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Abstract: In Mexico, the genetic mechanisms underlying childhood obesity are poorly known.
We evaluated the effect of loci, known to be associated with childhood body mass index (BMI) in
Europeans, in Mexican children from different ethnic groups. We performed linear and logistic analyses
of BMI and obesity, respectively, in Mestizos and Amerindians (Seris, Yaquis and Nahuatl speakers)
from Northern (n = 369) and Central Mexico (n = 8545). We used linear models to understand the
effect of degree of Amerindian ancestry (AMA) and genetic risk score (GRS) on BMI z-score. Northern
Mexican Mestizos showed the highest overweight-obesity prevalence (47.4%), followed by Seri (36.2%)
and Central Mexican (31.5%) children. Eleven loci (SEC16B/rs543874, OLFM4/rs12429545/rs9568856,
FTO/rs9939609, MC4R/rs6567160, GNPDA2/rs13130484, FAIM2/rs7132908, FAM120AOS/rs944990,
LMX1B/rs3829849, ADAM23/rs13387838, HOXB5/rs9299) were associated with BMI and seven
(SEC16B/rs543874, OLFM4/rs12429545/rs9568856, FTO/rs9939609, MC4R/rs6567160, GNPDA2
rs13130484, LMX1B/rs3829849) were associated with obesity in Central Mexican children. One SNP
was associated with obesity in Northern Mexicans and Yaquis (SEC16B/rs543874). We found higher
BMI z-score at higher GRS (β = 0.11, p = 0.2 × 10−16) and at lower AMA (β = −0.05, p = 6.8 × 10−7).
The GRS interacts with AMA to increase BMI (β = 0.03, p = 6.08 × 10−3). High genetic BMI
susceptibility increase the risk of higher BMI, including in Amerindian children.
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1. Introduction

Childhood obesity is associated with severe health problems and premature death [1]. Mexico
ranks as one of the top countries worldwide in childhood obesity, with a mean national prevalence of
34.9% for schoolchildren [2].

The importance of understanding the role of genetic and environmental factors in the variation of
body composition and obesity prevalence among ethnic groups has been highlighted [3]. In fact, little
is known about whether the same obesity-associated loci contribute to obesity risk across a range of
ancestries, or rather if there are obesity susceptibility genes unique to specific ancestries [4].

Mexico harbors high genetic diversity in admixed Mexican Mestizos, and many Amerindian
groups. Mexican genetic diversity is characterized by a north-south pattern of European–Amerindian
ancestry, where clear subpopulation stratification can be found among relatively isolated Amerindian
groups. Meanwhile, the Mexican Mestizo subpopulations are widely distributed among the parental
European/Amerindian groups. Hence, the analysis of genetic susceptibility is particularly challenging
due to cultural, ethnic and genetic diversity [5,6]. From a biomedical point of view, it is important
to understand whether a given set of loci show variation in susceptibility effect along the whole
range of ancestry. In this sense, greater understanding of genetic obesity variation will allow deeper
understanding of obesity phenotype.

Regarding efforts to shed light on the genomic basis of Mexican childhood obesity, transferability
analysis showed that the association with body mass index (BMI)/obesity found for 140 loci in European
adults was also found in Mexican children for 23 of those loci [7–11]. These results suggest partial loci
transferability from European adults to Mexican children.

The aims of the current study were to contribute to the genetic basis of BMI and obesity
susceptibility in Mexican children through single nucleotide polymorphism (SNP) transferability of
15 BMI/obesity-associated loci identified in European children to Mexican ethnic groups and across
degrees of Amerindian ancestry.

2. Results

Descriptive results of BMI, overweight and obesity prevalence by ethnic group are shown in
Table 1. Northern Mexican Mestizos showed the highest overweight/obesity prevalence (47.4%),
followed by Seris (36.2%), Central Mexicans (31.5%) (regular schools 35.3% and indigenous schools
27.6%) and Yaquis (24.1%). General descriptive data of participants are shown in Table S1.

Table 1. Descriptive results: number of children (n), mean and standard deviation (SD) of body
mass index (BMI), overweight and obesity prevalence for girls and boys of each ethnic group (NMM:
Northern Mexican Mestizos, CMM: Central Mexican Mestizos).

Ethnic Group Sex (Number)
BMI Prevalence (%)

Mean (SD) Overweight Obesity

NMM
Girls (n = 100) 19.0 (4.6) 17.0 29.0
Boys (n = 78) 18.9 (4.1) 20.5 28.2

Yaquis Girls (n = 51) 17.3 (4.5) 9.8 7.8
Boys (n = 72) 17.3 (4.2) 20.8 9.7

Seris
Girls (n = 41) 18.2 (3.3) 14.6 17.1
Boys (n = 27) 19.2 (5.6) 14.8 25.9

CMM, indigenous school Girls (n = 531) 17.2 (3.0) 11.9 15.4
Boys (n = 480) 17.2 (3.1) 12.5 15.4

CMM, regular school Girls (n = 3761) 17.6 (3.2) 14.6 20.3
Boys (n = 3773) 17.7 (3.2) 16.4 19.3
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None of the SNPs (ancestry-informative markers (AIMs) or candidates) showed departure from
Hardy–Weinberg equilibrium after Bonferroni correction and linkage disequilibrium, including both
SNPs of the OLFM4 gene, which showed R2 = 0.23. Thus, all candidate SNPs were included in the
analysis. Principal component analysis (PCA) showed that Northern Mexican Mestizos and Yaquis
formed a spread cluster distributed between the European and Amerindian parental populations,
while Seris formed a defined and tight cluster (Figure S2). Individual ancestry proportions showed that
Seris had the highest mean of Amerindian ancestry (AMA) (mean 92%, range = 56%–99%). Although
the Northern Mexican Mestizos and Yaquis distributed in a separated cluster, the mean ancestry
between the two ethnic groups showed significant differences (AMA: in Northern Mexican Mestizos,
mean = 43%, range = 17%–83%; in Yaquis, mean = 72%, range = 45%–96%; p = 0.001). The groups
of Central Mexican children from Puebla were a spread cluster distributed between the European
and Amerindian parental groups, with 82% mean AMA ancestry (range = 30%–99%). Children from
regular schools showed a significantly lower AMA mean (80%, range = 30%–99%) than children from
indigenous school (84%, range = 30%–99%, p = 0.0001).

Eleven out of 15 loci were significantly associated with BMI in Central Mexican children (SEC16B
rs543874, OLFM4 rs12429545, rs9568856, FTO rs9939609, MC4R rs6567160, GNPDA2 rs13130484, FAIM2
rs7132908, FAM120AOS rs944990, LMX1B rs3829849, ADAM23 rs13387838, HOXB5 rs9299). None
of them were significantly associated with BMI in Northern Mexican children, nor in the Seri group
(Table 2).

Seven SNPs were also associated with obesity in Central Mexican children (SEC16B rs543874,
OLFM4 rs12429545, rs9568856, FTO rs9939609, MC4R rs6567160, GNPDA23 rs1330484, and LMX1B
rs3829849). One SNP was associated with obesity in Northern Mexican Mestizos and Yaquis
(SEC16Brs543874), and none of them was associated with Seris (Table 3). Allele frequency of the 15
SNPs in Mexican ethnic groups are shown in supporting information Table S2. Power calculation by
allele frequency and ethic groups is shown in Table S3.

To construct the genetic risk score (GRS), we used the 15 candidate SNPs. The mean number of
risk alleles per individual was 8 (SD = 2) and ranged from 1 to 16. The linear model showed that the
simple effects of GRS and AMA are opposite; a higher GRS is associated with a higher BMI z-score
(β = 0.11, SE = 0.01, p = 0.1 × 10−16), while a higher AMA (as a continuous variable) is associated with
a lower BMI z-score (β = −0.05, SE = 0.01 p = 6.8 × 10−7) (Table 4, Figure 1). However, GRS interacts
with AMA to increase BMI (β = 0.03, SE = 0.01, p = 0.006, Figure 1). Figure 1 shows that children with
higher GRS increase the BMI z-score, and the slope is more marked in children with high AMA and
high GRS. The model explains 1.6% of the BMI z-score variance.
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Table 2. Results of association analysis with body mass index (BMI) in Northern Mexican Mestizo (NMM)/Yaqui, Seri and Central Mexican (CM) children. Significant
associations are shown in bolds. Chromosome (Chr), Associated allele (AA), estimate (β), standard errors (SE), p-value (p), monomorphic (M).

Gene Chr SNP AA
NMM/Yaquis (n = 301) Seris (n = 68)

p
CM (n = 8545)

p
β (SE) p β (SE) β (SE)

SEC16B 1 rs543874 G 0.21 (0.14) 0.15 −0.29 (0.25) 0.24 0.10 (0.02) 3.4 × 10−8

OLFM4 13 rs12429545 G −0.20 (0.11) 0.08 0.02 (0.25) 0.94 −0.07 (0.01) 1.2 × 10−6

FTO 16 rs9939609 A 0.03 (0.13) 0.79 0.34 (0.36) 0.35 0.11 (0.02) 2.4 × 10−6

MC4R 18 rs6567160 C −0.03 (0.20) 0.87 −0.24 (0.51) 0.64 0.13 (0.03) 4.5 × 10−5

GNPDA2 4 rs13130484 T −0.08 (0.11) 0.46 0.12 (0.18) 0.53 0.06 (0.01) 3.4 × 10−4

OLFM4 13 rs9568856 G 0.14 (0.10) 0.19 0.05 (0.23) 0.82 −0.05 (0.01) 1.0 × 10−3

FAIM2 5 rs7132908 A −0.24 (0.14) 0.08 0.12 (0.37) 0.75 0.06 (0.02) 3.0 × 10−3

FAM120AOS 12 rs944990 A −0.08 (0.12) 0.48 0.32 (0.25) 0.21 0.05 (0.01) 0.01
LMX1B 9 rs3829849 A 0.05 (0.13) 0.69 0.02 (0.34) 0.99 0.06 (0.02) 0.02
HOXB5 9 rs9299 A 0.02 (0.10) 0.86 −0.36 (0.21) 0.10 0.03 (0.01) 0.03

ADAM23 17 rs13387838 G 0.01 (0.35) 0.99 M −0.23 (0.01) 0.04
ELP3 4 rs13253111 G −0.13 (0.10) 0.20 −0.07 (0.20) 0.73 −0.02 (0.01) 0.12

RAB27B 2 rs8092503 G 0.05 (0.11) 0.66 0.13 (0.28) 0.66 0.02 (0.02) 0.17
GPR61 4 rs7550711 T −0.31 (0.65) 0.64 M 0.15 (0.012) 0.20

TNNI3K 8 rs12041852 A 0.07 (0.11) 0.53 0.67 (0.42) 0.12 −0.01 (0.01) 0.54
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Table 3. Results of association analysis with obesity in Northern Mexican Mestizo (NMM)/Yaqui, Seri and Central Mexican (CM) children. Significant associations are
shown in bold. Associated allele (AA), odds ratio (OR), confidence interval at 95% (CI), p-value (p), monomorphic (M) and very low frequency (VLF).

NMM/Yaquis (n
= 301) Seris (n = 68) CM (n = 8545)

Gene Chr SNP AA OR (CI) p OR (CI) p OR (CI) p

SEC16B 1 rs543874 G 1.79 (1.04, 3.08) 0.04 0.31 (0.08, 1.24) 0.09 1.26 (1.13, 1.32) 1.0 × 10−5

OLFM4 13 rs12429545 G 0.84 (0.53, 1.34) 0.47 0.44 (0.13, 1.65) 0.21 0.85 (0.78, 0.93) 2.2 × 10−4

FTO 16 rs9939609 A 0.93 (0.55, 1.57) 0.78 2.17 (0.43, 10.87) 0.34 1.26 (1.12 1.42) 2.2 × 10−4

MC4R 18 rs6567160 C 1.73 (0.79, 3.81) 0.17 1.00 (0.08, 11.99) 1.00 1.25 (1.06, 1.48) 8.0 × 10−3

GNPDA2 4 rs13130484 T 0.86 (0.54, 1.36) 0.52 1.43 (0.63, 3.25) 0.40 1.12 (1.01, 1.21) 0.03
OLFM4 13 rs9568856 G 1.04 (0.67, 1.59) 0.87 0.78 (0.28, 2.11) 0.62 0.90 (0.82, 0.98) 0.01
FAIM2 12 rs7132908 A 0.91 (0.52, 1.57) 0.73 1.41 (0.32, 6.08) 0.65 1.048 (0.93, 1.18) 0.46

FAM120AOS 9 rs944990 A 0.96 (0.57, 1.59) 0.78 0.42 (0.12, 1.46) 0.17 1.076 (0.97, 1.19) 0.17
LMX1B 9 rs3829849 A 0.92 (0.53, 1.58) 0.51 0.73 (0.15, 3.68) 0.71 1.18 (1.02, 1.37) 0.03

ADAM23 2 rs13387838 A 1.52 (0.44, 5.27) 0.78 M 1.45 (0.81, 2.58) 0.21
HOXB5 17 rs9299 G 0.94 (0.60, 1.46) 0.77 0.54 (0.20, 1.43) 0.21 0.94 (0.86, 1.02) 0.14

ELP3 8 rs13253111 G 0.61 (0.39, 0.94) 0.33 0.86 (0.36, 2.07) 0.74 0.94 (0.86, 1.03) 0.20
RAB27B 18 rs8092503 G 1.24 (0.81, 1.90) 1.00 0.42 (0.08, 2.16) 0.30 1.04 (0.96, 1.14) 0.33
GPR61 1 rs7550711 T VLF M 1.03 (0.52, 2.04) 0.93

TNNI3K 1 rs12041852 A 1.18 (0.74, 1.88) 0.48 4.35 (0.77, 24.43) 0.09 0.97 (0.88, 1.07) 0.54
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Table 4. Linear model results. Estimates (β) and p-values (p) for the effects of genetic risk score (GRS)
and Amerindian ancestry (AMA) on body mass index z-score in Mexican schoolchildren.

Variables β SE p

Intercept −0.01 0.01 0.26
GRS 0.11 0.01 0.1 × 10−16

AMA −0.05 0.01 6.8 × 10−7

GRS*AMA 0.03 0.01 6.0 × 10−3

The asterisk (*) denotes the interaction of variables.
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Figure 1. Effect of genetic risk score (GRS) and Amerindian ancestry (AMA) on body mass index
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3. Discussion

In this study, we showed different obesity prevalence among different ethnic groups in Mexican
schoolchildren aged 5–13 years old. Eleven out of 15 BMI/obesity-associated SNPs (SEC16B rs543874,
OLFM4 rs12429545, rs9568856, FTO rs9939609, MC4R rs6567160, GNPDA2 rs13130484, FAIM2 rs7132908,
FAM120AOS rs944990, LMX1B rs3829849, ADAM23 rs13387838, HOXB5 rs9299) found in European
children were associated with BMI z-score also in Central Mexican children, and seven were associated
with obesity. One SNP was associated with obesity in Northern Mexican Mestizos and Yaquis (SEC16B
rs543874), and none of them were associated with Seris.

Differences in mean BMI and obesity prevalence among ethnic groups are, at least in part, due
to the degree of westernized lifestyle and the genetic factor [4], which was evident for Northern and
Central Mexican children. In the North part of the country, Seri, Yaqui and Northern Mexican Mestizo
children (from Hermosillo, capital city of Sonora State) belong to different ethnicities, which differed
in AMA (mean and ranges) and in obesity prevalence (Table 1). In Sonora, a US border state, signs
of high cultural transition to westernized lifestyle and the genetic makeup (mean = 43% of AMA)
lead urban Mexican Mestizo children to present the highest overweight/obesity prevalence (40%)
in Mexico [12] (47.4% in our study). In an endpoint of our AMA range, we find the Seris (mean =

92% of AMA). They are the smallest population in the area; they have never exceeded one thousand
inhabitants and they represent the North extreme point of genetic diversity. Even when they live in a
natural environment, westernization permeates, changing traditional forms of nutrition and resulting
in health problems, such as high adult diabetes prevalence [13]. The high obesity prevalence shown by
boys in this study (25.9%) is a sign of the beginning of the abovementioned health problems in adults.
In terms of AMA, the Yaquis (mean = 72% of AMA) are located between Sonoran urban Mexican
Mestizos and Seris. Currently, 45,000 Yaquis are divided in eight villages in Northern Mexico, who live
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in rural and urban communities, and in Arizona, US [14,15]. This cultural flexibility and higher (than
Seris) population size lead Yaquis to show greater admixture levels. However, their strong identity
leads them to maintain certain traditions, especially in rural communities (such as the one in which
the school studied herein is set), which may underlie the lower obesity prevalence observed in our
Northern Mexican child population.

Regarding Central Mexico, the Nahuatl language is taught in the six indigenous schools in Puebla
State included in this study. Nahuatl speakers from Puebla share an origin in the mountain range
Sierra Madre Oriental, a fairly rugged region, which causes more isolation among communities and,
in turn, facilitates maintenance of their language and culture [16]. Although less marked, compared
to the North, there are differences in AMA between children from indigenous (mean = 84% AMA)
and from regular (mean = 80% AMA) schools. Children from indigenous schools showed less obesity
prevalence, likely due to differences in the degree of westernized lifestyle. In line with previous
studies, although all Mexican Amerindian groups exhibit some degree of European admixture, Mestizo
groups, especially those from lower socioeconomic strata, differ culturally from Mexican Amerindian
populations more than genetically [17,18].

In line with this study, among the 11 BMI/obesity-associated SNPs in European children found
to be significant in Central Mexican children, other SNPs in three of those genes contributed to
BMI/obesity susceptibility in Mexican children from Mexico City (GNPDA2 rs10938397; MC4R
rs17782313, rs17782313, rs2168708, rs28753167; FAIM2 rs7138803 [8,10,11]). In our study, only SEC16B
rs543874 was replicated in Central and Northern Mexican Mestizos and Yaquis and, although not
significantly, it was the SNP most strongly associated in Seris (p = 0.09). This holds importance in order
to know whether the same BMI/obesity-associated loci contribute to BMI/obesity risk across a range
of ancestries.

For the rest of the SNPs, for which no significant effect was found (p ≥ 0.05), two issues are
important to be regarded before accepting the lack of their contribution to BMI phenotype. Firstly,
linkage disequilibrium between index SNPs and causal loci in our population could be weaker than in
a population with European ancestry, which may lead to a weaker association and thus not be detected.
Secondly, if the size effect is very low in our population, it could only be detected by increasing the
statistical power with a larger sample size [4], mainly in Northern Mexico where our sample size is low.

The BMI was influenced by GRS, AMA and the interaction of them (Figure 1). A higher GRS
resulted in a higher BMI z-score, while a higher AMA led to a lower BMI z-score, but the GRS*AMA
interaction increased the BMI z-score. This suggests that high BMI genetic susceptibility impacts on
BMI, even in children with high AMA.

Several efforts have been made to examine the relative effects of Amerindian and European
genetic admixture on obesity [19–21]. However, direct comparisons among them are difficult due
to differences in the range of European–Amerindian ancestry, in the definition of ethnic groups, or
because similar genetic background groups living in different environmental and cultural contexts are
used. Genetic admixture studies have been valuable in identifying differences in ethnicities that cannot
be explained by environmental factors alone. Individuals with mixed ancestry (Asian/Europeans,
Hawaiian/Europeans, Hawaiian/Asians, Latin/Europeans and Hawaiian/Asian/Europeans) have shown
higher BMI than the average for their parental ethnic groups, which suggests that differences in ancestral
background may partially explain ethnic differences in the prevalence of obesity [3]. Our results go
in line with these observations: indigenous children from Northern and Central Mexico showed less
obesity prevalence than Mestizos from the same regions. As discussed above, variation in the degree of
Mestizo/Amerindian ancestry may imply lifestyle variation. Our results suggest that children showing
a higher Amerindian ancestry could keep certain cultural traditions that may serve as a protection
against obesity, as compared to Mestizos, except for children with high genetic BMI susceptibility.

This study has limitations that are worthy to be mentioned. The number of Northern Mexican
Mestizo, Seri and Yaqui children was considerably lower than Central Mexicans. Thus, the lack of
significance of several of the gene variants could be because of a lack of statistical power to detect a
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low effect in a low sample size (Table S3). Also, the study collected limited information on potential
confounders such as lifestyle.

4. Materials and Methods

We studied 8914 children aged from 5 to 13 years from state schools in Mexico: 369 from 6 schools
in Sonora State, Northern Mexico, in 2016; and 8545 from 46 schools in Puebla State, Central Mexico,
in 2017. Children attended regular schools (n = 7712) and indigenous schools: two in Sonora, both rural
schools of Seri (n = 68) and Yaqui (n = 123) Amerindian groups, and five in Puebla, for Nahuatl speakers
(n = 1011) (Figure S1). Regular schools enrol the vast majority of students in Mexico. Indigenous
schools are characterized by bilingualism and biculturalism, where at least one indigenous language
and culture of a particular Amerindian group is taught. Weight and height were measured by trained
technicians. Children were barefoot and wore light clothes. Accuracy of the stadiometer was ±0.1 cm
and ±0.01 kg. BMI was calculated (kg/m2), as well as the BMI z-score.

All children were recruited by the Por tu Salud Project, with the goal of researching genetic
and environmental factors of childhood obesity [22]. As inclusion criteria, we selected children of
both sexes, with obesity, overweight and normal weight, who attended the schools. In addition,
all children voluntarily accepted participating, and their parents authorized their participation by
signing an informed consent. All schools were provided by Secretaría de Educación de Cultura del
Estado Sonora (in English, the Sonora State Secretary of Education and Culture) and Secretaría de
Educación Pública del Estado Puebla (in English, the Puebla State Public Secretary of Education).
Fifteen BMI/obesity-associated SNPs, previously identified in genome-wide association studies from
European children, were tested in Northern and Central Mexican children. For Northern Mexican
children, genomic DNA was obtained from a sample of 500 uL of whole blood. We used an automated
system InviGenius® and DNA Mini Kit InviMag Blood (STRATEC Molecular GmbH, Berlin, Germany).
From Central Mexican children, genomic DNA was obtained from swab samples using Star Lab
Hamilton automated system and DNA Swab kit (STRATEC Molecular GmbH, Germany). The 15 SNPs
included in the array were: LMX1B rs3829849, MC4R rs6567160, ADAM23 rs13387838, ELP3 rs13253111,
FAIM2 rs7132908, GNPDA2 rs13130484, GPR61 rs7550711, RAB27B rs8092503, SEC16B rs543874, OLFM4
rs12429545, rs9568856 [23], TNNI3K rs12041852 [24], FTO rs9939609 [25], FAM120AOS rs944990 [26],
HOXB5 rs9299. We also included 40 ancestry-informative markers (AIMs) (allele frequency differences,
d = 0.4) [6]. Genotyping was performed using a nanofluidic Dynamic Array mounted on chips in the
Juno system from Fluidigm Corporation (South San Francisco, CA, USA) [27]. Ten percent of samples
were replicated to evaluate genotyping reproducibility. Individuals with at least 99% of the genotyping
rate were used in statistical analyses.

This project was approved by the Ethics Committee of Regional Hospital Lic. Adolfo López
Mateos on 6 June 2016 and 26 September 2018 under the registry numbers 433.2016 and 315.2018
respectively, from Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (in English,
Institute for Social Security and Services for State Workers) Mexico, for Secretaría de Educación de
Cultura del Estado Sonora and Secretaria de Educación Pública del Estado Puebla.

4.1. Data Analysis

Descriptive results were presented as BMI mean and standard deviation, and overweight and
obesity prevalence according to World Health Organization (WHO) BMI cut-off [28] by ethnic group.
Comparisons among groups were done using Mann–Whitney and Kruskall–Wallis tests for two or
more samples, respectively, in XLSTAT software (Data Analysis and Statistical Solution for Microsoft
Excel, Addinsoft, Paris, France 2017).

Fisher exact tests were employed to assess Hardy–Weinberg equilibrium, and linkage
disequilibrium among SNPs was tested using R2 coefficient. These tests were conducted separately for
AIMs and for candidate SNPs, in PLINK version 1.9 software (http://pngu.mgh.harvard.edu/purcell/
plink, Harvard University, Cambridge, MA, USA) [29]. Population structure and individual admixture

http://pngu.mgh.harvard.edu/purcell/plink
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proportion analyses were conducted using Principal Component Analysis (PCA) in EIGENSOFT
7.2.1 [30] (https://reich.hms.harvard.edu, Harvard University, MA, USA) and ADMIXTURE version 1.3
softwares (http://www.genetics.ucla.edu/software, University of California Los Angeles, Los Angeles,
CA, USA) [31], respectively. These analyses were carried out comparing Mexican samples and
individuals from parental populations [6]. Data on European and African individuals were obtained
from the 1000 Genomes Project (http://www.internationalgenome.org/), and Amerindian genotypes
were available at the server of the project that collected the samples (ftp://ftp.inmegen.gob.mx/).

4.2. Association Analysis

Association analysis on BMI z-score and obesity was done using linear and logistic models,
respectively, adjusted by age, sex Amerindian ancestry (AMA) and marginality index, assuming an
additive inheritance model in PLINK version 1.9 software (http://pngu.mgh.harvard.edu/purcell/plink
Cambridge, MA, USA) [29]. SNPs were considered significant at a lower p-value < 0.05. No Bonferroni
adjustment was applied, since these SNPs have established associations with BMI/obesity in European
children [10,32].

For further assessment of SNP–BMI z-score association, we firstly constructed a genetic risk
score (GRS) combining the 15 candidate SNPs. We assumed that each SNP acts independently and
contributes equally to the risk of obesity under an additive inheritance model [33,34]. Genotypes were
coded as 0, 1 or 2 according to the number of risk alleles for each variant. Secondly, to understand the
combined effect of the AMA (used as a continuous variable) and GRS on BMI z-score, we performed
a linear model. The explanatory variables included in the models were age, sex, GRS and AMA.
An initial model contained all single effects and all possible interactions of such explanatory variables.
Model simplification was done by stepwise deletion of the least significant terms. We evaluated the
relative performance of models using the Akaike information criteria (AIC) [35], and selected the
model with the lowest AIC. These selected models were validated by residual analyses.

Power calculations to detect significance at 0.05 were performed using a continuous outcome and
case-control design for Northern Mexican Mestizo/Yaqui, Seri and Central Mexican ethnic groups in
Quanto software version 1.2.4 (http://biostats.usc.edu/Quanto.html, University of Southern California,
Los Angeles, CA, USA). Calculations were carried out for genes only, under an additive inheritance
model and using the allele frequency from 0.02 to 0.50. The whole sample means and SD for BMI (BMI
mean = 18.2, SD = 4.3) and overweight/obesity prevalence (34%) were used for the analysis.

5. Conclusions

In conclusion, 11 out of 15 BMI/obesity-associated SNPs in European children contribute to BMI
susceptibility in Central Mexican children. Higher BMI z-score genetic susceptibility increased the
BMI z-score risk. The AMA attenuates the BMI z-score risk, except in those children with high genetic
susceptibility. This suggests that both genetic and cultural differences among ethnicities, at least, are
necessary to explain differences in obesity prevalence.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/374/s1.
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