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Abstract: It has been repeatedly conjectured that the brain retrieves statistical regularities from
stimuli. Here, we present a new statistical approach allowing to address this conjecture. This approach
is based on a new class of stochastic processes, namely, sequences of random objects driven by chains
with memory of variable length.

Keywords: stochastic chains with memory of variable length; sequences of random objects driven by
context tree models; stochastic modeling of EEG data

1. Introduction

Consider the following experimental situation. A listener is exposed to a sequence of auditory
stimuli, generated by a stochastic chain, while electroencephalographic (EEG) signals are recorded
from his scalp. Starting from Von Helmholtz [1], a classical conjecture in neurobiology claims that
the listener’s brain automatically identifies statistical regularities in the sequence of stimuli (see,
for instance, [2,3]). If this is the case, then a signature of the stochastic chain generating the stimuli
should somehow be encoded in the brain activity. The question is whether this signature can be
identified in the EEG data recorded during the experiment. The goal of this paper is to discuss a new
probabilistic framework in which this conjecture can be formally addressed.

To model the relationship between the random chain of auditory stimuli and the corresponding
EEG data, we introduce a new class of stochastic processes. A process in this class has two components.
The first one is a stochastic chain taking values in the set of auditory units. The second one is a
sequence of functions corresponding to the sequence of EEG chunks recorded during the exposure of
the successive auditory stimuli.

We use a stochastic chain with memory of variable length to model the dependence from the past
characterizing the sequence of auditory stimuli. Stochastic chains with memory of variable length
were introduced by Rissanen [4], as a universal system for data compression. In his seminal paper,
Rissanen observed that in many real life stochastic chains the dependence from the past has not a
fixed length. Instead, it changes at each step as a function of the past itself. He called a context the
smallest final string of past symbols containing all the information required to predict the next symbol.
The set of all contexts defines a partition of the past and can be represented by a rooted and labeled
oriented tree. For this reason, many authors call stochastic chains with memory of variable length
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context tree models. We adopt this terminology here. A non-exhaustive list of articles on context tree
models, with applications in biology and linguistics, includes [5–13].

An interesting point about stochastic chains with memory of variable length with finite context
trees is that they are dense in the d̄-topology in the class of chains of infinite order with continuous
and non-null transition probabilities and summable continuity rates. This result follows easily from
Fernández and Galves [14] and Duarte et al. [15]. We refer the reader to these articles for definitions
and more details.

Besides modeling the chain of auditory units, we must also model the relationship between the
chain of stimuli and the sequence of EEG chunks. To that end, we assume that at each time step a new
EEG chunk is chosen according to a probability measure (defined on suitable class of functions) which
depends only on the context assigned to the sequence of auditory units generated up to that time.
In particular, this implies that to describe the new class of stochastic chains introduced in this paper,
we also need to consider a family of probability measures on the set of functions corresponding to the
EEG chunks, indexed by the contexts of the context tree characterizing the chain of auditory stimuli.

In this probabilistic framework, the neurobiological question can now be rigorously addressed
as follows. Is it possible to retrieve the context tree characterizing the chain of stimuli from the
corresponding EEG data? This is a problem of statistical model selection in the class of stochastic
processes we have just informally described.

This article is organized as follows. In Section 2, we provide an informal overview of our approach.
In Section 3, we introduce the notation, recall what is a context tree model and introduce the new
class of sequences of random objects driven by context tree models. A statistical procedure to select,
given the data, a member on the class of sequences of random objects driven by context tree models is
presented in Section 4. The theoretical result supporting the proposed method, namely Theorem 1,
is given in the same section. In Section 5, we conduct a brief simulation study to illustrate the statistical
selection procedure presented in Section 4. The proof of Theorem 1 is given in Section 6.

2. Informal Presentation of Our Approach

Volunteers are exposed to sequences of auditory stimuli generated by a context tree models while
EEG signals are recorded. The auditory units used as stimuli are strong beats, weak beats or silent units,
represented by symbols 2, 1 and 0, respectively.

The way the sequence of auditory units was generated can be informally described as follows.
Start with the deterministic sequence

2 1 1 2 1 1 2 1 1 2 1 1 2 . . . .

Then, replace each weak beat (symbol 1) by a silent unit (symbol 0) with probability ε in an
independent way.

An example of a sequence produced by this procedure acting on the basic sequence would be

2 1 1 2 0 1 2 1 1 2 0 0 2 . . . .

In the sequel, this stochastic chain is denoted by the symbols (X0, X1, X2, . . .).
The stochastic chain just described can be generated step by step by an algorithm using only

information from the past. We impose to the algorithm the condition that it uses, at each step,
the shortest string of past symbols necessary to generate the next symbol.

This algorithm can be described as follows. To generate Xn, given the past Xn−1, Xn−2, . . ., we
first look to the last symbol Xn−1.

• If Xn−1 = 2, then

Xn =

{
1, with probability 1− ε,
0, with probability ε.
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• If Xn−1 = 1 or Xn−1 = 0, then we need to go back one more step,

� if Xn−2 = 2, then

Xn =

{
1, with probability 1− ε,
0, with probability ε;

� if Xn−2 = 1 or Xn−2 = 0, then Xn = 2 with probability 1.

The algorithm described above is characterized by two elements. The first one is a partition of the
set of all possible sequences of past units. This partition is represented by the set

τ = {00, 10, 20, 2, 01, 11, 21, 2}.

In partition τ, the string 00 represents the set of all strings ending by the ordered pair (0, 0);
10 represents the set of all strings ending by the ordered pair (1, 0), . . .; and finally the symbol 2
represents the set of all strings ending by 2. Following Rissanen [4], let us call context any element of
this partition.

For instance, if
. . . , Xn−3 = 1, Xn−2 = 2, Xn−1 = 0, Xn = 1.

the context associated to this past sequence is 01.
The partition τ of the past as described above can be represented by a rooted and labeled tree

(see Figure 1) where each element of the partition is described as a leaf of the tree.

00 10 20 01 11 21

2

Figure 1. Graphical representation of the context tree τ.

In the construction described above, for each sequence of past symbols, the algorithm first
identifies the corresponding context w in the partition τ. Once the context w is identified, the algorithm
chooses a next symbol a ∈ {0, 1, 2} using the transition probability p(a|w). In other terms, each context
w in τ defines a probability measure on {0, 1, 2}. The family of transition probabilities indexed by
elements of the partition is the second element characterizing the algorithm.

The families of transition probabilities associated to τ are shown in Table 1.

Table 1. Transition probabilities associated to the context tree τ.

Context w p(0|w) p(1|w) p(2|w)

2 ε 1− ε 0
21 ε 1− ε 0
20 ε 1− ε 0
11 0 0 1
10 0 0 1
01 0 0 1
00 0 0 1

Using the notion of context tree, the neurobiological conjecture can now be rephrased as follows.
Is the brain able to identify the context tree generating the sample of auditory stimuli? From an
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experimental point of view, the question is whether it is possible to retrieve the tree presented in
Figure 1 from the corresponding EEG data. To deal with this question we introduce a new statistical
model selection procedure described below.

Let Yn be the chunk of EEG data recorded while the volunteer is exposed to the auditory
stimulus Xn. Observe that Yn is a continuous function taking values in Rd, where d ≥ 1 is the
number of electrodes. Its domain is the time interval of length, say T, during which the acoustic
stimulus Xn is presented.

The statistical procedure introduced in the paper can be informally described as follows. Given a
sample (X0, Y0), ..., (Xn, Yn) of auditory stimuli and associated EEG chunks and for a suitable initial
integer k ≥ 1, do the following.

1. For each string u = u1, u2, ..., uk of symbols in {0, 1, 2}, identify all occurrences in the sequence
X0, X1, ..., Xn of the string au, obtained by concatenating the symbol a ∈ {0, 1, 2} and the string u.

2. For each a ∈ {0, 1, 2}, define the subsample of all EEG chunks Ym = Y(au)
m such that Xm−k =

a, Xm−k+1 = u1, ..., Xm = uk (see Figure 2).
3. For any pair a, b ∈ {0, 1, 2}, test the null hypothesis that the law of the EEG chunks Y(au) and

Y(bu) collected at Step 2 are equal.

(a) If the null hypothesis is not rejected for any pair of final symbols a and b, we conclude
that the occurrence of a or b before the string u do not affect the law of EEG chunks. Then,
we start again the procedure with the one step shorter sequence u = u2, ..., uk.

(b) If the null hypothesis is rejected for at least one pair of final symbols a and b,
we conclude that the law of EEG chunks depend on the entire string au and we stop
the pruning procedure.

4. We keep pruning the sequence u1, ..., uk until the null-hypothesis is reject for the first time.
5. Call τ̂n the tree constituted by the strings which remained after the pruning procedure.

The question is whether τ̂n coincides with the context tree τ generating the sequence of
auditory stimuli.

Y(au) Y(bu)

. . .

Figure 2. EEG signals recorded from four electrodes. The sequence of stimuli is indicated in the top
horizontal line. Vertical lines indicate the beginning of the successive auditory units. The distance
between two successive vertical lines is T > 0. Solid vertical lines indicate the successive occurrence
times of the string u. The first yellow strip corresponds to the chunk Y(au)

n associated to the string au.

The second yellow strip corresponds to the chunk Y(bu)
n associated to the string bu.

An important technical issue must be clarified at this point, namely, how to test the equality
of the laws of two subsamples of EEG chunks. This is done using the projective method informally
explained below.
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Suppose we have two samples of random functions, each sample composed by independent
realizations of some fixed law. To test whether the two samples are generated by the same law,
we choose at random a “direction” and project each function in the samples in this direction.
This produces two new samples of real numbers. Now, we test whether the samples of the projected
real numbers have the same law. Under suitable conditions, a theorem by Cuesta-Albertos et al. [16]
ensures that for almost all directions if the test does not reject the null hypothesis that the projected
samples have the same law, then the original samples also have the same law.

The arguments informally sketched in this section are formally developed in the
subsequent sections.

3. Notation and Definitions

Let A be a finite alphabet. Given two integers m, n ∈ Z with m ≤ n, the string (um, . . . , un) of
symbols in A is often denoted by un

m; its length is `(un
m) = n−m + 1. The empty string is denoted by

∅ and its length is `(∅) = 0. Fixing two strings u and v of elements of A, we denote by uv the string
in A`(u)+`(v) obtained by the concatenation of u and v. By definition u∅ = ∅u = u for any string
u ∈ A`(u). The string u is said to be a suffix of v if there exists a string s satisfying v = su. This relation
is denoted by u � v. When v 6= u, we say that u is a proper suffix of v and write u ≺ v. Hereafter, the set
of all finite strings of symbols in A is denoted by A∗ :=

⋃∞
k=1 Ak. For any finite string w = w−1

−k with
k ≥ 2, we write suf(w) to denote the one-step shorter string w−1

−k+1.

Definition 1. A finite subset τ of A∗ is a context tree if it satisfies the following conditions:

1. Suffix Property. For no w ∈ τ we have u ∈ τ with u ≺ w.
2. Irreducibility. No string belonging to τ can be replaced by a proper suffix without violating the

suffix property.

The set τ can be identified with the set of leaves of a rooted tree with a finite set of labeled branches.
The elements of τ are always denoted by w, u, v, . . ..

The height of the context tree τ is defined as `(τ) = max{`(w) : w ∈ τ}. In the present paper,
we only consider context trees with finite height.

Definition 2. Let τ and τ′ be two context trees. We say that τ is smaller than τ′ and write τ � τ′, if for every
w′ ∈ τ′ there exists w ∈ τ such that w � w′.

Given a context tree τ, let p = {p(· | w) : w ∈ τ} be a family of probability measures on A
indexed by the elements of τ. The pair (τ, p) is called a probabilistic context tree on A. Each element of τ

is called a context. For any string x−1
−n ∈ An with n ≥ `(τ), we write cτ(x−1

−n) to denote the only context
in τ which is a suffix of x−1

−n.

Definition 3. A probabilistic context tree (τ, p) with height `(τ) = k is irreducible if for any a−1
−k ∈ Ak and

b ∈ A there exist a positive integer n = n(a−1
−k , b) and symbols a0, a1, . . . , an = b ∈ A such that

p(a0|cτ(a−1
−k)) > 0, p(a1|cτ(a0a−1

−k)) > 0, . . . , p(an|cτ(an−1, . . . , a0a−1
−k)) > 0.

Definition 4. Let (τ, p) be a probabilistic context tree on A. A stochastic chain (Xn)n∈N taking values in A is
called a context tree model compatible with (τ, p) if

1. for any n ≥ `(τ) and any finite string x−1
−n ∈ An such that P

(
Xn−1

0 = x−1
−n
)
> 0, it holds that

P
(

Xn = a | Xn−1
0 = x−1

−n

)
= p

(
a | cτ

(
x−1
−n
))

for all a ∈ A, (1)

where cτ

(
x−1
−n
)

is the only context in τ which is a suffix of x−1
−n.
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2. For any 1 ≤ j < `(cτ

(
x−1
−n
)
), there exists a ∈ A such that

P
(

Xn = a | Xn−1
0 = x−1

−n

)
6= P

(
Xn = a | Xn−1

n−j = x−1
−j

)
.

With this notation, we can now introduce the class of random objects driven by a context
tree model.

Definition 5. Let A be a finite alphabet, (τ, p) a probabilistic context tree on A, (F,F ) a measurable space
and (Qw : w ∈ τ) a family of probability measures on (F,F ). The bivariate stochastic chain (Xn, Yn)n∈N
taking values in A× F is a sequence of random objects driven by a context tree model compatible with (τ, p)
and (Qw : w ∈ τ) if the following conditions are satisfied:

1. (Xn)n∈N is a context tree model compatible with (τ, p).
2. The random elements Y0, Y1, . . . are F -measurable. Moreover, for any integers `(τ) ≤ m ≤ n, any string

xn
m−`(τ)+1 ∈ An−m+`(τ) and any sequence Jm, . . . , Jn of F -measurable sets,

P
(
Ym ∈ Jm, . . . , Yn ∈ Jn|Xn

m−`(τ)+1 = xn
m−`(τ)+1

)
=

n

∏
k=m

Qcτ(xk
k−`(τ)+1)(Jk),

where cτ(xk
k−`(τ)+1) is the context in τ assigned to the string of symbols xk

k−`(τ)+1.

Definition 6. A sequence of random objects driven by a context tree model compatible with (τ, p) and (Qw :
w ∈ τ) is identifiable if for any context w ∈ τ there exists a context u ∈ τ such that suf(w)=suf(u) and
Qw 6= Qu.

The process (Xn) is called the stimulus chain and (Yn) is called the response chain.
The experimental situation described in Section 2 can now be formally presented as follows.

• The stimulus chain (Xn) is a context tree model taking values in an alphabet having as elements
symbols indicating the different types of auditory units appearing in the sequence of stimuli.
We call (τ, p) its probabilistic context tree.

• Each element Yn of the response chain (Yn) represents the EEG chunk recorded while the volunteer
is exposed to the auditory stimulus Xn. Thus, Yn = (Yn(t), t ∈ [0, T]) is a function taking values in
Rd, where T is the time distance between the onsets of two consecutive auditory stimuli and d the
number of electrodes used in the analysis. The sample space F is the Hilbert space L2([0, T],Rd)

of Rd-valued functions on [0, T] having square integrable components. The Hilbert space F is
endowed with its usual Borel σ-algebra F .

• Finally, (Qw, w ∈ τ) is a family of probability measures on L2([0, T],Rd) describing the laws of
the EEG chunks.

From now on, the pair (F,F ) always denotes the Hilbert space L2([0, T],Rd) endowed with its
usual Borel σ-algebra.

4. Statistical Selection for Sequences of Random Objects Driven by Context Tree Models

Let (X0, Y0), . . . , (Xn, Yn), with Xk ∈ A and Yk ∈ F for 0 ≤ k ≤ n, be a sample produced by a
sequence of random objects driven by a context tree model compatible with (τ̄, p̄) and (Q̄w : w ∈ τ̄).
Before introducing the statistical selection procedure, we need two more definitions.

Definition 7. Let τ be a context tree and fix a finite string s ∈ A∗. We define the branch in τ induced by s as
the set Bτ(s) = {w ∈ τ : w � s}. The set Bτ(s) is called a terminal branch if for all w ∈ Bτ(s) it holds that
w = as for some a ∈ A.
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Given a sample X0, . . . , Xn of symbols in A and a finite string u ∈ A∗, the number of occurrences
of u in the sample X0, . . . , Xn is defined as

Nn(u) =
n

∑
m=l(u)−1

1{Xm
m−`(u)+1 = u}.

Definition 8. Given integers n > L ≥ 1, an admissible context tree of maximal height L for the sample
X0, . . . , Xn of symbols in A, is any context tree τ satisfying

1. w ∈ τ if and only if `(w) ≤ L and Nn(w) ≥ 1.
2. Any string u ∈ A∗ with Nn(u) ≥ 1 is a suffix of some w ∈ τ or has a suffix w ∈ τ.

For any pair of integers 1 ≤ L < n and any string u ∈ A∗ with `(u) ≤ L, call In(u) the set of
indexes belonging to {`(u)− 1, . . . , n} in which the string u appears in sample X0, . . . , Xn, that is

In(u) = {`(u)− 1 ≤ m ≤ n : Xm
m−`(u)+1 = u}.

Observe that by definition |In(u)| = Nn(u). If In(u) = {m1, . . . , mNn(u)}, we set Y(u)
k = Ymk for

each 1 ≤ k ≤ Nn(u). Thus, Y(u)
1 , . . . , Y(u)

Nn(u)
is the subsample of Y0, . . . , Yn induced by the string u.

Given u ∈ A∗ such that Nn(u) ≥ 1 and h ∈ F, we define the empirical distribution associated to
the projection of the sample Y(u)

1 , . . . , Y(u)
Nn(u)

onto the direction h as

Q̂u,h
n (t) =

1
Nn(u)

Nn(u)

∑
m=1

1(−∞,t](〈Y
(u)
m , h〉), t ∈ R,

where for any pair of functions f , h ∈ F,

〈 f , h〉 =
d

∑
i=1

∫ T

0
fi(t)hi(t)dt.

For a given pair u, v ∈ A∗, with max{`(u), `(v)} ≤ L and h ∈ F, the Kolmogorov–Smirnov
distance between the empirical distributions Q̂u,h

n and Q̂v,h
n is defined by

KS(Q̂u,h
n , Q̂v,h

n ) = sup
t∈R
|Q̂u,h

n (t)− Q̂v,h
n (t)|.

Finally, we define for any pair u, v ∈ A∗ such that max{`(u), `(v)} ≤ L and h ∈ F,

Dh
n((Y

(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

)) =

√
Nn(u)Nn(v)

Nn(u) + Nn(v)
KS(Q̂u,h

n , Q̂v,h
n ).

Our selection procedure can now be described as follows. Fix an integer 1 ≤ L < n and let Tn be
the largest admissible context tree of maximal height L for the sample X0, . . . , Xn. The largest means
that if τ is any other admissible context tree of maximal height L for the sample Xn

1 , then τ � Tn.
For any string u ∈ A∗ such that BTn(u) is a terminal branch, we test the null hypothesis

H(u)
0 : L

(
Y(au)

1 , . . . , Y(au)
Nn(au)

)
=L

(
Y(bu)

1 , . . . , Y(bu)
Nn(bu)

)
, ∀ au, bu ∈ BTn(u) (2)

using the test statistic

∆n(u)=∆W
n (u)= max

a,b∈A
DW

n
(
(Y(au)

1 , . . . , Y(au)
Nn(au)), (Y

(bu)
1 , . . . , Y(bu)

Nn(bu))
)
, (3)
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where W = ((W1(t), . . . , Wd(t)) : t ∈ [0, T]) is a realization of a d-dimensional Brownian motion
in [0, T].

We reject the null hypothesis H(u)
0 when ∆n(u) > c, where c > 0 is a suitable threshold. When the

null hypothesis H(u)
0 is not rejected, we prune the branch BTn(u) in Tn and set as a new candidate

context tree
Tn =

(
Tn \ BTn(u)

)
∪ {u}.

On the other hand, if the null hypothesis H(u)
0 is rejected, we keep BTn(u) in Tn and stop testing

H(s)
0 for strings s ∈ A∗ such that s � u.

In each pruning step, take a string s ∈ A∗ that induces a terminal branch in Tn and has not been
tested yet. This pruning procedure is repeated until no more pruning is performed. We denote by
τ̂n the final context tree obtained by this procedure. The formal description of the above pruning
procedure is provided in Algorithm 1 as pseudocode.

Algorithm 1 Pseudocode describing the pruning procedure used to select the tree τ̂n.

Input: A sample (X0, Y0), . . . , (Xn, Yn) with Xk ∈ A and Yk ∈ F for 0 ≤ k ≤ n, a positive threshold c

and a positive integer L.
Output: A tree τ̂n

1: τ ← Tn
2: Flag(s)← “not visited” for all string s such that s � w ∈ Tn
3: for k in L to 1 do
4: while ∃s ∈ τ: `(s) = k, Flag(s) = “not visited” and Bτ(s) is a terminal branch do
5: Choose a s such that `(s) = k, Flag(s) = “not visited” and Bτ(s) is a terminal branch
6: Compute the test statistic ∆n(s) to test H(s)

0
7: if ∆n(s) > c then
8: Flag(u)← “visited” ∀u � s
9: else

10: τ ← (τ \ Bτ(s)) ∪ {s}
11: end if
12: end while
13: end for
14: Return τ̂n = τ.

To state the consistency theorem, we need the following definitions.

Definition 9. A probability measure P defined on (F,F ) satisfies Carleman condition if all the absolute
moments mk =

∫
||h||kP(dh), k ≥ 1, are finite and

∑
k≥1

m−1/k
k = +∞.

Definition 10. Let P be a probability measure on (F,F ). We say that P is continuous if Ph is continuous for
any h ∈ F, where Ph is defined by

Ph((−∞, t]) = P(x ∈ F : 〈x, h〉 ≤ t), t ∈ R.

Let V be a finite set of indexes and (Pi : i ∈ V) be a family of probability measures on (F,F ). We say that
(Pi : i ∈ V) is continuous if for all i ∈ V, the probability measure Pi is continuous.

In what follows, let cα =
√
(1/2) ln(2/α), where α ∈ (0, 1). We say that αn → 0 slowly enough as

n→ ∞ if √
n

cαn

→ ∞ as n→ ∞.
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Theorem 1. Let (X0, Y0), . . . , (Xn, Yn) be a sample produced by a identifiable sequence of random objects
driven by a context tree model compatible with (τ̄, p̄) and (Q̄w : w ∈ τ̄), and let τ̂n be the context tree selected
from the sample by Algorithm 1 with L ≥ `(τ̄) and threshold cαn =

√
(1/2) ln(2/αn), where αn ∈ (0, 1).

If (τ̄, p̄) is irreducible and (Q̄w : w ∈ τ̄) is continuous and satisfies Carleman condition, then for αn → 0
slowly enough as n→ ∞,

lim
n→∞

P(τ̂n 6= τ̄) = 0.

The proof of Theorem 1 is presented in Section 6.

5. Simulation Study

In this section, we illustrate the performance of Algorithm 1 by applying it in a toy example.
We consider the context tree model compatible with (τ̄, p̄) described in Section 2 with ε = 0.2. For each
w ∈ τ̄, we assume Q̄w is the law of a diffusion process with drift coefficient fw = ( fw(t))0≤t≤1 and
constant diffusion coefficient. For simplicity, all diffusion coefficients are assumed to be 1. For each
context w ∈ τ̄, we assume fw = Kgw, where K is a positive constant and gw is the density of a Gaussian
random variable with mean µw and standard deviation σw, restricted to the interval [0, 1]. In the
simulation, we take K = 5. The shapes of the functions fw and corresponding values of µw and σw are
shown in Figure 3. One can check that the assumptions of Theorem 1 are satisfied by this toy example.

Figure 3. Functions gw and the corresponding values of µw and σw for w ∈ τ = {2, 11, 21, 01, 00, 10, 20} :
(top) function g2; (middle) functions g21, g11 and g01; and (bottom) functions g20, g10 and g00.
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To numerically implement Algorithm 1, we assume that all trajectories of the diffusion processes
are observed on equally spaces point 0 = t0 < t1 < . . . < t100 = 1, where ti =

i
100 for each 1 ≤ i ≤ 100.

For each sample size n = 100, 120, 140, . . . , 1000, we estimate the fraction of times Algorithm 1, with
αn = 1/n and L = 4, correctly identifies the context tree τ̄ based on 100 random samples of the model
with size n. The results are reported in Figure 4.

Figure 4. Proportion of correct identification of the context tree τ̄ = {2, 01, 11, 21, 20, 10, 00} by applying
Algorithm 1 to simulated data with sample sizes n = 100, 120, 140, . . . , 1000. For sample sizes larger
than 200, the proportion of correct identification is at least 95%.

6. Proof of Theorem 1

The proof of Theorem 1 is a direct consequence of Propositions 1 and 2 presented below.

Proposition 1. Let (X0, Y0), . . . , (Xn, Yn) be a sample produced by a sequence of random objects driven by
a context tree model compatible with (τ̄, p̄) and (Q̄w : w ∈ τ̄) satisfying the assumptions of Theorem 1.
Let α ∈ (0, 1) and set cα =

√
1/2 ln(2/α). For any integer L ≥ `(τ̄), context w ∈ τ̄, direction h ∈ F \ {0},

and strings u, v ∈ ∪L−`(w)
k=1 Ak such that w � u and w � v, it holds that

lim
n→∞

P(Dh
n((Y

(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

)) > cα) = α.

In particular, for any αn → 0 as n→ ∞, we have

lim
n→∞

P(Dh
n((Y

(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

)) > cαn) = 0.

Proof. The irreducibility of (τ̄, p̄) implies that P-a.s. both Nn(u) and Nn(v) tend to +∞ as n
diverges. Thus, Theorem 3.1(a) of [16] implies that the law of Dh

n((Y
(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

))

is independent of the strings u and v, and also of the direction h ∈ F \ {0}. It also implies that
Dh

n((Y
(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

) converges in distribution to K = supt∈[0,1] |B(t)| as n → ∞,
where B = (B(t) : t ∈ [0, 1]) is a Brownian Bridge. Since P(K > cα) = α, the first part of the
result follows.
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By the first part of the proof, for any fixed α ∈ (0, 1), we have that for all n large enough,

P(Dh
n((Y

(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

)) > cα)) ≤ 2α.

Thus, given ε > 0, take α ∈ (0, 1) such that 2α < ε to deduce that for all n large enough,

P(Dh
n((Y

(u)
1 , . . . , Y(u)

Nn(u)
), (Y(v)

1 , . . . , Y(v)
Nn(v)

)) > cα)) < ε.

Since cαn → ∞ as n → ∞, we have that for all n sufficiently large cαn > cα so that the result
follows from the previous inequality.

Proposition 2 reads as follows.

Proposition 2. Let (X0, Y0), . . . , (Xn, Yn) be a sample produced by a identifiable sequence of random objects
driven by a context tree model compatible with (τ̄, p̄) and (Q̄w : w ∈ τ̄), and let τ̂n satisfying the assumptions
of Theorem 1. Let α ∈ (0, 1) and define cα =

√
1/2 ln(2/α). For any string s ∈ A∗ such that Bτ̄(s) is a

terminal branch there exists a pair w, w′ ∈ Bτ̄(s) such that for almost all realization of a Brownian motion
W = (W(t) : t ∈ [0, T]) on [0, T],

lim
n→∞

P(DW
n ((Y(w)

1 , . . . , Y(w)
Nn(w)

), (Y(w′)
1 , . . . , Y(w′)

Nn(w′)
)) ≤ cαn) = 0,

whenever αn → 0 slowly enough as n→ ∞.

Proof. Since the sequence of random objects (X0, Y0), (X1, Y1), . . . is identifiable and Bτ̄(s) is a terminal
branch, there exists a pair w, w′ ∈ Bτ̄(suf(w)) whose associated distributions Q̄w and Q̄w on F are
different, and both Q̄w and Q̄w′ satisfy the Carleman condition. For each n ≥ 1, define

Nn :=

√
Nn(w)Nn(w′)

Nn(w) + Nn(w′)
,

if min{Nn(w), Nn(w′)} ≥ 1. Otherwise, we set Nn = 0. The irreducibility of (τ̄, p̄) implies that
n−1/2Nn → C as n→ ∞ P-a.s., where C is a positive constant depending on w and w′.

Now, Theorem 3.1(b) of [16] implies that, for almost all realization of a Brownian motion W on F,

lim inf
n→∞

KS(Q̂W,w
n , Q̂W,w′

n ) > 0 P-a.s. (4)

Since DW((Y(w)
1 , . . . , Y(w)

Nn(w)
), (Y(w′)

1 , . . . , Y(w′)
Nn(w′)

)/cαn =
√

n
cαn

Nn√
n KS(Q̂h,w

n , Q̂h,w′
n ) and αn → 0 slowly

enough, the result follows.

Proof of Theorem 1. Let Cτ̄ be the set of contexts belonging to a terminal branch of τ̄. Define also the
following events

Un =
⋃

w∈Cτ̄

{∆W
n (suf(w)) ≤ cαn} and On =

⋃
w∈τ̄

⋃
s�w:
`(s)≤L

{∆W
n (s) > cαn}.

It follows from the definition of Algorithm 1 that

P(τ̂n 6= τ̄) = P(Un) + P(On).

Thus, it is enough to prove that for any ε > 0 there exists n0 = n0(ε) such that P(Un) ≤ ε/2 and
P(On) ≤ ε/2 for all n ≥ n0.
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By the union bound, we see that

P(Un) ≤ ∑
w∈τ̄

P(∆W
n (suf(w)) ≤ cαn). (5)

The sequence of random objects (X0, Y0), (X1, Y1), . . . is identifiable. Thus by observing that for
each w ∈ Cτ̄ , Bτ̄(suf(w)) is a terminal branch, we have that there exists w′ ∈ Bτ̄(suf(w)) such that
the associated distributions Q̄w and Q̄w′ on F are different, and both Q̄w and Q̄w′ satisfies Carleman
condition. Since

{∆W
n (suf(w)) ≤ cαn} ⊂ {DW

n ((Y(w)
1 , . . . , Y(w)

Nn(w)
), (Y(w′)

1 , . . . , Y(w′)
Nn(w′)

) ≤ cαn},

and τ̄ is finite, Proposition 2 implies that P(Un) → 0 as n → ∞, if αn → 0 slowly enough. As a
consequence, for any ε > 0 there exists n0 = n0(ε) such that P(Un) ≤ ε/2 for all n ≥ n0.

Using again the union bound, we have

P(On) ≤ ∑
w∈τ̄

∑
s�w:
`(s)≤L

P(∆W
n (s) > cαn). (6)

By observing that τ̄ is finite, the alphabet A is finite and

{∆W
n (s) > cαn} =

⋃
a,b∈A

{DW
n ((Y(as)

1 , . . . , Y(as)
Nn(as)), (Y

(bs)
1 , . . . , Y(bs)

Nn(bs)) > cαn},

we deduce from Proposition 1 and the inequality in Equation (6) that, for any ε > 0, we have
P(On) ≤ ε/2 for all n large enough. This concludes the proof of the theorem.
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