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1At the time of writing, Gadiel Seroussi retired from Hewlett-Pakard Laboratories and is now an AssoiateDiretor of the Mathematial Sienes Researh Institute, Berkeley, California 94720, USA2Currently with Stanford University, Stanford, California 94305, USA.3Prineton University, Prineton, New Jersey 08544, USA.





AbstratThe problem of image denoising is a �eld of researh with more than 50 years of history.It is onsidered part of the more general problem of image restoration and, ultimately, imageproessing. As suh, it has been addressed traditionally by the signal proessing ommunity,starting from the works of Wiener [35℄ in the late 1940's and Kalman [13℄. in 1960.The Disrete Universal DEnoiser (DUDE) [34℄ proposes a denoising method whih an beapplied to any kind of disrete sequenes of any dimension, inluding digital signals, and inpartiular to digital images. This algorithm has been shown to ahieve asymptotially the per-formane of any �xed sliding-window denoiser for any given sequene orrupted by a memorylesshannel, as the length of the sequene approahes in�nity.This work proposes variants to the basi algorithm for its appliation to ontinuous toneimages, for whih the soure alphabet is typially very large and the asymptoti properties ofthe DUDE as originally presented beome less relevant. The goal is ahieved by exploiting apriori knowledge of the struture of suh sequenes.





1 Introdution
1.1 Some historyThe problem of image denoising, inluded in the more general problem of image restorationand ultimately of image proessing, is a �eld of researh with more than 50 years of historysine the appearane of television whih has drawn onsiderable attention sine the advent ofdigital images in the late 1970's. Today there are thousands of publiations on the �eld, andmany pratial appliations have bene�ted from their results.This problem has been addressed traditionally by the signal proessing ommunity startingfrom the works of Wiener [35℄ (1949) and Kalman [13℄ (1960), and most of the existing methodsto address it are derived from the lassial tools of the �eld of (Digital) Signal Proessing.Among these tools are:� Probability and statistis: Random Proesess, Ergodi Theory, Markov hains, Markov�elds, Hidden Markov models.� Control Theory: Traking and predition (Kalman).� Signal Proessing: Digital/Analog Linear Filters, Wiener Filters, Fourier Analysis, Z-Transform.In the last 10 years many more mathematial tools have been added to the arsenal. Amongthese are� Signal Proessing: Wavelet/multiresolution analysis� Statistis: Advaned probability models� Funtional Analysis: Total Variation� Dynami Systems: Partial Di�erential Equations� Information Theory: Entropy, Minimum Desription Lenght, Predition1.2 Digital ImagesThe desription of the problem of digital image denoising begins with the de�nition of thesubjet of the problem: digital images. A digital image xm�n is de�ned as a two-dimensionalarray (grid) of m 2 N rows and n 2 N olumns, where N = f1; 2; 3; : : :g is the set of naturalnumbers. Eah position in the array (a sample or \pixel" {for \piture element"{) is referredby a two-dimensional index i = (i1; i2) 2 N2 and is denoted as xi. The olor of eah pixel isdetermined by the value at its position in the array. There are three ommon interpretationsof this value:



8 Chapter 1. Introdution

Figure 1.1: \Niquel Nausea", an indexed image with a 4-bit (16 olors) palette. Eah olor inthe omi (left) orresponds to a 4-bit index to a position in the palette (right).� As an index into a palette of olors. These are indexed images (Figure 1.1).1� As a light intensity measure of a monohromati light. Images of this type are alledontinuous-tone images (Figure 1.2).� As a vetor of light intensities in n olor bands, usually: red, green and blue (RGB).Images of this type are alled trueolor. These images an always be deomposed into nmonohromati ontinuous-tone images, one for eah band (Figure 1.3).This work is restrited to the seond ase, sine its analysis is simpler than the trueolor ase,and trueolor images an always be treated as an n-uple of ontinuous-tone images.2Computers store numerial values with �nite preision. The light intensity at eah pixel isno exeption and it will have to assume one of a �nite set of values A = f0; 1; : : : ;M � 1g,where 0 represents the minimum intensity (blak), M � 1 is the maximum intensity (white),and the symbols between 0 and M � 1 represent ontinuously inreasing intensities from blakto white. The set A is alled an alphabet, and its size jAj =M de�nes the preision available torepresent the di�erent intensities. This size is determined by the number of bits-per-pixel (bpp)as M = 2bpp. A typial ontinuous-tone image has 8 bpp, whih yields M = 28 = 256 possibleintensities. Suh is the ase of the images studied in this work.31.3 The problem of image denoisingDigital images suh as digital photographs or sanned douments are subjeted to a series ofphenomena that result in some or all of their pixels being modi�ed in undesired ways (orrupted).An example of this problem is the thermal noise at the CCD (Charge-Coupled Devies) arrayswhih sense the inoming light in most digital ameras. In these devies, the intensity of eahpixel is proportional to the number of photons that hit eah ell in the CCD array. The thermalnoise is produed by photons arriving from nearby atoms and is an e�et whih happens at anytemperature above absolute zero, inreasing proportionally to the temperature of the devie.Figure 1.4 shows a sheme of this proess.1Image taken from http://niquelnausea.terra.om.br as of August 20052This does not mean that working with all bands at one is equivalent. Algorithms based diretly on oloran exploit the fat that bands are not independent of eah other.3There is nothing speial about this value, however, most of the tehniques desribed would apply to othervalues of bpp.



1.3. The problem of image denoising 9

(a) Continuous-tone image. Row 130 isshown dashed. (b) Pixel value (intensity) graph for row 130.Figure 1.2: \Co�ee Cup", a ontinuous tone image of 512 � 512 pixels. The graph to the rightorresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of itsheight).Another typial ase is the degradation of negative �lm by dust, srathes or fungi, whihintrodue tiny speks that an be very notorious, degrade the aesthetis of the image or hidevital parts of it. This type of noise also appears in some faulty digital ameras where some ofthe pixels in the sensing devie are defetive. This noise is usually alled \dust and srathes"or \salt and pepper" for its visual e�et.The e�et of both types of noise an be seen in Figure 1.5 for the \Co�ee Cup" image.The problem of image denoising is to orret or guess those faulty or deleted pixels so thatthe resulting image is loser to the original image. Ideally, the result should be more inteligible,and/or more pleasant to the human eye than the observed noisy image.The general proess of image degradation an be desribed as in the diagram of Figure 1.6.In this diagram, the noisy image zm�n is the result of the lean (unknown) image xm�n aftergoing through a transmission hannel. Throughouth the rest of this doument, xm�n will beused to refer to the lean image and zm�n to the noisy image.The transmission is arried out sample by sample (for example from top to bottom and fromleft to right), and the hannel substitutes eah lean sample xi with a noisy sample zi witha given probability P (Z = zijX = xi). The hannels onsidered in this work are disretememoryless hannels (DMC). They are memoryless beause the probability of zi depends onlyon the value of the xi and is independent of the noisy value at any other position in the image.They are also disrete, as the as the alphabet of the input and output images (normally the samefor digital images) is disrete. A DMC is haraterized by its transition matrix � = ((�ij))i;j2A,where eah element �i;j = P (Z = jjX = i) is the probability that the hannel outputs a noisysample with value j when the lean (unknown) sample value was i.
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(a) Color image. (b) Red omponent/band.

() Green omponent/band. (d) Blue omponent/band.Figure 1.3: \Kalimbas", a trueolor RGB image. Eah band is represented as an 8-bit ontinuoustone image.

Figure 1.4: Sheme of thermal noise in CCD arrays.
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(a) Co�ee up urrupted by thermalnoise. (b) Intensity urve of row 130 (about 1/3 of heightfrom the top).

() Co�ee up urrupted by dust andsrathes. (d) Intensity urve of row 130.Figure 1.5: Examples of \Co�ee Cup" orrupted by di�erent types of noise.
source channel destination

noisePSfrag replaements xm�n zm�nFigure 1.6: Theoretial sheme of the image degradation proess.



12 Chapter 1. IntrodutionExample The Binary Simmetri Channel (BSC) operates with A = f0; 1g as the input andoutput alphabet. The hannel inverts the value of the eah input symbol xi with probability p,and leaves it untouhed with probability 1� p. Thus for eah input symbol x,P (Z = 1jx = 0) = P (Z = 0jx = 1) = pP (Z = 0jx = 0) = P (Z = 1jx = 1) = 1� pand the hannel transition matrix � is� = � 1� p pp 1� p �.Example The Z-Channel. Here again the input and output alphabets are A = f0; 1g. In thisase a lean symbol with value 0 has a probability p of being substituted by a 1, and probability1�p of going through the hannel untouhed. However, the symbol 1 is always kept untouhed.This results in the following hannel transition matrix:� = � 1� p p0 1 �1.4 NotationThis setion formalizes the notation to be used throughout the rest of the doument. Someof it has already been introdued previously in this hapter, and is repeated here to provide areferene.Conepts that appear for the �rst time are shown in itali text. Text that appears intypewriter font denotes a on�gurable parameter of an algorithm, for example ond tex bits.Sets of numbers are represented by letters suh as N, Z or R. The set of integers is Z =f: : : ;�2;�1; 0; 1; 2; : : :g, the set of naturals (stritly positive integers) N = f1; 2; 3; : : :g, and Rrepresents the set of real numbers.Indexed arrays (or vetors) are enlosed in parenthesis. Example v = (1; 0; 0). When spei-�ed, the indexing domain is spei�ed as a subsript expression: (hi)1�i�k. For multidimensionalarrays a similar notation with a number of parenthesis orresponding to the dimension of thearray is used. For instane, matries are denoted as � = ((�ij))i;j2A, where �ij is the elementat position i; j. When appropiate, the alternate notation �(i; j) is used to refer to suh element. Set de�nitions are enlosed in fg. Example A = floudy; sunny; rainyg.An image of size m� n is shown in bold fae with its dimensions spei�ed as a supersript,as in xm�n. To simplify notation, the onept of multidimensional indexes i = (i1; i2) is usedto refer to a partiular symbol in the image, suh as xi. As images are represented as arrays ofsize m� n, xm�n is equivalent to ((x))1�i1�m;1�i2�n and xi is equivalent to x(i1; i2).



1.5. Doument organization 131.5 Doument organizationAfter this brief introdution to the problem of image denoising, Chapter 2 presents the varioustypes of noise studied in the denoising literature. Chapter 3 gives a short review of image existingdenoising algorithms. Chapter 4 desribes the basi DUDE algorithm and its problems. Chapter5 presents the general tools used to address these problems and Chapter 6 follows by desribingthe resulting proposed solution. Chapter 7 shows the results that were obtained, Chapter 8give the onlusions obtained from the former results, and �nally the future lines of researhare outlined in Chapter 9.





2 Noise models for digital images
2.1 Additive noise2.1.1 The Gaussian hannelThe disrete Gaussian hannel is modeled after the ontinuous additive white gaussian noisemodel. The latter is of speial importane to many real life problems sine it models manynatural proesses, suh as transmission over analog hannels [4, pp. 239-265℄, and has beenextensively studied sine the beginning of the �eld of signal denoising [13℄. The disrete gaussianhannel serves as a model for the e�et of the ontinuous hannel on the physial aspets ofsignal level disretization present in digital aquisition devies. Suh is the ase of the thermalnoise in CCD devies desribed in Chapter 1. Sine the advent of digital images, this hannelhas also beome a lassial model for image degradation, and many of the algorithms studiedin this work (to be desribed in Chapter 3) are designed spei�ally to attak this type of noise.The additiveness of the hannel means that eah orrupted pixel zi is the result of the additionof the lean (unknown sample) xi and a random noise sample ni. The noise is white when itssamples are statistially independent of eah other, and their mean value is zero. Finally,the hannel is Gaussian beause the probabilities of the noise sample values obey a Normalontinuous distribution N�;� of mean � and variane �,p(n) = N�;�(n) = 1p2�� exp (n��)2�2The white nature of the noise implies � = 0 so that p(n) = N0;�. As the hannel is additive,the random variable modeling a (ontinuous) noisy sample Z is related to its orrespondingdisrete (non random) lean sample x and the random variable for the noise sample N byequation (2.1) Z = N + x; x 2 A (2.1)Using (2.1), the resulting (ontinuous) probability density funtion of Z onditioned on x = ais p(Zjx = a) = Na;�As the hannel is disrete, the ontinuous value of Z has to be mapped to return to theoriginal disrete alphabet. This model assumes that the value of the ontinuous random variableis rounded to the nearest integer value in the alphabet,



16 Chapter 2. Noise models for digital imagesZ = 8<: 0 ; Z � 0M � 1 ; Z �M � 1round(Z) ; otherwiseDe�ning the round(�) operation asround : R ! Z; round(y) = j 2 Z; j � 0:5 � y < j + 0:5the elements of the hannel transition matrix are obtained as�ij = P (Z = jjx = i) = 8<: P (�1 < Z < 0:5) ; j = 0P (M � 1� 0:5 < Z < +1) ; j =M � 1P (j � 0:5 � Z < j + 0:5) ; 0 < j < M � 1Using (2.1), N = Z � x andP (Z = 0jX = i) = P (�1 < N < �i+ 0:5) (2.2)P (Z =M � 1jX = i) = P (M � 1� i� 0:5 � N < +1) (2.3)P (Z = jjX = i) = P (j � i� 0:5 � N < j � i+ 0:5); 1 < j < M � 1 (2.4)These probabilities are obtained by integrating the ontinuous normal density funtion ofthe noise over the spei�ed interval,P (z < �) = Z y=�y=�1N0;�(y)2.2 Non-additive noise2.2.1 The erasure hannelThe noise models desribed from subsetions 2.2.2 through 2.2.5 are non-additive, meaningthat the random variable modeling the noisy samples Z is not related to the r.v. modeling thelean sample X through an operation involving the addition of an indenpendent noise variableN . Note that thelatter de�nition of non-additivity inludes any relationship that is not a sum(for example multipliative noise where the relationship ould be Z = N �X).Here, The disussion will be foused on the ases where eah noisy sample zi is either equalto xi or is replaed by an erasure value whih has no relationship with the value of xi. Onehannel ommonly used as an example of this behavior is the Erasure Channel [4, pp. 187-189℄.Although it is not studied in this work as a hannel by itself, it aptures the main propertiesthat are ommon to the non-additive hannels presented here.Given an input alphabet A = f�1; �2; : : : ; �M�1g, jAj =M , the Erasure Channel substituteseah input symbol xi by an erasure symbol e 62 A, regardless of the value of xi with probabilityPe, or leaves it untouhed so that zi = xi. Thus the output alphabet of the Erasure Channel isA� = f�1; �2; : : : ; �M�1; eg, jAj =M + 1 and the resulting transition matrix is� = 26664 1� Pe 0 � � � 0 Pe0 1� Pe � � � 0 Pe... ... . . . 0 ...0 0 � � � 1� Pe Pe 37775



2.2. Non-additive noise 17Beause the event Z = e does not depend on X, a noisy symbol zi = e does not ontain anyinformation about xi. This is an important di�erene with respet to additive hannels suh asthe Gaussian Channel and has many pratial impliations.2.2.2 Impulse (Salt & Pepper) hannelIn the Impulse Channel { often named \Salt and Pepper" after its visual e�et {, eah pixelof the image is randomly replaed by either the maximum symbol in the alphabet (salt), or theminimum (pepper), with a total probability of error � whih is evenly distributed among thetwo ases (i.e. �=2 for eah of the two possible orrupted symbols); and it is left untouhedwith probability 1� �. The hannel transition matrix for this ase is
� = 26666664 1� �=2 0 � � � 0 �=2�=2 1� � 0 0 ...... 0 . . . 0 �=2�=2 0 0 1� � �=2�=2 0 � � � 0 1� �=2

37777775 (2.5)
It is useful to view this hannel as a variant of an erasure hannel, where the \erasures" aresymbols from the lean sequene alphabet. Being erasures, the noisy samples do not provideany information on the orresponding lean samples.2.2.3 Asymmetri impulse hannelThis hannel is a simple extension of the Salt & Pepper Channel in whih P (Z = salt) = �sand P (Z = pepper) = �p are not equal. The total probability of error is rede�ned as � = �s+�p.In this ase, the transition matrix is

� = 26666664 1� �s 0 � � � 0 �s�p 1� � 0 0 ...... 0 . . . 0 �s�p 0 0 1� � �s�p 0 � � � 0 1� �p
37777775 (2.6)

2.2.4 The Z ChannelThis is a speial ase of the asymmetri impulse hannel in whih �p = 0 and �s = �, andthus its treatment is the same as the latter. Despite this, the Z hannel is one of the lassialhannel models used in information theory and thus it is worth inluding it as a ase of studyby itself.2.2.5 The q-ary symmetri hannelThis is a type of non-additive hannel where the total probability of error � is distributedevenly among the noisy symbols. For an alphabet of size M and a lean symbol x, the hannelwill substitute the latter with a noisy symbol z 6= x with probability �M = �M�1 or leave ituntouhed with probability 1� �. This results in the following matrix
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� = 26666664 1� � �M � � � �M �M�M 1� � �M �M ...... �M . . . �M �M�M �M �M 1� � �M�M �M � � � �M 1� �

37777775 (2.7)
As will be seen later, it presents some additional hallenges sine its \erasure" nature is lessevident than the Impulse Channel and its variants.2.3 Noise measuresWhen omparing di�erent denoising methods one must de�ne some riterion of what is on-sidered to be a good result. As the ultimate goal is to produe an image that looks \better"to the human eye, the best possible riterion is ertainly subjetive. However, the problem of�nding an objetive riterion whih approximates the best subjetive riterion is a very diÆultone. Beause of this, and beause they are of general use in other problems of image and sig-nal proessing, a few objetive performane measurements are generally used: MSE/SNR andPSNR. The MSE (Mean Square Error), is de�ned as follows:MSE(zm�n) = 1N NXi=1 (xi � zi)2: (2.8)The SNR (Signal to Noise Ratio) measures the relation between the power of the \signal"(the lean image) and the power of the \noise" (whih is the MSE).SNR(zm�n) = 10 log PNi=1 (xi � zi)2PNi=1 x2i ! (2.9)Finally, the PSNR (Peak Signal to Noise Ratio) is equivalent to the MSE, expressing it inrelative logarithmi units (dB) with respet to the \peak" power of the signal. For an 8-bitimage, this is PSNR(zm�n) = 10 log�MSE(zm�n)2552 � (2.10)All those measures give more weight to bigger di�erenes than to smaller ones due to theirquadrati nature. This is usually onsidered to be akin to the subjetive pereption of noise.Of the three, the PSNR and MSE are the most popular as they do not depend on the powerof the image to be denoised and thus they an be averaged throughout a set of test images toprodue an \average performane measure" for the test suite. Of them, the PSNR will be thepreferred one as it is the most ommon of the three.



3 A review of image denoisingThe problem of image denoising has been given an extensive treatment in the literature whihmakes it impossible to inlude a omprehensive set of referenes in this doument. Therefore,the disussion will be restrited to some of the more representative denoising algorithms: thelassial ones desribed in text books suh as [9℄ or [10℄, and the ones whih are onsidered theurrent state-of-the-art.An image �lter is any algorithm whih takes some image as input and produes an outputimage as a result. A denoising �lter is a �lter that, given a noisy input image zm�n, produes anoutput x̂m�n that is loser to the unknown lean image xm�n that was fed to the transmissionhannel.First, the �lter tehniques whih form the basis for most of the ommon �lters found in theliterature are presented. Then follows a desription of spei� �lters designed to attak eahtype of noise.3.1 Neighborhood and window �ltersThe priniple of these �lters is to infer the lean pixel xi based on the information provided bysome pixels on the noisy image loated in a neighborhood of its position i. Let W = (ir)1�r�Kbe a vetor of indexes whih are \near" i under some riterion. W is a window index vetorand use x(W ) to denote the vetor of the values of the pixels at the loations spei�ed in W ,i.e., x(W ) = (xi1 ; xi1 ; : : : ; xiK ). If W inludes i, x(W ) is alled a window and if not, it is aneighborhood or ontext.These �lters exploit the ommon assumption that pixels whih are lose to eah other tendto have similar values (for example in smooth regions of the image). In priniple, the numberand relative loation of the pixels whih are used by the algorithm an vary for eah loation i.3.2 Sliding-window �ltersThis is a ommon ase in whih the window/neighborhood shape is �xed for every index i,and its position is entered at i. This shape is de�ned by a window template, whih is a vetorof o�sets T = (dr)1�r�K of index o�sets dr 2 Z2. For a given window template and the positioni, the orresponding window index vetor Wi;T is obtained by adding i to eah index o�set inthe template Wi;T = (i+ d1; i+ d2; : : : ; i+ dK) (3.1)
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ontext x(Nj;T 0)Figure 3.1: A window template T = f(0; 0); (�1; 0); (�1; 1); : : : ; (0;�1); (�1;�1)g, a neigh-borhood template T 0 = f(�1; 0); (�1; 1); : : : ; (0;�1); (�1;�1)g, an image xm�n, a window, aneighborhood and a ontext.The window at position i is obtained as x(Wi;T ), provided with some onvention for the valuesof the pixels outside the image range Rm�n = �i = (i1; i2) 2 N2 : i1 � m; i2 � n	 (for example,repeating the value of the losest border pixel).Finally, a sliding-neighborhood �lter is the ase when the template does not inlude the enter,i.e., the o�set (0; 0). These onepts are depited in Figure 3.1.3.3 Linear (onvolution) �ltersThese are a speial ase of the sliding-window �lters where the estimated value of the enterpixel is a linear funtion of the window samples. If for eah i, jr denotes the r-th element ofWi;T :x̂i = KXr=1 hrzjr (3.2)where hr 2 R are oeÆients assigned to eah position (o�set) jr and independent i. These�lters are also alled onvolution or FIR (Finite Impulse Response) �lters, as (3.2) an alwaysbe written as a linear onvolutionx̂i = U1Xk1=�L1 U2Xk2=�L2 ĥkzi�k ; k = (k1; k2) (3.3)where k = (k1; k2) are index o�sets overing the smallest retangular region that ontains thewindow template T f(k1; k2) : �L1 � k1 � U1;�L2 � k2 � U2g
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PSfrag replaementsU1U2L1L2̂hFigure 3.2: From templates and windows to linear onvolution kernels. The example hereorresponds to the Laplaian operator used to detet borders in images.and ĥk = hr if T ontains the o�set k at position r or 0 otherwise (see Figure 3.2 for a graphialexplanation).The retangular 2D array (ĥk)�L1<k1<U1;�L2<k2<U2 onstitutes the linear onvolution kernel.It is also alled the impulse response of the �lter as it oinides with the output of an impulsesignal (image) Æm�n, (Æ(0; 0) = 1 and 0 everywhere else) when the �lter is applied to it (trivialby substituting Æm�n in equation (3.2)).These �lters are at the ore of lassial digital signal proessing. See [20℄ for more details onthe theory and appliation of these �lters.3.4 Frequeny domain �ltersOne lassial tool for signal proessing in general, and for digital images in partiular, is thefrequeny domain analysis or Fourier analysis (see [20℄ for a review). It onsists of deomposingthe image into a set of sine wavesx(i1;i2) = MXu=1 NXv=1 x(u;v)ej 2�ui1M ej 2�vi2N (3.4)where ejx denotes omplex exponentiation and eah term x(u;v) is the (u; v) term of the FourierTransform xm�n = F(xm�n), omputed asx(u;v) = 1MN MXi1=1 NXi2=1x(i1 ;i2)e�j 2�ui1M e�j 2�vi2N (3.5)Eah oeÆient X(u;v) of the Fourier Transform represents the power of the image at thedisrete spatial frequeny (2�u=M; 2�v=N). Figure Figure 3.3 shows an image and its FourierTransform (the Fourier Transform is usually displayed shifted so that the enter pixel representsX(0; 0), | alled the \DC" term as its value is the average of xm�n).
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(a) Continuous-tone image. (b) And its Fourier transform.Figure 3.3: Fourier transform of an image. The \DC" omponent is at the enter of the DFT.The frequeny domain �lters use this representation of the image to try to sepparate the noisefrom the lean image. One example is the family of lowpass �lters, whih assumes that the noiseis white and additive of mean 0. In this ase, the power of the noise is spread evenly among allfrequenies in the Fourier Transform of the noisy image. The lowpass �lters assume that thelean image information is onentrated in the lower frequenies and thus the denoising proessredues to removing the higher frequeny omponents of the Fourier Transform while keepingthe lower frequenies intat. The many di�erent variants of lowpass �lters (see [20℄ for someof them) di�er in the way they de�ne the transition from \low" to \high" frequenies. Forinstane, a simple \uto�" �lter is de�ned asX̂(u;v) = � Z(u;v) ; pu2 + v2 < f0 ; otherwisewhere f is the uto� frequeny. An example of this �ltering tehnique is shown in Figure 3.4.This �lter has a number of problems related to the sharp fall between the \bandpass" regionand the \bandstop" region. An inspetion of Figure 3.4 shows this e�et, known as \ripples",\bandings", or Gibbs osilations. Please refer to signal proessing books suh as [20℄ for atheoretial explanation.Note that frequeny domain �lters an be implemented in a perfet or approximate way aslinear onvolution �lters of the type desribed in the previous setion (see [20℄ for a generalmethod). Furthermore, every linear �lter has an assoiated frequeny response de�ned as theFourier Transform of its impulse response,H(u;v) = 1MN MXi1=1 NXi2=1h(i1;i2)e�j 2�ui1M e�j 2�vi2N (3.6).
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(a) Noisy image. (b) Denoised.

() Fourier transform of noisy image. (d) Fourier transform after uto�.Figure 3.4: E�et of the uto� �lter. Notie the ripples surrounding the borders and theondulations produed by this �lter.



24 Chapter 3. A review of image denoisingThe �ltering proess of equation (3.2) an be expressed in the Fourier or frequeny domainusing the transforms of the image X̂ = F(x̂) and H = F(h) asx̂ = F�1(X̂ �H) (3.7)where � denotes element-wise produt. This formulation has pratial and theoretial impli-anies. For instane, it an be used to analyze the frequeny behavior of a linear �lter in agraphial way.3.5 Bounded variation methodsThese are methods whih impose onstrains on the magnitude of the overall utuations inthe image. Thinking of the denoised image as an R2 ! R funtion, a solution is found whihtries to meet two goals at one: to approximate the lean image as best as possible, and tominimize its Total Variation [28℄. Roughly speaking, the total variation of an image is a globalmeasure of how muh does it hange its value from sample to sample. One possible way tode�ne this is by summing the absolute magnitude of its gradient at eah position:The idea is that most of the small utuations on the image are due to the noise. By reduingthese utuations inrementally, a solution an be found in whih most of the noise is smoothedout and the bigger utuations (borders, et.) are preserved. The denoising problem is posedas a minimization of a funtion F(x̂m�n),F(x̂m�n) = Xi2Rm�n jxi � x̂ij+ � Xi2Rm�n Xj2Wi;T ;j 6=i�(x̂i � x̂j) (3.8)The �rst summation in (3.8) is minimized when the denoised image x̂m�n is as lose as possibleto the unknown lean image xm�n, while the seond summation aounts for the total variationmeasure of the solution. Wi;T is a small neighborhood window where the variation of eahsample i is measured, and the funtion �(:) models the penalty assigned to high utuations.Examples of �(:) are �(t) = p�+ t2); � > 0 or �(t) = jtj�; 1 < � < 2.These algorithms tend to destroy the small details and �ne textures present in an image. Onthe other side, they produe good results when the noise power is high.3.6 Statistial �ltering methodsMany image denoising algorithms are derived from the theory of Statistial Signal Proessing[11℄. Under this theory the image (signal) is modeled as a ramdom proess, i.e., a vetor(possibly of in�nite length) of random variables. This is impliit in the desription of the noisyhannels desribed earlier in this hapter, where the noise is onsidered to be a sequene ofindependent and identially distributed (i.i.d.) random variables nm�n. In fat, any of thepreviously presented algorithms has a statistial interpretation. This setion onentrates onthose algorithms whih are based on statistial models to produe their output.



3.6. Statistial �ltering methods 25The unknown lean image is onsidered to be a random proess itself, and it is expeted toexhibit a set of statistial properties (high orrelation between samples, repeated patterns) whihdistinguish it from the properties of the noise proess that orrupts it (small or no orrelation).Two ommon assumptions on the properties of lean images are:� Markoviity, whih means that eah sample, when onditioned on a neighborhood of some(�xed) size, is statistially independent of the rest of the image.� Stationarity, meaning that the statisti properties of the samples of the image are thesame for all samples regardless of their position in the image.Examples of statistial �lters are the Wiener Filter [35℄, the Lee Filters [14℄ (also known asLoal Wiener �ltering), the Gaussians Sale Mixture (GSM) �lters [25℄ whih will be desribedlater in this hapter, and last but not least the DUDE [34℄ whih forms the basis of the presentwork.To �x ideas the lassial Lee Filter is desribed. The Lee Filter estimates eah lean samplein a two-step way:1. Using a �xed-size sliding windowWi;T , estimate the loal mean of the image zm�n at eahposition i, �i = 1K KXr=1 z(Wi;T )r2. Estimate the loal variane �2i as�2i = 1K � 1z(Wi;T )T z(Wi;T )� �2iThe ontexts z(Wi;T ) are olumn vetors, z(Wi;T )T are their transposed (row) versions,and K is the size of the ontexts.3. Using �i, �2i and the noise power �2n whih is onsidered onstant throughout the wholeimage, estimate the lean sample asx̂i = 1�2i + �2n ��2i zi + �2n�i� (3.9)Equation (3.9) is the minimum expeted square error (MSE) solution of x̂i � xi given �2i , �2nand �i. Both the loal mean and variane are derived from the Markov assumption sine theyare omputed only from the loal ontext. The seond assumption is not used in this �lter.The Lee �lter gave rise to many other algorithms whih ombine optimization, statistisand strutural priors to obtain optimal estimations of the lean image, inludinig those whihomprise the urrent state of the art as is the ase of the GSM-based algorithms [25℄.
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(a) Noisy image. (b) Denoised by average �ltering, window size5� 5.Figure 3.5: Average Filter of an image orrupted by gaussian noise of � = 20.3.7 Filters for additive noise3.7.1 Window averageThis is the simplest way to redue the amount of additive noise in an image. Given a windowtemplate T of size k = jT j, eah pixel is substituted by the average of the values within thewindow entered on it. x̂i = 1k kXr=1 zjr (3.10)This is a speial ase of (3.2) where hr = 1k ;8r . As the noise is onsidered additive, zi = xi+niand x̂i = 1k kXr=1 zjr = 1k kXr=1 xjr + 1k kXr=1 njr (3.11)Here the �rst summation will be lose to the lean value if the lean samples in the windoware also similar, and the seond summation will onverge to the expetation of the noise whihis 0 as k inreases. If the pixels in the window are not similar (whih happens in borders andhigh ontrast areas), the details of the image are blurred. This e�et inreases with the size ofthe window, whih implies a tradeo� between noise remotion and detail preservation in termsof k. Figure 3.5 shows the result of this �lter for a square window of 5� 5 pixels.This example shows the motivation behind eah of the algorithms in subsetions 3.7.2 through3.7.6 : how to remove the noise without destroying the details of the image?
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(a) Noisy image. (b) Denoised by a Gaussian Isotropi Filter, win-dow size 5� 5.Figure 3.6: E�et of the Gaussian Filter (w = 1:4) on an image orrupted by gaussian noisewith � = 20.3.7.2 Isotropi gaussian �lteringA plain average of the window samples is generally not a good solution. There are twomain reasons for this: �rst, the assumption that the neighboring samples are similar to theenter sample beomes weaker as the distane from the enter inreases. Seond, the frequenyresponse of the average �lter is not as in a sharp uto� �lter, but deays slowly and is signi�antall over the frequeny spetrum inluding those parts where the noise is high and the imagepower is low, leading to undesired high frequeny e�ets in the image (bloking). The idea isto solve the �rst problem by giving more weight to the samples whih are nearer to the enterpixel, and less weight to the ones whih are farther. In priniple, every pixel in the imageis taken into aount, but pratial implementations usually approximate them as linear �xedwindow �lters.An isotropi �lter assigns the weight of eah sample of the image based only on its eulideandistane to the enter pixel ki� jk2. If a linear window �lter is used, the window kernel termshr are obtained using the orresponding index o�sets d in plae of i � j. One ommon hoieto assign the weights is the 2D Gaussian kernel Gw:Gw(�) = 14�we� k:k24w2 (3.12)in whih ase this is alled a Gaussian �lter. The paramenter w ontrols the radius of theGaussian kernel and de�nes the tradeo� between noise removal and detail preservation for thisase. Figure 3.6 shows a sample image denoised by Gaussian �ltering.
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Figure 3.7: Sheme of the basi edge-preserving anisotropi �ltering onept.3.7.3 Anisotropi �lteringThe Gaussian �lter is able to solve the �rst problem of the window average �lter: the highfrequeny artifats. However, it does not solve the problem of detail and border preservation.The anisotropi �lters, as the term implies, assign the weights onsidering the distane but alsoa preferred diretion of �ltering.The basi idea was desribed in [23℄, where the diretion of �ltering is determined by theoutput of a loal edge detetor. By modifying the shape of the kernel aording to the loalgradient, the kernel assigns more weight to the pixels \along" the gradient and less weight tothe pixels \aross" the gradient so that the �lter does not \ross the borders". This behavioris depited in Figure 3.7. Let dx1 and dx2 the vertial and horizontal derivatives of xm�n. Letrx(i) = (dx1;dx2) denote the gradient of xm�n at index i. Using the more general de�nitionof the Gaussian kernel Gw(:) = 12�j�j1=2 e� (i�j)T ��1(i�j)2 (3.13)where the eigenvalues and eigenvetors of the matrix � ontrol the shape and orientation of thekernel. The matrix � is onstruted so that the two eigenvetors �1 and �2 are in the diretionof the gradient (the normal diretion ) and the tangent,�1 = rxi=jrxij�2 = rx?i =jrxijand the respetive eigenvalues �1 and �2 are proportional to the strething along eah ofthese diretions, �1 / 1jrxij�2 / jrxij
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(a) Noisy image. (b) Denoised by PDE anisotropi �ltering.Figure 3.8: E�et of the GREYCstoration Anisotropi Filter on an image orrupted by gaussiannoise with � = 20.. The resulting matrix has the following form:� = � �1 00 �2 �� " dxjrxij �dyjrxijdyjrxij dxjrxij #The value �2 an be hosen so that j�j is onstant (whih means that, roughly speaking, the\area" of the kernel is always the same), or j�j / jrxij. One ommon hoie is �1 = e�jrxij2=�where � is a threshold above whih the kernel starts to streth and avoids the e�et of the noiseitself in the value of jrxij. In this ase, the amount of denoising is ontrolled by j�j.Another way of performing anisotropi �ltering is by using PDEs (Partial Di�erential Equa-tions) [29℄. When used for denoising, PDEs are able to de�ne anisotropi behaviors whihdepend on features more omplex than loal borders suh as loal urvature [31℄. The image inFigure 3.8 was obtained using a urvature-driven anisotropi PDE �lter, made publily availableby the author in the form of a GIMP (GNU Image Proessor) plugin.13.7.4 Non-Loal MeansAll of the previous �lters use loal information to ompute the denoised pixels. The Non-LoalMeans is a reent method to remove additive noise and is desribed in full detail in [1℄ (whihalso serves as a good review of additive noise removal algorithms inluding many not listedhere).1http://www.gimp.org/http://www.haypoal.om/wiki/Plugin Gimp GREYCstoration as of August 2005



30 Chapter 3. A review of image denoisingHere, in ontrast to the previous �lters, eah denoised pixel x̂i (the target) is obtained as aweighted average of all the other pixels of the image, where the weight of eah pixel is deter-mined by a measure of similarity between its neighborhood and the neighborhood of the pixelto be denoised: x̂i = Pj2Rm�n;j 6=iwijzjPj2Rm�n;j 6=iwij : (3.14)Let the operator � denote inner vetor produt. The weights are de�ned aswi;j = f (Ga(Wi;T ) � jz(Wi;T )� z(Wj;T )j) (3.15)where f is a monotonially dereasing funtion, usually e� x22w for some w > 0 and Ga is a 2DGaussian kernel of parameter a whih weights the di�erene of the samples at eah loationaording to their distane to the enter of the window. If N is the number of pixels, thisalgorithm requires O(N2) operations to produe a result, whih makes it impratial for mediumsized images as originally proposed. However, it gives very good results and serves as a referenefor other denoising algorithms. Figure 3.9 shows some examples taken diretly from [1℄.3.7.5 Wavelet thresholdingThe nameWavelets refers to a general family of transforms whose harateristi is to ombinespatial and frequential information in the transformed data [16℄[5℄. As with the frequeny(Fourier) domain �lters, the idea is to onentrate the information of the \true" lean image insome oeÆients, and disard or atenuate the oeÆients whih are more a�eted by the noiseaddition proess. The Wavelet thresholding method [6℄ does this by simply disarding all thoseoeÆients whih are below a ertain threshold and reonstruting the image with the remainingoeÆients. Some enhanements to the basi idea have been proposed [3℄. In partiular, theWavelet-Curvelet thresholding [30℄ gives results omparable to the state of the art for this typeof noise, at least for the Lena image. Figure 3.10 shows the results published in [30℄.3.7.6 Mixture of gaussiansThis is another wavelet-based approah, although very di�erent from the one previouslydesribed. Three novel elements appear in this algorithm:� An overomplete deomposition of the image into what is alled a steerable pyramid. Itis overomplete beause the resulting representation has more samples than the originalimage (this does not happen with ordinary transforms suh as Fourier deompositions ororthogonal wavelets).� A probability model of the oeÆients of the pyramid based on a Gaussian Sale Mix-ture (GSM) probability distribution. This model assumes Markoviity in terms of 3Dneighborhoods in the pyramid and uses the GSM to model eah vetor of neighborhoodoeÆients. The GSM is a generalization of the multivariate Gaussian distribution. Avetor v is distributed aording to a GSM if v d= pz u where d= means equality in distri-bution, u � N(0;�) and z is a salar multiplier obeying some other arbitrary distribution.
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(a) Noisy image. (b) Denoised by NLM.

() Noisy image. (d) Denoised by NLM.Figure 3.9: E�et of the NLM Filter on two images orrupted by gaussian noise with � = 20.The results are obtained using the whole images (barb and lena respetively), although only asmall representative path is shown.
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(a) Noisy Lena. (b) Lena denoised by Wavelet-Curvelet threshold-ing.

() Detail of (a). (d) Detail of (b).Figure 3.10: E�et of the Wavelet-CurveletThresholding Filter on \Lena" orrupted by gaussiannoise with � = 20.



3.8. Filters for non-additive noise 33Having the noisy image deomposed as a steerable pyramid, and a model for the noise, thealgorithm proeeds muh like the Lee Filter, estimating the parameters of the GSM for eahontext and then omputing an expeted least squares error estimate for the denoised outputsample. The details of the algorithm are beyond the intentions of this intrudution. Please referto [25℄ for these and for other referenes regarding GSMs and GSM-based denoising.3.8 Filters for non-additive noiseNon-additive noise hannels have two properties whih are exploited by all of the algorithmsdesribed in subsetions 3.8.1 | 3.8.4:� An important fration of the pixels in the noisy image are left untouhed, i.e., have thesame value as the orresponding lean pixels.� The noisy pixels have no orrelation with the orresponding lean (unknown) pixels.These two fats are used to detet the noisy pixels and sepparate them from the lean pixels,and to estimete these noisy pixels with a few lean neighboring pixels.3.8.1 Median �lterThe idea of this �lter is very similar to that of the average �lter. As with the average �lter, thisis a �xed sliding-window algorithm whih depends on a window template T yielding di�erentwindows z(Wi;T ) for eah index i. Beause the non-additive noise samples take on arbitraryvalues, a window would ontain many outliers (samples very di�erent in value with the majorityof the samples in the window), and the average of the samples would not be a good estimate.Instead, the median estimator (med(:)) of the window samples is used, as it is more robust tothe presene of outliers. The median estimator of a vetor of samples z(Wi;R) is omputed asfollows:� Order the samples of the vetor z(Wi;T ) in dereasing (or inreasing) order. Call thisvetor m.� Let k = jT j be the size of the vetor. If k is even, x̂i = 12 �mk=2 +mk=2+1�; otherwisex̂i = m(k+1)=2.This �lter does not use the �rst property expliitly, whih means that all the pixels of theresulting image are the result of their window median. As with the average �lter, this resultsin a blurring e�et (although non-linear), with the same tradeo�s implied . The followingalgorithms try to use this information to improve the results.3.8.2 Seletive median (basi)The seletive median approah an be onsidered a general enhanement to the previous �lterwhih tries to keep those pixels whih were not modi�ed by the hannel. The problem of �ndingout whih pixels are lean and whih are noisy an be attaked in various ways. For example,if the noise is impulsive suh as in the Salt & Pepper ase, the values of the noisy pixels areknown a priori, and a trivial sheme an be implemented in whih only those pixels in the noisyimage whih have the maximum value (white) or the minimum value (blak) are substituted by



34 Chapter 3. A review of image denoisingthe median of the window.x̂i = � med(Wi;T ) ; zi = 0 or zi =M � 1zi ; otherwise (3.16)Another slightly more robust approah is to onsider as noisy all those pixels above or belowa ertain threshold. In this asex̂i = � med(Wi;T ) ; zi � � or zi �M � 1� �zi ; otherwise (3.17)3.8.3 Adaptive MedianThe basi seletive median �lter uses a �xed window to denoise eah noisy pixel. The noisypixels are previously deteted using any of the previously desribed methods. The adaptivemedian [12℄ hooses an optimal window size depending on how many noisy pixels there are inthe neighborhood, starting with a square 3� 3 window and inreasing its size gradually until a�xed maximum. For eah noisy pixel zi The algorithm an be summarized as follows:� Initialize w = 3� Compute a = min(z(Wi;w�w)), m = median(z(Wi;w�w)) and b = max(z(Wi;w�w))� If a < m < b go to Step 5, otherwise set w = w + 2.� If w < wmax go to step 2, otherwise set x̂i = m.� If a < zi < b set x̂i = zi, otherwise set x̂i = m.Figure 3.11: Adaptive Median Algorithm.This type of �lter is usually suitable for images orrupted with Salt & Pepper noise with highprobability of error �.3.8.4 Adaptive Median and Total Variation CombinedThe idea of this sheme, as proposed in [2℄, is to ombine the Adaptive Median sheme withthe Total Variation approah desribed earlier in this hapter. The pixels of the image aredivided into two groups using the seletion riterion of Algorithm 3.11: the noisy N and thelean N  (both groups are de�ned in terms of the indexes of the image). Then, (3.8) is usedwith a slight modi�ation:FN (x̂m�n) =Xi2N jxi � x̂ij+ �1Xi2N Xj2Wi;T TN ;j 6=i�(x̂i � x̂j) + �1 Xi2N  Xj2Wi;T TN ;j 6=i�(x̂i � zj)(3.18)Here the last two summations orrespond to the total variation. The �rst of these is expressedin terms of variation between noisy samples, while the seond measures the variation of the noisysamples with respet to the lean ones. The overall expression is also onstrained only to thoseindexes i that orrespond to noisy pixels. Figure 3.12 shows two example images obtained bythis method, taken from [2℄.
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(a) Noisy image. (b) Denoised by MDN-DP.Figure 3.12: E�et of the MND-DP Filter on an image orrupted by Salt & Pepper noise with� = 70%. Image taken from [2℄.





4 The Disrete Universal DEnoiser
4.1 Desription of the algorithmThe Disrete Universal DEnoiser (DUDE) algorithm [34℄ operates over the noisy outputsequene of a known disrete memoryless hannel, estimating the noiseless input sequene to thathannel without any assumption on the statistial properties of this noiseless input sequene.This algorithm has been shown to ahieve asymptotially the optimal �nite sliding windowdenoiser performane for any input sequene as the length of the sequene goes to in�nity.Here is a brief outline of the algorithm, full details of whih an be found in [34℄.For larity the DUDE is desribed for the ase where the unknown image xm�n has an asso-iated \lean" probability distribution (stohasti setting), although the results also apply forthe ase where xm�n is an individual image not assumed to have been emmited by a stohastisoure (semi-stohasti setting).The DUDE operates in two passes: An analysis pass and a denoising pass. Both passes areparameterized by the same neighborhood template T . In the theoretial analysis of [34℄, thesize of the template grows with the length of the data, and has to obey ertain growth raterestritions to guarantee the asymptoti onvergene of the algorithm to the optimal denois-ability. This is disussed in [34, Se VII-A℄ for one-dimensional data, and in [21, Se. 3℄ fortwo-dimensional (2D) images.1 However, the determination of the exat size (and shape) of Tthat yields the optimum denoiser performane for a given image is a diÆult open problem.Possible approahes to the problem are disussed in [34, Se. VII℄, together with a ompress-ibility heuristi whih is also employed in [21, Se. VII-B℄, and in this work in Setion 7. Morereently, an approah for optimizing ontext size based on an estimate of the residual noise afterappliation of the DUDE was presented in [22℄.The �rst pass uses a sliding neighborhood window Wi;T to determine the ontext Ci =z(Wi;T ); Ci 2 AK of eah pixel zi. For eah di�erent ontext C appearing in in the image, avetor of statistis mC is built where mC [i℄ ounts the ourenes of all the values of zi whoseontext Ci is equal to C. Note that jmC j = jAj.Input probability estimation1For the ase of 2D images over an alphabet of size M , and using L2 (Eulidean distane) balls of radius r asthe template shape, the asymptoti optimality as the size of the image m� n grows to in�nity is guaranteed ifr has the form r(m;n) = g(minfm;ng) where g(t)Mg(t) = o(t1=4). For instane, a hoie of r = g(t) =  logM t,with  < 1=4 satis�es the requirement.



38 Chapter 4. The Disrete Universal DEnoiserAfter the �rst pass is done, eah statistis vetor mC is normalized to yield an estimatedontext-onditional output distribution PZjC , whih is a row vetor of size jAj where PZjC [i℄ =PZjC(Z = i), PZjC(Z = i) = mC [i℄Pj2AmC [j℄ ;8i 2 A (4.1)By knowing the hannel through its transition matrix � and its memoryless nature, theDUDE is then able to estimate the orrespoding lean sequene ontext-dependent distributionPXjC for eah ontext C by solving the following linear systemPXjC� = PZjC (4.2)After the ontext-onditional input probability is estimated, the next step is to ondition italso on the noisy sample, �. Using � as the vetor element-wise produt operator, the resultingdistribution an be shown to be PXjC;� = 1PZjC(�)PXjC � ��: (4.3)With these elements, a denoiser funtion is then de�ned whih minimizes the expeted lossfor eah possible ombination of the ontext C and the noisy symbol �. The term PZjC(�) isdropped from (4.3) sine it doesn't depend on the minimizing argument, to obtaing(�;C) = argmina2A(PXjC [�a � ��℄) (4.4)(note that �a � �� is a olumn vetor, and PXjC is a row vetor, thus the preeding expressionis the inner produt of the two).If the hannel is invertible, the above expression beomesg(�;C) = argmina2A(PZjC��1[�a � ��℄) (4.5)The seond pass of the DUDE applies the denoiser funtion (4.4) based on the statistisgathered in the �rst pass for eah observed ontext C.The algorithm is summarized in Figure 4.1.The DUDE has been applied to binary (1 bit per pixel) images [21℄ outperforming otherexisting denoising shemes for this type of data. Figure 4.2 shows a sample result performedon a halftone image transmitted over a simmulated Binary Symmetri Channel. This hannelips eah sample bit value with probability p, and leaves it untouhed with probability 1 � p.In this ase, p = 2%.



4.2. Issues of the DUDE with ontinuous tone images 39� Initialization: For eah possible ontext C that an arise from a window de�ned by thetemplate T , de�ne a vetor of ounts of size jAj and initialize its elements to 0.� Pass 1: for eah pixel zi� Obtain the urrent ontext C = z(Wi;T ) using the neighborhood template T and indexi.� Inrement mC [zi℄.� Normalize mC for eah possible ontext C to yield PZjC using (4.1).� Pass 2: for eah pixel zi� Obtain the urrent ontext C = x(Wi;T ) using the neighborhood template T and indexi.� Compute PXjC using the hannel transition matrix � and (4.2).� Compute PXj;C;zi using the loss matrix � and (4.3) with � = zi.� Compute the denoised pixel using (4.4).Figure 4.1: Baseline DUDE algorithm.4.2 Issues of the DUDE with ontinuous tone imagesThe asymptoti optimallity of the DUDE applies to images whose symbols range over any�nite alphabet. However, this asymptoti behavior is governed by a deay term whih inreasesrapidly with the size of the alphabet and the size of the ontext window.Sequenes suh as digital images or audio traks are �nite and have alphabets whose size rangefrom 256 (8 bits) to 65536, or even 16 million symbols for audio signals. If suh sequenes werenormally long enough for the DUDE to perform well even with the slow onvergene implied bythe size of suh alphabets, then there would be no problem in applying it as originally proposed.Unfortunately, this is not the ase and the optimal performane will not be ahieved.These kind of sequenes are normaly drawn from ontinuous proesses that are later dis-retized. As a result, ontinuous-tone images have strutural properties that an be inorpo-rated as prior knowledge in the denoising proess to avoid the mentioned problems.4.3 Goal of this workThe goal of this work is to augment the DUDE framework, by inluding the prior knowledgederived from the struture of ontinuous-tone images, so that it an be applied to this kind ofdata with suess.This primary goal is to be met while keeping the framework eÆient in terms of omputationalost, resulting in a pratial implementation.
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(a) Clean image. (b) Noisy image.

() Denoised by the binary DUDE.Figure 4.2: Images obtained from [21℄. Here the window template is a line of 7 samples to eahside of the enter sample (a 1� 15 template)



5 Tools
5.1 Context modelingThe main goal of this work is to exploit the a priori information about the struture ofontinuous-tone images (pieewise ontinuity, repeated texture patterns, et.) in order to reduethe onvergene problems that arise when applying the original DUDE algorithm to sequeneswith suh large alphabets.To denoise an image, the DUDE relies on the onditional distributions estimated in the �rstpass for eah ontext. Determining onditional distributions of samples given their ontexts isalso a key omponent in lossless data ompression where the number of onditioning ontextsplays a fundamental role in the onvergene of the ode length to the entropy. This ode lengthinludes either impliitly or expliitly a model ost [26℄ whih is proportional to the number offree statistial parameters in the model.The model ost reets the prie paid for learing the statistis of the data: if there are manyparameters to estimate, more data samples will be required to aumulate signi�ant statistisfor eah parameter (hene the problem is sometimes desribed as one of \sparse statistis").The model ost is partiularly a�eted by the size of the alphabet, as it a�ets both thepotential number of di�erent ontexts and the number of parameters per ontext.The other omponent of the ode length, a model �tness omponent, is determined by thedegree to whih the elements of the model (the parameters) apture the statistial propertiesof the data (i.e., how does it \�t" the data). From the theory and pratie of universal losslessompression arises the fundamental trade-o� between the two omponents: a riher model an�t the data better, yielding a shorter model �tness omponent at the expense of a greater modelost omponent.In denoising, and partiularly in the DUDE, there exists a similar trade-o�. This trade-o�is desribed in [34℄ in terms of the ontext size. Given the size of an image, a greater ontextsize implies less ourenes of eah ontext in the image, thus reduing the average number ofavailable samples to desribe eah onditional distribution. This results in a \denoising modelost", where the prie paid in this ase is a poorer denoising performane.The number of ontexts, and the number of parameters per ontext inrease as the alphabetsize grows. For instane, in the DUDE, the number of possible ontexts grows as AK and thesize of eah ontext-onditional ount vetor gathered grows linearly with A. This results in atotal of O(AK+1) parameters to be estimated in the model produed by the �rst pass of theDUDE.



42 Chapter 5. ToolsTo address this problem, prior information on the struture of ontinuous-tone images is usedto let ontexts share their information , allowing the statistial information of many ontextsto ontribute in the estimation of the onditional distribution at eah image loation.As the problem of modeling in ontinuous-tone images has been treated extensively in the�eld of lossless image ompression, it is natural to borrow tehiques from this �eld to addressthe same problem in denoising. In lossless image ompression, two tehniques are often used:ontext lustering partitioning the spae of ontexts AK into a muh smaller set of ondi-tioning lasses � = f1; 2; : : : ; Ng, where the ontexts in eah lass are related by aertain similarity riterion. A ontext lassi�er G : AK ! � is de�ned whih maps eahraw ontext into one of the ontext lasses: = G(C); C 2 AK ;  2 �predition exploits the assumption that groups of onditional distributions depend on theonditioning ontext only through a ontext-dependent o�set, given by the predited value.These tehniques are used, for example, in state-of-the-art ompression shemes suh as [33℄and [36℄.The problem of model ost in the DUDE is addressed by augmenting its baseline algorithmto inlude two additional omponents: a predition omponent and a ontext lustering om-ponent.One the ontext lassi�er is de�ned, the sets of ounts of all the ontexts that are assignedto the same lass are added together to build a single lass-onditional distribution per lass whih we will denote as PZj . The pixels of the image whose ontexts belong to the same lass will be said to have the same onditioning lass or state .5.1.1 Similarity riteria and the struture of imagesIn order to de�ne the ontext lasses, a ontext similarity riterion is de�ned using followingommon a priori assumptions on the struture of ontinuous-tone images:Distane between symbols As they represent physial magnitudes (light intensity), the sym-bols are ordered by value and a distane an be de�ned between them. For example, Figure5.1 shows an image and the intensity graph of one of its rows as a N ! N funtion.Distane in ontext spae As the ontexts are made of samples, and eah sample is aninteger magnitude, a distane an be de�ned in the ontext spae (for example Eulideandistane).Loal intensity or DC o�set Contexts are loalized in the image around a referene pixel.As the image an exhibit similar strutures under di�erent loal illumination levels, on-texts that arise from these strutures an also be related if the loal illumination level isremoved from them. This is known as DC anellation. Figure 5.2 gives an example ofthis onept.
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(a) Continuous-tone image. (b) Pixel value (intensity) graph for row 130.Figure 5.1: \Co�ee Cup", a ontinuous tone image of 512 � 512 pixels. The graph to the rightorresponds to the pixel values in row 130 starting from the upper row (at about 1/3 of itsheight).
b

a

Figure 5.2: DC o�set: (a) and (b) are two similar ontext appearing at di�erent illuminationlevels. (a) appears in the shadow, while (b) is hit by diret light.
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a b

Figure 5.3: Spatial position : (a) and (b) are two similar ontext appearing at di�erent orien-tations.Spatial position Contexts an be onsidered to be \rotation-independent", as many naturaland arti�ial images show similar patterns repeated at di�erent orientations. By exploitingthis assumption, ontexts an be rotated or saled before omputing the distane betweenthem. As with DC o�set, this an result in a smaller number of lasses needed to desribethe ontexts of the image. Figure 5.3 shows two sample ontexts whih di�er only in theirorientation.The way in whih these (and possibly other) priniples are ombined to form a \useful"ontext model depends on the partiular ontext lustering sheme. If the ontexts are to beused to build ontext onditional probabilities, \useful" means to merge ontexts whih share\similar" statistis.5.2 PreditionA preditor is de�ned as a mapping from the set of possible ontexts AK , to the imagealphabet A, y = p(C); p : AK ! ẑ. Preditors an have a �xed struture (for example, onepossible preditor is the mean of the ontext samples) or an vary as a whole or in part dependingon the atual ontext around the pixel to be predited. The latter are alled ontext-dependentpreditors.Images have disontinuities (borders, edges), but in many ases the majority of the pixelsbelong to smooth areas whose intensity vary with, for example, di�erent illumination angles.By exploiting this fat, it is possible to predit a pixel using a funtion of a few neighbors.This makes it possible to gather the empirial statistis of the image in terms of preditionerrors (residuals) instead of the original sample values. Furthermore, if the preditor is aurate,then the predition errors will be highly onentrated around zero, and the larger errors willhave smaller probability. This helps in reduing the sparsity of the statistis, as the majorityof the residuals will lie in a small subrange of the predition error alphabet.
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(b)

(c)

(a)

(d)Figure 5.4: Bias anellation. (a), (b) and () are three distributions of predition residualswith the same shape but entered at di�erent plaes (biases). By removing these biases, thethree distributions an now be merged in only one.From the work in [19℄ it has been an aepted fat that predition error distributions oftenobey a Two-Sided Geometri Distribution (TSGD) entered around 0. As mentioned in [17℄ and[32℄, when the predition error distribution is also onsidered ontext-dependent, the resultingdistribution of eah ontext is still TSGD-like but entered around a ontext-dependent bias.The TSGD is de�ned as PXj(x) = 1� ��1�s + �s ��jx��j (5.1)where � (deay term) and � (the enter, whih orresponds to the mean of the distribution)are parameters of the distribution and s = d�e � � is a term between 0 and 1.Suppose now that there are many ontexts in whih the predition error has approximatelythe same shape, but entered at di�erent o�sets depending on eah ontext. If those shapesorrespond to the same distribution, they are entered around 0 and merged to obtain a betterestimation of the distribution. This is illustrated in Figure 5.4.This gives rise to a speial ase of ontext-dependent predition alled bias anellation.In this sheme, used in many suesful ompression tools suh as LOCO-I [33℄, the preditoronsists of a �xed part and a ontext-dependent adaptive bias term that is used to enter thepredition residual distribution around 0.When working with ontext-dependent predition, and for the same reasons (the growth inthe number of ontexts with the size of the alphabet), the same ontext lassi�ation approahthat was used to relate similar ontexts in the onditional distribution estimation problem isused. The objetive in this ase is to adjust the bias term of the preditor for eah possibleontext lass. To avoid onfusion, these lasses will be alled predition onditioning lasses.Note that the probability onditioning lases, and the predition onditioning lasses need notbe the same. One approah is to de�ne the latter lasses to be a re�nement of the former lasses(i.e., eah probability onditioning lass is broken into disjoint predition onditioning lasses).This an be justi�ed by the assumption that the lassi�ation used for the ontext-onditionaldistributions joins ontexts in whih the predition errors have the same distribution shape
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Figure 5.5: Role of ontext-onditional predition (bias anellation).(same shape and moments exept the mean), but have their enter (mean) at di�erent plaes;and the lassi�ation used for bias anellation produes a partition of eah lass in a set ofsub-lasses where the preditor bias is the same for all the ontexts in the same sub-lass. Thisis the kind of sheme used in the LOCO-I algorithm and is exempli�ed in Figure 5.5.5.3 Predition and denoisingAssume that the ontext lass, the noisy value and the predition for the urrent noisy symbolare i 2 AK , zi and ẑi respetively. Notie that ẑi is the predition of the noisy sample at theenter of i. This might seem ounter-intuitive at �rst, sine the exat value of zi is known.As mentioned in the previous setion, the idea here is to redue the sparsity of the ontext-onditional statistis by onentrating them around 0.The predition error for zi is de�ned asei = zi � ẑi (5.2)Let Z, Ẑ and E be the random variables modeling these three values, and  be a randomvetor modeling the possible values of the ontext lasses i.In the seond pass of the DUDE, the denoiser funtion for the urrent sample is de�ned interms of the empirial distribution of the input alphabet onditioned on the urrent ontext.In the augmented framework, the sample is onditioned on the ontext lass i.



5.4. Pre�ltering 47In order for the seond pass to work properly in the augmented framework, the preditionerror distribution for the noisy samples has to be reinterpreted in terms of the original noisydistribution.In Setion 5.1 it was mentioned that predition an be seen as a way to merge similar distri-butions entered at di�erent o�sets, where the o�sets are given by the predited value. Thusthe predition error distribution for the urrent ontext lass i and the urrent predition ẑiP (E = zi � ẑij = i; Ẑ = ẑi)an be assumed to be a entered version of the original noisy distribution when onditionedon the predition value P (Z = zij = i; Ẑ = ẑi)that is P (Z = zij = i; Ẑ = ẑi) = P (E = zi � ẑij = i; Ẑ = ẑi) (5.3)In priniple, the urrent predition ẑi ould be used as an additional element to haraterizethe urrent ontext besides the onditioning lass. This would inrease the potential numberof onditioning lasses from j�j (the number of ontext lusters) to j�j � jAj (sine there are Apossible predition values). In this framework this option will not be onsidered, assuming thatthe predition error distributions are independent of the atual predited value ẑi,P (E = eij = i; Ẑ = ẑi) = P (E = eij = i): (5.4)Sllowing all the statistis of lass  to be gathered in one vetor m .With this assumption and (5.3), the estimated noisy onditional distribution for the urrentsample zi will be P (Z = zij = i) = P (E = eij = i):5.4 Pre�lteringThe modeling tools that were mentioned in the previous setions (ontext lassi�ation andpredition) assume a ertain degree of smoothness in the images to be denoised. To give anexample, one of the tools used for grouping ontexts is Vetor Quantization [15℄ whih joinsontexts that are lose in terms of their Eulidean distane in ontext spae. Another exampleis to use the ontext average value (the average of the ontext samples) to predit the enterpixel. If the image is orrupted by additive noise of relatively small variane (low SNR), thesetools will still work, as the ontexts whih were originally near in the lean image will still belose in the noisy image (sine they are vetors of slighty displaed samples). However, if thenoise is not additive (suh as the \Salt & Pepper" noise), the smoothness assumption will nothold and these tools will not work properly.



48 Chapter 5. ToolsTo address this issue, the augmented framework inludes an optional pre�ltering pass in thealgorithm whih takes the noisy input image and produes a pre�ltered image ym�n using somedenoising �lter. When this sheme is applied, the ontext lass i and the predition ẑi for eahnoisy pixel zi are omputed from the pre�ltered ontext at the same position i, y(Wi;T ) insteadof the noisy ontext z(Wi;T ). Statistis are still omputed with respet to the original noisyvalues zi as in (5.2).Pre�ltering an also be seen as a way to \expand" the e�etive ontextual information whenbuilding the ontexts, sine the samples in eah neighborhood of the pre�ltered image wouldinlude information from samples outside the neighborhood window. For instane, if the pre-�lter is based on a sliding window (suh as the linear �lters desribed in 3), the \e�etive"neighborhood would grow up to the radius of the window de�ned by the �lter window size.5.5 Noise prelassi�ationIn some ases it is possible to detet or estimate whih pixels of the image are orrupted bynoise. This makes sense when dealing with non-additive noise suh as impulse noise in whihnot every pixel is orrupted and, when orrupted, its noisy value is always one of 0 or M �1 foran alphabet A = f0; 1; : : : ;Mg. In this ase, a simple detetion sheme would be to mark eahpixel whose value is either 0 or M � 1 as a noisy andidate. Clearly both values an happen ina lean, unorrupted image, thus resulting in pixels an be marked as noisy when they are not.A prelassi�ation mask �m�n is a binary meta-image where a symbol value of 1 means thatthe pixel is deemed to be noise, and 0 means that it is not. When available, this meta image isa valuable tool for the following stages of the denoising proess.5.6 Loss modelIn denoising problems suh as binary hannel denoising or DNA sequening denoising thereis no sense of proximity between the symbols, and the ost inurred is either the same in allthe ases (Hamming ost) or ditated by spei� rules. In ontrast, ontinuous-tone imageshave a distane relationship between their symbol values, whih an be used to de�ne a metribetween the noisy and the lean images. In a graysale image, hoosing symbol a+ 1 in plaeof a orret a is usually unnotieable when working with 256 levels of gray. Generally speaking,bigger di�erenes (errors) are more visible than smaller ones.Beause of this, and also beause they yield very fast losed form solutions for the argument-dependent minimization used in the denoiser funtion (4.4) (see Setion 6.7 and Appendix Bfor details), two loss models for ontinuous-tone images are used:absolute di�erene Setting eah element of ((�)) as �ij = ji� jj an L1 norm is stablished asthe distane between the noisy and the lean image. Thus we will refer to this loss modelas L1.quadrati di�erene Here �ij = (i � j)2 and the assoiated distane orresponds to thesquare L2 norm between the noisy and the lean image. This will be referred to as the L2loss model.



6 Proposed solutionIn this setion the details of the augmented DUDE framework for ontinuous-tone images, orDUDE-I for short, are desribed.6.1 Desription of the frameworkThe blok diagram for the DUDE-I is depited in Figure 6.1.The Pre�lter takes the noisy image zm�n as input and produes a pre�ltered version of it,ym�n, that an then be used by the Modeler for ontext extration and predition.The Prelassi�er , when used, omputes a binary mask �m�n where �i = 1 for those zi thatare deemed to be orrupted noise and �i = 0 otherwise.The Modeler lassi�es eah sample of the image zi into a ontext lass i, produing a meta-image m�n named onditioning map. The number and harateristis of eah lass is de�nedby the Modeler and may vary with the atual data.Along with the onditioning map, the Modeler also produes an optional predition ẑm�nof the image whih an be used to further simplify the probabilisti model of the image.The Denoiser depends on the Channel Model and the Loss Model to selet betweendi�erent strategies that are suitable for eah ase. For instane, the seond pass of the DUDE-Ifor the Gaussian Noise ontains speial steps and subalgorithms not found in the orrespondingseond pass for the Impulse Noise (and its variants).
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50 Chapter 6. Proposed solution6.2 Prelassi�ation shemes6.2.1 Trivial S&P detetion shemeThis is the most straightforward pre�ltering sheme to apply when onfronted to an imageorrupted by impulse noise. As the only possible noisy values are 0 and M � 1, this algo-rithm marks all those pixels of zm�n with a those values as noisy. Despite its simpliity, thissimple approah improves the overall performane signi�antly ompared to the ase where noprelassi�ation is done. �i = � 0 ; 0 < zi < M � 11 ; otherwise (6.1)6.2.2 ThresholdingThis is a variant of the preeding algorithm where the symbols are marked as noisy if theirvalues are a ertain threshold � appart from the extreme values 0 and M � 1:�i = � 0 ; � < zi < M � 1� �1 ; otherwise (6.2)6.2.3 Binary DUDEThe Impulse hannel, as desribed in Setion 2.2.2, is not exatly the same as an Erasurehannel, sine the erased symbols take valid input alphabet values (0 for pepper and M � 1 forsalt) instead of a speial erasure value that is added to the output alphabet.This fat motivated approahes suh as [24℄, where the main goal is to determine whih ofthe symbols of the output having an erasure value are atually noisy symbols (and thus shouldbe replaed), or lean symbols that happen to have one of those unfortunate values.The DUDE-I does not hange any symbol whih has not the erasure value, but it may hangesymbols that have it.This sheme uses a binary DUDE similar to the one used in [21℄ to produe the atualprelassi�ation. For simpliity, onsider the Z-Channel with probability of error �. Considera sequene xm�n that has been orrupted by this noise yielding a noisy sequene zm�n. Theerasure symbol of the Z-Channel has a value e 2 A. Now take the noise mask meta-image asprodued by the trivial prelassi�ation sheme desribed earlier, �m�n. This meta-image willbe alled �m�nz . This is a binary meta-image where �i = 1 indiates that zi is a potential noisysample.The key is to onsider the �m�nz meta-image as a noisy binary image itself. For this, onsiderthe noise mask whih would be obtained from the (unobserved) lean image xm�n by the trivialsheme. This meta-image will be alled �m�nx .This is also a binary sequene but now it marks those lean pixels that oinide with theerasure symbol e. If a pixel in the lean mask was 1, then it an only be 1 in the noisy maskbeause it would also be e. If it was 0, however, it has a probability of exatly � of beoming1. Thus, for eah index i,



6.2. Prelassi�ation shemes 51P (�z[i℄ = 0j�x[i℄ = 1) = 0P (�z[i℄ = 1j�x[i℄ = 1) = 1P (�z[i℄ = 0j�x[i℄ = 0) = 1� �P (�z[i℄ = 1j�x[i℄ = 0) = � (6.3)This itself orresponds to the behavior of the binary Z Channel and its transition matrix is,aording to (6.3), � = ���� 1� � �0 1 ���� : (6.4)The binary DUDE for this hannel an be applied to obtain a denoised mask �m�nx̂ from thenoisy mask �m�nz .The denoised mask will keep those pixels that oinide with the erasure value but are notnoisy. However, the denoised mask is de�ned to ontain only the noisy pixels. To obtain the�nal noise mask mum�n observe that� �z[i℄ = 1 indiates either a false or a true noise detetion.� �x̂[i℄ = 1 indiates (ideally) only a false detetion.Thus, the i-th symbol of the desired noise mask, �i, will be 1 if �z[i℄ is 1 but �x̂[i℄ is 0. Thisan be expressed as a logial symbol-wise operation between the two masks:�m�n = �m�nx̂ ^ �m�nzwhere a indiates the bitwise negation of a operation and ^ the bitwise and operation.To obtain a mask for a multivalued erasure-like hannel suh as the Salt and Pepper, thesheme is easily extended using a q-ary Z-Channel or by obtaining separate masks for eaherasure value using the previous sheme, and ombining them with a bitwise or operationbetween the masks.6.2.4 Disrimination by homogeneity levelThis sheme, whih was desribed in [24℄ for the detetion of Salt & Pepper noise, an also beused with more diÆult non-additive noise models suh as the q-ary symmetri hannel. Thebasi idea is to mark pixels as noisy when their values are not likely to our given their ontext.To do this, the o-ourene matrix [9, pp. 416{417℄ of the noisy image is omputed. Thistool has been given many interpretations and variants in the literature, usually using the samename. The approah followed is that of [24℄ where the o-ourrene matrix is anM�M matrixH = fhijg where hij orresponds to the number of times the symbol j oured in a 3�3 ontextwhose enter symbol is i (denoted by Ci;3�3 with jCi;3�3j = 8) all over the image:hij = Xi2Rm�n 8Xj=0Ci;3�3[k℄ (6.5)



52 Chapter 6. Proposed solutionEah row r of H an be seen as a a histogram of the ontext samples onditioned on theevent that the enter sample has a value of r. The basi idea is to use these histograms asonditional distributions of the ontext samples in order to detet outliers. After this matrix isobtained from the noisy image, for eah value r 2 A an upper Ur and lower Lr bound for thevalues that eah ontext sample an take in order for it to be homogeneous with r is omputed.Assuming that eah histogram is monomodal and entered at the enter symbol value r, theupper and lower bounds are searhed as those olumns where the histogram values fall below agiven threshold � . More preisely, the distribution at the j olumn of row r is estimated as anaverage in a window of size 3 entered around j:Lr = argminj 8<:hrj : k=j+1Xk=j�1hrk � �9=;Ur = argmaxj 8<:hrj : k=j+1Xk=j�1hrk � �9=;Let Hi;3�3 = f 2 Ci;3�3 : Lzi �  � Uzig be the set of ontext samples homogeneous with theenter sample at position i for a 3� 3 square ontext template. With these bounds omputedfor eah symbol r, and this de�nition of Hi, a primary lassi�ation ��m�n of the noisy pixelsis performed as follows ��i = � 1 ; jHi;3�3j > 40 ; otherwise (6.6)this lassi�ation produes an important number of false detetions. A re�nement pass isthen performed using 5 � 5 square ontexts. In this pass, eah pixel initially marked as noiseis unmarked if the majority of the ontext samples marked as homogeneous with it are notmarked as noise. This results in the �nal mask �m�n�i = � 0 ; j f 2 Hi;5�5 :  leang j > jHi;5�5j=21 ; otherwise ; i : ��i = 1 (6.7)6.3 Pre�ltering shemes6.3.1 Basi pre�lteringThe DUDE-I framework aepts any image �lter as a pre�lter. The tested pre�lters inludethe lassial shemes desribed in Setion 3 suh as the Window Median or Window Average.When a prelassi�ation mask is available, the �lters are applied only to those pixels markedas noisy.6.3.2 Reursive pre�lteringThe pre�ltering proess an be based on any �lter as long as it produes an output that issmoother than the noisy image. If the output of the DUDE-I is indeed loser to the unobservedlean image than the noisy image, its output an used as the pre�ltered image used to buildthe ontext model in a following stage. This sheme is depited in Figure 6.2.



6.4. Modeling shemes 53Note that the noisy input to eah denoising pass is always the initial noisy image. This isnot a reursive denoising sheme.
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Figure 6.2: Blok diagram for the Reursive Pre�ltering setting. The loop is losed for the �rstN-1 yles and in the N-th yle the two swithes hange positions in order to work as in thenormal on�guration of Figure 6.1.6.4 Modeling shemesThe following setions desribe the di�erent modeling shemes whih were applied in thiswork.Being a ontinuation of the work started by Giovanni Motta [18℄, the present work inheritedsome of the tools used in the former. These are referred to as the Legay tools. Of these tools,the Legay Modeling sheme is the �rst modeling approah to be desribed here in Setion 6.5.The original work in this thesis is omprised mainly by what the so alled Napkin ModelingSheme, desribed in Setion 6.6 below. This sheme was reated using the tehniques desribedin Setion 5.6.5 The Legay Modeling Sheme6.5.1 SummaryGiven a window size and shape, the Legay Modeling Sheme gathers all the ontexts fromthe image as vetors, performs a anonial spatial transformation, a DC anellation of itssamples, and and then uses a vetor quantization (VQ) strategy to lassify the resulting ontextsinto a �xed number of lusters (lasses). An optional predition is omputed using an arbitrary�lter as a preditor.A blok diagram of this modeling approah is depited in Figure 6.5. Folloging is a detaileddesription of eah stage of the algorithm.



54 Chapter 6. Proposed solution6.5.2 Canonial transformationWhen gathering the ontexts, a transformation is performed to math similar ontexts withdi�erent orientations (rotation and/or reetion). The idea is to ombine a set of four rotations(0,90,180 and 270 degrees) and an optional axial symmetry, so that in the end, the four quadrantsof the ontext are ordered in dereasing intensity. Figure 6.5.2 gives a graphial example of thisonept. The algorithm itself is given in Figure 6.3,� Take the urrent ontext as de�ned by a neighborhood template T and ompute the sum ofthe intensities of its quadrants: Snw, Sne, Ssw,Sse. Here, eah quadrant is de�ned by therelative position of the ontext sample to the enter (to-be-onditioned) pixel. The axes arenot taken into aount, and the ontext shape (de�ned by the template T ) must have entralsymmetry for the algorithm to work well.� Rotate the ontext so that the upper left (nw) quadrant has the higher overall intensity S.� If, after the rotation, the lower-left (sw) quadrant has more overall intensity than the upper-right (ne), then ip the ontext along the nw{se axis so that both quadrants are now swapped.Figure 6.3: Canonial Transformation algorithm.6.5.3 DC anellationOne the ontext has been anonially transformed, its average sample value is subtratedfrom the samples that omprise it. This is a way to exploit the similarity between ontextsregardless of the loal intensity level.6.5.4 QuantizationAfter all the ontexts have been gathered, rotated and their DC has been removed, they arequantized into a �xed number of lusers (whih is a key parameter of the algorithm) using theLBG algorithm developed by Linde, Gray and Buzo [15℄. The LBG de�nes the ontext lustersby �nding a set of orresponding luster enters (one per luster) in an iterative fashion. Thealgorithm stops when either there is no further hange in the position of the enters on eahiteration, or when a maximum number of iterations is reahed.
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Figure 6.5: Blok diagram for the Legay modeling. The pre�ltered noisy sequene is fed tothe predition �lter to produe the predition. The raw ontexts from the whole sequene arequantized using the LBG algorithm (dashed line) and then a seond pass lassi�es eah ontextinto one of the resulting ontext lasses to form the onditioning lass map.6.5.5 PreditionPredition is optional and based on an arbitrary �lter applied to the noisy or pre�lteredimage (if pre�ltering is used). Common �lters suh as the Average or Median �lters desribedin Setion 3 were tested in this sheme, but also speial ones suh as the Napkin �lter (to bedesribed later in this hapter) were adapted to the Legay sheme with good results.6.6 The Napkin Modeling Sheme6.6.1 SummaryThis algorithm takes the tehniques applied in low-omplexity image ompression algorithmssuh as [33℄ and [36℄, and adapts them to a noisy environment to produe both a ontextmodeling sheme and a predition sheme that are robust under noisy ontexts, and, at the sametime, fast so that modern digital images an be proessed with pratial time and omputationalrequirements.For instane, a �xed salar quantization sheme is used to ompute the ontext lasses, insteadof a vetor quantization sheme. Predition is inspired on the MED preditor used in JPEG-LS[33℄, extending it to non-ausal ontexts.A general blok diagram of this modeling sheme is depited in Figure 6.6. Eah blok is nowdesribed in detail.6.6.2 The Context WingsTheNapkin Modeling Sheme derives its name from the fat that it divides the ontext windowin four wings; N,S,E and W as shown in Figure 6.7. It then omputes four diretional gradients;dN , dS , dE and dW aording to Equations (6.8) to (6.11) whih use the loal di�erenesbetween the samples at eah wing. Eah sample within the ontext is referred to as xx wherexx = n; s; w; e; nw; ne; : : : indiates the relative position of the sample in the ontext withrespet to the enter sample (for instane, nn indiates the sample whih lies to the northwest,i.e., at relative position (�1;�1)).
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dN = n � nn + e � ne + w � nw (6.8)dS = ss � s + se � e + sw � w (6.9)dE = ee � e + ne � n + se � s (6.10)dW = w � ww + n � nw + s � sw: (6.11)This diretional gradient information is then used both to to determine the way in whih theenter sample value will be predited, and the ontext lass to whih the sample belongs.Eah gradient is a signed sum of three adjaent loal gradients in the same diretion. This isa tradeo� between loallity of the gradient and noise resiliene, beause a signed sum will tendto redue the relative inuene of white noise sine it ats as a low pass �lter. In ontrast, inthe ompression appliations that have been mentioned many di�erenes are added in terms oftheir absolute values.Broad variant If the noise is additive and its power is high, the average of three loaldi�erenes may not be enough to redue its inuene. Beause of this, a Broad Variant existswhih omputes eah wing gradient using �ve samples. In this ase the gradients are obtained



6.6. The Napkin Modeling Sheme 57

eeww

sw s se

ss

x

nn

ne

eee

se

ss

x

n

nn

nenw

eeww x

nn

nw

ww

sw

ss

w x

south wing

north wing

west wing east wing

n

nn

nenw

eeww

sw s

e

se

ss

w x

context of x

Figure 6.7: Wing gradient omputation. The 12-pixel diamond-shaped ontext at the enter isbroken into four (overlapping) wings. For eah wing, a gradient is omputed as the average ofthree loal di�erenes. The small arrows show the diretion and the samples involved in eahloal di�erene omputation for eah wing.



58 Chapter 6. Proposed solution

x

x

south wing

north wing

west wing east wingcontext of x

nn

neene

e eex

se see

ssess ss

se

e

nen

x

sswsww

ww

nww nw

w

nn nn

nw

ww w

sw

ss

sw

ww

s

x

ssw ss sse

se

ee

ee

nn nne

nennw

ww ee

nnw

ssw ssessw

nnw

sww

nww nee

see

nne

ssessw

sww

nww

nnw

nnw

nne nne

nee

see

nee

seesww

nww

Figure 6.8: Wing gradient omputation for the Broad variant. Eight additional samples arerequired: nnw,nne,ssw,sse,see,nee,sww and nww.using Equations (6.12)|(6.15). The ontext and the wings used in this variant are depited inFigure 6.8. dN = n � nn + e � ne + w � nw + ne � nne + nw � nnw (6.12)dS = ss � s + se � e + sw � w + sse � se + ssw � sw (6.13)dE = ee � e + ne � n + se � s + nee � ne + see � se (6.14)dW = w � ww + n � nw + s � sw + nw � nww + sw � sww: (6.15)The four diretional gradients are ombined into two orientation gradients dH and dV inabsolute terms, dH = jdE j+ jdW j (6.16)dV = jdN j+ jdS j: (6.17)Finally, an overall ativity level is also omputed from these two gradients,AL = dH + dV : (6.18)The reason for having suh hierarhy is to be able to reombine them so that di�erent tradeo�san be seleted in terms of preision in the haraterization of the region and noise resiliene.
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(c) (d)Figure 6.9: Texture bitmap omputation: The predited value is ompared to the raw ontextsamples produing either a 1 (above predition) or a 0 (below predition) for eah sample. (a)shows a given ontext, (b) shows the result of the omparison, () shows the order of the samplesin the ontext vetor and (d) the resulting texture bitmap.6.6.3 Context ModelingIn the urrent lassi�ation-based ontext modeling framework, the modelers aim at produ-ing a minimal set of harateristis for whih the ontexts that fall in a same group (lass)are similar in a way useful to the system, i.e., share similar empirial probabilities of the noisyenter sample onditioned on the noisy ontexts.As a lassi�ation problem, the goal is to �nd these optimal harateristis. With modelost [26℄ added to the problem, the optimal set of harateristis stems from a tradeo� betweenontext desription power and the possible number of ontexts. If noise is taken into aount,sensitivity in the measures of these harateristis is another problem to deal with.The omplexity of this senario led to the development of a exible sheme for the seletionof these harateristis. The result is that ontext lasses an be formed from the ombinationof three measures: quantized ativity level, quantized wing gradients and texture bitmap. Eah ofthese measured harateristis represent a di�erent tradeo� between preision and expresiveness.Ativity Level (AL)This measure represents a global ativity level of the region spanned by the urrent windowontext.Being a global magnitude that results from the ombination of many other measures, thismeasure should be the least a�eted by noise from the three, while its ability to haraterize aontext is limited to its global nature (no hint of spatial struture an be derived from it).Texture BitmapThe texture bitmap tries to apture a basi texture pattern from the ontext. In ontrast tothe Ativity Level, it is highly expressive but also highly sensitive to noise. It an be used inonjuntion with the other features to regain some of the strutural information that they donot apture.To ompute the texture bitmap, eah pixel in the window is ompared to the predited value.A single bit is used per pixel to indiate if its value was above or equal (1) or below (0) thepredited value. Finally, the bitmap is unrolled into a binary word by traversing the bitmap ina spiral fashion, i.e., as onentri irles of inreasing radius. Figure 6.9 shows this proedure
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M=4
N=60

=1

Figure 6.10: Example binning for the quantization sheme used in the Napkin modeler. Thehistogram, built from 60 hypothetial non-quantized gradients, is partitioned into 4 bins so thateah region that orrespond to the same quantized value has roughly 15 samples in it.Wing gradientsThe four wing gradients are independently omputed and, in ombination, an give usefulinformation not only about the overall ativity of the region in but also about the shape of thisregion. For example, if the North gradient is positive, and the South gradient is negative, thereis a loal maximum in the vertial diretion. If, at the same time, both the East and West wingsgradients have the same sign or are at,then there is ontinuity in that diretion, a situationthat ould arise if a line of the image is traversing the ontext.This sheme is a tradeo� between the two previous features sine it gives a better desriptionof the ontextual struture than the ativity level by itself, while being more robust to noisethan the binary texture omponent.Gradient diretionAnother desriptive element whih proved to be useful is the estimation of the diretion ofthe overall ontext gradient. This is omputed as� = tan�1�dNdS � : (6.19)QuantizationTo quantize the magnitudes involved in the ontext modeling (ativity level, wing gradientsand gradient diretion), a non-uniform quantization algoritm was developed.The main idea of this algorithm is to produe a quantization in whih the resulting quantizedvalues yield a uniform distribution (thus having maximum empirial entropy), i.e., so that eahquantized level has roughly the same ourene within the image.To ahieve this goal, the algorithm takes the histogram of the magnitude to quantize as itappears for the whole image and breaks it into regions (also alled bins) whih have roughly thesame number of samples inside of them. This idea is depited in �gure Figure 6.10 for a samplegradient histogram.The algorithm takes as input the unquantized histogram of the magnitude to be quantizedH that goes from 1 to N , and a number of bins to where the raw values will be put into, B.The histogram is assumed to be a monotonially dereasing funtion of 1 � n � N . An outlineof the algorithm is shown in Figure 6.11.



6.6. The Napkin Modeling Sheme 61� Compute T =PNn=1H [n℄.� Set t = N , the threshold pointer.� while t > B,� Compute M = dT=Be, the target number of hits per bin.� while A < M and t > B,� add H [t℄ to A.� derement t.� Set the urrent value of t as one of the quantization thresholds.� Derement B.� if the number of remaining levels t = B,� Assign all the remaining levels as thresholds, yielding t one-level quantization bins.� END.� Update T = T �M� Update M = dT=Be� Set A = 0Figure 6.11: Maximum entropy binning algorithm.Pathologial situations (suh as B = 0) are ommited for the sake of larity.Conditioning lass omputationWhen the Ativity Level, the Texture, gradient Diretion and the Wing Gradients have beenomputed, a onditioning lass is de�ned for the urrent pixel whih ombines the four featuresinto a unique numerial signature by onatenating their binary representations (Figure 6.12).a1 � � � ana t1 � � � tnt �1 � � � �n� w1 � � � wnwFigure 6.12: Conditioning lass omputation. na stands for number of ativity level bits, nt fortexture bits, n� for gradient diretion bits and nw for wing gradient bits.6.6.4 PreditionPredition in the Napkin Modeler was broken into a �xed preditor term and a ontext-dependant variable term (bias anellation, whose general desription was given in Setion 5.2).This is similar to the approah used in LOCO-I [33℄.In a �rst pass, a �xed predition is omputed for the whole image and a omplementaryontext model, the \bias anellation model", is used to perform a ontext dependant biasanellation.For the �xed part of the preditor, a baseline algorithm was developed, alled Average Napkin,along with two variants: the Sharp Napkin and the Smooth Napkin, whih are tailored for thetwo main types of noise studied (non additive and additive respetively).



62 Chapter 6. Proposed solutionThe basi idea of the three variants is to predit the enter sample using only those samplesfrom its surrounding window whih are smooth, and not part of rapidly hanging regions (edges,lines, et.). To measure the smoothness of eah region, the wing gradients that were desribedearlier are used to produe a wing weight proportional to the smoothness of the region. Theseweights are de�ned as wN = 1=(1 + jdN j) (6.20)wS = 1=(1 + jdS j) (6.21)wE = 1=(1 + jdE j) (6.22)wW = 1=(1 + jdW j): (6.23)6.6.5 Fixed predition variantsThe Average Variant omputes a per-wing average and then produes a predition usingonly the averages from those wings that are deemed to be at, i.e., whose sample values do notvary more than a ertain amount. The idea is to predit the enter sample using only thosesamples whose values are deemed to be lose to its (unknown) value.The atness riterion is based on the relative magnitudes of the four wing gradients. First,the minimum wing gradient magnitude is omputed,dm = min (jdN j; jdE j; jdS j; jdW j) : (6.24)A wing is onsidered to be at if its gradient magnitude is no greater than dm by a �xedthreshold, �, de�ned as � = grad thres� 3� jAj (6.25)or, if the broad variant is used, � = grad thres� 5� jAj (6.26)where jAj is the alphabet size and 0 � grad thres � 1 is a parameter of the algorithm.1To produe a �nal result using only the at wings, a seond set of weights is obtained,w0N = � wN ; jdN j � dm < �0 ; otherwise (6.27)w0S = � wS ; jdS j � dm < �0 ; otherwise (6.28)w0E = � wE ; jdE j � dm < �0 ; otherwise (6.29)w0W = � wW ; jdW j � dm < �0 ; otherwise : (6.30)1The maximum possible gradient is three times the alphabet size beause it is the signed sum of three loaldi�erenes whih an only di�er in jAj. The ase of the broad variant is analogous.
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(a) (b) (c)

PSfrag replaements ~z
Figure 6.13: Average Napkin variant. (a) raw ontext. (b) wing gradients. () the �xedpredition ~z is omputed as a weighted average of the at wings.The wing averages are omputed as follows:aN = (n + nn + (nw + ne)=2) =3 (6.31)aE = (e + ee + (ne + se)=2) =3 (6.32)aS = (s + ss + (sw + se)=2) =3 (6.33)aW = (w + ww + (nw + sw)=2) =3: (6.34)The ne,nw,sw and se ontext samples are divided by two beause wings overlap at thosepositions. Finally, with all these values alulated, the �xed predition produed by the AverageNapkin is ẑ = w0NaN + w0SaS + w0EaE + w0WaWw0N + w0S + w0E + w0W (6.35)A graphial sheme of this predition is shown in Figure 6.13.The Sharp Variant di�ers from the Average Variant in that the weights of the samples ofthe ontext an take only two possible values: 0 or 1. The predition is then omputed usingonly those samples whose weight is 1. The weights are de�ned as follows: �rst,a wing gradientsign is omputed for eah wing as,sx = 8<: �1 ; dx < �grad thres+1 ; dx > grad thres0 ; otherwise (6.36)where x is one of N;S;W;E. In the Sharp Variant, a wing is said to be at only if its orre-sponding wing gradient sign sx is equal to 0. Depending on the atness of the four wings, thealgorithm swithes between two modes of operation: at mode or nonat mode.If any of the wings is lassi�ed as at, the preditor works in at mode. In this mode, all thesamples belonging exlusively to at wings will be used in the predition (i.e., will have weight1). This disards samples that overlap two wings and one of them is not at. The result is aplain (i.e., non-weighted) average of the seleted samples whih an be written as,ẑ = P2C wP2C w (6.37)where C is the urrent ontext,  are the ontext samples and w is 1 if  belongs only to atwings and 0 otherwise.



64 Chapter 6. Proposed solutionIf none of the wings is lassi�ed as at, the preditor swithes to the nonat mode. In thisase, the region is haraterized into either a ridge, or a saddle by looking at the relationshipbetween the two gradients of eah main diretion (horizontal or vertial). In the �rst ase, thegradient signs math in one diretion and are opposite in the other. This would represent aridge sine there is ontinuity in one diretion and a loal maximum/minimum in the other,and thus it would be appropiate to use only the samples aligned with the ontinuous diretion(dimension) to predit. In the other ase, there an be no distintion between the importaneof the wings, but as the gradients are high in all diretions it seems lear that farther sampleswould not improve the predition so only the four losest neighbors are used to ompute theresult. An example of these ideas is depited in Figure 6.14.
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(d) (e) (f)Figure 6.14: Sharp Napkin variant. (a) is a ridge, (b) is a loal minimum and () is a saddlepoint. (d), (e) and (f) are the orresponding weights for eah ase.
The Smooth Napkin , in ontrast to the previous variants, produes the predition using allthe window samples (whih an inlude more samples than the ones used in the wing gradientomputation). It assigns a weight to eah sample using a per-sample gradient estimation (inontrast to a per-wing approah) and the relative distane of the sample to the enter sampleto be predited. This idea is inspired on the anisotropi �lter desribed in Setion 3.7.3.If j 2 C is a sample of the urrent ontext C with relative position j 2 Z2 (for example thenne sample has relative position j = (�2; 1)), its assoiated weight is de�ned aswj = 8>><>>: j0 � 0; j1 � 0 ; (wSj0 + wEj1)=jjj2j0 �; j1 < 0 ; (wSj0 � wW j1)=jjj2j0 < 0; j1 � 0 ; (�wNj0 + dEj1)=jjj2j0 < 0; j1 < 0 ; (�wNj0 � wEj1)=jjj2 (6.38)where wN , wN , wN , wN are de�ned in equations (6.20) through (6.23) This results from on-sidering one weight vetor per quadrant (NE,NW,SE,SW) and having eah sample weighted bythe inner produt of its relative position with the vetor that orresponds to its quadrant, nor-malized and then divided by its distane from the enter (thus dividing by jjj twie). The ideais depited in Figure 6.15. With all the weights alulated, the predition is just the weightedaverage of the samples,



6.6. The Napkin Modeling Sheme 65
(b)

We

Ws

Ww

Wn

dw

dn

de

ds

(a)

Ws

W W

j=(−1,1)

(c) (d)Figure 6.15: Smooth Napkin variant. (a) The wing gradients are omputed, (b) their orre-sponding weight vetors are derived from them, in () the weight vetor for the quadrant ofj = (�1; 1) is omputed and (d) shows the relative oordinate vetor j and the weight vetorW . The �nal weight is the internal produt of these two.Context dependent predition: Bias anellationThe ontext-dependent part of the preditor onsists of a bias anellation term whih isadapted for eah possible predition ontext lass. Following the disussion in Setion 5.2, thesheme adopted is that where the ontext lasses used for this adaptive part of the preditorare a re�nement of the lasses used for building the onditional probability distributions. Thus,the number of bits assigned to desribe eah of the desriptive omponents (ativity level, winggradients, gradient orientation, texture) has to be at least the same as those used to build theprobability onditioning lasses. The predition onditioning lass for a sample zi is denoted as�i and all the �i for the image zm�n form the predition onditioning map meta-image �m�n.The bias term b� for eah predition lass � is omputed as the average predition error of the�xed preditor output ~zi and the noisy value to be predited, zi for eah sample zi that belongsto that predition lass. For this, a bias ounter is de�ned whih aumulates the di�erenesbetween ~zi and zi, and a lass ounter is inremented to ontain the number of ourenes ofeah predition lass. Finally, the bias term is omputed as the quotient of both values:b� = aumulated error for lass �ourenes of lass � (6.39)The bias anellation tehique, being one of the tools used in image ompression, is designedto work well with smooth pieewise-onstant data suh as digital images. Beause of this, whenthe noise is non-additive, the ontribution of the noisy samples to the bias term degrades thee�etiveness of the tehnique.



66 Chapter 6. Proposed solutionTo avoid this problem, the noise mask �m�n produed by the prelassi�er is used to exludethose samples marked as noise from the bias term omputation. Thus, for a given sample zi, its�xed predition ~zi and its predition lass �i the assoiated bias anellation term is updatedas b�i := � b�i if �i = 1b�i + zi � ~zi if �i = 0 (6.40)After the �rst pass is done, the biases are omputed by dividing these bias ounters by thenumber of ourenes of eah predition onditioning lass (whih were not deemed to be noisysamples).With the biases omputed, a seond pass is performed in whih eah predited sample isorreted by the bias whih orresponds to its predition lass.Algorithm outlineFigure 6.16 summarizes the whole Napkin algorithm for the ase of the Average Preditionvariant.



6.6. The Napkin Modeling Sheme 67� Let zm�n be the noisy input and ym�n its pre�ltered version.� Initialize wing gradient and ativity level histograms.� Initialize the gradient threshold using (6.25)� First pass� For eah zi in zm�n:� Extrat the ontext z(Wi;T ) aording to the neighborhood template T (the tem-plate de�nition an be any as long as it inludes the wing samples w, n, e, s, nw,ne, se, sw, ww, nn, ee, ss).� Compute the wing gradients dS ; dN ; dE ; dW , the diretional gradients dH and dV ,the gradient diretion � and the Ativity Level AL using equations (6.8) through(6.18).� Add the wing gradient absolute values and the ativity level to their respetivehistograms.� Fixed predition:� Compute the minimum wing gradient, dm = min (dN ; dE ; dS ; dW )� Compute the four wing gradient weights as indiated in (6.20) to (6.23)� Compute the �xed predition, ~zi, using (6.31) and (6.35)� Obtain the texture bitmap, � , from the urrent ontext and �xed predition usingthe method desribed in Setion 6.6.3.� Compute the quantization bins for the ativity level, wing gradients and gradient diretion,based on their orresponding histograms, aording to the algorithm desribed in Figure 6.10.These de�ne three orresponding non-uniform quantization funtions Qa,Qw and Q�.� Seond pass: lassi�ation and bias estimation� Initialize the onditioning map m�n to hold the probability onditioning lass of eahpixel in the noisy image. The elements of this map will be referred to as i.� Initialize the predition onditioning map, �m�n, to hold the predition lass of eahpixel in the noisy image. The elements of this map will be referred to as �i.� Initialize the bias for eah predition lass, b� = 0.� Initialize the ounter for eah predition lass, n� = 0.� For eah zi in zm�n:� Quantize the wing gradients using Qw, the gradient diretion using Q� and theativity level using Qa.� Compute i as a onatenation of the ond at bits MSB (most signi�ant bits)of �, the ond tex bits MSB of � , the ond ang bits MSB of �, and theond wing bits of ÆN ,ÆE , ÆS and ÆW .� Compute �i as a onatenation of the pred at bitsMSB of �, the pred tex bitsMSB of � , the pred ang bits MSB of �, and the pred wing bits of ÆN , ÆE , ÆSand ÆW .� Update the bias for the urrent predition lass b�i aording to (6.40). If the biaswas updated, inrement predition lass ounter for the urrent lass, n�i .� Third pass: bias anellation� normalize the biases as b� = b�=n� for eah predition lass �.� For eah zi in zm�n, adjust ẑi = ~zi + b�i .Figure 6.16: Outline of the Napkin Modeling Sheme.



68 Chapter 6. Proposed solution6.6.6 Combined LBG/NapkinThis sheme uses the a simpli�ed version of the Napkin preditor (or any of its variants)as the predition �lter of the Legay Modeling Sheme. In some ases, this ombination hasyielded better results than any of the other two modeling approahes. This will be disussed inSetion 7.6.7 Denoising StageAfter the probability modeling is de�ned for the urrent noisy image, the seond pass of theDUDE is performed. There are three variants for doing so, whih depend on the seleted lossmodel: L2 , L1 or exhaustive searh. For the �rst two ases, fast losed forms of the denoisingfuntion (4.4) are available (see Appendix B for a derivation of these losed forms).For instane, if squared error (L2) is used, (4.4) takes the form of the expetation of theposteriori input distribution PXjC;Z :g(�;C) = E PZjC��1 � ��PZjC(�) ! (6.41)here E(:) denotes expetation.If absolute di�erene is used, (4.4) orresponds to the median of the posteriori input distri-bution: g(�;C) = median PZjC��1 � ��PZjC(�) ! (6.42)where PZjC(�) term is needed to normalize the resulting vetor bak to 1 after the element-wisemultipliation with �z.Finally, if any other loss model is used, an exhaustive searh is done for (4.4) using a preom-puted lookup table for �z � �x̂, whih is omputed only one for eah possible ombination of zi(the urrent noisy pixel) and x̂i (the potential denoiser output).6.7.1 From predition error to original noisy distributionFor eah symbol in the noisy sequene zi, its orresponding predition ẑi and onditioninglass i equation (5.3) and the assumption in (5.4) are used to ompute eah element of PZjin terms of PEj as PZj(z) = PEj(z � ẑ) (6.43)The predition error distribution ranges over an alphabetM 0 = f�M + 1; : : : ;�1; 0; 1; : : : ;M � 1gFor a given ẑ, there will be elements of PEj that do not orrespond to an element in PZj .In partiular, all those elements of PEj above M � 1, e 2 fM � ẑ;M � ẑ + 1; : : : ;M � 1g andbelow 0, e 2 f�M + 1; : : : ;�ẑ � 1g would be lost. One approah to this problem is to assume



6.7. Denoising Stage 69that those elements are all mapped to z =M�1 and z = 0 respetively. Thus (6.43) is modi�edin the following way:PZj(z) = 8>>>><>>>>: P�ẑ�1e=�M+1 PEj(e) ; z = 0PEj(z � ẑ) ; z = 1; : : : ;M � 2PMe=M�ẑ PEj(e) ; z =M � 1 (6.44)6.7.2 Channel InversionThe Channel Inversion problem whih is that of obtaining an estimated input probabilitydistribution PXj for eah ontext lass  requires di�erent strategies for the di�erent typesof hannels, as the ondition number [8℄ of the hannel transition matrix, whih measures thestability of the solution of the inversion problem, varies greatly depending on the type of hannel.For instane, the Gaussian hannel yields transition matries with very high ondition num-bers (numerially unstable) for any signi�ant value of its parameter � (signi�ant meaningthat the noise is atually notied in the image by visual inspetion). In ontrast, the non-additive hannels yield matries whih do not present numerial problems in their inversion.Furthermore, the inversion an be omputed eÆiently using losed form solutions for eahhannel.Beause of this, the problem of Channel Inversion will be disussed for eah hannel type insubsetions Setion 6.7.3|Setion 6.7.5.6.7.3 Denoising stage for the Gaussian ChannelThe transition matrix of the gaussian hannel has a high ondition number even for smallnoise variane values (e.g., � = 1), whih makes the hannel inversion problem numeriallyunstable. Beause of this, the hannel inversion proedure has to rely on heuristi approahesto obtain input probabilities whih apture that part of the information that is still reliableunder suh onditions.The greedy algorithmLet P be the set of probability distributions over the alphabet A and PZ a hannel outputprobability distribution. When an exat solution an not be found, one possible approah isto obtain an approximation of the input distribution PX , P �, whih minimizes the di�erenebetween the orresponding approximated output distribution and the true output distribution,P �X = argminP2P �j�TP � PZ j� (6.45)The greedy algorithm relies on this sheme by doing an exhaustive searh on the transitionmatrix olumns that generate the output probability subspae. It is de�ned in Figure 6.17.The greedy algorithm requires many iterations to onverge, whih makes it a ostly operation.Furthermore, as predition is performed and so statistis are gathered in terms of preditionerrors, the hannel inversion has to be omputed for eah possible ombination of ontext lass



70 Chapter 6. Proposed solution� set m = PZ� set PX = 0� while jmj > 0� Find the olumn of � whih maximizes the projetion of m on it, imax =argmaxi2A � hmT ;�iij�ij �. < :; : > means dot produt and �i is the i-th row of �.� Compute an update term as, � = � hmT ;�imaxij�ij , where � � 1 is used to avoid prematureonvergene.� Update input probability estimation, PX(imax) = PX(imax) + �.� Update the projetion residual of PZ , m = m�� � �imax .Figure 6.17: Pseudoode for the the Greedy Algorithm.and predition value. These two fats, when ombined, make it impossible to implement anyfeasible solution for this hannel without some further simpli�ation.The simpli�ation used is the one proposed in [18℄. This approah assumes that the transitionmatrix for this hannel is irulant, i.e., of the form� = 26664 p0 p1 � � � pM�2 pM�1pM�1 p0 � � � pM�3 pM�2... ... . . . ... ...p1 p2 � � � pM�1 p0 37775 :Given a probability distribution PX over the alphabet A = f0; : : : ;M � 1g, its irular shiftof magnitude a is de�ned as P(a+X)M (x) = PX((x+ a)M )where (:)M denotes modulo M arithmeti. Under the irulant matrix assumption it an beshown that, �TP(a+X)M = P(a+Z)M ;8a 2 A (6.46)Equation (6.46) means that the irular shift and inversion operations are interhangeable.Until now, when denoising using predition error statistis, those statistis had to be shiftedby the value ẑ before inverting the hannel for eah possible ẑ. As eah reonstruted distributionyields di�erent input distributions, the inversion proess had to be arried out for eah possibleombination of predition value and onditioning lass.Using the irulant matrix assumption, shift and inversion are interhangeable and the hannelan be inverted only one for eah onditioning lass in terms of the predition error distributionestimated diretly from the predition error statistis, and leave the shifting as the only per-pixelpredition-dependent operation.



6.7. Denoising Stage 71p0+p1 p2 0 0 0 0 00 p0 p1 p2 0 0 00 0 p0 p1 p2 0 00 0 0 p0 p1 p2 00 0 0 0 p0 p1 p20 0 0 0 0 p0 p1+p2Table 6.1: Approximate irulant matrix. The assumption holds for the entral part of thematrix.It must be noted that the irulant assumption is an approximation as the transition matrixgenerated by the Gaussian hannel is not stritily irulant. The irulant assumption holdsfor most of the \entral" symbols of the alphabet beause the mahine preision redues thesupport of the probability mass funtion (the range of values where p(x) > 0) to a small range ofabout 4�� and the hannel is additive. Table 6.1 shows an example of how the approximationworks.The e�ets of suh assumption have not been fully investigated, but urrently this is the bestavailable mehanism for making the DUDE-I work with Gaussian hannels while running withpratial omputational requirements.2The parametri approahAnother approah to this problem is to make ertain assumptions on the ontext-lass-onditional input probability distributions PXj . One possibility is to assume that PX is aninstane of a given family of parametri distributions. As mentioned in Setion 5.2, a goodandidate is the two-sided geometri distribution (TSGD). Reall that the TSGD is de�ned asPXj(x) = 1� ��1�s + �s ��jx��jwhere � (deay term) and � (enter) are parameters of the distribution and s = d�e � � isa term between 0 and 1. When PXj is modeled in this way, the parameters � and � an beobtained diretly in terms of the mean and variane of PZj :�X (a)= �Z = EPZj [Z℄ (6.47)�X (b)= �2Z � �2 = EPZj [(Z � �)2℄� �2� = �X + 1�p1 + 4�X�X � 2where �Z and �Z are the mean and variane of PZj and � is the hannel noise variane.(a) and (b) are immediate using that the noise is white (additive, independent of the lean dataand with zero mean). The full details of the derivation of 6.48 are given in Appendix C.This alternative has the advantage of being muh faster and to run in onstant time whenompared to the greedy algorithm.2Disabling the irulant matrix assumption and doing a per-pixel inversion takes tens of hours to run ona 2.2GHz Pentium 4 HP Xeon station with 1GB of RAM for a 512 � 512 image. Using the assumption, theexeution time on the same mahine and for the same image redues to about 5 minutes.



72 Chapter 6. Proposed solution� for eah onditioning lass � Invert the hannel in terms of the (noisy) predition error distribution, PEZ j usingeither the greedy algorithm or the parametri approah. Store the result as PEX j .� for eah noisy symbol zi� Take the preomputed input predition error distribution for its onditioning lass i,PEX ji .� Reonstrut the original ontext-lass-onditional input distribution PXji using (5.4)for the urrent predition ẑi.� Apply the denoiser funtion in (4.4) to PXj for the urrent noisy pixel, �. If L1 or L2norms are used, use instead (6.42) or (6.41) respetively.Figure 6.18: Seond pass of the DUDE-I for the Gaussian Channel.Having only two parameters per distribution instead of M , the overall number of parametersto be estimated is greatly redued and their estimations are more reliable. On the other hand, itputs heavy onstrains on the shape of PXj . This is related to the model ost problem desribedin Setion 5, and some of its pratial impliations an be seen in Setion 7.4.5.Algorithm outlineThe seond pass of the DUDE-I for the gaussian hannel is desribed in Figure 6.186.7.4 Denoising stage for the Salt & Pepper hannelContrary to the Gaussian hannel, the Impulse or so alled Salt & Pepper hannel is easilyinvertible and there is a very eÆient losed form solution for it. It is easy to show that theinverse of (2.5) for a given parameter � is��1 = 11� � � 26666664 1� �2 0 � � � 0 ��2��2 1 0 0 ...... 0 . . . 0 ��2��2 0 0 1 ��2��2 0 � � � 0 1� �2
37777775 : (6.48)

Given an output probability distribution for a given ontext , PZj , an Impulse Channelparameter �, and an input/output alphabet A = f0; : : : ;M � 1g,PXj = 11� � [(PZj [0℄ � �2 ); PZj [1℄; : : : ; PZj [M � 2℄; (PZj [M � 1℄� �2 )℄ (6.49)The above result has an intuitive interpretation: as �=2 blak (index 0) and �=2 white (indexM � 1) ounts are due to noise rather than to the lean sequene, to revert the hannel e�etmeans subtrating these amounts from the noisy distribution and re-normalizing (dividing bythe resulting sum, namely 1 � �). Furthermore, a losed expression for PXj;� an also beobtained using (4.3). For � = 0,PXj;0 = [(1� �2 )(PZj [0℄� �2 ); �2PZj[1℄; : : : ; �2PZj[M � 2℄; �2 (PZj [M � 1℄� �2 )℄(1� �)PZj(�) (6.50)



6.7. Denoising Stage 73for � =M � 1,PXj;M�1 = [�2 (PZj [0℄� �2 ); �2PZj [1℄; : : : ; �2PZj [M � 2℄; (1 � �2 )(PZj [M � 1℄� �2 )℄(1� �)PZj(�) (6.51)and for the rest of the values,PXj;� = [0; : : : ; 0; ��thz}|{1 ; 0; : : : ; 0℄: (6.52)Again, there is an intuitive interpretation of this result: as the only possible noisy symbolsare 0 and M � 1, any other observed symbol in the noisy sequene is lean and thus should beleft untouhed (i.e. g(�; ) = �). In the ase that the observed value orresponds to one of thenoisy symbols, the resulting probabilities are essentially a saled down version of (6.49) wherethe only position that has a relative hange is that of the noisy value.Tail gatheringWhen predition is used for Salt & Pepper hannels, and beause the noisy samples have a�xed, unorrelated value, the predition error statistis that orrespond to the blak and whitepixels (the extremes) get smeared. To obtain an approximate piture of how this happens,onsider the distribution of the predition error E for some onditioning lass , PEj alsoonditioned on the three possible hannel events: 'lean' when the sample gets out of thehannel untouhed, 'pepper' when it is substituted with z = 0 and 'salt' when it is substitutedwith z =M � 1, PEj(e) = P (E = ejsalt ; )P (salt j)+P (E = ejpepper ; )P (pepper j)+P (E = ejlean ; )P (lean j) (6.53)where P (pepper j) and P (salt j) are the probabilities of error of the hannel as desribed inSetion 2.2.2 for the onditioning lass . Assuming that the ontext lassi�ation is not a�etedby the noise,3 it an be further assumed that both probabilities are independent of the lass and thus equal to the global salt and pepper probabilities: P (pepper j) = P (pepper ) = �=2and P (salt j) = P (salt) = �=2. Thus (6.53) beomesPEj(E = e) = �2P (E = ejsalt ; )+�2P (E = ejpepper ; )+(1� �)P (E = ejlean ; ) (6.54)The pre�ltered image will onsist of lean samples and �ltered samples. Carrying on withthe assumption that the prelassi�er aurately detets the noisy samples, the �ltered sampleswill be based on other lean samples, and thus they will also be unorrelated with the noisysamples they are substituting. As the predition is built from this pre�ltered image, it an beassumed that the predited values will also be unorrelated with the noisy values:P (Ẑ = ẑjsalt ; ) = P (Ẑ = ẑ);8ẑ 2 A3The goal of the pre�ltering and prelassi�ation bloks is to avoid this.



74 Chapter 6. Proposed solutionP (Ẑ = ẑjpepper ; ) = P (Ẑ = ẑ);8ẑ 2 AUsing these results and the de�nition of the predition error, e = z � ẑ,P (E = ejpepper ; ) = P (E = 0� ẑj) = (6.55)P (E = ejsalt ; ) = P (E =M � 1� ẑj) (6.56)(6.57)Assuming that the predition is reasonably aurate, the distribution of the predited valueswill be similar to the noisy distribution for the ases where the samples are unorruptedP (Ẑ = aj) � P (Z = aj; lean);8a 2 A (6.58)and thus P (E = ejpepper ; ) = P (E = 0� ẑj) � P (E = 0� zj; lean) (6.59)P (E = ejsalt ; ) = P (E =M � 1� ẑj) � P (E =M � 1� zj; lean) (6.60)(6.61)Finally, using (6.53) through (6.61),PEj(e) � �2P (E = 0� zj; lean)+�2P (E =M � 1� zj; lean)+(1� �)P (E = ej; lean) (6.62)This approximation makes it possible to obtain a graphial representation of (6.53) by know-ing the distribution of the noisy sequene zm�n and the distribution of E for some . Thisapproximate representation an be seen in Figure 6.19 and provides a justi�ation for the tailgathering heuristi desribed below.The �nal result is that, if no ation is taken, equation (6.49) may yield negative probabilities inthe blak and white omponents. To avoid this, a heuristi sheme referred to as tail gatheringwas devised as a simple attempt to gather bak the smeared statistis. This algorithm isdesribed in Figure 6.20.The use of this algorithm led to a onsistent inrease in the denoising performane in all theexperiments performed with Salt and Pepper noise and is now onsidered an integral part ofthe seond pass of the DUDE-I for Salt & Pepper noise.The full seond pass of the DUDE-I for the Salt & Pepper hannel is developed in Figure6.21.
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Figure 6.19: Approximate shape of the onditional predition error distribution PEj when thenoisy image zm�n is the output of an Impulse Channel of parameter �.� set d = �2 � PZj [0℄� set i = 1� while d > 0 and i < M � 1� if PZj [i℄ < d,PZj [0℄ = PZj [0℄ + PZj [i℄;d = d� PZj [i℄;PZj [i℄ = 0;i = i+ 1� elsePZj [0℄ = PZj [0℄ + d;PZj [i℄ = PZj [i℄� d;END.� set d = �2 � PZj [M � 1℄� set i =M � 2� while d > 0 and i > 0� if PZj [i℄ < dPZj [M � 1℄ = PZj [M � 1℄ + PZj [i℄;d = d� PZj [i℄;PZj [i℄ = 0;i = i� 1� elsePZj [M � 1℄ = PZj [M � 1℄ + d;PZj [i℄ = PZj [i℄� d;END. Figure 6.20: Tail Gathering algorithm.



76 Chapter 6. Proposed solutionFor eah zi 2 zm�n� Take the onditioning state for urrent pixel i from the onditioning map m�n.� Retrieve the predition error distribution for it, PEji .� Obtain PZji from PEji using (5.4)� Obtain the estimated hannel input distribution PXji using (6.49).� Add the onditioning on the urrent noisy sample, zi, aording to one of (6.50), (6.51) or(6.52).� Compute x�i as symbol whih yields minimum expeted loss for i and � = zi using (4.4) orone of its faster forms (6.41) or (6.42) if L2 or L1 norms are used as the ost funtion.Figure 6.21: Seond pass for the Impulse Channel.Sine inverting this hannel is relatively inexpensive in terms of omputation when omparedto the rest of the denoising proess, it an be done for eah single pixel with no notieable inreasein omputation time. This eliminates the need for approximations suh as the irulant matrixassumption needed for Gaussian Channels or the preomputation of the denoising funtionfor the possible di�erent ombinations of noisy sample value, predition and ontext lass,(zi; ẑi; i), that may appear in the image.6.7.5 Denoiser funtion for the q-ary hannelAs for the impulse hannel and its variants, the inverse of the q-ary hannel an be omputeddiretly and expressed in terms of the hannel parameters as well:��1 = 11� � � 2666664  d : : : dd  : : : d... ... . . . ...d d  dd d : : : 
3777775 : (6.63)where  = M+p�2Mp�1 and d = p�1Mp�1 with p = 1�perr andM = jAj. This yields a simple losedform for the alulation of PXj and PXj;Z=z.PXj [i℄ = (� d)PXj [a℄ +D;8i 2 A (6.64)PXj;Z=z[i℄ = � APXj;Z=z[i℄ ; i = zBPXj;Z=z[i℄ ; i 6= z (6.65)where A = 1� perr and B = perr=M .While testing this hannel, the initial denoised images showed very notieable noisy pixelsthat where left untouhed by the algorithm, while most of the less notieable ones were orretlydenoised.After further investigation, it was observed that the tail gathering proedure desribed in(6.44) was the soure of the problem.



6.7. Denoising Stage 77To explain this fat, �rst observe that the oeÆients of (6.65) are of very di�erent ordersof magnitude. For instane, for an 8-bit alphabet and perr = 10%, A = 0:9 and B = 0:1=256 =0:0004. Thus, even if the predition distribution is highly onentrated around 0, a small tailan grow to a point where it dominates the solution. This only happens when z = 0 or z =M�1as the tails are gathered at those values. Figure 6.22 shows this onept for a real aseFor the q-ary symmetri hannel, the tail gathering algorithm, whih had improved theresults for the other non-additive noise types, produed the undesired e�et of amplifying theinuene of the outliers when their values was exatly in the borders of the alphabet.As a result, when using this hannel, the best solution was to disable the tail gatheringalgorithm.6.7.6 Denoising funtion aheThe original DUDE implementation proposes the preomputation of the denoiser funtionfor eah possible ombination of its arguments whih are the noisy ontext of the noisy sampleand the value of the noisy sample itself. When working with ontinuous tone images the size ofthe alphabet represents a problem for this approah, namely:1. The number of possible ontexts is jAjK for a ontext of size K.2. The number of possible noisy symbols, z, is jAj.This results in jAjk+1 possible ombinations.The �rst of the two problems is already redued by the ontext lassi�ation approah used inthis work, where the possible ontext lasses  2 � and thus the number of possible ombinationsis redued to j�jjAj, provided that j�j << jAjk. However, the use of predition makes thedenoising funtion depend on yet another variable: the predited noisy symbol ẑ. Beause ofthis, the �nal size of the ahe would be j�jjAj2 whih, for the ommon 8-bit graysale images,and j�j = jAj = 256 would be 2563 = 16777216.One way to redue this problem is by observing that, if the predition errors are highlyonentrated around 0, a partial ahe whih inludes only those ombinations of (z; ẑ; ) forwhih jz� ẑj < � an still over the majority of the ases while reduing its size to j�jjAj(2�+1)if 2�+ 1 << A.The inlusion of this strategy in the augmented DUDE yields an important redution inomputational ost and at the same time redues the memory needed to a degree where it isnot signi�ant with respet to the requirements of the other omponents of the algorithm.
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7 Results and disussion
7.1 Design of the experimentsThis hapter presents the results of applying the proposed solution to the di�erent noisemodels desribed. When available, the urrent state of the art resutls for eah noise modelare presented, and the disussion ontinues by omparing them to the ones obtained with theDUDE-I for eah modeling approah (Legay, Napkin or Combined LBG+Napkin).All the results, exluding those of Setion 7.5, are based on simulated noise over the images,so there is no noise or type parameter estimation implied, and thus the noise model parametersassumed by the DUDE-I are the \real" ones. Beause of this, a sensitivity analysis of the DUDE-I when tuned to the wrong hannel parameters is also presented at the end of the disussion ofeah type of noise.The results are presented in terms of PSNR (Peak Signal to Noise Ratio) with respet tothe lean image, as it is the standard objetive measure of denoising performane used in theliterature. Reall from Setion 2.3 that given a lean image xm�n and a noisy version of itzm�n, the PSNR is de�ned as MSE(zm�n) = 1N NXi=1 (xi � zi)2:The PSNR is expressed in dB (deiBells). The number of signi�ant digits in all the resultsis 1, as the experiments indiate that di�erentrandom simmulations (di�erent random seeds)yield a variane of 0.1dB in all the results. This is disussed later in Setion 7.2.6 and Setion7.4.7.The PSNR is the standard measure for omparing the performane between di�erent algo-rithms. However, it is desirable to have a measure of performane whih does not require theknowledge of the lean image, sine the latter may not be available (suh as in a real problemwhere the noise is not simmulated), and thus the seletion of the parameters whih give thebest denoising performane ould not be based on the PSNR. Motivated by the results in [34,Se. VII-B℄, the ompressibility arises as a possible measure whih has the desired properties:� As a measure the ompressibility of an image we use the average bpp (bits per pixel)obtained by ompressing it using the lossless ompression algorithm JPEG-LS. Clearly,this measure does not depend on the knowledge of the lean image.� The fat that the ompressibility is a good measure of denoising performane is shown in[34, Se. VII-B℄ for the binary DUDE in halftone images and for the size of the ontext. In



80 Chapter 7. Results and disussionthe latter work, an empirial experiment shows that the loal minimum of the ompress-ibility roughly oinides with the loal minimum of the di�erene between the denoisedimage and the lean image. As the results in this hapter will show, this empirial resultextends to the other parameters present in the DUDE-I.When omparing performanes, the best value for a given setting is shown in bold fae.The test images are taken from two standard test suites: the one mantained by the Signal& Image Proessing Institute of the University of Southern California1 whih ontains most ofthe lassial images used in image proessing papers, and the one used in the development ofthe JPEG-LS standard2.Results will be presented in tabular and graphi form. For the sake of brevity, the tabulatedresults are given for a small representative subset of the full test suites: the smaller Lena, Barb,Boats and Bridge, of about 1=4MP (MP stands for Mega Pixel,i.e., 1 million of pixels) areshown in Figure 7.1, and the bigger Bike with 4MP is shown in Figure 7.2.3For eah type of noise, the best results are shown for a small set of typial parameters used inthe literature. Then, the algorithm parameters whih yield the best results are spei�ed, alongwith the tests that were performed to obtain them. The latter set of tests are shown only forone noise parameter, exept for a few spei� ases.When denoised images are shown for visual inspetion, they are aompained by the noisyand lean images, and also for the image of the absolute di�erene between the denoised and thelean image. Darker values in this image indiate higher di�erenes, and learer regions indiategood denoising performane. This serves as an additional tool to study the performane of thealgorithms when visual inspetion of the denoised image alone is not enough.The di�erent types of noise an be divided into two groups: non-additive noise (even and un-even Salt and Pepper, Z-Channel, q-ary Symmetri) and additive noise (Gaussian). Some testswere performed only one per group, using the Salt and Pepper hannel as the representativeof the latter group, and (obvioulsy) the Gaussian hannel for the former.

1http://sipi.us.edu/servies/database/2http://www.jpeg.org/3All the experiments presented in this hapter were performed on a larger subset of the SIPI suite, and for theNapkin modeling, also for the JPEG-LS set. The seletion of the best parameters was based on the full results.
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(a) Boats (720�576). This is an interesting imagewhih is rih in edges at di�erent angles. (b) Lena (512 � 512). This widely used image isnotorious for its smoothness, whih makes it an\easy" image for denoising purposes.

() Barbara (720� 576). This imagewas designedto inlude small details and dominated by �ne tex-tures. It is thus a more hallenging image. (d) Bridge (512 � 512). The version inluded inthe SIPI suite of this image has been subjet toontrast enhanement using histogram equaliza-tion [9, pp. 146|152℄, thus inluding many pure-blak and pure-white pixels.Figure 7.1: Test images.
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Figure 7.2: "Bike" (2048 � 2460).This large image belongs to the JPEG-LS test suite and wasdesigned to inlude many di�erent patterns.



7.2. Salt and Pepper noise 83� image noisy SM GIO CSAM MND-DP10% lena 15.4 39.9 - 39.2 -boats 15.4 38.5 - - -bridge 15.2 33.2 - 37.2 -barb 15.3 33.5 - - -30% lena 10.7 33.9 35.7 34.3 -boats 10.6 32.1 34.6 - -bridge 10.5 27.9 - 31.5 -barb 10.6 28.0 - - -70% lena 7.0 16.7 - - 29.3boats 7.0 16.7 - - -bridge 6.8 15.8 - - 25.0barb 6.9 16.0 - - -Table 7.1: Referene base for impulse noise removal. The noisy image PSNR is also inludedfor further omparison.7.2 Salt and Pepper noise7.2.1 Referene resultsThe main results are presented for the ases � = %10, � = %30 and the more extreme aseof � = %70, whih are ommon settings found in the literature. For the sake of brevity, onlythe best results will be shown for all the three parameters. For the rest of the experiments, the\average" ase � = 30% will be used.As a basis for the disussion, the results of applying a simple seletive median �lter (SM) tothe test images and the results from other works in the �eld are summarized in Table 7.1. Thekeys to the olumn labels are:GIO Previous version of the DUDE for ontinuous tone images [18℄. This is basially theLegay Sheme desribed in Setion 6.5 without enhanements suh as the predition errordistribution lipping desribed in Equation Setion 6.43, the Tail Gathering algorithmdesribed in Setion 6.7.4, or the reursive pre�ltering sheme (Setion 6.3.2).CSAM Median �ltering of noise using the o-ourene matrix method for impulse noise de-tetion [24℄.MND-DP Median Noise Detetion with Detail Preserving [2℄.The best values obtained in eah ase will be used as the referene against whih we willompare the proposed algorithms under the same onditions.7.2.2 Legay resultsTable 7.2 shows the best results obtained by using the Legay modeling sheme using anAverage Filter to predit the enter sample, when applied to images orrupted by 30% impulsenoise. The best on�guration in this ase was found to be the following:



84 Chapter 7. Results and disussionimage referene Legaylena 35.7 37.5boats 34.6 36.7barb 28.5 33.9bridge 31.5 30.0Table 7.2: Best results in terms of PSNR for the Legay modeling sheme under � = 30%.pred. barb boats bridge lenaaverage 4.9 4.2 5.6 4.3median 4.9 4.2 5.6 4.3 pred. barb boats bridge lenaaverage 32.1 35.5 29.6 36.7median 31.7 35.0 29.4 36.4Table 7.3: Performane of Legay vs. predition �lter. Left: Compressibility (average bits perpixel); Right: Denoising performane (PSNR in dB)� The trivial prelassi�ation sheme is used to obtain a noise mask.� A 256 luster set is obtained after 25 LBG iterations on raw 5� 5 pixel ontexts presentin the pre�ltered sequene.� The �lter used for predition is an Average Filter applied to a 5� 5 square ontext.� The ost funtion is L2.� Four reursive appliations of the DUDE-I as a pre�lter, with the initial pre�lter set to aSeletive Median �lter over square windows of 5� 5 pixels.Seletion of the parametersThese tests show how the performane varies with respet to the di�erent parameters of theLegay Sheme.4 The following parameters are of speial interest:Preditor The Legay Sheme uses a simple sliding neighborhood �lter to predit eah pixel.Figure 7.3 shows the results of denoising using a window average and a windom median �lter asa preditor. The speial ase of the Combined Modeling will be desribed in detail in Setion7.2.4.As an be seen, despite the 0:5dB di�erene, there is no notieable visual di�erene betweenthe two images. Only a detailed inspetion of the whole image (impossible to observe here)reveals that the di�erene lies in the borders of the image. This is also dependent on theway in whih the image samples are extrapolated for the ontext samples that fall out of theimage (whih happens in the borders). As a simple repliation of the border pixels is used asthe strategy for the window samples falling outside the range of the image, the median �lterould be more a�eted than the average. Note also that the predition is performed over analready median-pre�ltered image. As this advantage of the Average over the Median preditionis on�rmed in all the test images, the Window Average was hosen.4Note that, in eah experiment, the results are obtained with no reursive pre�ltering performed. Obviously,this does not apply for the experiments whose subjet is the reursive pre�ltering behavior.
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(a) Median. Denoised PSNR=35.5 (b) Average. Denoised PSNR=35.0

() Absolute di�erene of Median. (d) Absolute di�erene of Average.Figure 7.3: Legay performane vs. preditor.



86 Chapter 7. Results and disussionNumber of ontext lusters In the augmented framework, this number determines thenumber of free parameters in the probabilisti model used for the image to be denoisedm andis related to the model ost desribed in Setion 5.1. In the baseline DUDE, the number ofparamerters depends on the number of possible ontexts, whih in turn is determined by thesize of the ontext template used. As desribed in Setion 4, this results in a restrition on thesize of the template if asymptoti optimality is to be guaranteed. Thus, it is natural to believethat the optimal number of ontext lusters should be related to the size of the images to bedenoised (not for a partiular image but for a given size). The results shown in Figure 7.4 seemto on�rm the existene of an optimum value for the number of ontext lusters, as all of theimages are of similar size. Note that the ompressibility heuristi, whih is desribed in [34,Se. VII-B℄, gives an optimum whih oinides with the optimum obtained by omputing thePSNR with the lean image also in this ase. This parameter also has an important impat inthe omputational omplexity, requiring O(m� n) additional operations for eah lass de�ned.So, it is desirable to keep it at a minimum. Based on this observation and the results in Figure7.4, a value of 256 was hosen as a good tradeo�.Size of the ontexts As the number of ontext lasses is not a�eted by this parameter, itdoes not play a role in the model ost as it does in the baseline DUDE algorithm. However, ita�ets the haraterization of the ontexts, and a�ets linearly the omplexity of the algorithm.From the results in Figure 7.5 it an be seen that a ontext size of 3 � 3 pixels yields the bestdenoising performane in all the ases. However, as the Legay Sheme is urrently limited inpratial terms (not theoretially) to a small range of image sizes, it annot be said that thissize of ontext is optimum for other sizes of images.LBG iterations This parameter implies a tradeo� between the omputational omplexity(number of operations) and the representativeness of the luster enters. More iterations al-low the LBG algorithm to better approah a stable solution. As this stage of the algorithmdominates the total exeution time of the Legay Sheme, with eah iteration taking O(m� n)operations, the ost of eah new iteration is high and it is desirable to keep the number ofiterations at a minimum. Figure 7.6 shows the e�et in terms of PSNR for the test images andFigure 7.7 shows a detail of Boats. Based on the results a number of 25 iterations was hosenas a good tradeo� between denoising performane and exeution time.Canonial mapping This proedure was presented in Setion 6.5 as a way to join similarontexts found at di�erent orientations aross the image. Figure 7.8 shows the e�et of itsappliation in the way in whih it a�ets the ontext lassi�ation of the pixels of a sampleimage. Although only shown for Lena, this mapping has improved the performane for all theimages of the test suite and thus it is ativated by default.Number of pre�ltering reursions The reursive pre�ltering an improve the performanesigni�antly, at the ost of multiplying the omputation time by the number of reursions. Theresults, however, do not inrease in a monotoni way but reah a saturation point whih varieswith the image and, as will be seen later, the modeling sheme (ontext and predition). Figure7.9 shows the results for a maximum of �ve iterations.Summary of the Legay Sheme for Salt and Pepper The preeding results in thissetion show a signi�ant improvement in the results of the Legay Sheme when ompared tothe results obtained in [18℄. For the majority of the images and hannel parameters studied,
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(a) Contexts of 3� 3 pixels.Denoised PSNR=33.8 (b) Contexts of 5� 5 pixels.Denoised PSNR=36.4 () Contexts of 7� 7 pixels.Denoised PSNR=35.4Figure 7.5: Legay performane vs. size of the ontexts.the results also surpass the best available results in the literature and, in many ases, by amplemargins (over 2dB of PSNR).On the ounter side, this sheme has high omputational resoures requirements for theurrent standards whih make it impratial for images of over 1MP.
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(a) Conditioning map after 8 iterations. DenoisedPSNR=36.2 (b) Conditioning map after 50 iterations. De-noised PSNR=36.5Figure 7.7: Legay vs. LBG iterations, detail of Boats. (a) and (b) show how the onditioningmap looks after 8 and 50 iterations respetively. Notie how the map is more \ordered" as theiterations are inreased.

(a) With anonial mapping. PSNR=36.7 (b) Without anonial mapping. PSNR=36.2Figure 7.8: Conditioning maps for Lena when modeling using (a) and not using (b) anonialmapping.
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92 Chapter 7. Results and disussion7.2.3 NapkinThe best results obtained for the Napkin Modeler desribed in Setion 6.6, for the ase� = 30, are shown in Table 7.4, and three sample denoised images presented in Figures 7.10,7.11, and Figures 7.12 through 7.14. These were obtained with the following on�guration:� Th Ativity level (AL), de�ned in Setion 6.6.3, is quantized into 8 levels (i.e., to 3 bits)using the quantization algorithm de�ned in Setion 6.6.3 and the resulting value is usedto de�ne 8 possible probability onditioning states.� The same 3 AL bits are ombined with 8 texture bits (TB) of the Texture Bitmap de�nedin Setion 6.6.3 to produe 2048 ontext-dependent bias anellation terms. As de�ne,the resulting predition lasses are re�nements of the 8 probability onditioning lasses.� The Average Napkin predition variant (Setion 6.6.5) is used with a gradient threshold of8% of the maximum possible gradient magnitude to determine the atness of eah wing.� Seven reursive appliations of the DUDE-I as a pre�lter are used, with the initial pre�lterset to a seletive median over 5� 5 windows.image referene Legay (x2) Napkin (x7)lena 34.3 37.7 38.2boats 32.2 36.8 38.3bridge 31.5 30.0 30.6barb 28.0 33.7 32.2bike 26.0 - 29.6Table 7.4: Best Napkin results for � = 30.The results for the Napkin modeling sheme are signi�antly better than those of the Legaysheme for all the images in the test suite (also those not shown here) with the exeptions of\Barb" and \Barb2", where the Legay sheme is learly better. This gives an overall advantageto the Napkin modeling sheme but also signals a potential pitfall of the modeling algorithmwhen onfronted with high frequeny patterns suh as those present in Barb.As a way to isolate the problem found with the two versions of \Barb", a third modelingsheme was de�ned whih ombined the ontext lassi�ation method of the Legay Sheme(LBG) with the Napkin preditor. This sheme was alled Combined LBG/Napkin. The resultsfor this sheme (whih ended up being the best in terms of denoising performane) are givenlater in Setion 7.2.4.
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(a) lean (b) 30% of noise

() Napkin x7 (d) Absolute di�erene.Figure 7.10: Boats denoised using the Napkin modeling sheme.
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(a) Clean (b) 30% of noise

() Napkin �7. (d) Absolute di�erene.Figure 7.11: Barb denoised using the Napkin modeling sheme.
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Figure 7.12: Bike under Salt and Pepper noise with � = 30%
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Figure 7.13: Bike denoised. PSNR=29.5dB.
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Figure 7.14: Absolute di�erene between lean bike and denoised bike.



98 Chapter 7. Results and disussionSeletion of the parametersThe Napkin modeler has many parameters. Only the ones that have shown a greater impaton the performane are shown. As for the Legay ase, the number of ontext lasses has adi�erent optimal value for eah di�erent image size. We show the parameter seletion resultsfor two image sizes: the four small images (Boats, Barb, Bridge and Lena, of about 0:25MP )and the large Bike (of 4MP pixels, whih is the size of the images produed by the urrentdigital ameras of many of the images in the JPEG-LS test suite).Context lass features The ontext modeling stage (desribed in Setion 6.6.3) produesa set of features whih desribe aspets of the ontext entered at eah pixel. Eah of thesefeatures an be desribed with a seletable number of bits (inluding 0) and the result is thenonatenated to build the �nal ontext lass. This an be done independently for the probabilityontext lass and the adaptive predition ontext lass. The following graphs show how the �xedpart of the preditor behaves with respet to eah one of these features. For this, the adaptivebias anellation was disabled and the distribution of the predition residuals was studied foreah lass when the probability ontext lasses were solely determined by one feature at a time.Figures 7.15 to 7.18 show onditional predition error distributions when the ontext lassesare determined from eah feature.The results show a lear dependeny with the ativity level and gradient angle omponent.The �rst a�ets mostly the shape of the distribution while the seond has a stronger e�et onthe bias, with a lesser e�et on the shape of the distribution. The texture element, althoughless lear, also has an important inuene on the bias term. The results with the di�erent om-binations have shown that a good ombination is to use ativity level as the \base" feature usedboth in distribution onditioning and bias anellation, with an added texture bits signaturefor the bias anellation terms. The gradient angle has not shown to be as relevant as ouldhave been expeted, and remains as a subjet for further experimentation.
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Figure 7.15: Predition error distributions onditioned on 32 quantized ativity levels.
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Figure 7.17: Predition error distributions onditioned on 4x64 wing gradient magnitudes.Beause of the anonial mapping, not all ombinations atually appear.

0 40 80 120 160 200 240 280
-40

-30

-20

-10

0

10

20

30
biases

cond class

bias

0 40 80 120 160 200 240 280
0

200

400

600

800

1000

1200

1400
variances

cond class

variance

-300 -200 -100 0 100 200 300
0.0

0.1

0.2

0.3

0.4

0.5
distributions

x

p(x)

0 400 800 1200 1600 2000 2400 2800
-50

-40

-30

-20

-10

0

10

20
countour of p(x)

Figure 7.18: Predition error distributions onditioned on 8-bit (256 possible) texture bitmaps.



7.2. Salt and Pepper noise 101pred. barb boats bridge lenaaverage 4.4 3.7 5.1 3.8sharp 4.5 3.8 5.2 3.9smooth 4.5 3.8 5.3 3.9 pred. barb boats bridge lenaaverage 29.4 35.1 29.1 35.7sharp 29.1 33.9 28.7 34.6smooth 28.7 33.3 28.1 34.5Table 7.5: Performane of Napkin vs. predition �lter. Left: Compressibility (average bits perpixel); Right:Denoising performane (PSNR in dB)Number of onditioning lasses Figure 7.19 shows how the denoiser performane varieswhen the ativity level bits are inreased for both the distribution onditioning lasses and theadaptive preditor onditioning lasses.An intersting result from this experiment is the lear dependeny between optimal number ofonditioning lasses and image size. Observe that the Bike image is better denoised with a highnumber of states, while the rest see their performane dropped after approximately 8 states.This behavior also holds for the rest of the JPEG-LS suite (the bigger images).Now, Figure 7.20 shows a slightly di�erent experiment in whih the distribution onditioninglasses are �xed for the adaptive predition, and vary from 0 (no distribution onditioning, onlyone ontext) to 3. Surprisingly, this parameter has no e�et on the overall performane. Thus,the real improvement lies in the predition part, while the distribution onditioning whih isthe base of the DUDE algorithm has no e�et on the �nal result.This result an be explained by examining the form of the denoiser for the impulse hannel forthe noisy ases, (6.50) and (6.51). The deision of the DUDE for eah noisy pixel is pratiallythat of substituting it with the average of the distribution of the error predition entered atthe predited value, whih in turn yields a value very lose to the predited value itself. Inthis framework, the ontext modeling plays the role of re�ning the overall predition by lettingmany di�erent preditors work spei�ally for a set of similar ontexts (those of the same lass).When these ontexts are indeed similar in terms of preditor behavior, the ontext modelinginreases the denoising performane.Canonial mapping, DC o�set removal The results for the Legay modeling also applyto this ase, with the same (relative) results.Preditor variant The �xed part of the Napkin has three variants desribed in Setion6.6.4: the Average Variant, the Sharp Variant and the Smooth Variant. The Smooth variant,in partiular, was designed to be more robust to additive noise. In any ase, the three variantswere tested with eah type of noise (additive and non-additive). The results are detailed inTable 7.5.Gradient threshold Figure 7.21 shows the experiment whih led to the seletion of 8% asthe optimal value for the overall ase.This is a rather nonintuitive parameter. Basially, it ontrols the sensitivity of the Napkinpreditor. A low value makes the Napkin onsider more wings as nonat, thus making it workmore like and edge detetor (see 6.6.4 for details). On the onverse, a higher value will make itbehave more like a window average �lter.
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104 Chapter 7. Results and disussionReursive pre�ltering appliations Figure 7.22 shows the reursive behavior of the DUDE-I when using the Napkin modeling sheme. A �rst remark is that its performene does not reaha saturation as soon as the Legay modeling. The algorithm is also signi�antly faster and thusreursion is not an expensive operation in this ase. This will be shown to be very importantto ahieve good results under higher noise rates.
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106 Chapter 7. Results and disussionimage referene Napkin (x60)lena 29.3 30.7boats 16.7 30.3bridge 25.0 24.5barb 16.0 24.9Table 7.6: Napkin results for the ase � = 70%.image MND-DP Napkin (x60)lena 25.4 22.4boats - 20.4bridge 21.5 20.1barb - 20.3Table 7.7: Best Napkin results for the ase � = 90% ompared to the MND-DP algorithm.Extreme Salt and Pepper: very high probability of noiseThe ase � > 50% is an interesting setting and speial algorithms have been developed for it.The best results of the proposed solution when � = 70% and � = 90% are ompared with theresults in [2℄ as a referene. For this ase, the reursive pre�ltering sheme was applied up to60 times. The rest of the parameters are the same as the previous results.Figures 7.23 and 7.24 show how the denoised Boats and Barb images look for the ase when� = 70%, while Figure 7.25 shows the result for Lena orrupted by � = 90% of noise.The results are also good for this extreme setting. For � = 70%, the state of the art for theBridge image is mathed, and the results for Lena are improved with only an inrease in thenumber of reursive pre�ltering appliations (whih ould be determined automatially usingthe ompressibility riterion). Finally, while the results for � = 90% do not reah the state-of-the-art, they are obtained using our tool, whih is more exible and generi than [2℄, analgorithm that is aimed spei�ally at this type of noise in this extreme setting.
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(a) Clean (b) 70% of noise.

() Napkin x60. (d) Absolute di�erene.Figure 7.23: Results for Boats orrupted by S&P with � = 70
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(a) Clean (b) 70% of noise

() Napkin x60 (d) Absolute di�erene.Figure 7.24: Results for Barb orrupted by S&P with � = 70
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(a) Clean (b) 90% of noise.

() Napkin x60. (d) Absolute di�erene with lean.Figure 7.25: Results for Lena orrupted by S&P with � = 90%



110 Chapter 7. Results and disussionimage referene Legay (x2) Napkin (x7) Combined (x5)lena 34.3 37.7 38.3 37.8boats 32.1 36.8 38.3 38.5bridge 31.5 30.0 30.6 30.7barb 28.1 33.7 32.2 34.7Table 7.8: Combined LBG+Napkin7.2.4 Combined LBG+NapkinWhile the results for the Napkin sheme surpassed the Legay results in the ample majorityof the ases (from the full test suite), they fell short of Legay for the two versions of \Barb".The visual inspetion of the denoised Barb for both methods revealed some notorious errorsprodued by the Napkin model in ertain regions of the image. To isolate the problem, and giventhat the predition and ontext modeling parts of both modeling shemes ould be interhanged,a Combined LBG/Napkin sheme was implemented where the modeling part was the LBG usedin the Legay Sheme (Setion 6.5.4), and the preditor was the Average Variant used in theNapkin Sheme (Setion 6.6.4).In this modeling sheme, the �xed predition part of the Napkin Modeling, namely theNapkin �lter, was used as the preditor �lter of the Legay sheme to yield the results of Table7.8. With this modi�ation , the number of reursive pre�ltering appliations rose to 5 beforereahing a saturation point.Of the results in table 7.8, whih give an overall advantage to the Combined Sheme, thedi�erene between the two modeling approahes is very important for the Barb image.Indeed,the results for this ase are better than the Legay results. Thus, the problem of the NapkinSheme with Barb lies in the ontext modeling part. Figure 7.26 shows a detail of both denoisedimages in whih the soure of the di�erene is learly seen: the Napkin modeler was jittered bythe highly hanging setions of the image loated mostly at the stripes and hekers around theimage. This in turn a�eted the onditional distributions whih grew too wide favouring thenoise patterns and thus dereased the overall performane in those areas.7.2.5 Comparison of the modeling approahesUp to now, one ould say that the best modeling sheme is the one whih ombines LBGwith Napkin predition. However, when omputational resoures are important, espeiallyexeution time, the best tradeo� is obtained with the Napkin Modeling sheme. Table 7.9shows the time onsumed in the �rst pass (modeling) and the seond pass (denoising) for eahmodeling sheme and a series of images of di�erent size. Even the largest one is below 1 MP(megapixel), the lowest resolution any digital amera an take pitures at. The required memoryand omputational time required to denoise a 4 MP image (bike) with the Legay modeling wassimply too muh for the mahine in whih these tests were performed (Pentium 4 at 2.2 GHz,1 GB of RAM, ompiled with the GNU C++ Compiler V3.3 at maximum optimization). Evenwhen dealing with the smaller images, the higher noise ases (� = 50% or � = 70%) ould notbe attaked with this sheme beause of the large number of reursive appliations needed.
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(a) Napkin x7 (b) Combo x5

() Absolute di�erene:Napkin x7 (d) Absolute di�erene:Combo x5Figure 7.26: Detail of barb as denoised by Napkin and Combo. The di�erene is learly observedin the stripes all over the image.



112 Chapter 7. Results and disussionsize (pixels) LBG (s) Napkin (s) 2nd. pass.(s)95052 57.0 0.7 0.7190134 113.0 1.5 1.5380208 223.0 3.0 3.0760285 441.0 6.0 6.0Table 7.9: Exeution time vs. image size for the di�erent modeling shemes in the �rst passand for the seond pass. The number of onditioning lasses is 256 for the LBG Sheme and 8for the Napkin Sheme.7.2.6 Sensibility to pseudo-random noise generationThe above results use the same simmulated noisy images for eah noise type and parameter.A �nal validation that applies to all of the above shemes is to study how muh do the resultsvary with di�erent samples of the noise simulated by the pseudo-random numbre generator(di�erent initial random seeds in the pseudo-random number generation funtion). Table 7.10shows show this analysis for the ommon setting of � = 30%, for 16 di�erent random seeds andfor two di�erent number of reursions. The modeling sheme used for this test is Napkin, dueto the large number of tests required.reursions image min max mean std. dev.0 lena 36.74 37.11 36.92 0.11boats 35.79 36.20 36.00 0.12barb 30.74 30.82 30.78 0.04bridge 29.80 30.05 29.96 0.071 lena 37.49 37.96 37.70 0.14boats 36.95 37.41 37.24 0.12barb 31.25 31.46 31.37 0.05bridge 30.19 30.43 30.34 0.064 lena 37.81 38.27 38.10 0.14boats 37.87 38.41 38.20 0.13barb 31.71 31.94 31.83 0.06bridge 30.36 30.61 30.52 0.06Table 7.10: Sensibility of the result for 16 di�erent random noise simmulations. These resultsare obtained using the Napkin modeling sheme.The �rst interesting result is that the standard deviation is roughly independent of the numberof iterations. This gives some sort of \stability" measure for the reursive denoising proess.On the overall, it is seen that a variation of around 0:1dB is not signi�ant in any of theexperimental results for the impulse noise and this modeling sheme.Prelassi�ation of impulse noiseWhen possible, prelassi�ation is a valuable tool. However, it is a diÆult tool to use, mostlywhen used to perform a seletive denoising, as a miss (i.e., to mark a noisy pixel as lean) ouldlead to very notieable noisy pixels left untouhed. On the other side, when used only as an aidto the modeling stage, for instane to avoid jittering in the bias anellation term adaptationthat apperars in the Napkin preditor, it an improve the overall performane signi�antly.



7.2. Salt and Pepper noise 113The following experiment, whose results are shown in Table 7.11 is a side test that fousesonly on the prelassi�ation performane for the Salt and Pepper ase. As mentioned before,the best approah in this ase is to use the Trivial prelassi�ation sheme desribed in Setion6.2.1, whih has a high number of false hits (i.e., lean pixels marked as noisy) but no misses.The homogeneity prelassi�ation, however, will prove to be a valuable method when onfrontedwith more diÆult noise types suh as the q-ary symmetri desribed in Setion 7.3.image noise trivial homogeneity DUDElena � false misses false misses false misses10% 0 0 23 0 0 020% 0 0 32 8 0 030% 0 0 39 29 0 0bridge 10% 97 0 35 47 122 3720% 92 0 42 84 108 8830% 86 0 49 127 146 109Table 7.11: Prelassi�ation results for the di�erent approahes.Note that Lena does not have any blak or white pixels and thus the trivial lassi�ation isperfet in this ase. This explains the poor performane of the CSAM algorithm (whih is more\fair") with Lena when ompared even to a seletive median (whih is based also on this trivialprelassi�ation sheme). As the number of false hits in Bridge orresponds to the white andblak regions whih are always the same, this number an only derease for the trivial lassi�er,as more of those pixels will eventually be orrupted (although with the same resulting value).5Sensibility to the hannel parameterUp to now the DUDE-I had perfet knowledge of the hannel paramenters. The purpose ofthe following experiments is to see how the performane is a�eted when the hannel parameteris not the orret one but lies within a range entered at the true parameter. Table 7.27 showsthe ase where the true � = 30% and the estimated parameter �0 varies from 20 to 60.The experiment shows a high sensitivity to values lower than the true parameter, but virtuallyno impat for higher ones. This result an also be explained by inspeting (6.50) or (6.51) inSetion 6.7.4. A value of �0 greater than the true � will yield negative distribution values at 0and M � 1. When the distribution is later orreted to be a valid probability distribution, thiswill only have a sale e�et whih does not a�et the denoising funtion. On the onverse, avalue of �0 smaller than � will leave nonzero residuals in distribution at those points whih willdisturb the following alulations in a notieable way (as the denoising funtion results in theaverage of the �nal distribution, two similar peaks at 0 and M � 1 will move the result towardsM=2).7.2.7 Asymmetri impulse and the Z-ChannelThe purpose of this experiment is to study how the asymmetry of the impulse hannel a�etsthe denoising performane. The impat should a�et mostly the pre�ltering stage, as more5The false hits and misses ounts are omputed when omparing the resulting masks with the true noisemasks, whih are omputed along with the noisy image and thus the onept of \noisy" pixel inludes every pixelthat is touhed, even if it ends up with the same value it had before going through the hannel.
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bridgeFigure 7.27: Performane vs. �0 for � = 30%.asymmetri hannels will favour bursts of one of the impulse noise values (\salt" or \pepper")whih ould onfuse the median �lter.The prelassi�ation should not be a�eted in the average, as both noise values are equallynon additive and will appear equally \strange" within their ontexts.To fous on the asymmetry, the overall probability of error is �xed to � = 30% and let theprobability of \salt" range from 0 to 30% (thus \pepper" will range from 30% to 0). The resultsare shown in Figure 7.28(a) for a nonreursive pre�ltering approah.A quik examination of Figure 7.28(a) shows that the result is worst for \all salt" than for \allpepper". This is due to the fat that the lean test images are loser to blak than to white, anda nonreursive exeution will leave \all salt" bursts whih derease the PSNR. As the reursivepre�ltering gradually removes the bursts, the result should be more and more symmetri. Thisis veri�ed in Figure 7.28(b).7.3 q-ary symmetri hannelThis hannel is more diÆult than the other non-additive noise models presented so far, asthe orrupted samples an take any value. The exibility of the DUDE-I (and of the baselineDUDE sheme) is demonstrated in this ase, whih so far has not treated by other methods inthe literature. Table 7.12 shows the di�erent denoising performanes for various noise levels. Asthere are no referene results from other works, the the results of applying a simple median �lterare used as a referene. The DUDE-I was on�gured to use the homogeneity prelassi�ation
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116 Chapter 7. Results and disussionsheme but only for bias anellation adaptation purposes. Figure 7.29 shows a sample denoisedimage for this type of noise.image 10% 20% 30%median DUDE-I median DUDE-I median DUDE-Ilena 30.0 37.0 29.3 34.2 28.3 31.8boats 28.5 36.3 27.7 33.0 26.8 30.6barb 23.5 31.4 23.2 28.4 22.8 26.4bridge 23.4 30.6 23.0 28.0 22.4 26.3Table 7.12: Denoising performane for the q-ary symmetri hannel and di�erent probabilitiesof error.
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(a) Clean (b) Noisy

() Napkin x4 (d) Absolute di�erene.Figure 7.29: Results for Boats orrupted by q-ary symmetri hannel with perr = 10%



118 Chapter 7. Results and disussion� image noisy Wiener GIO WCC SMG NLM FOE10 lena 28.1 33.6 34.0 - 35.6 - 35.0boats 28.1 33.2 33.7 - - - 33.0barb 28.1 31.5 32.0 - 34.0 - 32.820 lena 22.1 30.0 30.6 32.7 32.7 29.9 31.9boats 22.2 29.4 30.2 - - - 29.9barb 22.2 27.2 27.9 - 30.3 - 28.325 lena 20.2 28.9 29.4 - 31.7 - 30.8boats 20.4 28.3 29.1 - 30.8 - 28.7barb 20.3 26.0 26.6 - 29.1 29.6 27.0Table 7.13: Referene results for the Gaussian hannel.7.4 Gaussian hannelThe Gaussian noise is usually studied with a standard deviation � that goes from 5 to 25 inthe 8 bit, 256 graylevel sale, with � = 20 being the typial setting for \high" noise.7.4.1 RefereneTable 7.13 shows the urrent state of the art in gaussian denoising. The algorithms are:Wiener Wiener �lter (as de�ned by the wiener2 funtion of MatLab TM) applied to 5 � 5square windows.WCC Wavelet-Curvelet Combination [30℄ .SMG Sale Mixtures of Gaussians [25℄ .NLM Non Loal Means [1℄ .FOE Field of Experts [27℄ .GIO DUDE adaptation to ontinuous tone images, previous version [18℄.7.4.2 LegayTable 7.14 shows the best results for the Legay modeling sheme ompared to the best valuesof Table 7.13, while Figure 7.30 shows a sample result. The best parameters for this ase werefound to be the following:� 128 onditioning lasses.� The lusters are obtained after 25 LBG iterations.� Pre�tering is not performed. The noisy input is used as is to produe the onditioninglasses.� Predition is performed using an Average �lter over 5� 5 windows.� The square error funtion (L2) is used as the loss model.
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(a) Clean (b) � = 20%

() Wiener (d) Legay (x1)Figure 7.30: Sample denoised image using the Legay sheme for Gaussian noise.



120 Chapter 7. Results and disussion� image referene Legay (x1)10 lena 35.6 34.2boats 33.0 34.0barb 34.0 32.420 lena 32.7 31.0boats 29.9 30.5barb 30.3 28.625 lena 31.7 30.0boats 30.8 29.3barb 29.6 27.3Table 7.14: Tabulated legay results for Gaussian noise. Note that there is no available infor-mation for the denoising performane of the SMG algorithm for Boats when � = 10.As an be seen, the results for this setting do not reah the best available objetive perfor-manes attained by the other algorithms. On the positive side, they are better than a \standard"Wiener �lter.7.4.3 Seletion of the parametersThe results given in this setion will fous on the ase � = 20 and the images Boats andLena.number of onditioning lasses Figure 7.31 shows the e�et of this parameter for the ase� = 20. This behavior is repeated for the other values of �.LBG iterations 7.32 shows the e�et of this parameter for the ase � = 20. Again, thisbehavior is repeated for the other values of �.predition sheme The results of 7.15 show the e�et of this parameter when the preditionsheme is the average �lter. At a late stage of this work, a Gaussian lowpass �lter was addedwhih inreased the overall performane.image average median gaussianlena 30.6 30.4 30.6boats 30.0 29.8 30.2barb 28.0 27.9 28.3Table 7.15: Results for di�erent predition shemes.reursive pre�ltering Figure 7.33 reveals that the performane atually dereases after oneiteration.Figures 7.34 through 7.36, whih show how Lena, Boats and Bar look when denoised reur-sively, give a hint of what ould be the problem. Although a more in-depth analysis is required,one possible explanation is that an unstable losed-loop behavior is a�eting the reursive ap-pliation of the DUDE.
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(a) Boats (x1) (b) Boats (x2) () Boats (x4)Figure 7.34: Reursive denoising for the gaussian hannel and its e�et: Boats.
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(a) Lena (x1) (b) Lena (x2) () Lena (x4)Figure 7.35: Reursive denoising for the gaussian hannel and its e�et: Lena.
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(a) Barb (x1) (b) Barb (x2) () Barb (x4)Figure 7.36: Reursive denoising for the gaussian hannel and its e�et: Barb.



7.4. Gaussian hannel 127In other words, beause eah denoised sample ẑi depends on the predition,x̂i = g(zi; i; ẑi)then the denoised image is a funtion of the preditionx̂m�n = f(zm�n; ẑm�n)On the other hand, the predition ẑm�n is a funtion of the pre�ltered image ym�n,ẑm�n = �(ym�n)If the output of the denoiser in iteration n� 1 is used as the pre�ltered image of iterationn, ym�nn = x̂m�nn�1 ,and the result is a nonlinear reursive equation on the sequene of denoisedimages x̂m�nn (here the subindex indiates reursion level),x̂m�nn = f 0(zm�n; x̂m�nn�1 )where the pre�ltering in the �rst iteration (n = 0) is done by some non-reursive �lteringfuntion g(�)), ym�n0 = g(zm�n). This losed loop an be seen in Figure 6.2. If the pre�ltering or predition funtions produesimilar side e�ets in eah reursion, the e�et an beome more and more notieable.



128 Chapter 7. Results and disussion� avg/12 avg/24 nap1 nap3/12 nap3/245 37.8 37.9 38.0 38.0 37.910 33.9 34.1 33.8 33.9 33.920 30.1 30.2 29.4 29.4 29.9Table 7.16: Results for di�erent predition shemes for di�erent � values.7.4.4 NapkinAlthough the DUDE-I was designed with all the hannel models desribed earlier in mind, theexperimentation was mainly foused on tuning the DUDE-I to the non-additive noise hannelsfor whih the DUDE-I yielded outstanding results when ompared to the state-of-the-art. Theexperiments on the Gaussian hannel, and espeially the appliation of the Napkin Sheme toit, were performed at the �nal stages of the present work and are to be onsidered preliminary.The initial results for the Napkin modeling approah applied to a Gaussian hannel were notas good than those obtained with the Legay Sheme desribed earlier when the noise is aboveertain threshold.The following experiments in this setion are designed to pinpoint the main responsible forthis degradation, i.e., either the ontext modeling omponent or the predition omponent.Fixed lassi�ation sheme and di�erent predition shemes Table 7.16 shows di�er-ent results in PSNR terms for the Boats image under three di�erent hannel parameter values.These results were obtained by �xing the ontext model using LBG and 256 lusters, and thenvarying the predition sheme among �ve possibilities: average-of-12 (avg/12), average-of-14(avg/14), Average Napkin Variant (nap1), Smooth Napkin (nap3) (both desribed in Setion6.6.5) using either the same 12 (nap3/12) or 24 (nap/24) samples.As an be seen, under low noise levels (less than � = 10), the Smooth Napkin does a reasonablework as a preditor. For � = 20 the results fall below any of the two average preditors. Thisindiates that the Smooth Napkin predition, whose design was aimed at this type of noise, needsfurther development and experimentation in order to perform well under high noise onditions.Fixed predition sheme and di�erent lassi�ation sheme Table 7.17 shows how theperformane varies with the ontext lassi�ation sheme when the predition sheme is �xed(in this ase, to an average of 24). The �rst is the LBG with 256 lusters (the same used inthe previous table), and following it: 16 ativity levels (AL/16), 256 ativity levels (AL/256)and 256 onditioning lasses out of four 2-bit quantized wing gradients (WG/256), and theBroad Variant desribed in Setion 6.6.3 (Broad). The latter was the last of the experimentsperformed for the Napkin Sheme, and uses 16 Ativity Level bits as in the AL/16 ase.The results of Table 7.17 indiate that the Broad Variant is the best on�guration for theNapkin modeling sheme in order to perform nearly as well as the LBG sheme . Note thatonly for the ase � = 25 the di�erene between the LBG and the Broad Napkin surpasses 0.5dB.If the Napkin ontext modeling is used, the DUDE-I an be applied to large images. Thus,we �nish the disussion with a sample result for the Napkin/Broad variant on Bike (using awindow average as the preditor) . The result is shown in Figures 7.37 and 7.38.
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Figure 7.37: Bike orrupted by Gaussian noise with � = 20.



130 Chapter 7. Results and disussion

Figure 7.38: Bike denoised using the Napkin/Broad variant as the ontext lassi�ation shemeand a window average as the preditor.



7.4. Gaussian hannel 131� LBG AL/16 AL/256 WG/256 Broad5 37.8 37.00 36.9 36.6 37.510 33.7 32.5 32.5 32.2 33.520 30.1 28.8 28.7 28.7 29.625 29.1 27.8 27.7 27.8 28.4Table 7.17: Results for di�erent modeling shemes for di�erent � values.� image parametri greedy10 lena 33.9 34.2boats 33.5 34.0barb 31.8 32.420 lena 30.9 31.0boats 30.0 30.5barb 28.0 28.625 lena 29.8 30.0boats 29.1 29.3barb 26.8 27.3Table 7.18: Comparative results for the parametri and greedy hannel inversion algorithms.7.4.5 Other resultsInput distribution parametrizationOne of the goals for the Gaussian hannel was to remedy the ill onditioning of the hanneltransition matrix for this ase. By assuming that the input distribution is a parametri dis-tribution rather than any distribution over the 8-bit inpt alphabet, its parameters are diretlyobtained from the statistial moments of the output distribution. This eliminates the instabilityof the solution and, furthermore, the omputational ost of a full 256� 256 matrix inversion orthe greedy algorithm (whih is a ostly operation), at the ost of imposing heavy onstrains onthe input distribution.Figure 7.39 shows the omparison of two sample real onditional input distributions (om-puted using the noisy ontext lassi�ation as the onditioning lasses but over the lean image)and their respetive greedy and parametri approximations. In this ase, the parametri ap-proximation is very lose to the lean distribution. Figures 7.39() and 7.39(d) show two aseswhere the parametri distribution is not as good.Finally, Table 7.18 shows some sample results using the two approahes. Even tough theinput distribution parametri estimations seem to be better than the greedy ones, the resultsare learly and onsistently better for the greedy algorithm. As the greedy learly favoursthe enter value, it ould be argued that, as in the impulse ase, the predition is the mainresponsible for the results. However, the results of using the true distributions for denoising(heating the hannel inversion proess) are better than those of the greedy. One possibility isthat the ases of 7.39() and 7.39(d) is atually so bad that it drops the overall performaneeven tough the estimation is good in other ases, but this is still speulation and no soundonlusion is available at this time.
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(a) (b)

() (d)Figure 7.39: a) Sample true input distribution and its parametri estimation. b) The highpeak is the greedy approximation, the other two are the real distribution and its parametriestimation (smoother). ) and d) are two ases where the parametri estimation is not so good.This example was produed with the Baboon image.



7.4. Gaussian hannel 1337.4.6 Sensibility to the hannel parameterFigures 7.40 (for � = 10) and 7.41 (for � = 20) show how the denoising performane isa�eted when the true hannel parameter is � and the denoising is performed using an estimatedparameter �0.As expeted, the performane is dereased as the di�erene between � and �0 inreases. Inany ase, the performane is never below the performane of a Wiener �lter for an error in theparameter �0 of 15%, and is above the image noisy PSNR (i.e., it still performs some denoising)even for an error of 30% (see Table 7.13).7.4.7 Sensibility to pseudo-random noise generationAs for the impulse noise, the dependeny of the results with respet to the random seed ofthe random noise generation funtion used to produe the noise is studied. Table 7.19 showsthe results. image min max mean std. dev.lena 30.62 30.69 30.66 0.02boats 30.04 30.17 30.12 0.04barb 28.01 28.11 28.05 0.03Table 7.19: Sensibility of the result for 8 di�erent random noise simmulations. These resultsare obtained using the Legay modeling sheme with no reursive appliation.



134 Chapter 7. Results and disussion

7 8 9 10 11 12
30.6

31.0

31.4

31.8

32.2

32.6

33.0

33.4

33.8

34.2

Performance for sigma=10%

sigma

denoised PSNR

lena
boats
barb (a)

-30 -20 -10 0 10 20 30
0

1

2

3

4

5

6

7

8

Performance for sigma=10%

error in the parameter (%)

PSNR variation (%)

lena
boats
barb (b)Figure 7.40: Sensibility of the denoiser for the ase � = 10. a) absolute value, b) derease inperformane proportional with respet to the ase �0 = �.



7.4. Gaussian hannel 135

15 16 17 18 19 20 21 22 23 24 25
26

27

28

29

30

31

Performance for sigma=20%

sigma

denoised PSNR

lena
boats
barb (a)

-30 -20 -10 0 10 20 30
0

2

4

6

8

10

12

Performance for sigma=20%

error in the parameter (%)

PSNR variation (%)

lena
boats
barb (b)Figure 7.41: Sensibility of the denoiser for the ase � = 20. a) absolute value, b) derease inperformane proportional with respet to the ase �0 = �.



136 Chapter 7. Results and disussion7.5 Real life denoisingThe disussion so far has been entered on the appliation of the DUDE-I algorithm tosimulated noisy images where all of the properties (espeially memoryless nature) on the hanneland its parameters are perfetly known. As a pratial appliation, the ultimate goal is toapply it to images orrupted by real noise. This setion presents some preliminary results forthe DUDE-I when applied to the image shown in Figure 7.42. This is a sanned page of ananient translation of the work of Eulides to the Spanish language where the ink from thereverse page has �ltered thru to the front page. Clearly, this is not memoryless noise as thenoisy samples mantain the rough shape of the reverse page letters. However, this struture isrevealed at a higher sale, a fat that ould be exploited by the DUDE-I framework by restritingthe memoryless attribute of the hannel to be \loal". Even under this assumption, there aretwo more questions to answer: whih hannel model to use? whih paremeters? As there isno \real" noise hannel here, a hannel has to be seleted whih performs best and thus thehannel and its parameters beome parameters of the algorithm rather than part of the problemspei�ation.Figure 7.43 shows one of the best results obtained for this image. As there is no lean versionof the image, a hand leaned version of this image is used as a referene. Figure 7.44 omparesthis result with other methods. The parameters for this result are:Channel Gaussian with � = 20.Pre�lter Median of 3� 3 square window.Modeler Legay modeling with the following on�guration:� 5� 5 square neighborhood ontexts.� Only 8 ontext lasses.� Average of 7� 7 square neighborhoods �lter as a preditor.As an be seen, the denoised version is loser to the hand leaned version than the original onethan the output of any of the other algorithms. Another interesting point is that the parametersare quite di�erent to the ones that have been used to denoise \real gaussian" noise so far. Thesewere obtained after many experiments on the di�erent parameters in the proximity of ertaininitial guesses.The DUDE-I as an interative denoising tool The results in this setion are learlyappart from the rest of the disussion and must be onsidered only as a �rst hint on the utilityof the DUDE-I framework as a semi-automati denoising tool for real life image denoising. Inthis ase, the hannel type and parameters are additional user seletable aspets of the algorithmthat ould, for example, be hosen interatively in appropiate dialog boxes (suh as in the AdobePhotoShop or GIMP �lters).
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Figure 7.42: Sanned Eulides page (page034)
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(a) Hand-leaned (b) Noisy (original). PSNR=23.2dB.

() DUDE-I. PSNR=23.3dB. (d) Absolute di�erene.Figure 7.43: Best result for the Eulides page. The PSNR is interpreted as the di�erenemeasure with to the hand leaned version.



7.5. Real life denoising 139

Figure 7.44: Clokwise starting with top-left: sanned image; GSM [25℄; DUDE-I; Wiener Filter(MatLab wiener2 funtion). PSNR relative to hand-leaned version: 23.2 dB(sanned), 22.6dB(GSM), 25.9 dB(DUDE-I) and 25.2 dB(Wiener).





8 Conluding remarks
8.1 OverallThe main goal of this work was to adapt modeling tools used suessfully in image ompressionsuh as ontext modeling and predition to the DUDE algorithm in the hope that, by doing this,it would be possible to address the denoising of ontinuous tone images using this paradigm.An augmented framework was de�ned, and it proved to give good results for various typesof noise, surpassing the urrent state-of-the-art in some ases. Furthermore, this frameworkan be extended, and better modeling shemes an be built on top of it whih ould solve itsurrent limitations. Although several problems remain that require further researh, signi�antprogress was ahieved towards this the goals de�ned.Of the hannel models that were used to test the new system, the results that were obtainedare very good when ompared to the state of the art in the ase of non-additive noise types.For the additive Gaussian hannel , the results are below the best available results, although,at the same time, signi�antly above the results that an be obtained using a lassial AdativeWiener �lter.The results for the impulse hannel indiate that the main ontribution to the performane isdue to the suess of the predition sheme rather than in the ontext modeling part. However,this is a side e�et of the very partiular ase of the impulse hannel where the DUDE-I auto-matially hooses the orret behavior by letting the predited value be the main inuene in thedeision of the output. The added omputational burden is small and the resulting frameworkis more exible than a hard-oded spei� �lter for impulse noise removal.8.2 Modeling approahesAt a general level, the Canonial Transformation and DC anellation tools, whih are ap-plied in every modeling algorithm used, have proven to improve the overall performane, whihindiates that one of the main aspets to look at when doing a ontext model is to exploit thepotential symmetries that exist in the struture of images.The �rst attempt at ontext modeling was to use the LBG algorithm to do a vetor quanti-zation of the ontexts. Even tough its use led to some of the best results in terms of denoisingperformane, this model has shown to be impratial, mainly beause its omputational require-ments are too high even for small images.The Napkin modeling has shown to be a good sheme for the Impulse noise. In this ase, mostof the performane gain is redited to the predition sheme, inluding the role of the ontext



142 Chapter 8. Conluding remarksmodeling sheme when applied to the preditor ontext-dependent bias anellation. Of thedi�erent features that the ontext model of the Napkin sheme has to disriminate ontexts,the texture and ativity level omponents were found to be the most useful. The �rst is speiallyuseful for bias anellation, while the seond helps to sepparate the at regions of the imagefrom the borders, resulting in a good adaptive predition sheme. Despite this, the results inSetion 7.2.3 indiate that features suh as the gradient diretion or wing gradients provideuseful information on the struture of the ontexts, and thus these features should be subjetto a deeper analysis before ruling them out.This model needs further development to ahieve the desired robustness to additive noise,performing about 0:3dB below the Legay results when using the Broad Variant desribed inSetion 6.6. However, this disadvantage ould be overweighted by the redued omputationalrequirements implied by this method, whih allow the appliation of the DUDE-I to large imagessuh as Bike.8.3 Noise types8.3.1 Non-additive noiseAs mentioned, the results for the impulse noise are very good. These results also extendto the ase of asymmetri impulse noise and the Z-Channel, and also to the more diÆult q-ary symmetri hannel. All those results bene�t from the prelassi�ation shemes, where asimple thresholding was used for the impulse noise and its variants, and the more sophistiatedhomogeneity lassi�ation for the q-ary symmetri hannel. The pre�ltering sheme provedto be speially useful, being always a simple median �lter (in the �rst iteration). All of thisombined with the reursive pre�ltering sheme allowed toe DUDE-I to reah and surpass thestate of the art.It must be noted that any denoising algorithm ould be used for the pre�ltering stage, possiblyrising the overall performane. This inludes simple but yet better algorithms suh as theAdaptive Median desribed in Setion 3. Furthermore, this observation applies to any type ofnoise.Of the two modeling shemes, the LBG gives slightly better results than the Napkin at theost of being muh heavier in terms of omputational resoures. The only exeption amongall the images of the test suite (not only the ones shown here) is the Barb image, where thedi�erene is very notieable between the two approahes. On the average, the best tradeo�between the two, for the impulse noise, is the Napkin sheme.8.3.2 Gaussian noiseThe gaussian hannel has proven to be more hallenging to the proposed sheme, and whilethe results are not bad when ompared to \simple" denoising strategies like a Wiener �lter,they are always below the state of the art.Of the available modeling shemes, the slower LBG yielded the best results. The fasteralternative provided by the Napkin ontext modeling sheme (using the broad version of thegradient wing omputations and a ontext average as the predition sheme) dereases the



8.3. Noise types 143overall performane by about 0.5 dB with respet to the LBG approah, but also enables theappliation of the DUDE-I to large images where the Legay sheme results impratial.A simple predition sheme suh as an average of the ontext samples was seen to be moresuitable than the Napkin edge-detetion approah, whih appeared too sensitive to the additivenoise.Although the pre�ltering sheme, whose purpose original purpose was to attak the non-additive noise ases, did not give good results as an initial pre�lter when the �lter used was asimple median or average, one reursive pre�ltering appliation of the DUDE-I did inrease theperformane in all the ases. More pre�ltering appliations only degraded the performane.Another diÆult aspet of this hannel was the omputation of the ontext-onditional inputdistributions as the transition matrix is ill onditioned even for small values of � and theinversion is not reliable numerially. Of the two alternatives proposed to solve this problem, thegreedy algorithm as proposed in the �rst approah to this problem by Giovanni Motta is theone that gives the urrent best results. The parametri approah, whih an be onsidered as apreliminary attempt, yields slightly lower results (less than 0:5dB, with an average of 0:3dB).On the other hand it is onsiderably faster and requires less memory.





9 Future work
9.1 Modeling shemes9.1.1 Napkin enhanementsThe Napkin modeling sheme was strongly inuened by the tools and onepts that areused in ompression. Spei�ally, the ontext modeling sheme was meant to produe a gooddisrimination in terms of predition error statistis. However, these tools are not designedto work for noisy images, and the measurements taken in the Napkin model to give it somerobustness have not worked as expeted. One possibility is thus to ontinue on this line, tryingto ahieve the desired robustness while still using tools suh as ativity level, texture bits, andedge-deteting preditors. The ase of non-additive noise does not ount sine the pre�lteringstage produes a reasonably smooth image for these tools to work with.9.1.2 Other lassi�ation approahesStill under the ontext lassi�ation approah, other lassi�ation shemes an be investi-gated whih produe better results under noisy environments (again, mostly for additive noise).Frequeny domain tehniques [9℄, wavelets [16℄ are examples of tools that an give useful ontextinformation in the presene of noise.9.1.3 All for one, one for allThe probability models de�ned by both LBG and Napkin perform a partition of the ontextspae into disjoint ontext lasses. However, there is no ompelling reason for the disjointness ofthe lasses. The extreme ase of this paradigm is given in [1℄, where every ontext ontributes,in an appropriately weighted form, to the denoising of every loation in the image. However,this algorithm requires O(n2 operations to denoise an image with n pixels. This approah isalso known as the Parzen Window method for distribution estimation [7, pp. 164{173℄.An interesting diretion of investigation is to obtain a ontext modeling sheme that lever-ages the disjointness of the ontext lasses as the two proposed models do, while keeping theomplexity of the algorithm below O(n2) (for example requiring O(n log n) operations for animage with n pixels).9.1.4 Context odebooksThe vetor quantization performed by the LBG algorithm should yield a small set of repre-sentative ontexts. This ould be applied to a large number of (non neessarily noisy) imagesin an o�ine fashion and the resulting ontext \odebook" be used to produe a fast ontextlassi�ation to be used to denoised any new image that may appear. This ould also be appliedto the distribution estimations as well.
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Figure 9.1: Statistis blending onept. Here the ontext lasses are haraterized by quantizedvetors formed of the vertial and horizontal gradient estimations for the raw ontexts. Anexample ontext is haraterized and its feature vetor falls in the middle of two lusters, thusgiving a fration of the \ount" to eah luster.9.2 Context statistis9.2.1 Distribution parametrizationIt was shown that the use of a simple parametri approah to the problem of gaussianhannel inversion is possible. However, the results are still below the ones ahieved by thegreedy algorithm. Other parametrizations of the empirial distributions should be investigatedwhih give better results. For instane, the proposed two-sided geometri distribution modelould be extended to admit nonsymmetri geometri distributions (i.e., where the deay fator� is di�erent to eah side of the mode of the distribution).9.2.2 Statistis blendingCurrently, the probability onditioning model implies a \hard" lassi�ation of the rawontexts present in the image into a �xed number of lasses. One this is done, however, theoriginal raw ontexts are still available. If the ontext lasses are made up of a ertain set ofmeasures (e.g., ativity level), and the raw ontext measures fall at an even distane from morethan one ontext lass luster enter in the measures spae, then assigning the urrent pixel toone of those lasses would inur in a loss of useful information.Instead of doing this, the ontribution of the statistis for eah pixel ould be divided amongseveral onditioning lasses in a way proportional to the likelyhood of the pixel being in eahof them (the overall ontribution should sum to 1, naturally, as one pixel ounts as \1" in theoverall statistis). The overall onept is depited in Figure 9.1.9.2.3 Statistis interpolationThe same idea of 9.2.2 an be used in the seond pass when reovering the onditionalstatistis for the urrent pixel. If the raw ontext is reovered (again, for example, an unquan-tized ativity level), a point in the measure spae that makes up the ontext lasses an bereomputed. Now, instead of using the nearest lass statistis as the onditional statistis forthe urrent pixel (whih is what is being done through the onditioning map in the urrentimplementation), one ould use a mixture of more than one nearest lass. Shemes like linearinterpolation ould be used if the ontext lusters were produed by salar quantization on themeasure spae's dimension. If the quantization is vetorial (e.g., using LBG), then slower butmore general algorithms like the Parzen Window sheme [7℄ ould be used to produe an interpo-
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Figure 9.2: Statistis interpolation. Here, eah luster enter in the ontext lass feature spaehas an assoiated statistis vetor to it. By reovering the unquantized feature vetor, aninterpolated statistis vetor an be built out of a number of nearest neighboring lusters.lated version. Other possibilities are to model the whole image statistis as a multidimiensional�eld over the onditioning lass measure spae and apply some Spline or polynomial �tting toit. Some of these ideas are depited in �gure 9.2.9.2.4 Tail BuketingThis is a possible tehnique to redue the number of parameters of the overall model. Itis based on the idea that the tails of the predition error density funtions would be normallysparse and so the statistis of eah symbol on it. On the other side, if the behavior of thepreditor (for example, the approximate shape of the predition error) is known in advane,the sparseness ould be redued by merging all these tails between lasses and then redistributethe resulting shape among the statistis for eah lass in lieu of the previous tails. The idea isdepited in Figure 9.3.9.3 Heuristis for noise model type and parametersA pratial issue that needs to be addressed for the DUDE to be used as, for example, aommerial plugin, is to have some sort of noise model and parameter estimation. An ordinaryuser should not know anything about noise models or parameter, and even a tehnial user may�nd it umbersome to have to speify suh parameters eah time.There are many simple tehniques for estimating the parameters of hannels like the Impulseor the Gaussian hannel that ould be easily inluded in a future version.9.4 Automatized parameter seletionThis is more a general issue and deals with all the parameters that make up a ertain on�g-uration of the DUDE, for example, the size and shape of a ontext, the number of onditioningstates, number of iterations, et. This has also pratial impliations if the aim was to obtaina plugin that ould be used by non-tehnial persons.Many of the urrent parameters ould be automatially hosen one their behavior underdi�erent settings (for example, image size) has been studied.
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(a) (b)

(c)Figure 9.3: Tail buketing sheme. (a) Predition error statistis for the two hypotheti ontextlasses. (b) tails are merged into one smoother version, taking sale into aount. () theresulting shape replaes the original tails.



A Software implementation
A.1 OrganizationThe appliation was developed in C++ using the GNU C Compiler (GCC) as the maindevelopment tool, mantaining ross-ompatibility with MS Visual C++ 7.1 (inluded in MSVisual Studio .NET 2003). For the ompilation, both GNU Make�le �les and Visual C++projet �les are inluded in the soure tree.The soure ode is extensively doumented and onforms to the format used by someautodoumentation tools, spei�ally, with the Doxygen doumentation tool (also availableunder the GNU Publi Liene) whih automatially produes a referene manual in variousformats inluding LaTeX and HTML.The soure ode tree is baked by the Conurrent Versions System (CVS) whih is the defato standard used for version ontrol in most software projets.A.2 Soure treeAs a general guideline, all the algorithms, inluding the DUDE implementation itself, wereimplemented in a modular way without any dependeny on the exeution environment or userinterfae. This also applies to the base onept models (sequene, alphabet, hannel, et.)making not only the algorithms but the objets used by them easy to port to other appliations.Almost all the ode uses generi programming tehniques (C++ templates), as it enablesoneptual exibility while avoiding the overhead related to other ommon tehniques. Forexample, the Sequene lass has been generalized to any dimension and symbol type. Fur-thermore, template metaprogramming tehniques are used to make any dimension-dependentalulations (for example, D-dimensional indexation) unrolled at ompile time.A.3 CompatibilityThe soure ode omplies with the ANSI C++ standard and urrently ompiles under GNUCompiler Coletion (GCC) 3.x, 4.0 and Visual C++ 7.x. GNU Make make�les are inluded forautomati building using GCC, and a Visual C++ Solution is inluded for VC++ ompilation.A.4 Version ontrolThe Conurrent Versions System (CVS) version ontrol system was used to manage theprojet �les throughout its development. This is a valuable tool whih simpli�es the development



150 Appendix A. Software implementationand update of the projet by many programmers and adds redundany that prevents the lossof data.A.5 PrototypingThe Silab pakage1 was used to perform simulations and to analize the results of theexperiments. This is a high quality and performane free software alternative to other ommonsimulation environments.A.6 DesignThe implementation is written in C++ and makes heavy use of generi programming onepts(i.e., C++ templates and related tehniques) to maximize exibility and speed at the same time.The design is driven by the Objet Oriented Programming paradigm, breaking the problem ina few oneptual families (data, proessing bloks, algorithms, utilities) with spei� lassesrepresenting entities suh as Image, Index, Context, Algorithm, Filter. Eah onept family isenglobed in a respetive C++ namespae to larify the relationship among its members.Algorithms are the entral part of the implementation, and are usually broken up into sub-algorithms or strategies that an be on�gured at run time to hange spei� aspets in thebehavior of the algorithm they are part of. They belong to the algo namespae. Besides thesequene-spei� algorithms (suh as Filter), several generi algorithms are also inluded in thismodule. Examples of these are vetor omparison riterions, vetor quantization, et.The data types orbit around the Sequene onept, of whih Image is a onvenient speializa-tion for 2D sequenes. To ease the development, lasses suh as Sequene ontain delarationsfor their ompatible parameterized related lasses. For example, for a 2D sequene, Sequenede�nes an Index type whih is itself parameterized by D=2. All the sequene-related oneptslie in the seq module.The DUDE-I is implemented as a marosopi algorithm where the key stages (pre�ltering,ontext modeling, predition) are governed by orresponding strategies, and the denoising stagedepends on the type of noise. Beause it is the entral algorithm, and beause its subalgorithmsare atually very omplex by themselves, the DUDE is ontained in a spei� module, the dudenamespae.A.7 DoumentationThe full soure ode is well doumented and formatted in a way that enables the automatigeneration of printable and/or user-friendly doumentation through the Doxygen2 open soureautomati doumentation tool. The doumentation is plaed under the do/api diretory inthe soure tree and an be regenerated at any time by typingdoxygen dude.dox1http://silabsoft.inria.fr/2http://www.doxygen.org/



A.8. parameterization 151with the root of the soure tree as the urrent diretory. The doumentation is generated inHTML and LATEX, and plaed in do/api/htlp and do/api/latex respetively. The LATEXtoolhas to be run in order to produe a printable doument. To do this, typelatex refman.texfrom the do/api/latex diretory.A.8 parameterizationAs was mentioned, most of the ore lasses are C++ templates. Two parameters were onsid-ered in the generalization of the algorithms: the dimension of the sequenes, and the type usedfor the symbols. In this way, the urrent implementation is potentially appliable to arbitrarydimensional sequenes (from audio to multidimensional images), and arbitrary symbol types(from bytes to double values).However, some minor hanges are needed to be able to use the implementation for dimensionsother than 2. This is mainly beause some 2D-spei� algorithms (for example, the Napkin pre-ditor) are de�ned only in terms of 2D sequenes, and beause the ode inludes the generationof some debugging images whih rely on 2D-spei� output formats. It is very easy to om-ment out these parts, and the inluded 2D-spei� algorithms so that the rest works for otherappliations.A.9 utilitlesFlexibility, ease of on�guration and runtime debugging output were onsidered of key im-portane in the development, as this implementation is an experimentation tool above anythingelse. A set of general purpose utilities were inluded that deal with suh tasks. These utilitiesare grouped under the util namespae and, beause they do not rely on generi parameters,an be preompiled into a library whose name is simply \dude" (atually, the system dependentname may vary: for Windows it is dude.lib, and for Unix/linux libdude.a).A.9.1 on�gurationAll the algorithms are on�gurable in a hierarhial fashion. Eah algorithm an have itsown parameters, and its subalgorithms as well. The parameters are organized in a hierarhi-al, domain-like struture that reets the aggregation of algorithms and subalgorithms. Forexample, the DUDE algorithm has its parameters in the \root" domain, thus the name of itsparameters appear diretly as, for example, \reursion level" or \reursive". The DUDE in-ludes a pre�lter as one of its subalgorithms, on�gured through the parameter \�lter". Filter,in turn, has its own parameters, for example, \template". The latter would appear as a globalon�guration parameter under the name \�lter.template", showing that it is a parameter of thesubalgorithm \�lter". This same sheme an ontinue to any depth.The Con�guration tools enable us to use a uniform interfae to on�gure the algorithmsand publish the available parameters, regardless of the \front-end". For example, the urrentimplementation an read and write unix-like ASCII on�guration �les, parse ommand linearguments and produe help messages to the onsole without the need to write spei� ode



152 Appendix A. Software implementationin the ommand line interfae. The same implementation is used by the GUI to on�gure theunderlying implementation.A.9.2 loggingThe Logging failies outputs information, error and debugging information to the onsole orto a �le. The level of verbosity an be on�gured at run time. The implementation inludesfaility methods to build omplex debugging output strings, traking time between alls, andoutput preformatted data suh as vetors and matries.A.9.3 input/output formats for images and matriesThe urrent implementation inludes a generi interfae for reading and writing images, anda spei� implementation for the PGM format usually found as the \raw" image format underUnix or its variants. It also inludes Windows Bitmap (BMP) read and write apability.Also inluded are utilities to read and write Matlab (4.2) matries, whih are also handled bySilab (an open soure Matlab lone), to ommuniate data between these development toolsand the C++ program.A.10 ommand line interfaeAs the whole implementation is modularized, the ommand line interfae is just a smallprogram whih aepts the full set of on�guration parameters through a on�guration �leand/or ommand line parameters, a noisy image to be denoised or else a lean image to addsimulated noise and then denoise it, produing the denoised output as well as optional analysisinformation for experimentation purposes. Some of the ommon usage ases are desribedbelow.Without arguments , the ommandduderuns a demo by reating a uniform 128 by 128 gray image, adding noise to it and thendenoising it with the default on�guration.To obtain online help , typedude -hThe exeution will terminate immediatly. All the parameters are of the form -key=value,although the -help option shows the parameters without the hypen pre�x.To obtain help for the full set of parameters use -X before -h:dude -X -hTo simmulate noise on a lean image and then denoise it using the default on�guration:dude some image.pgm



A.11. graphial user interfae 153This will use the default noise type and parameters (Salt and Pepper noise with � = 30%,Napkin modeler). The following exampledude -hannel=gaussian -hannel.sigma=5 ...-outdir=gauss5 test some img.pgmwill orrupt the image using a Gaussian hannel with � = 5, denoise it and plae the outputin the gauss5 test diretory.To reate a default on�guration �le dude -reate=name of the file.The \.fg" extension has been adopted by onvention, but it is not a requirement. Both the-help option and the generated on�guration �les give detailed information on eah parameterand are a good soure of information to learn how to use the program.To use a spei� on�guration �le ,dude -onfig=some fg file ...To avoid the addition of noise (to lean an already noisy image), usedude -add noise=false ...A.10.1 on�guration �lesCon�guration �les are simple ASCII �les where the lines are of the form key=value (whitoutthe preeding hypen). If a \#" appears on a �le, the rest of the line in whih it appears isignored. Any line that begins with a \#" is onsidered a omment. The best way to use theommand line interfae is to produe a default on�guration �le with the -reate ommand.A.11 graphial user interfaeA graphial user interfae (GUI) is inluded for ease of use. The GUI is written in the Javalanguage as it is very easy to write suh appliations in that language and also highly portableas a way to produe graphial user interfaes.The GUI is easier to use than the ommand line interfae, although it doesn't give aessto the full range of parameters. The interfae shows a twin display whih pans and zoomssynhronously so that omparison between images is easy at any resolution or even pixel bypixel. The basi operations are presented as buttons in the main window, while the rest isontained in the menu bar.The GUI also ontains some basi tools for the analysis of the denoising proess (image di�er-enes,standard measures suh as PSNR, et.). Finally, the rest of the on�gurable parametersthat are not aesible an be set by reating a ustom on�guration �le and loading it with theGUI (these �les are the same used by the ommand line interfae).



154 Appendix A. Software implementationA.11.1 Java/C++ integration (JNI)The C++/Java ommuniation is arried out using the JNI standard (Java Native Interfae)mehanism that omes with the development kit. The GUI implementation is thus divided ina series of Java lasses and a series of C �les whih interfae the Java lasses with the DUDEimplementation. The ompilation of suh a program is rather ompliated and requires theuse of some spei� Java tools to omplete the proess. These steps are inluded in boththe GNU Make make�le and Visual C++ Solution �le for the GUI so no real knowledge isneeded to ompile it, but ertain speial requirements are still needed. For instane, the JavaDevelopment Kit3 (1.4 or above) is needed to ompile the GUI, the JAVA HOME environmentvariable must be de�ned, and the Java ompilation tools (java, javah) need to be inluded inthe PATH environment variable.

3http://javasoft.sun.om/



B Fast losed forms for the denoisingfuntion
In the following derivations it is assumed that the expeted loss is omputed with respet to adistribution P over an alphabet A = f0; : : : ;M � 1g.B.1 For the L1 loss modelConsider the expeted loss for the L1 error and a hosen denoiser output �. In this aseeah term of the loss matrix �x� = jx� �j and the expeted loss R� an be written asR� = x=M�1Xx=0 P (X = x)jx� �j (B.1)this an be rewritten asR� = x=��1Xx=0 P (X = x)(�� x) + M�1Xx=�+1P (X = x)(x� �) (B.2)

Consider the de�nition of the median of P , �med for whih1. P (X � �med) � 1=22. P (X � �med) � 1=2To prove that �med yields the minimum expeted loss, it suÆes to show that R� is a mono-tonially dereasing funtion for � � �med, and monotonially inreasing for � � �med. Forthis, take the di�erene R� �R��1:



156 Appendix B. Fast losed forms for the denoising funtion
R� �R��1 = x=��1Xx=0 P (X = x)(�� x) + M�1Xx=�+1P (X = x)(x� �)� (B.3) x=��2Xx=0 P (X = x)(�� 1� x) +M�1Xx=� P (X = x)(x� (�� 1))!= x=��1Xx=0 P (X = x)(�� x)� x=��2Xx=0 P (X = x)(�� 1� x) +M�1Xx=�+1P (X = x)(x� �)�M�1Xx=� P (X = x)(x� (�� 1))= x=��1Xx=0 P (X = x)(�� x)� x=��2Xx=0 P (X = x)(�� x) + ��2Xx=0 P (X = x) +M�1Xx=�+1P (X = x)(x� �)�M�1Xx=� P (X = x)(x� �)�M�1Xx=� P (X = x)= P (X = �� 1) + ��2Xx=0 P (X = x)�M�1Xx=� P (X = x)= ��1Xx=0 P (X = x)�M�1Xx=� P (X = x)= P (X � �� 1)� P (X � �) = 1� 2P (X � �)Using the de�nition of �med,R� �R��1 = � � 0 ; � � �med� 0 ; � � �med (B.4)Thus, the global minimum is � = �med.B.2 For the L2 loss modelIn this ase �x� = (x� �)2. Using EP (:) to denote expetation over P ,R� = EP [(x� �)2℄ (B.5)whih an be developed using the basi properties of expetationR� = EP [(x2 � 2�x+ �2℄ (B.6)= EP [x2℄� 2�EP + �2 (B.7)if � is relaxed to be a ontinuos value between 0 andM�1, (x��)2 is a stritly onvex funtion



B.2. For the L2 loss model 157of � and a global optimum an be found by di�erentiating (B.7)dR�d� = 2� � 2EP [x℄ (B.8)where the optimum orresponds to dR�d� , i.e., � = EP . When this optimum is not integer, somestrategy is used to map it to an integer value within A, for example, rounding.





C Parametri seond pass for GaussiandistributionsThe purpose of this setion is to obtain an expression for �, the parameter of the Two SidedGeometri Distribution, in terms of the variane of this distribution, �2. For this, onsider aTSGD with parameter � and mean 0,P (X = x) = (1� �)�jxj (C.1)Its variane is given by the following expression:�2 = (1� �) x=1Xx=�1 �jxjx2 = 2(1� �) x=1Xx=0 �jxjx2 (C.2)the series expanson of (C.2) yields �2 = 2(1� �)�(� + 1)� � 13�2 = 2�(� + 1)� � 12� � 12�2 = �(� + 1)whih is reordered to obtain a seond order polynomial on �(�2 � 2)�2 � 2(�2 + 1) + �2 = 0 (C.3)and �nally � = �2 + 1�2 � 2 +�p1 + 4�2�2 � 2 (C.4)





D Full resultsThis appendix presents the full set of results obtained in the experiments. For the LegayModeling sheme, the set of images inludes a subset of the images of the SIPI database(http://sipi.us.edu/servies/database/), but exludes the bigger images ontained in theJPEG-LS test suite sine the omputational resoures required were too muh for the mahinesused to run the tests. The Napkin results were obtained for both test suites as the omputationalresoures required for this sheme are muh smaller.Most of the images of the SIPI database are of about 1=4 million pixels (512 � 512 or720� 576), exepting \Camera",\us" and \house" whose size is 256� 256 (four times smaller).This has an impat in the parameters whih depend on the size of the image suh as the numberof ontext lasses.D.1 Best results� baboon barb2 barb boats bridge amera goldy hotely10% 32.8 37.1 39.2 42.1 35.0 33.8 41.3 40.330% 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.2� house lena peppers splash tulips us average10% 37.4 42.2 38.1 39.4 42.1 33.4 38.130% 34.7 37.5 33.8 39.3 37.2 28.6 33.8Table D.1: Best results for the Salt and Pepper hannel. Legay sheme.� baboon barb2 barb boats bridge amera goldy hotely10% 33.5 39.4 38.7 45.3 36.1 36.7 43.1 42.930% 27.8 32.9 31.7 38.3 30.6 31.1 36.9 36.3� house lena peppers splash tulips us aerial2 bike310% 46.2 44.3 37.5 48.4 45.2 34.2 39.2 35.430% 38.4 38.2 33.5 41.5 37.9 28.7 32.8 30.7� bike afe ats tools average10% 33.4 32.9 38.3 29.2 39.030% 29.6 27.6 31.8 24.5 33.0Table D.2: Best results for the Salt and Pepper hannel. Napkin sheme.



162 Appendix D. Full results� baboon barb2 barb boats bridge amera goldy hotely70% 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.3� house lena peppers splash tulips us average70% 30.4 30.7 25.7 33.3 29.8 18.9 27.0Table D.3: Best results for extreme Salt and Pepper hannel. Napkin sheme.� baboon barb2 barb boats bridge amera goldy hotely10% 33.5 39.6 41.0 44.4 35.9 34.4 42.7 42.430% 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.5� house lena peppers splash tulips us average10% 38.0 43.0 40.1 44.5 44.5 33.6 39.830% 35.4 37.8 35.8 39.7 37.7 27.4 34.5Table D.4: Best results for the Salt and Pepper hannel. Combined sheme.{e baboon barb2 barb boats bridge amera goldy hotely10% 27.8 32.6 31.4 36.4 30.6 28.1 36.6 35.120% 25.3 29.3 28.4 33.0 28.1 26.0 33.5 31.330% 23.6 26.9 26.4 30.5 26.3 24.5 30.9 28.3Pe house lena peppers splash tulips us aerial2 bike310% 33.9 37.1 36.1 38.1 36.2 24.5 31.2 29.420% 31.8 34.2 32.9 35.9 32.8 22.1 28.3 27.230% 30.4 31.7 30.2 33.5 30.0 19.7 25.6 25.4Pe bike afe ats tools average10% 27.2 26.1 32.8 24.7 31.320% 25.2 23.6 29.5 21.9 28.630% 23.9 21.9 27.0 20.4 26.4Table D.5: Best results for the q-ary symmetri hannel. Napkin sheme.� baboon barb2 barb boats bridge amera goldy hotely10 29.9 30.8 32.4 34.0 30.3 32.5 32.9 33.420 25.6 26.6 28.6 30.4 26.4 28.5 29.7 29.825 24.4 25.7 27.3 29.3 25.3 27.4 28.7 28.6� house lena peppers splash tulips us average10 34.1 34.2 34.6 34.7 33.6 32.4 32.820 31.1 31.0 31.3 30.4 30.4 29.3 29.225 29.8 29.9 30.6 29.4 29.3 27.8 28.1Table D.6: Best results for the Gaussian hannel. Legay modeling sheme.



D.2. Seletion of the parameters 163D.2 Seletion of the parametersD.2.1 Legay for Salt and PepperNC baboon barb2 barb boats bridge amera goldy hotely64 5.9 4.8 4.8 4.0 5.5 4.3 4.5 4.4128 5.9 4.7 4.8 4.0 5.5 4.3 4.5 4.4192 5.9 4.7 4.8 4.0 5.5 4.4 4.4 4.4256 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4320 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.4NC house lena peppers splash tulips us average64 4.1 4.2 3.9 3.8 4.3 3.0 4.4128 4.2 4.2 3.9 3.8 4.3 3.0 4.4192 4.2 4.2 4.0 3.9 4.3 3.1 4.4256 4.4 4.2 4.0 3.9 4.3 3.1 4.4320 4.4 4.2 4.0 4.0 4.3 3.1 4.5Table D.7: Legay for Salt and Pepper. Compressibility vs. number of ontext lusters.
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D.2. Seletion of the parameters 165
NC baboon barb2 barb boats bridge amera goldy hotely64 26.9 30.9 31.1 35.1 29.4 29.6 35.1 33.5128 27.2 31.1 31.8 35.4 29.5 29.9 35.3 33.9192 27.2 31.2 31.9 35.4 29.6 29.5 35.3 33.9256 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0320 27.2 31.3 32.2 35.5 29.6 29.2 35.3 34.0NC house lena peppers splash tulips us average64 34.7 36.5 32.2 38.7 35.8 26.9 32.6128 34.8 36.6 32.6 38.4 36.1 26.8 32.8192 34.1 36.7 32.6 37.8 36.2 27.1 32.7256 33.3 36.7 32.4 38.0 36.3 27.1 32.7320 33.2 36.6 32.5 37.1 36.3 27.0 32.6Table D.8: Legay for Salt and Pepper. PSNR vs. number of ontext lusters.
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Context baboon barb2 barb boats bridge amera goldy hotely3� 3 6.0 4.9 4.9 4.1 5.6 4.6 4.5 4.55� 5 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.47� 7 6.0 4.8 4.8 4.1 5.6 4.5 4.5 4.5Context house lena peppers splash tulips us average3� 3 4.4 4.2 4.1 3.9 4.4 3.1 4.55� 5 4.4 4.2 4.0 3.9 4.3 3.1 4.47� 7 4.4 4.2 4.0 3.8 4.3 3.5 4.5Table D.9: Legay for Salt and Pepper. Compressibility vs. radius of the ontextss.
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Context baboon barb2 barb boats bridge amera goldy hotely3� 3 26.7 29.7 29.9 33.7 28.8 28.1 33.9 31.45� 5 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.07� 7 26.8 31.2 32.1 35.0 29.1 28.9 34.7 33.2Context house lena peppers splash tulips us average3� 3 32.1 34.9 31.5 37.0 34.1 26.2 31.35� 5 33.3 36.7 32.4 38.0 36.3 27.1 32.77� 7 32.9 36.1 31.7 38.6 35.5 26.7 32.3Table D.10: Legay for Salt and Pepper. PSNR vs. radius of the ontexts.
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Iter. baboon barb2 barb boats bridge amera goldy hotely1.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.42.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.33.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.44.00 5.9 4.7 4.7 4.0 5.5 4.4 4.4 4.45.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.36.00 5.9 4.7 4.7 4.0 5.5 4.5 4.4 4.4Iter. house lena peppers splash tulips us average1 4.4 4.2 3.9 3.8 4.2 3.1 4.42 4.3 4.2 4.0 3.7 4.2 3.1 4.43 4.3 4.2 4.0 3.8 4.2 3.0 4.44 4.4 4.2 3.9 3.8 4.2 3.1 4.45 4.3 4.2 3.9 3.8 4.2 3.1 4.46 4.3 4.2 3.9 3.8 4.2 3.0 4.4Table D.11: Legay for Salt and Pepper. Compressibility vs. number of pre�ltering iterations
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Iter. baboon barb2 barb boats bridge amera goldy hotely1 27.6 32.4 33.4 36.4 30.0 29.7 35.8 34.92 27.7 32.7 33.7 36.6 30.0 30.1 36.0 35.23 27.7 32.9 33.9 36.7 30.1 30.0 36.0 35.24 27.7 32.9 33.9 36.7 30.0 30.0 36.0 35.25 27.7 32.9 33.9 36.7 30.0 30.1 36.0 35.26 27.7 32.9 33.8 36.7 30.0 30.2 36.0 35.1Iter. house lena peppers splash tulips us average1 34.2 37.3 33.4 38.6 37.0 28.3 33.52 34.8 37.5 33.3 39.4 37.2 28.5 33.83 35.2 37.4 33.6 39.4 37.2 28.4 33.84 34.7 37.5 33.8 39.3 37.2 28.6 33.85 34.6 37.4 33.7 39.1 37.2 28.6 33.86 34.9 37.5 33.5 39.4 37.2 28.5 33.8Table D.12: Legay for Salt and Pepper. PSNR vs. number of pre�ltering iterations.
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Iter. baboon barb2 barb boats bridge amera goldy hotely2 5.9 4.8 4.8 4.0 5.5 4.6 4.5 4.44 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.48 5.9 4.8 4.8 4.0 5.5 4.5 4.5 4.420 5.9 4.7 4.8 4.0 5.5 4.5 4.5 4.440 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.480 5.9 4.7 4.8 4.0 5.5 4.4 4.5 4.4Iter. house lena peppers splash tulips us average2 4.4 4.2 4.0 3.9 4.3 3.2 4.54 4.4 4.2 4.0 3.9 4.3 3.2 4.58 4.4 4.2 4.0 3.9 4.3 3.2 4.420 4.4 4.2 4.0 3.9 4.3 3.1 4.440 4.4 4.2 4.0 3.9 4.3 3.1 4.480 4.3 4.2 4.0 3.9 4.3 3.0 4.4Table D.13: Legay for Salt and Pepper. Comp. vs. number of LBG iterations.
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D.2. Seletion of the parameters 171Iter. baboon barb2 barb boats bridge amera goldy hotely2 27.0 30.9 31.4 35.2 29.5 29.2 35.1 33.84 27.1 31.0 31.8 35.2 29.6 29.3 35.2 33.88 27.2 31.2 31.9 35.3 29.6 29.3 35.3 33.920 27.2 31.2 32.1 35.5 29.6 29.3 35.3 34.040 27.2 31.3 32.1 35.5 29.6 29.2 35.3 34.080 27.2 31.3 32.2 35.6 29.6 29.3 35.3 34.0Iter. house lena peppers splash tulips us average2 33.8 36.4 32.0 38.4 35.9 26.6 32.54 33.8 36.5 32.2 38.4 36.1 26.9 32.68 33.8 36.6 32.2 38.3 36.2 27.0 32.720 33.6 36.7 32.3 38.1 36.3 27.0 32.740 33.5 36.7 32.7 37.5 36.3 27.1 32.780 33.5 36.7 32.7 37.4 36.4 27.2 32.7Table D.14: Legay for Salt and Pepper. PSNR vs. number of LBG iterations.Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 6.0 4.9 4.9 4.2 5.6 4.6 4.6 4.6median 6.0 4.8 4.9 4.2 5.6 4.6 4.6 4.5gaussian 6.0 4.8 4.9 4.2 5.5 4.6 4.6 4.5Pred. house lena peppers splash tulips us averageaverage 4.4 4.3 4.2 4.0 4.5 4.1 4.6median 4.4 4.3 4.2 3.9 4.5 4.1 4.6gaussian 4.4 4.3 4.1 4.0 4.4 4.0 4.6Table D.15: Legay for Salt and Pepper. Comp. vs. type of preditor.
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averageFigure D.8: Legay for Salt and Pepper. PSNR vs. number of LBG iterations.
Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 27.2 31.3 32.1 35.5 29.6 29.3 35.3 34.0median 26.9 30.8 31.7 35.0 29.4 29.0 35.1 33.4gaussian 27.3 31.4 32.2 35.7 29.8 29.4 35.4 34.2Pred. house lena peppers splash tulips us averageaverage 33.3 36.7 32.4 38.0 36.3 27.1 32.7median 32.9 36.4 32.0 38.2 35.9 26.4 32.4gaussian 33.5 36.9 32.5 38.5 36.6 27.2 32.9Table D.16: Legay for Salt and Pepper. PSNR vs. type of preditor.



D.2. Seletion of the parameters 173D.2.2 Napkin for Salt and PepperIter. baboon barb2 barb boats bridge amera goldy hotely0 6.1 5.5 5.6 5.1 6.0 5.5 5.3 5.410 5.7 4.7 4.8 3.9 5.4 4.3 4.7 4.420 5.7 4.6 4.7 3.8 5.3 4.4 4.5 4.230 5.6 4.7 4.6 3.8 5.3 4.4 4.4 4.240 5.6 4.5 4.6 3.8 5.3 4.3 4.3 4.160 5.7 4.8 4.6 3.8 5.3 4.2 4.2 4.280 5.6 4.6 4.6 3.7 5.3 4.2 4.2 4.2Iter. house lena peppers splash tulips us average0 5.4 5.2 5.1 5.0 5.4 5.3 5.410 4.4 4.2 3.9 3.8 4.4 4.4 4.520 4.3 4.1 3.8 3.6 4.2 3.8 4.430 4.4 4.1 3.8 3.4 4.2 3.6 4.340 4.2 4.1 3.8 3.4 4.2 3.4 4.360 4.2 4.0 3.7 3.4 4.2 3.3 4.380 4.1 3.9 3.7 3.4 4.2 3.5 4.2Table D.17: Napkin for Extreme Salt and Pepper. Compressibility vs. pre�ltering iterations.
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averageFigure D.9: Napkin for Extreme Salt and Pepper. Compressibility vs. pre�ltering iterations.



D.2. Seletion of the parameters 175Iter. baboon barb2 barb boats bridge amera goldy hotely0 18.8 19.9 19.8 21.3 19.5 18.9 20.6 19.510 21.5 24.4 23.2 28.2 23.5 23.6 22.9 25.620 21.8 25.1 24.2 29.6 24.2 24.1 24.5 27.630 21.9 25.2 24.6 30.0 24.3 24.2 26.1 28.140 21.9 25.3 24.7 30.1 24.4 24.3 27.7 28.260 21.9 25.3 24.9 30.3 24.4 24.4 29.2 28.380 21.9 25.3 24.9 30.3 24.4 24.3 29.7 28.3Iter. house lena peppers splash tulips us average0 20.8 21.6 20.5 20.8 20.3 15.5 19.910 28.2 29.0 25.7 26.3 27.7 17.5 24.820 29.6 30.4 26.2 30.1 29.6 18.5 26.130 29.9 30.6 26.1 32.9 29.8 18.9 26.640 30.3 30.7 26.0 33.3 29.9 19.1 26.860 30.4 30.7 25.7 33.3 29.8 18.9 27.080 30.5 30.7 25.6 33.3 29.9 18.2 27.0Table D.18: Napkin for Extreme Salt and Pepper. PSNR vs. pre�ltering iterations.
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176 Appendix D. Full resultsALB baboon barb2 barb boats bridge amera goldy hotely1 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.33 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.35 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.37 6.0 4.8 4.8 4.0 5.5 4.4 4.4 4.4ALB house lena peppers splash tulips us aerial2 bike31 4.0 4.1 3.8 3.5 4.2 3.0 4.1 4.23 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.25 4.0 4.1 3.8 3.5 4.1 3.0 4.1 4.27 4.2 4.2 3.9 3.6 4.2 3.2 4.2 4.2ALB bike afe ats tools average1 4.2 5.0 5.1 5.4 4.43 4.1 5.0 5.0 5.3 4.45 4.1 5.0 5.0 5.3 4.47 4.1 5.0 5.1 5.3 4.5Table D.19: Napkin for Salt and Pepper. Compressibility vs. pre�ltering number of ontextlasses. The number of ontext lasses is 2ALB where ALB are the ativity level bits.
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averageFigure D.11: Napkin for Salt and Pepper. Compressibility vs. pre�ltering number of ontextlasses.The number of ontext lasses is 2ALB where ALB are the ativity level bits.



D.2. Seletion of the parameters 177ALB baboon barb2 barb boats bridge amera goldy hotely1.00 27.4 30.8 30.7 35.9 30.0 30.1 35.8 33.83.00 27.4 30.9 30.8 36.0 30.0 30.0 35.8 33.95.00 27.4 30.9 30.8 35.9 30.0 29.9 35.8 33.97.00 26.8 30.4 30.2 35.5 29.5 29.2 35.4 33.6ALB house lena peppers splash tulips us aerial2 bike31 35.7 36.8 32.4 39.6 36.4 27.3 31.8 29.93 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.15 35.6 36.9 32.3 39.7 36.6 27.4 32.0 30.27 34.8 36.3 32.1 39.5 36.2 27.2 31.7 30.0ALB bike afe ats tools average1 28.3 26.4 31.1 23.4 31.73 28.4 26.5 31.3 23.6 31.85 28.5 26.5 31.3 23.6 31.87 28.5 26.5 31.2 23.5 31.4Table D.20: Napkin for Salt and Pepper. PSNR vs. pre�ltering number of ontext lasses.Thenumber of ontext lasses is 2ALB where ALB are the ativity level bits.
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averageFigure D.12: Napkin for Salt and Pepper. PSNR vs. pre�ltering number of ontext lasses.Thenumber of ontext lasses is 2ALB where ALB are the ativity level bits.



178 Appendix D. Full results
Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 5.6 4.4 4.4 3.7 5.1 4.0 4.1 4.0sharp 5.6 4.4 4.5 3.8 5.2 4.0 4.2 4.1smooth 5.6 4.5 4.5 3.8 5.3 4.1 4.2 4.2Pred. house lena peppers splash tulips us aerial2 bike3average 3.9 3.8 3.6 3.2 4.0 3.1 4.0 3.9sharp 3.8 3.9 3.6 3.3 4.1 2.8 4.1 4.0smooth 3.9 3.9 3.6 3.3 4.1 2.9 3.9 4.0Pred. bike afe ats tools averageaverage 3.8 4.8 4.8 5.1 4.2sharp 3.8 4.8 4.8 5.1 4.2smooth 3.9 4.9 4.8 5.2 4.2Table D.21: Napkin for Salt and Pepper. Compressibility vs. predition variant.
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averageFigure D.13: Napkin for Salt and Pepper. Compressibility vs. predition variant.



D.2. Seletion of the parameters 179
Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 26.4 29.7 29.4 35.1 29.1 29.8 34.8 33.4sharp 26.2 29.5 29.1 33.9 28.7 29.5 33.9 32.5smooth 25.8 28.3 28.7 33.3 28.1 28.7 33.6 31.1Pred. house lena peppers splash tulips us aerial2 bike3average 34.9 35.7 32.6 39.2 35.1 27.6 30.9 29.6sharp 33.9 34.6 31.8 38.0 33.7 27.6 30.3 29.3smooth 33.1 34.5 32.0 38.0 33.5 26.4 29.6 28.7Pred. bike afe ats tools averageaverage 28.2 26.3 29.7 23.5 31.1sharp 28.0 26.2 29.0 23.4 30.5smooth 27.1 25.0 28.9 22.4 29.8Table D.22: Napkin for Salt and Pepper. PSNR vs. predition variant.
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averageFigure D.14: Napkin for Salt and Pepper. PSNR vs. predition variant.



180 Appendix D. Full resultsIter. baboon barb2 barb boats bridge amera goldy hotely0 5.9 4.7 4.7 3.9 5.4 4.3 4.3 4.31 5.8 4.6 4.7 3.9 5.4 4.2 4.3 4.23 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.25 5.8 4.6 4.7 3.9 5.4 4.3 4.3 4.27 5.8 4.6 4.7 3.8 5.4 4.3 4.3 4.29 5.8 4.6 4.7 3.8 5.4 4.2 4.3 4.2Iter. house lena peppers splash tulips us aerial2 bike30 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.21 4.0 4.1 3.8 3.5 4.1 2.9 4.1 4.23 4.0 4.0 3.8 3.5 4.1 2.9 4.0 4.15 4.0 4.0 3.8 3.5 4.1 2.9 4.1 4.17 3.9 4.0 3.8 3.5 4.1 2.9 4.1 4.19 4.0 4.0 3.8 3.5 4.1 3.1 4.2 4.1Iter. bike afe ats tools average0 4.1 5.0 5.0 5.3 4.41 4.1 5.0 5.0 5.3 4.43 4.1 5.0 5.0 5.3 4.35 4.1 5.0 5.0 5.3 4.37 4.1 5.0 5.0 5.3 4.39 4.1 5.0 5.0 5.3 4.4Table D.23: Napkin for Salt and Pepper. Compressibility vs. iterative pre�ltering appliations.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

V
ar

ia
tio

n 
in

 C
om

pr
es

si
on

 (
%

 b
pp

) 
w

. r
. t

o 
le

ftm
os

t v
al

ue

baboon
barb2

barb
boats

bridge
camera

goldy
hotely
house

lena
peppers

splash

tulips
us

aerial2
bike3

bike
cafe

catscropped
tools

averageFigure D.15: Napkin for Salt and Pepper. Compressibility vs. iterative pre�ltering appliations.



D.2. Seletion of the parameters 181Iter. baboon barb2 barb boats bridge amera goldy hotely0 27.4 30.9 30.8 36.0 30.0 30.0 35.8 33.91 27.7 31.9 31.4 37.2 30.4 30.7 36.5 35.33 27.8 32.6 31.7 37.9 30.6 31.0 36.8 36.15 27.8 32.8 31.7 38.2 30.6 31.1 36.9 36.37 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.39 27.8 32.9 31.7 38.3 30.6 31.1 37.0 36.4Iter. house lena peppers splash tulips us aerial2 bike30 35.8 36.9 32.4 39.7 36.6 27.4 31.9 30.11 37.1 37.7 32.9 40.7 37.5 28.2 32.5 30.63 38.0 38.1 33.3 41.3 37.9 28.5 32.8 30.85 38.3 38.2 33.4 41.5 38.0 28.7 32.8 30.87 38.4 38.2 33.4 41.5 37.9 28.7 32.8 30.79 38.5 38.2 33.4 41.6 37.9 28.7 32.8 30.7Iter. bike afe ats tools average0 28.4 26.5 31.3 23.6 31.81 29.2 27.2 31.7 24.1 32.53 29.5 27.5 31.8 24.4 32.95 29.6 27.6 31.8 24.5 33.07 29.6 27.6 31.8 24.5 33.09 29.7 27.6 31.7 24.5 33.0Table D.24: Napkin for Salt and Pepper. PSNR vs. iterative pre�ltering appliations.
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averageFigure D.16: Napkin for Salt and Pepper. PSNR vs. iterative pre�ltering appliations.



182 Appendix D. Full resultsIter. baboon barb2 barb boats bridge amera goldy hotely1 5.9 4.7 4.8 4.2 5.4 4.5 4.5 4.43 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.45 5.9 4.7 4.8 4.1 5.4 4.5 4.5 4.47 5.9 4.7 4.8 4.1 5.4 4.6 4.5 4.5Iter. house lena peppers splash tulips us average1 4.4 4.3 4.1 3.8 4.3 3.5 4.53 4.2 4.3 4.1 3.8 4.4 3.8 4.55 4.2 4.3 4.0 3.9 4.4 4.0 4.57 4.3 4.3 4.1 3.9 4.4 4.1 4.5Table D.25: Combined LBG/Napkin for Salt and Pepper. Compressibility vs. iterative pre-�ltering appliations.Iter. baboon barb2 barb boats bridge amera goldy hotely1 27.9 32.9 33.9 37.2 30.6 30.2 36.5 35.83 28.1 33.5 34.6 38.0 30.7 30.2 36.8 36.45 28.1 33.7 34.9 38.2 30.7 30.3 36.9 36.57 28.1 33.7 34.9 38.1 30.7 30.4 37.0 36.4Iter. house lena peppers splash tulips us average1 34.3 37.6 34.4 39.6 37.5 28.5 34.03 34.8 37.9 35.4 39.8 37.8 28.8 34.55 35.4 37.8 35.8 39.7 37.7 27.4 34.57 35.1 37.7 36.0 39.4 37.6 25.1 34.3Table D.26: Combined LBG/Napkin for Salt and Pepper. PSNR vs. iterative pre�lteringappliations.D.2.3 Combined LBG/Napkin for Salt and Pepper
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D.2. Seletion of the parameters 185Iter. baboon barb2 barb boats bridge amera goldy hotely4 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.68 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.616 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.632 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.664 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6Iter. house lena peppers splash tulips us average4 4.6 4.4 4.2 4.1 4.5 4.0 4.78 4.6 4.4 4.2 4.1 4.5 4.2 4.716 4.6 4.4 4.2 4.1 4.5 4.1 4.732 4.5 4.4 4.2 4.1 4.5 4.2 4.764 4.6 4.4 4.2 4.1 4.5 4.3 4.7Table D.27: Legay for Gaussian noise. Comp. vs. LBG iterations.D.2.4 Legay for Gaussian noise
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averageFigure D.19: Legay for Gaussian noise. Comp. vs. LBG iterations.



D.2. Seletion of the parameters 187
Iter. baboon barb2 barb boats bridge amera goldy hotely4 25.4 27.6 27.8 29.9 26.4 28.1 29.6 29.48 25.4 27.6 28.0 30.0 26.4 28.1 29.6 29.416 25.4 27.7 28.0 30.0 26.4 28.1 29.7 29.532 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.564 25.5 27.7 28.1 30.0 26.4 28.1 29.7 29.5Iter. house lena peppers splash tulips us average4 30.1 30.5 31.1 31.2 30.2 28.9 29.08 30.2 30.6 31.2 31.1 30.2 29.0 29.116 30.3 30.6 31.3 31.1 30.3 29.0 29.132 30.3 30.6 31.3 31.1 30.3 29.1 29.164 30.3 30.6 31.3 31.1 30.3 29.0 29.1Table D.28: Legay for Gaussian noise. PSNR vs. LBG iterations.
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averageFigure D.20: Legay for Gaussian noise. PSNR vs. LBG iterations.



188 Appendix D. Full results
Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6median 6.0 5.1 5.2 4.5 5.5 4.8 4.5 4.7gaussian 5.9 5.0 5.0 4.3 5.4 4.7 4.3 4.5Pred. house lena peppers splash tulips us averageaverage 4.6 4.4 4.2 4.1 4.5 4.3 4.7median 4.7 4.5 4.3 4.1 4.6 4.6 4.8gaussian 4.4 4.2 4.1 4.0 4.4 4.3 4.6Table D.29: Legay for Gaussian noise. Compressibility vs. preditor.

Pred. baboon barb2 barb boats bridge amera goldy hotelyaverage 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5median 25.4 27.7 27.9 29.8 26.3 27.9 29.5 29.2gaussian 25.5 27.8 28.2 30.2 26.5 28.2 29.8 29.6Pred. house lena peppers splash tulips us averageaverage 30.3 30.6 31.3 31.1 30.3 29.0 29.1median 30.0 30.4 31.0 32.3 30.1 26.4 28.8gaussian 30.4 30.8 31.4 31.4 30.5 29.2 29.3Table D.30: Legay for Gaussian noise. PSNR vs. preditor.
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Iter. baboon barb2 barb boats bridge amera goldy hotely0 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.61 5.7 5.0 4.8 4.2 5.4 4.5 4.3 4.32 5.7 5.1 5.0 4.6 5.4 4.9 4.7 4.74 5.7 5.1 4.9 4.4 5.3 4.7 4.4 4.5Iter. house lena peppers splash tulips us average0 4.6 4.4 4.2 4.1 4.5 4.3 4.71 4.1 4.0 3.9 4.0 4.4 3.6 4.42 4.3 4.5 4.4 4.3 4.6 4.3 4.74 4.5 4.3 4.2 4.2 4.4 3.8 4.6Table D.31: Legay for Gaussian noise. Compressibility vs. iterative pre�ltering appliations.
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averageFigure D.21: Legay for Gaussian noise. Compressibility vs. iterative pre�ltering appliations.



190 Appendix D. Full results
Iter baboon barb2 barb boats bridge amera goldy hotely0.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.51.00 25.6 27.6 28.3 30.3 26.4 28.5 29.7 29.72.00 25.6 27.3 28.3 29.9 26.4 28.2 29.1 29.34.00 25.6 27.2 28.1 29.8 26.4 28.1 29.2 29.1Iter. house lena peppers splash tulips us average0 30.3 30.6 31.3 31.1 30.3 29.0 29.11 31.0 31.0 31.7 31.5 30.3 29.3 29.32 30.8 30.3 30.8 30.8 29.9 29.1 29.04 30.4 30.2 30.7 30.2 29.8 29.1 28.8Table D.32: Legay for Gaussian noise. PSNR vs. iterative pre�ltering appliations.
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averageFigure D.22: Legay for Gaussian noise. PSNR vs. iterative pre�ltering appliations.



D.2. Seletion of the parameters 191Clusters baboon barb2 barb boats bridge amera goldy hotely32 6.0 5.1 5.2 4.4 5.5 4.7 4.4 4.764 6.0 5.1 5.1 4.4 5.5 4.7 4.4 4.696 6.0 5.1 5.1 4.4 5.5 4.8 4.4 4.6128 5.9 5.1 5.1 4.4 5.5 4.8 4.4 4.6192 5.9 5.3 5.1 4.4 5.5 4.8 4.4 4.6256 5.9 5.5 5.1 4.4 5.5 4.9 4.5 4.6288 5.9 5.4 5.1 4.4 5.5 4.9 4.4 4.6Clusters house lena peppers splash tulips us average32 4.4 4.3 4.2 4.0 4.5 4.0 4.764 4.5 4.3 4.1 4.0 4.4 4.2 4.796 4.5 4.3 4.2 4.1 4.5 4.3 4.7128 4.6 4.4 4.2 4.1 4.5 4.3 4.7192 4.6 4.4 4.2 4.2 4.5 4.2 4.7256 4.7 4.4 4.3 4.4 4.5 4.2 4.8288 4.8 4.4 4.3 4.4 4.5 4.2 4.8Table D.33: Legay for Gaussian noise. Compressibility vs number of ontext lusters.
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averageFigure D.23: Legay for Gaussian noise. Compressibility vs number of ontext lusters.



192 Appendix D. Full resultsClusters baboon barb2 barb boats bridge amera goldy hotely32.00 25.3 27.4 27.3 29.8 26.3 27.9 29.6 29.164.00 25.4 27.5 27.8 30.0 26.4 28.0 29.6 29.396.00 25.4 27.6 28.0 30.1 26.4 28.1 29.7 29.4128.00 25.5 27.7 28.0 30.0 26.4 28.1 29.7 29.5192.00 25.5 27.0 28.1 30.2 26.4 28.1 29.7 29.5256.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6288.00 25.5 26.7 28.3 30.2 26.4 28.1 29.7 29.6Clusters house lena peppers splash tulips us average32 30.1 30.5 31.1 31.1 30.0 28.5 28.964 30.3 30.6 31.2 31.1 30.2 28.9 29.096 30.3 30.6 31.2 31.1 30.2 28.9 29.1128 30.3 30.6 31.3 31.1 30.3 29.0 29.1192 30.3 30.6 31.2 30.8 30.3 29.3 29.1256 30.2 30.6 30.8 29.9 30.4 29.3 29.0288 30.1 30.6 30.9 29.7 30.4 29.5 29.0Table D.34: Legay for Gaussian noise. PSNR vs number of ontext lusters.
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averageFigure D.24: Legay for Gaussian noise. PSNR vs number of ontext lusters.
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