HARDWARE IMPLEMENTATION OF A SENSORLESS
CONTROL ALGORITHM FOR PERMANENT MAGNET
SYNCHRONOUS MOTORS

A Thesis Presented
by

Gabriel Eirea

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of
Master of Science

in

Electrical Engineering

Northeastern University

Boston, Massachusetts

July 23, 2001

NORTHEASTERN UNIVERSITY

Graduate School of Engineering

Thesis Title: Hardware implementation of a sensorless control algorithm for Per-
manent Magnet Synchronous Motors.
Author: Gabriel Eirea.

Department: Electrical and Computer Engineering.

Approved for Thesis Requirement of the Master of Science Degree:

Thesis Advisor: Prof. Aleksandar M. Stankovi¢ Date
Thesis Co-Advisor: Prof. Gilead Tadmor Date
Thesis Reader: Prof. Miriam Leeser Date
Thesis Reader: Prof. Brad Lehman Date
Department Chair: Prof. Fabrizio Lombardi Date

Graduate School Notified of Acceptance:

Director of the Graduate School: Prof. Yaman Yener Date

“Did I hinder you much on the road toward your goal?”
“Hinder me! Oh Goldmund, no one furthered me as much as you did.
You created difficulties for me, but I am no enemy of difficulties.

I've learned from them, I've partly overcome them.”

Hermann Hesse in Narcissus and Goldmund

Abstract

The position-sensorless control of AC motor drives has been an important research
area during the last decade. Significant results have been obtained in laboratory
experiments. However, the intensive computations required, and the complexity of
the algorithms involved are serious obstacles for the implementation of these results
in industrial drives. The reliability and cost reduction gained by removing the posi-
tion sensor usually do not justify the introduction of significantly more powerful and
expensive processors.

In this thesis, we take one particular sensorless control algorithm for Permanent
Magnet Synchronous Motors, which presents an attractive numerical structure and
good performance in the laboratory, and implement it in a low-cost custom designed
board. The board design is based on a 16-bit fixed-point Digital Signal Proces-
sor (DSP) and a low-cost Field Programmable Gate Array (FPGA), which work in
parallel to perform the signal acquisition, position and speed estimation, controller
computation, and Pulse Width Modulation (PWM) generation. The introduction of
programmable logic in the circuit provides an opportunity to relieve the processor
from certain time-consuming tasks, liberating resources to perform the heaviest com-
putations. The FPGA was programmed in VHDL, an industry standard language,
which concedes the possibility of easily converting the design into an ASIC. To pro-
gram the DSP, finite word-length effects of the fixed-point operations were addressed.

The board was built and tested in the laboratory. Experimental results are pre-
sented, showing a satisfactory performance of this implementation over a wide range

of rotor speeds and torque loads.

Acknowledgments

I had the opportunity to study this Master’s program at Northeastern University
thanks to a lot of people and organizations to whom I am very grateful. I came
to the US under a Fulbright scholarship administered by LASPAU; I would like to
thank the Fulbright Commission in Uruguay, the Fulbright Program, LASPAU and
all their staff. Special thanks to Renee Hahn, my Program Advisor at LASPAU, for
her constant support.

I am very grateful to my home institution, Instituto de Ingenieria Eléctrica of
Universidad de la Republica, and looking forward to going back to Uruguay and
sharing my experience with my colleagues and students.

Thanks to Northeastern University for providing a stimulating atmosphere and
infrastructure for my research and studies.

I wish to express my sincere gratitude to Prof. Aleksandar Stankovi¢ for his un-
conditional support and guidance, and Prof. Gilead Tadmor for his assistance and
confidence in my work. I would like to thank also the other members of my Commit-
tee: Prof. Miriam Leeser and Prof. Brad Lehman for their valuable comments.

Thanks to Prof. Miriam Leeser for providing Altera’s development software and
chips, thru the Altera University Program, and to Dr. Paul Kettle from Analog
Devices for providing the development software and emulator for the DSP.

Special thanks to Vladan Petrovi¢ for his friendship and advice. Since my work
builds completely on his doctoral dissertation, I required his assistance many times
and always found a patient and generous response. Also thanks to my colleagues and
friends at Northeastern for all the good moments we spent together.

Finally, I would like to express my gratitude and love to my family. Thanks to
uncle Alberto and aunt Edith for their support. To my parents Luis and Cristina,
and my wife Sonia for their love and encouragement. This thesis would not have been
possible without you.

Gabriel Eirea
Boston, Massachusetts
July, 2001

i

Contents

Abstract i
Acknowledgments ii
1 Introduction 1
2 The position estimation algorithm for PMSM 4
2.1 Permanent Magnet Synchronous Motors (PMSM) 4
2.1.1 PMSM description oL 4

2.1.2 PMSM model in the af axes 6

2.1.3 PMSM model inthedgaxes 7

2.2 Position estimation algorithm00 0oL 8
221 PWMopatterno 9

2.2.2 Model discretizationo oL 12

2.2.3 Parameter estimation 0oL 0oL 14

2.2.4 Mechanical states observero 16

2.3 Control algorithm oo 17
24 Summary e e 18

il

3 Hardware design

3.1 General descriptiono
3.2 Signal acquisition Lo o o
3.3 The FPGA
3.4 TheDSP.
3.5 Construction of the prototype
3.6 Summary e

4 Word-length effects

4.1 Overview of the algorithm and implementation issues
4.2 Scaling
4.2.1 Scaling theinputs.o
4.2.2 Constructing vector x
4.2.3 Computing estimated parameters
424 Observer
4.2.5 Controller o o
4.2.6 Counter values
4.3 Simulations L
44 DSPcode
4.5 Summaryo

5 PWDM implementation using FPGA

5.1 General descriptiono
5.2 PWM counter blocko o o000
5.3 Registersblock oo o oo

v

20
21
23
25
27
28

30

31
31
33
34
36
39
41
43
47
49
49
90

52

5.3.1 Interface with the DSP 56

5.3.2 PWM signals generation o8

5.3.3 Signal acquisitiono 59

5.4 Practical considerationso o000 60
5.5 Summaryo 62

6 Experimental results 63
6.1 Experimental setupo Lo 63
6.2 Results. 66
6.3 Summary 67
7 Conclusions 71
Bibliography 73
A Hardware schematics and PCB 78
B Matlab files for simulations 85
B.1 Motormodel 85
B.1.1 stpmsm.m L 85

B.2 Floating-point version 0oL 86
B.2.1 simsless.m 86

B.2.2 constsl.m. 88

B.2.3 sless.m 90

B.3 Fixed-point version Lo 93
B.3.1 simslg.m 93

B.3.2 comstslg.m L 95

B33 slg.m 97

B34 fracl6.m 102

B35 alu.m 102

B3.6 mac.m 103

C Assembler code for the DSP 104
C.1 final.asm e 104
C.2 sine.asm L 116
C.3 test.ldf e 116

D VHDL code for the FPGA 118
D.1 pwm.vhd 118
D.2 pwmentr.vhd 120
D3 regs.vhd 121
D4 pwmpkg.vhd 128
D.5 Compilation report (edited version) 129

E Inverter design 134
E.1 Introduction Lo 134
E.2 The power module L oL 136
E.3 The digital interface Lo oL 138
E.4 The current probeso oL 140
E.5 Designofthe PCB 000, 140
E.6 Mounting and testing Lo oL 141

vi

E.7 Schematics

E.8 Printed Circuit Board

E.9 Connectors

vii

Chapter 1

Introduction

In the industrial and academic community there is an increasing interest in position-
sensorless operation of AC motor drives, motivated by the desire to reduce the system
cost and improve its reliability. The position sensors are in general fragile mechanical
parts, which must be installed and aligned carefully. Their cost represents a signifi-
cant part of the overall system cost, but also their presence complicates the in-field
maintenance, during which the sensor often breaks or gets misaligned. Therefore, the
elimination of the need for a position sensor is regarded as a major advantage in the
industrial community. Even when the system has a position sensor, the algorithms
developed for sensorless operation can provide useful information for diagnostics, ini-
tialization and/or resolution improvement of the position feedback.

The research and development in this area have yielded significant results over
the last few years. There are basically two approaches reported in the literature. The
first is based on the estimation of the motor back-emf, and the extraction of position

information from this signal [1, 2, 3, 4, 5]. The main drawback of these methods is

CHAPTER 1. INTRODUCTION 2

that their performance at low speed seriously deteriorates, since the back-emf value
vanishes close to standstill. The other approach relies on the dependence of motor
inductances on the rotor position, due to magnetic saliency. In this approach, an
auxiliary signal is usually injected in the motor, and the response of the electrical
subsystem to this signal is used to estimate the rotor position [6, 7, 8, 9, 10, 11].

Although there are relevant results reported, there is an important gap between
the laboratory experiments and the industry applications. Usually the position esti-
mation algorithms require heavy computations which cannot be carried out by the
low-cost processors used in industry. In this thesis, we concentrate in the sensorless
algorithm for Permanent Magnet Synchronous Motors described in [12], which we
will call Petrovié¢’s algorithm, and present a hardware implementation which targets
a low-cost architecture. Our contribution is to demonstrate in practice that it is pos-
sible to implement the algorithm using a 16 bit fixed-point DSP, an FPGA and two
A/D converters. A digital board was designed and constructed for this specific task.
The algorithm was converted to a fixed-point version and coded into the DSP. The
modified PWM used in this algorithm was programmed in the FPGA, together with
the A/D converters control and auxiliary functions.

The use of FPGAs to generate PWM signals has been reported in two early works
[13, 14]. The former presents a complete space vector PWM generator in one FPGA|
with programmable PWM switching frequency, deadtime, and frequency, amplitude
and phase of the stator voltage vector. The latter presents the design of three PWM
blocks for an FPGA: a space vector block, a random PWM block and a deadtime
block. A more recent work [15] also presents the design of three types of space

vector PWM generator: the alternating zero vector sequence, the symmetric sequence

CHAPTER 1. INTRODUCTION 3

and the bus clamped sequence. Other papers reporting the use of FPGA for PWM
generation and control of switched reluctance motor drives, ac-voltage regularion
systems, and a wheelchair system are [16], [17] and [18], respectively.

This thesis continues in Chapter 2 with an overview of the characteristics of a
PMSM and a description of Petrovié¢’s algorithm. In Chapter 3 we describe the pro-
posed hardware, its design and construction. Following, in Chapter 4 we address the
finite word-length effects and show simulations comparing the difference between the
floating-point and the fixed-point versions of the algorithm. In Chapter 5 we describe
the FPGA programming for the modified PWM generation and signal acquisition.
In Chapter 6 we show the experimental results. Finally, in Chapter 7 we outline the

conclusions of our work and possible improvements.

Chapter 2

The position estimation algorithm

for PMSM

In this chapter, we describe briefly the characteristics of a PMSM and present math-
ematical models suitable for position estimation (in the a3 axis) and control (in the
dq axis). Following, we describe the position estimation and control algorithms that

will be used in this work.

2.1 Permanent Magnet Synchronous Motors (PMSM)

2.1.1 PMSM description

Permanent Magnet (PM) motors use magnets attached to the rotor to produce the air
gap magnetic flux, while the stator holds a set of current-carrying conductors. The
interaction between the magnetic flux and the currents in the stator produce torque

[19].

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 5

Since the air gap magnetic flux is generated without external excitation, PM mo-
tors are very efficient. They also achieve high values of power density and torque-to-
inertia ratio, which makes them attractive for applications that need a fast dynamic
response. It is generally accepted that PM motors will not challenge induction mo-
tors in the general-purpose variable-speed drive market, specially in power ranges over
50kW. However, there is a wide range of applications where PM motors are good can-
didates, like servo actuators, commercial-residential applications and electric vehicles.

The magnets can be mounted on the surface of the rotor or buried inside it. In
the first case, the magnets can be projecting outside of the surface of the rotor, with
an air space between the adjacent magnets, or inset into the rotor, with an iron tooth
filling the space between adjacent magnets. Since the permeability of the magnet
is similar to that of the air, the projecting type has an uniform (and rather large)
air gap between the rotor and the stator, resulting in constant phase inductances
during a rotation. On the other hand, the inset type presents salient rotor poles
and consequently the inductances depend on the rotor position. Finally, the buried
magnets are more difficult to construct, but they have the advantage of mechanical
robustness and a smaller air gap, while presenting a salient rotor like the inset type.

There are two types of PM motors: (1) synchronous or sinusoidal, and (2) switched
or trapezoidal. The former is designed with stator windings that are distributed over
multiple slots in order to approximate a sinusoidal distribution. The latter has stator
windings which are concentrated into narrow belts. As a consequence, the back-EMF
waveforms generated are sinusoidal in the first case and trapezoidal in the second [20].
The trapezoidal PM motor is also called brushless DC motor because it has almost

identical back-EMF-to-speed and torque-to-current relationships as the DC motor.

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 6

On the other hand, the sinusoidal type, called PM synchronous motor (PMSM), has
more complex characteristics and requires a more elaborate controller.

In order to produce torque, the excitation has to be precisely synchronized with the
rotor frequency and phase (i.e., speed and position). Therefore, the rotor’s absolute
angular position has to be measured and fed back to the controller. In the case
of the PMSM, a PWM-controlled inverter is used to generate sinusoidal excitation
waveforms, with the proper amplitude, frequency and phase (self-synchronization).

The most common method of measuring the rotor position is to mount an absolute
or relative angular position sensor on the rotor shaft. An alternative method is
to obtain rotor position information directly from current and voltage’s waveforms

(sensorless method), which is the approach addressed in this work.

2.1.2 PMSM model in the o axes

The af frame reference is also called the stationary frame, because it relates to the
voltages and currents as seen from the stator of the motor. In this frame, the PMSM

model is [21]

] di dA,
dw
JE = Tm—Bw-m
do
R 2.1

where v = [va,v5]" is the vector of stator phase voltages, i = [ia,95]" is the vector of

stator phase currents, and A, = [Aqq,)\Tg]T is the vector of stator phase fluxes due to

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 7

the rotor field. The resistance and inductance matrices can be written as

R _ R, — 2wl sin 260 2wl cos 26

- 2wl cos 20 R, + 2wl sin 20
L _ Lo+ Lqcos26 L4 sin 260

- L, sin 26 Ly — Ly cos 26

The load torque is 7; and the torque produced by the motor is given by

T = P - (—1 —i41i

1.pdL, .od)
2 do do

where P is the number of pole pairs. The mechanical parameters of the motor J

(moment of inertia) and B (friction constant) are normalized with P.

2.1.3 PMSM model in the dg axes

The dg frame reference is attached to the rotor, i.e., it rotates with it such that

the angle between the o and the d axis equals to €, the rotation angle of the rotor

measured in electrical degrees. In this frame, the PMSM model is [21]

dig
dt
dig
T dt

dw
v

do

dt

Ly

wLyig—Rig+wvg
~wLjig—Rig—w @+,
(4 AL ig) ig— B w—m

w (2.2)

where v; and v, are the dg voltages, 75 and i, are the dg currents, L, and L, are

the total dg axis inductances, AL = Ly — L;, and @ is the flux due to permanent

magnets.

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 8

2.2 Position estimation algorithm

As outlined in the introduction, this work builds on Petrovié’s PhD dissertation [12].
We refer the interested reader to that publication for a detailed description of the
algorithm. In this section, we will outline the most interesting steps in its derivation
as well as the final results.

This algorithm can be classified as an excitation-based one, as opposed to the back-
EMF type which is also found in the literature. The idea behind this approach is to
excite the motor with high-frequency currents and extract position information from
the response of the motor to this injected signal, since the inductance is dependent on
position due to magnetic saliency. In Petrovié¢’s algorithm, the basic idea is to take
advantage of the current and voltage waveforms in one PWM period, which already
contain high frequency components, to estimate the rotor position. Therefore, there
is no injection of an auxiliary high frequency signal, but a utilization of the already
existent PWM signals.

One of the main highlights of this algorithm is that it has a good performance in
a wide range of motor speeds and load torques, even at zero or low speeds.

First, we will describe the modified PWM pattern used by this algorithm, which
guarantees the non-singularity and well-conditioning of the problem. Following, we
will describe the discretization of the PMSM model by analyzing the behavior of
the system during one PWM period. Then, we will construct a least-squares problem
that needs to be solved in order to determine the system parameters. The mechanical
states observer, described at the end, generates the desired estimated rotor position,

speed and acceleration.

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 9

2.2.1 PWM pattern

The actuator that applies the control signal to the motor is a voltage-sourced inverter,
which consists of three pairs of electronic switches. These switches can connect each
of the three motor phases to a DC voltage (V DC) or ground (GN D), therefore being
able to apply one out of eight possible combinations to the motor. In a Pulse Width
Modulation (PWM) strategy based on the concept of voltage space vectors, each one
of these combinations correspond to a vector in the af plane: six vectors form an
hexagon and the other two correspond to the origin (Fig. 2.1). The desired three-

phase sinusoidal output corresponds to a circular path [22].

B
yoe | Vo 010 | Vs 110
(phase Vi 011 o 006‘-_V1 100
| phase b B sz 2
GND (((v 00‘1\ """"" Vs 101

Figure 2.1: Inverter schematics and voltage vectors that can be generated (1 means
that the corresponding phase a, b or c is connected to V DC', while 0 means that it is
connected to GN D).

The purpose of the PWM algorithm is to generate a sequence of switch combi-
nations which, averaged in time, produce the desired voltage vector. The basic unit
of time is called a PWM period and its value is constant. Each PWM period is

subdivided in N subintervals during which a switch combination is held constant in

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 10

the inverter. The duration of these subintervals (duty ratios), as well as the switch
combination in each one of them, are adjusted so that the average over the PWM
period is the desired voltage output. High frequency components are usually filtered
by the electrical dynamics of the load.

One of the frequently used patterns for producing the desired voltage vector is
known as symmetric or centered PWM. This pattern uses three inverter states per
PWM period: the two inverter vectors adjacent to the desired output (called lead
and lag vectors) and a zero vector. These three vectors are arranged in the following
sequence (Fig. 2.2): first, the zero vector is set for half of its corresponding time,
then, the lag vector for half of its time, third, the lead vector for its complete time,
then, the lag vector again for half of the time, and finally, the zero vector for half of
the time. In this way, there are only four switchings per PWM period, since the zero

vector is constant from one period to the next.

inverter
Via output ‘ ‘
| |
| |
| |
| |
l l
| |
: V;: Vzg Wd Wg V:z :
| |
|
p Vdes 3 :
g X | |
| |
0 Vi | |
lg PR 7 . o Doty !
V. 3 T tia > 3 ¢
Trw M

Figure 2.2: Symmetric PWM: the desired vector is obtained by combining the zero,
lag and lead vectors.

In Petrovié’s algorithm the PWM pattern has 6 subintervals (N = 6) and the

switching combination is always the same: each one of the six non-zero vectors

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 11

(V1...Vs) are generated sequentially (Fig. 2.3). The duty ratio of the subintervals

are computed as

1 5V3 v 7 w
G = <+ i R
6 12 Umaw]‘2 Uma.l"
& = 1 V3w, 11 w
2 = 6 12 Urmaz]-2 VUmagz
1 3 v, 1 g
- - — - — 2.3
B T D 12 e (23)
where the duty ratios are defined as ¢; = —%—, (; is the duty ratio of the subinterval

Tpwum’

corresponding to the lag vector, (, corresponds to the lead vector, and (3456 corre-
sponds to the other vectors. In fact, this pattern is very similar to the symmetric
PWM, the only difference is that the zero vector is substituted by the sum of all six
non-zero vectors, with a duty ratio of % each. This pattern guarantees that the duty

ratios are bounded from below.

inverter
L6 V2 output \ ‘ \
1 : 1
| . |
Vdes : :
| : |
Vi Vi 1 i |
v N Va Vs o Vi 0 Vs 0 Vg
| : |
| |
| |
| |
| |
Vi Ve 3 t : ty : tg : te : ts : te 3 t
Tpwm

Figure 2.3: Modified PWM: the desired vector is obtained by combining all non-zero
vectors (in this case, the desired vector is in sector 1).

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 12

2.2.2 Model discretization

We recall the PMSM model in the a8 axis, which can be written as

. di d\,
V_RIJ’L%’L‘”de

(2.4)

As described in section 2.2.1, a PWM period consists of N subintervals. In each
one of them, the voltage vector v supplied to the motor is constant. The currents
are therefore exponential, but due to the time constants of the electrical subsystem,
they can be regarded as almost linear during the relatively short time duration of
a subinterval. Assuming that the current changes are linear, it is only necessary
to sample them at the subinterval boundaries to have a complete description of its
behavior. This idea is illustrated in Fig. 2.4, where we also introduce the notation
that will be used in the next equations.

Under the assumptions of linear currents and constant mechanical variables during

each subinterval, we can write

in—l—l + in in+1 - in d/\r
+L +
2 tot —tn | dO

v, =R (2.5)

for n = 1,2,...N. The parameters that bare information on speed and position are
contained in matrices R and L, while the vectors v,, are known and the vectors i, can
be measured. The back-EMF term is a nuisance parameter which can be eliminated
by subtraction of equations from two subsequent subintervals, assuming again that
mechanical parameters do not change from one subinterval to the next. The resulting

equations are

ipyo —1 iy — 1 ipyo —1
Viil — Vp = L < n+2 ntl ‘n+l n) +R (M) (26)
tn—|—2 - tn—l—l tn—l—l - tn 2

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 13

la

one PWM period (N subintervals)

Vo

t1 t2 t3 tn tn41 t

Figure 2.4: Current and voltage waveforms in one PWM period.

forn=1,2,..N — 1.

An extensive analysis in the original work concludes that the effect of the param-
eters contained in the matrix R (i.e., Ry and w) in the motor behavior at the PWM
frequency is negligible. This result is not surprising because it is strongly related to
the assumption that the currents are linear during a subinterval. As a consequence,
we can neglect the resistance term in (2.6) and reduce the problem to the simpler

form

w, = Lx, (2.7)

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 14

where

Wn = Vpi1 —Vp

1p42 — 141 lyy1 — 1p
X, = —

tn+2 - tn—l—l tn—f—l - tn

2.2.3 Parameter estimation

Before we construct the least-squares problem, we will rewrite (2.7) in a more conve-
nient way. Observing this equation, we can see that w,, contains voltage values which
are known a priori, while x,, contains current values which have to be measured in
real time. As it was shown in the original work, it is more convenient to have the
unknown matrix, which contains the system parameters, multiplied by the already

known voltage values. Therefore, the equation is rewritten as
x, =L 'w, (2.8)

where

.- 1 Lo — Lycos(20) —Lysin(20)
~ 72 _ 712
Lo— L1 | _L sin(20) Lo+ Licos(20)

At this point, we have to select a convenient parametrization. Because parame-
ters Ly, L; and 6 are unknown, one possibility is to choose directly these quantities.
However, it is clear that the resulting least-squares problem will be non linear. In ad-
dition, it was shown in the original work that the problem will not be well conditioned

numerically. For those reasons, the selected parameter vector is

qo Ly

U 1 cos(26) (2.9)

g2 — L sin(20)

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 15

This parametrization has the advantage of generating a linear and well conditioned
least-squares problem.

The next step is to rewrite (2.8) as a function of the parameter vector q. We
recall here that the vectors x,, and w,, have both an o and a 3 component, so we can

write

Tna 90 + q1 q2 Wna
Xn = = =
Tnpg i q2 do— 1 i Wnp
11 4
Wna Wna Wng
= ¢ | = Waq (2.10)
Wpg —Wpg Wna
i T G2

forn=1,2,..N — 1.
We can stack the N —1 equations to finally form our least-squares problem: given

x and W, find a solution to the equation
x = Wq (2.11)

Since a convenient choice of N and W is made by elaborating the PWM pattern (see
2.2.1), we already know that the system (2.11) is over-determined. The solution that
satisfies
q = argmin ||Wq — x||? (2.12)
is
a=(W'W) " WTx =W, x (2.13)

In section 2.2.1 we described the PWM pattern used in this algorithm and showed

that the voltage values used in each subinterval are always the same. This important

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 16

property permits an off-line computation of the matrix W,,; and therefore the esti-
mation algorithm will be reduced to a multiplication of a constant matrix by a vector
which depends on measured current values and the durations of the subintervals. It
should also be noted that, since the duty ratios are bounded from below, there are no
numerical problems when we divide current differences by subinterval durations and

construct the vector x.

2.2.4 Mechanical states observer

Once the parameter vector q has been estimated, the rotor position could be computed
using inverse trigonometric functions. However, this approach has two drawbacks:
first, the noise which is present in the parameter estimates is not filtered, and second,
the inverse trigonometric function computation is time consuming.

To overcome these drawbacks, an observer of the mechanical variables is intro-
duced. This approach filters the noise in the estimates and requires a few computa-
tions. Additionally, it provides an estimate of all mechanical states (not only position,
but also speed and acceleration). The dynamics of this observer are much faster than
the dynamics of the mechanical loop controller, so it can be neglected while designing
the control loop.

The observer has the following dynamics

& = e (2.14)
O = &+ e (2.15)
0 = &+ me (2.16)

where é, w and & are the estimates of the rotor position, speed and acceleration,

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 17

respectively, v; are design parameters, and € is a non-linear observation error that
is used to drive variable estimates to their true value. The error is derived from

inductance parameter estimates as

€ = qs c0s(26) — q sin(26) ~ L, sin(26) (2.17)

where 6§ = 0 — 6.

The incremental error system becomes non-linear with stable equilibria at § = nr.
The linearized system around = 0 is an autonomous linear system whose poles can
be set arbitrarily by a proper choice of parameters 7;. The pole placement is governed

by a trade-off between a fast transient response and noise filtering.

2.3 Control algorithm

This work is focused in the position estimation problem. However, in order to be able
to operate the motor and run simulations and experiments, we need to close the loop
and implement a controller.

The control algorithm is developed in the dq axis, and consists of nested-loop PI
controllers that use position and speed estimates as feedback, as seen in Fig. 2.5.
There is one outer speed loop whose aim is to track the reference speed, and one
inner current loop which keeps ¢; = 0 and tracks the desired ¢, provided by the speed

controller.

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM 18

idres = 0— 20 PIL =Y
iq

“rel 20 PI2 20 PI3 =Y
_T _
& i,

Figure 2.5: Block diagram of the controller.

2.4 Summary

In the previous sections, we described the algorithm that will be implemented in a
low-cost hardware platform.

This algorithm requires the input of measured currents ¢, and ig. The only ac-
cessible points of the motor are the three phase lines a, b and ¢, so we can measure
currents %4, %, and 7.. In fact, only two of these measurements are needed because
there is no neutral connection in the motor, so we can derive the a3 components from
only two phase measurements, e.g., ¢, and %.

Based on these current measurements, the position estimation algorithm computes
é, which is used in the af — dq transformation, and @, which is fed to the input of
the controller.

At the output of the controller we have the desired a3 voltages. The PWM block

generates the appropriate switching signals which are fed to the inverter, who in turn

will produce the desired voltages in the motor phase lines a, b and c.

CHAPTER 2. THE POSITION ESTIMATION ALGORITHM FOR PMSM

The complete system is illustrated in Fig. 2.6.

Wref

19

b
\ PMSM

switching
. . . signals
2d Pl ’U,, ’Ua
PWM inverter
aB/dq iq controller | v} da/of vy
4 position la lo
@w | estimation ig ab/af|

Figure 2.6: Block diagram of the complete system, hardware parts are drawn in bold.

Chapter 3

Hardware design

In this chapter we describe the hardware that was designed and built in order to
implement the algorithm described in the previous chapter.

First, we outline the basic ideas behind the conception of this design, in particular
the partition of the implementation into two main stages: a computational stage,
which is implemented in a general purpose fixed-point Digital Signal Processor (DSP),
and a state-machine stage, which is implemented in a Field Programmable Gate
Array (FPGA). Second, we describe the details of the signal acquisition, comprising
the analog part of the board. Following, we address the selection and electrical
considerations of the two main chips in the board: the FPGA and the DSP. Next,
we describe the issues involved in the Printed Circuit Board (PCB) design and the
construction of the prototype. Finally, we summarize the main concepts introduced

in this chapter.

20

CHAPTER 3. HARDWARE DESIGN 21

3.1 General description

The sensorless control of Permanent Magnet Synchronous Motors requires additional
computations for the estimation of the shaft position. Also, depending on the algo-
rithm used, it can require specific characteristics on the PWM generation and current
measurements. For these reasons, the implementation of sensorless control in general
leads to high-cost solutions, jeopardizing the industrial interest in this field.

Our challenge was to find a low-cost implementation of a sensorless control algo-
rithm by performing a careful design which combines a general purpose fixed-point
DSP and an FPGA. The introduction of programmable logic in the design is very
convenient because it is a powerful and very flexible tool that can free the processor
from several time-consuming tasks.

The algorithm described in the previous chapter is already optimized so that the
numerical computations are kept to a minimum. However, the PWM generation is
completely non-standard and the sampling of the currents must be synchronized with
the switchings. If these tasks were to be carried out by the DSP, a complex and time-
consuming interrupt scheme would have to be programmed. Our approach frees the
processor from anything but the numerical computations, using only one interrupt
per PWM period for synchronization.

The PWM generation and the signal acquisition are performed by the FPGA.
The DSP is interrupted at the end of a PWM period and has access to the current
measurements of each one of the subintervals, already stored in the FPGA, so that
it can compute the estimated position and control outputs. Once the computations

are finished, the desired time for each subinterval is transferred to the FPGA, which

CHAPTER 3. HARDWARE DESIGN 22

generates the switching signals for the inverter on the next PWM period.

Therefore, the architecture of the hardware implementation can be described by
three basic blocks (see Fig. 3.1): Signal Acquisition (consisting of analog signal
conditioning and analog-to-digital conversion), FPGA and DSP. These blocks are

described in the following subsections.

from
current probes A/D FPGA DSP

L N D ia address
1
data | T

L IN D ib
control

clock)
to interrupt

PWM clock

Figure 3.1: Board architecture (simplified). Dashed lines are analog signals, solid
lines are digital signals and bold solid lines are digital buses.

It is important to notice that the clock signal is generated in the DSP, by using a
10MHz crystal. The internal clock of the DSP is 20MHz, and this signal is transferred
to the FPGA. Inside the FPGA this clock is divided by 2 to generate the internal clock
of the FPGA and to control the analog-to-digital converters. The synchronization of
the system is achieved by a periodic interruption generated by the FPGA at the end

of every PWM period.

CHAPTER 3. HARDWARE DESIGN 23

3.2 Signal acquisition

The main components in the signal acquisition stage are the analog-to-digital convert-
ers (ADC). We wanted to have good precision in the current measurements, because
we deal with current differences of less than 100mA, therefore we looked for a res-
olution of about 1mA. Since the dynamic range of the phase currents is +12A, we
concluded that it was necessary to have at least 14 bits in order to avoid introducing
a significant quantization error.

We have selected the AD9240, from Analog Devices. This is a 14-bit, 10 MSPS,
monolithic ADC with an on-chip voltage reference. It uses a single clock signal
to control its pipelined conversion architecture. The digital output is presented in
straight binary format with the 14 bits in parallel [23].

Since the overall cost of the system is an important issue addressed in this work,
we have to point out that a less expensive ADC can be used in a final product if
we use less bits and a slower conversion rate. However, we consider that this ADC
is a good choice for a prototype because it permits to study the effect of different
resolutions and to explore the possibility of sampling the currents at different time
instants in the PWM period, even oversampling and averaging to reduce noise.

The current probes provide a current output 4., proportional to the phase current

i, such that i, = ;350. A 2008 resistor converts this current to a voltage vy,

which is the input of our board (see Appendix E for details of the current probe

design). Since the phase current has a limit of £12A, the voltage v, is limited by
2 _

+12A 55552000 = £4.8V.

The AD9240 works with a single +5V power supply, therefore we need a signal

CHAPTER 3. HARDWARE DESIGN 24

conditioning stage to adapt the input v., to a suitable range for the ADC. We set
the voltage reference VREF to +2.5V, the middle-point of the power supply, to have
a symmetric span. The conversion range is therefore £2.5V. As a consequence, we
need to reduce the input v, to fit into this range, introducing a gain of 1/2 in the
signal conditioning stage.

The AD9240 has two analog inputs, VINA and VIN B, which operate as a differ-
ential input, i.e., the analog voltage to be converted is VINA — VINB. This implies
that one of the analog inputs must be kept constant, equal to V REF, while the other
is fed by the desired signal plus a DC component equal to V REF'. In this way both
inputs are in the range of the power supply (0 to +5V) and the differential value
cancels the DC component.

A detailed schematic of the signal conditioning stage and the ADC configuration

is shown in Fig. 3.2. The design follows the guidelines found in the datasheets of the

AD9240.
1K
AD9240
_ 2K 23 A
Vep — —{

. vine o i

N .
1K CAPTﬁ }—77‘

33
2K VINA CAPB@ }_77‘77
10 1
1
. BlAsW
2K
VREF
OTR —X
10 -— 1 SENSE BITl4————O ¢
! ' FPGA
BITl ———O
7777 7777 REFCOM ClLK 0o clock
from FPG/

7777

Figure 3.2: Schematics of the ADC configuration.

CHAPTER 3. HARDWARE DESIGN 25

As stated above, the input v, has a dynamic range of +4.8V. The input VINB
is equal to —%vcp + V REF and therefore it spans from +0.1V to +4.9V, this is inside
the power supply range. The differential input is VINA—-VINB = %vcp as desired.

We use the operational amplifiers AD8042, also from Analog Devices, because of
their high speed, fast settling time and low distortion [24]. Due to the dynamic range
of the input, a symmetric £5V power supply is needed, and since the AD8042 is a
rail-to-rail amplifier, it is guaranteed that no saturation of the signal will happen.

The input from the current probes is available at one 8-pin header connector (J1
in the schematic). For debugging purposes, we included another connector in parallel

(J2) so that we could read current values with another instrument.

3.3 The FPGA

The selection of the FPGA chip to be used depends mainly on the size of the digital
circuit that is needed, i.e., the tasks that the FPGA will perform. The basic tasks
that we considered important to be implemented in the FPGA are the PWM gener-
ation and the synchronization of the data acquisition. The larger the FPGA, more
computational work can be done, and therefore more processor cycles can be freed
from the DSP.

We selected EPF6016, from Altera. This FPGA belongs to the FLEX 6000 family,
a low-cost alternative to high-volume gate arrays designs. The EPF6016 contains
16,000 gates arranged in 1,320 Logical Elements. We selected the 144-pin TQFP
package, which is the more convenient for manual soldering. This package offers a

total of 117 user I/O pins [25].

CHAPTER 3. HARDWARE DESIGN 26

The connections between the FPGA and the other components on the board are

straightforward:
e Two 14-bit inputs and one clock output are used to interface with the ADCs.

e A 6-bit output carries the PWM switching signals for the inverter (one signal

for each IGBT gate), thru a DB15 female connector (J3 in the schematic).

e A 16-bit data bus, a 4-bit address bus, control signals, clock and interrupt

request are used to interface with the DSP.

e A reset signal, shared with the DSP, generated by a traditional RC net plus a

pushbutton (J12 in the schematic).

e A 16-bit output is used to inform the estimated position to a host, thru a 2x10

header connector (J4 in the schematic).

e Four bits are used as test points for debugging purposes (J7 thru J10 in the

schematic).

e An 8-bit interface with the host, thru a ByteBlaster connector (J6 in the

schematic) is used to configure the FPGA.

Several .1uF' capacitors are arranged close to the VCC and GND pins to supply
high frequency current peaks to the chip and reduce the interference with the rest of
the circuit.

The configuration of the FPGA is made via the ByteBlaster cable from a PC host
[26]. However in a stand-alone application we would need a serial EPROM in the

circuit to perform the configuration after power-up.

CHAPTER 3. HARDWARE DESIGN 27

3.4 The DSP

Our design focuses on a low-cost hardware platform, so we concentrated on a general
purpose, 16-bit fixed-point DSP.

The chip selected is the ADSP-2181, from Analog Devices. It is based on the
ADSP-2100 family architecture, plus several on-chip peripherals like memory, serial
ports, timer, programmable I/O, DMA and power-down control [27]. Most of these
peripherals are not needed for this work; however they can be used for additional tasks
in a final application, like human-machine interface or integration to an automation
system.

The ADSP-2181 can work with an internal clock of up to 40MHz, but we use half of
this capability. To set an internal clock of 20MHz, we connect a 10MHz fundamental
frequency crystal (X3 in the schematic) between pins XTAL and CLKIN.

In order to load the program from the host and to debug the system, we use an
In-Circuit Emulator (EZ-ICE), which is connected to the DSP thru a special set of
pins called ICE-Port. These pins are wired to a 14-pin header connector (J5 in the
schematic) [28].

The booting method selected is IDMA Booting, since it is the most appropriate for
the EZ-ICE operation, therefore the pin MMAP is connected to GND and BMODE
to VCC. Jumpers were introduced so that we could test other booting methods.

Two inputs were provided so that we could have real-time interaction, like steps
in the speed reference. We used the flag I/O pins PF1 and PF2 because they are
very simple to interface. One of them was connected to a switch and the other to a

pushbutton (J16 and J15 in the schematic respectively).

CHAPTER 3. HARDWARE DESIGN 28

Since we have the EZ-ICE for our prototype, no other input or output possibilities
were used. In an industrial implementation we would use an EPROM to boot the
processor, and a serial port to receive the inputs (speed reference at least) and maybe

additional communication.

3.5 Construction of the prototype

The packaging options available for the main components of the board (i.e., ADCs,
FPGA and DSP) are surface-mount type; in the case of the FPGA, the pin-to-pin
distance is as low as .020in (20 mils), while the DSP and ADCs have 50 mils. One
possibility was to use sockets and wire-wrap all the circuit. However, we decided to
use a more robust solution and design a Printed Circuit Board (PCB).

The high density of pins and connections forced us to select a 4-layer board, with
the inner layers reserved as power and ground layers, while the top and bottom are
used for signal connections. Signal traces had a width of 8 mils if connected to the
surface-mount components, and 10 mils otherwise, with the exception of the -5V
power applied to the operational amplifiers which has wider traces.

The PCB, with a size of 6 by 3.5 inches and around 350 holes, was manufactured
by an Internet-based company, specialized in prototype boards. The components were
soldered manually with the aid of magnifiers. The critical issue was to avoid thermal
and mechanical stress in the components, while achieving a perfect positioning.

The system is completed with a =5V power supply and the following cables:

e ByteBlaster cable connected to the parallel port of the PC, to download the

FPGA configuration.

CHAPTER 3. HARDWARE DESIGN 29

e EZ-ICE cable connected to the serial port of the PC, to download the DSP

program and debug the system.

e a twisted pair cable to connect to the inverter board, to receive the current

probes signals.
e a flat cable to connect the PWM signals to the inverter board.

Additionally, for debugging purposes, two cables are used to send current probes
signals and estimated position to the PC host, via a Dspace acquisition board.

In Fig. 3.3 we show a picture of the prototype board.

EPFECI6TCIS4=2 ©
U CBASSC049A -

Figure 3.3: Prototype board (size=6 x 3.5").

CHAPTER 3. HARDWARE DESIGN 30

3.6 Summary

We have described in this chapter a general architecture and the electrical details of
the board designed and built to implement the sensorless control of a PMSM. The
complete schematic of the circuit and a plot of the PCB layers are shown in Appendix
A.

We believe that this architecture is suitable for a more cost-efficient implemen-
tation on an industrial scale, if we integrate the FPGA design and the core of the
DSP into one single chip. This is not difficult to achieve, because the FPGA design
is described completely in VHDL, and it can be converted into an ASIC by using
standard software. The DSP requirements can be reduced by pruning the peripherals

that are not used.

Chapter 4

Word-length effects

In this chapter we present the issues involved in the implementation of the sensorless
control algorithm in a fixed-point DSP. Word-length effects are studied and proper
scaling factors are introduced to avoid overflow while achieving a reasonable numerical
precision. The results are simulated and compared with a floating-point version of

the same algorithm.

4.1 Overview of the algorithm and implementa-
tion issues

The algorithm presented in Chapter 2 consists of the following sequence of operations:
1. read phase currents from the input
2. convert phase currents to the a8 frame
3. construct vector x

4. compute vector q

31

CHAPTER 4. WORD-LENGTH EFFECTS 32

5. update mechanical states observer

6. average currents over the PWM period

7. convert average currents to the dq frame

8. compute controller output (voltages)

9. convert voltages back to the af frame
10. find sector and rotate desired vector to sector 1
11. compute subinterval times (counter values)

12. write counter values to the output

The algorithm is discrete in nature, since the basic time unit of the control output
is the PWM period. It makes no sense to have a controller working at a shorter
period because inputs would not be available, and the output cannot actuate faster.
The natural choice for the controller is to select a sampling period equal to the PWM
period or an integer multiple of it. In this work, we selected the controller (and
observer) period equal to the PWM period.

For an efficient implementation in a fixed-point processor, all values are repre-
sented in fractional format. This format is convenient because all multiplications
yield to valid results. The main drawback is that the less significant bits are lost and
precision can degrade on each multiplication if the operands are not close to 1.

The fractional representation we use is called “1.15 format” because it uses 1 bit
for the integer part (sign) and 15 for the fractional part [29]. This format makes
use of a two’s-complement representation, being able to represent values in the range
(—1,1 — 271%) with a precision of 2. When two values are multiplied, the result
can be expressed in 1.31 format, but the 16 less-significant bits have to be discarded

to express it again in 1.15 format.

CHAPTER 4. WORD-LENGTH EFFECTS 33

So far, we can identify the main issues in the implementation of the algorithm as:

e try to keep all values in the range (—1,1 — 27'%), but not too close to zero;
the absolute value of the constant coefficients should be in the range (0.5,1)

(whenever possible).

e make sure that the final result of a sequence of additions/subtractions is still
in the valid range; sometimes it would be necessary to scale down the operands

before the operation.

4.2 Scaling

The scaling of the inputs, outputs, state variables and coefficients has to be performed
carefully so that the numerical precision is preserved [30]. Due to the limited dynamic
range of the fixed-point representation, there is always a trade-off between avoiding
overflow and minimizing quantization effects.

In the following sections, we describe the transformation of the algorithm into
a format suitable for the ADSP2100 family of 16-bit fixed-point processors. The
complete assembler code is included in Appendix C.

We have adopted the notation Z to indicate the fractional (scaled) value of z,

~ X

ie, T = where z,,,, is the maximum absolute value that x can take without

Tmax

producing overflow.

CHAPTER 4. WORD-LENGTH EFFECTS 34

4.2.1 Scaling the inputs

The phase currents are scaled several times in their way to the ADCs. The sensors

_2

introduce a scaling factor of 55-

Next, a resistor converts the current into a voltage
with a factor of 200€2. Finally, a factor of % is introduced in the signal conditioning
stage. As a result, the ADC input range of £2.5V is equivalent to a phase current
range of £12.5A. Since the ADCs output has 14 bits, there are two spare bits that
can be used to find a convenient scaling. An examination of the operations carried
out with phase current values will provide us information on how to use these spare

bits.

The currents have to be converted to the af frame, according to the transforma-

g = =~ i
2
1

ig = %ia—kx/iib (4.1)

In a worst-case scenario, the maximum value of ¢, is \/g ~ 1.22, and the maximum

tion

value of iz is % + /2 &~ 2.12 times the maximum value of the phase currents. The
latter result leads to the conclusion that the a3 currents need 2 bits more than the
phase currents. This means that, if the phase currents can take a maximum absolute
value of 12.5A, the aff currents have to be allowed a maximum absolute value of
4 x 12.5A =504, i.e., t48mez = D0A.

Going back to the transformation (4.1), we observe that some coefficients are

greater than 1. We need to divide the coefficients by 2 to make them fit into the

CHAPTER 4. WORD-LENGTH EFFECTS 35

fractional range, so we write
3
o = [72] [24,]
1 V2
s = |—=||2¢ — 1 |22 4.2
i = ||+ | (42)

To convert to fractional notation, we divide by %4smaq
3 i
- 2 a
o = || |2~
¢ [2 :| [Zaﬂ,mam‘|
- 1 7 2 7
2\/§ tapB,max 2 taB,maz
Finally, by defining ¢4 e = ’."‘B’% = 25A, we can write the transformation as
3
o = |24,
ik

iy = lﬁ] 2+[§]zb (4.4)

Now each factor is fractional and the sum is guaranteed not to overflow.

We can obtain ¢, and ¢, from the 14-bit ADCs outputs with a few operations.
First, the MSB is inverted to convert to two’s-complement notation (according to the
datasheets). This value interpreted in 1.13 format is in the range (—1,1 — 27'3) and
corresponds to currents in the range £12.5A4. We add one bit on the left, using sign
extension. The result interpreted in 1.14 format has the correct scaling, so finally
one zero is added on the right to obtain the 1.15 format representation. All these
operations are performed automatically in the FPGA (see Chapter 5), so the DSP
will read the value ¢, in the correct format and scaling.

The multiplications involved in transformation (4.4) can be performed in the

multiplier-accumulator unit (MAC). The multiplication of two 1.15 numbers has a

CHAPTER 4. WORD-LENGTH EFFECTS 36

result in 1.31 format. No overflow will happen in the addition because of the se-
lected scaling. The results should be extracted from the MAC by discarding the 16

less-significant bits.

4.2.2 Constructing vector x

We recall that

o Int2 = lntl Intl — I (4.5)
n _— - .
tn+2 - tn—i—l tn—l—l - tn

where the o and 3 subindices have been omitted for simplification.

We can distinguish three operations involved:

1. subtract consecutive currents

2. divide difference of currents by subinterval durations to find the slope values
3. subtract consecutive slope values

The subtraction of currents does not represent any overflow potential because the
ripple in the currents is much less than the maximum absolute value. The potential
problem here is the loose of too many significant bits, but there is nothing we can do
since the number of bits of the ADCs is fixed. Therefore, these subtractions can be
performed in the arithmetic-logic unit (ALU) with no additional considerations. We
call di,, the result and notice that the scaling factor is the same as the a8 currents,
1.e., 248 maz-

The next step is to divide the difference of currents by the subinterval durations.

These time values are expressed in counter values as integers, therefore the time

CHAPTER 4. WORD-LENGTH EFFECTS 37

expressed in seconds is

dt, = Tck dt, (4.6)

where T¢x is the counter clock period (i.e., 100ns), and dt, is the counter value in
integer format.

In order to study the most convenient way of performing the division, first, we
estimate the maximum absolute value of the result. Roughly speaking % ~ %V.

Since Viur & 1.2Vgys &~ 240V and L,,;, =~ 3mHy, then we conclude that (%) R

max

8 x 10*4/s.

On the other hand, the slope value, which we will call didt,,, can be computed as

din iapmaz di di
didt, = S = tapmar Bn_ g 108475 U0 4.
' - Togdr, 0 WAl (4.7)

din

and since we know the dynamic range of didi,, we can conclude that the division 2

: : 8x10% _ -4
will have a dynamic range of £57755 = +1.6 x 107

Clearly, we cannot represent this result efficiently in 1.15 format. However, we
have the advantage that the dividend can be expressed with 32 bits, so we can pre-

scale the value di, so that the result has a dynamic range close to (—1,1). For this

212 dip
dtn

reason, we compute didt, = ; now, the result will have a dynamic range of

+0.66, which is very convenient for a representation in 1.15 format.
The scaling of the output can be found as follows:

din

dt,,

212 dj, 2 Toy di,

n taB,mazx d n

didt, = =8.19x107%s/A

therefore, didt,,qz =1.22 x 10°A/s.

_ 1
~ 8.19x10-%s/A

To conclude with the division, we have to specify how will we load the operands

in the dividend and divisor registers. The latter is loaded as an integer value (i.e.,

CHAPTER 4. WORD-LENGTH EFFECTS 38

in 16.0 format), while the former is loaded in a 32-bit register in 16.16 format. To
convert the value di, in 1.15 format to the value 2! di,, in 16.16 format, we have to
shift the value to the left 13 bits (12 because of the scaling and one more because we
have 16 instead of 15 bits in the fractional part). The 13 bits inserted on the right
are zero, while the 3 bits inserted on the left to complete the 32-bit register are a sign
extension.

The result in the division is stored in a 16-bit register, and given the format of
the operands, it will be expressed in 1.15 format.

After the division, the elements of vector x are finally computed as the subtraction
of subsequent slope values didt,,. We know that the dynamic range of the scaled slope
values is +£0.66 so there is a potential overflow in the subtraction operation, under
the worst case. For this reason, we divide by two the operands before the subtraction,
leading to

1 - 1 -

which implies that the scaling factor of the elements of x is given by x4, = 2 didt 0, =
2.44 x 105A/s.
One last comment about vector x: in this section we have omitted the subindices

a and 3, however we must specify the order in which the elements of x are stacked.

CHAPTER 4. WORD-LENGTH EFFECTS 39

The vector is constructed as

x=| 25, (4.10)

-/Ea,S

| 185

where z,, = diodt, 11 — didt, and x5, = digdt, 1 — digdt,.

4.2.3 Computing estimated parameters

In 2.2.3 we showed that the parameter estimation problem can be reduced to the

matrix-vector multiplication

q=W,; x (4.11)

-1
where the matrix W,; = (WTW) W7 can be computed a priori from the of

voltage values that are output in each subinterval, as shown in Table 4.1.

subinterval | 1 2 3 4 5 6
p WV [V| W[V
oy V6 | /6 V6 NG \/6 NG
v 0] XZ] X 0 _V | _V
A V2| V2 V2 V2

Table 4.1: Inverter a3 voltages in each subinterval.

CHAPTER 4. WORD-LENGTH EFFECTS 40

We recall that

Wy1 W1 Wpi

b
Wp1 —Wg1 Wa,

W = : (4.12)

Wa,5 Was Wps

Wps —Wgs Was

where wq.n = Vont1 — Van and Wgn = Vgni1 — Vpn. Therefore,

[1 1 1]
NG Ve V2
S .
V2 V2 NG
2 2
—v% v
2
0 0 — 76
1 1 _ 1
W=V Ve Ve V2 (4.13)
1 1 1
V2 V2 Ve
1 1 _ 1
NG V6 V2
1 1 1
V2 V2 V6
2 2
i v
2
AU 3
and
_Vv6 2 36 _v2 _2v6 _6v2 V6 _5v2 36 V2
32 32 32 32 32 32 32 32 32 32
W, = i _15v/6 _ 53v2 296 V2 146 542 15V6 53v2 20v6 V2
ey 320 320 320 320 320 320 320 320 320 320
45v2 _11V6 _9v2 _33v6 _54v2 _ 226 _45v2 1lV6 9v2 33V6
320 320 320 320 320 320 320 320 320 320
(4.14)

where V' = Vgys = 200V.

= 1.33 x 103, so we define w,,,; equal to this

We observe that max [{W;};

CHAPTER 4. WORD-LENGTH EFFECTS 41

value and Wp; = 1 W,,;. Therefore, we can write

Wmawx

ad=W, X = Wz Tmax Wpi X~ 324 sz- X (4.15)

This equation implies 10 multiply-accumulate operations for each element of q,
so there can be an overflow. However, a study on the characteristics of the motor
shows that the elements ¢; and ¢3 are always below 50, this is much less than 324 so
we conclude that the operation will not overflow. The element ¢; is not considered

because it is not necessary to compute it for the observer, therefore it is discarded.

So, if we define ¢4, = 324, then q = qn‘}am = W,; x. The computation of the
elements of q can be performed with 10 consecutive MAC operations and the overflow
is guaranteed not to occur. Moreover, there are a couple of spare bits that can be

used to change the scaling and improve the resolution, as we will show in the next

section.

4.2.4 Observer

The observer involves the computation of the acceleration, speed and position esti-
mates (&, @ and 0 respectively), based on the observer error ¢, and the computation
of an updated observer error, based on the parameter and position estimates (q and
0 respectively).

For convenience, we will start by studying the error update
€=qs cos20 — g sin20 (4.16)

In order to improve the precision, we will define €,,,, = %= = 162, so we can

use the values 2¢; and 243, which have a better resolution, extracting them from the

CHAPTER 4. WORD-LENGTH EFFECTS 42

MAC result by shifting the result to the left 1 bit. Therefore

€ —9G cos20 — 2G sin20 (4.17)

€ =
6maz

The sin and cos functions are computed using a fifth order polynomial approxi-
mation of the sin function on the first quadrant. All values can be converted to fit
this range by basic trigonometric identities. The subroutine was extracted from [29].

The first equation of the observer is

(4.18)

joN

Il
2
)

[

which can be discretized as

A

& :=a +TPWM Y3 € (419)

We estimate the maximum value of the acceleration from the peak torque as

oz & % ~ 10,0007ad/s. Therefore

o

~ T maxr —
= G TEWM T Cmaz (4.20)

amam amam

jof

We define the new coefficient 75 = TRWM 73 €mas

Omaz

We follow a similar procedure for the speed and we conclude that

~ ~ T mar -~ T mar —
D= G WM Qmaz 7 ZPWM V2 Cmas (4.21)

Wmazx Wmaz
where wpe, = 4,500rpm = 1,800rad/s and we define aceoessr = W, and

o = Tpwm 72 €mas

Wmazx

Finally, a similar expression is obtained for the position

= = T _ T
0= 0+ PWM Wmax o+ PWM Y1 €maz e (4.22)

gmax gmam

CHAPTER 4. WORD-LENGTH EFFECTS 43

where 0,,,, = m and we define Speoessr = W, and 7, = W. In this
case, we will allow the register overflow, since in two’s-complement it will provide the
natural wraparound of the position value.

As described in 2.2.4, the values of 7;, > and ~y3 are selected so that the poles of
the linearized observer guarantee a fast response while not amplifying the noise. One

possible set of values is v; = 9.45, 2 = 2,295 and 3 = 202, 500, which define poles
at —300 and —200 =+ 5100.

4.2.5 Controller

To compute the controller, we first find the average of the currents in the PWM
period, then we convert the a3 values to the dg frame, next we compute the desired

dq voltages, and finally we convert these values back to the af frame.

Average the currents

The average of the currents over one PWM period is

. i i1tk Atk iagmae Tox 27 i ip_1 . i\ dit (4.23)
=T Tpwm Trwm o\ 2 2) 215 '

where the sum ““T‘l—i—%k will not overflow and ‘21%’; is the counter value of each subinterval

represented in fractional format.

The sum will have at least two spare bits, because the value of di;, is always less

. . . ; T 215
than 20, Therefore, to improve the resolution we define 44y mar = W;p—vfﬁ SO

we can write

. 6 . - -
- lav th—1 I\ dtg
v = - =4 — 4+ === 4.24

Lov,max

CHAPTER 4. WORD-LENGTH EFFECTS 44

After a series of six MAC operations, the result can be extracted by shifting the
accumulator two bits to the left. We note that,given these definitions, %4y mex =
204.8A which means that there are still a few spare bits that could be exploited if

more precision is needed.

Convert to dq frame

We define %44 maz = %av,mae = 204.8 so the transformation is straightforward

lg = faqw COSO+igay sinh

g = —laa sin) + 05 av cos 6 (4.25)

Clearly, there will not be an overflow because of the already big value of %44 maz-
Again, the sin and cos functions are computed using the subroutine introduced in

section 4.2.4.

Compute controller outputs

The controller has three PI (proportional-integral) blocks, each one of them synthe-
sizing the transfer function ksJ’T“ A discrete version of these blocks uses one variable

as the memory of the integrator, and can be expressed as

U = Tyef— 2%
mt = ant+ Tpwy - u
y = k-u+k-a-int (4.26)

where z is the input, u is the intermediate error, int is the integrator variable, and y

is the output.

CHAPTER 4. WORD-LENGTH EFFECTS 45

As we can see, in addition to selecting the appropriate input and output scaling,
we need to select the scaling for the integrator variable and make sure that no overflow
will happen. We will select int,, ., such that the scaling of k- a-int is the same scaling
of the output y. We are assuming that the integral of the error will not be such that
it will drive the output to its maximum value. In case this happens, we are adding
also a saturation in the integrator so that, even if the error is big for a long time, the
integrator variable will reach its maximum and stay there until the error changes its
sign.

The controller coefficients are selected to obtain a good performance of the closed-
loop system. One possible set of values, implementing the PI controllers transfer
function k;*£% for ¢ = 1,2,3 (see Fig. 2.5), is k1 = 4.4300, a1 = 304.74, ky = 0.0362,
as = 9.6983, k3 = 2.6300 and a3 = 136.88.

The block PI1, whose input is the current i,4, will become

U = taref — U
. = . = id ,maz TPWM _
int, = int; + "2 20
Zntl,ma:ﬂ
kl Z'd max kl a1 Z'ntl max .
Vde = — fmer U, + ——— niy (4.27)
Vdgq,max Vdg,max

where vigmaz = 2Vars = 400V and inty mer = v,‘i‘i—"‘;‘im = 0.2963. The coefficient of

int; in the output equation equals to 1 because of the selection of its scaling.

The block PI2 can be written as

Us = Wref — W
. = .= w TPWM _
inty = into+ —= 27T 5
ZntQ,ma:c
.- k2 Wmaz k2 a2 intQ maxr -~
lgref = —— Us+————"— inky (4.28)

Ydg,max dg,max

CHAPTER 4. WORD-LENGTH EFFECTS 46

In this case, if we select ints q, as before, we would have a very small coefficient

w ~ 6 x 107* and this would generate steady-state errors due to the low

precision of the coefficient. Therefore, we select a smaller value ints 4, = i’“}c’% =
145.84 so that the coefficient becomes 2.468 x 1072 and the precision is improved. The
output of this block is the reference for the ¢, block; to avoid problems we introduce
a saturation on this output.

Finally, the block PI3 is

Uz = lgref =l
.= . - Z'dq,ma,af: TPWM _
ity = inls + ——— U3
Znt3,maz
k3 Z.d max k3 as int3 maxr .
’U:Ic = = mar Uz + ————— nis (429)
Vdq,maz Vdg,maz

where the values are computed in the same way as in PI1.
Some of the coefficients can take values slightly greater than one. To be able to
perform a multiplication, we use only the fractional part of the coefficient and then

add as many times as the integer part, e.g., 2.3x = 0.3z + = + .

Convert back to af frame

The transformation is the inverse of (4.25) and can be written as

Uy = Vg COS éc — Vg SIn éc

Ug = g sin 0. + Uge COS 0. (4.30)

where we use the same scaling in both voltage frames, i.e., Vagmaz = Vagmae = 400V
At this point we introduce a correction to compensate for the delay in the con-

troller. We know that in the dg frame the values are almost constant in steady state,

CHAPTER 4. WORD-LENGTH EFFECTS 47

however, when we convert them to the a3 frame they become more sensitive to de-
lays. The average currents used in the controller, as well as the estimated position,
correspond to the middle-point of one PWM period, say period k. The observer and
controller computations are done during the next period k£ + 1, and the output is
fed to the system during the following period k + 2, achieving the desired averaged
voltages in the middle of it. Therefore there is a delay of 2 Try s between inputs and
outputs. It is correct to convert averaged currents from the a3 to the dq frame using
the value 6 because they correspond to the same point in time, but it is not correct
to convert the desired voltages from dgq to af3 with that position value because they
correspond to a delayed point in time.

For this reason, we use in transformation (4.30) the angle 0, which is a corrected

version of 6, according to the prediction

>

o
|

2 T maxr «~
4 ZIPWM Bmar g, (4.31)

gmax

>

U
)

|
>

4.2.6 Counter values

Once we have the desired voltages in the af frame, we need to compute the duty
ratios (or equivalently, counter values) for each vector in the PWM period, according
0 (2.3). One way of achieving this is to find first the sector which the desired vector
belongs to, so we can identify the lead and lag vectors. Then we can rotate the
desired vector by increments of % to the first sector and compute the duty ratios
there. Finally, we assign the computed duty ratios to the correspondent vectors

according to the sector number.

CHAPTER 4. WORD-LENGTH EFFECTS 48

To identify the sector, we first identify the quadrant and then we find out the
sector by comparing :—z with tan 3 = v/3. Once the sector has been identified, the
vector is rotated to the first sector, where computations will take place.

The desired voltage is limited to the capabilities of the PWM generation. Ideally,

the magnitude of the vector should be limited to V’\%S , but this would imply the
computation of a square-root which is numerically intensive. Rather, we will limit
the vector so that it does not cross the straight line defined by the maximum voltages
in the lead and lag vectors. This line is defined as vz = /3 (VB—\/%S — va). If vg is
greater than this value, then the vector is scaled down by a factor vai 7 This lim-
itation strategy has the drawback that it reduces the voltage that can be delivered

by the inverter without distortion from %VBUS to \/%VBUS (from 70.7% to 61.1%
approximately). On the other hand, the implementation only requires a couple of
multiplications instead of a square-root computation. In a future industrial imple-
mentation, the issue of computing the magnitude of the desired vector by means of a
square-root operation should be addressed in order to extend the voltage limit. Two
approaches could be taken: on one hand, we could implement the operation in the
DSP if there are enough free program cycles; on the other hand, the operation could
be implemented in the FPGA if more logic cells are available.

Finally, to obtain the counter values we note that

V3.1
12 Vpaw A6
1 V2
= 224 4.32
120, 7 6 " (4.32)

given that vy, = V%S.
1

By adding and subtracting terms like (4.32) to the value & all duty ratios are

CHAPTER 4. WORD-LENGTH EFFECTS 49

computed. The counter values are obtained by converting the duty ratios to integers,

i.e., taking the same register like an integer representation instead of fractional.

4.3 Simulations

The algorithm described above was implemented in a floating-point and a fixed-point
version. The Matlab files are listed in Appendix B.

In Fig. 4.1 we show the simulation of a speed step from 0 to 500rad/s (electri-
cal), with a constant torque load of 1Nm. We can see that the fixed-point version
has a larger overshot and a longer stabilization time. This is likely caused by the
quantization errors introduced in the process, which lead to a different controller im-
plementation. In Fig. 4.2 we show the error in the position estimation for both cases.

In the fixed-point version, the error is slightly larger during the transient.

4.4 DSP code

Based on this description, the assembler code for the ADSP-2181 processor was de-
veloped. In Appendix C we show the assembler code and the Linker Description File,
needed to assemble and link the program using the development software VisualDSP.

The algorithm runs in an interrupt service routine, while there is a main loop
which only waits for the interrupt request. After a reset, the initialization of the
variables is performed, and the program waits until a switch is changed of position
to write in the FPGA the command that starts to run the PWM generation and the

interrupt requests.

CHAPTER 4. WORD-LENGTH EFFECTS

600 T

Speed step response: floating—point(solid) and fixed—point(dashed)

400 - /

w(rad/s)
w
o
o
T

200 -

100

e
500 7

0 0.1

0.2

0.3

0.4
t(s)

detail

05

0.6

0.7

502~

498 -

497

1
0.7 0.71

|
0.72

|
0.73

|
0.74

I
0.75
t(s)

|
0.76

|
0.77

|
0.78

|
0.79

0.8

50

Figure 4.1: Simulation of the speed step response, from 0 to 500rad/s with a constant
torque of 1N'm. Floating-point version is shown in solid and fixed-point version is

shown in dashed lines.

The total running time of the interrupt routine is 1,113 cycles, equivalent to

55.65us, while the PWM period is 200us. There is enough time to add other tasks

in the processor, like serial communication with a host to receive a dynamic speed

reference and probably exchange other information. It is important to note that the

processor clock frequency (20M Hz), as well as the PWM frequency (5kHz), can be

changed to obtain other results, but this would imply minor changes in the board

design and in some constants.

4.5 Summary

The issues involved in the implementation of a fixed-point version of the sensorless

algorithm were described in this chapter. All inputs, outputs, variables and constants

CHAPTER 4. WORD-LENGTH EFFECTS

0.15

0.1

AB (rad)

0.05

-0.05

0.15

0.1

0.05

AB (rad)

-0.05

Figure 4.2: Simulation of the speed step response, position estimate error.

Floating—point position error

0.1

0.2 0.3 0.4 0.5 0.6
t(s)

Fixed—point position error

0.7

0.8

0.1

0.2 0.3 0.4 0.5 0.6
1(s)

0.7

0.8

o1

were scaled to a fractional representation, and all operations were studied to prevent

overflow and to maximize the precision of the results. Simulations show that the

fixed-point version of the algorithm differs from the floating-point version, but its

performance is still satisfactory.

The algorithm was coded in assembler for the ADSP-2181 processor.

With a

clock frequency of 20M Hz and a PWM frequency of 5kHz, the algorithm fits into

one PWM period and there is still time remaining to introduce other tasks, like serial

communication or other application-specific tasks.

Chapter 5

PWM implementation using

FPGA

In this chapter we describe the design of the PWM generation circuit and auxiliary
tasks, which was implemented in an FPGA. The complete design was written in
VHDL [31], an industry standard hardware description language, so that it can be
easily implemented in different platforms (e.g., different FPGA families, ASICs). The

VHDL files are listed in Appendix D.

5.1 General description

The main task performed by the FPGA is to generate the PWM signals, based on
the duty ratios received from the DSP, and at the end of each PWM period it has to
generate an interrupt request signal. Additionally, it has to store the samples of the

currents at the end of each subinterval, and output them to the DSP when requested.

52

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 93

The design was partitioned in two blocks (Fig. 5.1). The regs block contains the
internal registers which store the PWM vectors, the duration of each subinterval in
the current and next PWM period, and the samples from the ADCs at the end of
each subinterval. The pwmecntr block provides the exact timing for each subinterval

and keeps track of the number of subintervals in a PWM period.

dspa adca
dspd adch
ions, rd, w
. regs)
irq pwm si g
rst
position
pwrent r
cl k R cl kout

Figure 5.1: Block diagram of the FPGA design.

The interface between these blocks is very simple: regs commands pwmecntr by
driving its reset signal and providing the value to be loaded in the counter for the
next subinterval. The outputs of pwmecntr are the step (subinterval) number and
two signals to indicate the end of a step and the end of a PWM period.

The communication with the DSP is performed by the regs block, whose registers
are seen as [/O ports from the processor. For that purpose, the data and address
buses, as well as control signals, are used to decode the I/O read or write operations.

An interrupt request signal is issued at the end of every PWM period in order to

CHAPTER 5. PWM IMPLEMENTATION USING FPGA o4

synchronize the system.
The clock signal generated by the DSP is divided by two to obtain a 10M Hz

clock, which is used to synchronize the digital circuit and the data acquisition.

5.2 PWM counter block

The PWM counter is implemented in the pwmcntr.vhd file. It consists of a single
synchronous process. The counter cnt decreases at each clock cycle; when it reaches
zero this means that a step has ended and therefore a new value is loaded to begin
the count of the next step, the step number is incremented, and a new_step signal is
issued.

The counter is used to generate the time duration of each subinterval, and also
the duration of the deadband. The deadband (or deadtime) is a short time interval
(in our case, 2us) inserted between two different switching combinations of the in-
verter to wait for a complete cease of conduction of one switch, before turning on its
complementary [22]. As a consequence, instead of 6 subintervals in a PWM period,
we have 12 since each subinterval is preceded by a deadband time. For this reason,
we use the term step instead of subinterval. When the 12 steps have elapsed, the step
counter is reset and a new_period signal is issued.

There is a synchronous reset signal which initializes all variables. This reset signal
is commanded by the regs block when the PWM generation is stopped.

In Fig. 5.2 we present the results of a simulation of this block, showing the first
step after a reset, and the new_step signal generation. In Fig. 5.3 we show what

happens when the last step is finished, in particular the generation of the new_period

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 95

signal.
Name: 250.0ns 500.0ns 750.0ns 1.0us
[clk L eyl rr
[1] rst
[l new_time 0006 X 0009
[Blent 0000 ¥ 0006 X 0005 X 0004 X 0003 ¥ 0002 ¥ 0001 X oooo ¥ 0006 ¥ 0005 X 0004)
[Olstep o X 1 X 2
[O]new_period
[Olnew_step

Figure 5.2: Simulation of the PWM counter block: reset and first step.

Name: 7.Qus 7.25us 7.5us 7.7§us 8.Qus 8.25us 8.5us
[0 clk LTI TV P T LT e L P ET L
[1] rst
[1] new_time 0005
[B]cnt -

[O]step A X B X 0 X 1
[O]new_period ’—‘
[Olnew_step [] [] [

Figure 5.3: Simulation of the PWM counter block: last step.

5.3 Registers block

The registers block is implemented in the regs.vhd file. The main functions of this
block are the interface with the DSP, the signal acquisition and the generation of the
PWM signals according to the step number.

In Fig. 5.4 we show the registers inside this block. There is one bank of registers
to store the time duration of each subinterval plus the deadband of the current PWM
period (ttl,...,tt6,ttdb), and one bank for the time values of the next period
(t1,...,t6,tdb). There is one bank of registers to store the PWM vectors to be

used in each subinterval (v1,...v6). Register sta stores the status of the system

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 56
(stop or running), register p stores the estimated position of the shaft, and register
pwm_out stores the actual PWM signals that are being sent to the inverter. Finally,
the current measurements at the end of each subinterval are stored temporarily in
one bank (tadcal,tadcbi,...,tadca6,tadcb6) and at the end of the PWM period

copied to another bank (adcal,adcbi,..., adca6,adcb6).

7 ttl
= tt2
vl tl
tt3
v2 t2
tt4
v3 t3
tt5
v4 t4
tt6
v5 t5
ttdb
v6 t6
tdb P
sta JUPE tadcal|tadchl
= tadca2|tadcbh2
adcal | adcbl
[::::::::] tadca3|tadch3
adca2 | adcb2
tadca4d |t adcb4
adca3 | adcb3
tadcab5|t adcb5
adca4 | adcb4
tadca6 |t adch6
adca5 | adcb5 e
adca6 | adch6 | __---
regs

Figure 5.4: Internal registers.

5.3.1 Interface with the DSP

The internal registers of the FPGA are mapped in the I/O space of the DSP by

decoding the appropriate control signals. The ioms n signal is asserted by the DSP

CHAPTER 5. PWM IMPLEMENTATION USING FPGA o7

when an I/O access is being done; the signals wr n and rd_n distinguish a write from
a read operation.

The write operation is implemented in a process whose sensitive list includes wrs
= wrn OR ioms_n. On the rising edge of this signal, an internal register is loaded
depending on the address. The vectors can only be loaded if the status is 0 (stop);
this means that, for security reasons, the vectors can’t be changed while they are
being output to the inverter. In a normal operation they would be loaded only once
at the beginning and never changed. The time duration of the subintervals can be
loaded any time on the temporal registers so that the PWM period that is currently
running is not affected. At the end of the period, the temporal registers are copied
to the actual ones, which are used to generate the next PWM period. Finally, the
status and position registers can be written at any time.

The read operation is implemented with a tristate buffer controlled by the signal
srden = rd.n OR ioms_n. When this signal is 0, the value srdata is connected to
data bus; otherwise a high impedance output is forced. The values that can be red
on the srdata signal are the ADC values (sampled at the end of each subinterval of
the previous PWM period) or the status, depending on the address bus value. The
ADC values are transformed in the following way: the MSB is inverted to achieve
a two’s-complement notation and the 14 bits are shifted one position to the left for
appropriate scaling (see 4.2.1). The addresses of the registers are summarized in Table
5.1. Only the four less significant bits of the address bus are used in the decodification.

The interrupt request signal irq n is the inverse of the new_period signal. In this
way, at the end of a PWM period irq.n will go to zero for one clock cycle; this is

enough because the interruption that we are using in the DSP is edge sensitive.

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 58

address | write | read
Oh vl adcal
1h v2 adca?2
2h v3 | adca3
3h v4 | adcad
4h vb6 | adcab
5h v6 | adca6
6h sta sta
7h P —
8h t1 adcbil
9h t2 | adcb2
Ah t3 | adcb3
Bh t4 | adcbd
Ch t5 | adcbb
Dh t6 | adcb6
Eh tdb —
Fh — —

Table 5.1: Register addresses.

In Fig. 5.5 we show a simulation where the DSP reads the ADC values from
internal registers of the FPGA. One wait state had to be added so that the data is

ready on the rising edge of the read signal.

5.3.2 PWDM signals generation

The PWM signals are generated from the vector registers and the step number. The
even steps correspond to deadband intervals, during which a logical AND of the
previous and the next vectors is output to the inverter; this operation guarantees that
those switches that change from one subinterval to the next, during the deadband
will be forced to an OFF state. The PWM signal is therefore selected according to
Table 5.2.

To achieve the desired duration for each step, the output new_time is used to

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 99

Name: 8.3US 8.4[13 8.§US S.QUS 8.ZUS 8.8‘US 8.9‘US 9.0us 9.]TUS
[cik HEpERENEEEpEEEpEEEEEEEEEpEpEEpEE N .
Oekout (| [[T [[1 J [T 1 [[T [J 1

[rst
[l wr_n

]

1 rd_n [] [[[[] [] []
] L
]

[1] ioms_n

[1] dspa 0 X 1 X 2 X 3 X 4 X 5 X 8 X 9

[I dspd 7777)
[O]dspd zzzz Y 0450 YN E450 WM 2450 WMl D450 WM 2450 WHM F450 WA 0430 W N W E430 M
[I] adca 0000

1] adcb 0000)
[O]pwm_sig 25 X 24)
[O]position 5555

[Olirg_n

Read ADC values stored from previous period (one wait state assumed)

Figure 5.5: Simulation of the registers block: DSP reading ADC values.

communicate the block pwmcntr which is the counter value to be loaded for the
next step. Therefore, in step 0 we output the register corresponding to subinterval 1,
in step 1 the register corresponding to deadband, and so on.

In Fig. 5.6 we show a simulation where the DSP writes a command to start the
PWM generation. After one period delay, a vector corresponding to the deadband is

output for one period, and next the first vector is output for the corresponding time.

5.3.3 Signal acquisition

The signal acquisition belongs to the synchronous process. When the new_step signal
is received, the step value has been already increased. Therefore when step is 2, it
corresponds to the end of the first subinterval; when step is 4, to the end of the second
subinterval, and so on. When step is 0, it means that the last subinterval has finished
and then all temporary registers are copied to the definitive bank, where they will be

accessible to the DSP during the next PWM period.

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 60

step | subinterval | PWM vector
0 DB v6 AND vi
1 1 vi
2 DB vl AND v2
3 2 v2
4 DB v2 AND v3
) 3 v3
6 DB v3 AND v4
7 4 v4
8 DB v4 AND vb
9 5 v5
10 DB v5 AND v6
11 6 v6

Table 5.2: PWM signal generation according to the step number

Because of the latency in the ADCs, the value that is latched in the registers

corresponds to the analog value of the current four clock periods before (i.e., .4us).

5.4 Practical considerations

The files were compiled for an Altera EPF6016 chip (package TC144 and speed grade
-3), using the software Max+PlusIl. The total of logic cells and I/O pins used are
around 75% of the chip capacity.

The design was extensively simulated to verify its correctness. Some of those
simulations were shown in the previous sections.

One of the big advantages of programmable logic is its flexibility in the pin assign-
ment, which make it possible to simplify the PCB design. For this reason, the pins
were assigned according to the pin distribution of the other chips and their position
in the PCB with respect to the FPGA.

There are four things that can be noticed in the VHDL code and deserve an

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 61

Name: 1.7§us l.&us 1.85us 1.9us 1.9§us Z.Qus 2.05us 2.1us 2.1
[n ck (P N S Y e N D N e N
[O]clkout
[1] rst
[l wr_n
[rd_n
[1] ioms_n
[dspa o X & X 0
[l dspd zzzz Y o001 7777)
[O]dspd zzzz Y o001 7777)
[1] adca 0000
[I] adcb 0000)
[O]pwm_sig 00)O(09 X 29 >
[O]position 0000)
[Olirg_n

Hardware Resetommand Read ADC values stored from prev

Figure 5.6: Simulation of the registers block: start of the PWM generation.
explanation:

e four outputs (test points tp) are used for debugging purposes, so that we could

have access to signals buried inside the FPGA.

e the bits in the inputs from the ADCs had to be reversed because there was
an error in the design of the PCB: bit 1 in the ADCs is the most significant
bit (MSB) and it was assumed to be the least significant (LSB); therefore the

inputs adca and adcb were inverted into signals adcar and adcbr respectively.

e four additional inputs (inp75,inp79,inp80,inp81) were added to the design
because of an accidental shortcut of corresponding pins during manual soldering;

these pins have to be declared as inputs to avoid electrical problems.

e also because of an accident during the soldering, pin 107 of the chip was broken,
so we had to assign signal dspd14 to another I/O pin (#74) and connect it to

the proper PCB trace with a cable.

CHAPTER 5. PWM IMPLEMENTATION USING FPGA 62

5.5 Summary

We presented the design of the PWM generation and data acquisition, which was
written in VHDL, an industry standard hardware description language. Although
in this prototype the design was implemented in an Altera FLEX 6000 family chip,
this design can be easily implemented in other platforms, like other FPGA chips or
ASICs.

The interface with the DSP was designed to be as simple as possible. The PWM
generation is robust in the sense that it can’t be corrupted in the middle of a PWM
period. However, it is the responsibility of the DSP programmer to load the correct
vectors and counter values.

With a bigger FPGA, some improvements can be made. On one hand, basic com-
putations can be performed, like the subtraction of subsequent current measurements,
to free some program cycles from the DSP. On the other hand, the performance of
the PWM generation can be made more robust if the DSP writes the desired voltage

output and the FPGA itself computes the counter values needed to generate them.

Chapter 6

Experimental results

6.1 Experimental setup

The prototype board was introduced in a laboratory test bed consisting of a PM
motor, an inverter with its power supply, and a host PC.

The motor used is a Kollmorgen Goldline X'T, model MT306B, with a rated power
of 2HP (1.48kW), maximum speed 4,600rpm, rated torque 3.32Nm, and 4 pole pairs.
It is mechanically coupled to a torquemeter and a hysteretic load cell. It also has a
digital encoder to measure the shaft position (for performance evaluation purposes).

The inverter, which is described in Appendix E, is built around a Powerex (Mit-
subishi) PM15CJ060 intelligent power module, consisting of six IGBTs and gate
drivers. It also contains three closed-loop Hall effect current sensors to measure
the phase currents. The input signals are isolated from the power module with op-
tocouplers. The DC power is provided by a programmable power supply HP6575A

from Hewlett Packard, with a maximum of 200V /11A.

63

CHAPTER 6. EXPERIMENTAL RESULTS 64

The Personal Computer (PC) runs a Windows NT Operating System. The soft-
ware Max+PlusII from Altera is used to compile and download the FPGA configura-
tion (via a ByteBlasterMV cable connected to the parallel port), while the software
VisualDSP from Analog Devices is used to compile and download the DSP program
(via an EZ-ICE2181 emulator, connected to the serial port). A controller DSP board
(DS1103 from Dspace) registers the values of phase currents, actual and estimated
position, via A/D converters, encoder interface and digital I/O respectively. This
registered values were used for debugging purposes and to generate the plots shown
in the next section.

In Fig. 6.1 we show a picture of the experimental setup in the laboratory.

Figure 6.1: Experimental setup. From left to right: motor, CPU, prototype board,
monitor, inverter and DC power supply.

The procedure followed to perform the experiments is as follows:

CHAPTER 6. EXPERIMENTAL RESULTS 65

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

. turn on the PC

. turn on the prototype board

. turn on the emulator

. turn on the inverter gate drivers

. turn on the DC power supply and set 200V /3A (or more current if needed)
. run Max+Plusll and configure the FPGA

. run ControlDesk and read shaft position (note: the ByteBlasterMV cable has

to be disconnected because it conflicts with the Dspace hardware key)

. run VisualDSP, introduce initial shaft position in the DSP program, compile,

download to the prototype board and run

. change switch to enable PWM signals in the inverter

change switch to start algorithm in prototype board

read experimental data in ControlDesk

if needed, operate load cell

if needed, operate pushbutton in prototype board to change reference speed
change switch to disable PWM signals in the inverter when finished

turn off power supply

turn off inverter gate drivers

turn off emulator

turn off prototype board

shut down and turn off PC

Several experiments can be performed in one session by repeating steps 7 to 14.

CHAPTER 6. EXPERIMENTAL RESULTS 66

6.2 Results

In this section we describe some of the experiments carried out to assess the perfor-
mance of the sensorless control algorithm implementation.

In Fig. 6.2 we show the response of the system to a speed reference step. The
torque was kept constant, equal to 1Nm, (& 141inoz) while the speed reference
changed abruptly from 50 to 500rad/s (electrical). In this experiment, we used the
same controller constants as in the simulations carried out in Chapter 4. We can
see the high overshoot generated by the quantization errors, as anticipated by the
simulations. In Fig. 6.3 we show the position estimation error during the same
experiment; as expected, during the transient the error is large, but in steady state
it is significantly reduced.

Speed step at constant torque load

600

500

400

w(rad/s)

300

200

100

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

Figure 6.2: Speed step response, the speed reference jumps from 50 to 500rad/s
(electrical) with a constant torque of 1Nm.

CHAPTER 6. EXPERIMENTAL RESULTS 67

Position estimation error in the speed step experiment
1.2 T T T T T

0.8 .

0.6 4

A8 (rad)
o
D
T
I

0.2

1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(s)

Figure 6.3: Speed step response, position estimation error in rad (electrical).

A better performance can be achieved if we use a less agressive controller. In Figs.
6.4 and 6.5 we show the results of the same experiment, with a modified controller.
We can observe that the overshoot is reduced, while the stabilization time is slightly
increased. The position estimation error is reduced during the transient, but in steady
state it is almost the same.

In Fig. 6.6 we show the response to a load torque step, while trying to keep the
speed constant. The torque changed from 0 to 1Nm and the speed remained constant

at 200rad/s. In Fig. 6.7 we show the position estimation error.

6.3 Summary

The algorithm has been implemented in the prototype board and its performance is

satisfactory, although it is not as good as its floating-point counterpart. In steady

CHAPTER 6. EXPERIMENTAL RESULTS 68

Speed step at constant torque load
700 T T T T T

600 : o

500

400

w(rad/s)

300

200

100

1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1(s)

0 1 1 1 1

Figure 6.4: Speed step response with modified controller, the speed reference jumps
from 50 to 500rad/s (electrical) with a constant torque of 1Nm.

state, the position estimation error is about .25rad (electrical), while the error re-
ported for the floating-point version is .15rad [12]. Also, in our implementation there
is a positive offset when torque is applied, which is not present in the floating-point
implementation.

Since it was not the main objective of this work to optimize the controller con-
stants, there is still the possibility to improve the performance of this implementation.
Simulations presented in chapter 4 show that the behavior of the fixed-point version
of the algorithm can differ from the floating-point one, due to quantization errors. In
this chapter, we showed how a modification in the controller constants can improve
the performance; however, the procedure was an empirical one. Additional analysis
should be made in order to find a specific set of constants for a better performance

of the fixed-point version.

CHAPTER 6. EXPERIMENTAL RESULTS 69

Position estimation error in the speed step experiment
1.2 T T T T T T

0.8 .

0.6 . o

0.4

A0 (rad)

0.2

-0.4 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)
Figure 6.5: Speed step response with modified controller, position estimation error in

rad (electrical).

Torque step at constant speed
250 T T T

150 . 8 8

w(rad/s)

100 o

50 al

1 1 1 1 1
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
1(s)

Figure 6.6: Torque step response, the load torque jumps from 0 to 1Nm (electrical)
with a constant speed reference of 200rad/s.

CHAPTER 6. EXPERIMENTAL RESULTS

Position estimation error in the torque step experiment
0.4 T T T T T T

0.3 .

0.2 .

A8 (rad)
o

—0.4 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t(s)

Figure 6.7: Torque step response,position estimation error in rad (electrical).

Chapter 7

Conclusions

In this work we have presented a low-cost hardware implementation of a sensorless
control algorithm for PMSM. A custom board was designed and constructed for this
purpose, based on a 16-bit fixed-point DSP and an FPGA. The main idea behind
this design is to use programmable logic as a complement of the processor, so that
different tasks can be implemented in parallel.

Word-length effects were studied in order to program the algorithm in the fixed-
point DSP with a reasonable precision. Simulations show that the fixed-point version
of the algorithm has a similar performance to that of its floating-point counterpart.
However, quantization errors lead to variations in the observer and the controller
which determine a modification in the response of the algorithm. Some constants
should be adjusted to achieve an improved performance.

The FPGA was programmed in VHDL, an industry standard language. The
PWM generation is achieved with a time resolution of 100ns. Only basic functions

were programmed in the FPGA, like PWM generation and signal acquisition, but

71

CHAPTER 7. CONCLUSIONS 72

some of the operations performed by the DSP can be programmed also as long as
the chip size permits. On one hand, the acquired data can be pre-processed, e.g., the
subtraction of subsequent current measurements or the computation of the current
average. On the other hand, the DSP could only output the desired a3 voltages, and
the duty ratios could be computed in the FPGA.

The spare time in the DSP can be used to implement serial communication to
a host, to exchange data as speed reference, actual position, etc. Other background
tasks could also be performed according to the specific application.

The design presented in this work is intended to target a prototype board. A
final solution would need some modifications to convert it to a completely stand-
alone board. An EPROM for the FPGA configuration and another for the DSP
booting should be added. A startup procedure should be implemented, based on
the position estimation algorithm, to find out the initial position [9, 10]. Additional
communication with the user could be introduced if desired.

A more cost-effective solution could be achieved if the FPGA part is converted
into an ASIC, and possibly integrated in the same chip as the DSP core. The ADCs
could be substituted by others with less resolution and longer conversion time, at the
expense of losing precision in the position estimation.

The prototype board built as part of this work showed a satisfactory performance
in laboratory experiments, over a wide range of motor speeds and load torque. This
result demonstrates that sensorless control of PMSMs can be achieved in a low-cost
hardware platform if a design is performed according to the characteristics of the
algorithm, using a mix of a standard DSP core and a custom designed digital circuit.

The use of programmable logic provides a key to develop such a design.

Bibliography

1]

2]

3]

[4]

[5]

R.B. Sepe and J.H. Lang. Real-time observer-based (adaptive) control of a
permanent-magnet synchronous motor without mechanical sensors. IEEE Trans-

actions on Industry Applications, 28(6):1345-1352, 1992.

S. Bolognani, R. Oboe, and M. Zigliotto. Sensorless full-digital PMSM drive with
EKF estimation of speed and rotor position. IEEE Transactions on Industrial

FElectronics, 46(1):184-191, 1999.

J.S. Kim and S.K. Sul. New approach for high-performance PMSM drives
without rotational position sensors. IEEE Transactions on Power FElectronics,

12(5):904-911, 1997.

K.R. Shouse and D.G. Taylor. Sensorless velocity control of permanent mag-
net synchronous motors. IEEFE Transactions on Control Systems Technology,

6(3):313-324, 1998,

N. Ertugrul and P.P. Acarnley. Indirect rotor position sensing in real time for
brushless permanent magnet motor drives. IEEE Transactions on Power Elec-

tronics, 13(4):608-616, 1998.

73

BIBLIOGRAPHY 74

[6]

[7]

8]

[9]

[10]

[11]

M.J. Corley and R.D. Lorenz. Rotor position and velocity estimation for a salient-
pole permanent magnet synchronous machine at standstill and high speeds. IEEFE

Transactions on Industry Applications, 34(4):784-789, 1998.

P.L. Jansen and R.D. Lorenz. Transducerless position and velocity estimation in
induction and salient AC machines. IEEE Transactions on Industry Applications,

31(2):240-247, 1995.

J.M. Kim, S.J. Kang, and S.K. Sul. Vector control of interior permanent magnet

synchronous motor without shaft sensor. In Proceedings APEC’97, volume 2,

pages 743-748, Atlanta, GA, Febraury 1997.

S. Ostlund and M. Brokemper. Sensorless rotor-position detection from zero to
rated speed for an integrated PM synchronous motor drive. IEEE Transactions

on Industry Applications, 32(5):1158 — 1165, 1998.

T. Aihara, A. Toba, T. Yanase, A. Mashimo, and K.Endo. Sensorless torque
control of salient-pole synchronous motor at zero-speed operation. IEEE Trans-

actions on Power Electronics, 14(1):202 — 208, 1999.

M. Schroedl and P. Weinmeier. Sensorless control of reluctance machines at
arbitrary operating conditions including standstill. JEEE Transactions on Power

FElectronics, 9(2):225-231, 1994.

[12] V. Petrovié¢. Saliency-Based Position Estimation in Permanent Magnet Syn-

chronous Motors. PhD thesis, Northeastern University, 2001.

BIBLIOGRAPHY 75

[13]

[14]

[15]

[16]

[17]

18]

[19]

Y-Y. Tzou and H-J Hsu. FPGA realization of space-vector PWM control
IC for three-phase PWM inverters. IEEE Transactions on Power Electronics,

12(6):953-963, 1997.

J.A. du Toit, D.D. Bester, and J.H.R. Ensin. A DSP based controller for back
to back power electronic converters with FPGA integration. In Proceedings

APEC"97, volume 2, pages 699-705, 1997.

W. Sangchai, T. Wiangtong, A. Hongyapanun, and P. Wardkean. Design and
implementation of FPGA-based control IC for 3-phase PWM inverter with op-

timized SVM schemes. In Proceedings APCCAS 2000, pages 144-147, 2000.

F. Blaabjerg, P.C. Kjaer, P.O. Rasmussen, and C. Cossar. Improved digital
current control methods in switched reluctance motor drives. IEEFE Transactions

on Power Electronics, 14(3):563-572, 1999.

S-L. Jung, M-Y. Chang, J-Y. Jyang, and Y-Y. Tzou. Design and implementation
of an FPGA-based control IC for AC-voltage regulation. IEEE Transactions on

Power Electronics, 14(3):522-532, 1999.

R-X. Chen, L-G. Chen, and L. Chen. System design consideration for digital
wheelchair controller. IEEE Transactions on Industrial Electronics, 47(4):898-

907, 2000.

G.R. Slemon. Electrical machines for drives. In B.K. Bose, editor, Power Elec-
tronics and Variable Frequency Drives, chapter 2. IEEE Press, Piscataway, NJ,
1997.

BIBLIOGRAPHY 76

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

T.M. Jahns. Variable frequency permanent magnet ac machines drives. In B.K.
Bose, editor, Power Electronics and Variable Frequency Drives, chapter 6. IEEE

Press, Piscataway, NJ, 1997.

S.A. Nasar, I. Boldea, and L.E. Unnewehr. Permanent Magnet, Reluctance, and

Self-Synchronous Motors. CRC Press, Boca Raton, FL, 1993.

J. Holtz. Pulse width modulation for electronic power converters. In B.K. Bose,
editor, Power Electronics and Variable Frequency Drives, chapter 2. IEEE Press,

Piscataway, NJ, 1997.

Analog Devices, Inc. Complete 14-Bit, 10 MSPS Monolithic A/D Converter

AD9240, 1998. Datasheet.

Analog Devices, Inc. Dual 160MHz Rail-to-Rail Amplifier AD8042, 1999.

Datasheet.

Altera Corporation. FLEX 6000 Programmable Logic Family, November 1999.

Datasheet.

Analog Devices, Inc. Configuring APEX 20K, FLEX 10K € FLEX 6000 Devices,

May 2000. Application Note 116.
Analog Devices, Inc. DSP Microcomputer ADSP-2181, 1998. Datasheet.

Analog Devices, Inc. Understanding 21xx/218x EZ-ICE Theory of Operation
To Aid In Designing An EZ-ICE Compatible Target, April 1998. Engineer To

Engineer Note EE-34.

BIBLIOGRAPHY 7

[29] Analog Devices Inc. ADSP-2100 Family Manual. Analog Devices Inc., Norwood,
MA., 2000.

[30] H. Hanselmann. Implementation of digital controllers — a survey. Automatica,

23(1):7 — 32, 1987.

(31] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Press, New
York, NY, 1993. IEEE Std 1076-1993.

Appendix A

Hardware schematics and PCB

78

APPENDIX A. HARDWARE SCHEMATICS AND PCB

R20.23

ve

T
T

T
RI5..1,
Us 5x1K

W“H!

EPFs016

573839310
oo
]

vee

vee
Z%L

moﬁ:mnrg w00~
BUs
I 7

c17
oonF ¢

me I]
3
s

z
L o] [
g
: ’
M s = ii M
; Bl re L] Le }
NXXXXEXR] N ERERLELF

Figure A.1: Board schematics

APPENDIX A. HARDWARE SCHEMATICS AND PCB

@

\Wﬂﬂ\

w

ULTIboard
PCB Design

anr

C35
T
e i
3% ® H
[1

o) &
\ﬁ/\&/
T\/—\ T

At 1t

NG
c9
= T c? g
b i 1t
=< 7
=3 [uz ~— ved
o
—
c13 o4 LAH
] i us
cie .
- odb Py
E T U3 1t
~— — c23
1k e
~— 1t
c12 220 ~—
bt b OsOs0:05

) N
:

1 s

T
L] e
e 5

SIr

Fi

final, Silkscreen

Drill Ref Pnt:

(Jul. 86, 2001) (16:22) (PCB)
0,100, ©.940 (inch)

SCALE: 100%

Figure A.2: PCB silkscreen

L

80

APPENDIX A. HARDWARE SCHEMATICS AND PCB

®

ULTIboard
PCB Design

oJooo
©® @ ®ByteBlaster

. PEMCS Lab.
ee 0 o PWM OUT Northeastern University
2001

. [XXX XXX April
(XXX XXX Y]

‘o%‘o“olﬁj::l

f

3

final, Top (Jul. @6, 20013 (16:22) (PCB) SCALE: 100%
Drill Ref Pnt! ©.100, ©.940 (inch)

Figure A.3: PCB top layer

81

APPENDIX A. HARDWARE SCHEMATICS AND PCB

@

ULT Iboard

. cCe o .
O eee @ e OO
o ecccoee oo ()
® ® o0 o e @
o 00 0 O
ecccooe .
[] . O
- [e o @ Ce . N
o [4 ° ° e © . o
2 . e o ®0O°, o
8 ° e o %,
=) : R
@ ° ° o @ ®eo $°"
a e o 4 °
] o o o e
[< ® O3 hd
: [o o ~® o0 °s ® ae
o [[e . [1
: * ’ S
: (XXX YY) ® o0 o ::
o 00 O (1
’ eeocee ®® 000000000 00000 °° o0 ’
0000000000 20000
final, Innerl (Jul. 86, 2001) (16:22) (PCB) SCALE:! 100%
Drill Ref Pnt: ©.100, ©.9480 (Cinch) NEGATIVE (planel) LAYER

Figure A.4: PCB inner layer 1

82

APPENDIX A. HARDWARE SCHEMATICS AND PCB

@

ULT Iboard

‘I. e C @ ‘I'
. 00005000 .
® ce ® O eooo00008 e @
~ . oo C e e
O XYY Y Y Y i YY) ®
o (o] o e ®F ° ce @
® oC c e
. eecoeeoe . 00000 oo . o
o e o O @ S IS . o
o) ' o o b ©%s @ e, » 3
- o e o O 07, . . o
2 ° e o s, .
© LS [)
~ ° . % 5" oo °
O goe ¢ ° 0%
3 ° [eI X Y} s e .o O e’
& o o ° :' o
° °
o e o C @8 Jo° R 3'0' , e, ® * oo
® o 0 [gte e 0 @7, . O 3
o ° o © . ° . © . [34
°® e o ¢ ® C o® o< ° 44
[] v oo o * c e o0
o eeceoe - . ® ° o0
. c e® ® o000 o °C o o0
C eC %o ° [1
(1]
‘ eeceee °° 0000000000 C000C °e 5 ’
8000000000 80000
Tinal, Inner2 (Jul . 86, 2001) (16:22) (PCB) SCALE: 100%

Drill Ref Pnt:

0,100, ©.940 (inch) NEGATIVE

(planel LAYER

Figure A.5: PCB inner layer 2

83

APPENDIX A. HARDWARE SCHEMATICS AND PCB

®

/K NI|

ULTIboard
PCB Design

Ll

final, Bottom C(Jul. @6, 2001) (16:22) (PCB) SCALE: 100%
Drill Ref Pnt! ©.100, ©.940 (inch)

Figure A.6: PCB bottom layer

84

Appendix B

Matlab files for simulations

B.1 Motor model

In this section we present the motor model in the stationary frame. The function was
coded in a format suitable to be used with the ode solvers. The constants are defined

in the constsl.m or constslq.m files.

B.1.1 stpmsm.m
function xdot = stpmsm(t,x,flag,val,vbt,T1)

% function xdot = stpmsm(t,x,flag,val,vbt,T1l)

h

% Stationary frame model of the PMSM, suited for an ODE solver.
h

% state vector:

% [ialpha; ibeta; omega; thetal
h

% parameter inputs:

h val: alpha axis voltage

A vbt: beta axis voltage

% T1l: load torque

h

% also uses constants defined in constsl.m

global pdém pdi2m pqOm pgém pqi2m
global Rsm LOm Lim
global Jm Bm P

ial = x(1);
ibt = x(2);
om = x(3);

85

APPENDIX B. MATLAB FILES FOR SIMULATIONS 86

th = x(4);

phid pd6m*sin(6%th) + pdi2m*sin(12*th);

phiq = pqOm + pgbm*cos(6*th) + pql2m*cos(12*th);
phial = phid*cos(th) - phig*sin(th);

phibt = phid*sin(th) + phig*cos(th);

Lialdot = val - Rsm¥ial - om*(2*Lim*(-ial*sin(2*th)+ibt*cos(2*th))+phial);
Libtdot = vbt - Rsmxibt - om*(2xLimx*(ial*cos(2*th)+ibt*sin(2*th))+phibt);

ialdot = (Lialdot*(LOm-Lim*cos(2+*th))-Lim*Libtdot*sin(2*th)) / (LOm~2-Lim"2);
ibtdot = (Libtdot*(LOm+Lim*cos(2*th))-Lim*Lialdot*sin(2*th)) / (LOm~2-Lim~2);

taum = P*(Lim*((ibt~2-ial"2)*sin(2*th)+2*ial*ibt*cos(2*th))+ial*phial+ibt*phibt);
omdot = 1/Jm*(taum - Bm*om - T1);

thdot

om;

xdot = [ialdot;ibtdot;omdot;thdot];

B.2 Floating-point version

The floating-point version of the algorithm uses one script file (simsless.m) to run
the simulation, and in each PWM period it calls the sensorless algorithm sless.m.

Constants are defined in constsl.m.

B.2.1 simsless.m
% simsless.m
i Simulation of the sensorless algorithm.

% load constants
clear
constsl;

% initialize memory values
ialfa0 = 0;

ibetal = 0;

ia = zeros(1,6);

ib = zeros(1,6);

t = ones(1,6)*TPWM/6;

tn = t;

pent = t/TCNT;

alhat
omhat
thhat
obserr
int1
int2
int3

0;
0;
0;

H
’

0
0
0

H

% initial conditions
ial0 = jalfa0Q;
ibt0 = ibetal;
omQ =

0;
th0 0;

APPENDIX B. MATLAB FILES FOR SIMULATIONS

% repeat NSIM times:
A

%

t0 =
yo =
tout = t0;
yout = y0’;
thhatout =

for npwmint = 1:NSIM,

run sless algorithm
run each subinterval of the PWM cycle on the PMSM model

’
thO;

(including deadtime), collecting currents at each switching

0;
[ial0;ibt0;om0;th0];

% recall counter values computed on last PWM period
cnt = pent;

% run sensorless algorithm
[pent,thtemp,valfa,vbetal = sless(ia,ib,idref,wref);

% first PWM subinterval
t0 + cnt(1)*TCNT;

tf =

[ttemp,ytemp] =

nt = length(ttemp);
tout =

yout =

ia(1) = ytemp(nt,1);
ib(1) = ytemp(nt,2);
t0 = tf;

yO = ytemp(nt,:)’;

ode23(’stpmsm’, [t0 t£f],y0,[],valsl,vbtsl,T1);

[tout; ttemp(2:nt)];
[yout; ytemp(2:nt,:)];
thhatout = [thhatout; ones(nt-1,1)*thtemp];

% second PWM subinterval
t0 + cnt(2)*TCNT;

tf =

[ttemp,ytemp] =

tout

tf

ode23(’stpmsm’, [t0 tf],y0,[],vals2,vbts2,T1);
nt = length(ttemp);

[tout; ttemp(2:nt)];
yout = [yout; ytemp(2:nt,:)];
thhatout = [thhatout; ones(nt-1,1)*thtemp];

ytemp(nt,1);
ytemp(nt,2);

ytémp(nt,:)’;

% third PWM subinterval
t0 + cnt(3)*TCNT;

tf =

[ttemp,ytemp] =

tout
yout

tf

ode23(’stpmsm’, [t0 tf],y0,[],vals3,vbts3,T1l);
nt = length(ttemp);

[tout; ttemp(2:nt)];
[yout; ytemp(2:nt,:)];
thhatout = [thhatout; ones(nt-1,1)*thtemp];

ytemp(nt,1);
ytemp(nt,2);

ytémp(nt,:)’;

% fourth PWM subinterval
t0 + cnt(4)*TCNT;

tf =

[ttemp,ytemp] =

tout

tf

ytémp(nt,:)’;

0ode23(’stpmsm’, [t0 tf],y0,[],vals4,vbts4,Tl);
nt = length(ttemp);

[tout; ttemp(2:nt)];
yout = [yout; ytemp(2:nt,:)];
thhatout = [thhatout; ones(nt-1,1)*thtemp];

ytemp(nt,1);
ytemp(nt,2);

% fifth PWM subinterval
t0 + cnt(5)*TCNT;

tf =

[ttemp,ytemp] =

tout

ia(5)
ib(5)

ode23(’stpmsm’, [t0 tf],y0,[],vals5,vbts5,T1);
nt = length(ttemp);

[tout; ttemp(2:nt)];
yout = [yout; ytemp(2:nt,:)];
thhatout = [thhatout; ones(nt-1,1)*thtemp];

ytemp(nt,1);
ytemp(nt,2);

87

APPENDIX B. MATLAB FILES FOR SIMULATIONS

t0 = tf;
yO = ytemp(nt,:)’;

% sixth PWM subinterval

tf = t0 + cnt(6)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals6,vbts6,T1l);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(6) = ytemp(nt,1);

ib(6) = ytemp(nt,2);

t0 = tf;

yO = ytemp(nt,:)’;

end

B.2.2 constsl.m

% constsl.m
b
A

% Numeric constants for the sensorless algorithm.

global Wpit TPWM TCNT CPTPWM GAMMA1 GAMMA2 GAMMA3

global k1 al k2 a2 k3 a3 ilim vlim

global CN10SR3 SR302 CN106 SR3012E CN1012E

global ialfa0 ibeta0 t tn alhat omhat thhat obserr intl int2 int3

% simulation parameters

NSIM = 4000; % number of PWM cycles to simulate
TPWM = 2e-4;

wref = 500;

idref = 0;

Tl = 1;

% PWM counter parameters

TCNT

= le-7;
CPTPWM =

TPWM/TCNT;

% inverter parameters

VBUS = 200;
EMAX = VBUS/sqrt(2);
TDEAD = 2e-6;

CPTDEAD = TDEAD/TCNT;
valsl = 2/sqrt(6)*VBUS;

vbtsl = 0;

vals2 = 1/sqrt(6)*VBUS;
vbts2 = 1/sqrt(2)*VBUS;
vals3 = -1/sqrt(6)*VBUS;
vbts3 = 1/sqrt(2)*VBUS;
vals4 = -2/sqrt(6)*VBUS;
vbts4 = 0;

valsb = -1/sqrt(6)*VBUS;
vbtsb = -1/sqrt(2)*VBUS;
vals6 = 1/sqrt(6)*VBUS;
vbts6 = -1/sqrt(2)*VBUS;

% general numeric constants

SR30SR2 = sqrt(3/2);
SR302 = sqrt(3)/2;

CN106 = 1/6;

CN10SR2 = 1/sqrt(2);
CN10SR3 = 1/sqrt(3);
CN10SR6 = 1/sqrt(6);
SR3012E = sqrt(3)/12/EMAX;
CN1012E = 1/12/EMAX;

% motor parameters

88

APPENDIX B. MATLAB FILES FOR SIMULATIONS

global pdém pdi2m pqOm pg6m pql2m
global Rsm LOm Lim
global Jm Bm P

P=4;

% Mechanical (!! normalised with P !!) constants:

Jm=0.5e-3;
Bm=0.5e-3;

% Motor electrical parameters:
Rsm=0.97;

LOm=7.2e-3;

Lim=-1.8e-3;

Ldm=LOm+L1im;

Lgm=LOm-Lim;

% Constant in q2 and q3 parameters (used in observer error generation)

iLim=-Lim/(LOm~2-Lim"2) ;

pdém=0.001;
pd12m=0.0008;
pqOm=0.1;
pq6m=0.005;
Pq12m=0.0008;

% matrix of precomputed voltages

Wpit = [

-sqrt(6)/32/VBUS -16%sqrt (6)/320/VBUS
5xsqrt(2)/32/VBUS -53*sqrt(2)/320/VBUS
-3*sqrt(6)/32/VBUS -29*sqrt(6)/320/VBUS
-sqrt (2)/32/VBUS sqrt(2)/320/VBUS

-2%sqrt(6)/32/VBUS -14xsqrt(8)/320/VBUS
-6*sqrt (2)/32/VBUS B4x*sqrt (2)/320/VBUS
sqrt(6)/32/VBUS 15*sqrt(6)/320/VBUS
-5xsqrt(2)/32/VBUS 53*sqrt (2)/320/VBUS
3*sqrt(6)/32/VBUS 29*sqrt (6)/320/VBUS
sqrt(2)/32/VBUS -sqrt(2)/320/VBUS

%%% Observer constants
L0=7.2e-3;
L1=-1.8e-3;

% Constant in q2 and q3 parameters
iL1=-L1/(L0"2-L172);

% Desired observer poles
r1=200; r2=300; wi=100;
pl=-ri+ixwl; p2=-r2; p3=-rl-ixwil;

% Observer constants

GAMMA1 = -real(pl+p2+p3)/2/il1;

GAMMA2 = real(pl*p2+pl*p3+p2*p3)/2/iL1;
GAMMA3 = -real(pl*p2*p3)/2/iLl1;

clear LO L1 iL1 rl r2 wil pl p2 p3
%%% Controller constants

% Current and voltage limits
ilim=12;
vlim=sqrt(3)/2*VBUS/sqrt(2);

% PI controller constants
ri=15*(1+0.5%i); r2=15*(1-0.5%i);
k2=(Jm* (r1+r2)-Bm) /P/pqOm;
a2=rix*r2/(r1+r2-Bm/Jm);

r1=500; r2=500;
ki=Ldm*(r1+r2)-Rsm;
al=rix*r2/(ri1+r2-Rsm/Ldm);

r1=200; r2=200;

k3=Lgm* (ri+r2)-Rsm;
a3=ri*r2/(ri+r2-Rsm/Lgm) ;

45%sqrt (2)/320/VBUS;
-11%sqrt(6)/320/VBUS;
-9*sqrt(2)/320/VBUS;

-33*sqrt(6)/320/VBUS;
-54x%sqrt (2)/320/VBUS;
-22*sqrt(6)/320/VBUS;
-45%sqrt (2)/320/VBUS;
11*sqrt(6)/320/VBUS;
9%sqrt(2)/320/VBUS;

33%sqrt(6)/320/VBUS];

APPENDIX B. MATLAB FILES FOR SIMULATIONS 90
clear rl1 r2

B.2.3 sless.m

function [cnt,thhat,valfa,vbeta] = sless(ia,ib,idref,wref)

% function [cnt,thhat] = sless(ia,ib,idref,wref)

% Performs one round of the sensorless observer and control algorithm.

A

% inputs:

% ia[1..6]: current measurements

A ib[1..6]: idem

% idref, wref: reference values for the controller

A

% memory:

% ialfa0: last current measurement from previous period

% ibetaQ: idem

% t[1..6]: time intervals computed two periods before (and used now)

% tn[l..6]: time intervals computed last period (to be used next period)
% alhat, omhat, thhat, obserr: observer variables

A intl, int2, int3: integrators for the PI blocks

% outputs:
% cnt[1..6]: count values for the PWM generation
A thhat: estimated position

% ge, March 2001

Y = mm e e e -
global Wpit TPWM TCNT CPTPWM GAMMA1 GAMMA2 GAMMA3

global k1 al k2 a2 k3 a3 ilim vlim

global CN10SR3 SR302 CN106 SR3012E CN1012E

global ialfaQ ibeta0 t tn alhat omhat thhat obserr intl int2 int3

% scale current?

% convert currents to alfa-beta frame
for i=1:6,
% modified for simulation only!!!!
% ialfa(i) = SR30SR2*ia(i);
% ibeta(i) = CN10SR2*(2*ib(i)+ia(i));
ialfa(i) = ia(i);
ibeta(i) ib(i);

end

% construct vector x

x(1) = (ialfa(2)-ialfa(1))/t(2) - (ialfa(i)-ialfa0)/t(1);

x(2) = (ibeta(2)-ibeta(1))/t(2) - (ibeta(l)-ibetal)/t(1);

x(3) = (ialfa(3)-ialfa(2))/t(3) - (ialfa(2)-ialfa(1))/t(2);
x(4) = (ibeta(3)-ibeta(2))/t(3) - (ibeta(2)-ibeta(1))/t(2);
x(5) = (ialfa(4)-ialfa(3))/t(4) - (ialfa(3)-ialfa(2))/t(3);
x(6) = (ibeta(4)-ibeta(3))/t(4) - (ibeta(3)-ibeta(2))/t(3);
x(7) = (ialfa(5)-ialfa(4))/t(5) - (ialfa(4)-ialfa(3))/t(4);
x(8) = (ibeta(5)-ibeta(4))/t(5) - (ibeta(4)-ibeta(3))/t(4);
x(9) = (ialfa(6)-ialfa(5))/t(6) - (ialfa(5)-ialfa(4))/t(5);

x(10) = (ibeta(6)-ibeta(5))/t(6) - (ibeta(5)-ibeta(4))/t(5);

APPENDIX B. MATLAB FILES FOR SIMULATIONS

end

% observer update

alhat = alhat + TPWM*GAMMA3*obserr;

omhat omhat + TPWM#*(alhat+GAMMA2*obserr);
thhat thhat + TPWM* (omhat+GAMMAl*obserr);

% error update
obserr = q(3)*cos(2*thhat) - q(2)*sin(2xthhat);

% modulus
thhat = mod(thhat,2*pi);

% Controller

% average current measurements
ialav = (ialfaO+ialfa(1))*t(1);
ibtav = (ibetaO+ibeta(1))*t(1);
for i=2:6
ialav
ibtav
end
ialav = ialav/2/TPWM;
ibtav = ibtav/2/TPWM;

ialav + (ialfa(i-1)+ialfa(i))*t(i);
ibtav + (ibeta(i-1)+ibeta(i))*t(i);

% convert to d-q frame

sinth = sin(thhat);

costh = cos(thhat);

id jalav*costh + ibtav*sinth;
iq = -ialav*sinth + ibtav*costh;

% id control block (PI1)
ul = idref-id;
intl = intl + ul*TPWM;
if (abs(int1)>vlim),

intl = sign(int1)*vlim;
end
vdc = ki*(ul+al*intil);

% w control block (PI2)
u2 = wref-omhat;
int2 = int2 + u2*TPWM;
if (abs(int2)>ilim),
int2 = sign(int2)*ilim;
end
igref = k2*(u2+a2+*int2);
if (abs(iqref)>ilim),
iqref = sign(iqref)*ilim;
end

% iq control block (PI3)
u3 = iqref-iq;
int3 = int3 + u3*TPWM;
if (abs(int3)>vlim),

int3 = sign(int3)*vlim;
end
vgc = k3*(u3+a3*int3);

% INSERT VOLTAGES HERE FOR OPEN-LOOP
% vdc = -.0137;
% vqc = 2.2142;

=

convert back to alfa-beta frame

sinth = sin(thhat+2*omhat*TPWM) ;
costh = cos(thhat+2*omhat*TPWM) ;
valfa = vdc*costh - vqc*sinth;
vbeta = vdc*sinth + vqc*costh;

% find sector and rotate vector to sector 1
if (vbeta>0),
if (valfa>0),
if (CN10SR3*vbeta<valfa),
sector = 1;
valr = valfa;

91

APPENDIX

vbtr =

else
sector
valr =
vbtr =

end
els

sector
valr =
vbtr =

else
sector
valr =
vbtr =

end

end
else

if (valfa>0),

B. MATLAB FILES FOR SIMULATIONS

vbeta;

= 2;
valfax.5 + vbeta*SR302;
-valfa*SR302 + vbeta*.5;

e
if (CN10SR3*vbeta<-valfa),

= 3
—vaifa*.S + vbeta*SR302;
-valfa*SR302 - vbetax.5;

= 2;
valfa*x.5 + vbeta*SR302;
-valfa*SR302 + vbeta*.5;

if (CN10SR3*vbeta>-valfa),

sector
valr =
vbtr =

else
sector
valr =
vbtr =

end

else

= 6;
valfa*x.5 - vbeta*SR302;
valfa*SR302 + vbetax.5;

=5
—vaifa*.S - vbeta*xSR302;
valfa*SR302 - vbetax.5;

if (CN10SR3*vbetad>valfa),

sector
valr =
vbtr =

else
sector
valr =
vbtr =

end

end
end

= 4;
-valfa;
-vbeta;

= 5;
-valfa*x.5 - vbeta*SR302;
valfa*SR302 - vbetax.5;

% no limit of voltage magnitude

% find counter values

i = sector;
cnt(i) = (CN106

if (i==6),
i=1;
else
i = i+1;
end
cnt(i) = (CN106
if (i==6),
i=1;
else
i = i+1;
end
cnt(i) = (CN106
if (i==6),
i=1;
else
i = i+1;
end
ent(i) = (CN106
if (i==6),
i=1;
else
i = i+1;
end
cnt(i) = (CN106
if (i==6),
i=1;
else
i = i+1;
end

cnt(i) = (CN106

+ 5xSR3012Exvalr - 7*CN1012E*xvbtr)*CPTPWM;

SR3012E*valr + 11*CN1012Exvbtr)*CPTPWM;

SR3012E*valr - CN1012E*vbtr)*CPTPWM;

SR3012E*valr - CN1012Exvbtr)*CPTPWM;

SR3012E*valr - CN1012E*vbtr)*CPTPWM;

SR3012Exvalr - CN1012E*vbtr)*CPTPWM;

92

APPENDIX B. MATLAB FILES FOR SIMULATIONS 93

/s
% Memory
/O
% save last current measurement

ialfaQ = ialfa(6);

ibetal ibeta(6);
% save time intervals for next period
for i=1:6,
t(i) = tn(i);
end
% load tn
for i=1:6,
tn(i) = cnt(i)*TCNT;
end

B.3 Fixed-point version

The fixed-point version of the algorithm uses the same structure of the floating-point,
only that all constants are quantized using the function frac16.m, and the operations
are simulated using the functions alu.m and mac.m. The script is called simslq.m,
the constants are defined in constslq.m and the sensorless algorithm is coded in

slq.m.

B.3.1 simslq.m

% simslq.m
h
% Simulation of the quantized sensorless algorithm.

% load constants
clear
constslq;

% initialize memory values
ialfa0 = 0;

ibetal = 0;

ia = zeros(1,6);

ib = zeros(1,6);

t = ones(1,6)*CPTPWM/6;

tn = t;

pcnt=t;

alhat
omhat
thhat
obserr
intl =

nmun
(=]

int2
int3

% initial conditions
ial0 = jalfa0Q;

APPENDIX B. MATLAB FILES FOR SIMULATIONS 94

ibt0 = ibetal;

% repeat NSIM times:
Y run sless algorithm

0

% run each subinterval of the PWM cycle on the PMSM model
% collecting currents at each switching

t0 = 0;

yO = [ial0;ibt0;om0;th0];

tout = t0;

yout = y0’;

thhatout = thQ;

omhatout = om0;

for npwmint = 1:NSIM,

% recall counter values computed on last PWM period
cnt = pent;

% run sensorless algorithm
[pent,thtemp,omtemp,valfa,vbeta,ialav,ibtav] = slq(ia,ib,idref,wref);

% first PWM subinterval

tf = t0 + cnt(1)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],valsl,vbtsl,T1l);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(1l) = sqrt(2/3)*ytemp(nt,1);

ib(1) = ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;

yO = ytemp(nt,:)’;

% second PWM subinterval

tf = t0 + cnt(2)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals2,vbts2,T1l);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(2) = sqrt(2/3)*ytemp(nt,1);

ib(2) = ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;

yO = ytemp(nt,:)’;

% third PWM subinterval

tf = t0 + cnt(3)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals3,vbts3,Tl);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];

ia(3) = sqrt(2/3)*ytemp(nt,1);

ib(3 ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;
yO = ytemp(nt,:)’;

% fourth PWM subinterval

tf = t0 + cnt(4)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals4,vbts4,Tl);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(4) = sqrt(2/3)*ytemp(nt,1);

ib(4) = ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;

yO = ytemp(nt,:)’;

% fifth PWM subinterval

tf = t0 + cnt(5)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals5,vbts5,T1l);
nt = length(ttemp);

APPENDIX B. MATLAB FILES FOR SIMULATIONS

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(5) = sqrt(2/3)*ytemp(nt,1);

ib(5) = ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;

yO = ytemp(nt,:)’;

% sixth PWM subinterval

tf = t0 + cnt(6)*TCNT;

[ttemp,ytemp] = ode23(’stpmsm’,[t0 tf],y0,[],vals6,vbts6,Tl);
nt = length(ttemp);

tout = [tout; ttemp(2:nt)];

yout = [yout; ytemp(2:nt,:)];

thhatout = [thhatout; ones(nt-1,1)*thtemp];
ia(6) = sqrt(2/3)*ytemp(nt,1);

ib(6) = ytemp(nt,2)/sqrt(2)-ytemp(nt,1)/sqrt(6);
t0 = tf;

yO = ytemp(nt,:)’;

end

B.3.2 constslqg.m

% constslq.m

i Numeric constants for the quantized sensorless algorithm.

global Wpit TPWM TCNT CPTPWM IABMAX

global ialfa0 ibeta0 t tn alhat omhat thhat obserr intl int2 int3

global SR30SR202 SR202 CN1020SR2 CN10SR3 SR302 CN2SR204 CN106 CN10SR6 SR206

% simulation parameters

NSIM = 2000; % number of PWM cycles to simulate
TPWM = 2e-4;
TCNT = le-7;

CPTPWM = TPWM/TCNT;

wref = frac16(500/1800);

idref = frac16(0/2/TCNT/12.5*TPWM*2"-15);
Tl = 1;

% inverter parameters

VBUS = 200;
EMAX = VBUS/sqrt(2);
TDEAD = 2e-6;

CPTDEAD = TDEAD/TCNT;
valsl = 2/sqrt(6)*VBUS;

vbtsl = 0;

vals2 = 1/sqrt(6)*VBUS;

vbts2 = 1/sqrt(2)*VBUS;

vals3 = -1/sqrt(6)*VBUS;
vbts3 = 1/sqrt(2)*VBUS;

vals4 = -2/sqrt(6)*VBUS;
vbts4 = 0;

valss = -1/sqrt(6)*VBUS;
vbts5 = -1/sqrt(2)*VBUS;
vals6 = 1/sqrt(6)*VBUS;

vbts6 = -1/sqrt(2)*VBUS;

% scale factors

IABMAX = 25;

% general numeric constants (quantized)
SR30SR202 = frac16(sqrt(3/2)/2);

SR202 = frac16(sqrt(2)/2);

CN1020SR2 = fraci6(1/2/sqrt(2));
CN10SR3 = frac16(1/sqrt(3));

95

APPENDIX B. MATLAB FILES FOR SIMULATIONS

SR302 = fracl6(sqrt(3)/2);
CN2SR204 = fracl16(2*sqrt(2)/4);
CN106 = fracl6(1/6);

CN10SR6 = frac16(1/sqrt(6));
SR206 = fracl16(sqrt(2)/6);

% general numeric constants

SR30SR2 = sqrt(3/2);
CN10SR2 = 1/sqrt(2);
CN10SR6 = 1/sqrt(6);
SR3012E = sqrt(3)/12/EMAX;
CN1012E = 1/12/EMAX;

% motor parameters

global pdém pdi2m pqOm pgém pqi2m
global Rsm LOm Lim
global Jm Bm P

P=4;

% Mechanical (!! normalised with P !!) constants:
Jm=0.5e-3;
Bm=0.5e-3;

% Motor electrical parameters:
Rsm=0.97;

LOm=7.2e-3;

Lim=-1.8e-3;

Ldm=LOm+L1im;

Lgm=LOm-L1im;

% Constant in g2 and g3 parameters (used in observer error generation)
iLim=-Lim/(LOm~2-Lim"~2);

pd6ém=0.001;
pd12m=0.0008;
pqOm=0.1;
pq6m=0.005;
Pq12m=0.0008;

% matrix of precomputed voltages, scaled and quantized

Wpit = [

-sqrt(6)/32/VBUS -16%sqrt (6)/320/VBUS 45*sqrt (2)/320/VBUS;
5xsqrt(2)/32/VBUS -53*sqrt(2)/320/VBUS -11*sqrt(6)/320/VBUS;
-3xsqrt(6)/32/VBUS -29%sqrt(6)/320/VBUS -9xsqrt(2)/320/VBUS;

-sqrt(2)/32/VBUS sqrt(2)/320/VBUS -33*sqrt (6)/320/VBUS;
-2xsqrt (6) /32/VBUS -14*sqrt(6)/320/VBUS -54%sqrt (2)/320/VBUS;
-6xsqrt(2)/32/VBUS 54xsqrt (2)/320/VBUS -22%sqrt (6)/320/VBUS;
sqrt(6)/32/VBUS 15*sqrt (6)/320/VBUS -45*sqrt (2)/320/VBUS;
-5*sqrt(2)/32/VBUS 53*sqrt (2)/320/VBUS 11*sqrt(6)/320/VBUS;
3*sqrt(6)/32/VBUS 29%sqrt (6)/320/VBUS 9*sqrt(2)/320/VBUS;

sqrt(2)/32/VBUS -sqrt(2)/320/VBUS 33*sqrt(6)/320/VBUS] ;

Wpit = 2%1.22e5/324 * Wpit;

for

end

cle

% observer coefficients

j=1:3,
for i=1:10

Wpit(i,j)=frac16(Wpit(i,j));

end

ar i j

global GAMMA1SQ GAMMA2SQ GAMMA3SQ ACCOEFF SPCOEFF

Wt
LO=
Li=

Observer constants
7.2e-3;
-1.8e-3;

% Constant in q2 and q3 parameters
iL1=-L1/(L0"2-L1"2);

96

APPENDIX B. MATLAB FILES FOR SIMULATIONS

% Desired observer poles
r1=200; r2=300; wi=100;
pl=-ri+i*wl; p2=-r2; p3=-ri-i*wl;

% Observer constants

GAMMA1 = -real(pi+p2+p3)/2/ili;

GAMMA2 = real(pl*p2+pl*p3+p2*p3)/2/iL1;
GAMMA3 = -real(pl*p2*p3)/2/il1;

clear LO L1 iLl1l rl r2 wil pl p2 p3

GAMMA1SQ = frac16(TPWM*GAMMA1%324/2/pi);
GAMMA2S(Q = frac16(TPWM*GAMMA2%324/2/1800) ;
GAMMA3SQ = frac16(TPWM*GAMMA3%324/2/10000) ;

ACCOEFF = frac16(TPWM*10000/1800) ;
SPCOEFF = frac16(TPWM*1800/pi);

%%% Controller constants

% Current and voltage limits
ilim=12;
vlim=sqrt(3)/2*VBUS/sqrt(2);

% PI controller constants
ri1=15%(1+0.5%i); r2=15%(1-0.5%i);
k2=(Jm*(ri+r2)-Bm)/P/pqOm;
a2=ri*r2/(r1+r2-Bm/Jm);

r1=500; r2=500;

ki1=Ldm* (ri+r2)-Rsm;
al=ri*r2/(ri+r2-Rsm/Ldm) ;

r1=200; r2=200;

k3=Lgm* (r1+r2)-Rsm;
a3=ri*r2/(ri+r2-Rsm/Lqm) ;

clear rl r2

global ERRI1COEFFINT ERR1COEFFOUT INT1COEFF
global ERR2COEFFINT ERR2COEFFQOUT INT2COEFF
global ERR3COEFFINT ERR3COEFFOUT INT3COEFF

ERR1COEFFINT = frac16(.13824);
ERR1COEFFOUT = frac16(.2682);
INT1COEFF = 1;

ERR2COEFFINT = frac16(2.468e-3);
ERR2COEFFQUT frac16(.3182);
INT2COEFF = 0.25;

ERR3COEFFINT = frac16(.0369);
ERR3COEFFOUT = frac16(.3466);
INT3COEFF = 1;

global ILIM DLYCOEFF

ILIM=frac16(12/204.8);
DLYCOEFF=frac16(.2292);

B.3.3 slg.m

function [cnt,thhat,omhat,valfa,vbeta,ialav,ibtav] = slq(ia,ib,idref,wref)
% function [cnt,thhat] = slq(ia,ib,idref,wref)

% Performs one round of the sensorless observer and control algorithm
% with quantized coefficients.

A

% inputs:

% ia[1l..6]: current measurements

% ib[1..6]: idem

% idref, wref: reference values for the controller

97

APPENDIX B. MATLAB FILES FOR SIMULATIONS 98

% memory:

% ialfa0: last current measurement from previous period

% ibetal: idem

% t[1..6]: time intervals computed two periods before (and used now)

A tn[l..6]: time intervals computed last period (to be used next period)
% alhat, omhat, thhat, obserr: observer variables

% intl, int2, int3: integrators for the PI blocks

0

% outputs:

% cnt[1..6]: count values for the PWM generation

% thhat: estimated position

% ge, March 2001

/ot
global Wpit TPWM TCNT CPTPWM IABMAX

global CN10SR3 SR302 CN106 SR3012E CN1012E

global ialfa0 ibeta0 t tn alhat omhat thhat obserr intl int2 int3

global SR30SR202 SR202 CN1020SR2 CN10SR3 SR302 CN2SR204 CN106 CN10SR6 SR206
global GAMMA1SQ GAMMA2SQ GAMMA3SQ ACCOEFF SPCOEFF

global ERRI1COEFFINT ERR1COEFFOUT INT1COEFF

global ERR2COEFFINT ERR2COEFFOUT INT2COEFF

global ERR3COEFFINT ERR3COEFFOUT INT3COEFF

global ILIM DLYCOEFF

% scale current as will be the input to the DSP
ia = ia/IABMAX;
ib ib/IABMAX;

% convert currents to alfa-beta frame
for i=1:6,

ialfa(i) = SR30SR202*ia(i);

ibeta(i) = SR202*ib(i) + CN1020SR2*ia(i);
end

% difference of currents

dialfa(l) = alu(’-’,ialfa(1),ialfa0);

dibeta(1) = alu(’-’,ibeta(l),ibetal);

dialfa(2) = alu(’-’,ialfa(2),ialfa(1));
dibeta(2) = alu(’-’,ibeta(2),ibeta(l));
dialfa(3) = alu(’-’,ialfa(3),ialfa(2));
dibeta(3) = alu(’-’,ibeta(3),ibeta(2));
dialfa(4) = alu(’-’,ialfa(4),ialfa(3));
dibeta(4) = alu(’-’,ibeta(4),ibeta(3));
dialfa(5) = alu(’-’,ialfa(5),ialfa(4));
dibeta(5) = alu(’-’,ibeta(5),ibeta(4));
dialfa(6) = alu(’-’,ialfa(6),ialfa(5));
dibeta(6) = alu(’-’,ibeta(6),ibeta(5));

% division by time

dialdt(1) = div(dialfa(1)*2-12,t(1),16,16);
dibtdt (1) = div(dibeta(1)*2712,t(1),16,16);
dialdt(2) = div(dialfa(2)*2"12,t(2),16,16);
dibtdt(2) = div(dibeta(2)*2712,t(2),16,16);
dialdt(3) = div(dialfa(3)*2°12,t(3),16,16);
dibtdt(3) = div(dibeta(3)*2°12,t(3),16,16);
dialdt(4) = div(dialfa(4)*2-12,t(4),16,16);
dibtdt(4) = div(dibeta(4)*2"12,t(4),16,16);
dialdt(5) = div(dialfa(5)*2°12,t(5),16,16);
dibtdt(5) = div(dibeta(5)*2°12,t(5),16,16);
dialdt(6) = div(dialfa(6)*2"12,t(6),16,16);
dibtdt(6) = div(dibeta(6)*2°12,t(6),16,16);

% construct vector x

x(1) = alu(’-’,frac16(dialdt(2)/2),frac16(dialdt(1)/2));
x(2) = alu(’-’,frac16(dibtdt(2)/2) ,frac16(dibtdt(1)/2));
x(3) = alu(’-’,frac16(dialdt(3)/2),frac16(dialdt(2)/2));
x(4) = alu(’-’,frac16(dibtdt(3)/2) ,frac16(dibtdt (2)/2));
x(5) = alu(’-’,frac16(dialdt(4)/2),frac16(dialdt(3)/2));
x(6) = alu(’-’,frac16(dibtdt(4)/2),frac16(dibtdt(3)/2));

APPENDIX B. MATLAB FILES FOR SIMULATIONS

x(7) = alu(’-’,frac16(dialdt(5)/2),fracl6(dialdt(4)/2));
x(8) = alu(’-’,frac16(dibtdt(5)/2),frac16(dibtdt(4)/2));
x(9) = alu(’-’,frac16(dialdt(6)/2),fracl6(dialdt(5)/2));

x(10) = alu(’-’,frac16(dibtdt(6)/2),fraci6(dibtdt(5)/2));

% find q = Wpi*x = Wpit’*x
for j=2:3, % was 1:3 but q(1) is never used

q(j) = 0;
for i=1:10,
q(j) = mac(q(j),Wpit(i,j),x(i));
end
end

% observer update
alhat = fracl6(mac(alhat,GAMMA3SQ,obserr));

omhat = mac(omhat,ACCOEFF,alhat);

omhat = fracl6(mac(omhat,GAMMA2SQ,obserr));
thhat = mac(thhat,SPCOEFF,omhat) ;

thhat = mac(thhat,GAMMA1SQ,obserr);

% theta hat wrap around
if thhat>1

thhat = thhat-2;
elseif thhat<-1

thhat = thhat+2;
end

% error update
cos2thhat = fracl6(cos(2*thhat*pi));
sin2thhat = frac16(sin(2*thhat*pi));

obserr = mac(0,frac16(2*q(3)),cos2thhat);
obserr = mac(obserr,-frac16(2*q(2)),sin2thhat);

Y = mmmmm
% Controller

% average current measurements

ialadd (1) alu(’+’,frac16(ialfa0/2),frac16(ialfa(1)/2));
ibtadd (1) alu(’+’,frac16(ibeta0/2),fraci6(ibeta(1)/2));
ialadd(2) alu(’+’,fraci6(ialfa(1l)/2),fraci6(ialfa(2)/2)
ibtadd(2) alu(’+’,frac16(ibeta(1)/2),fraci6(ibeta(2)/2)
ialadd(3) alu(’+’,fraci6(ialfa(2)/2),fracli6(ialfa(3)/2)
ibtadd(3) alu(’+’,frac16(ibeta(2)/2),frac16(ibeta(3)/2)
ialadd(4) alu(’+’,frac16(ialfa(3)/2),fraci6(ialfa(4)/2)
ibtadd (4) alu(’+’,fraci6(ibeta(3)/2),fracl6(ibeta(4)/2)
ialadd(5) alu(’+’,frac16(ialfa(4)/2),fraci6(ialfa(5)/2)
ibtadd (5) alu(’+’,fraci6(ibeta(4)/2),frac16(ibeta(5)/2));
ialadd(6) alu(’+’,fraci6(ialfa(5)/2),fraci6(ialfa(6)/2));
ibtadd(6) alu(’+’,fraci6(ibeta(5)/2),fraci6(ibeta(6)/2));

>
>
>
>
>
>

>

NN

ialav
ialav
ialav
ialav
ialav
ialav

mac(0,ialadd(1),t(1)/2"15);

mac(ialav,ialadd(2),t(2)/2715);
mac(ialav,ialadd(3),t(3)/2715);
mac(ialav,ialadd(4),t(4)/2715);
mac(ialav,ialadd(5),t(5)/2"15);
mac(ialav,ialadd(6),t(6)/2715);

mac(0,ibtadd(1),t(1)/2"15);

mac(ibtav,ibtadd(2),t(2)/2715);
mac (ibtav,ibtadd(3),t(3)/2715);
mac(ibtav,ibtadd(4),t(4)/2"15);
mac(ibtav,ibtadd(5),t(5)/2"15);
mac(ibtav,ibtadd(6),t(6)/2"15);

ibtav
ibtav
ibtav
ibtav
ibtav
ibtav

% multiply by 4
ialav = 4xialav;
ibtav = 4xibtav;

% convert to d-q frame

sinth = frac16(sin(thhat*pi));
costh = fracl6(cos(thhat*pi));
id mac(0,fraci6(ialav),costh);

id
iq

frac1l6(mac(id,frac16(ibtav),sinth));
mac(0,-fraci6(ialav),sinth);

99

APPENDIX B. MATLAB FILES FOR SIMULATIONS

iq = fracl6(mac(iq,fracl6(ibtav),costh));

% id control block (PI1)
ul = alu(’-’,idref,id);
intl = fraci16(mac(int1,ul,ERR1COEFFINT));
if (abs(int1l)>1),
intl = sign(intl);
end
vdc = mac(0,ul,ERR1COEFFOUT) ;
vdc = vdc+2*ul+intil;

% w control block (PI2)
u2 = alu(’-’,wref,omhat);
int2 = frac16(mac(int2,u2,ERR2COEFFINT));
if (abs(int2)>1),

int2 = sign(int2);
end
iqref = mac(0,u2,ERR2COEFFQUT) ;
igref = mac(igref,int2,INT2COEFF);
if (abs(iqref)>ILIM),

iqref = sign(iqref)*ILIM;
end

% iq control block (PI3)
u3 = alu(’-’,iqref,iq);
int3 = fraci16(mac(int3,u3,ERR3COEFFINT));
if (abs(int3)>1),
intl = sign(int3);
end
vqgc = mac(u3,u3,ERR3COEFFOUT) ;
vqc = alu(’+’,vqc,int3);

% convert back to alfa-beta frame
thhat2 = thhat + DLYCOEFF*omhat;

sinth = frac16(sin(thhat2*pi));

costh = frac16(cos(thhat2*pi));

valfa = mac(0,vdc,costh);

valfa = fracl6(mac(valfa,-vqc,sinth));
vbeta = mac(0,vdc,sinth);

vbeta = fracl6(mac(vbeta,vqc,costh));

% find sector and rotate vector to sector 1
if (vbeta>0),
if (valfa>0),
if (CN10SR3*vbeta<valfa),
sector = 1;
valr = valfa;

vbtr vbeta;
else

sector = 2;

valr = fraci6(valfa/2);

valr = fraci6(mac(valr,vbeta,SR302));

vbtr = fracl6(vbeta/2);

vbtr = fraci6(mac(vbtr,-valfa,SR302));
end

else
if (CN10SR3*vbeta<-valfa),
sector = 3;
valr = -fracl6(valfa/2);
valr = fraci6(mac(valr,vbeta,SR302));
vbtr = -fracl6(vbeta/2);

vbtr frac16(mac(vbtr,-valfa,SR302));
else
sector = 2;
valr = fraci6(valfa/2);
valr = fraci6(mac(valr,vbeta,SR302));
vbtr = fraci6(vbeta/2);
vbtr = fraci6(mac(vbtr,-valfa,SR302));
end
end
else

if (valfa>0),
if (CN10SR3*vbeta>-valfa),
sector = 6;
valr = fracl6(valfa/2);

100

APPENDIX B. MATLAB FILES FOR SIMULATIONS

valr

fracl6(mac(valr,-vbeta,SR302));

vbtr = fracl6(vbeta/2);
vbtr = fracl6(mac(vbtr,valfa,SR302));
else
sector = 5;
valr = fracl6(-valfa/2);
valr = fracl6(mac(valr,-vbeta,SR302));
vbtr = fracl6(-vbeta/2);
vbtr = fraci6(mac(vbtr,valfa,SR302));
end
else
if (CN10SR3*vbetad>valfa),
sector = 4;

valr = -valfa;
vbtr = -vbeta;

else
sector = 5;
valr = fracl6(-valfa/2);
valr = fracl6(mac(valr,-vbeta,SR302));
vbtr = fraci6(-vbeta/2);
vbtr = frac16(mac(vbtr,valfa,SR302));

end

end
end

% limit voltage magnitude

magvr = frac16(mac%valr,CN108R3,vbtr));

if (magvr>CN1020SR2)
magvrs = frac16(mac(0,magvr,CN2SR204));
valr = div(fraci6(valr/4),magvrs,1,1);
vbtr div(frac16(vbtr/4) ,magvrs,1,1);

end

% find counter values

valrs = fracl6(mac(0,valr,CN10SR6));
vbtrs = fracl6(mac(0,vbtr,SR206));
i=sector;

ent(i) = alu(’+’,CN106,valrs);

cnt(i) = alu(’+’,cnt(i),valrs);
cntgig = aiug:+:,cntgig,vairs;;
cnt(i) = alu(’+’,cnt(i),valrs);
cnt(i) = alu(’+’,cnt(i),valrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
cntéi) =)a1u(’-’,cnt(i),vbtrs);
if (i==6),

i=1;
else

i = i+l
end
cnt(i) = alu(’-’,CN106,valrs);
cntgig = aiug:+:,cntgig,vgtrs;;
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cnt(i) = alu(’+’,cnt(i),vbtrs);
cntgig = aiug:+:,cntgig,vgtrs§;
cnt(i) = alu(’+’,cnt(i),vbtrs);
cntgi) =)a1u(’+’,cnt(i),vbtrs);
if (i==6),

i=1;
else

i = i+l;
end

cnt(i) = alu(’-’,CN106,valrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);
if (i==6)

i=1;
else

101

APPENDIX B. MATLAB FILES FOR SIMULATIONS

i = i+l;
end
cnt(i) = alu(’-’,CN106,valrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);

if (i==6),
i=1;
else
i = i+1;
end

cnt(i) = alu(’-’,CN106,valrs);
cnt(i) = alu(’-’,cnt(i),vbtrs);

if (i==6),
i=1;
else
i = i+l;
end
cnt (i alu(’-’,CN106,valrs);

) =
cnt(i) = alu(’-’,cnt(i),vbtrs);

for i=1:6
cnt(i) = frac16(mac(0,CPTPWM*2"-15,cnt(i)))*2"15;
end

% save last current measurement
ialfa0 ialfa(6);
ibetal ibeta(6);

% save time intervals for next period
for i=1:6,
t(i) = tn(i);
end
% load tn
for i=1:6,
tn(i) = cnt(i);
end

B.3.4 fracl6é.m

function q = frac16(x)
% function q = frac16(x)

% Performs a quantization of x in the 1.15 format.
% Warning and saturation if x>1-LSB or x<-1.

LSB = 2°-15;

if (x>1 | x<-1)

warning(’The value to quantize is out of range, saturation will happen.’)

if x>1
q=1-LSB;
else
q=-1;
end
else
q = quant(x,LSB);
if gq==
q=1-LSB;
end
end

B.3.5 alu.m

function r = alu(op,x,y)

102

APPENDIX B. MATLAB FILES FOR SIMULATIONS

% function r = alu(op,x,y)

h

% Performs an ALU operation:

h

h op=’H =D r=x+y

? op=’-2=>r=x-y

% Inputs: op = operation

A x = operand in 1.15 format
% y = operand in 1.15 format
h

% The result will also be in 1.15 format.
% Warning if overflow happens.

switch op
case ’+’
r=x+y;
case ’-?
r=x-y;
otherwise
error (’Unkown operation’)
end

if (r>1-2"-15 | r<-1)

warning(’Overflow in the ALU.’)
end

B.3.6 mac.m

function m = mac(mr,mx,my)

% function m = mac(mr,mx,my)
L)

/A

% Performs a multiply-and-accumulate operation:

h

A m = mr + mx*my

h

% Inputs: mr = previous value of the accumulator,
A in n.31 format

A mx = operand in 1.15 format

A my = operand in 1.15 format

h

% The result will naturally be in (n+1).31 format.
% Error if n+1>8 bits (overflow).

m = mr + mx*my;
if (m>256-2"-31 | m<-256)

error(’Overflow in the MAC.’)
end

103

Appendix C

Assembler code for the DSP

C.1 final.asm

LI107000077777010070177717177771177711717711111771711771717
// final.asm

// Final version of the sensorless control program

// for ADSP-2181.

// Gabriel Eirea, June 2001

IHHITIIIIIEI i ieeiizeiieeiieieieieieeeie/

LI111777077017710177171777171177777117111711171171717711717
// constants

HIILIITTIIIII 00007000000 7071000077711111111171111117

// experiment constants

#define omegarefl 0x038E // initial speed reference (0x38E=50rad/s)

#define omegaref2 0x238E // final speed reference (0x238E=500rad/s)

//#define omegaref2 0xOE39 // final speed reference (0xOE39=200rad/s)

#define cptpwmfr 0x07D0O // counts per TPWM as a fraction (*27-15),
// depends on TPWM and TCNT

#define cptdead 0x0014 // counts per TDEAD, depends on TDEAD and TCNT

#define cptlo6 0x14D // 1/6xcptpwmfr

#define thhatini O0x6A3E // initial thhat

// numeric constants

#define sr3osr202 0x4E62 // sqrt(3/2)/2

#define cnlo2osr2 0x2D41 // 1/2/sqrt(2)

#define sr202 0x5A82 // sqrt(2)/2

#define cnlosr3 0x49E7 // 1/sqrt(3)

#define cnlo2 0x4000 // 1/2

#define sr302 0x6EDA // sqrt(3)/2

#define cnlosr6 0x3441 // 1/sqrt(6)

#define sr206 0x1E2B // sqrt(2)/6

#define cnloB 0x1555 // 1/6

// observer coefficients

#define gammal 0x0C7B // depends on TPWM

#define gamma2 0x0549 // depends on TPWM

#define gamma3 0x53FB // depends on TPWM

#define accoeff 0x0024 // depends on TPWM

#define spcoeff 0xOEAB // depends on TPWM

104

APPENDIX C. ASSEMBLER CODE FOR THE DSP 105

// controller coefficients

#define errlcoeffint 0x11B2 // depends on TPWM, TCNT and VBUS
#define errlcoeffout 0x2254 // depends on TPWM, TCNT and VBUS
//#define intlcoeff 0x6D71 // depends on TPWM, TCNT and VBUS
#define err2coeffint 0x0051 // depends on TPWM, TCNT and VBUS
#define err2coeffout 0x28BB // depends on TPWM, TCNT and VBUS
#define int2coeff 0x2000 // depends on TPWM, TCNT and VBUS
#define err3coeffint 0x04B9 // depends on TPWM, TCNT and VBUS
#define err3coeffout 0x2C5D // depends on TPWM, TCNT and VBUS
//#define int3coeff 0x6D71 // depends on TPWM, TCNT and VBUS
// other controller constants

#define ilimit 0x0780 // current limit

#define delaycoeff 0x1D56 // coefficient for delay correction

// PWM vectors

#define vecl 0x31
#define vec2 0x23
#define vec3 0x2A
#define vec4d O0xOE
#define vech 0x1C
#define vec6 0x15

// i/o port addresses
X

#define pial 0x0 // ADC value of ia for subinterval 1 (in)
#define pia2 Ox1 // ADC value of ia for subinterval 2 (in)
#define pia3 0x2 // ADC value of ia for subinterval 3 (in)
#define pia4 0x3 // ADC value of ia for subinterval 4 (in)
#define piab 0x4 // ADC value of ia for subinterval 5 (in)
#define pia6 0x5 // ADC value of ia for subinterval 6 (in)
#define pibl 0x8 // ADC value of ib for subinterval 1 (in)
#define pib2 0x9 // ADC value of ib for subinterval 2 (in)
#define pib3 0xA // ADC value of ib for subinterval 3 (in)
#define pib4 0xB // ADC value of ib for subinterval 4 (in)
#define pib5 0xC // ADC value of ib for subinterval 5 (in)
#define pib6 0xD // ADC value of ib for subinterval 6 (in)
#define pvl 0x0 // vector for subinterval 1 (out)

#define pv2 0x1 // vector for subinterval 2 (out)

#define pv3 0x2 // vector for subinterval 3 (out)

#define pv4d 0x3 // vector for subinterval 4 (out)

#define pvb 0x4 // vector for subinterval 5 (out)

#define pv6 0x5 // vector for subinterval 6 (out)

#define pcom 0x6 // command (out)

#define ppos 0x7 // position (out)

#define ptl 0x8 // time for subinterval 1 (out)

#define pt2 0x9 // time for subinterval 1 (out)

#define pt3 OxA // time for subinterval 1 (out)

#define pt4 0xB // time for subinterval 1 (out)

#define pt5 0xC // time for subinterval 1 (out)

#define pt6é 0xD // time for subinterval 1 (out)

#define ptdb OxE // time for deadband (out)

// memory mapped registers and associated values

#define iowaitreg Ox3FFE // address of the I0 wait state register
#define onewaitst O0x7FF9 // value for one wait state

#define pfdatareg Ox3FES5 // address of the PFDATA register

#define maskpfl 0x02 // mask to read the PF1 bit

#define maskpf2 0x04 // mask to read the PF2 bit

#define enairqge 0x10 // value to enable IRQE

#define enasat 0x08 // value to enable saturation in AR register
#define dissat 0x00 // value to disable saturation in AR register

// declare sine subroutine
.EXTERN sin;

5/////(//

variables

LILLLLILLTIIT I 10110100 1010111111111111171
.SECTION/DATA pwmdata;

// currents

.VAR ial[6]; // measured currents in phase a
.VAR ib[6]; // measured currents in phase b
.VAR ialfal[7]; // currents in alpha axis
.VAR ibetal7]; // currents in beta axis

.VAR dialfal[6]; // difference of currents in alpha axis

APPENDIX C. ASSEMBLER CODE FOR THE DSP 106

.VAR dibetal6]; // difference of currents in beta axis
.VAR t[6]; // subintervals time

.VAR tn[6]; // subintervals time from previous period
.VAR dialdt[6]; // dialfa over subinterval time

.VAR dibtdt[6]; // dibeta over subinterval time

.VAR x[10]; // vector x

.VAR Wpi[20] = // matrix Wpi, only rows 2 and 3

0xC8A9,0x8F1B,0x9502,0x0221,0xCC59,0x7306,0x3757,0x70E5, 0x6AFE , 0xFDDF,
0x5FDA, 0xD76B,0xECD4,0x8640,0x8CFA,0xAED6,0xA026,0x2895,0x132C,0x79C0;

.VAR q[2]; // vector q (estimated parameters)
.VAR alhat; // estimated acceleration

.VAR omhat; // estimated speed

.VAR thhat; // estimated position

.VAR obserr; // observer error

.VAR sinth; // sine of theta

.VAR costh; // cosine of theta

.VAR idref = 0; // reference id

.VAR wref = omegarefl; // reference speed

.VAR int1i; // integrator for id control block
.VAR int2; // integrator for w control block
.VAR int3; // integrator for iq control block
.VAR valfa; // valfa control output

.VAR vbeta; // vbeta control output

.VAR sector; // sector of the control output
.VAR/CIRC cnt[6]; // counter values for the PWM

LITITITITIIIT I 00771077011011111117111111117
// interrupt table
THITTTITIT T i r017107711171114114141411111411171
.SECTION/CODE itab;

JUMP start; // reset
RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

JUMP pwmirg; // IRQE interrupt
RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

RTI; RTI; RTI; RTI;

LI177000077777010071707771171777117771171771111177171771717
/ initialization code
111777171707777117117711117711177711171771111171111711717
.SECTION/CODE init;

start:

// set wait states
AXQ = onewaitst; // one wait state
DM(iowaitreg) = AXO;

// stop PWM generation in FPGA (just in case it is already running)
AX0 = 0;
I0(pcom) = AXO;

// enable interrupt IRQE
IMASK = enairge;

// at the beginning, enable saturation in AR register
MSTAT = enasat;

// indirect adressing registers initialization
LO 0;

L1 ;
L2
L3
L4
MO
M1
M3

LI T O O O T 1
HOROOOO

APPENDIX C. ASSEMBLER CODE FOR THE DSP

M4 = 1;
// state variables initialization
AX0 = 0;
DM(ialfa) = AXO; // ialfa0 = 0
DM(ibeta) = AXO; // ibetal0 = 0
I0 = tn;
I1 = t;
AX1 = cptlo6-cptdead; // load 1/6*cptpwm-cptdead
CNTR = 6;
DO init_times UNTIL CE;
DM(IO,MO0) = AXi; // tn(i) = 1/6*cptpwm-cptdead
init_times:
DM(I1,M0) = AX1; // t(i) = 1/6xcptpwm-cptdead
DM(alhat) = AXO; // alhat = 0
DM(omhat) = AXO; // omhat = 0
AX1 = thhatini;
DM(thhat) = AX1; // thhat = initial thhat
I0(ppos) = AX1;
DM(obserr) = AXO0; // obserr = 0
DM(int1l) = AXO; // intl = 0
DM(int2) = AXO; // int2 = 0
DM(int3) = AXO; // int3 =0
// load vectors on FPGA
AXO = vecl;
I10(pvl) = AXO;
AXO = vec2;
I0(pv2) = AXO;
AX0 = vec3;
I0(pv3) = AXO;
AX0 = vec4;
I0(pv4) = AXO;
AXO = vech;
I0(pv5) = AXO;
AXO = vec6;

I0(pv6) = AXO;

// load times=1/6*TPWM (resulting vector = 0) on FPGA
AX0 = cptlo6-cptdead; // load 1/6*cptpwm-cptdead

AX1 = cptdead; // load tdead
I0(ptl) = AXO;
I0(pt2) = AXO;
10(pt3) = AXO;
I10(pt4) = AXO;
I0(pt5) = AXO;
10(pt6) = AXO;

I0(ptdb) = AX1;

// wait until switch is changed of position

AXO = DM(pfdatareg); // read flags

AYO0 = maskpf2; // mask for PF2

AR = AXO AND AYO; // find initial flag value

AY1 = AR; // move initial value
wait_switch:

AXO = DM(pfdatareg); // read flags

AR = AXO AND AYO; // find PF2 value

AR = AR XOR AY1; // compare with initial value

IF EQ JUMP wait_switch; // loop until change in the flag value

// start PWM generation in FPGA
AXO = 1;
I0(pcom) = AXO;

// infinite loop
iloop:

IDLE;

JUMP iloop;

5//(/////////////(//////(//////////////////////////////

interrupt service rutine

HILLLLTTTLLLLI L0000 00 000 7000077111711111171111117
.SECTION/CODE irq;

pwmirgq:

107

APPENDIX C. ASSEMBLER CODE FOR THE DSP

// if pushbutton is pressed, change speed reference
AX0 = DM(pfdatareg);

AY0 = maskpfl;
AR = AXO AND AYO;

IF EQ JUMP start_alg;

// change speed reference

AX0 = omegaref2;
DM(wref) = AXO;

start_alg:

// read flags

// mask for PF1

// find flag value
// if it is zero, don’t do nothing

// read currents from i/o ports

I0 = ia;

AX0 = IO(pial);
DM(IO,M0) = AXO;
AX0 = IO(pia2);
DM(IO,M0) = AXO;
AX0 = IO(pia3);
DM(IO,M0) = AXO;
AX0 = IO(piad);
DM(IO,M0) = AXO;
AX0 = IO(piab);
DM(IO,MO0) = AXO;
AX0 = IO(pia6);
DM(IO,M0) = AXO;
I2 = ib;

AX0 = IO(pibl);
DM(I2,M0) = AXO;
AX0 = I0(pib2);
DM(I2,M0) = AXO;
AX0 = I0(pib3);
DM(I2,M0) = AXO;
AX0 = IO(pib4);
DM(I2,M0) = AXO;
AX0 = I0(pib5);
DM(I2,M0) = AXO;
AXO = I0(pib6);
DM(I2,M0) = AXO;

// convert to alfa-beta

I0 = ia;
I1 = ialfa;
MODIFY(I1,MO);
MYO = sr3osr202;
CNTR = 6;
DO conv_alfa UNTIL CE;
MXO = DM(IO,MO);
MR = MXO0*MYO (RND);
conv_alfa:
DM(I1,M0) = MR1;

I0 = ia;
I2 = ib;
I3 = ibeta;

MODIFY(I3,MO0);
MY0 = cnlo2o0sr2;
MYl = sr202;
CNTR = 6;
DO conv_beta UNTIL CE;
MX0 = DM(IO,MO);

MX1 = DM(I2,M0);
MR = MX0*MYO (RND);
MR = MR+MX1*MY1 (RND);

conv_beta:
DM(I3,M0) = MR1;

//
//
//
//

//

// difference of currents

I0 = dialfa;

I1 = jalfa;

I2 = dibeta;

I3 = ibeta;

AXO = DM(I1,MO);
AX1 = DM(I3,M0);
CNTR = 6;

DO subs_curr UNTIL CE;

AYO = AXO;

//
//

//

skip 1st element (last value of last period)

load ia(i)
ia(i)*sr3osr202

save ialfa(i)

skip 1st element (last value of last period)

load ia(i)
load ib(i)
ia(i)*cnlo2osr2

ia(i)*cnlo2o0sr2 + ib(i)*sr202

save ibeta(i)

load ialfa(0)
load ibeta(0)

move ialfa(i-1)

108

APPENDIX C. ASSEMBLER CODE FOR THE DSP 109

AY1 = AX1; // move ibeta(i-1)
AX0 = DM(I1,MO); // load ialfa(i)
AX1 = DM(I3,M0); // load ibeta(i)
AR = AX0-AYO; // ialfa(i)-ialfa(i-1)
DM(IO,M0) = AR; // save dialfa(i)
AR = AX1-AY1; // ibeta(i)-ibeta(i-1)
subs_curr:
DM(I2,M0) = AR; // save dibeta(i)
// division by time
I0 = dialfa;
I1 = dialdt;
I2 = dibeta;
I3 = dibtdt;
I4 = t;
CNTR = 6;
DO div_time UNTIL CE;
AXO = DM(I4,M4); // load t(i)
SRO = DM(IO,MO0); // load dialfa(i)
SR = ASHIFT SRO BY -3 (HI); // shift dialfa(i)
AY1 = SR1; // move shifted dialfa(i)
AYO = SRO;
DIVS AY1,AXO0; // dialfa(i)/t(i)

DIVQ AXO; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;
DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;
DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DM(I1,M0) = AYO; // save dialdt(i)

SRO = DM(I2,M0); // load dibeta(i)

SR = ASHIFT SRO BY -3 (HI); // shift dibeta(i)
AY1 = SR1; // move shifted dibeta(i)
AY0O = SRO;

DIVS AY1,AXO; // dibeta(i)/t(i)

DIVQ AX0; DIVQ AXO; DIVQ AXO;
DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;
DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;
DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

div_time:
DM(I3,M0) = AYO; // save dibtdt(i)
// construct vector x
I0 = x;
I1 = dialdt;
I3 = dibtdt;
SRO = DM(I1,MO); // load dialdt(1)
SR = ASHIFT SRO BY -1 (LO); // shift dialdt (divide by 2)
AX0 = SRO; // move dialdt(1)/2
SRO = DM(I3,M0); // load dibtdt(1)
SR = ASHIFT SRO BY -1 (LO); // shift dibtdt (divide by 2)
AX1 = SRO; // move dibtdt(1)/2
CNTR = 5;
DO constr_x UNTIL CE;
AYO = AXO; // move dialdt(i-1)/2
AY1 = AX1; // move dibtdt(i-1)/2
SRO = DM(I1,MO0); // load dialdt(i)
SR = ASHIFT SRO BY -1 (L0); // shift dialdt (divide by 2)
AX0 = SRO; // move dialdt(i)/2
SRO = DM(I3,M0); // load dibtdt(i)
SR = ASHIFT SRO BY -1 (LO); // shift dibtdt (divide by 2)
AX1 = SRO; // move dibtdt(i)/2
AR = AX0-AYO; // dialdt(i)/2-dialdt(i-1)/2
DM(IO,M0) = AR; // save x(2xi-1)
AR = AX1-AY1; // dibtdt(i)/2-dibtdt(i-1)/2
constr_x:
DM(IO,M0) = AR; // save x(2xi)
// find q=Wpi*x
I0 = x;
I1 = Wpi;
I2 = q;
MR =0, // clear accumulator
MX0 = DM(IO,MO); // load x(1)
MYO = DM(I1,MO); // load Wpi(1,1)
CNTR = 10;

DO find_q2 UNTIL CE;
MR = MR+MXO*MYO (RND), // MR+x(i)*Wpi(1,i)

APPENDIX C. ASSEMBLER CODE FOR THE DSP

MX0 = DM(IO,MO);
find_q2:

MYO = DM(I1,MO);

SR = ASHIFT MR1 BY 1 (LO

SR = SR OR LSHIFT MRO BY -15 (LD);

DM(I2,M0) = SRO;

I0 = x;

MR = O,

MXO = DM(IO,MO);
CNTR = 10;

DO find_q3 UNTIL CE;
MR = MR+MX0*MYO (RND),
MX0 = DM(IO,MO);
find_q3:
MYO = DM(I1,MO);
SR = ASHIFT MR1 BY 1 (LO
SR = SR OR LSHIFT MRO BY
DM(I2,M0) = SRO;

// update observer

MX0 = gamma3;
MYO = DM(obserr);
MRO = 0;

MR1 = DM(alhat);

MR = MR+MX0*MYO (RND);
DM(alhat) = MR1;

MX0 = gamma2;
MX1 = accoeff;
MY1 = MR1;

MRO = 0;

MR1 = DM(omhat);

MR = MR+MX0*MYO (RND);
MR = MR+MX1x*MY1 (RND);
DM(omhat) = MR1;

MX0 = gammal;
MX1 = spcoeff;
MY1 = MR1;

MRO = 0;

MR1 = DM(thhat);

MR = MR+MXO*MYQ (SS);
MR = MR+MX1*MY1 (RND);
DM(thhat) = MR1;

// update observer error
MSTAT = dissat;

AY0 = MR1;

AR = MR1 + AYO;
AX0 = AR;

CALL sin;

MX0 = AR;

AY0 = AXO;

AX0 = 0x4000;

AR = AX0 - AYO;
AX0 = AR;

CALL sin;

MX1 = AR;

12 = q;

MYO = DM(I2,MO);
MY1 = DM(I2,MO0);

MR = MX1xMY1 (SS);

MR = MR-MXO*MYO (RND);
DM(obserr) = MR1;
MSTAT = enasat;

// average the currents
I0

= jalfa;
I1 = ibeta;
I2 = t;
AR = DM(IO,MO);
SR = ASHIFT AR BY -1 (LO
AXO = SRO;
MR = 0;
CNTR = 6;

DO alfa_av UNTIL CE;
AR = DM(IO,MO);

// load x(i+l)

// load Wpi(1,i+1)

) // multiply result by 2

// add LSB to increase precision
// save 2xq(2)

// clear accumulator
// load x(1), Wpi(2,1) already loaded in MYO

// MR+x(i)*Wpi(2,i)
// load x(i+1)

// load Wpi(2,i+1)

) // multiply result by 2

-15 (LD); // add LSB to increase precision
// save 2xq(3)

// load gamma3
// load obserr

// load alhat

// alhat+gamma3*obserr
// save new alhat

// load gamma2

// load accoeff

// move alhat

// load omhat

// omhat+gamma2*obserr

// omhat+gamma2*obserr+accoeff*alhat
// save new omhat

// load gammal

// load spcoeff

// move omhat

// load thhat

// thhat+gammal*obserr

// thhat+gammal*obserr+spcoeff*omhat
// save new thhat

// disable saturation to allow wraparound
// move thhat
// 2*thhat, if overflow => auto wraparound

// find sin(2*thhat), result in AR
// move sin(2*thhat)

// move 2*thhat

// this is .5 (corresponds to pi/2)
// pi/2 - 2*thhat

// find sin(pi/2-2*thhat) = cos(2*thhat)
// move cos(2*thhat)

// load 2%q(2)

// load 2%q(3)

// 2%q(3)*cos(2*thhat)

// 2%q(3)*cos(2*thhat)-2*q(2)*sin(2*thhat)
// save obserr

// enable saturation again

// load ialfa(0)
); // ialfa(0)/2
// move ialfa(0)/2

// load ialfa(i)

110

APPENDIX C. ASSEMBLER CODE FOR THE DSP

SR = ASHIFT AR BY -1 (L0);
AYO = SRO;

111

// ialfa(i)/2

AR = AXO + AYO; // ialfa(i-1)/2 + ialfa(i)/2
MYO = DM(I2,M0); // load t(i)
MR = MR+AR*#MYQ (RND); // (ialfa(i-1)+ialfa(i))/2*t(i)

alfa_av:

AX0 = AYO; // move ialfa(i)/2
SR = ASHIFT MR1 BY 2 (LO); // multiply by 4
MX0 = SRO; // move result (ialfa average) to MXO
I2 = t;
AR = DM(I1,M0); // load ibeta(0)
SR = ASHIFT AR BY -1 (LO); // ibeta(0)/2
AX0 = SRO; // move ibeta(0)/2
MR = 0;
CNTR = 6;
DO beta_av UNTIL CE;
AR = DM(I1,MO); / load ibeta(i)

= /
SR = ASHIFT AR BY -1 (L0);
AYO = SRO;

// ibeta(i)/2

AR = AX0 + AYO; // ibeta(i-1)/2 + ibeta(i)/2
MYO = DM(I2,M0); // load t(i)
MR = MR+AR*MYO (RND); // (ibeta(i-1)+ibeta(i))/2*t (i)

beta_av:

AXO = AYO; //
SR = ASHIFT MR1 BY 2 (LO);
MYO = SRO; //

// convert to d-q frame

move ibeta(i)/2
// multiply by 4
move result (ibeta average) to MYO

MSTAT = dissat; // disable saturation to allow wraparound
AX0 = DM(thhat); // load thhat

CALL sin; // find sin(thhat)

DM(sinth) = AR; // save sin(thhat)

AYO = AXO; // move thhat

AX0 = 0x4000; // this is .5 (corresponds to pi/2)
AR = AXO - AYO; // pi/2 - thhat

AXO = AR;

CALL sin; // find sin(pi/2-thhat) = cos(thhat)
DM(costh) = AR; // save costh

MSTAT = enasat; // enable saturation again

MX1 = MYO; // move ibeta

MYO = DM(sinth); // load sin(thhat)

MY1 = AR; // move cos(thhat)

MR = MX0*MY1 (RND); // ialfa*cos(thhat)

MR = MR+MX1*MYO (RND); // ialfa*cos(thhat)+ibeta*sin(thhat)
AYO = MR1; // move id

MR = MX1xMY1 (RND); // ibetax*cos(thhat)

MR = MR-MXO0*MY0 (RND); // ibeta*cos(thhat)-ialfa*sin(thhat)
AY1 = MR1; // move iq

// id control block

AX0 = DM(idref); // load idref

AR = AX0-AYO; // idref-id

MR1 = DM(int1l); // load intl

MRO = 0;

MY0 = errlcoeffint; // load erricoeffint

MR = MR+AR*MYO (RND); // intl+(idref-id)*erricoeffint

IF MV SAT MR; // saturate intil

DM(intl1l) = MR1; // save intl

MY1 = erricoeffout; // load errilcoeffout

MR = MR+AR*MY1 (RND); // intil+(idref-id)*erricoeffout

IF MV SAT MR;

AYO = MR1; // move

AF = AR+AYO; // intil+(idref-id)*(erricoeffout+1)
AR = AR+AF; // intil+(idref-id)*(erricoeffout+2)
MX0 = AR; // move vdc

// w control block

AXO = DM(wref); // load wref

AYO = DM(omhat); // load omhat

AR = AX0-AYO; // wref-what

MR1 = DM(int2); // load int2

MRO = 0;

MY0 = err2coeffint; // load err2coeffint

MR = MR+AR*MYO (RND);
IF MV SAT MR; //

int2+(wref-what)*err2coeffint
saturation of int2

APPENDIX C. ASSEMBLER CODE FOR THE DSP

DM(int2) = MR1;
MY0O = int2coeff;
MYl = err2coeffout;

MR = MR1*MYO (SS);
MR = MR+AR*MY1 (RND);
AR = ABS MR1;

AYO = ilimit;

NONE = AR-AYO;

IF GT JUMP sat_iqref;
AXO = MR1;

JUMP iq_control;

sat_iqref:

AXO = ilimit;

NONE = PASS MR1;

IF GT JUMP iq_control;
AR = -AXO;

AXO = AR;

iq_control:

vbp:

vbpvap:

sectorl:

// iq control block

AR = AXO-AY1;

MR1 = DM(int3);

MRO = 0;

MYO = err3coeffint;
MR = MR+AR*MYO (RND);
IF MV SAT MR;

DM(int3) = MR1;
MY1 = err3coeffout;
MR = MR+AR*MY1 (RND);

IF MV SAT MR;
AYO = MR1;
AR = AR+AYO;
AX1 = AR;

//
//
//
//
//
/

//
/

//
/

//
//
//
//
/

//

//
//

//
//
/

//
//
//

//
//
//

save int2

load int2coeff

load err2coeffout

int2*int2coeff
int2*int2coeff+(wref-what)*err2coeffout

/ find absolute value of iqgref

load ilimit

/ compare

if abs(iqref)>ilimit, saturate

/ move igref, no saturation

continue with controller

load absolute limit
check sign of original iqref
if positive, leave ilimit at AXO

/ if negative, negate

move -ilimit to AXO

igref-iq
load int3

load err3coeffint
int3+(iqref-iq)*err3coeffint

/ saturation of int3

save int3
load err3coeffout
int3+(iqref-iq)*err3coeffout

move
int3+(iqref-iq)*(err3coeffout+1)
move vqc

// convert back to alfa-beta frame

MSTAT = dissat;
AX0 = DM(omhat);
AR = PASS AXO;

MYO = delaycoeff;
MR = AR*MYQ (RND);
AY0 = DM(thhat);

AR = MR1+AYOQ;
AXO = AR;

CALL sin;

MYO = AR;

AYO = AXO;

AXO = 0x4000;
AR = AXO - AYO;
AXO = AR;

CALL sin;

MY1 = AR;

MSTAT = enasat;

MR = MXOxMY1 (SS);

MX1 = AX1;

MR = MR-MX1*MYO (RND);
DM(valfa) = MR1;

MR = MXO0*MYO (SS);

MR = MR+MX1*MY1 (RND);
DM(vbeta) = MR1;

//

//
/

//
//
//

disable saturation to allow wraparound
load omhat

/ move omhat to AR
/ load delaycoeff

delaycoeff*omhat
load thhat

/ thhat+delaycoeff*omhat, allow wraparound

move corrected thhat

find sin(corrthhat)

move sin(corrthhat)

move corrthhat

this is .5 (corresponds to pi/2)
pi/2-corrthhat, allow wraparound

move pi/2-corrthhat

find sin(pi/2-corrthhat) = cos(corrthhat)
move cos(corrthhat)

/ enable saturation again

vdcxcosth

/ move vqc

vdc*costh-vqc*sinth

/ save valfa

vdc*sinth
vdc*sinth+vqc*costh
save vbeta

// find sector and rotate vector

AR = PASS MR1;
IF LE JUMP vbn;

AX0 = DM(valfa);
AR = PASS AXO;
IF LE JUMP vbpvan;

MX1 = MR1;

MR1 = AXO;

MRO = 0;

MY0O = cnlosr3;

MR = MR-MX1*MYO (RND);
AR = PASS MR1;

IF LE JUMP sector2;

//

//

//
//

/
//

check sign of vbeta

check sign of valfa

move vbeta
move valfa

/ load 1/sqrt(3)

valfa-vbeta*cnlosr3

112

APPENDIX C. ASSEMBLER CODE FOR THE DSP

AX1 = 1;
DM(sector) = AX1;

JUMP endsec;

sector2:
AX1 = 2;
DM(sector) = AX1;
MX0 = AXO;
MYO = cnlo2;
MY1 = sr3o02;

MR = MXO*MYO (SS);
MR = MR+MX1*MY1 (RND);
DM(valfa) = MR1;
MR = MX1xMYO (SS);
MR = MR-MXO*MY1 (RND);
DM(vbeta) = MR1;
JUMP endsec;

vbpvan:
MX1
MR1
MRO 0;
MYO cnlosr3;
MR = MR+MX1*MYO (RND);
AR = PASS MR1;
IF GE JUMP sector2;

MR1;
AXO;

sector3:
AX1 = 3;
DM(sector) = AX1;
MX0 = AXO;
MYO cnlo2;
MY1 sr302;
MR = MX1xMY1 (SS);
MR = MR-MXO*MYO (RND);
DM(valfa) = MR1;
MR ;
MR = MR-MX1*MYO (SS);
MR MR-MX0*MY1 (RND);
DM(vbeta) = MR1;
JUMP endsec;

vbn:
AX0 = DM(valfa);
AR = PASS AXO;
IF LE JUMP vbnvan;
vbnvap:
MX1
MR1
MRO = 0;
MYO cnlosr3;
MR = MR+MX1*MYO (RND);
AR = PASS MR1;
IF LE JUMP sector5;

MR1;
AXO;

sector6:
AX1 = 6;
DM(sector) = AX1;
MX0 = AXO;
MYO = cnlo2;
MY1 = sr3o02;
MR = MXO*MYO (SS);
MR = MR-MX1*MY1 (RND);
DM(valfa) = MR1;
MR = MX1*MYO (SS);
MR = MR+MX0*MY1 (RND);
DM(vbeta) = MR1;
JUMP endsec;
sectorb:
AX1 = 5;
DM(sector) = AX1;
MX0 = AXO;
MYO cnlo2;
MY1 sr302;
MR 0;
MR = MR-MXO*MYO (SS);
MR = MR-MX1*MY1 (RND);
DM(valfa) = MR1;
MR = MXO*MY1 (SS);
MR = MR-MX1*MYO (RND);

//
//

//
//

/
//

//
//
//

//
//

sector =1
valfa and vbeta remain the same

sector = 2

move valfa

load 1/2

load sqrt(3)/2

valfa/2
valfa/2+vbeta*sqrt(3)/2

/ save rotated valfa

vbeta/2
vbeta/2-valfa*sqrt(3)/2
save rotated vbeta

move vbeta
move valfa

/ load 1/sqrt(3)

valfa+vbeta*cnlosr3

sector = 3

move valfa

load 1/2

load sqrt(3)/2
vbeta*sqrt(3)/2
vbeta*sqrt(3)/2-valfa/2
save rotated valfa

-vbeta/2
-vbeta/2-valfa*sqrt(3)/2
save rotated vbeta

check sign of valfa

move vbeta
move valfa

load 1/sqrt(3)
valfa+vbeta*cnlosr3

sector = 6

move valfa

load 1/2

load sqrt(3)/2

valfa/2
valfa/2-vbeta*sqrt(3)/2
save rotated valfa
vbeta/2
vbeta/2+valfa*sqrt(3)/2
save rotated vbeta

sector = 5
move valfa
load 1/2

load sqrt(3)/2

-valfa/2
-valfa/2-vbeta*sqrt(3)/2
save rotated valfa
valfa*sqrt(3)/2
valfa*sqrt(3)/2-vbeta/2

113

APPENDIX C. ASSEMBLER CODE FOR THE DSP

DM(vbeta) = MR1; // save rotated vbeta

JUMP endsec;
vbnvan:

MX1 = MR1; // move vbeta

MR1 = AXO; // move valfa

MRO = 0;

MY0 = cnlosr3; // load 1/sqrt(3)

MR = MR-MX1*MY0O (RND); // valfa-vbeta*cnlosr3

AR = PASS MR1;

IF GE JUMP sector5;
sector4:

AX1 = 4;

DM(sector) = AX1; // sector = 4

AR = -AXO; // -valfa

DM(valfa) = AR; // save rotated valfa

AXQ = MX1; // move vbeta

AR = -AXO0; // -vbeta

DM(vbeta) = AR; // save rotated vbeta
endsec:

// limit voltage magnitude

MR1 = DM(valfa); / load valfa

MX0 = DM(vbeta); // load vbeta

MYO = cnlosr3; // load 1/sqrt(3)

MR = MR+MXO*MYQ (RND); // valfa+vbeta/sqrt(3)

AY0 = cnlo2osr2; // load 1/2/sqrt(2)

AR = MR1-AYO; // valfa+vbeta/sqrt(3) - 1/2/sqrt(2)

IF LE JUMP nolimit;
limit:

MYO = sr202; // load sqrt(2)/2

MR = MR1*MY0O (RND); // (valfa+vbeta/sqrt(3))*sqrt(2)/2

AXO = MR1; // move result

SI = DM(valfa); // load valfa

SR = ASHIFT SI BY -2 (L0); // valfa/4

AY1 = SRO; // move valfa/4

DIVS AY1,AX0; / (valfa/4)/((valfa+vbeta/sqrt(3))*sqrt(2)/2)

DIVQ AX0; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DM(valfa) = AYO; // save new value of valfa

SI = DM(vbeta); // load vbeta

SR = ASHIFT SI BY -2 (LO); // vbeta/4

AY1 = SRO; // move vbeta/4

DIVS AY1,AX0; // (vbeta/4)/((valfatvbeta/sqrt(3))*sqrt(2)/2)

DIVQ AXO; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXOQ; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DIVQ AXO; DIVQ AXO; DIVQ AXO; DIVQ AXO;

DM(vbeta) = AYO; / save new value of vbeta
nolimit:

// compute counter values
I0 = cnt; //
LO = 6; //

AXO = DM(sector); //
AX1 = cnlo6; //
MX0 = DM(valfa); //
MYO = cnlosr6; //
MR = MX0*MYO (RND); //
AYO = MR1; //
MX0 = DM(vbeta); //
MY0 = sr206; //
MR = MX0*MY0O (RND); //
AY1 = MR1; //
AR = AX0-1; //
M2 = AR;

MODIFY(IO,M2); //
AR = AX1+AYOQ;

AR = AR+AYO;

AR = AR+AYO;

AR = AR+AYO;

AR = AR+AYOQ;

AR = AR-AY1;

AR = AR-AY1;

AR = AR-AY1;

pointer to cnt
circular buffer length 6
load sector
load 1/6

load valfa

load 1/sqrt(6)
valfa*1/sqrt(6)
move new valfa
load vbeta

load sqrt(2)/6
vbeta*sqrt(2)/6
move new vbeta
sector-1

point to cnt(sector)

114

APPENDIX C. ASSEMBLER CODE FOR THE DSP

AR = AR-AY1;

AR = AR-AY1;

AR = AR-AY1;

AR = AR-AY1; //
DM(IO,M0) = AR; //
AR = AX1-AYO;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1;

AR = AR+AY1; //
DM(IO,M0) = AR; //
AR = AX1-AYO;

AR = AR-AY1; //
CNTR = 4;

DO load_cntr UNTIL CE;
load_cntr:

1/6+6*xvalfa-7*vbeta
save cnt(sector)

1/6-valfa+ll*vbeta
save cnt(sector+l)

1/6-valfa-vbeta

save cnt(i)
disable circular buffer

// convert counter values from fraction to integer

DM(IO,M0) = AR; //
LO = 0; //
I0 = cnt;
MYQ = cptpwmfr; //
AY0 = cptdead; //
CNTR = 6;
DO scale_cnt UNTIL CE;
MXO = DM(IO,M1); //
MR = MXO*MYO (SS); //
AR = MR1-AYO; //
scale_cnt:
DM(IO,M0) = AR; //

load cptpwmfr
load cptdead

load cnt(i)
cnt (i) *cptpwmfr
substract deadband time

save integer cnt(i)

// output counter values and position

I0 = cnt;

AX0 = DM(IO,MO);
I0(ptl1) = AXO;
AX0 = DM(IO,MO);
10(pt2) = AXO;
AXO = DM(IO,MO);
I0(pt3) = AXO;
AXO0 = DM(IO,MO);
I0(pt4) = AXO;
AXO = DM(IO,MO);
I0(pt5) = AXO;
AXO = DM(IO,MO);
I10(pt6) = AXO;
AXO = DM(thhat);
I0(ppos) = AXO;

// save last current measurement

I0 = ialfa;
M2 = 6;
MODIFY(IO,M2); //
AX0 = DM(IO,MO);
I0 = ialfa;
DM(IO0,M0) = AXO; //
I0 = ibeta; //
MODIFY(IO,M2); //
AXO = DM(IO,MO);
I0 = ibeta;
DM(IO,M0) = AXO; //
// save time intervals for
I0 = tn;
I1 = t;
I2 = cnt;
CNTR = 6;

DO copy_times UNTIL CE;
AXO = DM(IO,M1); //
AX1 = DM(I2,M0); //

/ pointer to ialfa

point to last value

copy last value to first position
pointer to ibeta
point to last value

copy last value to first position

next period

load tn(i), don’t increment IO
load cnt(i), increment I2

115

APPENDIX C. ASSEMBLER CODE FOR THE DSP 116

DM(IO,M0) = AX1; // save new tn(i), increment IO
copy_times:

DM(I1,M0) = AXO; // save new t(i), increment Il

// end of the interrupt routine

RTI;
55///4//4//

ol p

en rogram
LHHITHITEITIITIE I I 00000 101001111111111117

C.2 sine.asm
/%

Sine Approximation
y = sin(x)
Calling Parameters
AX0 = x in scaled 1.15 format
M3 =1
L3 =0
Return Values
AR = y in 1.15 format
Altered Registers
AYO,AF,AR,MY1,MX1,MF,MR,SR,I3
Computation Time
25 cycles
(remember cos(x) = sin(pi/2-x))

*/

.GLOBAL sin;

.SECTION/DATA sindata;

.VAR sin_coeff[5] = 0x3240, 0x0053, OxAACC, 0x08B7, 0x1CCE;
.SECTION/CODE sin;

sin:

I3=sin_coeff; // Pointer to coeff. buffer
AY0=0x4000;

AR=AX0, AF=AXO AND AYO; // Check 2nd or 4th quad.
IF NE AR=-AXO0; // 1f yes, negate input
AYO=0xT7FFF;

AR=AR AND AYO; // Remove sign bit

MY1=AR;

MF=AR*MY1 (RND), MX1=DM(I3,M3); // MF = x"2
MR=MX1xMY1 (SS), MX1=DM(I3,M3); // MR = C_1 x
CNTR=3;
DO approx UNTIL CE;
MR=MR+MX1*MF (SS);
approx:
MF=AR*MF (RND), MX1=DM(I3,M3);
MR=MR+MX1*MF (SS);
SR=ASHIFT MR1 BY 3 (HI);
SR=SR OR LSHIFT MRO BY 3 (L0); // Convert to 1.15 format

AR=PASS SR1;

IF LT AR=PASS AYO; // Saturate if needed
AF=PASS AXO;

IF LT AR=-AR; // Negate output if needed
RTS;

C.3 test.ldf

ARCHITECTURE (ADSP-2181)
SEARCH_DIR($ADI_DSP\218x\1lib)
$0BJECTS=$COMMAND _LINE_OBJECTS;

MEMORY
{
seg_itab { TYPE(PM RAM) START(0x00000) END(0x0002f) WIDTH(24) }

seg_init { TYPE(PM RAM) START(0x00030) END(0x00fff) WIDTH(24) }
seg_irq { TYPE(PM RAM) START(0x01000) END(0x02fff) WIDTH(24) }

APPENDIX C. ASSEMBLER CODE FOR THE DSP 117

seg_sin { TYPE(PM RAM) START(0x03000) END(0x03fff) WIDTH(24) }

seg_pwmdata { TYPE(DM RAM) START(0x00000) END(0x00fff) WIDTH(16) }
seg_sindata { TYPE(DM RAM) START(0x01000) END(0xO1fff) WIDTH(16) }

ERUCESSOR pO

LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{
sec_init

INPUT_SECTIONS($0BJECTS(init))
} >seg_init

sec_itab

INPUT_SECTIONS($0BJECTS(itab))
} >seg_itab

sec_irq

INPUT_SECTIONS($UBJECTS(irq))
} >seg_irq

sec_sin

INPUT_SECTIONS($0BJECTS(sin))
} >seg_sin

sec_pwmdata

INPUT_SECTIONS($0BJECTS(pwmdata))
} >seg_pwmdata

sec_sindata

INPUT_SECTIONS($0BJECTS(sindata))
} >seg_sindata

}

Appendix D

VHDL code for the FPGA

D.1 pwm.vhd

-- pwm.vhd

-- Digital PWM generation in an FPGA.

-- Top-level design file.
-- ge, Feb 2001

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
LIBRARY altera;

USE altera.maxplus2.ALL;
LIBRARY work;

USE work.pwmpkg.ALL;

ENTITY pwm IS
PORT (

clk:
rst:
rd_n:
wr_n:
ioms_n:
dspa:
dspd:
adca:
adcb:
clkout:
irq_n:
pwm_sig:
position:
tp:
inp75:
inp79:
inp80:
inp81:

END pwm;
ARCHITECTURE flex6k OF pwm IS
SIGNAL new_time:

SIGNAL status:
SIGNAL step:

IN
IN
IN
IN
IN
IN
INOUT

IN
ouT
ouT
ouT
ouT
ouT
IN
IN
IN
IN

timetype;
STD_LOGIC;
steptype;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC_VECTOR (3 DOWNTO 0);
STD_LOGIC_VECTOR (15 DOWNTO 0);
adctype;

adctype;

STD_LOGIC;

STD_LOGIC;

pwmvec;

postype;

STD_LOGIC_VECTOR(3 DOWNTO 0);
STD_LOGIC;

STD_LOGIC;

STD_LOGIC;

STD_LOGIC

118

APPENDIX D. VHDL CODE FOR THE FPGA

BEGIN

SIGNAL new_step:
SIGNAL new_period:
SIGNAL clko:
SIGNAL adcar:
SIGNAL adcbr:

-- added for debug
SIGNAL interr:

-- bit reversing of ADC input because of mistake in PCB design

adcar(13) <= adca(0);
adcar(12) <= adca(l);
adcar(11) <= adca(2);
adcar(10) <= adca(3);
adcar(9) <= adca(4);
adcar(8) <= adca(5);
adcar(7) <= adca(6);
adcar(6) <= adca(7);
adcar(5) <= adca(8);
adcar(4) <= adca(9);
adcar(3) <= adca(10);
adcar(2) <= adca(i1l);
adcar(1) <= adca(12);
adcar(0) <= adca(13);
adcbr(13) <= adcb(0);
adcbr(12) <= adcb(1);
adcbr(11) <= adcb(2);
adcbr(10) <= adcb(3);
adcbr(9) <= adcb(4);
adcbr(8) <= adcb(5);
adcbr(7) <= adcb(6);
adcbr(6) <= adcb(7);
adcbr(5) <= adcb(8);
adcbr(4) <= adcb(9);
adcbr(3) <= adcb(10);
adcbr(2) <= adcb(11);
adcbr(1) <= adcb(12);
adcbr(0) <= adcb(13);

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
adctype;
adctype;

STD_LOGIC;

-- process to divide the clock frequency by 2

PROCESS (clk)

VARIABLE tflipflop: STD_LOGIC;

BEGIN

IF (clk’EVENT AND clk = ’1’) THEN
tflipflop := NOT tflipflop;

END IF;

clko <= tflipflop;

END PROCESS;

-- instantiate the ’re
reg: regs PORT MAP

%s’ module

clk => clko,

rst => rst,

ioms_n => ioms_n,

rd_n => rd_n,

Wr_n => wr_n,

step => step,

new_step => new_step,
new_period => new_period,
address => dspa,

adca => adcar,

adcb => adcbr,

data => dspd,
curr_vector => pwm_sig,
new_time => new_time,
position => position,
status => status,

irq_n => interr

-- instantiate the PWM counter
cntr: pwmcntr PORT MAP (

clk => clko,
rst => status,
new_time => new_time,

119

APPENDIX D. VHDL CODE FOR THE FPGA 120

step => step,
new_period => new_period,
new_step => new_step

-- output the divided clock to control the ADCs
clkout <= clko;

-- output the interrupt request signal
irq_n <= interr;

-- testpoints

tp(0) <= new_step;
tp(1) <= clko;

tp(2) <= new_period;
tp(3) <= interr;

END flex6k;

D.2 pwmcntr.vhd

-- pwmcntr.vhd
-- PWM counter, generates variable length times for each step of the PWM cycle.
-- ge, Feb 2001

-- This module loads a count value and counts down until it reaches zero, in

-- that case it increases the step number, generates a ’new_step’ signal, loads
-- a new value and starts again. If the step number is 11, then it goes back to 0
-- and generates a ’new_period’ signal.

LIBRARY altera;

USE altera.maxplus2.ALL;
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
LIBRARY work;

USE work.pwmpkg.ALL;

ENTITY pwmcntr IS

PORT (
clk: IN STD_LOGIC;
rst: IN STD_LOGIC;
new_time: IN timetype;
step: 0UT steptype;
new_period: 0UT STD_LOGIC;
new_step: 0UT STD_LOGIC

)3

END pwmcntr;

ARCHITECTURE flex6k OF pwmcntr IS
BEGIN

-- there is only one synchronous process
PROCESS (clk)

-- variable for the counter

VARIABLE cnt: timetype;

-- variable for the step

VARIABLE stp: steptype;

-- variable to indicate the begining of a new PWM period

VARIABLE np: STD_LOGIC;
-- variable to indicate the begining of a new step
VARIABLE ns: STD_LOGIC;

BEGIN
IF (clk’EVENT AND clk = ’1°) THEN
IF (rst = ’0°) THEN
-- reset all variables

cnt := 0;
stp := 0;

APPENDIX D. VHDL CODE FOR THE FPGA

707;
’o’;

np
ns

ELSIF (cnt = 0) THEN

-- load counter with new value
cnt := new_time - 1;

-- indicate new step
ns := ’1°;

-- increase step number and check boundary condition
IF (stp = 11) THEN

stp := 0;
np := ’1%;
ELSE
stp := stp + 1;
END IF;
ELSE
-- decrease counter and erase np and ns variables
cnt := cnt - 1;
np := ’0’;
ns := ’0’;
END IF;

END IF;
-- connect variables to their respective signals
step <= stp;
new_period <= np;
new_step <= ns;
END PROCESS;

END flex6k;

D.3 regs.vhd

== regs.vhd
-- Internal registers to store PWM vectors and duty-cycles for each of them.
-- ge, Feb 2001

-- This module provides the following functions:

-- 1) Registers to store the PWM vectors, the duty-cycles, the dead-band
-- time, the status of the PWM generator and the position of the shaft,
- all of them values written by the DSP on output ports.

- 2) Registers to store the ADC values corresponding to the current

-- measurements of two phases at the end of each one of the six PWM

-- subintervals; this values can be red by the DSP from input ports.

- 3) Generation of the PWM output according to the step (subinterval)
-- number.

- 4) Generation of the interrupt signal at the end of the PWM period.

- 5) Indication of the duration of the next step (’new_time’ output),
- to be used as an input to the ’pwmcntr’ module.

-- PORT ADDRESSES (as seen from the DSP):

-- address write read

-- 0 vector 1 ADC a 1
- 1 vector 2 ADC a 2
-— 2 vector 3 ADC a 3
-= 3 vector 4 ADC a 4
-— 4 vector 5 ADC a 5
- 5 vector 6 ADC a 6
-= 6 status status

121

APPENDIX D. VHDL CODE FOR THE FPGA 122

-- 7 position -—-

- 8 time 1 ADC b 1
- 9 time 2 ADC b 2
- A time 3 ADC b 3
- B time 4 ADC b 4
- C time 5 ADC b &
- D time 6 ADC b 6
- E time db -—=

- F - -

== STATUS:

-- 0 stop

-- 1 run

== STEP ORDER:

-- step vector

- 0 db = vi AND v6

- 1 vl

- 2 db = v2 AND v1

- 3 v2

- 4 db = v3 AND v2

- 5 v3

-- 6 db = v4 AND v3

- 7 vé4

-- 8 db = v56 AND v4

- 9 vb

-- 10 db = v6 AND v5

-- 11 v6

-- NOTE: the PWM output is active HIGH

-- TIME VALUES (DUTY-CYCLE): the actual time corresponding to each step is equal
-- to N*T where N is the value written in the register and T is the PWM
-- generator clock period (2 times the DSP clock period) .

LIBRARY altera;

USE altera.maxplus2.ALL;
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
LIBRARY work;

USE work.pwmpkg.ALL;

ENTITY regs IS

PORT (
clk: IN STD_LOGIC;
rst: IN STD_LOGIC;
ioms_n: IN STD_LOGIC;
rd_n: IN STD_LOGIC;
wr_n: IN STD_LOGIC;
step: IN steptype;
new_step: IN STD_LOGIC;
new_period: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR (3 DOWNTO 0);
adca: IN adctype;
adchb: IN adctype;
data: INOUT STD_LOGIC_VECTOR (15 DOWNTO 0);
curr_vector: 0UT pwmvec;
new_time: 0UT timetype;
position: OUT postype;
status: 0UT STD_LOGIC;
irq_n: 0UT STD_LOGIC

)5

END regs;

ARCHITECTURE flex6k OF regs IS

-- generic write signal
SIGNAL wrs: STD_LOGIC;

-- signals for the value of each vector
SIGNAL svi: pwmvec;

APPENDIX D.

BEGIN

SIGNAL sv2:
SIGNAL sv3:
SIGNAL sv4:
SIGNAL sv5:
SIGNAL sv6:

-- signal to select the appropriate vector at each step

SIGNAL sel_vec:

-- signals for the value of each standby time

SIGNAL sti:
SIGNAL st2:
SIGNAL st3:
SIGNAL st4:
SIGNAL stb5:
SIGNAL st6:
SIGNAL stdb:

pwmvec;
pwmvec;
pwmvec;
pwmvec;
pwmvec;

pwmvec ;

timevec;
timevec;
timevec;
timevec;
timevec;
timevec;
timevec;

-- signals for the value of each active time

SIGNAL sttl:
SIGNAL stt2:
SIGNAL stt3:
SIGNAL stté:
SIGNAL sttbh:
SIGNAL stt6:
SIGNAL sttdb:

-- status signal and its extended version

SIGNAL stat:
SIGNAL srstat:

timevec;
timevec;
timevec;
timevec;
timevec;
timevec;
timevec;

STD_LOGIC;
STD_LOGIC_VECTOR

-- signals for the ADC values

SIGNAL sadcal:
SIGNAL sadcbl:
SIGNAL sadca2:
SIGNAL sadcb2:
SIGNAL sadca3:
SIGNAL sadcb3:
SIGNAL sadca4:
SIGNAL sadchb4:
SIGNAL sadcab:
SIGNAL sadcbb:
SIGNAL sadca8:
SIGNAL sadch6:

STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR
STD_LOGIC_VECTOR

-- enable signal for a memory read

SIGNAL srden:

STD_LOGIC;

-- signal for the data to be red

SIGNAL srdata:

STD_LOGIC_VECTOR

-- signal for the position

SIGNAL pos:

-- generic write signal (goes to zero when the DSP writes to any port)
wrs <= wr_n OR ioms_n;

-- write process

PROCESS (wrs, rst)

postype;

(15

(15
(15
(15
(15
(15
(15
(15
(15
(15
(15
(15
(15

(15

DOWNTO

DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

DOWNTO

-- variables to store the vector values

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

-- variables to
tl:
t2:
t3:
té:
t5:

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

vi:
v2:
v3:
vé:
vh:
v6:

pwmvec;
pwmvec;
pwmvec;
pwmvec;
pwmvec;
pwmvec;

VHDL CODE FOR THE FPGA

0);

store the standby time values

timevec;
timevec;
timevec;
timevec;
timevec;

123

APPENDIX D. VHDL CODE FOR THE FPGA

BEGIN

VARIABLE t6: timevec;
VARIABLE tdb: timevec;

-- variable to store the status bit
VARIABLE sta: STD_LOGIC;

-- variable to store the position
VARIABLE p: postype;

IF (rst = ’0’) THEN

-- reset the status bit in case of a hardware reset

sta := ’07;

ELSIF (wrs’EVENT AND wrs = ’1’) THEN

-- load the vectors only if the system is not running

IF (sta = ’0’ AND address = "0000")
vl := data (5 DOWNTO 0);

END IF;

IF (sta = ’0’ AND address = "0001")
v2 := data (5 DOWNTO 0);

END IF;

IF (sta = ’0’ AND address = "0010")
v3 := data (5 DOWNTO 0);

END IF;

IF (sta = ’0’ AND address = "0011")
v4 := data (5 DOWNTO 0);

END IF;

IF (sta = ’0° AND address = "0100")
v5 := data (5 DOWNTO 0);

END IF;

IF (sta = ’0° AND address = "0101")
v6 := data (5 DOWNTO 0);

END IF;

-- load the standby time values
IF (address = "1000") THEN

tl := data (13 DOWNTO 0);
END IF;
IF (address = "1001") THEN

t2 := data (13 DOWNTO 0);
END IF;
IF (address = "1010") THEN

t3 := data (13 DOWNTO 0);
END IF;
IF (address = "1011") THEN

t4 := data (13 DOWNTO 0);
END IF;
IF (address = "1100") THEN

t5 := data (13 DOWNTO 0);
END IF;
IF (address = "1101") THEN

t6 := data (13 DOWNTO 0);
END IF;

IF (address = "1110") THEN
tdb := data (13 DOWNTO 0);
END IF;

-- load the status bit

IF (address = "0110") THEN
sta := data(0);

END IF;

-- load the position

IF (address = "0111") THEN
:= data;

END IF;

END IF;
-- connect the signals to the registers

svl <= vi;
sv2 <= v2;

THEN

THEN

THEN

THEN

THEN

THEN

124

APPENDIX D. VHDL CODE FOR THE FPGA

END PROCESS;

sv3
své4
sv5
své
stl
st2
st3
st4
stb
st6

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

t6;

stdb <= tdb;
stat <= sta;
pos <= p;

-- synchronous process
PROCESS (clk)

BEGIN

-- variable to store the latched vector output

VARIABLE pwmout:

pwmvec ;

-- variables to store the active times
VARIABLE tt1:
VARIABLE tt2:
VARIABLE tt3:
VARIABLE tté4:
VARIABLE tt5:
VARIABLE tt6:
VARIABLE ttdb:

timevec;
timevec;
timevec;
timevec;
timevec;
timevec;
timevec;

-- variables to store the temporary ADC values

VARIABLE tadcal:
VARIABLE tadcbl:
VARIABLE tadca2:
VARIABLE tadcb2:
VARIABLE tadca3:
VARIABLE tadcb3:
VARIABLE tadca4:
VARIABLE tadcb4:
VARIABLE tadcab:
VARIABLE tadcbb:

adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;

-- variables to store the firm ADC values
VARIABLE adcal:
VARIABLE adcbl:
VARIABLE adca2:
VARIABLE adch2:
VARIABLE adca3:
VARIABLE adcb3:
VARIABLE adcaé4:
VARIABLE adcbé4:
VARIABLE adcab:
VARIABLE adcbb:
VARIABLE adca6:
VARIABLE adcb6:

adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;
adctype;

IF (clk’EVENT AND clk=’1’) THEN

-- latch the PWM output to avoid glitches

IF (stat = ’0’) THEN

ELSE

END IF;

-- update active times when a PWM period is complete or when the
-- system is stopped (so that when we write time values they
-- go directly to the active registers)

IF (new_period = ’1’ OR stat

-- system stopped, then output must be zero

pwmout

:= pwm_off;

-- latch the selected PWM vector
pwmout

ttl

tt2 :

:= sel_vec;

stl;
st2;

’0’) THEN

125

APPENDIX D. VHDL CODE FOR THE FPGA

END IF;

-- connect the
curr_vector <=

-- connect the

sttl
stt2
stt3
stt4
sttb
stté

<=
<=
<=
<=
<=
<=

tt3 := st3;
ttd := st4;
tth := stb;
tt6 := st6;
ttdb := stdb;

END IF;

-- latch the ADC data; at the end of the period

IF (new_step =
CASE step IS
WHEN

WHEN
WHEN
WHEN
WHEN

WHEN

WHEN
END CASE;
END IF;

output of the
pwmout;

ttl;
tt2;
tt3;
tt4;
tt5;
tt6;

sttdb <= ttdb;

2 =>
4 =>
6 =>
8 =>
10 =>
0 =>
O0THERS =>

current vector

signals for the active times

tadcal
tadcbl
tadca2

tadcb2 :
tadca3 :

tadcb3

tadcad :
tadcb4d :

tadcab
tadcb5

adcal :

adcbl

adca2 :
adcb2 :
adca3 :
adcb3 :
adcad :
adcbd :
adcab :
adcbb :
adcaé :
adcb6 :

from where the DSP will read them during
>1°) THEN

copy to the firm bank,
the next period.

adca;
adcb;
adca;
adchb;
adca;
adchb;
adca;
adcb;
adca;
adcb;
tadcal;
tadcbil;
tadca2;
tadcb2;
tadca3;
tadcb3;
tadca4;
tadcb4;
tadcab;
tadcbb;
adca;
adcb;

-- connect the signals for the ADC values (the MSB is inverted to convert
-- to 2’s complement, the value is shifted 1 bit to the left and
-- extended to 16 bits with sign extension)

sadcal
sadcal
sadcal
sadcal
sadcbl
sadcbl
sadcbl
sadcbl
sadca?2
sadca?2
sadca2
sadca?2
sadcb2
sadcb2
sadcb2
sadcb2
sadca3
sadca3
sadca3
sadca3
sadcb3
sadcb3

(0) <= ’07;

(13 DOWNTO 1) <= adcal
(14) <= NOT adcal(13);
(15) <= NOT adcal(13);
(0) <= 207,

(13 DOWNTO 1) <= adcbil
(14) <= NOT adcbi1(13);
(15) <= NOT adcbi(13);
(0) <= 207

(13 DOWNTO 1) <= adca2
(14) <= NOT adca2(13);
(15) <= NOT adca2(13);
(0) <= °07;

(13 DOWNTO 1) <= adcb2
(14) <= NOT adcb2(13);
(15) <= NOT adcb2(13);
(0) <= ’07;

(13 DOWNTO 1) <= adca3
(14) <= NOT adca3(13);
(15) <= NOT adca3(13);
(0) <= °07;

(13 DOWNTO 1) <= adcb3

(12 DOWNTO 0);

(12 DOWNTO 0);

(12 DOWNTO 0);

(12 DOWNTO 0);

(12 DOWNTO 0);

(12 DOWNTO 0);

126

APPENDIX D. VHDL CODE FOR THE FPGA 127

sadcb3 (14) <= NOT adcb3(13);

sadcb3 (15) <= NOT adcb3(13);

sadcad (0) <= ’0’;

sadca4 (13 DOWNTO 1) <= adca4 (12 DOWNTO 0);
sadca4 (14) <= NOT adca4(13);

sadca4 (15) <= NOT adca4(13);

sadcb4 (0) <= ’07;

sadcb4 (13 DOWNTO 1) <= adcb4 (12 DOWNTO 0);
sadcb4 (14) <= NOT adcb4(13);

sadcb4 (15) <= NOT adcb4(13);

sadcab (0) <= ’0’;

sadca5 (13 DOWNTO 1) <= adca5 (12 DOWNTO 0);
sadcab (14) <= NOT adca5(13);

sadcab5 (15) <= NOT adca5(13);

sadcbs (0) <= ’0’;

sadcb5 (13 DOWNTO 1) <= adcb5 (12 DOWNTO 0);
sadcb5 (14) <= NOT adcb5(13);

sadcb5 (15) <= NOT adcb5(13);

sadcaé (0) <= ’07%;

sadca6 (13 DOWNTO 1) <= adca6 (12 DOWNTO 0);
sadca6 (14) <= NOT adca6(13);

sadca6 (15) <= NOT adca6(13);

sadcb6 (0) <= ’07;

sadcb6 (13 DOWNTO 1) <= adcb6 (12 DOWNTO 0);
sadcb6 (14) <= NOT adcb6(13);

sadcb6 (15) <= NOT adcb6(13);

END PROCESS;

-- select PWM vector (before latch) according to step number
WITH step SELECT

sel_vec <= (svl AND sv6) WHEN O,
svl WHEN 1,
(sv2 AND svi) WHEN 2,
sv2 WHEN 3,
(sv3 AND sv2) WHEN 4,
sv3 WHEN 5,
(sv4 AND sv3) WHEN 6,
své WHEN 7,
(sv5 AND sv4) WHEN 8,
svb WHEN 9,
(sv6 AND sv5) WHEN 10,
sv6 WHEN 11,
pwm_off WHEN OTHERS;

-- select new_time (time of next step) according to step number
WITH step SELECT
new_time <= CONV_INTEGER(UNSIGNED (stt1)) WHEN O,
CONV_INTEGER (UNSIGNED(sttdb)) WHEN 1,
CONV_INTEGER(UNSIGNED(stt2)) WHEN 2,
CONV_INTEGER (UNSIGNED (sttdb)) WHEN 3
CONV_INTEGER (UNSIGNED(stt3)) WHEN 4
CONV_INTEGER(UNSIGNED(sttdb)) WHEN 5
CONV_INTEGER (UNSIGNED (stt4)) WHEN 6
CONV_INTEGER (UNSIGNED (sttdb)) WHEN 7
CONV_INTEGER (UNSIGNED(stt5)) WHEN 8
CONV_INTEGER (UNSIGNED (sttdb)) WHEN 9,
CONV_INTEGER(UNSIGNED(stt6)) WHEN 10,
CONV_INTEGER(UNSIGNED (sttdb)) WHEN 11,

0 WHEN OTHERS;
-- signal to read the status bit
srstat(0) <= stat;
srstat(15 DOWNTO 1) <= "000000000000000";

-- read enable signal (goes to zero when the DSP reads any port)
srden <= rd_n OR ioms_n;

-- select the data to be red
WITH address SELECT
srdata <= sadcal WHEN "0000",
sadca2 WHEN "0001",
sadca3 WHEN "0010",
sadca4 WHEN "0011",
sadcab WHEN "0100",
sadca6 WHEN "0101",

APPENDIX D. VHDL CODE FOR THE FPGA

sTrs
sad
sad
sad
sad
sad
sad
"00

-- implement tristate buffe
data <= srdata WHEN srden =
"ZZZZZZZZZZZ7ZZZ7Z" ;

-- interrupt request when a period is complete (must be edge sensitive)

irq_n <= NOT new_period;

-- output status signal, us
status <= stat;

-- output position, used fo
position <= pos;

END flex6k;

D.4 pwmpkg.vhd

== pwmpkg.vhd
-- Package for the PWM generation d
-- ge, Feb 2001

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
LIBRARY altera;

USE altera.maxplus2.ALL;

PACKAGE pwmpkg IS

tat WHEN "0110",
cbl WHEN "1000",
cb2 WHEN "1001",
cb3 WHEN "1010",
cb4 WHEN "1011",
cb5 WHEN "1100",
cb6 WHEN "1101",
00000000000000" WHEN OTHERS;

r for the data bus
’0’ ELSE

ed to reset the counter

r evaluation of the performance

esign.

SUBTYPE timetype IS INTEGER RANGE 0 TO 16383; -- 14 bits
SUBTYPE timevec IS STD_LOGIC_VECTOR (13 DOWNTO 0); -- 14 bits
SUBTYPE pwmvec IS STD_LOGIC_VECTOR (5 DOWNTO 0); -- 6 bits
SUBTYPE steptype IS INTEGER RANGE O TO 15; -- 4 bits

SUBTYPE adctype IS STD_LOGIC_VECTOR (13 DOWNTO 0); -- 14 bits
SUBTYPE postype IS STD_LOGIC_VECTOR (15 DOWNTO 0); -- 16 bits
CONSTANT pwm_off: pwmvec := "000000";

COMPONENT pwmcntr
PORT (

clk:

rst:
new_time:
step:
new_period:
new_step:

)
END COMPONENT;

COMPONENT regs
PORT (

clk:
rst:
ioms_n:
rd_n:
wr_n:
step:
new_step:
new_period:
address:
adca:
adcb:
data:

curr_vector:

new_time:
position:

IN STD_LOGIC;
IN STD_LOGIC;
IN timetype;
0UT steptype;
0UT STD_LOGIC;
0UT STD_LOGIC

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC;

IN steptype;

IN STD_LOGIC;

IN STD_LOGIC;

IN STD_LOGIC_VECTOR (3 DOWNTO 0);
IN adctype;

IN adctype;

INQUT STD_LOGIC_VECTOR (15 DOWNTO 0);
0UT pwmvec;

OUT timetype;

OUT postype;

128

APPENDIX D. VHDL CODE FOR THE FPGA

status: 0UT STD_LOGIC;
irq_n: 0UT STD_LOGIC

END COMPONENT;

END pwmpkg;

D.5 Compilation report (edited version)

Project Information c:\gabriel\pwmfpga\pwm.rpt
MAX+plus II Compiler Report File

Version 9.6 3/22/2000

Compiled: 06/27/2001 11:02:23

Copyright (C) 1988-2000 Altera Corporation

*x*x**x Project compilation was successful

PWM

** DEVICE SUMMARY *x

Chip/ Input Output Bidir LCs
POF Device Pins Pins Pins LCs % Utilized

pwm EPF6016TC144-3 41 28 16 992 7% %

User Pins: 41 28 16

*% PIN/LOCATION/CHIP ASSIGNMENTS **

Actual
User Assignments

Assignments (if different) Node Name
pwm@136 adca0
pwm@137 adcal
pwm@138 adca2
pwm@139 adca3
pwm@140 adca4d
pwm@141 adcab
pwm@142 adca6
pwm@143 adca7
pwm@144 adca8
pwm@1l adca9
pwm@2 adcal0
pwme3 adcall
pwme8 adcal2
pwm@9 adcal3l
pwm@11 adcb0
pwm@12 adcbl
pwm@14 adcb2
pwm@15 adcb3
pwme16 adcb4
pwm@21 adcbb
pwm@22 adcb6
pwm@23 adcb7
pwm@24 adcb8
pwm@25 adcb9
pwm@26 adcb10
pwm@28 adcbil
pwm@29 adcb12
pwm@35 adcb13
pwme88 clk
pwm@10 clkout
pwm@96 dspa0
pwme95 dspal
pwme93 dspa2
pwm@89 dspa3

pwme129 dspd0

129

APPENDIX D. VHDL CODE FOR THE FPGA 130

pwm@124 dspdil
pwm@122 dspd2
pwm@121 dspd3
pwm@119 dspd4
pwm@118 dspd5
pwm@116 dspd6
pwm@115 dspd7
pwm@114 dspd8
pwme113 dspd9
pwm@112 dspd10
pwm@110 dspdil
wm@109 dspdi2
Ewm@1os ds§d13
pwme74 dspdi14
pmars inbr5
pwm inp
pwm@79 inp79
pwm@80 inp80
pwm@81 inp81
pwm@98 ioms_n
pwme87 irg_n
pwm@42 position0
pwm@43 positionil
pwm@44 position2
pwme45 position3
pwmQ46 position4
pwm@47 positionb
pwm@48 position6é
pwm@49 position7
pwm@50 position8
pwm@51 position9
pwm@52 positionl0
pwme57 positionil
pwme58 positioni2
pwme59 positioni3
pwme60 positionl4
pwme61 positionib
pwm@36 pwm_sig0
pwme37 pwm_sigl
pwm@38 pwm_s;g2
pwm@39 pwm_sig3
pwm@40 pwm_s;g4
pwmggé pgm_51g5
pwm rd_n
pwm@86 rst
pwm@72 tp0
pwm@71 tpl
pwme69 tp2
pwm@68 tp3
pwm@101 wr_n

** FILE HIERARCHY *x*

|regs:regl

|pwmentr:cntr|

pwmentr:cntr	lpm_add_sub:148	
pwmentr:cntr	lpm_add_sub:148	addcore:adder
pwmentr:cntr	lpm_add_sub:148	altshift:result_ext_latency_ffs]
pwmentr:cntr	lpm_add_sub:148	altshift:carry_ext_latency_ffs
pwmentr:cntr	lpm_add_sub:148	altshift:oflow_ext_latency_ffs]
pwmentr:cntr	lpm_add_sub:177	

pwmentr:cntr	lpm_add_sub:177	addcore:adder
pwmentr:cntr	lpm_add_sub:177	altshift:result_ext_latency_ffs]
pwmentr:cntr	lpm_add_sub:177	altshift:carry_ext_latency_ffs
pwmentr:cntr	lpm_add_sub:177	altshift:oflow_ext_latency_ffs
pwmentr:cntr	lpm_add_sub:247	

pwmentr:cntr	lpm_add_sub:247	addcore:adder
pwmentr:cntr	lpm_add_sub:247	altshift:result_ext_latency_ffs]
pwmentr:cntr	lpm_add_sub:247	altshift:carry_ext_latency_ffs
pwmentr:cntr	lpm_add_sub:247	altshift:oflow_ext_latency_ffs]

*xxx*k Logic for device ’pwm’ compiled without errors.

APPENDIX D. VHDL CODE FOR THE FPGA

Device:

EPF6016TC144-3

FLEX 6000 Configuration Scheme: Passive

Device Options:

User-Supplied Start-Up Clock

Auto-Restart Configuration on Frame

Release Clears Before Tri-States

Enable Chip_Wide Reset
Enable Chip-Wide Output Enable
Enable INIT_DONE Output
Enable JTAG Support
MultiVolt I/O

adca9
adcall
adcall
“nCE

GND
VCCINT
VCCIO
adcal2
adcal3
clkout
adcb0
adcbl
RESERVED
adcb2
adcb3
adcbd
GND

GND
VCCIO
GND
adcbb
adcb6
adcb7
adcb8
adcb9
adcbl0
RESERVED
adcbll
adcbl2
GND
VCCINT
VCCIo
“MSEL
RESERVED
adcbl3
pwm_sig0

-~

op oA
~Np o
op oA
gapo A
s o
wp o
N oA
Hp oA
oMo A

Om<dmwnmo

/ 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110
143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111 109

QCO~NOUITPWN -

38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 TO0 72
1 53 B5 5 3 65

Om<®M@wnmo

Serial

Error

Om<TiH@wnmEo

Um<dminmo
oAty un A

EPF6016TC144-3

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

Om<®M@wnmo

N AT n A

Om<™mwnmo

Ao n

oAt n A

Om<Tmwnmo

oAt u A

37 39 41 43 45 47 49 51 5 57 61 67 71
PPPPPPPPPPPPPPPP GV ppppPpPRRRRRRGETERT
WWWWWwooooo0o0o0oooonNCnoooooEEEEEEppEDPpP
mmmmms ssssssssssCDCSsssssSSSSSS328510
_____ iiiiiiiiiiido0 ITiiiiiEEEEEE E
ssssstttttttttttN OAtttttRRRRRR R
iiiiiiiiiiiiiiiiVF TiiiiivvVvVvVvVvVvVvVy V'
ggg8gLgoO0o0o0oo0oo0o0o0o0o0o00l UoooooEEEEEE E
12345nnnnnnnnnnnG SnnnnnDDDDDD D
012345678091 11111
0 12345

131

dspd13
RESERVED
dspd15
~CONF_DONE
VCCIO
VCCINT
GND

wr_n
RESERVED
rd_n
ioms_n
RESERVED
dspal
dspal
RESERVED
dspa2
GND
VCCIO
GND
dspa3
clk
irq_n
rst
RESERVED
RESERVED
RESERVED
RESERVED
inp81
inp80
inp79
VCCIO
VCCINT
GND
inp75
dspdi4
RESERVED

APPENDIX D. VHDL CODE FOR THE FPGA 132

N.C. = No Connect. This pin has no internal connection to the device.

VCCINT = Dedicated power pin, which MUST be connected to VCC (5.0 volts).

VCCIO = Dedicated power pin, which MUST be connected to VCC (5.0 volts).

GND = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.
RESERVED = Unused I/0 pin, which MUST be left unconnected.

Dedicated configuration pin.

+ = Reserved configuration pin, which is tri-stated during user mode.
* = Reserved configuration pin, which drives out in user mode.

PDn = Power Down pin.

@ = Special-purpose pin.

= JTAG Boundary-Scan Testing/In-System Programming or Configuration Pin. The JTAG inputs TMS and TDI should be tied t
& = JTAG pin used for I/0. When used as user I/0, JTAG pins must be kept stable before and during configuration. JTAG
Total dedicated input pins used: 1/4 (25%)
Total I/0 pins used: 84/113 (74%)
Total logic cells used: 992/1320 (75%)
Average fan-in: 3.50/4 (87h)
Total fan-in: 3476/5280 (65%)
Total input pins required: 41

Total output pins required: 28

Total bidirectional pins required: 16

Total reserved pins required 0

Total logic cells required: 992

Total flipflops required: 349

Total packed registers required: 0

Total logic cells in carry chains: 0

Total number of carry chains: 0

Total logic cells in cascade chains: 0

Total number of cascade chains: 0

Logic cells inserted for fitting: 1

Synthesized logic cells: 157/1320 C 11%)

** COMPILATION SETTINGS & TIMES **

Processing Menu Commands

Design Doctor = off
Logic Synthesis:

Multi-Level

Synthesis Type Used

NORMAL

Default Synthesis Style

Logic option settings in ’NORMAL’ style for ’FLEX6000’ family

CARRY_CHAIN = ignore
CARRY_CHAIN_LENGTH = 32
CASCADE_CHAIN = ignore
CASCADE_CHAIN_LENGTH =2
DECOMPOSE_GATES = on
DUPLICATE_LOGIC_EXTRACTION = on
MINIMIZATION = full
MULTI_LEVEL_FACTORING = on
NOT_GATE_PUSH_BACK = on
REDUCE_LOGIC = on
REFACTORIZATION = on
REGISTER_OPTIMIZATION = on
RESYNTHESIZE_NETWORK = on
SLOW_SLEW_RATE = off
SUBFACTOR_EXTRACTION = on
IGNORE_SOFT_BUFFERS = on
USE_LPM_FOR_AHDL_OPERATORS = off
Other logic synthesis settings:
Automatic Global Clock = on
Automatic Global Clear = on

APPENDIX D. VHDL CODE FOR THE FPGA

Automatic Global Preset
Automatic Global Output Enable
Automatic Fast I/0

Automatic Register Packing
Automatic Open-Drain Pins
Automatic Implement in EAB
Optimize

Default Timing Specifications: None

Cut All Bidir Feedback Timing Paths
Cut All Clear & Preset Timing Paths

Ignore Timing Assignments
Functional SNF Extractor

Linked SNF Extractor
Timing SNF Extractor
Optimize Timing SNF
Generate AHDL TDO File
Fitter Settings

Smart Recompile

Total Recompile

Interfaces Menu Commands

EDIF Netlist Writer
Verilog Netlist Writer
VHDL Netlist Writer

Compilation Times

Compiler Netlist Extractor
Database Builder

Logic Synthesizer
Partitioner

Fitter

Timing SNF Extractor
Assembler

Total Time

Memory Allocated

Peak memory allocated during compilation

on
on
off
off
on
off

on
on

= off
= off

off

on

off
off
NORMAL
off
off

off
off
off

= 24,896K

133

Appendix E

Inverter design

This appendix describes the design and construction of an inverter for 3-phase AC
motors. It consists basically of a power module with six IGBTs, gate drives and pro-
tection included. Proper electrical isolation has been provided for the PWM signals.
Three current sensors have been added to measure the line currents. The schematics

and PCB layout plots of this design are included.

E.1 Introduction

The inverter described in this appendix has been designed and constructed between
Febraury and May of 2000, with the purpose of being integrated to the experimental
test-bed of the Power Electronics and Motion Control Systems Laboratory at North-
eastern University. In particular, this inverter is used in experiments on sensorless
control for Permanent Magnet Synchronous Motors.

The power module selected can drive up to 15A and 600V. However, the limitations

134

APPENDIX E. INVERTER DESIGN 135

of the DC power supply (200V, 11A) impose these limits. Therefore, the maximum
power that this inverter can transfer to the load is specified as 2kW. With a different
DC power supply, higher values could be achieved, but protection circuits should be
studied carefuly, because the simple snubber which is used in this design could not
be effective in more stressful conditions.

Figure E.1 shows a block diagram of the inverter. The thick lines show the path
followed by the high currents. Three independent power supplies have been used to

minimize noise interference.

DRIVERS DC LINK PROBES
SUPPLY SUPPLY SUPPLY

CURRENT
ELECTRIC POWER
ISOLATION MODULE
- -~ Current
Fault M easurement

Figure E.1: Block diagram of the inverter

The design has been simplified by the use of a power module, which integrates in
the same package the three legs of the inverter, their associated gate drive circuits
and additional protection circuitry. This module and the associated components are
described in section E.2.

The PWM signals that control the inverter, have been isolated from the digital

section by using optocouplers. The same consideration has been taken for the fault

APPENDIX E. INVERTER DESIGN 136

signals generated by the power module, which indicate the activation of internal pro-
tection. Section E.3 describes this circuitry and an additional enable/disable switch
which has proven to be very useful during the experiments.

For the measurement of the line currents, three current probes with their inde-
pendent power source were introduced in the design. The output of these probes is
converted from current to voltage using precission resistances. This is described in
section E.4.

In section E.5 we present the design of the Printed Circuit Board, while section
E.6 provides some details about the construction and testing of the whole drive.

More technical information is provided in sections E.7, E.8 and E.9 with the

schematics, PCB layout plots and connectors pin list respectively.

E.2 The power module

The power module selected was the PM20CSJ060 (U12) from Powerex (Mitsubishi).
It contains a complete three-phase IGBT inverter with the gate driver circuit in-
cluded, plus a protection circuit which protects against short circuit, over current,
over temperature and under voltage.

The power supply of the gate driver circuitry is provided by the M57140-01 (U1),
from the same manufacturer. It provides four isolated outputs of 15V: one for each
of the upper IGBTS and one for the three lower ones. The outputs are isolated from
the 20V input, which is provided by a conventional DC power supply.

The DC link voltage is provided by a programmable voltage source, HP6575A

from Hewlett Packard, which can provide as much as 200V /11A.

APPENDIX E. INVERTER DESIGN 137

Due to the relative low power of the design, it was enough to use a single capacitor
as a snubber, in order to control the transient voltages. For that reason, a low-

inductane capacitor of .47 uF' (C6) was placed between the P and N terminals.

The heat sink

The main parameter for the selection of the heat sink is the thermal resistance.
In order to find an adequate value for this parameter, an estimation of the power
dissipated by the power module and a thermal model are needed.

The power dissipated by the module can be classified in four groups:
e IGBT conduction losses

e IGBT switching losses

e Free-wheel diode conduction losses

e Free-wheel diode recovery losses

For the thermal calculation the model in fig. E.2 is used. The power is equivalent
to a current, the temperature to a voltage, and the relation between both is called
the thermal resistance. Tj is the temperature in the junction of the semiconductor,
T, is the temperature in the case of the module, T% is the temperature in the fins of
the power sink and 7, is the ambient temperature. The thermal resistances represent
the ability of the heat to flow in a material interface; the values of R;. and R, are
given by the manufacturer and the only parameter we can change is R,, by selecting
the heat sink. Therefore, the objective is to find a suitable value for Ry, that makes

Tj; less than 150°C, which is the maximum junction temperature admissible.

APPENDIX E. INVERTER DESIGN 138

T. IGBT D

FTGBTi R,(IGBT) P i R, (D)

T c o~ (x6)
PTOT \L R cf
T, O
R fa
T 0

Figure E.2: Thermal calculation model

After some approximations, we obtain an estimation of the thermal resistance
needed.For practical purposes, a heat sink with a thermal resistance of .5°C'/W was
selected, for which the joint temperature is less than 150°C' even under extremely
conservative assumptions.

The heat sink selected with this thermal resistance was the model 392-120AB from

Wakefield Engineering.

E.3 The digital interface

The optocouplers HCPL-2211 (U2 to UT) provide electric isolation of the digital PWM
signals. The inputs of the power module are active low, but we desired to have active
high PWM inputs. Therefore, inversion of the signal is achieved in the optocouplers,
since the conduction of the diode is possible when the input is in the low state.

A .1 pF bypass capacitor is placed between VCC and GND on the output of the

APPENDIX E. INVERTER DESIGN 139

optocouplers to filter undesired high frequency noise.

An additional enable/disable switch (SW1) was added in order to provide a quick
and convenient way of deactivate all the inputs of the power module at the same
time. As we said before, the PWM signals that are fed into the board, are active
high, then the enable/disable function is being done by the AND function (U16 and
U17). The switch SW1, when in position 2, generates a high value in the input of the
AND gates, who are enabled to copy the input to the output. On the other hand,
when the switch is in position 3, the resistor R16 forces a low value at the input of
the AND gates, and therefore a constant low value at their output. Finally, the LEDs
D1 (red) and D2 (green) provide visual information of the switch state.

The fault signals generated by the power module can be used to monitor the
functioning of the inverter, in particular to see if a protection has been activated.
For that reason it has been considered important to provide a feedback route to this
signals in two possible ways: on one hand connecting them to the same connector
that brings the digital PWM signals (J5), and on the other hand connecting them to a
dedicated connector (J6) which can be used for example to provide visual information.
Being the fault outputs of the power module of the open collector type, with a limited
sink current, the diodes of the optocouplers U8 to U1l have been connected between
the fault output and their correspondent VCC. The output of these optocouplers is a
phototransistor, for that reason they have been connected in a common-emmiter-like

configuration.

APPENDIX E. INVERTER DESIGN 140

E.4 The current probes

The current probes selected were CLN-25 from F.W.Bell (U13 to U15). Since the
maximum current we were proposed to work with was 11A, in order to maximize the
resolution the measuring range selected was 12A, which implies a connection with 2
turns of the current. The turn ratio in this configuration is 2/1000 and an output
current up to 24 mA.

To convert, the current output to a voltage value, precisor resistances of 20092 (R11
to R13) were used. Additionally, small capacitors of 10nF (C11 to C13) in parallel
provide filtering of very high frequencies. The voltage range of the output has a
maximum of 24mA x 2002 = 4.8V.

An independent power supply of £15V was needed for the current probes. The

bypass capacitors C7 to C10 provide stabilization of the supply voltages.

E.5 Design of the PCB

The schematics drawing was made using an evaluation software (MicroSim), given
the relative simplicity of the design.

The Printed Circuit Board (PCB) was manufactured by the company ExpressPCB
(www.expresspch.com). The design of the PCB was made using the software provided
by this manufacturer, which is very simple and easy to use. However, this software
is not suitable for complex designs, because it doesn’t provide many important CAD
tools like Design Rules Check and connectivity with a schematics file.

In this design, the size of the board was not optimized. Instead, we concentrated

in the layout of the components and the path followed by the most critical routes.

APPENDIX E. INVERTER DESIGN 141

The traces between the optocouplers and the power module inputs were kept as
short and straight as possible. Decoupling capacitors were put close to all optocou-
plers and power sources.

The high-current traces have been designed wide enough to avoid overheating,
and with smooth curves whenever possible.

All connectors and the switch were placed on the edge of the board. In general

the inputs are on the left and the outputs on the right.

E.6 Mounting and testing

First, the traces of the PCB were tested using a multimeter. Special attention was
paid to the power traces and all the connections to the power module.

The components were soldered to the PCB. IC sockets were used for the DIP
packages (optocouplers, AND gates and line receiver). The heat sink was mounted
over the power module using a silicon compound in the surface contact.

The PCB was mounted on a hardwood board. The two independent power sources
(+20VDC for the gate driver and £15VDC for the current probes) were mounted in
the same board. The AC part of both power sources were connected together to a
cable with a plug suitable for a standard 110VAC socket.

Without inserting the optocouplers in their sockets, a PWM signal was injected
and their polarity was tested, in particular it was checked that no two transistors on
the same leg were on at the same time. Then the optocouplers were inserted and
a small DC link voltage was applied to the power module, without connecting the

motor yet; the 3-phase voltage outputs were checked in this operation condition.

APPENDIX E. INVERTER DESIGN 142

The motor was connected and an open loop control was implemented to make it
spin at different speeds. The current measurements were checked.
Finally, a closed loop control was implemented. The results were satisfactory and

the inverter was ready to be used in the experiments.

143

|

0002 ‘¥ ke

Z 4o | abed

INVERTER DESIGN

(si0y0edED Q| =[EJO}) ——————1aNBad |
Jojow |\d 8y} Jo} JauaAu| 0N pUE $07 uooMIaN .
02N pue zin o) 3qssod g
AyiseAlun uJaiseayuoN <& 550 : [lopoue o)
|0 se th«_UMQmU ny’ ppy
swa)sAS [03U0D UCIIO|A PUE SIIUC.AD3|T Jamod ‘310N 3
—.ﬂtﬂr_m o]
3
AND! ’ wn.z,a 3
AOND ny” | npL
NAND 010-L 62 3
upl [00Z |upt |00Z |uolk | 00T 2|
AL %ﬁo Qm%ﬁu 1y L1101 H +H [Tt 2 Luley ley
T CLLAND X ¥
14\ H np H:o 3 \7r
MdD T 80— /O
Ad +
Ndo -A AL X
gpno +A
[goruwd sudg— [gdND
a,__m wc,m l e N<> apoyen
8ul eul 3poue
jm Luid zuid J 899A ¢ 0S.
guid Lud 9
= *——/AND
4 me mo> spoyed
spouer;
odig) gooA 05.
UM Sy
A UA ' glAND
o i B o
[goiud gudie— LuA A
ano 0 suid puid w\A g2 oww_n
guid euid odma gaND
O T h|m Luid zuid M ZiM dan Jlen 3apoyies
Jojow| O z guid puid zeA OJM 3poue
O TNTD ign tdmA gooA osL
v vin 52N adap 4aND
5ild dA JOA ~ epopes
QA apoue
-A 1dAn 890A 0SL
"o +A 2y
odnA g/ANO
‘o—o_‘:_n guid ! dn 7oA apoyjes
d puid[7—— on apoue
m” d cuid|Z 1dnA 400 052
Luid zud u 2]
me:_n Tuid omoaooNNs__m L12Z-1dOH X g
e
€in sluisyesH oA
ano % E ® gr+on
ASL-
Astx| O B 55on
er oL[E*ON
LHeeA
ano ZLCOA
nzy | L-OA
14 el
Aooe mv 0T pioA
er L0-0vLLSN

n

[

E.7 Schematics

APPENDIX E.

ics (1 of 2)

1CS

Inverter schemat

Figure E.3

144

INVERTER DESIGN

APPENDIX E.

I

000Z ‘v AeIN 2oz abed
J010W |Nd 8y} 10} JaLBAU|

Ajsi1aniun uiaseayLonN
A101e10q€7 SWAISAS |01UOD UONOW PUE SIIUOAIB|T Jamod

ANOV

(Boreue)

30vdsa
01

&8¢ aN9 mL
aTvVe dac
nT o7
TrIo L&% Mw 9
[4) =]
AV Ol
WH(? AT
sy vig
3100A 8T
€LTSL
8IN

(1apooua)

30vdsd

Hapoous

0}

wouy

ST o0zz o0zz
9Ty STy yTY
‘sdiyd auy) 0) 3sojd o~ o
s ioyoedes nT* e pue
(-dsa1 T pue 2 suid)
S.ANV dU) pad) osfe
OOAQ PUB ANSA ca 1a
310N 5 \wl
MS
50Ad
Conmd] s or
3
80vZ
S
SNMd 5
2
80v. 9@
o] : ¢
T
80v. ¥ M
ot i
[enmd] A 0
6 193
80V, 09 :w
S Zhet
[2Amd] 9 e
[z eTEt
80V, HY 99
v
. i}
T 3 il
o Eid
80V 45180

jney

(renbip)
30Vdsa
o

(2 of 2)

1CS

Inverter schemat

Figure E.4

APPENDIX E. INVERTER DESIGN 145

E.8 Printed Circuit Board

Note: the plots are not to scale.

C:\Program Files\ ExpressPCB\inverter.pcb (Silkscreen)

Figure E.5: Inverter PCB (silkscreen)

APPENDIX E. INVERTER DESIGN 146

C:\Program Files\ ExpressPCB\inverter.pcb (Top layer)

Figure E.6: Inverter PCB (top layer)

APPENDIX E. INVERTER DESIGN 147

C:\Program Files\ ExpressPCB\inverter.pcb (Bottom layer)

Figure E.7: Inverter PCB (bottom layer)

APPENDIX E. INVERTER DESIGN

E.9 Connectors

DB15 pin

PCB name

8
14
15

6

7
13

4
11

3
10

3
12

PWM1
PWM4
PWM2
PWM5
PWM3
PWM6
FO1
FO2
FO3
FO4
DVCC
DGND

Table E.1: PWM connectors

HDR pin

PCB name

O U i W o

CPU
AGNDU
CPV
AGNDV
CPW
AGNDW
AGND

Table E.2: Current probes connector

148

