu
tionExample The Binary Simmetri
 Channel (BSC) operates with A = f0; 1g as the input andoutput alphabet. The 
hannel inverts the value of the ea
h input symbol xi with probability p,and leaves it untou
hed with probability 1� p. Thus for ea
h input symbol x,P (Z = 1jx = 0) = P (Z = 0jx = 1) = pP (Z = 0jx = 0) = P (Z = 1jx = 1) = 1� pand the 
hannel transition matrix � is� = � 1� p pp 1� p �.Example The Z-Channel. Here again the input and output alphabets are A = f0; 1g. In this
ase a 
lean symbol with value 0 has a probability p of being substituted by a 1, and probability1�p of going through the 
hannel untou
hed. However, the symbol 1 is always kept untou
hed.This results in the following 
hannel transition matrix:� = � 1� p p0 1 �1.4 NotationThis se
tion formalizes the notation to be used throughout the rest of the do
ument. Someof it has already been introdu
ed previously in this 
hapter, and is repeated here to provide areferen
e.Con
epts that appear for the �rst time are shown in itali
 text. Text that appears intypewriter font denotes a 
on�gurable parameter of an algorithm, for example 
ond tex bits.Sets of numbers are represented by letters su
h as N, Z or R. The set of integers is Z =f: : : ;�2;�1; 0; 1; 2; : : :g, the set of naturals (stri
tly positive integers) N = f1; 2; 3; : : :g, and Rrepresents the set of real numbers.Indexed arrays (or ve
tors) are en
losed in parenthesis. Example v = (1; 0; 0). When spe
i-�ed, the indexing domain is spe
i�
ed as a subs
ript expression: (hi)1�i�k. For multidimensionalarrays a similar notation with a number of parenthesis 
orresponding to the dimension of thearray is used. For instan
e, matri
es are denoted as � = ((�ij))i;j2A, where �ij is the elementat position i; j. When appropiate, the alternate notation �(i; j) is used to refer to su
h element. Set de�nitions are en
losed in fg. Example A = f
loudy; sunny; rainyg.An image of size m� n is shown in bold fa
e with its dimensions spe
i�ed as a supers
ript,as in xm�n. To simplify notation, the 
on
ept of multidimensional indexes i = (i1; i2) is usedto refer to a parti
ular symbol in the image, su
h as xi. As images are represented as arrays ofsize m� n, xm�n is equivalent to ((x))1�i1�m;1�i2�n and xi is equivalent to x(i1; i2).



1.5. Do
ument organization 131.5 Do
ument organizationAfter this brief introdu
tion to the problem of image denoising, Chapter 2 presents the varioustypes of noise studied in the denoising literature. Chapter 3 gives a short review of image existingdenoising algorithms. Chapter 4 des
ribes the basi
 DUDE algorithm and its problems. Chapter5 presents the general tools used to address these problems and Chapter 6 follows by des
ribingthe resulting proposed solution. Chapter 7 shows the results that were obtained, Chapter 8give the 
on
lusions obtained from the former results, and �nally the future lines of resear
hare outlined in Chapter 9.





2 Noise models for digital images
2.1 Additive noise2.1.1 The Gaussian 
hannelThe dis
rete Gaussian 
hannel is modeled after the 
ontinuous additive white gaussian noisemodel. The latter is of spe
ial importan
e to many real life problems sin
e it models manynatural pro
esses, su
h as transmission over analog 
hannels [4, pp. 239-265℄, and has beenextensively studied sin
e the beginning of the �eld of signal denoising [13℄. The dis
rete gaussian
hannel serves as a model for the e�e
t of the 
ontinuous 
hannel on the physi
al aspe
ts ofsignal level dis
retization present in digital a
quisition devi
es. Su
h is the 
ase of the thermalnoise in CCD devi
es des
ribed in Chapter 1. Sin
e the advent of digital images, this 
hannelhas also be
ome a 
lassi
al model for image degradation, and many of the algorithms studiedin this work (to be des
ribed in Chapter 3) are designed spe
i�
ally to atta
k this type of noise.The additiveness of the 
hannel means that ea
h 
orrupted pixel zi is the result of the additionof the 
lean (unknown sample) xi and a random noise sample ni. The noise is white when itssamples are statisti
ally independent of ea
h other, and their mean value is zero. Finally,the 
hannel is Gaussian be
ause the probabilities of the noise sample values obey a Normal
ontinuous distribution N�;� of mean � and varian
e �,p(n) = N�;�(n) = 1p2�� exp (n��)2�2The white nature of the noise implies � = 0 so that p(n) = N0;�. As the 
hannel is additive,the random variable modeling a (
ontinuous) noisy sample Z is related to its 
orrespondingdis
rete (non random) 
lean sample x and the random variable for the noise sample N byequation (2.1) Z = N + x; x 2 A (2.1)Using (2.1), the resulting (
ontinuous) probability density fun
tion of Z 
onditioned on x = ais p(Zjx = a) = Na;�As the 
hannel is dis
rete, the 
ontinuous value of Z has to be mapped to return to theoriginal dis
rete alphabet. This model assumes that the value of the 
ontinuous random variableis rounded to the nearest integer value in the alphabet,



16 Chapter 2. Noise models for digital imagesZ = 8<: 0 ; Z � 0M � 1 ; Z �M � 1round(Z) ; otherwiseDe�ning the round(�) operation asround : R ! Z; round(y) = j 2 Z; j � 0:5 � y < j + 0:5the elements of the 
hannel transition matrix are obtained as�ij = P (Z = jjx = i) = 8<: P (�1 < Z < 0:5) ; j = 0P (M � 1� 0:5 < Z < +1) ; j =M � 1P (j � 0:5 � Z < j + 0:5) ; 0 < j < M � 1Using (2.1), N = Z � x andP (Z = 0jX = i) = P (�1 < N < �i+ 0:5) (2.2)P (Z =M � 1jX = i) = P (M � 1� i� 0:5 � N < +1) (2.3)P (Z = jjX = i) = P (j � i� 0:5 � N < j � i+ 0:5); 1 < j < M � 1 (2.4)These probabilities are obtained by integrating the 
ontinuous normal density fun
tion ofthe noise over the spe
i�ed interval,P (z < �) = Z y=�y=�1N0;�(y)2.2 Non-additive noise2.2.1 The erasure 
hannelThe noise models des
ribed from subse
tions 2.2.2 through 2.2.5 are non-additive, meaningthat the random variable modeling the noisy samples Z is not related to the r.v. modeling the
lean sample X through an operation involving the addition of an indenpendent noise variableN . Note that thelatter de�nition of non-additivity in
ludes any relationship that is not a sum(for example multipli
ative noise where the relationship 
ould be Z = N �X).Here, The dis
ussion will be fo
used on the 
ases where ea
h noisy sample zi is either equalto xi or is repla
ed by an erasure value whi
h has no relationship with the value of xi. One
hannel 
ommonly used as an example of this behavior is the Erasure Channel [4, pp. 187-189℄.Although it is not studied in this work as a 
hannel by itself, it 
aptures the main propertiesthat are 
ommon to the non-additive 
hannels presented here.Given an input alphabet A = f�1; �2; : : : ; �M�1g, jAj =M , the Erasure Channel substitutesea
h input symbol xi by an erasure symbol e 62 A, regardless of the value of xi with probabilityPe, or leaves it untou
hed so that zi = xi. Thus the output alphabet of the Erasure Channel isA� = f�1; �2; : : : ; �M�1; eg, jAj =M + 1 and the resulting transition matrix is� = 26664 1� Pe 0 � � � 0 Pe0 1� Pe � � � 0 Pe... ... . . . 0 ...0 0 � � � 1� Pe Pe 37775
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ause the event Z = e does not depend on X, a noisy symbol zi = e does not 
ontain anyinformation about xi. This is an important di�eren
e with respe
t to additive 
hannels su
h asthe Gaussian Channel and has many pra
ti
al impli
ations.2.2.2 Impulse (Salt & Pepper) 
hannelIn the Impulse Channel { often named \Salt and Pepper" after its visual e�e
t {, ea
h pixelof the image is randomly repla
ed by either the maximum symbol in the alphabet (salt), or theminimum (pepper), with a total probability of error � whi
h is evenly distributed among thetwo 
ases (i.e. �=2 for ea
h of the two possible 
orrupted symbols); and it is left untou
hedwith probability 1� �. The 
hannel transition matrix for this 
ase is
� = 26666664 1� �=2 0 � � � 0 �=2�=2 1� � 0 0 ...... 0 . . . 0 �=2�=2 0 0 1� � �=2�=2 0 � � � 0 1� �=2

37777775 (2.5)
It is useful to view this 
hannel as a variant of an erasure 
hannel, where the \erasures" aresymbols from the 
lean sequen
e alphabet. Being erasures, the noisy samples do not provideany information on the 
orresponding 
lean samples.2.2.3 Asymmetri
 impulse 
hannelThis 
hannel is a simple extension of the Salt & Pepper Channel in whi
h P (Z = salt) = �sand P (Z = pepper) = �p are not equal. The total probability of error is rede�ned as � = �s+�p.In this 
ase, the transition matrix is

� = 26666664 1� �s 0 � � � 0 �s�p 1� � 0 0 ...... 0 . . . 0 �s�p 0 0 1� � �s�p 0 � � � 0 1� �p
37777775 (2.6)

2.2.4 The Z ChannelThis is a spe
ial 
ase of the asymmetri
 impulse 
hannel in whi
h �p = 0 and �s = �, andthus its treatment is the same as the latter. Despite this, the Z 
hannel is one of the 
lassi
al
hannel models used in information theory and thus it is worth in
luding it as a 
ase of studyby itself.2.2.5 The q-ary symmetri
 
hannelThis is a type of non-additive 
hannel where the total probability of error � is distributedevenly among the noisy symbols. For an alphabet of size M and a 
lean symbol x, the 
hannelwill substitute the latter with a noisy symbol z 6= x with probability �M = �M�1 or leave ituntou
hed with probability 1� �. This results in the following matrix
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� = 26666664 1� � �M � � � �M �M�M 1� � �M �M ...... �M . . . �M �M�M �M �M 1� � �M�M �M � � � �M 1� �

37777775 (2.7)
As will be seen later, it presents some additional 
hallenges sin
e its \erasure" nature is lessevident than the Impulse Channel and its variants.2.3 Noise measuresWhen 
omparing di�erent denoising methods one must de�ne some 
riterion of what is 
on-sidered to be a good result. As the ultimate goal is to produ
e an image that looks \better"to the human eye, the best possible 
riterion is 
ertainly subje
tive. However, the problem of�nding an obje
tive 
riterion whi
h approximates the best subje
tive 
riterion is a very diÆ
ultone. Be
ause of this, and be
ause they are of general use in other problems of image and sig-nal pro
essing, a few obje
tive performan
e measurements are generally used: MSE/SNR andPSNR. The MSE (Mean Square Error), is de�ned as follows:MSE(zm�n) = 1N NXi=1 (xi � zi)2: (2.8)The SNR (Signal to Noise Ratio) measures the relation between the power of the \signal"(the 
lean image) and the power of the \noise" (whi
h is the MSE).SNR(zm�n) = 10 log PNi=1 (xi � zi)2PNi=1 x2i ! (2.9)Finally, the PSNR (Peak Signal to Noise Ratio) is equivalent to the MSE, expressing it inrelative logarithmi
 units (dB) with respe
t to the \peak" power of the signal. For an 8-bitimage, this is PSNR(zm�n) = 10 log�MSE(zm�n)2552 � (2.10)All those measures give more weight to bigger di�eren
es than to smaller ones due to theirquadrati
 nature. This is usually 
onsidered to be akin to the subje
tive per
eption of noise.Of the three, the PSNR and MSE are the most popular as they do not depend on the powerof the image to be denoised and thus they 
an be averaged throughout a set of test images toprodu
e an \average performan
e measure" for the test suite. Of them, the PSNR will be thepreferred one as it is the most 
ommon of the three.



3 A review of image denoisingThe problem of image denoising has been given an extensive treatment in the literature whi
hmakes it impossible to in
lude a 
omprehensive set of referen
es in this do
ument. Therefore,the dis
ussion will be restri
ted to some of the more representative denoising algorithms: the
lassi
al ones des
ribed in text books su
h as [9℄ or [10℄, and the ones whi
h are 
onsidered the
urrent state-of-the-art.An image �lter is any algorithm whi
h takes some image as input and produ
es an outputimage as a result. A denoising �lter is a �lter that, given a noisy input image zm�n, produ
es anoutput x̂m�n that is 
loser to the unknown 
lean image xm�n that was fed to the transmission
hannel.First, the �lter te
hniques whi
h form the basis for most of the 
ommon �lters found in theliterature are presented. Then follows a des
ription of spe
i�
 �lters designed to atta
k ea
htype of noise.3.1 Neighborhood and window �ltersThe prin
iple of these �lters is to infer the 
lean pixel xi based on the information provided bysome pixels on the noisy image lo
ated in a neighborhood of its position i. Let W = (ir)1�r�Kbe a ve
tor of indexes whi
h are \near" i under some 
riterion. W is a window index ve
torand use x(W ) to denote the ve
tor of the values of the pixels at the lo
ations spe
i�ed in W ,i.e., x(W ) = (xi1 ; xi1 ; : : : ; xiK ). If W in
ludes i, x(W ) is 
alled a window and if not, it is aneighborhood or 
ontext.These �lters exploit the 
ommon assumption that pixels whi
h are 
lose to ea
h other tendto have similar values (for example in smooth regions of the image). In prin
iple, the numberand relative lo
ation of the pixels whi
h are used by the algorithm 
an vary for ea
h lo
ation i.3.2 Sliding-window �ltersThis is a 
ommon 
ase in whi
h the window/neighborhood shape is �xed for every index i,and its position is 
entered at i. This shape is de�ned by a window template, whi
h is a ve
torof o�sets T = (dr)1�r�K of index o�sets dr 2 Z2. For a given window template and the positioni, the 
orresponding window index ve
tor Wi;T is obtained by adding i to ea
h index o�set inthe template Wi;T = (i+ d1; i+ d2; : : : ; i+ dK) (3.1)
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PSfrag repla
ements i1
i2

j1
j2i = (i1; i2)

j = (j1; j2)image xm�n
Wi;T

Nj;T 0

ontext x(Nj;T 0)Figure 3.1: A window template T = f(0; 0); (�1; 0); (�1; 1); : : : ; (0;�1); (�1;�1)g, a neigh-borhood template T 0 = f(�1; 0); (�1; 1); : : : ; (0;�1); (�1;�1)g, an image xm�n, a window, aneighborhood and a 
ontext.The window at position i is obtained as x(Wi;T ), provided with some 
onvention for the valuesof the pixels outside the image range Rm�n = �i = (i1; i2) 2 N2 : i1 � m; i2 � n	 (for example,repeating the value of the 
losest border pixel).Finally, a sliding-neighborhood �lter is the 
ase when the template does not in
lude the 
enter,i.e., the o�set (0; 0). These 
on
epts are depi
ted in Figure 3.1.3.3 Linear (
onvolution) �ltersThese are a spe
ial 
ase of the sliding-window �lters where the estimated value of the 
enterpixel is a linear fun
tion of the window samples. If for ea
h i, jr denotes the r-th element ofWi;T :x̂i = KXr=1 hrzjr (3.2)where hr 2 R are 
oeÆ
ients assigned to ea
h position (o�set) jr and independent i. These�lters are also 
alled 
onvolution or FIR (Finite Impulse Response) �lters, as (3.2) 
an alwaysbe written as a linear 
onvolutionx̂i = U1Xk1=�L1 U2Xk2=�L2 ĥkzi�k ; k = (k1; k2) (3.3)where k = (k1; k2) are index o�sets 
overing the smallest re
tangular region that 
ontains thewindow template T f(k1; k2) : �L1 � k1 � U1;�L2 � k2 � U2g
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PSfrag repla
ementsU1U2L1L2̂hFigure 3.2: From templates and windows to linear 
onvolution kernels. The example here
orresponds to the Lapla
ian operator used to dete
t borders in images.and ĥk = hr if T 
ontains the o�set k at position r or 0 otherwise (see Figure 3.2 for a graphi
alexplanation).The re
tangular 2D array (ĥk)�L1<k1<U1;�L2<k2<U2 
onstitutes the linear 
onvolution kernel.It is also 
alled the impulse response of the �lter as it 
oin
ides with the output of an impulsesignal (image) Æm�n, (Æ(0; 0) = 1 and 0 everywhere else) when the �lter is applied to it (trivialby substituting Æm�n in equation (3.2)).These �lters are at the 
ore of 
lassi
al digital signal pro
essing. See [20℄ for more details onthe theory and appli
ation of these �lters.3.4 Frequen
y domain �ltersOne 
lassi
al tool for signal pro
essing in general, and for digital images in parti
ular, is thefrequen
y domain analysis or Fourier analysis (see [20℄ for a review). It 
onsists of de
omposingthe image into a set of sine wavesx(i1;i2) = MXu=1 NXv=1 x(u;v)ej 2�ui1M ej 2�vi2N (3.4)where ejx denotes 
omplex exponentiation and ea
h term x(u;v) is the (u; v) term of the FourierTransform xm�n = F(xm�n), 
omputed asx(u;v) = 1MN MXi1=1 NXi2=1x(i1 ;i2)e�j 2�ui1M e�j 2�vi2N (3.5)Ea
h 
oeÆ
ient X(u;v) of the Fourier Transform represents the power of the image at thedis
rete spatial frequen
y (2�u=M; 2�v=N). Figure Figure 3.3 shows an image and its FourierTransform (the Fourier Transform is usually displayed shifted so that the 
enter pixel representsX(0; 0), | 
alled the \DC" term as its value is the average of xm�n).
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(a) Continuous-tone image. (b) And its Fourier transform.Figure 3.3: Fourier transform of an image. The \DC" 
omponent is at the 
enter of the DFT.The frequen
y domain �lters use this representation of the image to try to sepparate the noisefrom the 
lean image. One example is the family of lowpass �lters, whi
h assumes that the noiseis white and additive of mean 0. In this 
ase, the power of the noise is spread evenly among allfrequen
ies in the Fourier Transform of the noisy image. The lowpass �lters assume that the
lean image information is 
on
entrated in the lower frequen
ies and thus the denoising pro
essredu
es to removing the higher frequen
y 
omponents of the Fourier Transform while keepingthe lower frequen
ies inta
t. The many di�erent variants of lowpass �lters (see [20℄ for someof them) di�er in the way they de�ne the transition from \low" to \high" frequen
ies. Forinstan
e, a simple \
uto�" �lter is de�ned asX̂(u;v) = � Z(u;v) ; pu2 + v2 < f
0 ; otherwisewhere f
 is the 
uto� frequen
y. An example of this �ltering te
hnique is shown in Figure 3.4.This �lter has a number of problems related to the sharp fall between the \bandpass" regionand the \bandstop" region. An inspe
tion of Figure 3.4 shows this e�e
t, known as \ripples",\bandings", or Gibbs os
ilations. Please refer to signal pro
essing books su
h as [20℄ for atheoreti
al explanation.Note that frequen
y domain �lters 
an be implemented in a perfe
t or approximate way aslinear 
onvolution �lters of the type des
ribed in the previous se
tion (see [20℄ for a generalmethod). Furthermore, every linear �lter has an asso
iated frequen
y response de�ned as theFourier Transform of its impulse response,H(u;v) = 1MN MXi1=1 NXi2=1h(i1;i2)e�j 2�ui1M e�j 2�vi2N (3.6).
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(a) Noisy image. (b) Denoised.

(
) Fourier transform of noisy image. (d) Fourier transform after 
uto�.Figure 3.4: E�e
t of the 
uto� �lter. Noti
e the ripples surrounding the borders and theondulations produ
ed by this �lter.
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ess of equation (3.2) 
an be expressed in the Fourier or frequen
y domainusing the transforms of the image X̂ = F(x̂) and H = F(h) asx̂ = F�1(X̂ �H) (3.7)where � denotes element-wise produ
t. This formulation has pra
ti
al and theoreti
al impli-
an
ies. For instan
e, it 
an be used to analyze the frequen
y behavior of a linear �lter in agraphi
al way.3.5 Bounded variation methodsThese are methods whi
h impose 
onstrains on the magnitude of the overall 
u
tuations inthe image. Thinking of the denoised image as an R2 ! R fun
tion, a solution is found whi
htries to meet two goals at on
e: to approximate the 
lean image as best as possible, and tominimize its Total Variation [28℄. Roughly speaking, the total variation of an image is a globalmeasure of how mu
h does it 
hange its value from sample to sample. One possible way tode�ne this is by summing the absolute magnitude of its gradient at ea
h position:The idea is that most of the small 
u
tuations on the image are due to the noise. By redu
ingthese 
u
tuations in
rementally, a solution 
an be found in whi
h most of the noise is smoothedout and the bigger 
u
tuations (borders, et
.) are preserved. The denoising problem is posedas a minimization of a fun
tion F(x̂m�n),F(x̂m�n) = Xi2Rm�n jxi � x̂ij+ � Xi2Rm�n Xj2Wi;T ;j 6=i�(x̂i � x̂j) (3.8)The �rst summation in (3.8) is minimized when the denoised image x̂m�n is as 
lose as possibleto the unknown 
lean image xm�n, while the se
ond summation a

ounts for the total variationmeasure of the solution. Wi;T is a small neighborhood window where the variation of ea
hsample i is measured, and the fun
tion �(:) models the penalty assigned to high 
u
tuations.Examples of �(:) are �(t) = p�+ t2); � > 0 or �(t) = jtj�; 1 < � < 2.These algorithms tend to destroy the small details and �ne textures present in an image. Onthe other side, they produ
e good results when the noise power is high.3.6 Statisti
al �ltering methodsMany image denoising algorithms are derived from the theory of Statisti
al Signal Pro
essing[11℄. Under this theory the image (signal) is modeled as a ramdom pro
ess, i.e., a ve
tor(possibly of in�nite length) of random variables. This is impli
it in the des
ription of the noisy
hannels des
ribed earlier in this 
hapter, where the noise is 
onsidered to be a sequen
e ofindependent and identi
ally distributed (i.i.d.) random variables nm�n. In fa
t, any of thepreviously presented algorithms has a statisti
al interpretation. This se
tion 
on
entrates onthose algorithms whi
h are based on statisti
al models to produ
e their output.



3.6. Statisti
al �ltering methods 25The unknown 
lean image is 
onsidered to be a random pro
ess itself, and it is expe
ted toexhibit a set of statisti
al properties (high 
orrelation between samples, repeated patterns) whi
hdistinguish it from the properties of the noise pro
ess that 
orrupts it (small or no 
orrelation).Two 
ommon assumptions on the properties of 
lean images are:� Markovi
ity, whi
h means that ea
h sample, when 
onditioned on a neighborhood of some(�xed) size, is statisti
ally independent of the rest of the image.� Stationarity, meaning that the statisti
 properties of the samples of the image are thesame for all samples regardless of their position in the image.Examples of statisti
al �lters are the Wiener Filter [35℄, the Lee Filters [14℄ (also known asLo
al Wiener �ltering), the Gaussians S
ale Mixture (GSM) �lters [25℄ whi
h will be des
ribedlater in this 
hapter, and last but not least the DUDE [34℄ whi
h forms the basis of the presentwork.To �x ideas the 
lassi
al Lee Filter is des
ribed. The Lee Filter estimates ea
h 
lean samplein a two-step way:1. Using a �xed-size sliding windowWi;T , estimate the lo
al mean of the image zm�n at ea
hposition i, �i = 1K KXr=1 z(Wi;T )r2. Estimate the lo
al varian
e �2i as�2i = 1K � 1z(Wi;T )T z(Wi;T )� �2iThe 
ontexts z(Wi;T ) are 
olumn ve
tors, z(Wi;T )T are their transposed (row) versions,and K is the size of the 
ontexts.3. Using �i, �2i and the noise power �2n whi
h is 
onsidered 
onstant throughout the wholeimage, estimate the 
lean sample asx̂i = 1�2i + �2n ��2i zi + �2n�i� (3.9)Equation (3.9) is the minimum expe
ted square error (MSE) solution of x̂i � xi given �2i , �2nand �i. Both the lo
al mean and varian
e are derived from the Markov assumption sin
e theyare 
omputed only from the lo
al 
ontext. The se
ond assumption is not used in this �lter.The Lee �lter gave rise to many other algorithms whi
h 
ombine optimization, statisti
sand stru
tural priors to obtain optimal estimations of the 
lean image, in
ludinig those whi
h
omprise the 
urrent state of the art as is the 
ase of the GSM-based algorithms [25℄.
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(a) Noisy image. (b) Denoised by average �ltering, window size5� 5.Figure 3.5: Average Filter of an image 
orrupted by gaussian noise of � = 20.3.7 Filters for additive noise3.7.1 Window averageThis is the simplest way to redu
e the amount of additive noise in an image. Given a windowtemplate T of size k = jT j, ea
h pixel is substituted by the average of the values within thewindow 
entered on it. x̂i = 1k kXr=1 zjr (3.10)This is a spe
ial 
ase of (3.2) where hr = 1k ;8r . As the noise is 
onsidered additive, zi = xi+niand x̂i = 1k kXr=1 zjr = 1k kXr=1 xjr + 1k kXr=1 njr (3.11)Here the �rst summation will be 
lose to the 
lean value if the 
lean samples in the windoware also similar, and the se
ond summation will 
onverge to the expe
tation of the noise whi
his 0 as k in
reases. If the pixels in the window are not similar (whi
h happens in borders andhigh 
ontrast areas), the details of the image are blurred. This e�e
t in
reases with the size ofthe window, whi
h implies a tradeo� between noise remotion and detail preservation in termsof k. Figure 3.5 shows the result of this �lter for a square window of 5� 5 pixels.This example shows the motivation behind ea
h of the algorithms in subse
tions 3.7.2 through3.7.6 : how to remove the noise without destroying the details of the image?
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(a) Noisy image. (b) Denoised by a Gaussian Isotropi
 Filter, win-dow size 5� 5.Figure 3.6: E�e
t of the Gaussian Filter (w = 1:4) on an image 
orrupted by gaussian noisewith � = 20.3.7.2 Isotropi
 gaussian �lteringA plain average of the window samples is generally not a good solution. There are twomain reasons for this: �rst, the assumption that the neighboring samples are similar to the
enter sample be
omes weaker as the distan
e from the 
enter in
reases. Se
ond, the frequen
yresponse of the average �lter is not as in a sharp 
uto� �lter, but de
ays slowly and is signi�
antall over the frequen
y spe
trum in
luding those parts where the noise is high and the imagepower is low, leading to undesired high frequen
y e�e
ts in the image (blo
king). The idea isto solve the �rst problem by giving more weight to the samples whi
h are nearer to the 
enterpixel, and less weight to the ones whi
h are farther. In prin
iple, every pixel in the imageis taken into a

ount, but pra
ti
al implementations usually approximate them as linear �xedwindow �lters.An isotropi
 �lter assigns the weight of ea
h sample of the image based only on its eu
lideandistan
e to the 
enter pixel ki� jk2. If a linear window �lter is used, the window kernel termshr are obtained using the 
orresponding index o�sets d in pla
e of i � j. One 
ommon 
hoi
eto assign the weights is the 2D Gaussian kernel Gw:Gw(�) = 14�we� k:k24w2 (3.12)in whi
h 
ase this is 
alled a Gaussian �lter. The paramenter w 
ontrols the radius of theGaussian kernel and de�nes the tradeo� between noise removal and detail preservation for this
ase. Figure 3.6 shows a sample image denoised by Gaussian �ltering.
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Figure 3.7: S
heme of the basi
 edge-preserving anisotropi
 �ltering 
on
ept.3.7.3 Anisotropi
 �lteringThe Gaussian �lter is able to solve the �rst problem of the window average �lter: the highfrequen
y artifa
ts. However, it does not solve the problem of detail and border preservation.The anisotropi
 �lters, as the term implies, assign the weights 
onsidering the distan
e but alsoa preferred dire
tion of �ltering.The basi
 idea was des
ribed in [23℄, where the dire
tion of �ltering is determined by theoutput of a lo
al edge dete
tor. By modifying the shape of the kernel a

ording to the lo
algradient, the kernel assigns more weight to the pixels \along" the gradient and less weight tothe pixels \a
ross" the gradient so that the �lter does not \
ross the borders". This behavioris depi
ted in Figure 3.7. Let dx1 and dx2 the verti
al and horizontal derivatives of xm�n. Letrx(i) = (dx1;dx2) denote the gradient of xm�n at index i. Using the more general de�nitionof the Gaussian kernel Gw(:) = 12�j�j1=2 e� (i�j)T ��1(i�j)2 (3.13)where the eigenvalues and eigenve
tors of the matrix � 
ontrol the shape and orientation of thekernel. The matrix � is 
onstru
ted so that the two eigenve
tors �1 and �2 are in the dire
tionof the gradient (the normal dire
tion ) and the tangent,�1 = rxi=jrxij�2 = rx?i =jrxijand the respe
tive eigenvalues �1 and �2 are proportional to the stret
hing along ea
h ofthese dire
tions, �1 / 1jrxij�2 / jrxij
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(a) Noisy image. (b) Denoised by PDE anisotropi
 �ltering.Figure 3.8: E�e
t of the GREYCstoration Anisotropi
 Filter on an image 
orrupted by gaussiannoise with � = 20.. The resulting matrix has the following form:� = � �1 00 �2 �� " dxjrxij �dyjrxijdyjrxij dxjrxij #The value �2 
an be 
hosen so that j�j is 
onstant (whi
h means that, roughly speaking, the\area" of the kernel is always the same), or j�j / jrxij. One 
ommon 
hoi
e is �1 = e�jrxij2=�where � is a threshold above whi
h the kernel starts to stret
h and avoids the e�e
t of the noiseitself in the value of jrxij. In this 
ase, the amount of denoising is 
ontrolled by j�j.Another way of performing anisotropi
 �ltering is by using PDEs (Partial Di�erential Equa-tions) [29℄. When used for denoising, PDEs are able to de�ne anisotropi
 behaviors whi
hdepend on features more 
omplex than lo
al borders su
h as lo
al 
urvature [31℄. The image inFigure 3.8 was obtained using a 
urvature-driven anisotropi
 PDE �lter, made publi
ly availableby the author in the form of a GIMP (GNU Image Pro
essor) plugin.13.7.4 Non-Lo
al MeansAll of the previous �lters use lo
al information to 
ompute the denoised pixels. The Non-Lo
alMeans is a re
ent method to remove additive noise and is des
ribed in full detail in [1℄ (whi
halso serves as a good review of additive noise removal algorithms in
luding many not listedhere).1http://www.gimp.org/http://www.haypo
al
.
om/wiki/Plugin Gimp GREYCstoration as of August 2005



30 Chapter 3. A review of image denoisingHere, in 
ontrast to the previous �lters, ea
h denoised pixel x̂i (the target) is obtained as aweighted average of all the other pixels of the image, where the weight of ea
h pixel is deter-mined by a measure of similarity between its neighborhood and the neighborhood of the pixelto be denoised: x̂i = Pj2Rm�n;j 6=iwijzjPj2Rm�n;j 6=iwij : (3.14)Let the operator � denote inner ve
tor produ
t. The weights are de�ned aswi;j = f (Ga(Wi;T ) � jz(Wi;T )� z(Wj;T )j) (3.15)where f is a monotoni
ally de
reasing fun
tion, usually e� x22w for some w > 0 and Ga is a 2DGaussian kernel of parameter a whi
h weights the di�eren
e of the samples at ea
h lo
ationa

ording to their distan
e to the 
enter of the window. If N is the number of pixels, thisalgorithm requires O(N2) operations to produ
e a result, whi
h makes it impra
ti
al for mediumsized images as originally proposed. However, it gives very good results and serves as a referen
efor other denoising algorithms. Figure 3.9 shows some examples taken dire
tly from [1℄.3.7.5 Wavelet thresholdingThe nameWavelets refers to a general family of transforms whose 
hara
teristi
 is to 
ombinespatial and frequential information in the transformed data [16℄[5℄. As with the frequen
y(Fourier) domain �lters, the idea is to 
on
entrate the information of the \true" 
lean image insome 
oeÆ
ients, and dis
ard or atenuate the 
oeÆ
ients whi
h are more a�e
ted by the noiseaddition pro
ess. The Wavelet thresholding method [6℄ does this by simply dis
arding all those
oeÆ
ients whi
h are below a 
ertain threshold and re
onstru
ting the image with the remaining
oeÆ
ients. Some enhan
ements to the basi
 idea have been proposed [3℄. In parti
ular, theWavelet-Curvelet thresholding [30℄ gives results 
omparable to the state of the art for this typeof noise, at least for the Lena image. Figure 3.10 shows the results published in [30℄.3.7.6 Mixture of gaussiansThis is another wavelet-based approa
h, although very di�erent from the one previouslydes
ribed. Three novel elements appear in this algorithm:� An over
omplete de
omposition of the image into what is 
alled a steerable pyramid. Itis over
omplete be
ause the resulting representation has more samples than the originalimage (this does not happen with ordinary transforms su
h as Fourier de
ompositions ororthogonal wavelets).� A probability model of the 
oeÆ
ients of the pyramid based on a Gaussian S
ale Mix-ture (GSM) probability distribution. This model assumes Markovi
ity in terms of 3Dneighborhoods in the pyramid and uses the GSM to model ea
h ve
tor of neighborhood
oeÆ
ients. The GSM is a generalization of the multivariate Gaussian distribution. Ave
tor v is distributed a

ording to a GSM if v d= pz u where d= means equality in distri-bution, u � N(0;�) and z is a s
alar multiplier obeying some other arbitrary distribution.
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(a) Noisy image. (b) Denoised by NLM.

(
) Noisy image. (d) Denoised by NLM.Figure 3.9: E�e
t of the NLM Filter on two images 
orrupted by gaussian noise with � = 20.The results are obtained using the whole images (barb and lena respe
tively), although only asmall representative pat
h is shown.
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(a) Noisy Lena. (b) Lena denoised by Wavelet-Curvelet threshold-ing.

(
) Detail of (a). (d) Detail of (b).Figure 3.10: E�e
t of the Wavelet-CurveletThresholding Filter on \Lena" 
orrupted by gaussiannoise with � = 20.



3.8. Filters for non-additive noise 33Having the noisy image de
omposed as a steerable pyramid, and a model for the noise, thealgorithm pro
eeds mu
h like the Lee Filter, estimating the parameters of the GSM for ea
h
ontext and then 
omputing an expe
ted least squares error estimate for the denoised outputsample. The details of the algorithm are beyond the intentions of this intrudu
tion. Please referto [25℄ for these and for other referen
es regarding GSMs and GSM-based denoising.3.8 Filters for non-additive noiseNon-additive noise 
hannels have two properties whi
h are exploited by all of the algorithmsdes
ribed in subse
tions 3.8.1 | 3.8.4:� An important fra
tion of the pixels in the noisy image are left untou
hed, i.e., have thesame value as the 
orresponding 
lean pixels.� The noisy pixels have no 
orrelation with the 
orresponding 
lean (unknown) pixels.These two fa
ts are used to dete
t the noisy pixels and sepparate them from the 
lean pixels,and to estimete these noisy pixels with a few 
lean neighboring pixels.3.8.1 Median �lterThe idea of this �lter is very similar to that of the average �lter. As with the average �lter, thisis a �xed sliding-window algorithm whi
h depends on a window template T yielding di�erentwindows z(Wi;T ) for ea
h index i. Be
ause the non-additive noise samples take on arbitraryvalues, a window would 
ontain many outliers (samples very di�erent in value with the majorityof the samples in the window), and the average of the samples would not be a good estimate.Instead, the median estimator (med(:)) of the window samples is used, as it is more robust tothe presen
e of outliers. The median estimator of a ve
tor of samples z(Wi;R) is 
omputed asfollows:� Order the samples of the ve
tor z(Wi;T ) in de
reasing (or in
reasing) order. Call thisve
tor m.� Let k = jT j be the size of the ve
tor. If k is even, x̂i = 12 �mk=2 +mk=2+1�; otherwisex̂i = m(k+1)=2.This �lter does not use the �rst property expli
itly, whi
h means that all the pixels of theresulting image are the result of their window median. As with the average �lter, this resultsin a blurring e�e
t (although non-linear), with the same tradeo�s implied . The followingalgorithms try to use this information to improve the results.3.8.2 Sele
tive median (basi
)The sele
tive median approa
h 
an be 
onsidered a general enhan
ement to the previous �lterwhi
h tries to keep those pixels whi
h were not modi�ed by the 
hannel. The problem of �ndingout whi
h pixels are 
lean and whi
h are noisy 
an be atta
ked in various ways. For example,if the noise is impulsive su
h as in the Salt & Pepper 
ase, the values of the noisy pixels areknown a priori, and a trivial s
heme 
an be implemented in whi
h only those pixels in the noisyimage whi
h have the maximum value (white) or the minimum value (bla
k) are substituted by



34 Chapter 3. A review of image denoisingthe median of the window.x̂i = � med(Wi;T ) ; zi = 0 or zi =M � 1zi ; otherwise (3.16)Another slightly more robust approa
h is to 
onsider as noisy all those pixels above or belowa 
ertain threshold. In this 
asex̂i = � med(Wi;T ) ; zi � � or zi �M � 1� �zi ; otherwise (3.17)3.8.3 Adaptive MedianThe basi
 sele
tive median �lter uses a �xed window to denoise ea
h noisy pixel. The noisypixels are previously dete
ted using any of the previously des
ribed methods. The adaptivemedian [12℄ 
hooses an optimal window size depending on how many noisy pixels there are inthe neighborhood, starting with a square 3� 3 window and in
reasing its size gradually until a�xed maximum. For ea
h noisy pixel zi The algorithm 
an be summarized as follows:� Initialize w = 3� Compute a = min(z(Wi;w�w)), m = median(z(Wi;w�w)) and b = max(z(Wi;w�w))� If a < m < b go to Step 5, otherwise set w = w + 2.� If w < wmax go to step 2, otherwise set x̂i = m.� If a < zi < b set x̂i = zi, otherwise set x̂i = m.Figure 3.11: Adaptive Median Algorithm.This type of �lter is usually suitable for images 
orrupted with Salt & Pepper noise with highprobability of error �.3.8.4 Adaptive Median and Total Variation CombinedThe idea of this s
heme, as proposed in [2℄, is to 
ombine the Adaptive Median s
heme withthe Total Variation approa
h des
ribed earlier in this 
hapter. The pixels of the image aredivided into two groups using the sele
tion 
riterion of Algorithm 3.11: the noisy N and the
lean N 
 (both groups are de�ned in terms of the indexes of the image). Then, (3.8) is usedwith a slight modi�
ation:FN (x̂m�n) =Xi2N jxi � x̂ij+ �1Xi2N Xj2Wi;T TN ;j 6=i�(x̂i � x̂j) + �1 Xi2N 
 Xj2Wi;T TN 
;j 6=i�(x̂i � zj)(3.18)Here the last two summations 
orrespond to the total variation. The �rst of these is expressedin terms of variation between noisy samples, while the se
ond measures the variation of the noisysamples with respe
t to the 
lean ones. The overall expression is also 
onstrained only to thoseindexes i that 
orrespond to noisy pixels. Figure 3.12 shows two example images obtained bythis method, taken from [2℄.
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(a) Noisy image. (b) Denoised by MDN-DP.Figure 3.12: E�e
t of the MND-DP Filter on an image 
orrupted by Salt & Pepper noise with� = 70%. Image taken from [2℄.





4 The Dis
rete Universal DEnoiser
4.1 Des
ription of the algorithmThe Dis
rete Universal DEnoiser (DUDE) algorithm [34℄ operates over the noisy outputsequen
e of a known dis
rete memoryless 
hannel, estimating the noiseless input sequen
e to that
hannel without any assumption on the statisti
al properties of this noiseless input sequen
e.This algorithm has been shown to a
hieve asymptoti
ally the optimal �nite sliding windowdenoiser performan
e for any input sequen
e as the length of the sequen
e goes to in�nity.Here is a brief outline of the algorithm, full details of whi
h 
an be found in [34℄.For 
larity the DUDE is des
ribed for the 
ase where the unknown image xm�n has an asso-
iated \
lean" probability distribution (sto
hasti
 setting), although the results also apply forthe 
ase where xm�n is an individual image not assumed to have been emmited by a sto
hasti
sour
e (semi-sto
hasti
 setting).The DUDE operates in two passes: An analysis pass and a denoising pass. Both passes areparameterized by the same neighborhood template T . In the theoreti
al analysis of [34℄, thesize of the template grows with the length of the data, and has to obey 
ertain growth raterestri
tions to guarantee the asymptoti
 
onvergen
e of the algorithm to the optimal denois-ability. This is dis
ussed in [34, Se
 VII-A℄ for one-dimensional data, and in [21, Se
. 3℄ fortwo-dimensional (2D) images.1 However, the determination of the exa
t size (and shape) of Tthat yields the optimum denoiser performan
e for a given image is a diÆ
ult open problem.Possible approa
hes to the problem are dis
ussed in [34, Se
. VII℄, together with a 
ompress-ibility heuristi
 whi
h is also employed in [21, Se
. VII-B℄, and in this work in Se
tion 7. Morere
ently, an approa
h for optimizing 
ontext size based on an estimate of the residual noise afterappli
ation of the DUDE was presented in [22℄.The �rst pass uses a sliding neighborhood window Wi;T to determine the 
ontext Ci =z(Wi;T ); Ci 2 AK of ea
h pixel zi. For ea
h di�erent 
ontext C appearing in in the image, ave
tor of statisti
s mC is built where mC [i℄ 
ounts the o

uren
es of all the values of zi whose
ontext Ci is equal to C. Note that jmC j = jAj.Input probability estimation1For the 
ase of 2D images over an alphabet of size M , and using L2 (Eu
lidean distan
e) balls of radius r asthe template shape, the asymptoti
 optimality as the size of the image m� n grows to in�nity is guaranteed ifr has the form r(m;n) = g(minfm;ng) where g(t)Mg(t) = o(t1=4). For instan
e, a 
hoi
e of r = g(t) = 
 logM t,with 
 < 1=4 satis�es the requirement.



38 Chapter 4. The Dis
rete Universal DEnoiserAfter the �rst pass is done, ea
h statisti
s ve
tor mC is normalized to yield an estimated
ontext-
onditional output distribution PZjC , whi
h is a row ve
tor of size jAj where PZjC [i℄ =PZjC(Z = i), PZjC(Z = i) = mC [i℄Pj2AmC [j℄ ;8i 2 A (4.1)By knowing the 
hannel through its transition matrix � and its memoryless nature, theDUDE is then able to estimate the 
orrespoding 
lean sequen
e 
ontext-dependent distributionPXjC for ea
h 
ontext C by solving the following linear systemPXjC� = PZjC (4.2)After the 
ontext-
onditional input probability is estimated, the next step is to 
ondition italso on the noisy sample, �. Using � as the ve
tor element-wise produ
t operator, the resultingdistribution 
an be shown to be PXjC;� = 1PZjC(�)PXjC � ��: (4.3)With these elements, a denoiser fun
tion is then de�ned whi
h minimizes the expe
ted lossfor ea
h possible 
ombination of the 
ontext C and the noisy symbol �. The term PZjC(�) isdropped from (4.3) sin
e it doesn't depend on the minimizing argument, to obtaing(�;C) = argmina2A(PXjC [�a � ��℄) (4.4)(note that �a � �� is a 
olumn ve
tor, and PXjC is a row ve
tor, thus the pre
eding expressionis the inner produ
t of the two).If the 
hannel is invertible, the above expression be
omesg(�;C) = argmina2A(PZjC��1[�a � ��℄) (4.5)The se
ond pass of the DUDE applies the denoiser fun
tion (4.4) based on the statisti
sgathered in the �rst pass for ea
h observed 
ontext C.The algorithm is summarized in Figure 4.1.The DUDE has been applied to binary (1 bit per pixel) images [21℄ outperforming otherexisting denoising s
hemes for this type of data. Figure 4.2 shows a sample result performedon a halftone image transmitted over a simmulated Binary Symmetri
 Channel. This 
hannel
ips ea
h sample bit value with probability p, and leaves it untou
hed with probability 1 � p.In this 
ase, p = 2%.



4.2. Issues of the DUDE with 
ontinuous tone images 39� Initialization: For ea
h possible 
ontext C that 
an arise from a window de�ned by thetemplate T , de�ne a ve
tor of 
ounts of size jAj and initialize its elements to 0.� Pass 1: for ea
h pixel zi� Obtain the 
urrent 
ontext C = z(Wi;T ) using the neighborhood template T and indexi.� In
rement mC [zi℄.� Normalize mC for ea
h possible 
ontext C to yield PZjC using (4.1).� Pass 2: for ea
h pixel zi� Obtain the 
urrent 
ontext C = x(Wi;T ) using the neighborhood template T and indexi.� Compute PXjC using the 
hannel transition matrix � and (4.2).� Compute PXj;C;zi using the loss matrix � and (4.3) with � = zi.� Compute the denoised pixel using (4.4).Figure 4.1: Baseline DUDE algorithm.4.2 Issues of the DUDE with 
ontinuous tone imagesThe asymptoti
 optimallity of the DUDE applies to images whose symbols range over any�nite alphabet. However, this asymptoti
 behavior is governed by a de
ay term whi
h in
reasesrapidly with the size of the alphabet and the size of the 
ontext window.Sequen
es su
h as digital images or audio tra
ks are �nite and have alphabets whose size rangefrom 256 (8 bits) to 65536, or even 16 million symbols for audio signals. If su
h sequen
es werenormally long enough for the DUDE to perform well even with the slow 
onvergen
e implied bythe size of su
h alphabets, then there would be no problem in applying it as originally proposed.Unfortunately, this is not the 
ase and the optimal performan
e will not be a
hieved.These kind of sequen
es are normaly drawn from 
ontinuous pro
esses that are later dis-
retized. As a result, 
ontinuous-tone images have stru
tural properties that 
an be in
orpo-rated as prior knowledge in the denoising pro
ess to avoid the mentioned problems.4.3 Goal of this workThe goal of this work is to augment the DUDE framework, by in
luding the prior knowledgederived from the stru
ture of 
ontinuous-tone images, so that it 
an be applied to this kind ofdata with su

ess.This primary goal is to be met while keeping the framework eÆ
ient in terms of 
omputational
ost, resulting in a pra
ti
al implementation.
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rete Universal DEnoiser

(a) Clean image. (b) Noisy image.

(
) Denoised by the binary DUDE.Figure 4.2: Images obtained from [21℄. Here the window template is a line of 7 samples to ea
hside of the 
enter sample (a 1� 15 template)



5 Tools
5.1 Context modelingThe main goal of this work is to exploit the a priori information about the stru
ture of
ontinuous-tone images (pie
ewise 
ontinuity, repeated texture patterns, et
.) in order to redu
ethe 
onvergen
e problems that arise when applying the original DUDE algorithm to sequen
eswith su
h large alphabets.To denoise an image, the DUDE relies on the 
onditional distributions estimated in the �rstpass for ea
h 
ontext. Determining 
onditional distributions of samples given their 
ontexts isalso a key 
omponent in lossless data 
ompression where the number of 
onditioning 
ontextsplays a fundamental role in the 
onvergen
e of the 
ode length to the entropy. This 
ode lengthin
ludes either impli
itly or expli
itly a model 
ost [26℄ whi
h is proportional to the number offree statisti
al parameters in the model.The model 
ost re
e
ts the pri
e paid for learing the statisti
s of the data: if there are manyparameters to estimate, more data samples will be required to a

umulate signi�
ant statisti
sfor ea
h parameter (hen
e the problem is sometimes des
ribed as one of \sparse statisti
s").The model 
ost is parti
ularly a�e
ted by the size of the alphabet, as it a�e
ts both thepotential number of di�erent 
ontexts and the number of parameters per 
ontext.The other 
omponent of the 
ode length, a model �tness 
omponent, is determined by thedegree to whi
h the elements of the model (the parameters) 
apture the statisti
al propertiesof the data (i.e., how does it \�t" the data). From the theory and pra
ti
e of universal lossless
ompression arises the fundamental trade-o� between the two 
omponents: a ri
her model 
an�t the data better, yielding a shorter model �tness 
omponent at the expense of a greater model
ost 
omponent.In denoising, and parti
ularly in the DUDE, there exists a similar trade-o�. This trade-o�is des
ribed in [34℄ in terms of the 
ontext size. Given the size of an image, a greater 
ontextsize implies less o

uren
es of ea
h 
ontext in the image, thus redu
ing the average number ofavailable samples to des
ribe ea
h 
onditional distribution. This results in a \denoising model
ost", where the pri
e paid in this 
ase is a poorer denoising performan
e.The number of 
ontexts, and the number of parameters per 
ontext in
rease as the alphabetsize grows. For instan
e, in the DUDE, the number of possible 
ontexts grows as AK and thesize of ea
h 
ontext-
onditional 
ount ve
tor gathered grows linearly with A. This results in atotal of O(AK+1) parameters to be estimated in the model produ
ed by the �rst pass of theDUDE.
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ture of 
ontinuous-tone images is usedto let 
ontexts share their information , allowing the statisti
al information of many 
ontextsto 
ontribute in the estimation of the 
onditional distribution at ea
h image lo
ation.As the problem of modeling in 
ontinuous-tone images has been treated extensively in the�eld of lossless image 
ompression, it is natural to borrow te
hiques from this �eld to addressthe same problem in denoising. In lossless image 
ompression, two te
hniques are often used:
ontext 
lustering partitioning the spa
e of 
ontexts AK into a mu
h smaller set of 
ondi-tioning 
lasses � = f
1; 
2; : : : ; 
Ng, where the 
ontexts in ea
h 
lass are related by a
ertain similarity 
riterion. A 
ontext 
lassi�er G : AK ! � is de�ned whi
h maps ea
hraw 
ontext into one of the 
ontext 
lasses:
 = G(C); C 2 AK ; 
 2 �predi
tion exploits the assumption that groups of 
onditional distributions depend on the
onditioning 
ontext only through a 
ontext-dependent o�set, given by the predi
ted value.These te
hniques are used, for example, in state-of-the-art 
ompression s
hemes su
h as [33℄and [36℄.The problem of model 
ost in the DUDE is addressed by augmenting its baseline algorithmto in
lude two additional 
omponents: a predi
tion 
omponent and a 
ontext 
lustering 
om-ponent.On
e the 
ontext 
lassi�er is de�ned, the sets of 
ounts of all the 
ontexts that are assignedto the same 
lass are added together to build a single 
lass-
onditional distribution per 
lass 
whi
h we will denote as PZj
 . The pixels of the image whose 
ontexts belong to the same 
lass
 will be said to have the same 
onditioning 
lass or state 
.5.1.1 Similarity 
riteria and the stru
ture of imagesIn order to de�ne the 
ontext 
lasses, a 
ontext similarity 
riterion is de�ned using following
ommon a priori assumptions on the stru
ture of 
ontinuous-tone images:Distan
e between symbols As they represent physi
al magnitudes (light intensity), the sym-bols are ordered by value and a distan
e 
an be de�ned between them. For example, Figure5.1 shows an image and the intensity graph of one of its rows as a N ! N fun
tion.Distan
e in 
ontext spa
e As the 
ontexts are made of samples, and ea
h sample is aninteger magnitude, a distan
e 
an be de�ned in the 
ontext spa
e (for example Eu
lideandistan
e).Lo
al intensity or DC o�set Contexts are lo
alized in the image around a referen
e pixel.As the image 
an exhibit similar stru
tures under di�erent lo
al illumination levels, 
on-texts that arise from these stru
tures 
an also be related if the lo
al illumination level isremoved from them. This is known as DC 
an
ellation. Figure 5.2 gives an example ofthis 
on
ept.
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(a) Continuous-tone image. (b) Pixel value (intensity) graph for row 130.Figure 5.1: \Co�ee Cup", a 
ontinuous tone image of 512 � 512 pixels. The graph to the right
orresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of itsheight).
b

a

Figure 5.2: DC o�set: (a) and (b) are two similar 
ontext appearing at di�erent illuminationlevels. (a) appears in the shadow, while (b) is hit by dire
t light.
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a b

Figure 5.3: Spatial position : (a) and (b) are two similar 
ontext appearing at di�erent orien-tations.Spatial position Contexts 
an be 
onsidered to be \rotation-independent", as many naturaland arti�
ial images show similar patterns repeated at di�erent orientations. By exploitingthis assumption, 
ontexts 
an be rotated or s
aled before 
omputing the distan
e betweenthem. As with DC o�set, this 
an result in a smaller number of 
lasses needed to des
ribethe 
ontexts of the image. Figure 5.3 shows two sample 
ontexts whi
h di�er only in theirorientation.The way in whi
h these (and possibly other) prin
iples are 
ombined to form a \useful"
ontext model depends on the parti
ular 
ontext 
lustering s
heme. If the 
ontexts are to beused to build 
ontext 
onditional probabilities, \useful" means to merge 
ontexts whi
h share\similar" statisti
s.5.2 Predi
tionA predi
tor is de�ned as a mapping from the set of possible 
ontexts AK , to the imagealphabet A, y = p(C); p : AK ! ẑ. Predi
tors 
an have a �xed stru
ture (for example, onepossible predi
tor is the mean of the 
ontext samples) or 
an vary as a whole or in part dependingon the a
tual 
ontext around the pixel to be predi
ted. The latter are 
alled 
ontext-dependentpredi
tors.Images have dis
ontinuities (borders, edges), but in many 
ases the majority of the pixelsbelong to smooth areas whose intensity vary with, for example, di�erent illumination angles.By exploiting this fa
t, it is possible to predi
t a pixel using a fun
tion of a few neighbors.This makes it possible to gather the empiri
al statisti
s of the image in terms of predi
tionerrors (residuals) instead of the original sample values. Furthermore, if the predi
tor is a

urate,then the predi
tion errors will be highly 
on
entrated around zero, and the larger errors willhave smaller probability. This helps in redu
ing the sparsity of the statisti
s, as the majorityof the residuals will lie in a small subrange of the predi
tion error alphabet.
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(b)

(c)

(a)

(d)Figure 5.4: Bias 
an
ellation. (a), (b) and (
) are three distributions of predi
tion residualswith the same shape but 
entered at di�erent pla
es (biases). By removing these biases, thethree distributions 
an now be merged in only one.From the work in [19℄ it has been an a

epted fa
t that predi
tion error distributions oftenobey a Two-Sided Geometri
 Distribution (TSGD) 
entered around 0. As mentioned in [17℄ and[32℄, when the predi
tion error distribution is also 
onsidered 
ontext-dependent, the resultingdistribution of ea
h 
ontext is still TSGD-like but 
entered around a 
ontext-dependent bias.The TSGD is de�ned as PXj
(x) = 1� ��1�s + �s ��jx��j (5.1)where � (de
ay term) and � (the 
enter, whi
h 
orresponds to the mean of the distribution)are parameters of the distribution and s = d�e � � is a term between 0 and 1.Suppose now that there are many 
ontexts in whi
h the predi
tion error has approximatelythe same shape, but 
entered at di�erent o�sets depending on ea
h 
ontext. If those shapes
orrespond to the same distribution, they are 
entered around 0 and merged to obtain a betterestimation of the distribution. This is illustrated in Figure 5.4.This gives rise to a spe
ial 
ase of 
ontext-dependent predi
tion 
alled bias 
an
ellation.In this s
heme, used in many su

esful 
ompression tools su
h as LOCO-I [33℄, the predi
tor
onsists of a �xed part and a 
ontext-dependent adaptive bias term that is used to 
enter thepredi
tion residual distribution around 0.When working with 
ontext-dependent predi
tion, and for the same reasons (the growth inthe number of 
ontexts with the size of the alphabet), the same 
ontext 
lassi�
ation approa
hthat was used to relate similar 
ontexts in the 
onditional distribution estimation problem isused. The obje
tive in this 
ase is to adjust the bias term of the predi
tor for ea
h possible
ontext 
lass. To avoid 
onfusion, these 
lasses will be 
alled predi
tion 
onditioning 
lasses.Note that the probability 
onditioning 
lases, and the predi
tion 
onditioning 
lasses need notbe the same. One approa
h is to de�ne the latter 
lasses to be a re�nement of the former 
lasses(i.e., ea
h probability 
onditioning 
lass is broken into disjoint predi
tion 
onditioning 
lasses).This 
an be justi�ed by the assumption that the 
lassi�
ation used for the 
ontext-
onditionaldistributions joins 
ontexts in whi
h the predi
tion errors have the same distribution shape
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Figure 5.5: Role of 
ontext-
onditional predi
tion (bias 
an
ellation).(same shape and moments ex
ept the mean), but have their 
enter (mean) at di�erent pla
es;and the 
lassi�
ation used for bias 
an
ellation produ
es a partition of ea
h 
lass in a set ofsub-
lasses where the predi
tor bias is the same for all the 
ontexts in the same sub-
lass. Thisis the kind of s
heme used in the LOCO-I algorithm and is exempli�ed in Figure 5.5.5.3 Predi
tion and denoisingAssume that the 
ontext 
lass, the noisy value and the predi
tion for the 
urrent noisy symbolare 
i 2 AK , zi and ẑi respe
tively. Noti
e that ẑi is the predi
tion of the noisy sample at the
enter of 
i. This might seem 
ounter-intuitive at �rst, sin
e the exa
t value of zi is known.As mentioned in the previous se
tion, the idea here is to redu
e the sparsity of the 
ontext-
onditional statisti
s by 
on
entrating them around 0.The predi
tion error for zi is de�ned asei = zi � ẑi (5.2)Let Z, Ẑ and E be the random variables modeling these three values, and 
 be a randomve
tor modeling the possible values of the 
ontext 
lasses 
i.In the se
ond pass of the DUDE, the denoiser fun
tion for the 
urrent sample is de�ned interms of the empiri
al distribution of the input alphabet 
onditioned on the 
urrent 
ontext.In the augmented framework, the sample is 
onditioned on the 
ontext 
lass 
i.
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ond pass to work properly in the augmented framework, the predi
tionerror distribution for the noisy samples has to be reinterpreted in terms of the original noisydistribution.In Se
tion 5.1 it was mentioned that predi
tion 
an be seen as a way to merge similar distri-butions 
entered at di�erent o�sets, where the o�sets are given by the predi
ted value. Thusthe predi
tion error distribution for the 
urrent 
ontext 
lass 
i and the 
urrent predi
tion ẑiP (E = zi � ẑij
 = 
i; Ẑ = ẑi)
an be assumed to be a 
entered version of the original noisy distribution when 
onditionedon the predi
tion value P (Z = zij
 = 
i; Ẑ = ẑi)that is P (Z = zij
 = 
i; Ẑ = ẑi) = P (E = zi � ẑij
 = 
i; Ẑ = ẑi) (5.3)In prin
iple, the 
urrent predi
tion ẑi 
ould be used as an additional element to 
hara
terizethe 
urrent 
ontext besides the 
onditioning 
lass. This would in
rease the potential numberof 
onditioning 
lasses from j�j (the number of 
ontext 
lusters) to j�j � jAj (sin
e there are Apossible predi
tion values). In this framework this option will not be 
onsidered, assuming thatthe predi
tion error distributions are independent of the a
tual predi
ted value ẑi,P (E = eij
 = 
i; Ẑ = ẑi) = P (E = eij
 = 
i): (5.4)Sllowing all the statisti
s of 
lass 
 to be gathered in one ve
tor m
 .With this assumption and (5.3), the estimated noisy 
onditional distribution for the 
urrentsample zi will be P (Z = zij
 = 
i) = P (E = eij
 = 
i):5.4 Pre�lteringThe modeling tools that were mentioned in the previous se
tions (
ontext 
lassi�
ation andpredi
tion) assume a 
ertain degree of smoothness in the images to be denoised. To give anexample, one of the tools used for grouping 
ontexts is Ve
tor Quantization [15℄ whi
h joins
ontexts that are 
lose in terms of their Eu
lidean distan
e in 
ontext spa
e. Another exampleis to use the 
ontext average value (the average of the 
ontext samples) to predi
t the 
enterpixel. If the image is 
orrupted by additive noise of relatively small varian
e (low SNR), thesetools will still work, as the 
ontexts whi
h were originally near in the 
lean image will still be
lose in the noisy image (sin
e they are ve
tors of slighty displa
ed samples). However, if thenoise is not additive (su
h as the \Salt & Pepper" noise), the smoothness assumption will nothold and these tools will not work properly.



48 Chapter 5. ToolsTo address this issue, the augmented framework in
ludes an optional pre�ltering pass in thealgorithm whi
h takes the noisy input image and produ
es a pre�ltered image ym�n using somedenoising �lter. When this s
heme is applied, the 
ontext 
lass 
i and the predi
tion ẑi for ea
hnoisy pixel zi are 
omputed from the pre�ltered 
ontext at the same position i, y(Wi;T ) insteadof the noisy 
ontext z(Wi;T ). Statisti
s are still 
omputed with respe
t to the original noisyvalues zi as in (5.2).Pre�ltering 
an also be seen as a way to \expand" the e�e
tive 
ontextual information whenbuilding the 
ontexts, sin
e the samples in ea
h neighborhood of the pre�ltered image wouldin
lude information from samples outside the neighborhood window. For instan
e, if the pre-�lter is based on a sliding window (su
h as the linear �lters des
ribed in 3), the \e�e
tive"neighborhood would grow up to the radius of the window de�ned by the �lter window size.5.5 Noise pre
lassi�
ationIn some 
ases it is possible to dete
t or estimate whi
h pixels of the image are 
orrupted bynoise. This makes sense when dealing with non-additive noise su
h as impulse noise in whi
hnot every pixel is 
orrupted and, when 
orrupted, its noisy value is always one of 0 or M �1 foran alphabet A = f0; 1; : : : ;Mg. In this 
ase, a simple dete
tion s
heme would be to mark ea
hpixel whose value is either 0 or M � 1 as a noisy 
andidate. Clearly both values 
an happen ina 
lean, un
orrupted image, thus resulting in pixels 
an be marked as noisy when they are not.A pre
lassi�
ation mask �m�n is a binary meta-image where a symbol value of 1 means thatthe pixel is deemed to be noise, and 0 means that it is not. When available, this meta image isa valuable tool for the following stages of the denoising pro
ess.5.6 Loss modelIn denoising problems su
h as binary 
hannel denoising or DNA sequen
ing denoising thereis no sense of proximity between the symbols, and the 
ost in
urred is either the same in allthe 
ases (Hamming 
ost) or di
tated by spe
i�
 rules. In 
ontrast, 
ontinuous-tone imageshave a distan
e relationship between their symbol values, whi
h 
an be used to de�ne a metri
between the noisy and the 
lean images. In a grays
ale image, 
hoosing symbol a+ 1 in pla
eof a 
orre
t a is usually unnoti
eable when working with 256 levels of gray. Generally speaking,bigger di�eren
es (errors) are more visible than smaller ones.Be
ause of this, and also be
ause they yield very fast 
losed form solutions for the argument-dependent minimization used in the denoiser fun
tion (4.4) (see Se
tion 6.7 and Appendix Bfor details), two loss models for 
ontinuous-tone images are used:absolute di�eren
e Setting ea
h element of ((�)) as �ij = ji� jj an L1 norm is stablished asthe distan
e between the noisy and the 
lean image. Thus we will refer to this loss modelas L1.quadrati
 di�eren
e Here �ij = (i � j)2 and the asso
iated distan
e 
orresponds to thesquare L2 norm between the noisy and the 
lean image. This will be referred to as the L2loss model.



6 Proposed solutionIn this se
tion the details of the augmented DUDE framework for 
ontinuous-tone images, orDUDE-I for short, are des
ribed.6.1 Des
ription of the frameworkThe blo
k diagram for the DUDE-I is depi
ted in Figure 6.1.The Pre�lter takes the noisy image zm�n as input and produ
es a pre�ltered version of it,ym�n, that 
an then be used by the Modeler for 
ontext extra
tion and predi
tion.The Pre
lassi�er , when used, 
omputes a binary mask �m�n where �i = 1 for those zi thatare deemed to be 
orrupted noise and �i = 0 otherwise.The Modeler 
lassi�es ea
h sample of the image zi into a 
ontext 
lass 
i, produ
ing a meta-image 
m�n named 
onditioning map. The number and 
hara
teristi
s of ea
h 
lass is de�nedby the Modeler and may vary with the a
tual data.Along with the 
onditioning map, the Modeler also produ
es an optional predi
tion ẑm�nof the image whi
h 
an be used to further simplify the probabilisti
 model of the image.The Denoiser depends on the Channel Model and the Loss Model to sele
t betweendi�erent strategies that are suitable for ea
h 
ase. For instan
e, the se
ond pass of the DUDE-Ifor the Gaussian Noise 
ontains spe
ial steps and subalgorithms not found in the 
orrespondingse
ond pass for the Impulse Noise (and its variants).
Model
Loss

OUT

Channel
Model

IN
Preclas.

Prefilter
DenoiserModeler

PSfrag repla
ements ym�n x̂m�nzm�n ẑm�n
m�n�m�n
� �Figure 6.1: Blo
k diagram for the DUDE-I.
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lassi�
ation s
hemes6.2.1 Trivial S&P dete
tion s
hemeThis is the most straightforward pre�ltering s
heme to apply when 
onfronted to an image
orrupted by impulse noise. As the only possible noisy values are 0 and M � 1, this algo-rithm marks all those pixels of zm�n with a those values as noisy. Despite its simpli
ity, thissimple approa
h improves the overall performan
e signi�
antly 
ompared to the 
ase where nopre
lassi�
ation is done. �i = � 0 ; 0 < zi < M � 11 ; otherwise (6.1)6.2.2 ThresholdingThis is a variant of the pre
eding algorithm where the symbols are marked as noisy if theirvalues are a 
ertain threshold � appart from the extreme values 0 and M � 1:�i = � 0 ; � < zi < M � 1� �1 ; otherwise (6.2)6.2.3 Binary DUDEThe Impulse 
hannel, as des
ribed in Se
tion 2.2.2, is not exa
tly the same as an Erasure
hannel, sin
e the erased symbols take valid input alphabet values (0 for pepper and M � 1 forsalt) instead of a spe
ial erasure value that is added to the output alphabet.This fa
t motivated approa
hes su
h as [24℄, where the main goal is to determine whi
h ofthe symbols of the output having an erasure value are a
tually noisy symbols (and thus shouldbe repla
ed), or 
lean symbols that happen to have one of those unfortunate values.The DUDE-I does not 
hange any symbol whi
h has not the erasure value, but it may 
hangesymbols that have it.This s
heme uses a binary DUDE similar to the one used in [21℄ to produ
e the a
tualpre
lassi�
ation. For simpli
ity, 
onsider the Z-Channel with probability of error �. Considera sequen
e xm�n that has been 
orrupted by this noise yielding a noisy sequen
e zm�n. Theerasure symbol of the Z-Channel has a value e 2 A. Now take the noise mask meta-image asprodu
ed by the trivial pre
lassi�
ation s
heme des
ribed earlier, �m�n. This meta-image willbe 
alled �m�nz . This is a binary meta-image where �i = 1 indi
ates that zi is a potential noisysample.The key is to 
onsider the �m�nz meta-image as a noisy binary image itself. For this, 
onsiderthe noise mask whi
h would be obtained from the (unobserved) 
lean image xm�n by the trivials
heme. This meta-image will be 
alled �m�nx .This is also a binary sequen
e but now it marks those 
lean pixels that 
oin
ide with theerasure symbol e. If a pixel in the 
lean mask was 1, then it 
an only be 1 in the noisy maskbe
ause it would also be e. If it was 0, however, it has a probability of exa
tly � of be
oming1. Thus, for ea
h index i,
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ation s
hemes 51P (�z[i℄ = 0j�x[i℄ = 1) = 0P (�z[i℄ = 1j�x[i℄ = 1) = 1P (�z[i℄ = 0j�x[i℄ = 0) = 1� �P (�z[i℄ = 1j�x[i℄ = 0) = � (6.3)This itself 
orresponds to the behavior of the binary Z Channel and its transition matrix is,a

ording to (6.3), � = ���� 1� � �0 1 ���� : (6.4)The binary DUDE for this 
hannel 
an be applied to obtain a denoised mask �m�nx̂ from thenoisy mask �m�nz .The denoised mask will keep those pixels that 
oin
ide with the erasure value but are notnoisy. However, the denoised mask is de�ned to 
ontain only the noisy pixels. To obtain the�nal noise mask mum�n observe that� �z[i℄ = 1 indi
ates either a false or a true noise dete
tion.� �x̂[i℄ = 1 indi
ates (ideally) only a false dete
tion.Thus, the i-th symbol of the desired noise mask, �i, will be 1 if �z[i℄ is 1 but �x̂[i℄ is 0. This
an be expressed as a logi
al symbol-wise operation between the two masks:�m�n = �m�nx̂ ^ �m�nzwhere a indi
ates the bitwise negation of a operation and ^ the bitwise and operation.To obtain a mask for a multivalued erasure-like 
hannel su
h as the Salt and Pepper, thes
heme is easily extended using a q-ary Z-Channel or by obtaining separate masks for ea
herasure value using the previous s
heme, and 
ombining them with a bitwise or operationbetween the masks.6.2.4 Dis
rimination by homogeneity levelThis s
heme, whi
h was des
ribed in [24℄ for the dete
tion of Salt & Pepper noise, 
an also beused with more diÆ
ult non-additive noise models su
h as the q-ary symmetri
 
hannel. Thebasi
 idea is to mark pixels as noisy when their values are not likely to o

ur given their 
ontext.To do this, the 
o-o

uren
e matrix [9, pp. 416{417℄ of the noisy image is 
omputed. Thistool has been given many interpretations and variants in the literature, usually using the samename. The approa
h followed is that of [24℄ where the 
o-o

urren
e matrix is anM�M matrixH = fhijg where hij 
orresponds to the number of times the symbol j o

ured in a 3�3 
ontextwhose 
enter symbol is i (denoted by Ci;3�3 with jCi;3�3j = 8) all over the image:hij = Xi2Rm�n 8Xj=0Ci;3�3[k℄ (6.5)
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h row r of H 
an be seen as a a histogram of the 
ontext samples 
onditioned on theevent that the 
enter sample has a value of r. The basi
 idea is to use these histograms as
onditional distributions of the 
ontext samples in order to dete
t outliers. After this matrix isobtained from the noisy image, for ea
h value r 2 A an upper Ur and lower Lr bound for thevalues that ea
h 
ontext sample 
an take in order for it to be homogeneous with r is 
omputed.Assuming that ea
h histogram is monomodal and 
entered at the 
enter symbol value r, theupper and lower bounds are sear
hed as those 
olumns where the histogram values fall below agiven threshold � . More pre
isely, the distribution at the j 
olumn of row r is estimated as anaverage in a window of size 3 
entered around j:Lr = argminj 8<:hrj : k=j+1Xk=j�1hrk � �9=;Ur = argmaxj 8<:hrj : k=j+1Xk=j�1hrk � �9=;Let Hi;3�3 = f
 2 Ci;3�3 : Lzi � 
 � Uzig be the set of 
ontext samples homogeneous with the
enter sample at position i for a 3� 3 square 
ontext template. With these bounds 
omputedfor ea
h symbol r, and this de�nition of Hi, a primary 
lassi�
ation ��m�n of the noisy pixelsis performed as follows ��i = � 1 ; jHi;3�3j > 40 ; otherwise (6.6)this 
lassi�
ation produ
es an important number of false dete
tions. A re�nement pass isthen performed using 5 � 5 square 
ontexts. In this pass, ea
h pixel initially marked as noiseis unmarked if the majority of the 
ontext samples marked as homogeneous with it are notmarked as noise. This results in the �nal mask �m�n�i = � 0 ; j f
 2 Hi;5�5 : 
 
leang j > jHi;5�5j=21 ; otherwise ; i : ��i = 1 (6.7)6.3 Pre�ltering s
hemes6.3.1 Basi
 pre�lteringThe DUDE-I framework a

epts any image �lter as a pre�lter. The tested pre�lters in
ludethe 
lassi
al s
hemes des
ribed in Se
tion 3 su
h as the Window Median or Window Average.When a pre
lassi�
ation mask is available, the �lters are applied only to those pixels markedas noisy.6.3.2 Re
ursive pre�lteringThe pre�ltering pro
ess 
an be based on any �lter as long as it produ
es an output that issmoother than the noisy image. If the output of the DUDE-I is indeed 
loser to the unobserved
lean image than the noisy image, its output 
an used as the pre�ltered image used to buildthe 
ontext model in a following stage. This s
heme is depi
ted in Figure 6.2.



6.4. Modeling s
hemes 53Note that the noisy input to ea
h denoising pass is always the initial noisy image. This isnot a re
ursive denoising s
heme.
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Figure 6.2: Blo
k diagram for the Re
ursive Pre�ltering setting. The loop is 
losed for the �rstN-1 
y
les and in the N-th 
y
le the two swit
hes 
hange positions in order to work as in thenormal 
on�guration of Figure 6.1.6.4 Modeling s
hemesThe following se
tions des
ribe the di�erent modeling s
hemes whi
h were applied in thiswork.Being a 
ontinuation of the work started by Giovanni Motta [18℄, the present work inheritedsome of the tools used in the former. These are referred to as the Lega
y tools. Of these tools,the Lega
y Modeling s
heme is the �rst modeling approa
h to be des
ribed here in Se
tion 6.5.The original work in this thesis is 
omprised mainly by what the so 
alled Napkin ModelingS
heme, des
ribed in Se
tion 6.6 below. This s
heme was 
reated using the te
hniques des
ribedin Se
tion 5.6.5 The Lega
y Modeling S
heme6.5.1 SummaryGiven a window size and shape, the Lega
y Modeling S
heme gathers all the 
ontexts fromthe image as ve
tors, performs a 
anoni
al spatial transformation, a DC 
an
ellation of itssamples, and and then uses a ve
tor quantization (VQ) strategy to 
lassify the resulting 
ontextsinto a �xed number of 
lusters (
lasses). An optional predi
tion is 
omputed using an arbitrary�lter as a predi
tor.A blo
k diagram of this modeling approa
h is depi
ted in Figure 6.5. Folloging is a detaileddes
ription of ea
h stage of the algorithm.
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al transformationWhen gathering the 
ontexts, a transformation is performed to mat
h similar 
ontexts withdi�erent orientations (rotation and/or re
e
tion). The idea is to 
ombine a set of four rotations(0,90,180 and 270 degrees) and an optional axial symmetry, so that in the end, the four quadrantsof the 
ontext are ordered in de
reasing intensity. Figure 6.5.2 gives a graphi
al example of this
on
ept. The algorithm itself is given in Figure 6.3,� Take the 
urrent 
ontext as de�ned by a neighborhood template T and 
ompute the sum ofthe intensities of its quadrants: Snw, Sne, Ssw,Sse. Here, ea
h quadrant is de�ned by therelative position of the 
ontext sample to the 
enter (to-be-
onditioned) pixel. The axes arenot taken into a

ount, and the 
ontext shape (de�ned by the template T ) must have 
entralsymmetry for the algorithm to work well.� Rotate the 
ontext so that the upper left (nw) quadrant has the higher overall intensity S.� If, after the rotation, the lower-left (sw) quadrant has more overall intensity than the upper-right (ne), then 
ip the 
ontext along the nw{se axis so that both quadrants are now swapped.Figure 6.3: Canoni
al Transformation algorithm.6.5.3 DC 
an
ellationOn
e the 
ontext has been 
anoni
ally transformed, its average sample value is subtra
tedfrom the samples that 
omprise it. This is a way to exploit the similarity between 
ontextsregardless of the lo
al intensity level.6.5.4 QuantizationAfter all the 
ontexts have been gathered, rotated and their DC has been removed, they arequantized into a �xed number of 
lusers (whi
h is a key parameter of the algorithm) using theLBG algorithm developed by Linde, Gray and Buzo [15℄. The LBG de�nes the 
ontext 
lustersby �nding a set of 
orresponding 
luster 
enters (one per 
luster) in an iterative fashion. Thealgorithm stops when either there is no further 
hange in the position of the 
enters on ea
hiteration, or when a maximum number of iterations is rea
hed.
NW
S=6

NE
S=8

SE
S=5

SW
S=3

S=8 S=5

S=6 S=3

S=6S=8

S=5 S=3

(a) (b) (c)Figure 6.4: Canoni
al transformation. (a) The four quadrants and their sums. (b) After therotation, the upper-left quadrant has the largest sum (in this 
ase the rotation was 90 
ounter-
lo
kwise). (
) Finally, the 
ontext is mirrored along the nw-se axis so that the upper-rightquadrant is brigther than the lower-left one.
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Figure 6.5: Blo
k diagram for the Lega
y modeling. The pre�ltered noisy sequen
e is fed tothe predi
tion �lter to produ
e the predi
tion. The raw 
ontexts from the whole sequen
e arequantized using the LBG algorithm (dashed line) and then a se
ond pass 
lassi�es ea
h 
ontextinto one of the resulting 
ontext 
lasses to form the 
onditioning 
lass map.6.5.5 Predi
tionPredi
tion is optional and based on an arbitrary �lter applied to the noisy or pre�lteredimage (if pre�ltering is used). Common �lters su
h as the Average or Median �lters des
ribedin Se
tion 3 were tested in this s
heme, but also spe
ial ones su
h as the Napkin �lter (to bedes
ribed later in this 
hapter) were adapted to the Lega
y s
heme with good results.6.6 The Napkin Modeling S
heme6.6.1 SummaryThis algorithm takes the te
hniques applied in low-
omplexity image 
ompression algorithmssu
h as [33℄ and [36℄, and adapts them to a noisy environment to produ
e both a 
ontextmodeling s
heme and a predi
tion s
heme that are robust under noisy 
ontexts, and, at the sametime, fast so that modern digital images 
an be pro
essed with pra
ti
al time and 
omputationalrequirements.For instan
e, a �xed s
alar quantization s
heme is used to 
ompute the 
ontext 
lasses, insteadof a ve
tor quantization s
heme. Predi
tion is inspired on the MED predi
tor used in JPEG-LS[33℄, extending it to non-
ausal 
ontexts.A general blo
k diagram of this modeling s
heme is depi
ted in Figure 6.6. Ea
h blo
k is nowdes
ribed in detail.6.6.2 The Context WingsTheNapkin Modeling S
heme derives its name from the fa
t that it divides the 
ontext windowin four wings; N,S,E and W as shown in Figure 6.7. It then 
omputes four dire
tional gradients;dN , dS , dE and dW a

ording to Equations (6.8) to (6.11) whi
h use the lo
al di�eren
esbetween the samples at ea
h wing. Ea
h sample within the 
ontext is referred to as 
xx wherexx = n; s; w; e; nw; ne; : : : indi
ates the relative position of the sample in the 
ontext withrespe
t to the 
enter sample (for instan
e, 
nn indi
ates the sample whi
h lies to the northwest,i.e., at relative position (�1;�1)).
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k diagram for the Napkin modeling.
dN = 
n � 
nn + 
e � 
ne + 
w � 
nw (6.8)dS = 
ss � 
s + 
se � 
e + 
sw � 
w (6.9)dE = 
ee � 
e + 
ne � 
n + 
se � 
s (6.10)dW = 
w � 
ww + 
n � 
nw + 
s � 
sw: (6.11)This dire
tional gradient information is then used both to to determine the way in whi
h the
enter sample value will be predi
ted, and the 
ontext 
lass to whi
h the sample belongs.Ea
h gradient is a signed sum of three adja
ent lo
al gradients in the same dire
tion. This isa tradeo� between lo
allity of the gradient and noise resilien
e, be
ause a signed sum will tendto redu
e the relative in
uen
e of white noise sin
e it a
ts as a low pass �lter. In 
ontrast, inthe 
ompression appli
ations that have been mentioned many di�eren
es are added in terms oftheir absolute values.Broad variant If the noise is additive and its power is high, the average of three lo
aldi�eren
es may not be enough to redu
e its in
uen
e. Be
ause of this, a Broad Variant existswhi
h 
omputes ea
h wing gradient using �ve samples. In this 
ase the gradients are obtained
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Figure 6.7: Wing gradient 
omputation. The 12-pixel diamond-shaped 
ontext at the 
enter isbroken into four (overlapping) wings. For ea
h wing, a gradient is 
omputed as the average ofthree lo
al di�eren
es. The small arrows show the dire
tion and the samples involved in ea
hlo
al di�eren
e 
omputation for ea
h wing.
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Figure 6.8: Wing gradient 
omputation for the Broad variant. Eight additional samples arerequired: nnw,nne,ssw,sse,see,nee,sww and nww.using Equations (6.12)|(6.15). The 
ontext and the wings used in this variant are depi
ted inFigure 6.8. dN = 
n � 
nn + 
e � 
ne + 
w � 
nw + 
ne � 
nne + 
nw � 
nnw (6.12)dS = 
ss � 
s + 
se � 
e + 
sw � 
w + 
sse � 
se + 
ssw � 
sw (6.13)dE = 
ee � 
e + 
ne � 
n + 
se � 
s + 
nee � 
ne + 
see � 
se (6.14)dW = 
w � 
ww + 
n � 
nw + 
s � 
sw + 
nw � 
nww + 
sw � 
sww: (6.15)The four dire
tional gradients are 
ombined into two orientation gradients dH and dV inabsolute terms, dH = jdE j+ jdW j (6.16)dV = jdN j+ jdS j: (6.17)Finally, an overall a
tivity level is also 
omputed from these two gradients,AL = dH + dV : (6.18)The reason for having su
h hierar
hy is to be able to re
ombine them so that di�erent tradeo�s
an be sele
ted in terms of pre
ision in the 
hara
terization of the region and noise resilien
e.
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(c) (d)Figure 6.9: Texture bitmap 
omputation: The predi
ted value is 
ompared to the raw 
ontextsamples produ
ing either a 1 (above predi
tion) or a 0 (below predi
tion) for ea
h sample. (a)shows a given 
ontext, (b) shows the result of the 
omparison, (
) shows the order of the samplesin the 
ontext ve
tor and (d) the resulting texture bitmap.6.6.3 Context ModelingIn the 
urrent 
lassi�
ation-based 
ontext modeling framework, the modelers aim at produ
-ing a minimal set of 
hara
teristi
s for whi
h the 
ontexts that fall in a same group (
lass)are similar in a way useful to the system, i.e., share similar empiri
al probabilities of the noisy
enter sample 
onditioned on the noisy 
ontexts.As a 
lassi�
ation problem, the goal is to �nd these optimal 
hara
teristi
s. With model
ost [26℄ added to the problem, the optimal set of 
hara
teristi
s stems from a tradeo� between
ontext des
ription power and the possible number of 
ontexts. If noise is taken into a

ount,sensitivity in the measures of these 
hara
teristi
s is another problem to deal with.The 
omplexity of this s
enario led to the development of a 
exible s
heme for the sele
tionof these 
hara
teristi
s. The result is that 
ontext 
lasses 
an be formed from the 
ombinationof three measures: quantized a
tivity level, quantized wing gradients and texture bitmap. Ea
h ofthese measured 
hara
teristi
s represent a di�erent tradeo� between pre
ision and expresiveness.A
tivity Level (AL)This measure represents a global a
tivity level of the region spanned by the 
urrent window
ontext.Being a global magnitude that results from the 
ombination of many other measures, thismeasure should be the least a�e
ted by noise from the three, while its ability to 
hara
terize a
ontext is limited to its global nature (no hint of spatial stru
ture 
an be derived from it).Texture BitmapThe texture bitmap tries to 
apture a basi
 texture pattern from the 
ontext. In 
ontrast tothe A
tivity Level, it is highly expressive but also highly sensitive to noise. It 
an be used in
onjun
tion with the other features to regain some of the stru
tural information that they donot 
apture.To 
ompute the texture bitmap, ea
h pixel in the window is 
ompared to the predi
ted value.A single bit is used per pixel to indi
ate if its value was above or equal (1) or below (0) thepredi
ted value. Finally, the bitmap is unrolled into a binary word by traversing the bitmap ina spiral fashion, i.e., as 
on
entri
 
ir
les of in
reasing radius. Figure 6.9 shows this pro
edure
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M=4
N=60

=1

Figure 6.10: Example binning for the quantization s
heme used in the Napkin modeler. Thehistogram, built from 60 hypotheti
al non-quantized gradients, is partitioned into 4 bins so thatea
h region that 
orrespond to the same quantized value has roughly 15 samples in it.Wing gradientsThe four wing gradients are independently 
omputed and, in 
ombination, 
an give usefulinformation not only about the overall a
tivity of the region in but also about the shape of thisregion. For example, if the North gradient is positive, and the South gradient is negative, thereis a lo
al maximum in the verti
al dire
tion. If, at the same time, both the East and West wingsgradients have the same sign or are 
at,then there is 
ontinuity in that dire
tion, a situationthat 
ould arise if a line of the image is traversing the 
ontext.This s
heme is a tradeo� between the two previous features sin
e it gives a better des
riptionof the 
ontextual stru
ture than the a
tivity level by itself, while being more robust to noisethan the binary texture 
omponent.Gradient dire
tionAnother des
riptive element whi
h proved to be useful is the estimation of the dire
tion ofthe overall 
ontext gradient. This is 
omputed as� = tan�1�dNdS � : (6.19)QuantizationTo quantize the magnitudes involved in the 
ontext modeling (a
tivity level, wing gradientsand gradient dire
tion), a non-uniform quantization algoritm was developed.The main idea of this algorithm is to produ
e a quantization in whi
h the resulting quantizedvalues yield a uniform distribution (thus having maximum empiri
al entropy), i.e., so that ea
hquantized level has roughly the same o

uren
e within the image.To a
hieve this goal, the algorithm takes the histogram of the magnitude to quantize as itappears for the whole image and breaks it into regions (also 
alled bins) whi
h have roughly thesame number of samples inside of them. This idea is depi
ted in �gure Figure 6.10 for a samplegradient histogram.The algorithm takes as input the unquantized histogram of the magnitude to be quantizedH that goes from 1 to N , and a number of bins to where the raw values will be put into, B.The histogram is assumed to be a monotoni
ally de
reasing fun
tion of 1 � n � N . An outlineof the algorithm is shown in Figure 6.11.
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heme 61� Compute T =PNn=1H [n℄.� Set t = N , the threshold pointer.� while t > B,� Compute M = dT=Be, the target number of hits per bin.� while A < M and t > B,� add H [t℄ to A.� de
rement t.� Set the 
urrent value of t as one of the quantization thresholds.� De
rement B.� if the number of remaining levels t = B,� Assign all the remaining levels as thresholds, yielding t one-level quantization bins.� END.� Update T = T �M� Update M = dT=Be� Set A = 0Figure 6.11: Maximum entropy binning algorithm.Pathologi
al situations (su
h as B = 0) are ommited for the sake of 
larity.Conditioning 
lass 
omputationWhen the A
tivity Level, the Texture, gradient Dire
tion and the Wing Gradients have been
omputed, a 
onditioning 
lass is de�ned for the 
urrent pixel whi
h 
ombines the four featuresinto a unique numeri
al signature by 
on
atenating their binary representations (Figure 6.12).a1 � � � ana t1 � � � tnt �1 � � � �n� w1 � � � wnwFigure 6.12: Conditioning 
lass 
omputation. na stands for number of a
tivity level bits, nt fortexture bits, n� for gradient dire
tion bits and nw for wing gradient bits.6.6.4 Predi
tionPredi
tion in the Napkin Modeler was broken into a �xed predi
tor term and a 
ontext-dependant variable term (bias 
an
ellation, whose general des
ription was given in Se
tion 5.2).This is similar to the approa
h used in LOCO-I [33℄.In a �rst pass, a �xed predi
tion is 
omputed for the whole image and a 
omplementary
ontext model, the \bias 
an
ellation model", is used to perform a 
ontext dependant bias
an
ellation.For the �xed part of the predi
tor, a baseline algorithm was developed, 
alled Average Napkin,along with two variants: the Sharp Napkin and the Smooth Napkin, whi
h are tailored for thetwo main types of noise studied (non additive and additive respe
tively).



62 Chapter 6. Proposed solutionThe basi
 idea of the three variants is to predi
t the 
enter sample using only those samplesfrom its surrounding window whi
h are smooth, and not part of rapidly 
hanging regions (edges,lines, et
.). To measure the smoothness of ea
h region, the wing gradients that were des
ribedearlier are used to produ
e a wing weight proportional to the smoothness of the region. Theseweights are de�ned as wN = 1=(1 + jdN j) (6.20)wS = 1=(1 + jdS j) (6.21)wE = 1=(1 + jdE j) (6.22)wW = 1=(1 + jdW j): (6.23)6.6.5 Fixed predi
tion variantsThe Average Variant 
omputes a per-wing average and then produ
es a predi
tion usingonly the averages from those wings that are deemed to be 
at, i.e., whose sample values do notvary more than a 
ertain amount. The idea is to predi
t the 
enter sample using only thosesamples whose values are deemed to be 
lose to its (unknown) value.The 
atness 
riterion is based on the relative magnitudes of the four wing gradients. First,the minimum wing gradient magnitude is 
omputed,dm = min (jdN j; jdE j; jdS j; jdW j) : (6.24)A wing is 
onsidered to be 
at if its gradient magnitude is no greater than dm by a �xedthreshold, �, de�ned as � = grad thres� 3� jAj (6.25)or, if the broad variant is used, � = grad thres� 5� jAj (6.26)where jAj is the alphabet size and 0 � grad thres � 1 is a parameter of the algorithm.1To produ
e a �nal result using only the 
at wings, a se
ond set of weights is obtained,w0N = � wN ; jdN j � dm < �0 ; otherwise (6.27)w0S = � wS ; jdS j � dm < �0 ; otherwise (6.28)w0E = � wE ; jdE j � dm < �0 ; otherwise (6.29)w0W = � wW ; jdW j � dm < �0 ; otherwise : (6.30)1The maximum possible gradient is three times the alphabet size be
ause it is the signed sum of three lo
aldi�eren
es whi
h 
an only di�er in jAj. The 
ase of the broad variant is analogous.
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(a) (b) (c)

PSfrag repla
ements ~z
Figure 6.13: Average Napkin variant. (a) raw 
ontext. (b) wing gradients. (
) the �xedpredi
tion ~z is 
omputed as a weighted average of the 
at wings.The wing averages are 
omputed as follows:aN = (
n + 
nn + (
nw + 
ne)=2) =3 (6.31)aE = (
e + 
ee + (
ne + 
se)=2) =3 (6.32)aS = (
s + 
ss + (
sw + 
se)=2) =3 (6.33)aW = (
w + 
ww + (
nw + 
sw)=2) =3: (6.34)The ne,nw,sw and se 
ontext samples are divided by two be
ause wings overlap at thosepositions. Finally, with all these values 
al
ulated, the �xed predi
tion produ
ed by the AverageNapkin is ẑ = w0NaN + w0SaS + w0EaE + w0WaWw0N + w0S + w0E + w0W (6.35)A graphi
al s
heme of this predi
tion is shown in Figure 6.13.The Sharp Variant di�ers from the Average Variant in that the weights of the samples ofthe 
ontext 
an take only two possible values: 0 or 1. The predi
tion is then 
omputed usingonly those samples whose weight is 1. The weights are de�ned as follows: �rst,a wing gradientsign is 
omputed for ea
h wing as,sx = 8<: �1 ; dx < �grad thres+1 ; dx > grad thres0 ; otherwise (6.36)where x is one of N;S;W;E. In the Sharp Variant, a wing is said to be 
at only if its 
orre-sponding wing gradient sign sx is equal to 0. Depending on the 
atness of the four wings, thealgorithm swit
hes between two modes of operation: 
at mode or non
at mode.If any of the wings is 
lassi�ed as 
at, the predi
tor works in 
at mode. In this mode, all thesamples belonging ex
lusively to 
at wings will be used in the predi
tion (i.e., will have weight1). This dis
ards samples that overlap two wings and one of them is not 
at. The result is aplain (i.e., non-weighted) average of the sele
ted samples whi
h 
an be written as,ẑ = P
2C w

P
2C w
 (6.37)where C is the 
urrent 
ontext, 
 are the 
ontext samples and w
 is 1 if 
 belongs only to 
atwings and 0 otherwise.



64 Chapter 6. Proposed solutionIf none of the wings is 
lassi�ed as 
at, the predi
tor swit
hes to the non
at mode. In thisase, the region is 
hara
terized into either a ridge, or a saddle by looking at the relationshipbetween the two gradients of ea
h main dire
tion (horizontal or verti
al). In the �rst 
ase, thegradient signs mat
h in one dire
tion and are opposite in the other. This would represent aridge sin
e there is 
ontinuity in one dire
tion and a lo
al maximum/minimum in the other,and thus it would be appropiate to use only the samples aligned with the 
ontinuous dire
tion(dimension) to predi
t. In the other 
ase, there 
an be no distin
tion between the importan
eof the wings, but as the gradients are high in all dire
tions it seems 
lear that farther sampleswould not improve the predi
tion so only the four 
losest neighbors are used to 
ompute theresult. An example of these ideas is depi
ted in Figure 6.14.
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(d) (e) (f)Figure 6.14: Sharp Napkin variant. (a) is a ridge, (b) is a lo
al minimum and (
) is a saddlepoint. (d), (e) and (f) are the 
orresponding weights for ea
h 
ase.
The Smooth Napkin , in 
ontrast to the previous variants, produ
es the predi
tion using allthe window samples (whi
h 
an in
lude more samples than the ones used in the wing gradient
omputation). It assigns a weight to ea
h sample using a per-sample gradient estimation (in
ontrast to a per-wing approa
h) and the relative distan
e of the sample to the 
enter sampleto be predi
ted. This idea is inspired on the anisotropi
 �lter des
ribed in Se
tion 3.7.3.If 
j 2 C is a sample of the 
urrent 
ontext C with relative position j 2 Z2 (for example thenne sample has relative position j = (�2; 1)), its asso
iated weight is de�ned aswj = 8>><>>: j0 � 0; j1 � 0 ; (wSj0 + wEj1)=jjj2j0 �; j1 < 0 ; (wSj0 � wW j1)=jjj2j0 < 0; j1 � 0 ; (�wNj0 + dEj1)=jjj2j0 < 0; j1 < 0 ; (�wNj0 � wEj1)=jjj2 (6.38)where wN , wN , wN , wN are de�ned in equations (6.20) through (6.23) This results from 
on-sidering one weight ve
tor per quadrant (NE,NW,SE,SW) and having ea
h sample weighted bythe inner produ
t of its relative position with the ve
tor that 
orresponds to its quadrant, nor-malized and then divided by its distan
e from the 
enter (thus dividing by jjj twi
e). The ideais depi
ted in Figure 6.15. With all the weights 
al
ulated, the predi
tion is just the weightedaverage of the samples,
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(c) (d)Figure 6.15: Smooth Napkin variant. (a) The wing gradients are 
omputed, (b) their 
orre-sponding weight ve
tors are derived from them, in (
) the weight ve
tor for the quadrant ofj = (�1; 1) is 
omputed and (d) shows the relative 
oordinate ve
tor j and the weight ve
torW . The �nal weight is the internal produ
t of these two.Context dependent predi
tion: Bias 
an
ellationThe 
ontext-dependent part of the predi
tor 
onsists of a bias 
an
ellation term whi
h isadapted for ea
h possible predi
tion 
ontext 
lass. Following the dis
ussion in Se
tion 5.2, thes
heme adopted is that where the 
ontext 
lasses used for this adaptive part of the predi
torare a re�nement of the 
lasses used for building the 
onditional probability distributions. Thus,the number of bits assigned to des
ribe ea
h of the des
riptive 
omponents (a
tivity level, winggradients, gradient orientation, texture) has to be at least the same as those used to build theprobability 
onditioning 
lasses. The predi
tion 
onditioning 
lass for a sample zi is denoted as�i and all the �i for the image zm�n form the predi
tion 
onditioning map meta-image �m�n.The bias term b� for ea
h predi
tion 
lass � is 
omputed as the average predi
tion error of the�xed predi
tor output ~zi and the noisy value to be predi
ted, zi for ea
h sample zi that belongsto that predi
tion 
lass. For this, a bias 
ounter is de�ned whi
h a

umulates the di�eren
esbetween ~zi and zi, and a 
lass 
ounter is in
remented to 
ontain the number of o

uren
es ofea
h predi
tion 
lass. Finally, the bias term is 
omputed as the quotient of both values:b� = a

umulated error for 
lass �o

uren
es of 
lass � (6.39)The bias 
an
ellation te
hique, being one of the tools used in image 
ompression, is designedto work well with smooth pie
ewise-
onstant data su
h as digital images. Be
ause of this, whenthe noise is non-additive, the 
ontribution of the noisy samples to the bias term degrades thee�e
tiveness of the te
hnique.



66 Chapter 6. Proposed solutionTo avoid this problem, the noise mask �m�n produ
ed by the pre
lassi�er is used to ex
ludethose samples marked as noise from the bias term 
omputation. Thus, for a given sample zi, its�xed predi
tion ~zi and its predi
tion 
lass �i the asso
iated bias 
an
ellation term is updatedas b�i := � b�i if �i = 1b�i + zi � ~zi if �i = 0 (6.40)After the �rst pass is done, the biases are 
omputed by dividing these bias 
ounters by thenumber of o

uren
es of ea
h predi
tion 
onditioning 
lass (whi
h were not deemed to be noisysamples).With the biases 
omputed, a se
ond pass is performed in whi
h ea
h predi
ted sample is
orre
ted by the bias whi
h 
orresponds to its predi
tion 
lass.Algorithm outlineFigure 6.16 summarizes the whole Napkin algorithm for the 
ase of the Average Predi
tionvariant.



6.6. The Napkin Modeling S
heme 67� Let zm�n be the noisy input and ym�n its pre�ltered version.� Initialize wing gradient and a
tivity level histograms.� Initialize the gradient threshold using (6.25)� First pass� For ea
h zi in zm�n:� Extra
t the 
ontext z(Wi;T ) a

ording to the neighborhood template T (the tem-plate de�nition 
an be any as long as it in
ludes the wing samples w, n, e, s, nw,ne, se, sw, ww, nn, ee, ss).� Compute the wing gradients dS ; dN ; dE ; dW , the dire
tional gradients dH and dV ,the gradient dire
tion � and the A
tivity Level AL using equations (6.8) through(6.18).� Add the wing gradient absolute values and the a
tivity level to their respe
tivehistograms.� Fixed predi
tion:� Compute the minimum wing gradient, dm = min (dN ; dE ; dS ; dW )� Compute the four wing gradient weights as indi
ated in (6.20) to (6.23)� Compute the �xed predi
tion, ~zi, using (6.31) and (6.35)� Obtain the texture bitmap, � , from the 
urrent 
ontext and �xed predi
tion usingthe method des
ribed in Setion 6.6.3.� Compute the quantization bins for the a
tivity level, wing gradients and gradient dire
tion,based on their 
orresponding histograms, a

ording to the algorithm des
ribed in Figure 6.10.These de�ne three 
orresponding non-uniform quantization fun
tions Qa,Qw and Q�.� Se
ond pass: 
lassi�
ation and bias estimation� Initialize the 
onditioning map 
m�n to hold the probability 
onditioning 
lass of ea
hpixel in the noisy image. The elements of this map will be referred to as 
i.� Initialize the predi
tion 
onditioning map, �m�n, to hold the predi
tion 
lass of ea
hpixel in the noisy image. The elements of this map will be referred to as �i.� Initialize the bias for ea
h predi
tion 
lass, b� = 0.� Initialize the 
ounter for ea
h predi
tion 
lass, n� = 0.� For ea
h zi in zm�n:� Quantize the wing gradients using Qw, the gradient dire
tion using Q� and thea
tivity level using Qa.� Compute 
i as a 
on
atenation of the 
ond a
t bits MSB (most signi�
ant bits)of �, the 
ond tex bits MSB of � , the 
ond ang bits MSB of �, and the
ond wing bits of ÆN ,ÆE , ÆS and ÆW .� Compute �i as a 
on
atenation of the pred a
t bitsMSB of �, the pred tex bitsMSB of � , the pred ang bits MSB of �, and the pred wing bits of ÆN , ÆE , ÆSand ÆW .� Update the bias for the 
urrent predi
tion 
lass b�i a

ording to (6.40). If the biaswas updated, in
rement predi
tion 
lass 
ounter for the 
urrent 
lass, n�i .� Third pass: bias 
an
ellation� normalize the biases as b� = b�=n� for ea
h predi
tion 
lass �.� For ea
h zi in zm�n, adjust ẑi = ~zi + b�i .Figure 6.16: Outline of the Napkin Modeling S
heme.



68 Chapter 6. Proposed solution6.6.6 Combined LBG/NapkinThis s
heme uses the a simpli�ed version of the Napkin predi
tor (or any of its variants)as the predi
tion �lter of the Lega
y Modeling S
heme. In some 
ases, this 
ombination hasyielded better results than any of the other two modeling approa
hes. This will be dis
ussed inSe
tion 7.6.7 Denoising StageAfter the probability modeling is de�ned for the 
urrent noisy image, the se
ond pass of theDUDE is performed. There are three variants for doing so, whi
h depend on the sele
ted lossmodel: L2 , L1 or exhaustive sear
h. For the �rst two 
ases, fast 
losed forms of the denoisingfun
tion (4.4) are available (see Appendix B for a derivation of these 
losed forms).For instan
e, if squared error (L2) is used, (4.4) takes the form of the expe
tation of theposteriori input distribution PXjC;Z :g(�;C) = E PZjC��1 � ��PZjC(�) ! (6.41)here E(:) denotes expe
tation.If absolute di�eren
e is used, (4.4) 
orresponds to the median of the posteriori input distri-bution: g(�;C) = median PZjC��1 � ��PZjC(�) ! (6.42)where PZjC(�) term is needed to normalize the resulting ve
tor ba
k to 1 after the element-wisemultipli
ation with �z.Finally, if any other loss model is used, an exhaustive sear
h is done for (4.4) using a pre
om-puted lookup table for �z � �x̂, whi
h is 
omputed only on
e for ea
h possible 
ombination of zi(the 
urrent noisy pixel) and x̂i (the potential denoiser output).6.7.1 From predi
tion error to original noisy distributionFor ea
h symbol in the noisy sequen
e zi, its 
orresponding predi
tion ẑi and 
onditioning
lass 
i equation (5.3) and the assumption in (5.4) are used to 
ompute ea
h element of PZj
in terms of PEj
 as PZj
(z) = PEj
(z � ẑ) (6.43)The predi
tion error distribution ranges over an alphabetM 0 = f�M + 1; : : : ;�1; 0; 1; : : : ;M � 1gFor a given ẑ, there will be elements of PEj
 that do not 
orrespond to an element in PZj
 .In parti
ular, all those elements of PEj
 above M � 1, e 2 fM � ẑ;M � ẑ + 1; : : : ;M � 1g andbelow 0, e 2 f�M + 1; : : : ;�ẑ � 1g would be lost. One approa
h to this problem is to assume



6.7. Denoising Stage 69that those elements are all mapped to z =M�1 and z = 0 respe
tively. Thus (6.43) is modi�edin the following way:PZj
(z) = 8>>>><>>>>: P�ẑ�1e=�M+1 PEj
(e) ; z = 0PEj
(z � ẑ) ; z = 1; : : : ;M � 2PMe=M�ẑ PEj
(e) ; z =M � 1 (6.44)6.7.2 Channel InversionThe Channel Inversion problem whi
h is that of obtaining an estimated input probabilitydistribution PXj
 for ea
h 
ontext 
lass 
 requires di�erent strategies for the di�erent typesof 
hannels, as the 
ondition number [8℄ of the 
hannel transition matrix, whi
h measures thestability of the solution of the inversion problem, varies greatly depending on the type of 
hannel.For instan
e, the Gaussian 
hannel yields transition matri
es with very high 
ondition num-bers (numeri
ally unstable) for any signi�
ant value of its parameter � (signi�
ant meaningthat the noise is a
tually noti
ed in the image by visual inspe
tion). In 
ontrast, the non-additive 
hannels yield matri
es whi
h do not present numeri
al problems in their inversion.Furthermore, the inversion 
an be 
omputed eÆ
iently using 
losed form solutions for ea
h
hannel.Be
ause of this, the problem of Channel Inversion will be dis
ussed for ea
h 
hannel type insubse
tions Se
tion 6.7.3|Se
tion 6.7.5.6.7.3 Denoising stage for the Gaussian ChannelThe transition matrix of the gaussian 
hannel has a high 
ondition number even for smallnoise varian
e values (e.g., � = 1), whi
h makes the 
hannel inversion problem numeri
allyunstable. Be
ause of this, the 
hannel inversion pro
edure has to rely on heuristi
 approa
hesto obtain input probabilities whi
h 
apture that part of the information that is still reliableunder su
h 
onditions.The greedy algorithmLet P be the set of probability distributions over the alphabet A and PZ a 
hannel outputprobability distribution. When an exa
t solution 
an not be found, one possible approa
h isto obtain an approximation of the input distribution PX , P �, whi
h minimizes the di�eren
ebetween the 
orresponding approximated output distribution and the true output distribution,P �X = argminP2P �j�TP � PZ j� (6.45)The greedy algorithm relies on this s
heme by doing an exhaustive sear
h on the transitionmatrix 
olumns that generate the output probability subspa
e. It is de�ned in Figure 6.17.The greedy algorithm requires many iterations to 
onverge, whi
h makes it a 
ostly operation.Furthermore, as predi
tion is performed and so statisti
s are gathered in terms of predi
tionerrors, the 
hannel inversion has to be 
omputed for ea
h possible 
ombination of 
ontext 
lass



70 Chapter 6. Proposed solution� set m = PZ� set PX = 0� while jmj > 0� Find the 
olumn of � whi
h maximizes the proje
tion of m on it, imax =argmaxi2A � hmT ;�iij�ij �. < :; : > means dot produ
t and �i is the i-th row of �.� Compute an update term as, � = � hmT ;�imaxij�ij , where � � 1 is used to avoid premature
onvergen
e.� Update input probability estimation, PX(imax) = PX(imax) + �.� Update the proje
tion residual of PZ , m = m�� � �imax .Figure 6.17: Pseudo
ode for the the Greedy Algorithm.and predi
tion value. These two fa
ts, when 
ombined, make it impossible to implement anyfeasible solution for this 
hannel without some further simpli�
ation.The simpli�
ation used is the one proposed in [18℄. This approa
h assumes that the transitionmatrix for this 
hannel is 
ir
ulant, i.e., of the form� = 26664 p0 p1 � � � pM�2 pM�1pM�1 p0 � � � pM�3 pM�2... ... . . . ... ...p1 p2 � � � pM�1 p0 37775 :Given a probability distribution PX over the alphabet A = f0; : : : ;M � 1g, its 
ir
ular shiftof magnitude a is de�ned as P(a+X)M (x) = PX((x+ a)M )where (:)M denotes modulo M arithmeti
. Under the 
ir
ulant matrix assumption it 
an beshown that, �TP(a+X)M = P(a+Z)M ;8a 2 A (6.46)Equation (6.46) means that the 
ir
ular shift and inversion operations are inter
hangeable.Until now, when denoising using predi
tion error statisti
s, those statisti
s had to be shiftedby the value ẑ before inverting the 
hannel for ea
h possible ẑ. As ea
h re
onstru
ted distributionyields di�erent input distributions, the inversion pro
ess had to be 
arried out for ea
h possible
ombination of predi
tion value and 
onditioning 
lass.Using the 
ir
ulant matrix assumption, shift and inversion are inter
hangeable and the 
hannel
an be inverted only on
e for ea
h 
onditioning 
lass in terms of the predi
tion error distributionestimated dire
tly from the predi
tion error statisti
s, and leave the shifting as the only per-pixelpredi
tion-dependent operation.



6.7. Denoising Stage 71p0+p1 p2 0 0 0 0 00 p0 p1 p2 0 0 00 0 p0 p1 p2 0 00 0 0 p0 p1 p2 00 0 0 0 p0 p1 p20 0 0 0 0 p0 p1+p2Table 6.1: Approximate 
ir
ulant matrix. The assumption holds for the 
entral part of thematrix.It must be noted that the 
ir
ulant assumption is an approximation as the transition matrixgenerated by the Gaussian 
hannel is not stri
tily 
ir
ulant. The 
ir
ulant assumption holdsfor most of the \
entral" symbols of the alphabet be
ause the ma
hine pre
ision redu
es thesupport of the probability mass fun
tion (the range of values where p(x) > 0) to a small range ofabout 4�� and the 
hannel is additive. Table 6.1 shows an example of how the approximationworks.The e�e
ts of su
h assumption have not been fully investigated, but 
urrently this is the bestavailable me
hanism for making the DUDE-I work with Gaussian 
hannels while running withpra
ti
al 
omputational requirements.2The parametri
 approa
hAnother approa
h to this problem is to make 
ertain assumptions on the 
ontext-
lass-
onditional input probability distributions PXj
 . One possibility is to assume that PX is aninstan
e of a given family of parametri
 distributions. As mentioned in Se
tion 5.2, a good
andidate is the two-sided geometri
 distribution (TSGD). Re
all that the TSGD is de�ned asPXj
(x) = 1� ��1�s + �s ��jx��jwhere � (de
ay term) and � (
enter) are parameters of the distribution and s = d�e � � isa term between 0 and 1. When PXj
 is modeled in this way, the parameters � and � 
an beobtained dire
tly in terms of the mean and varian
e of PZj
 :�X (a)= �Z = EPZj
 [Z℄ (6.47)�X (b)= �2Z � �2 = EPZj
 [(Z � �)2℄� �2� = �X + 1�p1 + 4�X�X � 2where �Z and �Z are the mean and varian
e of PZj
 and � is the 
hannel noise varian
e.(a) and (b) are immediate using that the noise is white (additive, independent of the 
lean dataand with zero mean). The full details of the derivation of 6.48 are given in Appendix C.This alternative has the advantage of being mu
h faster and to run in 
onstant time when
ompared to the greedy algorithm.2Disabling the 
ir
ulant matrix assumption and doing a per-pixel inversion takes tens of hours to run ona 2.2GHz Pentium 4 HP Xeon station with 1GB of RAM for a 512 � 512 image. Using the assumption, theexe
ution time on the same ma
hine and for the same image redu
es to about 5 minutes.



72 Chapter 6. Proposed solution� for ea
h 
onditioning 
lass 
� Invert the 
hannel in terms of the (noisy) predi
tion error distribution, PEZ j
 usingeither the greedy algorithm or the parametri
 approa
h. Store the result as PEX j
 .� for ea
h noisy symbol zi� Take the pre
omputed input predi
tion error distribution for its 
onditioning 
lass 
i,PEX j
i .� Re
onstru
t the original 
ontext-
lass-
onditional input distribution PXj
i using (5.4)for the 
urrent predi
tion ẑi.� Apply the denoiser fun
tion in (4.4) to PXj
 for the 
urrent noisy pixel, �. If L1 or L2norms are used, use instead (6.42) or (6.41) respe
tively.Figure 6.18: Se
ond pass of the DUDE-I for the Gaussian Channel.Having only two parameters per distribution instead of M , the overall number of parametersto be estimated is greatly redu
ed and their estimations are more reliable. On the other hand, itputs heavy 
onstrains on the shape of PXj
 . This is related to the model 
ost problem des
ribedin Se
tion 5, and some of its pra
ti
al impli
ations 
an be seen in Se
tion 7.4.5.Algorithm outlineThe se
ond pass of the DUDE-I for the gaussian 
hannel is des
ribed in Figure 6.186.7.4 Denoising stage for the Salt & Pepper 
hannelContrary to the Gaussian 
hannel, the Impulse or so 
alled Salt & Pepper 
hannel is easilyinvertible and there is a very eÆ
ient 
losed form solution for it. It is easy to show that theinverse of (2.5) for a given parameter � is��1 = 11� � � 26666664 1� �2 0 � � � 0 ��2��2 1 0 0 ...... 0 . . . 0 ��2��2 0 0 1 ��2��2 0 � � � 0 1� �2
37777775 : (6.48)

Given an output probability distribution for a given 
ontext 
, PZj
 , an Impulse Channelparameter �, and an input/output alphabet A = f0; : : : ;M � 1g,PXj
 = 11� � [(PZj
 [0℄ � �2 ); PZj
 [1℄; : : : ; PZj
 [M � 2℄; (PZj
 [M � 1℄� �2 )℄ (6.49)The above result has an intuitive interpretation: as �=2 bla
k (index 0) and �=2 white (indexM � 1) 
ounts are due to noise rather than to the 
lean sequen
e, to revert the 
hannel e�e
tmeans subtra
ting these amounts from the noisy distribution and re-normalizing (dividing bythe resulting sum, namely 1 � �). Furthermore, a 
losed expression for PXj
;� 
an also beobtained using (4.3). For � = 0,PXj
;0 = [(1� �2 )(PZj
 [0℄� �2 ); �2PZj
[1℄; : : : ; �2PZj
[M � 2℄; �2 (PZj
 [M � 1℄� �2 )℄(1� �)PZj
(�) (6.50)



6.7. Denoising Stage 73for � =M � 1,PXj
;M�1 = [�2 (PZj
 [0℄� �2 ); �2PZj
 [1℄; : : : ; �2PZj
 [M � 2℄; (1 � �2 )(PZj
 [M � 1℄� �2 )℄(1� �)PZj
(�) (6.51)and for the rest of the values,PXj
;� = [0; : : : ; 0; ��thz}|{1 ; 0; : : : ; 0℄: (6.52)Again, there is an intuitive interpretation of this result: as the only possible noisy symbolsare 0 and M � 1, any other observed symbol in the noisy sequen
e is 
lean and thus should beleft untou
hed (i.e. g(�; 
) = �). In the 
ase that the observed value 
orresponds to one of thenoisy symbols, the resulting probabilities are essentially a s
aled down version of (6.49) wherethe only position that has a relative 
hange is that of the noisy value.Tail gatheringWhen predi
tion is used for Salt & Pepper 
hannels, and be
ause the noisy samples have a�xed, un
orrelated value, the predi
tion error statisti
s that 
orrespond to the bla
k and whitepixels (the extremes) get smeared. To obtain an approximate pi
ture of how this happens,
onsider the distribution of the predi
tion error E for some 
onditioning 
lass 
, PEj
 also
onditioned on the three possible 
hannel events: '
lean' when the sample gets out of the
hannel untou
hed, 'pepper' when it is substituted with z = 0 and 'salt' when it is substitutedwith z =M � 1, PEj
(e) = P (E = ejsalt ; 
)P (salt j
)+P (E = ejpepper ; 
)P (pepper j
)+P (E = ej
lean ; 
)P (
lean j
) (6.53)where P (pepper j
) and P (salt j
) are the probabilities of error of the 
hannel as des
ribed inSe
tion 2.2.2 for the 
onditioning 
lass 
. Assuming that the 
ontext 
lassi�
ation is not a�e
tedby the noise,3 it 
an be further assumed that both probabilities are independent of the 
lass
 and thus equal to the global salt and pepper probabilities: P (pepper j
) = P (pepper ) = �=2and P (salt j
) = P (salt) = �=2. Thus (6.53) be
omesPEj
(E = e) = �2P (E = ejsalt ; 
)+�2P (E = ejpepper ; 
)+(1� �)P (E = ej
lean ; 
) (6.54)The pre�ltered image will 
onsist of 
lean samples and �ltered samples. Carrying on withthe assumption that the pre
lassi�er a

urately dete
ts the noisy samples, the �ltered sampleswill be based on other 
lean samples, and thus they will also be un
orrelated with the noisysamples they are substituting. As the predi
tion is built from this pre�ltered image, it 
an beassumed that the predi
ted values will also be un
orrelated with the noisy values:P (Ẑ = ẑjsalt ; 
) = P (Ẑ = ẑ);8ẑ 2 A3The goal of the pre�ltering and pre
lassi�
ation blo
ks is to avoid this.



74 Chapter 6. Proposed solutionP (Ẑ = ẑjpepper ; 
) = P (Ẑ = ẑ);8ẑ 2 AUsing these results and the de�nition of the predi
tion error, e = z � ẑ,P (E = ejpepper ; 
) = P (E = 0� ẑj
) = (6.55)P (E = ejsalt ; 
) = P (E =M � 1� ẑj
) (6.56)(6.57)Assuming that the predi
tion is reasonably a

urate, the distribution of the predi
ted valueswill be similar to the noisy distribution for the 
ases where the samples are un
orruptedP (Ẑ = aj
) � P (Z = aj
; 
lean);8a 2 A (6.58)and thus P (E = ejpepper ; 
) = P (E = 0� ẑj
) � P (E = 0� zj
; 
lean) (6.59)P (E = ejsalt ; 
) = P (E =M � 1� ẑj
) � P (E =M � 1� zj
; 
lean) (6.60)(6.61)Finally, using (6.53) through (6.61),PEj
(e) � �2P (E = 0� zj
; 
lean)+�2P (E =M � 1� zj
; 
lean)+(1� �)P (E = ej
; 
lean) (6.62)This approximation makes it possible to obtain a graphi
al representation of (6.53) by know-ing the distribution of the noisy sequen
e zm�n and the distribution of E for some 
. Thisapproximate representation 
an be seen in Figure 6.19 and provides a justi�
ation for the tailgathering heuristi
 des
ribed below.The �nal result is that, if no a
tion is taken, equation (6.49) may yield negative probabilities inthe bla
k and white 
omponents. To avoid this, a heuristi
 s
heme referred to as tail gatheringwas devised as a simple attempt to gather ba
k the smeared statisti
s. This algorithm isdes
ribed in Figure 6.20.The use of this algorithm led to a 
onsistent in
rease in the denoising performan
e in all theexperiments performed with Salt and Pepper noise and is now 
onsidered an integral part ofthe se
ond pass of the DUDE-I for Salt & Pepper noise.The full se
ond pass of the DUDE-I for the Salt & Pepper 
hannel is developed in Figure6.21.
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Figure 6.19: Approximate shape of the 
onditional predi
tion error distribution PEj
 when thenoisy image zm�n is the output of an Impulse Channel of parameter �.� set d = �2 � PZj
 [0℄� set i = 1� while d > 0 and i < M � 1� if PZj
 [i℄ < d,PZj
 [0℄ = PZj
 [0℄ + PZj
 [i℄;d = d� PZj
 [i℄;PZj
 [i℄ = 0;i = i+ 1� elsePZj
 [0℄ = PZj
 [0℄ + d;PZj
 [i℄ = PZj
 [i℄� d;END.� set d = �2 � PZj
 [M � 1℄� set i =M � 2� while d > 0 and i > 0� if PZj
 [i℄ < dPZj
 [M � 1℄ = PZj
 [M � 1℄ + PZj
 [i℄;d = d� PZj
 [i℄;PZj
 [i℄ = 0;i = i� 1� elsePZj
 [M � 1℄ = PZj
 [M � 1℄ + d;PZj
 [i℄ = PZj
 [i℄� d;END. Figure 6.20: Tail Gathering algorithm.



76 Chapter 6. Proposed solutionFor ea
h zi 2 zm�n� Take the 
onditioning state for 
urrent pixel 
i from the 
onditioning map 
m�n.� Retrieve the predi
tion error distribution for it, PEj
i .� Obtain PZj
i from PEj
i using (5.4)� Obtain the estimated 
hannel input distribution PXj
i using (6.49).� Add the 
onditioning on the 
urrent noisy sample, zi, a

ording to one of (6.50), (6.51) or(6.52).� Compute x�i as symbol whi
h yields minimum expe
ted loss for 
i and � = zi using (4.4) orone of its faster forms (6.41) or (6.42) if L2 or L1 norms are used as the 
ost fun
tion.Figure 6.21: Se
ond pass for the Impulse Channel.Sin
e inverting this 
hannel is relatively inexpensive in terms of 
omputation when 
omparedto the rest of the denoising pro
ess, it 
an be done for ea
h single pixel with no noti
eable in
reasein 
omputation time. This eliminates the need for approximations su
h as the 
ir
ulant matrixassumption needed for Gaussian Channels or the pre
omputation of the denoising fun
tionfor the possible di�erent 
ombinations of noisy sample value, predi
tion and 
ontext 
lass,(zi; ẑi; 
i), that may appear in the image.6.7.5 Denoiser fun
tion for the q-ary 
hannelAs for the impulse 
hannel and its variants, the inverse of the q-ary 
hannel 
an be 
omputeddire
tly and expressed in terms of the 
hannel parameters as well:��1 = 11� � � 2666664 
 d : : : dd 
 : : : d... ... . . . ...d d 
 dd d : : : 

3777775 : (6.63)where 
 = M+p�2Mp�1 and d = p�1Mp�1 with p = 1�perr andM = jAj. This yields a simple 
losedform for the 
al
ulation of PXj
 and PXj
;Z=z.PXj
 [i℄ = (
� d)PXj
 [a℄ +D;8i 2 A (6.64)PXj
;Z=z[i℄ = � APXj
;Z=z[i℄ ; i = zBPXj
;Z=z[i℄ ; i 6= z (6.65)where A = 1� perr and B = perr=M .While testing this 
hannel, the initial denoised images showed very noti
eable noisy pixelsthat where left untou
hed by the algorithm, while most of the less noti
eable ones were 
orre
tlydenoised.After further investigation, it was observed that the tail gathering pro
edure des
ribed in(6.44) was the sour
e of the problem.



6.7. Denoising Stage 77To explain this fa
t, �rst observe that the 
oeÆ
ients of (6.65) are of very di�erent ordersof magnitude. For instan
e, for an 8-bit alphabet and perr = 10%, A = 0:9 and B = 0:1=256 =0:0004. Thus, even if the predi
tion distribution is highly 
on
entrated around 0, a small tail
an grow to a point where it dominates the solution. This only happens when z = 0 or z =M�1as the tails are gathered at those values. Figure 6.22 shows this 
on
ept for a real 
aseFor the q-ary symmetri
 
hannel, the tail gathering algorithm, whi
h had improved theresults for the other non-additive noise types, produ
ed the undesired e�e
t of amplifying thein
uen
e of the outliers when their values was exa
tly in the borders of the alphabet.As a result, when using this 
hannel, the best solution was to disable the tail gatheringalgorithm.6.7.6 Denoising fun
tion 
a
heThe original DUDE implementation proposes the pre
omputation of the denoiser fun
tionfor ea
h possible 
ombination of its arguments whi
h are the noisy 
ontext of the noisy sampleand the value of the noisy sample itself. When working with 
ontinuous tone images the size ofthe alphabet represents a problem for this approa
h, namely:1. The number of possible 
ontexts is jAjK for a 
ontext of size K.2. The number of possible noisy symbols, z, is jAj.This results in jAjk+1 possible 
ombinations.The �rst of the two problems is already redu
ed by the 
ontext 
lassi�
ation approa
h used inthis work, where the possible 
ontext 
lasses 
 2 � and thus the number of possible 
ombinationsis redu
ed to j�jjAj, provided that j�j << jAjk. However, the use of predi
tion makes thedenoising fun
tion depend on yet another variable: the predi
ted noisy symbol ẑ. Be
ause ofthis, the �nal size of the 
a
he would be j�jjAj2 whi
h, for the 
ommon 8-bit grays
ale images,and j�j = jAj = 256 would be 2563 = 16777216.One way to redu
e this problem is by observing that, if the predi
tion errors are highly
on
entrated around 0, a partial 
a
he whi
h in
ludes only those 
ombinations of (z; ẑ; 
) forwhi
h jz� ẑj < � 
an still 
over the majority of the 
ases while redu
ing its size to j�jjAj(2�+1)if 2�+ 1 << A.The in
lusion of this strategy in the augmented DUDE yields an important redu
tion in
omputational 
ost and at the same time redu
es the memory needed to a degree where it isnot signi�
ant with respe
t to the requirements of the other 
omponents of the algorithm.
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7 Results and dis
ussion
7.1 Design of the experimentsThis 
hapter presents the results of applying the proposed solution to the di�erent noisemodels des
ribed. When available, the 
urrent state of the art resutls for ea
h noise modelare presented, and the dis
ussion 
ontinues by 
omparing them to the ones obtained with theDUDE-I for ea
h modeling approa
h (Lega
y, Napkin or Combined LBG+Napkin).All the results, ex
luding those of Se
tion 7.5, are based on simulated noise over the images,so there is no noise or type parameter estimation implied, and thus the noise model parametersassumed by the DUDE-I are the \real" ones. Be
ause of this, a sensitivity analysis of the DUDE-I when tuned to the wrong 
hannel parameters is also presented at the end of the dis
ussion ofea
h type of noise.The results are presented in terms of PSNR (Peak Signal to Noise Ratio) with respe
t tothe 
lean image, as it is the standard obje
tive measure of denoising performan
e used in theliterature. Re
all from Se
tion 2.3 that given a 
lean image xm�n and a noisy version of itzm�n, the PSNR is de�ned as MSE(zm�n) = 1N NXi=1 (xi � zi)2:The PSNR is expressed in dB (de
iBells). The number of signi�
ant digits in all the resultsis 1, as the experiments indi
ate that di�erentrandom simmulations (di�erent random seeds)yield a varian
e of 0.1dB in all the results. This is dis
ussed later in Se
tion 7.2.6 and Se
tion7.4.7.The PSNR is the standard measure for 
omparing the performan
e between di�erent algo-rithms. However, it is desirable to have a measure of performan
e whi
h does not require theknowledge of the 
lean image, sin
e the latter may not be available (su
h as in a real problemwhere the noise is not simmulated), and thus the sele
tion of the parameters whi
h give thebest denoising performan
e 
ould not be based on the PSNR. Motivated by the results in [34,Se
. VII-B℄, the 
ompressibility arises as a possible measure whi
h has the desired properties:� As a measure the 
ompressibility of an image we use the average bpp (bits per pixel)obtained by 
ompressing it using the lossless 
ompression algorithm JPEG-LS. Clearly,this measure does not depend on the knowledge of the 
lean image.� The fa
t that the 
ompressibility is a good measure of denoising performan
e is shown in[34, Se
. VII-B℄ for the binary DUDE in halftone images and for the size of the 
ontext. In
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ussionthe latter work, an empiri
al experiment shows that the lo
al minimum of the 
ompress-ibility roughly 
oin
ides with the lo
al minimum of the di�eren
e between the denoisedimage and the 
lean image. As the results in this 
hapter will show, this empiri
al resultextends to the other parameters present in the DUDE-I.When 
omparing performan
es, the best value for a given setting is shown in bold fa
e.The test images are taken from two standard test suites: the one mantained by the Signal& Image Pro
essing Institute of the University of Southern California1 whi
h 
ontains most ofthe 
lassi
al images used in image pro
essing papers, and the one used in the development ofthe JPEG-LS standard2.Results will be presented in tabular and graphi
 form. For the sake of brevity, the tabulatedresults are given for a small representative subset of the full test suites: the smaller Lena, Barb,Boats and Bridge, of about 1=4MP (MP stands for Mega Pixel,i.e., 1 million of pixels) areshown in Figure 7.1, and the bigger Bike with 4MP is shown in Figure 7.2.3For ea
h type of noise, the best results are shown for a small set of typi
al parameters used inthe literature. Then, the algorithm parameters whi
h yield the best results are spe
i�ed, alongwith the tests that were performed to obtain them. The latter set of tests are shown only forone noise parameter, ex
ept for a few spe
i�
 
ases.When denoised images are shown for visual inspe
tion, they are a

ompained by the noisyand 
lean images, and also for the image of the absolute di�eren
e between the denoised and the
lean image. Darker values in this image indi
ate higher di�eren
es, and 
learer regions indi
ategood denoising performan
e. This serves as an additional tool to study the performan
e of thealgorithms when visual inspe
tion of the denoised image alone is not enough.The di�erent types of noise 
an be divided into two groups: non-additive noise (even and un-even Salt and Pepper, Z-Channel, q-ary Symmetri
) and additive noise (Gaussian). Some testswere performed only on
e per group, using the Salt and Pepper 
hannel as the representativeof the latter group, and (obvioulsy) the Gaussian 
hannel for the former.

1http://sipi.us
.edu/servi
es/database/2http://www.jpeg.org/3All the experiments presented in this 
hapter were performed on a larger subset of the SIPI suite, and for theNapkin modeling, also for the JPEG-LS set. The sele
tion of the best parameters was based on the full results.
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(a) Boats (720�576). This is an interesting imagewhi
h is ri
h in edges at di�erent angles. (b) Lena (512 � 512). This widely used image isnotorious for its smoothness, whi
h makes it an\easy" image for denoising purposes.

(
) Barbara (720� 576). This imagewas designedto in
lude small details and dominated by �ne tex-tures. It is thus a more 
hallenging image. (d) Bridge (512 � 512). The version in
luded inthe SIPI suite of this image has been subje
t to
ontrast enhan
ement using histogram equaliza-tion [9, pp. 146|152℄, thus in
luding many pure-bla
k and pure-white pixels.Figure 7.1: Test images.
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Figure 7.2: "Bike" (2048 � 2460).This large image belongs to the JPEG-LS test suite and wasdesigned to in
lude many di�erent patterns.



7.2. Salt and Pepper noise 83� image noisy SM GIO CSAM MND-DP10% lena 15.4 39.9 - 39.2 -boats 15.4 38.5 - - -bridge 15.2 33.2 - 37.2 -barb 15.3 33.5 - - -30% lena 10.7 33.9 35.7 34.3 -boats 10.6 32.1 34.6 - -bridge 10.5 27.9 - 31.5 -barb 10.6 28.0 - - -70% lena 7.0 16.7 - - 29.3boats 7.0 16.7 - - -bridge 6.8 15.8 - - 25.0barb 6.9 16.0 - - -Table 7.1: Referen
e base for impulse noise removal. The noisy image PSNR is also in
ludedfor further 
omparison.7.2 Salt and Pepper noise7.2.1 Referen
e resultsThe main results are presented for the 
ases � = %10, � = %30 and the more extreme 
aseof � = %70, whi
h are 
ommon settings found in the literature. For the sake of brevity, onlythe best results will be shown for all the three parameters. For the rest of the experiments, the\average" 
ase � = 30% will be used.As a basis for the dis
ussion, the results of applying a simple sele
tive median �lter (SM) tothe test images and the results from other works in the �eld are summarized in Table 7.1. Thekeys to the 
olumn labels are:GIO Previous version of the DUDE for 
ontinuous tone images [18℄. This is basi
ally theLega
y S
heme des
ribed in Se
tion 6.5 without enhan
ements su
h as the predi
tion errordistribution 
lipping des
ribed in Equation Se
tion 6.43, the Tail Gathering algorithmdes
ribed in Se
tion 6.7.4, or the re
ursive pre�ltering s
heme (Se
tion 6.3.2).CSAM Median �ltering of noise using the 
o-o

uren
e matrix method for impulse noise de-te
tion [24℄.MND-DP Median Noise Dete
tion with Detail Preserving [2℄.The best values obtained in ea
h 
ase will be used as the referen
e against whi
h we will
ompare the proposed algorithms under the same 
onditions.7.2.2 Lega
y resultsTable 7.2 shows the best results obtained by using the Lega
y modeling s
heme using anAverage Filter to predi
t the 
enter sample, when applied to images 
orrupted by 30% impulsenoise. The best 
on�guration in this 
ase was found to be the following:
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ussionimage referen
e Lega
ylena 35.7 37.5boats 34.6 36.7barb 28.5 33.9bridge 31.5 30.0Table 7.2: Best results in terms of PSNR for the Lega
y modeling s
heme under � = 30%.pred. barb boats bridge lenaaverage 4.9 4.2 5.6 4.3median 4.9 4.2 5.6 4.3 pred. barb boats bridge lenaaverage 32.1 35.5 29.6 36.7median 31.7 35.0 29.4 36.4Table 7.3: Performan
e of Lega
y vs. predi
tion �lter. Left: Compressibility (average bits perpixel); Right: Denoising performan
e (PSNR in dB)� The trivial pre
lassi�
ation s
heme is used to obtain a noise mask.� A 256 
luster set is obtained after 25 LBG iterations on raw 5� 5 pixel 
ontexts presentin the pre�ltered sequen
e.� The �lter used for predi
tion is an Average Filter applied to a 5� 5 square 
ontext.� The 
ost fun
tion is L2.� Four re
ursive appli
ations of the DUDE-I as a pre�lter, with the initial pre�lter set to aSele
tive Median �lter over square windows of 5� 5 pixels.Sele
tion of the parametersThese tests show how the performan
e varies with respe
t to the di�erent parameters of theLega
y S
heme.4 The following parameters are of spe
ial interest:Predi
tor The Lega
y S
heme uses a simple sliding neighborhood �lter to predi
t ea
h pixel.Figure 7.3 shows the results of denoising using a window average and a windom median �lter asa predi
tor. The spe
ial 
ase of the Combined Modeling will be des
ribed in detail in Se
tion7.2.4.As 
an be seen, despite the 0:5dB di�eren
e, there is no noti
eable visual di�eren
e betweenthe two images. Only a detailed inspe
tion of the whole image (impossible to observe here)reveals that the di�eren
e lies in the borders of the image. This is also dependent on theway in whi
h the image samples are extrapolated for the 
ontext samples that fall out of theimage (whi
h happens in the borders). As a simple repli
ation of the border pixels is used asthe strategy for the window samples falling outside the range of the image, the median �lter
ould be more a�e
ted than the average. Note also that the predi
tion is performed over analready median-pre�ltered image. As this advantage of the Average over the Median predi
tionis 
on�rmed in all the test images, the Window Average was 
hosen.4Note that, in ea
h experiment, the results are obtained with no re
ursive pre�ltering performed. Obviously,this does not apply for the experiments whose subje
t is the re
ursive pre�ltering behavior.
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(a) Median. Denoised PSNR=35.5 (b) Average. Denoised PSNR=35.0

(
) Absolute di�eren
e of Median. (d) Absolute di�eren
e of Average.Figure 7.3: Lega
y performan
e vs. predi
tor.



86 Chapter 7. Results and dis
ussionNumber of 
ontext 
lusters In the augmented framework, this number determines thenumber of free parameters in the probabilisti
 model used for the image to be denoisedm andis related to the model 
ost des
ribed in Se
tion 5.1. In the baseline DUDE, the number ofparamerters depends on the number of possible 
ontexts, whi
h in turn is determined by thesize of the 
ontext template used. As des
ribed in Se
tion 4, this results in a restri
tion on thesize of the template if asymptoti
 optimality is to be guaranteed. Thus, it is natural to believethat the optimal number of 
ontext 
lusters should be related to the size of the images to bedenoised (not for a parti
ular image but for a given size). The results shown in Figure 7.4 seemto 
on�rm the existen
e of an optimum value for the number of 
ontext 
lusters, as all of theimages are of similar size. Note that the 
ompressibility heuristi
, whi
h is des
ribed in [34,Se
. VII-B℄, gives an optimum whi
h 
oin
ides with the optimum obtained by 
omputing thePSNR with the 
lean image also in this 
ase. This parameter also has an important impa
t inthe 
omputational 
omplexity, requiring O(m� n) additional operations for ea
h 
lass de�ned.So, it is desirable to keep it at a minimum. Based on this observation and the results in Figure7.4, a value of 256 was 
hosen as a good tradeo�.Size of the 
ontexts As the number of 
ontext 
lasses is not a�e
ted by this parameter, itdoes not play a role in the model 
ost as it does in the baseline DUDE algorithm. However, ita�e
ts the 
hara
terization of the 
ontexts, and a�e
ts linearly the 
omplexity of the algorithm.From the results in Figure 7.5 it 
an be seen that a 
ontext size of 3 � 3 pixels yields the bestdenoising performan
e in all the 
ases. However, as the Lega
y S
heme is 
urrently limited inpra
ti
al terms (not theoreti
ally) to a small range of image sizes, it 
annot be said that thissize of 
ontext is optimum for other sizes of images.LBG iterations This parameter implies a tradeo� between the 
omputational 
omplexity(number of operations) and the representativeness of the 
luster 
enters. More iterations al-low the LBG algorithm to better approa
h a stable solution. As this stage of the algorithmdominates the total exe
ution time of the Lega
y S
heme, with ea
h iteration taking O(m� n)operations, the 
ost of ea
h new iteration is high and it is desirable to keep the number ofiterations at a minimum. Figure 7.6 shows the e�e
t in terms of PSNR for the test images andFigure 7.7 shows a detail of Boats. Based on the results a number of 25 iterations was 
hosenas a good tradeo� between denoising performan
e and exe
ution time.Canoni
al mapping This pro
edure was presented in Se
tion 6.5 as a way to join similar
ontexts found at di�erent orientations a
ross the image. Figure 7.8 shows the e�e
t of itsappli
ation in the way in whi
h it a�e
ts the 
ontext 
lassi�
ation of the pixels of a sampleimage. Although only shown for Lena, this mapping has improved the performan
e for all theimages of the test suite and thus it is a
tivated by default.Number of pre�ltering re
ursions The re
ursive pre�ltering 
an improve the performan
esigni�
antly, at the 
ost of multiplying the 
omputation time by the number of re
ursions. Theresults, however, do not in
rease in a monotoni
 way but rea
h a saturation point whi
h varieswith the image and, as will be seen later, the modeling s
heme (
ontext and predi
tion). Figure7.9 shows the results for a maximum of �ve iterations.Summary of the Lega
y S
heme for Salt and Pepper The pre
eding results in thisse
tion show a signi�
ant improvement in the results of the Lega
y S
heme when 
ompared tothe results obtained in [18℄. For the majority of the images and 
hannel parameters studied,
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(a) Contexts of 3� 3 pixels.Denoised PSNR=33.8 (b) Contexts of 5� 5 pixels.Denoised PSNR=36.4 (
) Contexts of 7� 7 pixels.Denoised PSNR=35.4Figure 7.5: Lega
y performan
e vs. size of the 
ontexts.the results also surpass the best available results in the literature and, in many 
ases, by amplemargins (over 2dB of PSNR).On the 
ounter side, this s
heme has high 
omputational resour
es requirements for the
urrent standards whi
h make it impra
ti
al for images of over 1MP.
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entual variation in 
om-pressibility with respe
t to the smallest (leftmost) value and (b) shows the per
entual variationin denoised PSNR w.r.t. the leftmost value
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(a) Conditioning map after 8 iterations. DenoisedPSNR=36.2 (b) Conditioning map after 50 iterations. De-noised PSNR=36.5Figure 7.7: Lega
y vs. LBG iterations, detail of Boats. (a) and (b) show how the 
onditioningmap looks after 8 and 50 iterations respe
tively. Noti
e how the map is more \ordered" as theiterations are in
reased.

(a) With 
anoni
al mapping. PSNR=36.7 (b) Without 
anoni
al mapping. PSNR=36.2Figure 7.8: Conditioning maps for Lena when modeling using (a) and not using (b) 
anoni
almapping.
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ussion7.2.3 NapkinThe best results obtained for the Napkin Modeler des
ribed in Se
tion 6.6, for the 
ase� = 30, are shown in Table 7.4, and three sample denoised images presented in Figures 7.10,7.11, and Figures 7.12 through 7.14. These were obtained with the following 
on�guration:� Th A
tivity level (AL), de�ned in Se
tion 6.6.3, is quantized into 8 levels (i.e., to 3 bits)using the quantization algorithm de�ned in Se
tion 6.6.3 and the resulting value is usedto de�ne 8 possible probability 
onditioning states.� The same 3 AL bits are 
ombined with 8 texture bits (TB) of the Texture Bitmap de�nedin Se
tion 6.6.3 to produ
e 2048 
ontext-dependent bias 
an
ellation terms. As de�ne,the resulting predi
tion 
lasses are re�nements of the 8 probability 
onditioning 
lasses.� The Average Napkin predi
tion variant (Se
tion 6.6.5) is used with a gradient threshold of8% of the maximum possible gradient magnitude to determine the 
atness of ea
h wing.� Seven re
ursive appli
ations of the DUDE-I as a pre�lter are used, with the initial pre�lterset to a sele
tive median over 5� 5 windows.image referen
e Lega
y (x2) Napkin (x7)lena 34.3 37.7 38.2boats 32.2 36.8 38.3bridge 31.5 30.0 30.6barb 28.0 33.7 32.2bike 26.0 - 29.6Table 7.4: Best Napkin results for � = 30.The results for the Napkin modeling s
heme are signi�
antly better than those of the Lega
ys
heme for all the images in the test suite (also those not shown here) with the ex
eptions of\Barb" and \Barb2", where the Lega
y s
heme is 
learly better. This gives an overall advantageto the Napkin modeling s
heme but also signals a potential pitfall of the modeling algorithmwhen 
onfronted with high frequen
y patterns su
h as those present in Barb.As a way to isolate the problem found with the two versions of \Barb", a third modelings
heme was de�ned whi
h 
ombined the 
ontext 
lassi�
ation method of the Lega
y S
heme(LBG) with the Napkin predi
tor. This s
heme was 
alled Combined LBG/Napkin. The resultsfor this s
heme (whi
h ended up being the best in terms of denoising performan
e) are givenlater in Se
tion 7.2.4.
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(a) 
lean (b) 30% of noise

(
) Napkin x7 (d) Absolute di�eren
e.Figure 7.10: Boats denoised using the Napkin modeling s
heme.
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(a) Clean (b) 30% of noise

(
) Napkin �7. (d) Absolute di�eren
e.Figure 7.11: Barb denoised using the Napkin modeling s
heme.
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Figure 7.12: Bike under Salt and Pepper noise with � = 30%
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Figure 7.13: Bike denoised. PSNR=29.5dB.
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Figure 7.14: Absolute di�eren
e between 
lean bike and denoised bike.



98 Chapter 7. Results and dis
ussionSele
tion of the parametersThe Napkin modeler has many parameters. Only the ones that have shown a greater impa
ton the performan
e are shown. As for the Lega
y 
ase, the number of 
ontext 
lasses has adi�erent optimal value for ea
h di�erent image size. We show the parameter sele
tion resultsfor two image sizes: the four small images (Boats, Barb, Bridge and Lena, of about 0:25MP )and the large Bike (of 4MP pixels, whi
h is the size of the images produ
ed by the 
urrentdigital 
ameras of many of the images in the JPEG-LS test suite).Context 
lass features The 
ontext modeling stage (des
ribed in Se
tion 6.6.3) produ
esa set of features whi
h des
ribe aspe
ts of the 
ontext 
entered at ea
h pixel. Ea
h of thesefeatures 
an be des
ribed with a sele
table number of bits (in
luding 0) and the result is then
on
atenated to build the �nal 
ontext 
lass. This 
an be done independently for the probability
ontext 
lass and the adaptive predi
tion 
ontext 
lass. The following graphs show how the �xedpart of the predi
tor behaves with respe
t to ea
h one of these features. For this, the adaptivebias 
an
ellation was disabled and the distribution of the predi
tion residuals was studied forea
h 
lass when the probability 
ontext 
lasses were solely determined by one feature at a time.Figures 7.15 to 7.18 show 
onditional predi
tion error distributions when the 
ontext 
lassesare determined from ea
h feature.The results show a 
lear dependen
y with the a
tivity level and gradient angle 
omponent.The �rst a�e
ts mostly the shape of the distribution while the se
ond has a stronger e�e
t onthe bias, with a lesser e�e
t on the shape of the distribution. The texture element, althoughless 
lear, also has an important in
uen
e on the bias term. The results with the di�erent 
om-binations have shown that a good 
ombination is to use a
tivity level as the \base" feature usedboth in distribution 
onditioning and bias 
an
ellation, with an added texture bits signaturefor the bias 
an
ellation terms. The gradient angle has not shown to be as relevant as 
ouldhave been expe
ted, and remains as a subje
t for further experimentation.
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onditioned on 32 quantized a
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Figure 7.17: Predi
tion error distributions 
onditioned on 4x64 wing gradient magnitudes.Be
ause of the 
anoni
al mapping, not all 
ombinations a
tually appear.
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7.2. Salt and Pepper noise 101pred. barb boats bridge lenaaverage 4.4 3.7 5.1 3.8sharp 4.5 3.8 5.2 3.9smooth 4.5 3.8 5.3 3.9 pred. barb boats bridge lenaaverage 29.4 35.1 29.1 35.7sharp 29.1 33.9 28.7 34.6smooth 28.7 33.3 28.1 34.5Table 7.5: Performan
e of Napkin vs. predi
tion �lter. Left: Compressibility (average bits perpixel); Right:Denoising performan
e (PSNR in dB)Number of 
onditioning 
lasses Figure 7.19 shows how the denoiser performan
e varieswhen the a
tivity level bits are in
reased for both the distribution 
onditioning 
lasses and theadaptive predi
tor 
onditioning 
lasses.An intersting result from this experiment is the 
lear dependen
y between optimal number of
onditioning 
lasses and image size. Observe that the Bike image is better denoised with a highnumber of states, while the rest see their performan
e dropped after approximately 8 states.This behavior also holds for the rest of the JPEG-LS suite (the bigger images).Now, Figure 7.20 shows a slightly di�erent experiment in whi
h the distribution 
onditioning
lasses are �xed for the adaptive predi
tion, and vary from 0 (no distribution 
onditioning, onlyone 
ontext) to 3. Surprisingly, this parameter has no e�e
t on the overall performan
e. Thus,the real improvement lies in the predi
tion part, while the distribution 
onditioning whi
h isthe base of the DUDE algorithm has no e�e
t on the �nal result.This result 
an be explained by examining the form of the denoiser for the impulse 
hannel forthe noisy 
ases, (6.50) and (6.51). The de
ision of the DUDE for ea
h noisy pixel is pra
ti
allythat of substituting it with the average of the distribution of the error predi
tion 
entered atthe predi
ted value, whi
h in turn yields a value very 
lose to the predi
ted value itself. Inthis framework, the 
ontext modeling plays the role of re�ning the overall predi
tion by lettingmany di�erent predi
tors work spe
i�
ally for a set of similar 
ontexts (those of the same 
lass).When these 
ontexts are indeed similar in terms of predi
tor behavior, the 
ontext modelingin
reases the denoising performan
e.Canoni
al mapping, DC o�set removal The results for the Lega
y modeling also applyto this 
ase, with the same (relative) results.Predi
tor variant The �xed part of the Napkin has three variants des
ribed in Se
tion6.6.4: the Average Variant, the Sharp Variant and the Smooth Variant. The Smooth variant,in parti
ular, was designed to be more robust to additive noise. In any 
ase, the three variantswere tested with ea
h type of noise (additive and non-additive). The results are detailed inTable 7.5.Gradient threshold Figure 7.21 shows the experiment whi
h led to the sele
tion of 8% asthe optimal value for the overall 
ase.This is a rather nonintuitive parameter. Basi
ally, it 
ontrols the sensitivity of the Napkinpredi
tor. A low value makes the Napkin 
onsider more wings as non
at, thus making it workmore like and edge dete
tor (see 6.6.4 for details). On the 
onverse, a higher value will make itbehave more like a window average �lter.
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ussionRe
ursive pre�ltering appli
ations Figure 7.22 shows the re
ursive behavior of the DUDE-I when using the Napkin modeling s
heme. A �rst remark is that its performen
e does not rea
ha saturation as soon as the Lega
y modeling. The algorithm is also signi�
antly faster and thusre
ursion is not an expensive operation in this 
ase. This will be shown to be very importantto a
hieve good results under higher noise rates.
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106 Chapter 7. Results and dis
ussionimage referen
e Napkin (x60)lena 29.3 30.7boats 16.7 30.3bridge 25.0 24.5barb 16.0 24.9Table 7.6: Napkin results for the 
ase � = 70%.image MND-DP Napkin (x60)lena 25.4 22.4boats - 20.4bridge 21.5 20.1barb - 20.3Table 7.7: Best Napkin results for the 
ase � = 90% 
ompared to the MND-DP algorithm.Extreme Salt and Pepper: very high probability of noiseThe 
ase � > 50% is an interesting setting and spe
ial algorithms have been developed for it.The best results of the proposed solution when � = 70% and � = 90% are 
ompared with theresults in [2℄ as a referen
e. For this 
ase, the re
ursive pre�ltering s
heme was applied up to60 times. The rest of the parameters are the same as the previous results.Figures 7.23 and 7.24 show how the denoised Boats and Barb images look for the 
ase when� = 70%, while Figure 7.25 shows the result for Lena 
orrupted by � = 90% of noise.The results are also good for this extreme setting. For � = 70%, the state of the art for theBridge image is mat
hed, and the results for Lena are improved with only an in
rease in thenumber of re
ursive pre�ltering appli
ations (whi
h 
ould be determined automati
ally usingthe 
ompressibility 
riterion). Finally, while the results for � = 90% do not rea
h the state-of-the-art, they are obtained using our tool, whi
h is more 
exible and generi
 than [2℄, analgorithm that is aimed spe
i�
ally at this type of noise in this extreme setting.
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(a) Clean (b) 70% of noise.

(
) Napkin x60. (d) Absolute di�eren
e.Figure 7.23: Results for Boats 
orrupted by S&P with � = 70
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(a) Clean (b) 70% of noise

(
) Napkin x60 (d) Absolute di�eren
e.Figure 7.24: Results for Barb 
orrupted by S&P with � = 70
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(a) Clean (b) 90% of noise.

(
) Napkin x60. (d) Absolute di�eren
e with 
lean.Figure 7.25: Results for Lena 
orrupted by S&P with � = 90%
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ussionimage referen
e Lega
y (x2) Napkin (x7) Combined (x5)lena 34.3 37.7 38.3 37.8boats 32.1 36.8 38.3 38.5bridge 31.5 30.0 30.6 30.7barb 28.1 33.7 32.2 34.7Table 7.8: Combined LBG+Napkin7.2.4 Combined LBG+NapkinWhile the results for the Napkin s
heme surpassed the Lega
y results in the ample majorityof the 
ases (from the full test suite), they fell short of Lega
y for the two versions of \Barb".The visual inspe
tion of the denoised Barb for both methods revealed some notorious errorsprodu
ed by the Napkin model in 
ertain regions of the image. To isolate the problem, and giventhat the predi
tion and 
ontext modeling parts of both modeling s
hemes 
ould be inter
hanged,a Combined LBG/Napkin s
heme was implemented where the modeling part was the LBG usedin the Lega
y S
heme (Se
tion 6.5.4), and the predi
tor was the Average Variant used in theNapkin S
heme (Se
tion 6.6.4).In this modeling s
heme, the �xed predi
tion part of the Napkin Modeling, namely theNapkin �lter, was used as the predi
tor �lter of the Lega
y s
heme to yield the results of Table7.8. With this modi�
ation , the number of re
ursive pre�ltering appli
ations rose to 5 beforerea
hing a saturation point.Of the results in table 7.8, whi
h give an overall advantage to the Combined S
heme, thedi�eren
e between the two modeling approa
hes is very important for the Barb image.Indeed,the results for this 
ase are better than the Lega
y results. Thus, the problem of the NapkinS
heme with Barb lies in the 
ontext modeling part. Figure 7.26 shows a detail of both denoisedimages in whi
h the sour
e of the di�eren
e is 
learly seen: the Napkin modeler was jittered bythe highly 
hanging se
tions of the image lo
ated mostly at the stripes and 
he
kers around theimage. This in turn a�e
ted the 
onditional distributions whi
h grew too wide favouring thenoise patterns and thus de
reased the overall performan
e in those areas.7.2.5 Comparison of the modeling approa
hesUp to now, one 
ould say that the best modeling s
heme is the one whi
h 
ombines LBGwith Napkin predi
tion. However, when 
omputational resour
es are important, espe
iallyexe
ution time, the best tradeo� is obtained with the Napkin Modeling s
heme. Table 7.9shows the time 
onsumed in the �rst pass (modeling) and the se
ond pass (denoising) for ea
hmodeling s
heme and a series of images of di�erent size. Even the largest one is below 1 MP(megapixel), the lowest resolution any digital 
amera 
an take pi
tures at. The required memoryand 
omputational time required to denoise a 4 MP image (bike) with the Lega
y modeling wassimply too mu
h for the ma
hine in whi
h these tests were performed (Pentium 4 at 2.2 GHz,1 GB of RAM, 
ompiled with the GNU C++ Compiler V3.3 at maximum optimization). Evenwhen dealing with the smaller images, the higher noise 
ases (� = 50% or � = 70%) 
ould notbe atta
ked with this s
heme be
ause of the large number of re
ursive appli
ations needed.
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(a) Napkin x7 (b) Combo x5

(
) Absolute di�eren
e:Napkin x7 (d) Absolute di�eren
e:Combo x5Figure 7.26: Detail of barb as denoised by Napkin and Combo. The di�eren
e is 
learly observedin the stripes all over the image.
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ussionsize (pixels) LBG (s) Napkin (s) 2nd. pass.(s)95052 57.0 0.7 0.7190134 113.0 1.5 1.5380208 223.0 3.0 3.0760285 441.0 6.0 6.0Table 7.9: Exe
ution time vs. image size for the di�erent modeling s
hemes in the �rst passand for the se
ond pass. The number of 
onditioning 
lasses is 256 for the LBG S
heme and 8for the Napkin S
heme.7.2.6 Sensibility to pseudo-random noise generationThe above results use the same simmulated noisy images for ea
h noise type and parameter.A �nal validation that applies to all of the above s
hemes is to study how mu
h do the resultsvary with di�erent samples of the noise simulated by the pseudo-random numbre generator(di�erent initial random seeds in the pseudo-random number generation fun
tion). Table 7.10shows show this analysis for the 
ommon setting of � = 30%, for 16 di�erent random seeds andfor two di�erent number of re
ursions. The modeling s
heme used for this test is Napkin, dueto the large number of tests required.re
ursions image min max mean std. dev.0 lena 36.74 37.11 36.92 0.11boats 35.79 36.20 36.00 0.12barb 30.74 30.82 30.78 0.04bridge 29.80 30.05 29.96 0.071 lena 37.49 37.96 37.70 0.14boats 36.95 37.41 37.24 0.12barb 31.25 31.46 31.37 0.05bridge 30.19 30.43 30.34 0.064 lena 37.81 38.27 38.10 0.14boats 37.87 38.41 38.20 0.13barb 31.71 31.94 31.83 0.06bridge 30.36 30.61 30.52 0.06Table 7.10: Sensibility of the result for 16 di�erent random noise simmulations. These resultsare obtained using the Napkin modeling s
heme.The �rst interesting result is that the standard deviation is roughly independent of the numberof iterations. This gives some sort of \stability" measure for the re
ursive denoising pro
ess.On the overall, it is seen that a variation of around 0:1dB is not signi�
ant in any of theexperimental results for the impulse noise and this modeling s
heme.Pre
lassi�
ation of impulse noiseWhen possible, pre
lassi�
ation is a valuable tool. However, it is a diÆ
ult tool to use, mostlywhen used to perform a sele
tive denoising, as a miss (i.e., to mark a noisy pixel as 
lean) 
ouldlead to very noti
eable noisy pixels left untou
hed. On the other side, when used only as an aidto the modeling stage, for instan
e to avoid jittering in the bias 
an
ellation term adaptationthat apperars in the Napkin predi
tor, it 
an improve the overall performan
e signi�
antly.



7.2. Salt and Pepper noise 113The following experiment, whose results are shown in Table 7.11 is a side test that fo
usesonly on the pre
lassi�
ation performan
e for the Salt and Pepper 
ase. As mentioned before,the best approa
h in this 
ase is to use the Trivial pre
lassi�
ation s
heme des
ribed in Se
tion6.2.1, whi
h has a high number of false hits (i.e., 
lean pixels marked as noisy) but no misses.The homogeneity pre
lassi�
ation, however, will prove to be a valuable method when 
onfrontedwith more diÆ
ult noise types su
h as the q-ary symmetri
 des
ribed in Se
tion 7.3.image noise trivial homogeneity DUDElena � false misses false misses false misses10% 0 0 23 0 0 020% 0 0 32 8 0 030% 0 0 39 29 0 0bridge 10% 97 0 35 47 122 3720% 92 0 42 84 108 8830% 86 0 49 127 146 109Table 7.11: Pre
lassi�
ation results for the di�erent approa
hes.Note that Lena does not have any bla
k or white pixels and thus the trivial 
lassi�
ation isperfe
t in this 
ase. This explains the poor performan
e of the CSAM algorithm (whi
h is more\fair") with Lena when 
ompared even to a sele
tive median (whi
h is based also on this trivialpre
lassi�
ation s
heme). As the number of false hits in Bridge 
orresponds to the white andbla
k regions whi
h are always the same, this number 
an only de
rease for the trivial 
lassi�er,as more of those pixels will eventually be 
orrupted (although with the same resulting value).5Sensibility to the 
hannel parameterUp to now the DUDE-I had perfe
t knowledge of the 
hannel paramenters. The purpose ofthe following experiments is to see how the performan
e is a�e
ted when the 
hannel parameteris not the 
orre
t one but lies within a range 
entered at the true parameter. Table 7.27 showsthe 
ase where the true � = 30% and the estimated parameter �0 varies from 20 to 60.The experiment shows a high sensitivity to values lower than the true parameter, but virtuallyno impa
t for higher ones. This result 
an also be explained by inspe
ting (6.50) or (6.51) inSe
tion 6.7.4. A value of �0 greater than the true � will yield negative distribution values at 0and M � 1. When the distribution is later 
orre
ted to be a valid probability distribution, thiswill only have a s
ale e�e
t whi
h does not a�e
t the denoising fun
tion. On the 
onverse, avalue of �0 smaller than � will leave nonzero residuals in distribution at those points whi
h willdisturb the following 
al
ulations in a noti
eable way (as the denoising fun
tion results in theaverage of the �nal distribution, two similar peaks at 0 and M � 1 will move the result towardsM=2).7.2.7 Asymmetri
 impulse and the Z-ChannelThe purpose of this experiment is to study how the asymmetry of the impulse 
hannel a�e
tsthe denoising performan
e. The impa
t should a�e
t mostly the pre�ltering stage, as more5The false hits and misses 
ounts are 
omputed when 
omparing the resulting masks with the true noisemasks, whi
h are 
omputed along with the noisy image and thus the 
on
ept of \noisy" pixel in
ludes every pixelthat is tou
hed, even if it ends up with the same value it had before going through the 
hannel.
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hannels will favour bursts of one of the impulse noise values (\salt" or \pepper")whi
h 
ould 
onfuse the median �lter.The pre
lassi�
ation should not be a�e
ted in the average, as both noise values are equallynon additive and will appear equally \strange" within their 
ontexts.To fo
us on the asymmetry, the overall probability of error is �xed to � = 30% and let theprobability of \salt" range from 0 to 30% (thus \pepper" will range from 30% to 0). The resultsare shown in Figure 7.28(a) for a nonre
ursive pre�ltering approa
h.A qui
k examination of Figure 7.28(a) shows that the result is worst for \all salt" than for \allpepper". This is due to the fa
t that the 
lean test images are 
loser to bla
k than to white, anda nonre
ursive exe
ution will leave \all salt" bursts whi
h de
rease the PSNR. As the re
ursivepre�ltering gradually removes the bursts, the result should be more and more symmetri
. Thisis veri�ed in Figure 7.28(b).7.3 q-ary symmetri
 
hannelThis 
hannel is more diÆ
ult than the other non-additive noise models presented so far, asthe 
orrupted samples 
an take any value. The 
exibility of the DUDE-I (and of the baselineDUDE s
heme) is demonstrated in this 
ase, whi
h so far has not treated by other methods inthe literature. Table 7.12 shows the di�erent denoising performan
es for various noise levels. Asthere are no referen
e results from other works, the the results of applying a simple median �lterare used as a referen
e. The DUDE-I was 
on�gured to use the homogeneity pre
lassi�
ation
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heme but only for bias 
an
ellation adaptation purposes. Figure 7.29 shows a sample denoisedimage for this type of noise.image 10% 20% 30%median DUDE-I median DUDE-I median DUDE-Ilena 30.0 37.0 29.3 34.2 28.3 31.8boats 28.5 36.3 27.7 33.0 26.8 30.6barb 23.5 31.4 23.2 28.4 22.8 26.4bridge 23.4 30.6 23.0 28.0 22.4 26.3Table 7.12: Denoising performan
e for the q-ary symmetri
 
hannel and di�erent probabilitiesof error.
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(a) Clean (b) Noisy

(
) Napkin x4 (d) Absolute di�eren
e.Figure 7.29: Results for Boats 
orrupted by q-ary symmetri
 
hannel with perr = 10%



118 Chapter 7. Results and dis
ussion� image noisy Wiener GIO WCC SMG NLM FOE10 lena 28.1 33.6 34.0 - 35.6 - 35.0boats 28.1 33.2 33.7 - - - 33.0barb 28.1 31.5 32.0 - 34.0 - 32.820 lena 22.1 30.0 30.6 32.7 32.7 29.9 31.9boats 22.2 29.4 30.2 - - - 29.9barb 22.2 27.2 27.9 - 30.3 - 28.325 lena 20.2 28.9 29.4 - 31.7 - 30.8boats 20.4 28.3 29.1 - 30.8 - 28.7barb 20.3 26.0 26.6 - 29.1 29.6 27.0Table 7.13: Referen
e results for the Gaussian 
hannel.7.4 Gaussian 
hannelThe Gaussian noise is usually studied with a standard deviation � that goes from 5 to 25 inthe 8 bit, 256 graylevel s
ale, with � = 20 being the typi
al setting for \high" noise.7.4.1 Referen
eTable 7.13 shows the 
urrent state of the art in gaussian denoising. The algorithms are:Wiener Wiener �lter (as de�ned by the wiener2 fun
tion of MatLab TM) applied to 5 � 5square windows.WCC Wavelet-Curvelet Combination [30℄ .SMG S
ale Mixtures of Gaussians [25℄ .NLM Non Lo
al Means [1℄ .FOE Field of Experts [27℄ .GIO DUDE adaptation to 
ontinuous tone images, previous version [18℄.7.4.2 Lega
yTable 7.14 shows the best results for the Lega
y modeling s
heme 
ompared to the best valuesof Table 7.13, while Figure 7.30 shows a sample result. The best parameters for this 
ase werefound to be the following:� 128 
onditioning 
lasses.� The 
lusters are obtained after 25 LBG iterations.� Pre�tering is not performed. The noisy input is used as is to produ
e the 
onditioning
lasses.� Predi
tion is performed using an Average �lter over 5� 5 windows.� The square error fun
tion (L2) is used as the loss model.
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(a) Clean (b) � = 20%

(
) Wiener (d) Lega
y (x1)Figure 7.30: Sample denoised image using the Lega
y s
heme for Gaussian noise.
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ussion� image referen
e Lega
y (x1)10 lena 35.6 34.2boats 33.0 34.0barb 34.0 32.420 lena 32.7 31.0boats 29.9 30.5barb 30.3 28.625 lena 31.7 30.0boats 30.8 29.3barb 29.6 27.3Table 7.14: Tabulated lega
y results for Gaussian noise. Note that there is no available infor-mation for the denoising performan
e of the SMG algorithm for Boats when � = 10.As 
an be seen, the results for this setting do not rea
h the best available obje
tive perfor-man
es attained by the other algorithms. On the positive side, they are better than a \standard"Wiener �lter.7.4.3 Sele
tion of the parametersThe results given in this se
tion will fo
us on the 
ase � = 20 and the images Boats andLena.number of 
onditioning 
lasses Figure 7.31 shows the e�e
t of this parameter for the 
ase� = 20. This behavior is repeated for the other values of �.LBG iterations 7.32 shows the e�e
t of this parameter for the 
ase � = 20. Again, thisbehavior is repeated for the other values of �.predi
tion s
heme The results of 7.15 show the e�e
t of this parameter when the predi
tions
heme is the average �lter. At a late stage of this work, a Gaussian lowpass �lter was addedwhi
h in
reased the overall performan
e.image average median gaussianlena 30.6 30.4 30.6boats 30.0 29.8 30.2barb 28.0 27.9 28.3Table 7.15: Results for di�erent predi
tion s
hemes.re
ursive pre�ltering Figure 7.33 reveals that the performan
e a
tually de
reases after oneiteration.Figures 7.34 through 7.36, whi
h show how Lena, Boats and Bar look when denoised re
ur-sively, give a hint of what 
ould be the problem. Although a more in-depth analysis is required,one possible explanation is that an unstable 
losed-loop behavior is a�e
ting the re
ursive ap-pli
ation of the DUDE.
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(a) Boats (x1) (b) Boats (x2) (
) Boats (x4)Figure 7.34: Re
ursive denoising for the gaussian 
hannel and its e�e
t: Boats.
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(a) Lena (x1) (b) Lena (x2) (
) Lena (x4)Figure 7.35: Re
ursive denoising for the gaussian 
hannel and its e�e
t: Lena.
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(a) Barb (x1) (b) Barb (x2) (
) Barb (x4)Figure 7.36: Re
ursive denoising for the gaussian 
hannel and its e�e
t: Barb.



7.4. Gaussian 
hannel 127In other words, be
ause ea
h denoised sample ẑi depends on the predi
tion,x̂i = g(zi; 
i; ẑi)then the denoised image is a fun
tion of the predi
tionx̂m�n = f(zm�n; ẑm�n)On the other hand, the predi
tion ẑm�n is a fun
tion of the pre�ltered image ym�n,ẑm�n = �(ym�n)If the output of the denoiser in iteration n� 1 is used as the pre�ltered image of iterationn, ym�nn = x̂m�nn�1 ,and the result is a nonlinear re
ursive equation on the sequen
e of denoisedimages x̂m�nn (here the subindex indi
ates re
ursion level),x̂m�nn = f 0(zm�n; x̂m�nn�1 )where the pre�ltering in the �rst iteration (n = 0) is done by some non-re
ursive �lteringfun
tion g(�)), ym�n0 = g(zm�n). This 
losed loop 
an be seen in Figure 6.2. If the pre�ltering or predi
tion fun
tions produ
esimilar side e�e
ts in ea
h re
ursion, the e�e
t 
an be
ome more and more noti
eable.



128 Chapter 7. Results and dis
ussion� avg/12 avg/24 nap1 nap3/12 nap3/245 37.8 37.9 38.0 38.0 37.910 33.9 34.1 33.8 33.9 33.920 30.1 30.2 29.4 29.4 29.9Table 7.16: Results for di�erent predi
tion s
hemes for di�erent � values.7.4.4 NapkinAlthough the DUDE-I was designed with all the 
hannel models des
ribed earlier in mind, theexperimentation was mainly fo
used on tuning the DUDE-I to the non-additive noise 
hannelsfor whi
h the DUDE-I yielded outstanding results when 
ompared to the state-of-the-art. Theexperiments on the Gaussian 
hannel, and espe
ially the appli
ation of the Napkin S
heme toit, were performed at the �nal stages of the present work and are to be 
onsidered preliminary.The initial results for the Napkin modeling approa
h applied to a Gaussian 
hannel were notas good than those obtained with the Lega
y S
heme des
ribed earlier when the noise is above
ertain threshold.The following experiments in this se
tion are designed to pinpoint the main responsible forthis degradation, i.e., either the 
ontext modeling 
omponent or the predi
tion 
omponent.Fixed 
lassi�
ation s
heme and di�erent predi
tion s
hemes Table 7.16 shows di�er-ent results in PSNR terms for the Boats image under three di�erent 
hannel parameter values.These results were obtained by �xing the 
ontext model using LBG and 256 
lusters, and thenvarying the predi
tion s
heme among �ve possibilities: average-of-12 (avg/12), average-of-14(avg/14), Average Napkin Variant (nap1), Smooth Napkin (nap3) (both des
ribed in Se
tion6.6.5) using either the same 12 (nap3/12) or 24 (nap/24) samples.As 
an be seen, under low noise levels (less than � = 10), the Smooth Napkin does a reasonablework as a predi
tor. For � = 20 the results fall below any of the two average predi
tors. Thisindi
ates that the Smooth Napkin predi
tion, whose design was aimed at this type of noise, needsfurther development and experimentation in order to perform well under high noise 
onditions.Fixed predi
tion s
heme and di�erent 
lassi�
ation s
heme Table 7.17 shows how theperforman
e varies with the 
ontext 
lassi�
ation s
heme when the predi
tion s
heme is �xed(in this 
ase, to an average of 24). The �rst is the LBG with 256 
lusters (the same used inthe previous table), and following it: 16 a
tivity levels (AL/16), 256 a
tivity levels (AL/256)and 256 
onditioning 
lasses out of four 2-bit quantized wing gradients (WG/256), and theBroad Variant des
ribed in Se
tion 6.6.3 (Broad). The latter was the last of the experimentsperformed for the Napkin S
heme, and uses 16 A
tivity Level bits as in the AL/16 
ase.The results of Table 7.17 indi
ate that the Broad Variant is the best 
on�guration for theNapkin modeling s
heme in order to perform nearly as well as the LBG s
heme . Note thatonly for the 
ase � = 25 the di�eren
e between the LBG and the Broad Napkin surpasses 0.5dB.If the Napkin 
ontext modeling is used, the DUDE-I 
an be applied to large images. Thus,we �nish the dis
ussion with a sample result for the Napkin/Broad variant on Bike (using awindow average as the predi
tor) . The result is shown in Figures 7.37 and 7.38.
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Figure 7.37: Bike 
orrupted by Gaussian noise with � = 20.
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Figure 7.38: Bike denoised using the Napkin/Broad variant as the 
ontext 
lassi�
ation s
hemeand a window average as the predi
tor.



7.4. Gaussian 
hannel 131� LBG AL/16 AL/256 WG/256 Broad5 37.8 37.00 36.9 36.6 37.510 33.7 32.5 32.5 32.2 33.520 30.1 28.8 28.7 28.7 29.625 29.1 27.8 27.7 27.8 28.4Table 7.17: Results for di�erent modeling s
hemes for di�erent � values.� image parametri
 greedy10 lena 33.9 34.2boats 33.5 34.0barb 31.8 32.420 lena 30.9 31.0boats 30.0 30.5barb 28.0 28.625 lena 29.8 30.0boats 29.1 29.3barb 26.8 27.3Table 7.18: Comparative results for the parametri
 and greedy 
hannel inversion algorithms.7.4.5 Other resultsInput distribution parametrizationOne of the goals for the Gaussian 
hannel was to remedy the ill 
onditioning of the 
hanneltransition matrix for this 
ase. By assuming that the input distribution is a parametri
 dis-tribution rather than any distribution over the 8-bit inpt alphabet, its parameters are dire
tlyobtained from the statisti
al moments of the output distribution. This eliminates the instabilityof the solution and, furthermore, the 
omputational 
ost of a full 256� 256 matrix inversion orthe greedy algorithm (whi
h is a 
ostly operation), at the 
ost of imposing heavy 
onstrains onthe input distribution.Figure 7.39 shows the 
omparison of two sample real 
onditional input distributions (
om-puted using the noisy 
ontext 
lassi�
ation as the 
onditioning 
lasses but over the 
lean image)and their respe
tive greedy and parametri
 approximations. In this 
ase, the parametri
 ap-proximation is very 
lose to the 
lean distribution. Figures 7.39(
) and 7.39(d) show two 
aseswhere the parametri
 distribution is not as good.Finally, Table 7.18 shows some sample results using the two approa
hes. Even tough theinput distribution parametri
 estimations seem to be better than the greedy ones, the resultsare 
learly and 
onsistently better for the greedy algorithm. As the greedy 
learly favoursthe 
enter value, it 
ould be argued that, as in the impulse 
ase, the predi
tion is the mainresponsible for the results. However, the results of using the true distributions for denoising(
heating the 
hannel inversion pro
ess) are better than those of the greedy. One possibility isthat the 
ases of 7.39(
) and 7.39(d) is a
tually so bad that it drops the overall performan
eeven tough the estimation is good in other 
ases, but this is still spe
ulation and no sound
on
lusion is available at this time.
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(a) (b)

(
) (d)Figure 7.39: a) Sample true input distribution and its parametri
 estimation. b) The highpeak is the greedy approximation, the other two are the real distribution and its parametri
estimation (smoother). 
) and d) are two 
ases where the parametri
 estimation is not so good.This example was produ
ed with the Baboon image.
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hannel 1337.4.6 Sensibility to the 
hannel parameterFigures 7.40 (for � = 10) and 7.41 (for � = 20) show how the denoising performan
e isa�e
ted when the true 
hannel parameter is � and the denoising is performed using an estimatedparameter �0.As expe
ted, the performan
e is de
reased as the di�eren
e between � and �0 in
reases. Inany 
ase, the performan
e is never below the performan
e of a Wiener �lter for an error in theparameter �0 of 15%, and is above the image noisy PSNR (i.e., it still performs some denoising)even for an error of 30% (see Table 7.13).7.4.7 Sensibility to pseudo-random noise generationAs for the impulse noise, the dependen
y of the results with respe
t to the random seed ofthe random noise generation fun
tion used to produ
e the noise is studied. Table 7.19 showsthe results. image min max mean std. dev.lena 30.62 30.69 30.66 0.02boats 30.04 30.17 30.12 0.04barb 28.01 28.11 28.05 0.03Table 7.19: Sensibility of the result for 8 di�erent random noise simmulations. These resultsare obtained using the Lega
y modeling s
heme with no re
ursive appli
ation.
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ussion7.5 Real life denoisingThe dis
ussion so far has been 
entered on the appli
ation of the DUDE-I algorithm tosimulated noisy images where all of the properties (espe
ially memoryless nature) on the 
hanneland its parameters are perfe
tly known. As a pra
ti
al appli
ation, the ultimate goal is toapply it to images 
orrupted by real noise. This se
tion presents some preliminary results forthe DUDE-I when applied to the image shown in Figure 7.42. This is a s
anned page of anan
ient translation of the work of Eu
lides to the Spanish language where the ink from thereverse page has �ltered thru to the front page. Clearly, this is not memoryless noise as thenoisy samples mantain the rough shape of the reverse page letters. However, this stru
ture isrevealed at a higher s
ale, a fa
t that 
ould be exploited by the DUDE-I framework by restri
tingthe memoryless attribute of the 
hannel to be \lo
al". Even under this assumption, there aretwo more questions to answer: whi
h 
hannel model to use? whi
h paremeters? As there isno \real" noise 
hannel here, a 
hannel has to be sele
ted whi
h performs best and thus the
hannel and its parameters be
ome parameters of the algorithm rather than part of the problemspe
i�
ation.Figure 7.43 shows one of the best results obtained for this image. As there is no 
lean versionof the image, a hand 
leaned version of this image is used as a referen
e. Figure 7.44 
omparesthis result with other methods. The parameters for this result are:Channel Gaussian with � = 20.Pre�lter Median of 3� 3 square window.Modeler Lega
y modeling with the following 
on�guration:� 5� 5 square neighborhood 
ontexts.� Only 8 
ontext 
lasses.� Average of 7� 7 square neighborhoods �lter as a predi
tor.As 
an be seen, the denoised version is 
loser to the hand 
leaned version than the original onethan the output of any of the other algorithms. Another interesting point is that the parametersare quite di�erent to the ones that have been used to denoise \real gaussian" noise so far. Thesewere obtained after many experiments on the di�erent parameters in the proximity of 
ertaininitial guesses.The DUDE-I as an intera
tive denoising tool The results in this se
tion are 
learlyappart from the rest of the dis
ussion and must be 
onsidered only as a �rst hint on the utilityof the DUDE-I framework as a semi-automati
 denoising tool for real life image denoising. Inthis 
ase, the 
hannel type and parameters are additional user sele
table aspe
ts of the algorithmthat 
ould, for example, be 
hosen intera
tively in appropiate dialog boxes (su
h as in the AdobePhotoShop or GIMP �lters).
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Figure 7.42: S
anned Eu
lides page (page034)



138 Chapter 7. Results and dis
ussion

(a) Hand-
leaned (b) Noisy (original). PSNR=23.2dB.

(
) DUDE-I. PSNR=23.3dB. (d) Absolute di�eren
e.Figure 7.43: Best result for the Eu
lides page. The PSNR is interpreted as the di�eren
emeasure with to the hand 
leaned version.
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Figure 7.44: Clo
kwise starting with top-left: s
anned image; GSM [25℄; DUDE-I; Wiener Filter(MatLab wiener2 fun
tion). PSNR relative to hand-
leaned version: 23.2 dB(s
anned), 22.6dB(GSM), 25.9 dB(DUDE-I) and 25.2 dB(Wiener).





8 Con
luding remarks
8.1 OverallThe main goal of this work was to adapt modeling tools used su

essfully in image 
ompressionsu
h as 
ontext modeling and predi
tion to the DUDE algorithm in the hope that, by doing this,it would be possible to address the denoising of 
ontinuous tone images using this paradigm.An augmented framework was de�ned, and it proved to give good results for various typesof noise, surpassing the 
urrent state-of-the-art in some 
ases. Furthermore, this framework
an be extended, and better modeling s
hemes 
an be built on top of it whi
h 
ould solve its
urrent limitations. Although several problems remain that require further resear
h, signi�
antprogress was a
hieved towards this the goals de�ned.Of the 
hannel models that were used to test the new system, the results that were obtainedare very good when 
ompared to the state of the art in the 
ase of non-additive noise types.For the additive Gaussian 
hannel , the results are below the best available results, although,at the same time, signi�
antly above the results that 
an be obtained using a 
lassi
al AdativeWiener �lter.The results for the impulse 
hannel indi
ate that the main 
ontribution to the performan
e isdue to the su

ess of the predi
tion s
heme rather than in the 
ontext modeling part. However,this is a side e�e
t of the very parti
ular 
ase of the impulse 
hannel where the DUDE-I auto-mati
ally 
hooses the 
orre
t behavior by letting the predi
ted value be the main in
uen
e in thede
ision of the output. The added 
omputational burden is small and the resulting frameworkis more 
exible than a hard-
oded spe
i�
 �lter for impulse noise removal.8.2 Modeling approa
hesAt a general level, the Canoni
al Transformation and DC 
an
ellation tools, whi
h are ap-plied in every modeling algorithm used, have proven to improve the overall performan
e, whi
hindi
ates that one of the main aspe
ts to look at when doing a 
ontext model is to exploit thepotential symmetries that exist in the stru
ture of images.The �rst attempt at 
ontext modeling was to use the LBG algorithm to do a ve
tor quanti-zation of the 
ontexts. Even tough its use led to some of the best results in terms of denoisingperforman
e, this model has shown to be impra
ti
al, mainly be
ause its 
omputational require-ments are too high even for small images.The Napkin modeling has shown to be a good s
heme for the Impulse noise. In this 
ase, mostof the performan
e gain is 
redited to the predi
tion s
heme, in
luding the role of the 
ontext
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luding remarksmodeling s
heme when applied to the predi
tor 
ontext-dependent bias 
an
ellation. Of thedi�erent features that the 
ontext model of the Napkin s
heme has to dis
riminate 
ontexts,the texture and a
tivity level 
omponents were found to be the most useful. The �rst is spe
iallyuseful for bias 
an
ellation, while the se
ond helps to sepparate the 
at regions of the imagefrom the borders, resulting in a good adaptive predi
tion s
heme. Despite this, the results inSe
tion 7.2.3 indi
ate that features su
h as the gradient dire
tion or wing gradients provideuseful information on the stru
ture of the 
ontexts, and thus these features should be subje
tto a deeper analysis before ruling them out.This model needs further development to a
hieve the desired robustness to additive noise,performing about 0:3dB below the Lega
y results when using the Broad Variant des
ribed inSe
tion 6.6. However, this disadvantage 
ould be overweighted by the redu
ed 
omputationalrequirements implied by this method, whi
h allow the appli
ation of the DUDE-I to large imagessu
h as Bike.8.3 Noise types8.3.1 Non-additive noiseAs mentioned, the results for the impulse noise are very good. These results also extendto the 
ase of asymmetri
 impulse noise and the Z-Channel, and also to the more diÆ
ult q-ary symmetri
 
hannel. All those results bene�t from the pre
lassi�
ation s
hemes, where asimple thresholding was used for the impulse noise and its variants, and the more sophisti
atedhomogeneity 
lassi�
ation for the q-ary symmetri
 
hannel. The pre�ltering s
heme provedto be spe
ially useful, being always a simple median �lter (in the �rst iteration). All of this
ombined with the re
ursive pre�ltering s
heme allowed toe DUDE-I to rea
h and surpass thestate of the art.It must be noted that any denoising algorithm 
ould be used for the pre�ltering stage, possiblyrising the overall performan
e. This in
ludes simple but yet better algorithms su
h as theAdaptive Median des
ribed in Se
tion 3. Furthermore, this observation applies to any type ofnoise.Of the two modeling s
hemes, the LBG gives slightly better results than the Napkin at the
ost of being mu
h heavier in terms of 
omputational resour
es. The only ex
eption amongall the images of the test suite (not only the ones shown here) is the Barb image, where thedi�eren
e is very noti
eable between the two approa
hes. On the average, the best tradeo�between the two, for the impulse noise, is the Napkin s
heme.8.3.2 Gaussian noiseThe gaussian 
hannel has proven to be more 
hallenging to the proposed s
heme, and whilethe results are not bad when 
ompared to \simple" denoising strategies like a Wiener �lter,they are always below the state of the art.Of the available modeling s
hemes, the slower LBG yielded the best results. The fasteralternative provided by the Napkin 
ontext modeling s
heme (using the broad version of thegradient wing 
omputations and a 
ontext average as the predi
tion s
heme) de
reases the
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e by about 0.5 dB with respe
t to the LBG approa
h, but also enables theappli
ation of the DUDE-I to large images where the Lega
y s
heme results impra
ti
al.A simple predi
tion s
heme su
h as an average of the 
ontext samples was seen to be moresuitable than the Napkin edge-dete
tion approa
h, whi
h appeared too sensitive to the additivenoise.Although the pre�ltering s
heme, whose purpose original purpose was to atta
k the non-additive noise 
ases, did not give good results as an initial pre�lter when the �lter used was asimple median or average, one re
ursive pre�ltering appli
ation of the DUDE-I did in
rease theperforman
e in all the 
ases. More pre�ltering appli
ations only degraded the performan
e.Another diÆ
ult aspe
t of this 
hannel was the 
omputation of the 
ontext-
onditional inputdistributions as the transition matrix is ill 
onditioned even for small values of � and theinversion is not reliable numeri
ally. Of the two alternatives proposed to solve this problem, thegreedy algorithm as proposed in the �rst approa
h to this problem by Giovanni Motta is theone that gives the 
urrent best results. The parametri
 approa
h, whi
h 
an be 
onsidered as apreliminary attempt, yields slightly lower results (less than 0:5dB, with an average of 0:3dB).On the other hand it is 
onsiderably faster and requires less memory.





9 Future work
9.1 Modeling s
hemes9.1.1 Napkin enhan
ementsThe Napkin modeling s
heme was strongly in
uen
ed by the tools and 
on
epts that areused in 
ompression. Spe
i�
ally, the 
ontext modeling s
heme was meant to produ
e a gooddis
rimination in terms of predi
tion error statisti
s. However, these tools are not designedto work for noisy images, and the measurements taken in the Napkin model to give it somerobustness have not worked as expe
ted. One possibility is thus to 
ontinue on this line, tryingto a
hieve the desired robustness while still using tools su
h as a
tivity level, texture bits, andedge-dete
ting predi
tors. The 
ase of non-additive noise does not 
ount sin
e the pre�lteringstage produ
es a reasonably smooth image for these tools to work with.9.1.2 Other 
lassi�
ation approa
hesStill under the 
ontext 
lassi�
ation approa
h, other 
lassi�
ation s
hemes 
an be investi-gated whi
h produ
e better results under noisy environments (again, mostly for additive noise).Frequen
y domain te
hniques [9℄, wavelets [16℄ are examples of tools that 
an give useful 
ontextinformation in the presen
e of noise.9.1.3 All for one, one for allThe probability models de�ned by both LBG and Napkin perform a partition of the 
ontextspa
e into disjoint 
ontext 
lasses. However, there is no 
ompelling reason for the disjointness ofthe 
lasses. The extreme 
ase of this paradigm is given in [1℄, where every 
ontext 
ontributes,in an appropriately weighted form, to the denoising of every lo
ation in the image. However,this algorithm requires O(n2 operations to denoise an image with n pixels. This approa
h isalso known as the Parzen Window method for distribution estimation [7, pp. 164{173℄.An interesting dire
tion of investigation is to obtain a 
ontext modeling s
heme that lever-ages the disjointness of the 
ontext 
lasses as the two proposed models do, while keeping the
omplexity of the algorithm below O(n2) (for example requiring O(n log n) operations for animage with n pixels).9.1.4 Context 
odebooksThe ve
tor quantization performed by the LBG algorithm should yield a small set of repre-sentative 
ontexts. This 
ould be applied to a large number of (non ne
essarily noisy) imagesin an o�ine fashion and the resulting 
ontext \
odebook" be used to produ
e a fast 
ontext
lassi�
ation to be used to denoised any new image that may appear. This 
ould also be appliedto the distribution estimations as well.
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Figure 9.1: Statisti
s blending 
on
ept. Here the 
ontext 
lasses are 
hara
terized by quantizedve
tors formed of the verti
al and horizontal gradient estimations for the raw 
ontexts. Anexample 
ontext is 
hara
terized and its feature ve
tor falls in the middle of two 
lusters, thusgiving a fra
tion of the \
ount" to ea
h 
luster.9.2 Context statisti
s9.2.1 Distribution parametrizationIt was shown that the use of a simple parametri
 approa
h to the problem of gaussian
hannel inversion is possible. However, the results are still below the ones a
hieved by thegreedy algorithm. Other parametrizations of the empiri
al distributions should be investigatedwhi
h give better results. For instan
e, the proposed two-sided geometri
 distribution model
ould be extended to admit nonsymmetri
 geometri
 distributions (i.e., where the de
ay fa
tor� is di�erent to ea
h side of the mode of the distribution).9.2.2 Statisti
s blendingCurrently, the probability 
onditioning model implies a \hard" 
lassi�
ation of the raw
ontexts present in the image into a �xed number of 
lasses. On
e this is done, however, theoriginal raw 
ontexts are still available. If the 
ontext 
lasses are made up of a 
ertain set ofmeasures (e.g., a
tivity level), and the raw 
ontext measures fall at an even distan
e from morethan one 
ontext 
lass 
luster 
enter in the measures spa
e, then assigning the 
urrent pixel toone of those 
lasses would in
ur in a loss of useful information.Instead of doing this, the 
ontribution of the statisti
s for ea
h pixel 
ould be divided amongseveral 
onditioning 
lasses in a way proportional to the likelyhood of the pixel being in ea
hof them (the overall 
ontribution should sum to 1, naturally, as one pixel 
ounts as \1" in theoverall statisti
s). The overall 
on
ept is depi
ted in Figure 9.1.9.2.3 Statisti
s interpolationThe same idea of 9.2.2 
an be used in the se
ond pass when re
overing the 
onditionalstatisti
s for the 
urrent pixel. If the raw 
ontext is re
overed (again, for example, an unquan-tized a
tivity level), a point in the measure spa
e that makes up the 
ontext 
lasses 
an bere
omputed. Now, instead of using the nearest 
lass statisti
s as the 
onditional statisti
s forthe 
urrent pixel (whi
h is what is being done through the 
onditioning map in the 
urrentimplementation), one 
ould use a mixture of more than one nearest 
lass. S
hemes like linearinterpolation 
ould be used if the 
ontext 
lusters were produ
ed by s
alar quantization on themeasure spa
e's dimension. If the quantization is ve
torial (e.g., using LBG), then slower butmore general algorithms like the Parzen Window s
heme [7℄ 
ould be used to produ
e an interpo-
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dv

dh

class2

class1

Figure 9.2: Statisti
s interpolation. Here, ea
h 
luster 
enter in the 
ontext 
lass feature spa
ehas an asso
iated statisti
s ve
tor to it. By re
overing the unquantized feature ve
tor, aninterpolated statisti
s ve
tor 
an be built out of a number of nearest neighboring 
lusters.lated version. Other possibilities are to model the whole image statisti
s as a multidimiensional�eld over the 
onditioning 
lass measure spa
e and apply some Spline or polynomial �tting toit. Some of these ideas are depi
ted in �gure 9.2.9.2.4 Tail Bu
ketingThis is a possible te
hnique to redu
e the number of parameters of the overall model. Itis based on the idea that the tails of the predi
tion error density fun
tions would be normallysparse and so the statisti
s of ea
h symbol on it. On the other side, if the behavior of thepredi
tor (for example, the approximate shape of the predi
tion error) is known in advan
e,the sparseness 
ould be redu
ed by merging all these tails between 
lasses and then redistributethe resulting shape among the statisti
s for ea
h 
lass in lieu of the previous tails. The idea isdepi
ted in Figure 9.3.9.3 Heuristi
s for noise model type and parametersA pra
ti
al issue that needs to be addressed for the DUDE to be used as, for example, a
ommer
ial plugin, is to have some sort of noise model and parameter estimation. An ordinaryuser should not know anything about noise models or parameter, and even a te
hni
al user may�nd it 
umbersome to have to spe
ify su
h parameters ea
h time.There are many simple te
hniques for estimating the parameters of 
hannels like the Impulseor the Gaussian 
hannel that 
ould be easily in
luded in a future version.9.4 Automatized parameter sele
tionThis is more a general issue and deals with all the parameters that make up a 
ertain 
on�g-uration of the DUDE, for example, the size and shape of a 
ontext, the number of 
onditioningstates, number of iterations, et
. This has also pra
ti
al impli
ations if the aim was to obtaina plugin that 
ould be used by non-te
hni
al persons.Many of the 
urrent parameters 
ould be automati
ally 
hosen on
e their behavior underdi�erent settings (for example, image size) has been studied.
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(a) (b)

(c)Figure 9.3: Tail bu
keting s
heme. (a) Predi
tion error statisti
s for the two hypotheti
 
ontext
lasses. (b) tails are merged into one smoother version, taking s
ale into a

ount. (
) theresulting shape repla
es the original tails.



A Software implementation
A.1 OrganizationThe appli
ation was developed in C++ using the GNU C Compiler (GCC) as the maindevelopment tool, mantaining 
ross-
ompatibility with MS Visual C++ 7.1 (in
luded in MSVisual Studio .NET 2003). For the 
ompilation, both GNU Make�le �les and Visual C++proje
t �les are in
luded in the sour
e tree.The sour
e 
ode is extensively do
umented and 
onforms to the format used by someautodo
umentation tools, spe
i�
ally, with the Doxygen do
umentation tool (also availableunder the GNU Publi
 Li
en
e) whi
h automati
ally produ
es a referen
e manual in variousformats in
luding LaTeX and HTML.The sour
e 
ode tree is ba
ked by the Con
urrent Versions System (CVS) whi
h is the defa
to standard used for version 
ontrol in most software proje
ts.A.2 Sour
e treeAs a general guideline, all the algorithms, in
luding the DUDE implementation itself, wereimplemented in a modular way without any dependen
y on the exe
ution environment or userinterfa
e. This also applies to the base 
on
ept models (sequen
e, alphabet, 
hannel, et
.)making not only the algorithms but the obje
ts used by them easy to port to other appli
ations.Almost all the 
ode uses generi
 programming te
hniques (C++ templates), as it enables
on
eptual 
exibility while avoiding the overhead related to other 
ommon te
hniques. Forexample, the Sequen
e 
lass has been generalized to any dimension and symbol type. Fur-thermore, template metaprogramming te
hniques are used to make any dimension-dependent
al
ulations (for example, D-dimensional indexation) unrolled at 
ompile time.A.3 CompatibilityThe sour
e 
ode 
omplies with the ANSI C++ standard and 
urrently 
ompiles under GNUCompiler Cole
tion (GCC) 3.x, 4.0 and Visual C++ 7.x. GNU Make make�les are in
luded forautomati
 building using GCC, and a Visual C++ Solution is in
luded for VC++ 
ompilation.A.4 Version 
ontrolThe Con
urrent Versions System (CVS) version 
ontrol system was used to manage theproje
t �les throughout its development. This is a valuable tool whi
h simpli�es the development
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t by many programmers and adds redundan
y that prevents the lossof data.A.5 PrototypingThe S
ilab pa
kage1 was used to perform simulations and to analize the results of theexperiments. This is a high quality and performan
e free software alternative to other 
ommonsimulation environments.A.6 DesignThe implementation is written in C++ and makes heavy use of generi
 programming 
on
epts(i.e., C++ templates and related te
hniques) to maximize 
exibility and speed at the same time.The design is driven by the Obje
t Oriented Programming paradigm, breaking the problem ina few 
on
eptual families (data, pro
essing blo
ks, algorithms, utilities) with spe
i�
 
lassesrepresenting entities su
h as Image, Index, Context, Algorithm, Filter. Ea
h 
on
ept family isenglobed in a respe
tive C++ namespa
e to 
larify the relationship among its members.Algorithms are the 
entral part of the implementation, and are usually broken up into sub-algorithms or strategies that 
an be 
on�gured at run time to 
hange spe
i�
 aspe
ts in thebehavior of the algorithm they are part of. They belong to the algo namespa
e. Besides thesequen
e-spe
i�
 algorithms (su
h as Filter), several generi
 algorithms are also in
luded in thismodule. Examples of these are ve
tor 
omparison 
riterions, ve
tor quantization, et
.The data types orbit around the Sequen
e 
on
ept, of whi
h Image is a 
onvenient spe
ializa-tion for 2D sequen
es. To ease the development, 
lasses su
h as Sequen
e 
ontain de
larationsfor their 
ompatible parameterized related 
lasses. For example, for a 2D sequen
e, Sequen
ede�nes an Index type whi
h is itself parameterized by D=2. All the sequen
e-related 
on
eptslie in the seq module.The DUDE-I is implemented as a ma
ros
opi
 algorithm where the key stages (pre�ltering,
ontext modeling, predi
tion) are governed by 
orresponding strategies, and the denoising stagedepends on the type of noise. Be
ause it is the 
entral algorithm, and be
ause its subalgorithmsare a
tually very 
omplex by themselves, the DUDE is 
ontained in a spe
i�
 module, the dudenamespa
e.A.7 Do
umentationThe full sour
e 
ode is well do
umented and formatted in a way that enables the automati
generation of printable and/or user-friendly do
umentation through the Doxygen2 open sour
eautomati
 do
umentation tool. The do
umentation is pla
ed under the do
/api dire
tory inthe sour
e tree and 
an be regenerated at any time by typingdoxygen dude.dox1http://s
ilabsoft.inria.fr/2http://www.doxygen.org/
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e tree as the 
urrent dire
tory. The do
umentation is generated inHTML and LATEX, and pla
ed in do
/api/htlp and do
/api/latex respe
tively. The LATEXtoolhas to be run in order to produ
e a printable do
ument. To do this, typelatex refman.texfrom the do
/api/latex dire
tory.A.8 parameterizationAs was mentioned, most of the 
ore 
lasses are C++ templates. Two parameters were 
onsid-ered in the generalization of the algorithms: the dimension of the sequen
es, and the type usedfor the symbols. In this way, the 
urrent implementation is potentially appli
able to arbitrarydimensional sequen
es (from audio to multidimensional images), and arbitrary symbol types(from bytes to double values).However, some minor 
hanges are needed to be able to use the implementation for dimensionsother than 2. This is mainly be
ause some 2D-spe
i�
 algorithms (for example, the Napkin pre-di
tor) are de�ned only in terms of 2D sequen
es, and be
ause the 
ode in
ludes the generationof some debugging images whi
h rely on 2D-spe
i�
 output formats. It is very easy to 
om-ment out these parts, and the in
luded 2D-spe
i�
 algorithms so that the rest works for otherappli
ations.A.9 utilitlesFlexibility, ease of 
on�guration and runtime debugging output were 
onsidered of key im-portan
e in the development, as this implementation is an experimentation tool above anythingelse. A set of general purpose utilities were in
luded that deal with su
h tasks. These utilitiesare grouped under the util namespa
e and, be
ause they do not rely on generi
 parameters,
an be pre
ompiled into a library whose name is simply \dude" (a
tually, the system dependentname may vary: for Windows it is dude.lib, and for Unix/linux libdude.a).A.9.1 
on�gurationAll the algorithms are 
on�gurable in a hierar
hi
al fashion. Ea
h algorithm 
an have itsown parameters, and its subalgorithms as well. The parameters are organized in a hierar
hi-
al, domain-like stru
ture that re
e
ts the aggregation of algorithms and subalgorithms. Forexample, the DUDE algorithm has its parameters in the \root" domain, thus the name of itsparameters appear dire
tly as, for example, \re
ursion level" or \re
ursive". The DUDE in-
ludes a pre�lter as one of its subalgorithms, 
on�gured through the parameter \�lter". Filter,in turn, has its own parameters, for example, \template". The latter would appear as a global
on�guration parameter under the name \�lter.template", showing that it is a parameter of thesubalgorithm \�lter". This same s
heme 
an 
ontinue to any depth.The Con�guration tools enable us to use a uniform interfa
e to 
on�gure the algorithmsand publish the available parameters, regardless of the \front-end". For example, the 
urrentimplementation 
an read and write unix-like ASCII 
on�guration �les, parse 
ommand linearguments and produ
e help messages to the 
onsole without the need to write spe
i�
 
ode
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ommand line interfa
e. The same implementation is used by the GUI to 
on�gure theunderlying implementation.A.9.2 loggingThe Logging fa
ilies outputs information, error and debugging information to the 
onsole orto a �le. The level of verbosity 
an be 
on�gured at run time. The implementation in
ludesfa
ility methods to build 
omplex debugging output strings, tra
king time between 
alls, andoutput preformatted data su
h as ve
tors and matri
es.A.9.3 input/output formats for images and matri
esThe 
urrent implementation in
ludes a generi
 interfa
e for reading and writing images, anda spe
i�
 implementation for the PGM format usually found as the \raw" image format underUnix or its variants. It also in
ludes Windows Bitmap (BMP) read and write 
apability.Also in
luded are utilities to read and write Matlab (4.2) matri
es, whi
h are also handled byS
ilab (an open sour
e Matlab 
lone), to 
ommuni
ate data between these development toolsand the C++ program.A.10 
ommand line interfa
eAs the whole implementation is modularized, the 
ommand line interfa
e is just a smallprogram whi
h a

epts the full set of 
on�guration parameters through a 
on�guration �leand/or 
ommand line parameters, a noisy image to be denoised or else a 
lean image to addsimulated noise and then denoise it, produ
ing the denoised output as well as optional analysisinformation for experimentation purposes. Some of the 
ommon usage 
ases are des
ribedbelow.Without arguments , the 
ommandduderuns a demo by 
reating a uniform 128 by 128 gray image, adding noise to it and thendenoising it with the default 
on�guration.To obtain online help , typedude -hThe exe
ution will terminate immediatly. All the parameters are of the form -key=value,although the -help option shows the parameters without the hypen pre�x.To obtain help for the full set of parameters use -X before -h:dude -X -hTo simmulate noise on a 
lean image and then denoise it using the default 
on�guration:dude some image.pgm



A.11. graphi
al user interfa
e 153This will use the default noise type and parameters (Salt and Pepper noise with � = 30%,Napkin modeler). The following exampledude -
hannel=gaussian -
hannel.sigma=5 ...-outdir=gauss5 test some img.pgmwill 
orrupt the image using a Gaussian 
hannel with � = 5, denoise it and pla
e the outputin the gauss5 test dire
tory.To 
reate a default 
on�guration �le dude -
reate=name of the file.The \.
fg" extension has been adopted by 
onvention, but it is not a requirement. Both the-help option and the generated 
on�guration �les give detailed information on ea
h parameterand are a good sour
e of information to learn how to use the program.To use a spe
i�
 
on�guration �le ,dude -
onfig=some 
fg file ...To avoid the addition of noise (to 
lean an already noisy image), usedude -add noise=false ...A.10.1 
on�guration �lesCon�guration �les are simple ASCII �les where the lines are of the form key=value (whitoutthe pre
eding hypen). If a \#" appears on a �le, the rest of the line in whi
h it appears isignored. Any line that begins with a \#" is 
onsidered a 
omment. The best way to use the
ommand line interfa
e is to produ
e a default 
on�guration �le with the -
reate 
ommand.A.11 graphi
al user interfa
eA graphi
al user interfa
e (GUI) is in
luded for ease of use. The GUI is written in the Javalanguage as it is very easy to write su
h appli
ations in that language and also highly portableas a way to produ
e graphi
al user interfa
es.The GUI is easier to use than the 
ommand line interfa
e, although it doesn't give a

essto the full range of parameters. The interfa
e shows a twin display whi
h pans and zoomssyn
hronously so that 
omparison between images is easy at any resolution or even pixel bypixel. The basi
 operations are presented as buttons in the main window, while the rest is
ontained in the menu bar.The GUI also 
ontains some basi
 tools for the analysis of the denoising pro
ess (image di�er-en
es,standard measures su
h as PSNR, et
.). Finally, the rest of the 
on�gurable parametersthat are not a

esible 
an be set by 
reating a 
ustom 
on�guration �le and loading it with theGUI (these �les are the same used by the 
ommand line interfa
e).



154 Appendix A. Software implementationA.11.1 Java/C++ integration (JNI)The C++/Java 
ommuni
ation is 
arried out using the JNI standard (Java Native Interfa
e)me
hanism that 
omes with the development kit. The GUI implementation is thus divided ina series of Java 
lasses and a series of C �les whi
h interfa
e the Java 
lasses with the DUDEimplementation. The 
ompilation of su
h a program is rather 
ompli
ated and requires theuse of some spe
i�
 Java tools to 
omplete the pro
ess. These steps are in
luded in boththe GNU Make make�le and Visual C++ Solution �le for the GUI so no real knowledge isneeded to 
ompile it, but 
ertain spe
ial requirements are still needed. For instan
e, the JavaDevelopment Kit3 (1.4 or above) is needed to 
ompile the GUI, the JAVA HOME environmentvariable must be de�ned, and the Java 
ompilation tools (java
, javah) need to be in
luded inthe PATH environment variable.

3http://javasoft.sun.
om/



B Fast 
losed forms for the denoisingfun
tion
In the following derivations it is assumed that the expe
ted loss is 
omputed with respe
t to adistribution P over an alphabet A = f0; : : : ;M � 1g.B.1 For the L1 loss modelConsider the expe
ted loss for the L1 error and a 
hosen denoiser output �. In this 
aseea
h term of the loss matrix �x� = jx� �j and the expe
ted loss R� 
an be written asR� = x=M�1Xx=0 P (X = x)jx� �j (B.1)this 
an be rewritten asR� = x=��1Xx=0 P (X = x)(�� x) + M�1Xx=�+1P (X = x)(x� �) (B.2)

Consider the de�nition of the median of P , �med for whi
h1. P (X � �med) � 1=22. P (X � �med) � 1=2To prove that �med yields the minimum expe
ted loss, it suÆ
es to show that R� is a mono-toni
ally de
reasing fun
tion for � � �med, and monotoni
ally in
reasing for � � �med. Forthis, take the di�eren
e R� �R��1:



156 Appendix B. Fast 
losed forms for the denoising fun
tion
R� �R��1 = x=��1Xx=0 P (X = x)(�� x) + M�1Xx=�+1P (X = x)(x� �)� (B.3) x=��2Xx=0 P (X = x)(�� 1� x) +M�1Xx=� P (X = x)(x� (�� 1))!= x=��1Xx=0 P (X = x)(�� x)� x=��2Xx=0 P (X = x)(�� 1� x) +M�1Xx=�+1P (X = x)(x� �)�M�1Xx=� P (X = x)(x� (�� 1))= x=��1Xx=0 P (X = x)(�� x)� x=��2Xx=0 P (X = x)(�� x) + ��2Xx=0 P (X = x) +M�1Xx=�+1P (X = x)(x� �)�M�1Xx=� P (X = x)(x� �)�M�1Xx=� P (X = x)= P (X = �� 1) + ��2Xx=0 P (X = x)�M�1Xx=� P (X = x)= ��1Xx=0 P (X = x)�M�1Xx=� P (X = x)= P (X � �� 1)� P (X � �) = 1� 2P (X � �)Using the de�nition of �med,R� �R��1 = � � 0 ; � � �med� 0 ; � � �med (B.4)Thus, the global minimum is � = �med.B.2 For the L2 loss modelIn this 
ase �x� = (x� �)2. Using EP (:) to denote expe
tation over P ,R� = EP [(x� �)2℄ (B.5)whi
h 
an be developed using the basi
 properties of expe
tationR� = EP [(x2 � 2�x+ �2℄ (B.6)= EP [x2℄� 2�EP + �2 (B.7)if � is relaxed to be a 
ontinuos value between 0 andM�1, (x��)2 is a stri
tly 
onvex fun
tion



B.2. For the L2 loss model 157of � and a global optimum 
an be found by di�erentiating (B.7)dR�d� = 2� � 2EP [x℄ (B.8)where the optimum 
orresponds to dR�d� , i.e., � = EP . When this optimum is not integer, somestrategy is used to map it to an integer value within A, for example, rounding.





C Parametri
 se
ond pass for GaussiandistributionsThe purpose of this se
tion is to obtain an expression for �, the parameter of the Two SidedGeometri
 Distribution, in terms of the varian
e of this distribution, �2. For this, 
onsider aTSGD with parameter � and mean 0,P (X = x) = (1� �)�jxj (C.1)Its varian
e is given by the following expression:�2 = (1� �) x=1Xx=�1 �jxjx2 = 2(1� �) x=1Xx=0 �jxjx2 (C.2)the series expanson of (C.2) yields �2 = 2(1� �)�(� + 1)� � 13�2 = 2�(� + 1)� � 12� � 12�2 = �(� + 1)whi
h is reordered to obtain a se
ond order polynomial on �(�2 � 2)�2 � 2(�2 + 1) + �2 = 0 (C.3)and �nally � = �2 + 1�2 � 2 +�p1 + 4�2�2 � 2 (C.4)





D Full resultsThis appendix presents the full set of results obtained in the experiments. For the Lega
yModeling s
heme, the set of images in
ludes a subset of the images of the SIPI database(http://sipi.us
.edu/servi
es/database/), but exludes the bigger images 
ontained in theJPEG-LS test suite sin
e the 
omputational resour
es required were too mu
h for the ma
hinesused to run the tests. The Napkin results were obtained for both test suites as the 
omputationalresour
es required for this s
heme are mu
h smaller.Most of the images of the SIPI database are of about 1=4 million pixels (512 � 512 or720� 576), ex
epting \Camera",\us" and \house" whose size is 256� 256 (four times smaller).This has an impa
t in the parameters whi
h depend on the size of the image su
h as the numberof 
ontext 
lasses.D.1 Best results� baboon barb2 barb boats bridge 
amera goldy hotely10% 32.8 37.1 39.2 42.1 35.0 33.8 41.3 40.330% 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.2� house lena peppers splash tulips us average10% 37.4 42.2 38.1 39.4 42.1 33.4 38.130% 34.7 37.5 33.8 39.3 37.2 28.6 33.8Table D.1: Best results for the Salt and Pepper 
hannel. Lega
y s
heme.� baboon barb2 barb boats bridge 
amera goldy hotely10% 33.5 39.4 38.7 45.3 36.1 36.7 43.1 42.930% 27.8 32.9 31.7 38.3 30.6 31.1 36.9 36.3� house lena peppers splash tulips us aerial2 bike310% 46.2 44.3 37.5 48.4 45.2 34.2 39.2 35.430% 38.4 38.2 33.5 41.5 37.9 28.7 32.8 30.7� bike 
afe 
ats tools average10% 33.4 32.9 38.3 29.2 39.030% 29.6 27.6 31.8 24.5 33.0Table D.2: Best results for the Salt and Pepper 
hannel. Napkin s
heme.



162 Appendix D. Full results� baboon barb2 barb boats bridge 
amera goldy hotely70% 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.3� house lena peppers splash tulips us average70% 30.4 30.7 25.7 33.3 29.8 18.9 27.0Table D.3: Best results for extreme Salt and Pepper 
hannel. Napkin s
heme.� baboon barb2 barb boats bridge 
amera goldy hotely10% 33.5 39.6 41.0 44.4 35.9 34.4 42.7 42.430% 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.5� house lena peppers splash tulips us average10% 38.0 43.0 40.1 44.5 44.5 33.6 39.830% 35.4 37.8 35.8 39.7 37.7 27.4 34.5Table D.4: Best results for the Salt and Pepper 
hannel. Combined s
heme.{e baboon barb2 barb boats bridge 
amera goldy hotely10% 27.8 32.6 31.4 36.4 30.6 28.1 36.6 35.120% 25.3 29.3 28.4 33.0 28.1 26.0 33.5 31.330% 23.6 26.9 26.4 30.5 26.3 24.5 30.9 28.3Pe house lena peppers splash tulips us aerial2 bike310% 33.9 37.1 36.1 38.1 36.2 24.5 31.2 29.420% 31.8 34.2 32.9 35.9 32.8 22.1 28.3 27.230% 30.4 31.7 30.2 33.5 30.0 19.7 25.6 25.4Pe bike 
afe 
ats tools average10% 27.2 26.1 32.8 24.7 31.320% 25.2 23.6 29.5 21.9 28.630% 23.9 21.9 27.0 20.4 26.4Table D.5: Best results for the q-ary symmetri
 
hannel. Napkin s
heme.� baboon barb2 barb boats bridge 
amera goldy hotely10 29.9 30.8 32.4 34.0 30.3 32.5 32.9 33.420 25.6 26.6 28.6 30.4 26.4 28.5 29.7 29.825 24.4 25.7 27.3 29.3 25.3 27.4 28.7 28.6� house lena peppers splash tulips us average10 34.1 34.2 34.6 34.7 33.6 32.4 32.820 31.1 31.0 31.3 30.4 30.4 29.3 29.225 29.8 29.9 30.6 29.4 29.3 27.8 28.1Table D.6: Best results for the Gaussian 
hannel. Lega
y modeling s
heme.



D.2. Sele
tion of the parameters 163D.2 Sele
tion of the parametersD.2.1 Lega
y for Salt and PepperNC baboon barb2 barb boats bridge 
amera goldy hotely64 5.9 4.8 4.8 4.0 5.5 4.3 4.5 4.4128 5.9 4.7 4.8 4.0 5.5 4.3 4.5 4.4192 5.9 4.7 4.8 4.0 5.5 4.4 4.4 4.4256 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4320 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4NC house lena peppers splash tulips us average64 4.1 4.2 3.9 3.8 4.3 3.0 4.4128 4.2 4.2 3.9 3.8 4.3 3.0 4.4192 4.2 4.2 4.0 3.9 4.3 3.1 4.4256 4.4 4.2 4.0 3.9 4.3 3.1 4.4320 4.4 4.2 4.0 4.0 4.3 3.1 4.5Table D.7: Lega
y for Salt and Pepper. Compressibility vs. number of 
ontext 
lusters.



164 Appendix D. Full results

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 50  100  150  200  250  300  350

V
ar

ia
tio

n 
in

 C
om

pr
es

si
on

 (
%

 b
pp

) 
w

. r
. t

o 
le

ftm
os

t v
al

ue

baboon
barb2

barb

boats
bridge

camera

goldy
hotely
house

lena
peppers

splash

tulips
us

averageFigure D.1: Lega
y for Salt and Pepper. Compressibility vs. number of 
ontext 
lusters.



D.2. Sele
tion of the parameters 165
NC baboon barb2 barb boats bridge 
amera goldy hotely64 26.9 30.9 31.1 35.1 29.4 29.6 35.1 33.5128 27.2 31.1 31.8 35.4 29.5 29.9 35.3 33.9192 27.2 31.2 31.9 35.4 29.6 29.5 35.3 33.9256 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0320 27.2 31.3 32.2 35.5 29.6 29.2 35.3 34.0NC house lena peppers splash tulips us average64 34.7 36.5 32.2 38.7 35.8 26.9 32.6128 34.8 36.6 32.6 38.4 36.1 26.8 32.8192 34.1 36.7 32.6 37.8 36.2 27.1 32.7256 33.3 36.7 32.4 38.0 36.3 27.1 32.7320 33.2 36.6 32.5 37.1 36.3 27.0 32.6Table D.8: Lega
y for Salt and Pepper. PSNR vs. number of 
ontext 
lusters.
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y for Salt and Pepper. PSNR vs. number of 
ontext 
lusters.
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Context baboon barb2 barb boats bridge 
amera goldy hotely3� 3 6.0 4.9 4.9 4.1 5.6 4.6 4.5 4.55� 5 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.47� 7 6.0 4.8 4.8 4.1 5.6 4.5 4.5 4.5Context house lena peppers splash tulips us average3� 3 4.4 4.2 4.1 3.9 4.4 3.1 4.55� 5 4.4 4.2 4.0 3.9 4.3 3.1 4.47� 7 4.4 4.2 4.0 3.8 4.3 3.5 4.5Table D.9: Lega
y for Salt and Pepper. Compressibility vs. radius of the 
ontextss.
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y for Salt and Pepper. Compressibility vs. radius of the 
ontexts.
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Context baboon barb2 barb boats bridge 
amera goldy hotely3� 3 26.7 29.7 29.9 33.7 28.8 28.1 33.9 31.45� 5 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.07� 7 26.8 31.2 32.1 35.0 29.1 28.9 34.7 33.2Context house lena peppers splash tulips us average3� 3 32.1 34.9 31.5 37.0 34.1 26.2 31.35� 5 33.3 36.7 32.4 38.0 36.3 27.1 32.77� 7 32.9 36.1 31.7 38.6 35.5 26.7 32.3Table D.10: Lega
y for Salt and Pepper. PSNR vs. radius of the 
ontexts.
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Iter. baboon barb2 barb boats bridge 
amera goldy hotely1.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.42.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.33.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.44.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.45.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.36.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.4Iter. house lena peppers splash tulips us average1 4.4 4.2 3.9 3.8 4.2 3.1 4.42 4.3 4.2 4.0 3.7 4.2 3.1 4.43 4.3 4.2 4.0 3.8 4.2 3.0 4.44 4.4 4.2 3.9 3.8 4.2 3.1 4.45 4.3 4.2 3.9 3.8 4.2 3.1 4.46 4.3 4.2 3.9 3.8 4.2 3.0 4.4Table D.11: Lega
y for Salt and Pepper. Compressibility vs. number of pre�ltering iterations
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y for Salt and Pepper. Compressibility vs. number of pre�ltering iterations
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Iter. baboon barb2 barb boats bridge 
amera goldy hotely1 27.6 32.4 33.4 36.4 30.0 29.7 35.8 34.92 27.7 32.7 33.7 36.6 30.0 30.1 36.0 35.23 27.7 32.9 33.9 36.7 30.1 30.0 36.0 35.24 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.25 27.7 32.9 33.9 36.7 30.0 30.1 36.0 35.26 27.7 32.9 33.8 36.7 30.0 30.2 36.0 35.1Iter. house lena peppers splash tulips us average1 34.2 37.3 33.4 38.6 37.0 28.3 33.52 34.8 37.5 33.3 39.4 37.2 28.5 33.83 35.2 37.4 33.6 39.4 37.2 28.4 33.84 34.7 37.5 33.8 39.3 37.2 28.6 33.85 34.6 37.4 33.7 39.1 37.2 28.6 33.86 34.9 37.5 33.5 39.4 37.2 28.5 33.8Table D.12: Lega
y for Salt and Pepper. PSNR vs. number of pre�ltering iterations.
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y for Salt and Pepper. PSNR vs. number of pre�ltering iterations
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Iter. baboon barb2 barb boats bridge 
amera goldy hotely2 5.9 4.8 4.8 4.0 5.5 4.6 4.5 4.44 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.48 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.420 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.440 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.480 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.4Iter. house lena peppers splash tulips us average2 4.4 4.2 4.0 3.9 4.3 3.2 4.54 4.4 4.2 4.0 3.9 4.3 3.2 4.58 4.4 4.2 4.0 3.9 4.3 3.2 4.420 4.4 4.2 4.0 3.9 4.3 3.1 4.440 4.4 4.2 4.0 3.9 4.3 3.1 4.480 4.3 4.2 4.0 3.9 4.3 3.0 4.4Table D.13: Lega
y for Salt and Pepper. Comp. vs. number of LBG iterations.
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y for Salt and Pepper. Comp. vs. number of LBG iterations.



D.2. Sele
tion of the parameters 171Iter. baboon barb2 barb boats bridge 
amera goldy hotely2 27.0 30.9 31.4 35.2 29.5 29.2 35.1 33.84 27.1 31.0 31.8 35.2 29.6 29.3 35.2 33.88 27.2 31.2 31.9 35.3 29.6 29.3 35.3 33.920 27.2 31.2 32.1 35.5 29.6 29.3 35.3 34.040 27.2 31.3 32.1 35.5 29.6 29.2 35.3 34.080 27.2 31.3 32.2 35.6 29.6 29.3 35.3 34.0Iter. house lena peppers splash tulips us average2 33.8 36.4 32.0 38.4 35.9 26.6 32.54 33.8 36.5 32.2 38.4 36.1 26.9 32.68 33.8 36.6 32.2 38.3 36.2 27.0 32.720 33.6 36.7 32.3 38.1 36.3 27.0 32.740 33.5 36.7 32.7 37.5 36.3 27.1 32.780 33.5 36.7 32.7 37.4 36.4 27.2 32.7Table D.14: Lega
y for Salt and Pepper. PSNR vs. number of LBG iterations.Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 6.0 4.9 4.9 4.2 5.6 4.6 4.6 4.6median 6.0 4.8 4.9 4.2 5.6 4.6 4.6 4.5gaussian 6.0 4.8 4.9 4.2 5.5 4.6 4.6 4.5Pred. house lena peppers splash tulips us averageaverage 4.4 4.3 4.2 4.0 4.5 4.1 4.6median 4.4 4.3 4.2 3.9 4.5 4.1 4.6gaussian 4.4 4.3 4.1 4.0 4.4 4.0 4.6Table D.15: Lega
y for Salt and Pepper. Comp. vs. type of predi
tor.
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y for Salt and Pepper. PSNR vs. number of LBG iterations.
Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0median 26.9 30.8 31.7 35.0 29.4 29.0 35.1 33.4gaussian 27.3 31.4 32.2 35.7 29.8 29.4 35.4 34.2Pred. house lena peppers splash tulips us averageaverage 33.3 36.7 32.4 38.0 36.3 27.1 32.7median 32.9 36.4 32.0 38.2 35.9 26.4 32.4gaussian 33.5 36.9 32.5 38.5 36.6 27.2 32.9Table D.16: Lega
y for Salt and Pepper. PSNR vs. type of predi
tor.



D.2. Sele
tion of the parameters 173D.2.2 Napkin for Salt and PepperIter. baboon barb2 barb boats bridge 
amera goldy hotely0 6.1 5.5 5.6 5.1 6.0 5.5 5.3 5.410 5.7 4.7 4.8 3.9 5.4 4.3 4.7 4.420 5.7 4.6 4.7 3.8 5.3 4.4 4.5 4.230 5.6 4.7 4.6 3.8 5.3 4.4 4.4 4.240 5.6 4.5 4.6 3.8 5.3 4.3 4.3 4.160 5.7 4.8 4.6 3.8 5.3 4.2 4.2 4.280 5.6 4.6 4.6 3.7 5.3 4.2 4.2 4.2Iter. house lena peppers splash tulips us average0 5.4 5.2 5.1 5.0 5.4 5.3 5.410 4.4 4.2 3.9 3.8 4.4 4.4 4.520 4.3 4.1 3.8 3.6 4.2 3.8 4.430 4.4 4.1 3.8 3.4 4.2 3.6 4.340 4.2 4.1 3.8 3.4 4.2 3.4 4.360 4.2 4.0 3.7 3.4 4.2 3.3 4.380 4.1 3.9 3.7 3.4 4.2 3.5 4.2Table D.17: Napkin for Extreme Salt and Pepper. Compressibility vs. pre�ltering iterations.
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averageFigure D.9: Napkin for Extreme Salt and Pepper. Compressibility vs. pre�ltering iterations.



D.2. Sele
tion of the parameters 175Iter. baboon barb2 barb boats bridge 
amera goldy hotely0 18.8 19.9 19.8 21.3 19.5 18.9 20.6 19.510 21.5 24.4 23.2 28.2 23.5 23.6 22.9 25.620 21.8 25.1 24.2 29.6 24.2 24.1 24.5 27.630 21.9 25.2 24.6 30.0 24.3 24.2 26.1 28.140 21.9 25.3 24.7 30.1 24.4 24.3 27.7 28.260 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.380 21.9 25.3 24.9 30.3 24.4 24.3 29.7 28.3Iter. house lena peppers splash tulips us average0 20.8 21.6 20.5 20.8 20.3 15.5 19.910 28.2 29.0 25.7 26.3 27.7 17.5 24.820 29.6 30.4 26.2 30.1 29.6 18.5 26.130 29.9 30.6 26.1 32.9 29.8 18.9 26.640 30.3 30.7 26.0 33.3 29.9 19.1 26.860 30.4 30.7 25.7 33.3 29.8 18.9 27.080 30.5 30.7 25.6 33.3 29.9 18.2 27.0Table D.18: Napkin for Extreme Salt and Pepper. PSNR vs. pre�ltering iterations.
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176 Appendix D. Full resultsALB baboon barb2 barb boats bridge 
amera goldy hotely1 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.33 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.35 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.37 6.0 4.8 4.8 4.0 5.5 4.4 4.4 4.4ALB house lena peppers splash tulips us aerial2 bike31 4.0 4.1 3.8 3.5 4.2 3.0 4.1 4.23 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.25 4.0 4.1 3.8 3.5 4.1 3.0 4.1 4.27 4.2 4.2 3.9 3.6 4.2 3.2 4.2 4.2ALB bike 
afe 
ats tools average1 4.2 5.0 5.1 5.4 4.43 4.1 5.0 5.0 5.3 4.45 4.1 5.0 5.0 5.3 4.47 4.1 5.0 5.1 5.3 4.5Table D.19: Napkin for Salt and Pepper. Compressibility vs. pre�ltering number of 
ontext
lasses. The number of 
ontext 
lasses is 2ALB where ALB are the a
tivity level bits.
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averageFigure D.11: Napkin for Salt and Pepper. Compressibility vs. pre�ltering number of 
ontext
lasses.The number of 
ontext 
lasses is 2ALB where ALB are the a
tivity level bits.



D.2. Sele
tion of the parameters 177ALB baboon barb2 barb boats bridge 
amera goldy hotely1.00 27.4 30.8 30.7 35.9 30.0 30.1 35.8 33.83.00 27.4 30.9 30.8 36.0 30.0 30.0 35.8 33.95.00 27.4 30.9 30.8 35.9 30.0 29.9 35.8 33.97.00 26.8 30.4 30.2 35.5 29.5 29.2 35.4 33.6ALB house lena peppers splash tulips us aerial2 bike31 35.7 36.8 32.4 39.6 36.4 27.3 31.8 29.93 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.15 35.6 36.9 32.3 39.7 36.6 27.4 32.0 30.27 34.8 36.3 32.1 39.5 36.2 27.2 31.7 30.0ALB bike 
afe 
ats tools average1 28.3 26.4 31.1 23.4 31.73 28.4 26.5 31.3 23.6 31.85 28.5 26.5 31.3 23.6 31.87 28.5 26.5 31.2 23.5 31.4Table D.20: Napkin for Salt and Pepper. PSNR vs. pre�ltering number of 
ontext 
lasses.Thenumber of 
ontext 
lasses is 2ALB where ALB are the a
tivity level bits.
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ontext 
lasses.Thenumber of 
ontext 
lasses is 2ALB where ALB are the a
tivity level bits.



178 Appendix D. Full results
Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 5.6 4.4 4.4 3.7 5.1 4.0 4.1 4.0sharp 5.6 4.4 4.5 3.8 5.2 4.0 4.2 4.1smooth 5.6 4.5 4.5 3.8 5.3 4.1 4.2 4.2Pred. house lena peppers splash tulips us aerial2 bike3average 3.9 3.8 3.6 3.2 4.0 3.1 4.0 3.9sharp 3.8 3.9 3.6 3.3 4.1 2.8 4.1 4.0smooth 3.9 3.9 3.6 3.3 4.1 2.9 3.9 4.0Pred. bike 
afe 
ats tools averageaverage 3.8 4.8 4.8 5.1 4.2sharp 3.8 4.8 4.8 5.1 4.2smooth 3.9 4.9 4.8 5.2 4.2Table D.21: Napkin for Salt and Pepper. Compressibility vs. predi
tion variant.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1  1.5  2  2.5  3

C
om

pr
es

si
on

 (
bp

p)

baboon
barb2
barb

boats
bridge

camera

goldy
hotely
house

lena
peppers

splash

tulips
us

aerial2
bike3

bike
cafe

catscropped
tools

average
averageFigure D.13: Napkin for Salt and Pepper. Compressibility vs. predi
tion variant.



D.2. Sele
tion of the parameters 179
Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 26.4 29.7 29.4 35.1 29.1 29.8 34.8 33.4sharp 26.2 29.5 29.1 33.9 28.7 29.5 33.9 32.5smooth 25.8 28.3 28.7 33.3 28.1 28.7 33.6 31.1Pred. house lena peppers splash tulips us aerial2 bike3average 34.9 35.7 32.6 39.2 35.1 27.6 30.9 29.6sharp 33.9 34.6 31.8 38.0 33.7 27.6 30.3 29.3smooth 33.1 34.5 32.0 38.0 33.5 26.4 29.6 28.7Pred. bike 
afe 
ats tools averageaverage 28.2 26.3 29.7 23.5 31.1sharp 28.0 26.2 29.0 23.4 30.5smooth 27.1 25.0 28.9 22.4 29.8Table D.22: Napkin for Salt and Pepper. PSNR vs. predi
tion variant.
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averageFigure D.14: Napkin for Salt and Pepper. PSNR vs. predi
tion variant.



180 Appendix D. Full resultsIter. baboon barb2 barb boats bridge 
amera goldy hotely0 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.31 5.8 4.6 4.7 3.9 5.4 4.2 4.3 4.23 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.25 5.8 4.6 4.7 3.9 5.4 4.3 4.3 4.27 5.8 4.6 4.7 3.8 5.4 4.3 4.3 4.29 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.2Iter. house lena peppers splash tulips us aerial2 bike30 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.21 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.23 4.0 4.0 3.8 3.5 4.1 2.9 4.0 4.15 4.0 4.0 3.8 3.5 4.1 2.9 4.1 4.17 3.9 4.0 3.8 3.5 4.1 2.9 4.1 4.19 4.0 4.0 3.8 3.5 4.1 3.1 4.2 4.1Iter. bike 
afe 
ats tools average0 4.1 5.0 5.0 5.3 4.41 4.1 5.0 5.0 5.3 4.43 4.1 5.0 5.0 5.3 4.35 4.1 5.0 5.0 5.3 4.37 4.1 5.0 5.0 5.3 4.39 4.1 5.0 5.0 5.3 4.4Table D.23: Napkin for Salt and Pepper. Compressibility vs. iterative pre�ltering appli
ations.
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averageFigure D.15: Napkin for Salt and Pepper. Compressibility vs. iterative pre�ltering appli
ations.



D.2. Sele
tion of the parameters 181Iter. baboon barb2 barb boats bridge 
amera goldy hotely0 27.4 30.9 30.8 36.0 30.0 30.0 35.8 33.91 27.7 31.9 31.4 37.2 30.4 30.7 36.5 35.33 27.8 32.6 31.7 37.9 30.6 31.0 36.8 36.15 27.8 32.8 31.7 38.2 30.6 31.1 36.9 36.37 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.39 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.4Iter. house lena peppers splash tulips us aerial2 bike30 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.11 37.1 37.7 32.9 40.7 37.5 28.2 32.5 30.63 38.0 38.1 33.3 41.3 37.9 28.5 32.8 30.85 38.3 38.2 33.4 41.5 38.0 28.7 32.8 30.87 38.4 38.2 33.4 41.5 37.9 28.7 32.8 30.79 38.5 38.2 33.4 41.6 37.9 28.7 32.8 30.7Iter. bike 
afe 
ats tools average0 28.4 26.5 31.3 23.6 31.81 29.2 27.2 31.7 24.1 32.53 29.5 27.5 31.8 24.4 32.95 29.6 27.6 31.8 24.5 33.07 29.6 27.6 31.8 24.5 33.09 29.7 27.6 31.7 24.5 33.0Table D.24: Napkin for Salt and Pepper. PSNR vs. iterative pre�ltering appli
ations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9

V
ar

ia
tio

n 
in

 P
S

N
R

 (
%

 d
B

) 
w

. r
. t

o 
le

ftm
os

t v
al

ue

baboon
barb2

barb
boats

bridge
camera

goldy
hotely
house

lena
peppers

splash

tulips
us

aerial2
bike3

bike
cafe

catscropped
tools

averageFigure D.16: Napkin for Salt and Pepper. PSNR vs. iterative pre�ltering appli
ations.



182 Appendix D. Full resultsIter. baboon barb2 barb boats bridge 
amera goldy hotely1 5.9 4.7 4.8 4.2 5.4 4.5 4.5 4.43 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.45 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.47 5.9 4.7 4.8 4.1 5.4 4.6 4.5 4.5Iter. house lena peppers splash tulips us average1 4.4 4.3 4.1 3.8 4.3 3.5 4.53 4.2 4.3 4.1 3.8 4.4 3.8 4.55 4.2 4.3 4.0 3.9 4.4 4.0 4.57 4.3 4.3 4.1 3.9 4.4 4.1 4.5Table D.25: Combined LBG/Napkin for Salt and Pepper. Compressibility vs. iterative pre-�ltering appli
ations.Iter. baboon barb2 barb boats bridge 
amera goldy hotely1 27.9 32.9 33.9 37.2 30.6 30.2 36.5 35.83 28.1 33.5 34.6 38.0 30.7 30.2 36.8 36.45 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.57 28.1 33.7 34.9 38.1 30.7 30.4 37.0 36.4Iter. house lena peppers splash tulips us average1 34.3 37.6 34.4 39.6 37.5 28.5 34.03 34.8 37.9 35.4 39.8 37.8 28.8 34.55 35.4 37.8 35.8 39.7 37.7 27.4 34.57 35.1 37.7 36.0 39.4 37.6 25.1 34.3Table D.26: Combined LBG/Napkin for Salt and Pepper. PSNR vs. iterative pre�lteringappli
ations.D.2.3 Combined LBG/Napkin for Salt and Pepper
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ations.



184 Appendix D. Full results

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 1  2  3  4  5  6  7

V
ar

ia
tio

n 
in

 P
S

N
R

 (
%

 d
B

) 
w

. r
. t

o 
le

ftm
os

t v
al

ue

baboon
barb2
barb

boats
bridge

camera

goldy
hotely
house

lena
peppers

splash

tulips
us

averageFigure D.18: Combined LBG/Napkin for Salt and Pepper. PSNR vs. iterative pre�lteringappli
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D.2. Sele
tion of the parameters 185Iter. baboon barb2 barb boats bridge 
amera goldy hotely4 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.68 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.616 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.632 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.664 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6Iter. house lena peppers splash tulips us average4 4.6 4.4 4.2 4.1 4.5 4.0 4.78 4.6 4.4 4.2 4.1 4.5 4.2 4.716 4.6 4.4 4.2 4.1 4.5 4.1 4.732 4.5 4.4 4.2 4.1 4.5 4.2 4.764 4.6 4.4 4.2 4.1 4.5 4.3 4.7Table D.27: Lega
y for Gaussian noise. Comp. vs. LBG iterations.D.2.4 Lega
y for Gaussian noise
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averageFigure D.19: Lega
y for Gaussian noise. Comp. vs. LBG iterations.



D.2. Sele
tion of the parameters 187
Iter. baboon barb2 barb boats bridge 
amera goldy hotely4 25.4 27.6 27.8 29.9 26.4 28.1 29.6 29.48 25.4 27.6 28.0 30.0 26.4 28.1 29.6 29.416 25.4 27.7 28.0 30.0 26.4 28.1 29.7 29.532 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.564 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.5Iter. house lena peppers splash tulips us average4 30.1 30.5 31.1 31.2 30.2 28.9 29.08 30.2 30.6 31.2 31.1 30.2 29.0 29.116 30.3 30.6 31.3 31.1 30.3 29.0 29.132 30.3 30.6 31.3 31.1 30.3 29.1 29.164 30.3 30.6 31.3 31.1 30.3 29.0 29.1Table D.28: Lega
y for Gaussian noise. PSNR vs. LBG iterations.
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y for Gaussian noise. PSNR vs. LBG iterations.



188 Appendix D. Full results
Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6median 6.0 5.1 5.2 4.5 5.5 4.8 4.5 4.7gaussian 5.9 5.0 5.0 4.3 5.4 4.7 4.3 4.5Pred. house lena peppers splash tulips us averageaverage 4.6 4.4 4.2 4.1 4.5 4.3 4.7median 4.7 4.5 4.3 4.1 4.6 4.6 4.8gaussian 4.4 4.2 4.1 4.0 4.4 4.3 4.6Table D.29: Lega
y for Gaussian noise. Compressibility vs. predi
tor.

Pred. baboon barb2 barb boats bridge 
amera goldy hotelyaverage 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5median 25.4 27.7 27.9 29.8 26.3 27.9 29.5 29.2gaussian 25.5 27.8 28.2 30.2 26.5 28.2 29.8 29.6Pred. house lena peppers splash tulips us averageaverage 30.3 30.6 31.3 31.1 30.3 29.0 29.1median 30.0 30.4 31.0 32.3 30.1 26.4 28.8gaussian 30.4 30.8 31.4 31.4 30.5 29.2 29.3Table D.30: Lega
y for Gaussian noise. PSNR vs. predi
tor.
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Iter. baboon barb2 barb boats bridge 
amera goldy hotely0 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.61 5.7 5.0 4.8 4.2 5.4 4.5 4.3 4.32 5.7 5.1 5.0 4.6 5.4 4.9 4.7 4.74 5.7 5.1 4.9 4.4 5.3 4.7 4.4 4.5Iter. house lena peppers splash tulips us average0 4.6 4.4 4.2 4.1 4.5 4.3 4.71 4.1 4.0 3.9 4.0 4.4 3.6 4.42 4.3 4.5 4.4 4.3 4.6 4.3 4.74 4.5 4.3 4.2 4.2 4.4 3.8 4.6Table D.31: Lega
y for Gaussian noise. Compressibility vs. iterative pre�ltering appli
ations.
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y for Gaussian noise. Compressibility vs. iterative pre�ltering appli
ations.



190 Appendix D. Full results
Iter baboon barb2 barb boats bridge 
amera goldy hotely0.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.51.00 25.6 27.6 28.3 30.3 26.4 28.5 29.7 29.72.00 25.6 27.3 28.3 29.9 26.4 28.2 29.1 29.34.00 25.6 27.2 28.1 29.8 26.4 28.1 29.2 29.1Iter. house lena peppers splash tulips us average0 30.3 30.6 31.3 31.1 30.3 29.0 29.11 31.0 31.0 31.7 31.5 30.3 29.3 29.32 30.8 30.3 30.8 30.8 29.9 29.1 29.04 30.4 30.2 30.7 30.2 29.8 29.1 28.8Table D.32: Lega
y for Gaussian noise. PSNR vs. iterative pre�ltering appli
ations.
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y for Gaussian noise. PSNR vs. iterative pre�ltering appli
ations.



D.2. Sele
tion of the parameters 191Clusters baboon barb2 barb boats bridge 
amera goldy hotely32 6.0 5.1 5.2 4.4 5.5 4.7 4.4 4.764 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.696 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.6128 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6192 5.9 5.3 5.1 4.4 5.5 4.8 4.4 4.6256 5.9 5.5 5.1 4.4 5.5 4.9 4.5 4.6288 5.9 5.4 5.1 4.4 5.5 4.9 4.4 4.6Clusters house lena peppers splash tulips us average32 4.4 4.3 4.2 4.0 4.5 4.0 4.764 4.5 4.3 4.1 4.0 4.4 4.2 4.796 4.5 4.3 4.2 4.1 4.5 4.3 4.7128 4.6 4.4 4.2 4.1 4.5 4.3 4.7192 4.6 4.4 4.2 4.2 4.5 4.2 4.7256 4.7 4.4 4.3 4.4 4.5 4.2 4.8288 4.8 4.4 4.3 4.4 4.5 4.2 4.8Table D.33: Lega
y for Gaussian noise. Compressibility vs number of 
ontext 
lusters.
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y for Gaussian noise. Compressibility vs number of 
ontext 
lusters.



192 Appendix D. Full resultsClusters baboon barb2 barb boats bridge 
amera goldy hotely32.00 25.3 27.4 27.3 29.8 26.3 27.9 29.6 29.164.00 25.4 27.5 27.8 30.0 26.4 28.0 29.6 29.396.00 25.4 27.6 28.0 30.1 26.4 28.1 29.7 29.4128.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5192.00 25.5 27.0 28.1 30.2 26.4 28.1 29.7 29.5256.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6288.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6Clusters house lena peppers splash tulips us average32 30.1 30.5 31.1 31.1 30.0 28.5 28.964 30.3 30.6 31.2 31.1 30.2 28.9 29.096 30.3 30.6 31.2 31.1 30.2 28.9 29.1128 30.3 30.6 31.3 31.1 30.3 29.0 29.1192 30.3 30.6 31.2 30.8 30.3 29.3 29.1256 30.2 30.6 30.8 29.9 30.4 29.3 29.0288 30.1 30.6 30.9 29.7 30.4 29.5 29.0Table D.34: Lega
y for Gaussian noise. PSNR vs number of 
ontext 
lusters.
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y for Gaussian noise. PSNR vs number of 
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