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Abstract

Genome enabled prediction of complex traits aims to predict a measurable char-
acteristic of an organism using their genetic information. In the present work we
address diverse traits and organisms including yeast growth, wheat yield, Jersey
bull fertility and Holstein cattle milk yield.

We benchmark several popular Machine Learning models: bayesian and pe-
nalized linear regressions, kernel methods, and decision tree ensembles. Through
exhaustive hyperparameter tuning we outperform state-of-the-art results in most
datasets. We also compare two codification techniques for input data and per-
form ablation studies to assess robustness to genetic marker - i.e input features -
elimination.

We then explore different Deep Learning architectures for this task. We pro-
pose and evaluate CNN architectures, showing that using residual connections im-
proves perfomance but that in some cases Fully Connected Networks outperform
CNNs. We link this to the fact that absolute positions are relevant in genomes,
and thus, CNN’s translational equivariance may not be an adequate inductive bias
for tackling this problem.

In addition, we explore using PCA and TSNE for mapping input features to
two-dimensional image-like feature maps used as inputs to 2D-CNN architectures.
We assess the effectiveness of the aforementioned dimensionality reduction tech-
niques when used to construct those mappings, and find that in some cases, using
random mappings performs comparably. We also propose a method to construct
these image-like feature maps based on an approximation to the Fermat distance.

Furthermore, we evaluate graph neural network architectures by formulating
trait prediction as a node regression problem on a population graph, where each
node represents an individual, and edges association between their genetic infor-
mation. We evaluate the transferability of these graphical models and find that
the extent to which they exploit neighbourhood information is limited. We also
propose a model combining CNN and GNN architectures, which outperforms all
other models in Holstein cattle milk yield prediction.

Lastly, we propose optimising Pearson correlation directly, which is commonly
used to evaluate model performance, but MSE is usually minimised. Although this
loss does not penalise learning an affine transformation of actual phenotypes, we
show that this affine transformation can be estimated from train data, and leads
to models with both lower MSE and higher predictive correlations.
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Foreword

Millions of years of evolution have been enabled by the most dense and durable (Heckel,
Shomorony, Ramchandran, & David, 2017) information storage medium known to
date: the DNA. From a cell in a toenail to the most complex neuron in the brain,
from breathing to subjective wellbeing (Bartels, 2015), the information behind bi-
ological processes that take place on every single living organism throughout its
lifetime is encoded in a single molecule.

Our understanding about it is still (strikingly) fresh. Although the first whole
DNA sequence dates from 1965 it was not until 2001 that the human genome was
completely mapped (Heather & Chain, 2016). We are just beginning to move on
from a few known sites in the chain to a fuller picture of the genetic instructions
that govern all life on earth.

As far fetched as it may seem, genome-enabled prediction already has a myriad
of interesting applications ranging from medicine (Evans, Visscher, & Wray, 2009;
Hindorff et al., 2009; Ritchie, 2012) to agriculture (Crossa et al., 2010; Qanbari et
al., 2011; Weigel, VanRaden, Norman, & Grosu, 2017).

The availability of genetic information is very likely to continue growing at as-
tounding rates, as costs keep falling (Akdemir & Isidro-Sánchez, 2019) and geno-
typing technologies keep improving. So will computing power, even in a post-
Moore era (Leiserson et al., 2020). What remains uncertain is to what extent will
science be able to exploit both trends in conjunction.

We share one belief: it is worth finding out.
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Objectives

We propose to explore modern machine learning techniques, with an emphasis
in Deep Learning, in the task of Genetic Prediction of Complex traits. That is,
simply put, predicting a measurable characteristic of an individual based on infor-
mation about its genome. We do not focus on using external sources of information
about the populations, environments, or domain knowledge about the underlying
biological processes.

We focus on traits with agricultural value. This stems from the the fact that
this thesis was proposed in the context of a research project concerning the pre-
diction of traits related to the quality of bovine meat. Genome enabled Prediction
in agriculture can lead not only to an increase in quality (Weigel et al., 2017), but
also to an increase in resource efficiency which may be key to sustainability (Bohra,
Chand Jha, Godwin, & Kumar Varshney, 2020).

To enable a richer analysis, we choose four datasets with different characteris-
tics, out of which three belong to the agricultural domain.

Assessing which inductive biases may be beneficial for the task at hand is cru-
cial for determining future research directions, especially in a field where Deep
Learning is still incipient. In that sense, we explore two main types of Neural Net-
work architectures: Convolutional Neural Networks and Graph Neural Networks.

We also set out to discuss metrics, loss functions, optimization algorithms and
hyperparameter settings, which greatly affect ‘performance’ for all models and are
thus a core aspect of the problem.
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Document Overview

This document is structured as follows. We begin by introducing fundamental
quantitative genetics concepts, with the aim of introducing the Genomic Predic-
tion problem on Chapter 1. We then formulate this problem mathematically on
Chapter 2. We also present performance metrics and loss functions which are part
of the problem formulation as well as optimization algorithms which will be used
to train several models.

Chapter 3 describes the particular datasets that were chosen to tackle this
problem. As it will be shown later, this choice has a great impact on results.
After that, we include a brief review of predictive models in Genomic literature in
Chapter 4. We describe the most common methods, introducing domain-specific
terms and references. These same models will then be used as baselines and
evaluated on the already described datasets.

On chapter 6 we begin to explore Neural Networks and Deep learning, by pre-
senting both one and two dimensional Convolutional Neural Networks (CNNs).
This Chapter includes a literature review, a description of the proposed architec-
tures, and the experiments that were carried out.

On Chapter 7 we formulate Genomic Prediction as a graph regression problem.
We examine graph topology inference in that setting, and present Graph Neural
Network (GNN) architectures and several experiments.

Lastly, Chapter 8 lays out conclusions and further work.
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Chapter 1

Genetics basics

In this chapter some basic genetics concepts are introduced on Section 1.1. Then
Section 1.2 lays out quantitative genetic fundamentals, which set the groundwork
for genetic prediction. Further details can be found on several great introductory
texts such as Falconer and Mackay (1996); Griffiths, Wessler, Carroll, and Doebley
(2015).

1.1 DNA 101
Until the late 19th century, there was no reasonable explanation for the apparently
innocuous observation: “children resemble their parents”. The transmission of
traits was an empirical fact often used in agriculture (Palladino, 1993; Theunissen,
2008), but the underlying mechanisms enabling the storage and transmission of
biological information were unknown. In 1866, an Austrian monk called Gregor
Mendel suggested the existence of discrete units of inheritance, and successfully
explained the transmission of qualitative traits, such as color in pea plants. This
triggered decades of research that would shed light on the biological information
mystery, now known as genetics.

Genetic information is encoded in a double-stranded molecule called DNA
(DeoxyriboNucleic Acid). Each strand is composed of simpler units called nu-
cleotides. In turn, each nucleotide contains one of four nitrogen bases: Adenine,
Thymine, Guanine or Cytosine. It is the specific arrangement of these bases along
a strand of DNA that carries the information necessary to transform a uni-cellular
organism into a fully grown adult capable of thinking about its own genetic in-
formation. A gene is a section of DNA that codes for a coherent set1 of poten-
tially overlapping functional products (Gerstein et al., 2007) (proteins or RNA
molecules) and it serves as the basic unit of “heredity”. The different variants of
a same gene are called alleles. The human genome is approximately three billion
bases long and is packed into bigger units called chromosomes. Moreover, almost
99.9% of the genome is identical between humans, and nearly all of such differences

1Most gene definitions actually involve transcription which, for the sake of simplicity,
we have not described.
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are alterations in a single base pair. These variations are called Single Nucelotide
Polymorhpisms (SNPs). A locus (loci in plural) is a fixed position in the genome

Figure 1.1: Representation of a SNP from Griffiths et al. (2015)

used to locate a specific biological marker such as a SNP. More often than not,
SNPs lie in non-coding regions of the genome. These so-called silent SNPs are
frequently used to study population genetics. However, it is sometimes possible to
link a SNP, located in a protein-coding region, to a functional change and thus,
to an associated observable alteration. This is the case for several Mendelian dis-
orders such as cystic fibrosis and sickle-cell anemia (Ashley-Koch, Yang, & Olney,
2000).

Population geneticists use allele and genotype frequencies in order to character-
ize populations. Considering a single locus with two different alleles A and a gives
three possible genotypes: homozygotes AA and aa, and heterozygote Aa. Given
their respective frequencies fAA, fAa and faa, allele frequencies in the population
can be expressed in terms of genotype frequencies:

p = fAA + 1
2fAa

q = faa + 1
2fAa

, (1.1)

where p and q are the frequencies of allele A and a, respectively.

In an infinitely large, random-mating population, with no selection, mutation
or migration, allele frequencies and genotype frequencies remain constant from
one generation to the other as described in Table 1.1. This result is known as the
Hardy-Weinberg equilibrium (Griffiths et al., 2015).

Alleles Genotypes
A a AA Aa aa

freq p q p2 2pq q2

Table 1.1: Description of allele and genotype frequencies in a population.

2
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When considering more than one locus, the concept of linkage (dis)equilibrium
arises. If an allele at a certain locus is associated with an allele at a different
locus more than it would be expected if loci where independent and associated
randomly, then those loci are said to be in linkage disequilibrium. The amount of
linkage disequilibrium present in a population can be estimated from SNP corre-
lations and it can enhance genetic association studies and phenotype prediction
algorithms (Sved, McRae, & Visscher, 2008).

Mendel’s theory seemed unable to explain the inheritance of continuous or
quantitative traits. Fisher et al. (1918) proposed the multi-factorial hypothesis,
suggesting that continuous traits are governed by many Mendelian loci, each with
a small effect and subject to environmental factors. Since Fisher’s work, statistics
has played a major role in the study of continuous traits and several phenotype
prediction methods have been studied (Falconer & Mackay, 1996). The basic
concepts of this field are presented in Section 1.2.

1.2 Quantitative Genetics
Quantitative genetics deals with characters that exhibit continuous variation. These
traits, such as height, do not behave in a Mendelian fashion and are usually called
quantitative or complex traits. For a comprehensive review of quantitative genetics
basics see (Falconer & Mackay, 1996).

Phenotypic values, observed when the character is measured on an individual
can be decomposed into their genetic and environmental contributions:

P = G+ E , (1.2)

where P is the phenotypic value, G represents genotypic value–i.e. the combined
effect of all genes in all the loci which influence the trait–and the environmental
deviation E corresponds to all non genetic circumstances that influence the phe-
notypic value. Since E expresses a deviation from the mean, its expected value is
zero. Examples of environmental factors are nutrition, climate, and measurement
errors. Genotypic values may be estimated by taking the average phenotypic value
of several clones (individuals with the exact same genome) raised randomly in dif-
ferent environments. Since E(E) = 0, the average phenotypic value is an unbiased
estimator of the genotypic value of that particular genotype, and the concept of
population mean refers indistinctly to mean phenotypic value P̄ or mean genotypic
value Ḡ of a population.

These notions are conceptually useful, however, parents pass on their genes (al-
leles) not their complete genotypes to their progeny. In consequence, the concepts
of average effect and breeding value arise. The average effect of an allele is defined
as the mean deviation from P̄ of the individuals who received such allele from one
parent, the allele received from the other parent having come at random from the
population. The breeding value corresponds to the sum of the average effects of
the genes an individual carries. It is sometimes referred to as additive genotype
since it quantifies the value of an individual based on the expected genotypical
values of its progeny.
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A simple model for the genotypic value can be expressed as:

G = A+D, (1.3)

where A is the breeding value and the dominance deviation D corresponds to the
difference between the genotypic value and the breeding value of an individual.
Dominance deviation can be viewed as the result of putting together genes in pairs
to make genotypes. If biological architecture was purely additive, the genotypic
value would coincide with the sum of the average effects of the genes. When taking
into account the interaction between genes at different loci, a term I corresponding
to this interaction, often referred to as epistatic interaction, is added. Reasonably,
this addend is zero if genes act additively betweeen loci.

G = A + D + I (1.4)

A usual assumption in this context is that these values or deviations are not
correlated. In this case, phenotypic variance can be written as the sum of the
additive, dominance, epistatic and environmental variance.

σ2
P = σ2

A + σ2
D + σ2

I + σ2
E . (1.5)

where σ2
A, σ2

D, σ2
I and σ2

E correspond to additive, dominance, epistatic and envi-
ronmental variance respectively.

This framework enables the discussion: “heredity vs environment” or “nature
vs nurture”, which aims to study the relative importance of different sources of
variation. This gives rise to the fundamental concept of heritability, which is
defined as the relative importance of heredity in determining phenotypic values.
On one hand, if “heredity” refers to genotypic values, a character is “hereditary”
in the sense of being determined by the genotype. This approach to heredity leads
to broad sense heritability H2, also called degree of genetic determination.

H2 =
σ2
G

σ2
P

(1.6)

On the other hand, if ‘heredity’ refers to breeding values, a character is ‘hereditary’
in the sense of being transmitted from parent to offspring, which leads to narrow
sense heritability:

h2 =
σ2
A

σ2
P

. (1.7)

Narrow sense heritability is crucial in prediction problems because it expresses
the reliability of the phenotypic value as a guide to the breeding value. Thus,
it indicates the responsiveness of a trait to selective breeding, a parameter of
utmost importance to plant and animal breeders. Under the assumption that
A is uncorrelated with dominance, epistatic and environmental deviations, narrow
sense heritability can be viewed as the square of the correlation coefficient between
breeding values and phenotypes:

r =
Cov(A,P )

σAσP
=
Cov(A,A+D + I + E)

σAσP
=

σ2
A

σAσP
=
σA
σP

= h. (1.8)

In consequence, h is the maximum achievable correlation coefficient when fitting
an additive linear model.
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Chapter 2

Problem formulation

In this chapter, the prediction of complex traits is formulated as a risk minimization
problem. Then, the metrics used as loss functions and as measures of predictive
ability are presented. That is, the metrics that will be used to choose or fit
the model using training data, and then used to evaluate its performance on test
data. Finally, the optimization techniques used to undertake the risk minimization
problem are introduced.

2.1 Statistical risk minimization
It is possible to frame the prediction of complex traits as a statistical risk minimiza-
tion problem (SRM), a standard statistical learning framework (Shalev-Shwartz &
Ben-David, 2014). In this context, the samples x ∈ Rp are SNP sequences related
to phenotypic values y ∈ R by the probability distribution p(x, y). The goal is to
find a function Φ(x) that outputs predictions ŷ that minimize a certain loss func-
tion L(ŷ, y) over the entire distribution (Vapnik, 1991). Thus, finding an optimal
solution corresponds to solving the following SRM problem:

Φ∗ = arg min
Φ

Ep(x,y)[L(y,Φ(x))] (2.1)

In general, the distribution p(x, y) is unknown, making Ep(x,y)[L(y,Φ(x))] incom-
putable. To undertake this obstacle, statistical risk is approximated by an empiri-
cal risk, which only contemplates the observed data points: {(x1, y1), (x2, y2), ..., (xN , yN )}.
Then, using the Law of Large Numbers it is possible to approximate the expecta-
tion in equation 2.1 :

Ep(x,y)[L(y,Φ(x))] ≈ 1

N

N∑
i=1

L (yi,Φ (xi)) (2.2)

This transforms the statistical risk minimization problem into an empirical risk
minimization problem (ERM) (Vapnik, 1991), where the function Φ(x) is restricted
to a class C:
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Φ∗ = argmin
Φ∈C

1

N

N∑
i=1

L (yi,Φ (xi)) (2.3)

As shown in equation 2.3, given the dataset {(x1, y1), (x2, y2), ..., (xN , yN )},
the choice of the class C and the loss function L(y, ŷ) complete the description of
the ERM problem. On one hand, the class function C is dictated by the model
(or parametrization). On the other hand, the choice of the loss function depends
on the downstream task. However, minimizing empirical risk may not lead to
low statistical risk due to generalization error (Vapnik, 1991). It is thus common
to include terms that have an impact on model complexity in the loss function,
leading to the Structural risk minimization problem:

Φ∗ = arg min
Φ∈C

1

N

N∑
i=1

L (yi,Φ (xi)) + J (Φ), (2.4)

where J (Φ) is an appropriate regularization or penalty term.

2.2 Metric descriptions
In this section we present several commonly used regression metrics and their
limitations, in the context of genome enabled prediction of complex traits.

2.2.1 Pearson correlation coefficient
In the context of genome-enabled prediction of complex traits, the Pearson cor-
relation coefficient (r) between predicted and observed phenotypes is the most
popular measure of predictive ability (González-Recio, Rosa, & Gianola, 2014).

rŷ,y =
cov(ŷ,y)

σŷσy
≈

∑n
i=1

(
ŷi − ¯̂y

)
(yi − ȳ)√∑n

i=1

(
ŷi − ¯̂y

)2√∑n
i=1 (yi − ȳ)2

(2.5)

This coefficient is a measure of linear dependence between variables and lies
between −1 and 1 . An r close to 0 suggests lack of linear dependence, while an r
equal to ±1 indicates a perfect linear relation between ŷ and y.

As a measure of predictive ability, this metric exhibits several limitations (González-
Recio et al., 2014; Waldmann, 2019). In particular, being a measure of linear de-
pendence, r is invariant both to scale and bias. In addition, there are radically
different point clouds that lead to the same correlation coefficient, as shown in
Figure 2.1. However, if the goal is not to predict exact values but rather to rank
the individuals, invariance to affine transformations is not an issue, since these
transformations preserve order relations. 1 A factor that has contributed to the
widespread adoption of the Pearson correlation coefficient is its connection to key

1Although affine transformations can also invert the order of a sequence, this does not
happen in practice and can easily be corrected.
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2.2. Metric descriptions

Figure 2.1: Anscombe’s quartet: four point clouds with the same correlation coefficient up to
3 decimal places (0.816).

quantitative genetics concepts. In the context of selective breeding, it is common
to aim at predicting breeding values. This is due to the fact that, unlike genes,
dominance, epistatic and environmental effects are not necessarily passed on from
one generation to the next. As showed in Section 1.2, when assuming independece
between additive, epistatic and environmental effects, the Pearson correlation co-
efficient between breeding and phenotypic values corresponds to the narrow sense
heritability h of that trait (and in that population). Therefore, when choosing a
model to predict breeding values, the highest desirable rŷ,y would be h. If the
model is linear, h would also be the highest achievable. Higher correlation coef-
ficients would imply that the model responds to non-linear signals in the input,
such as latent environmental variables or epistatic effects. It should be noted that
this principle is often inapplicable, since h estimates rely on questionable assump-
tions or simply are unavailable. Moreover, in other applications, where the goal is
not to predict breeding values but phenotypic values, capturing non-linear effects
on SNPs is desirable. Thus, in such cases, the relation between r and h loses
relevance.

2.2.2 Mean squared error
Mean squared error is one of most widely used metrics in regression problems.
Being the average squared distance between predicted and observed values it is a
non-negative loss.

MSE =
1

N

N∑
i=1

(yi − ŷi)2

7
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2.2.3 Coefficient of determination
The coefficient of determination R2 is another metric based on squared errors that
appears regularly in machine learning.

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

As shown in the equation above, R2 uses a normalized version of the MSE.
Thus, it is particularly useful when comparing predictive accuracies in datasets
with different variances. Moreover, the quotient in R2 (mean squared error over
data variance) can be seen as the fraction of unexplained variance by the model.

An R2 equal to 1 indicates that predictions perfectly match target values. This
corresponds to a MSE of 0. Conversely, a model that always predicts the mean
of the target values would get an R2 equal to 0. Negative values of R2 can be
encountered, since models can be arbitrarily worse than predicting the mean in
terms of the mean squared error.

2.3 Choice of loss function and model selection
In this section, we present common metrics used in genome enabled prediction
literature to assess model performance. We also note that these are suitable loss
functions, and discuss the potential advantages of optimising them directly.

2.3.1 Traditional approach
Except from Bayesian Models and Support Vector Machines 2, most of the models
encountered use MSE as a loss function. For instance, all the Ensemble Methods,
Linear Regressions and Neural Networks encountered were trained by minimizing
the MSE (Abdollahi-Arpanahi, Gianola, & Peñagaricano, 2020; Azodi, McCarren,
Roantree, de los Campos, & Shiu, 2019; González-Recio et al., 2014; Grinberg,
Orhobor, & King, 2018, 2019; Liu et al., 2019; W. Ma et al., 2018). Some of these
models such as Ridge and Lasso Regression add a penalty term to the MSE that
impacts model complexity.

However, when selecting and comparing models, the Pearson correlation coef-
ficient between observed and predicted phenotypes is the main metric used (Azodi
et al., 2019; González-Recio et al., 2014; Grinberg et al., 2019; Rezende, Nani, &
Peñagaricano, 2019; Waldmann, 2019; Yin et al., 2020).
Some authors argue that model selection should not be based solely on r, but
also on MSE and/or R2 (Waldmann, 2019). As mentioned in Section 2.2.1, r is
invariant to affine transformations. Thus, a model where ŷi = yi ∀i = 1, 2, .., , N
and a model where ŷi = 3 × yi + 10 ∀i = 1, 2, .., , N would be indistinguishable
from a correlation coefficient standpoint. This example shows that high MSEs do
not necessarily correspond to low correlation coefficients.

2The models mentioned in this paragraph are explained in Section 4
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These considerations raise two question: if the best model is often considered the
one with highest correlation coefficient, why not maximize it directly? Is it possible
to maximize r while maintaining a low MSE ?

2.3.2 Maximizing Pearson correlation
As described in the Section 2.2.1, r is extensively used as a metric to compare
models but not as a loss function in the ERM problem. Several issues need to
be addressed in order to use the Pearson correlation coefficient as a part of the
loss function. Firstly, the ERM formulation (and most optimization libraries) are
designed to minimize targets. However, maximizing r is equivalent to minimizing
−r. Thus, maximizing the correlation coefficient is equivalent to solving the ERM
problem with Negative Pearson Correlation as the loss function:

L(ŷ, y) = −rŷ,y = −
∑n

i=1

(
ŷi − ¯̂y

)
(yi − ȳ)√∑n

i=1

(
ŷi − ¯̂y

)2√∑n
i=1 (yi − ȳ)2

. (2.6)

Secondly, as discussed in Section 2.2.1, invariance to affine transformations
makes this loss function ill-suited for prediction purposes. A model could maximize
r by learning to predict an affine transformation of the targets: ŷ = ay+b, leading
to a high MSE. Nonetheless, after the optimization, it would be possible to estimate
the parameters a and b of this linear transformation. If the linear dependence
(correlation) between the observed and predicted phenotypes is high, undoing the
estimated affine transformation should yield accurate phenotype predictions. This
method was implemented and tested in Graph Neural Networks, and its outcome
is discussed in section 7.7.8.

2.4 Optimization
In this Section we describe some commonly used optimization methods for differ-
entiable, non-convex empirical risk minimization problems. We focus on popular
techniques in the context of neural networks and deep-learning. Also, a novel
optimisation framework which stems from a modified optimisation problem is in-
troduced.

2.4.1 Gradient descent
Most of the models explored use Stochastic Gradient Descent (SGD) (Robbins &
Monro, 1951) to undertake the structural risk minimization problem. The term
stochastic reflects the fact that batches of data are used to estimate the gradient
of the loss function with respect to the weights of the model. In this context, we
consider the per-batch average loss function:

L(W) =
1

Q

Q∑
q=1

L (yq,Φ (xq; W))

9
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where Q is the batch size and the dependence of Φ and L on the model weights
W (or trainable parameters) is made explicit. Since the weights are updated at
each step of the algorithm, the subindex t is added to represent the step number.
To simplify the notation, we will refer to the gradient of the loss function with
respect to model weights, evaluated at Wt, as dWt:

dWt = ∇WL(Wt)

In its most simple version, the update rule for SGD is the following:

Wt+1 = Wt − η dWt

where η is the learning rate, Wt+1 and Wt correspond to the weights of the model
at step t+1 and t respectively and dWt represents the gradient of the loss function
with respect to the weights evaluated at Wt.
A variation of this rule, which often has better convergence rates, is the momentum
update (Rumelhart, Hinton, & Williams, 1986):

vt+1 = µ vt − η dWt

Wt+1 = Wt + vt+1

where µ, usually referred to as momentum, is a hyperparameter and vt denotes
the update term at step t. By computing the update as a linear combination
of the gradient and the previous update (weighted moving average), SGD with
momentum discourages drastic changes in the update term, reducing oscillations.
The bigger the momentum µ, the more the oscillations are dampened.

A slightly different version of the momentum update is the so-called Nesterov
momentum (Nesterov, 1983). The key aspect of Nesterov momentum is that the
gradient is evaluated at a lookahead approximation of the weights. In the mo-
mentum update rule, the momentum µ is usually close to 1. Thus, Wt+1 can be
approximated by Wt + µvt. Evaluating the gradient of the loss function at this
approximation of the weights at time t + 1 increases the responsiveness of the
update rule (Nesterov, 1983).

Ŵt = Wt + µ vt

vt+1 = µ vt − ηdŴt

Wt+1 = Wt + vt+1

where dŴt = ∇WL(Wt + µvt). A simplified, two-dimensional representation of
the Momentum and Nesterov Momentum update rules is shown in Figure 2.2.

10
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Figure 2.2: Graphical representation of Momentum and Nestrov Momentum update rules from
http://cs231n.stanford.edu/.

The three approaches discussed use constant learning rates for all parameters.
However, some methods adaptively tune the learning rates and do so per parame-
ter. One of these update rules is AdaGrad (Duchi, Hazan, & Singer, 2011) (short
for Adaptive Gradient):

Gt =

t∑
i=1

dWi · dW T
i

Wt+1 = Wt − η diag(G)−1/2 dWt

where the diagonal of the matrix G accumulates squared gradients and is used to
normalize the update term element-wise. In Adagrad, the effective learning rates
are monotonically decreasing. However, the rate at which they decrease can be
different for each parameter.

Finally, one of the most popular update rules with adaptive learning rate is
Adam (Kingma & Ba, 2014):

mt+1 = β1 mt + (1− β1)dWt

vt+1 = β2 vt + (1− β2)(dWt � dWt)

Wt+1 = Wt − η
mt+1√
vt+1

where � denotes element-wise multiplication. The variable v, also called second
moment, plays the same role as G in Adagrad (i.e: accumulate square gradients).
The term m, known as first moment, is a weighted average of the previous m and
the current gradient (weighted moving average). Thus m represents a smoothed
version of dWt. The real numbers β1 and β2 are the decay rates of the moving
averages m and v. In contrast to AdaGrad, in Adam, the sum of square gradients
is leaky, enabling the increase of effective learning rates. 3.

3The complete Adam update rule includes bias-correction terms for the first and second
moment estimates.
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2.4.2 Sharpness aware minimization
Flatness of loss function’s minima and its long known (Hinton & van Camp, n.d.;
Hochreiter & Schmidhuber, 1995) connection with generalisation has regained in-
terest in the context of deep over-parametrized neural networks, due to recent
empirical results (Jiang, Neyshabur, Mobahi, Krishnan, & Bengio, 2019; Keskar,
Mudigere, Nocedal, Smelyanskiy, & Tang, 2016; Li, Xu, Taylor, Studer, & Gold-
stein, 2017) and theoretical bounds (Dziugaite & Roy, 2017; Wei & Ma, 2019).
Since it is accepted that flatter minima generalise better, recent methods have
tried to incorporate sharpness in the minimization process (Chaudhari et al.,
2019; Foret, Kleiner, Mobahi, & Neyshabur, 2020). Sharpness Aware Minimization
(SAM)(Foret et al., 2020) defines the objective function LSAM as:

LSAM (W ) , max
‖ε‖p≤ρ

L(W + ε),

where L(W ) is the loss evaluated with weights W . This is the maximum of the
loss in a ball with radius ρ on the parameter space. The proposed algorithm to
solve the resulting minimax problem consists of performing a gradient ascent step
to find the maximum loss in a radius ρ ball of current weights, and then calculate
gradients on that point to perform the gradient descent step to update weights.
Foret et al. (2020) give a formal derivation of the method.
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Chapter 3

Datasets used in this work

Since the field lacks a single dataset used for benchmarking, we chose four datasets
of different characteristics, two of which are publicly available. These datasets are
diverse in terms of population structure, trait complexity, number of samples and
number of SNPs. In this Chapter we describe each of these datasets. We then
describe how that data is processed prior to training on Section 3.2, and perform an
exploratory data analysis on Section 3.3. A summary of the main characteristics
of each dataset can be found in Table 3.1 .

Dataset Samples (N) Markers (p) N/p Phenotype(s) # Envs.
Yeast 1, 008 11, 623 0.087 Growth 4
Jersey 1, 569 107, 371 0.015 Sire Conception Rate 1
Wheat 599 1, 447 0.41 Grain Yield 4

Holstein 5, 024 42, 551 0.11
Milk Fat Percentage
Milk Yield
Somatic Cell Score

1

Table 3.1: Datasets’ summary.

3.1 Datasets
3.1.1 Yeast growth
The yeast dataset (Bloom, Ehrenreich, Loo, Lite, & Kruglyak, 2013) consists of
1008 samples of yeast strains which were obtained as the cross (meiosis1) between
a laboratory and a wine strain. Both parent strains correspond to the species Sac-
charomyces cerevisiae and differed in only 0.5% of their markers. The phenotype
of interest is yeast growth and it was measured in 48 different environments. We
study four environments: Lactate, Lactose, Xylose, Sorbitol.

1process where a single cell divides twice to produce four cells containing half the
original amount of genetic information
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3.1.2 Jersey bull fertility
The Jersery Bull Fertility dataset consists of 1.569 bulls whose Sire Conception
Rates (SCR) were evaluated on 29 different occasions ranging from 2008 to 2018.

The SCR is a phenotypic trait defined as the expected difference between the
conception rate of a bull compared with the mean of the rest of the population. The
conception rate is defined as the amount of successful inseminations as a fraction
of the total inseminations attempted (performed within an evaluation instance).

A single bull may have multiple evaluations of its SCR; in this case, we take a
weighted mean of all the instances available. Each SCR measure is weighted by its
reliability (REL) value, which is calculated using the number of total inseminations
n as REL = 100[n/(n + 260)] (n ranges from 200 to 26.000 in some cases). Each
SCR record has its own associated REL value which is also provided by the CDCB.

The genotypic data available consists in 107, 371 markers (SNPs) for each in-
dividual. Markers that mapped to sex chromosomes, had minor allelic frequencies
below 1%, or had a call rate (rate of successful measurements across the dataset)
of less than 90% were removed, resulting in a total of 95, 434 markers (Rezende et
al., 2019).

3.1.3 Wheat Yield
This dataset (Crossa et al., 2014) consists of 599 wheat strains developed by the
CIMMYT Global Wheat Breeding program2. These strains were grown in four
different environments, measuring the grain yield (amount of crop grown per unit
area of land) as the phenotypic trait of interest.

The original dataset consists of 1447 markers. As with the previous datasets,
a stage of preprocessing was applied: markers with an allele frequency lower than
5% or greater than 95% were removed. This resulted in 1279 total markers.

3.1.4 German Holstein
This dataset describes a German Holstein population of 5024 bulls. The genomic
sequences, after being filtered for quality control, consist of 42, 551 SNPs.

Each bull’s estimated breeding value in three different traits was measured3.
These traits are all closely related to milk production: milk fat percentage (MFP),
somatic cell score (SCS) and milk yield (MY). It is worth noting that each trait
represents a different underlying genetic architecture.

The SCS is governed by many small effect loci, MY is determined by a few
moderate effect loci and many small effect loci and MFP is composed of a few
major genes and a large number of loci with small effects (Z. Zhang et al., 2015).

2https://www.cimmyt.org/
3This estimation was done measuring the phenotypic value of the traits in the progeny

of each bull.
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3.2 Data preparation
Individuals of the same species share most of their DNA. Reasonably, in order to
predict traits that vary in a population, it is necessary to analyze only the sections
of the genome that differ from individual to individual. As explained in Section
1, most of the variability in the genome is attributable to SNPs. Moreover, most
of SNPs are biallelic, which means that only two variants are observed in the
population.

In this work, most of the organisms studied are diploid, that is, they have
two possibly different copies of each gene (one from each parent). Therefore, the
genetic content of each locus can be described by an element of the following
ternary alphabet: {AA, Aa, aa}. Usually, a represents the most frequent base
present in that locus while A represents the rare variant.

3.2.1 Encoding
All predictive models operate on numerical inputs, which implies that the alphabet
{AA, Aa, aa} needs to be adapted to a numeric form.

In order to preserve the categorical nature of these biological variables, it is
reasonable to use One Hot Encoding (OHE). This codification scheme maps each
SNP to a vector: AA −→ {1, 0, 0}, Aa −→ {0, 1, 0} and aa −→ {0, 0, 1}. In practice,
one category is erased, since it is redundant given the other two. The resulting
codification is AA −→ {1, 0}, Aa −→ {0, 1} and aa −→ {0, 0} (see Figure 3.1).

X =


AA aA . . . AA
aA aa . . . Aa
...

...
. . .

...
AA Aa . . . aa

 OHE−−−→ XOHE =


1 0 0 1 . . . 1 0
0 1 0 0 . . . 0 1
...

...
...

...
. . .

...
...

1 0 0 1 . . . 0 0


Figure 3.1: Example of One Hot encoded input matrix. The OHE encoded matrix has twice
as much columns as the original input matrix.

Another possibility is to perform an additive codification of SNPs: AA −→ 2,
Aa −→ 1 and aa −→ 0 (see Figure 3.2). The underlying assumption behind this
codification is that the effects of SNPs at a locus are additive. Thus, the more rare
SNPs a genotype has, the further away is its breeding value from the population
mean. This is the standard codification used in Quantitative Genetics (Falconer
& Mackay, 1996).

OHE may reflect the categorical nature of these variables more faithfully. How-
ever, it doubles the dimensionality of the input signal. The empirical consequences
of this trade-off are studied in Chapter 4.4. In haploid organisms, the alphabet has
two elements : {a,A}. In this case, additive and one hot encoding are equivalent.
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X =


AA aA . . . aa AA
aA aa . . . Aa Aa
...

...
. . .

...
...

AA Aa . . . Aa aa

 Add.−−→ XAdd =


2 1 . . . 0 2
1 0 . . . 1 1
...

...
. . .

...
...

2 1 . . . 1 0


Figure 3.2: Additive encoding example.

3.2.2 Imputation
Genotyping techniques are not perfect, therefore, some markers are missing from
the datasets. To solve this problem, the following imputation techniques were
employed: sample deletion, marker deletion, mean imputation and mode imputa-
tion. The choice of imputation was done taking into account the dimensions of
the datasets. For example, in the Jersey data set, every sequence has at least one
missing SNP. In that case, sample deletion is nonsensical.

3.3 Brief Exploratory Data Analysis
To gain more insight into each datasets characteristics, we conducted an ex-
ploratory analysis. This analysis consisted in exploring the input signal’s structure,
the target variable’s distribution, and the correlation between different phenotypes
or environments (belonging to the same dataset).

3.3.1 Yeast
Figure 3.3 shows the correlation between the target values across four different
environments. These environments have relatively high pairwise correlations com-
pared to others in the dataset. This is because they are sugars which encourage
yeast’s growth. The pairwise correlation between environments is relevant for
multi-task learning approaches, which will be explored in Chapter 6.

The target phenotype closely resembles a normal distribution on most envi-
ronments, as seen in Figure 3.4.

The sequences of raw data were post-processed into 30, 594 high confidence
SNPs which were uniformly sampled to obtain the final 11, 623 binary markers.
These were coded as follows: 1 if the sequence variation came from the wine strain
and 0 if it came from the laboratory strain.

As seen in Figure 3.5, the yeast marker sequence has large, constant chunks.
This can be attributed to the fact that individuals in this dataset come from
the same two parent strains and that nearby markers are likely to be inherited
together.
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Figure 3.3: Correlation between yeast growth in four environments.
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(a) Lactate (b) Lactose

(c) Xylose (d) Sorbitol

Figure 3.4: Histograms of four centered Yeast phenotypes. The blue lines represent the Kernel
Density Estimation (KDE) plot.
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Figure 3.5: Plot of a section of Yeast strain’s markers.
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3.3.2 Jersey
Figure 3.6 shows the histogram of target phenotype values. Similar to yeast, the
phenotype also resembles a normal distribution. On the other hand, Figure 3.7
shows the first 100 markers of a Jersey Bull’s genotype. The structure of the input
genotype in this dataset differs significantly from yeast’s, with no easily-identifiable
pattern.

Figure 3.6: Histogram of Jersey centered phenotype.

Figure 3.7: First 100 markers of a Jersey sample.
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3.3.3 Wheat
Figure 3.8 shows the pairwise correlations between the target phenotypes in differ-
ent environments. The environments exhibit varying degrees of correlation, from
uncorrelated (−0.02) to weak (−0.12, −0.19) and medium (0.39, 0.41, 0.66) corre-
lation values. The phenotype distribution also qualitatively ressembles a normal
distribution in all four environments, as seen in Figure 3.9.

In terms of signal structure, Wheat’s genotypes resemble Jersey’s, in the sense
that no clear spatial correlations can be distinguished. This is shown in Figure
3.10.

Figure 3.8: Correlation between Wheat Yield in four environments.
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(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 3

Figure 3.9: Histograms of Wheat Yield phenotypes in each environment.

Figure 3.10: First 50 markers of a Wheat sample.
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3.3.4 Holstein
As shown in Figure 3.11 MY and MFP are strongly negatively correlated, while
the other two pairwise correlations (MY-SCS, MFP-SCS) are practically null.

Once again, all three target phenotypes exhibit normal distributions, as shown
in Figure 3.12.

Figure 3.11: Correlation between Holstein traits.
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(a) MFP (b) MY

(c) SCS

Figure 3.12: Histograms of Holstein centered phenotypes.
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Figure 3.13: First 50 markers of a Holstein sample.
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Chapter 4

Review of predictive models in genomics

A plethora of machine learning and statistical models have been applied in the
context of genomic prediction. Unsurprisingly, no method outperforms all others
across different species, traits and populations (Azodi et al., 2019). Limitations
for comparing between models found in literature stem from the fact that several
datasets are used, and that the field lacks a widely adopted dataset for model
benchmarking. Population structure, complexity of traits, number of samples and
SNPs all present significant differences between datasets, factors which undeniably
affect model performance.

Furthermore, most publications include and compare a reduced set of models,
as shown in Figure 4.1. As can be seen, most models are linear and the Bayesian
approach draws significant attention. Furthermore, Neural Networks received lit-
tle interest up to 2018, although they have gained attention recently (Abdollahi-
Arpanahi et al., 2020; Azodi et al., 2019; Pérez-Enciso & Zingaretti, 2019).

Several studies comparing different models exist (Abdollahi-Arpanahi et al.,
2020; Azodi et al., 2019; González-Recio et al., 2014; Grinberg et al., 2018). Most
methods are classical in the realm of machine learning and statistical estimation.
A detailed formulation of Support Vector Regression and Ensemble Methods is
included in appendix C. We outline the most popular methods below, with the
aim of introducing domain specific terms and references.

4.1 Linear regressions
Since Fisher’s seminal work (Fisher et al., 1918), genetic effects have been par-
titioned into linear and non-linear effects. Substantial efforts have been devoted
to describe the former on classical Quantitative Genetics literature (Falconer &
Mackay, 1996).

Even though the cost of high density genotyping is rapidly decreasing (Akdemir
& Isidro-Sánchez, 2019), the number of markers far exceeds the number of indi-
viduals in most datasets. Therefore, regularization, often referred to as shrinkage,
plays a major role in determining marker effects.

In that sense, the community has embraced Bayesian Linear Regressions as
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Figure 4.1: Confusion matrix showcasing the number of publications including different models,
ordered by total number of publications (most popular models at the top), from 91 publications
published between 2012-2018. Figure adapted from (Azodi et al., 2019).

the de-facto standard for genomic prediction for decades (Gianola, 2013; Gianola
& Fernando, 1986). As shown on Figure 4.1 these models still draw significant
attention on recent publications.

In the following Section we describe some of the most commonly used models,
for a thorough review of bayesian methods see (Gianola, 2013; Zaabza, Gara, &
Rekik, 2017).

Using a linear model phenotypes can be expressed as

y = xβ + E, (4.1)

where y ∈ R represents a phenotype and x ∈ Rp a genotype consisting of p SNPs,
usually with additive coding (0, 1, 2 for diploid organisms - presented in Chapter
3, Section 3.2.1). xβ represents the additive term A and the residual term E
encompasses dominance (D), epistatic (I) and environmental deviations. All of
these terms were introduced and described Chapter 1.

4.1.1 Bayesian Linear Regressions
In Bayesian Linear Regressions, β is estimated by maximizing the posterior prob-
ability, i.e Maximum A Posteriori (MAP) estimation:

β = argmax
β

p (β | x, y) ,

Where p (β | x, y) is the posterior distribution, which using bayes theorem can be
expressed as

p(β | x, y) = p(y | x, β)p(β),
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4.1. Linear regressions

where p(β) is the prior probability distribution of β.

Posterior distributions are sampled using Markov Chain Monte-Carlo meth-
ods (Sorensen & Gianola, 2007), where a markov chain with the desired stationary
distribution is created. Maximum a Posteriori estimators are then obtained for all
parameters.

The prior for the residual E is gaussian for all models, although results are not
always consistent with this assumption.

E ∼ N
(
0, σ2

E

)
, (4.2)

where σ2
E is the environmental effects’ variance.

Bayesian linear models commonly used in genomic prediction differ only on the
prior imposed to weight vector β, which is also called marker effects. We present
the most popular ones below.

Marker Effect Priors.

Each coefficient in β is usually modelled as a random variable with normal distri-
bution and zero mean:

βj |σj ∼ N
(
0, σ2

j

)
. (4.3)

Predictors derived from this model with σj fixed for all markers are commonly
referred to as Best Linear Unbiased Predictors (BLUP or rrBLUP) in the context
of genome-enabled prediction literature.

For Bayes A and C, σj is has an inverse chi-squared distribution:

σ2
βj
∼ χ−2(ν, S), (4.4)

where ν are the degrees of freedom and S the scale parameter.

On Bayes A marker variance is sampled independently for each marker (iid)
while in Bayes C it is sampled only once, i.e. all marker effects have the same
variance.

Bayes B induces sparsity by adding a hierarchical prior of no marker associa-
tion:

σ2
βj
|π ∼

{
0 with probability π
χ−2(ν, S) with probability (1− π)

(4.5)

where the fraction of non-zero efects π is assumed to be uniformly distributed,

π ∼ U(0, 1). (4.6)

GBLUP uses the genomic relationship matrix G, which can be derived as an esti-
mation of pedigree from markers, to set marker variance components:

β|σβ, G ∼ N
(
0, Gσ2

β

)
(4.7)

G =
X ′X∑

i=1 var (SNPi)
, (4.8)
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Bayesian Lasso, alternatively, uses a Laplacian prior for β:

β|λ ∼ L(0, λ) (4.9)

Cross validation is commonly used to set priors and hyperparameters for each
dataset.

4.1.2 Penalised Linear Regressions
As explained in Section 2.1, it is common to include penalty terms in the loss func-
tion to reduce model complexity. Ridge (Hoerl & Kennard, 1970) and Lasso (Tib-
shirani, 1996) Regression are linear models where a penalty term is included in a
MSE loss function. In Ridge, the sum of the squares of the marker effects is added
to the loss function:

LRidge =
1

N

N∑
i=1

(yi − xiβ)2 + λ

p∑
j=1

β2
j

where N is the number of samples and the hyper-parameter λ ∈ R affects the
shrinkage- or regularization- intensity. In Lasso, the sum of the magnitudes of
marker effects is added:

LLasso =
1

N

N∑
i=1

(yi − xiβ)2 + λ

p∑
j=1

|βj |.

Both Ridge and Lasso reduce model complexity by shrinking marker effects
(i.e: favouring small weights). However, Lasso also induces sparsity, which can be
viewed as feature selection, as explained in (Tibshirani, 1996). Bayesian Linear
Regressions and Penalised Linear Regressions are closely related. In fact, for spe-
cific values of λ, Ridge and Lasso Regressions are equivalent to Bayesian Linear
Regressions, with a Gaussian and Laplacian prior over marker weights respectively
(Gianola, 2013).

In Elastic Net (Zou & Hastie, 2003), the penalty terms associated to Ridge
and Lasso regression are both added:

LElasticNet =
1

N

N∑
i=1

(yi − xiβ)2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j

where λ1 and λ2 are scalars that control shrinkage intensity. By setting λ1 or λ2

to zero Ridge or Lasso Regressions are recovered.

4.2 Support Vector Regression
Kernel methods have gained popularity in quantitative genetics due to their po-
tential to capture non-linear relationships (Morota & Gianola, 2014). A detailed
explanation of SVR can be found in Section C.1. In Support Vector Regression
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(SVR) predictions are constrained 1 to deviate from the ground truth by a value
no greater than a user-specified constant ε:

|yi − Φ(xi)| ≤ ε, ∀i

In its most simple formulation, the function Φ is a linear model (i.e: Φ(x) =
x β + b) and a regularization penalty is imposed to the weights:

βTβ ≤ C

where C ∈ R is a hyperparameter. As explained in appendix C.1, the name
Support Vector Regressor stems from the fact that the function Φ is completely
determined by a subset of input vectors named support vectors.

To enable more complex, non-linear predictors, inputs are transformed into a
higher-dimensional (even infinite-dimensional) space using non-linear transforma-
tions. However, these non-linear transformations are not applied directly. Instead,
only the inner-product between transformed samples is computed. As explained
in appendix C.1, Kernels (i.e: continuous symmetric positive semidefinite func-
tion) are used to compute these inner-products. Thus, the choice of the kernel
determines the underlying transformation.

The most commonly used kernel, introduced in the genomic prediction context
by Gianola et al. (Gianola & Van Kaam, 2008), is gaussian radial basis functions
(RBF). A number of other kernels have also been proposed and studied, such
as the t-kernel (Tusell, Pérez-Rodŕıguez, Forni, Wu, & Gianola, 2013) and the
diffusion kernel (Morota, Koyama, Rosa, Weigel, & Gianola, 2013). However,
none has gained widespread adoption due to negligible gains in performance on
real data (Morota & Gianola, 2014).

Support Vector Machines can be recovered as a particular case of Reproducing
Kernel Hilbert Space Regression Models (RKHS) (de los Campos, Gianola, &
Rosa, 2009) by using the Hinge Loss, as defined in equation 4.10.

Lε(Φ(x), y) =

{
0, if |Φ(x)− y| < ε
|Φ(x)− y| − ε, otherwise

(4.10)

4.3 Tree Ensemble methods
Model ensembles consist of combining different models (weak learners) in order to
obtain a better performance than any of the individual models’. Thus, ensembling
can be thought of as a way of compensating for sub-optimal models with extra
computation. Although the ensemble model represents a single function, it does
not necessarily belong to the same function class as the models from which its
built. For example, a simple ensemble model could be a weighted average between
the predictions of a regularized linear regressor and a support vector regressor.

1As shown in appendix C.1, slack variables are later introduced to loosen this constraint.
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In tree-based ensembling, the weak learners consist of decision trees (DTs).
DTs are a non-parametric supervised learning algorithm which predicts the target
variable by learning simple decision rules from the training data.

Although not as popular as the aforementioned, there are several works which
use tree-based ensemble methods, namely random forests (Botta, Louppe, Geurts,
& Wehenkel, 2014; Goldstein, Hubbard, Cutler, & Barcellos, 2010; Holliday, Wang,
& Aitken, 2012) and gradient boosting machines (González-Recio, Jiménez-Montero,
& Alenda, 2013). These are also capable of modeling non-linear relationships, but
shallower decision trees have been found to perform more favourably on most
datasets (Azodi et al., 2019; Goldstein et al., 2010). Random Forest and Gradient
Boosting, which are used in this work, are explained in detail in appendix C.1.

4.4 Results and Discussion
Hetereogeneity in heritability, genetic architecture, marker and sample dimensions
among datasets enhances model performance analysis. Hyperparameter searches
and fine tuning were conducted for each dataset using randomized five-fold cross-
validation. Hyperparameters, grid serch results, predictions and metrics can be
found on https://www.comet.ml/dna-i for each experiment. It should be noted
that the main purpose of these experiments is the establishment of baseline results
and not an in-depth analysis of traditional models and their hyperparameters.

Due to high variability in training and testing sets and small sample sizes, which
results in fluctuating errors that are highly dependent on training-test data splits,
each experiment was repeated 10 times using different random splits. Reported
metrics correspond to the average of those 10 splits. In most cases, results per
split are also included, so as to illustrate and compare performance dependency
on splits between models.

4.4.1 Jersey Bull Fertility
On average, all models outperformed the best results from (Rezende et al., 2019).
On a side note, this may be viewed as yet another example of the “Bitter Lesson”
(Sutton, 2019) that generalist approaches leveraging computation can outperform
those more reliant on domain knowledge.

As already noted, the low volume of data, together with high environmental
noise leads to results which vary greatly depending on the train-test split. To
illustrate this, results from all 10 splits are included in Figure 4.2. Although some
models are more affected than others, this dataset provides an example of such
behaviour.

Furthermore, Additive encoding led to higher mean predictive correlations than
One Hot encoding in all models. The models trained on One Hot encoded data
also exhibit greater variance in predictive correlation. As mentioned in Section
3.2.1, the aim of using One Hot Encoding is to preserve the categorical nature of
the variables and enable the model to capture non additive effects. However, OHE
comes with the downside of doubling the dimensionality of the input. Moreover,
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in One Hot Encoded samples, the one-to-one correspondence between features and
biological markers is lost. In other words, the information regarding which pairs
of binary variables in OHE correspond to the same marker is lost. This distorts
the input’s structure and possibly hinders the learning process.

The additivity of the trait’s architecture combined with the aforementioned
downsides of OHE may explain why this coding scheme is outperformed by additive
encoding.

Figure 4.2: Predictive correlation by model (SVR for additive encoding exceeded the maximum
computation time) and input encoding for Jersey Sire Conception Rate. Best results from
(Rezende et al., 2019) are included for comparison.

4.4.2 Holstein
In a recent work (Yin et al., 2020), a new method for genomic prediction based
on bayesian mixed linear models called KAML, was proposed, reporting best per-
formance on traits with simpler genetic architectures. Using classical models we
could not replicate this result, and predictive correlations did not show a clear
association with trait complexity. As can be seen in Figure 4.3, the variation be-
tween splits was greatly reduced. This is probably due to higher sample sizes at
training and testing, leading to greater stability regardless of the method used.

In contrast to the results obtained for the Jersey dataset, most models do not
outperform the Bayesian Mixed Linear Model presented in (Yin et al., 2020). This
may reflect the fact that more research has been done on the Holstein dataset
than on the Jersey Dataset, which is a more lenient benchmark. The model with
highest Correlation Coefficient in the test set was consistently SVM. This model
outperforms the literature on MY and SCS, but does not match the high predictive
correlations for MFP.
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(a) MFP

(b) MY (c) SCS

Figure 4.3: Predictive correlation by model and input encoding, for each trait. Best results
from (Yin et al., 2020) are included for comparison.

As shown in Figure 4.3, in all traits, models trained on additively encoded data
outperform their counterparts trained on One Hot encoded data. This result may
be explained by the downsides of OHE mentioned in Section 4.4.1 (i.e: the loss
of the one to one correspondence between biological markers and input features
and the doubling of the input’s dimensionality). Interestingly, One Hot Encoding
appears to be less detrimental in Ensemble Methods (RF and GBM) than in Ridge
and SVM. This may suggest that, in this problem, RF and GBM are better suited
for categorical data, whereas the other regression methods are more adequate for
ordinal data.

4.4.3 Wheat yield
The predictive correlations obtained were similar to those presented in (Crossa
et al., 2014). Nonetheless, by means of extensive hyperparameter tuning, SVM
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and GBM outperformed the results from (Crossa et al., 2014) in three out of four
environments. Furthermore, Ridge regression exhibits lower predictive correlations
than Ensemble Methods and SVM in all environments. As explained in Section 4,
minimizing MSE with an L2 penalization corresponds to a MAP estimator with a
Gaussian prior on the weights. Thus, Ridge’s regression low predictive accuracy
suggests that a Gaussian prior over the weights may not be appropriate for the
Wheat dataset.

Figure 4.4: Predictive correlation by model and input encoding, for each environment. Best
results from (Crossa et al., 2014) are included for comparison.

4.4.4 Yeast Growth
Similarly to the Jersey dataset, in Yeast, GBM exhibited higher predictive corre-
lations than the rest of the models. Bayesian linear regressions performed compa-
rably.

As shown in Table 4.1, in all four environments, the best classical model out-
performs the results from (Grinberg et al., 2019). This illustrates the impact that
exhaustive hyperparameter searches can have on model performance.
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Figure 4.5: Predictive correlation by model and input encoding, for each environment. Best
results from (Crossa et al., 2014) are included for comparison.

Yeast env. Best from Grinberg et al. 2019 Best Classical Model (GBM)
Lactate 0.568 0.830
Lactose 0.582 0.860
Xylose 0.516 0.814
Sorbitol 0.424 0.681

Table 4.1: Best Coefficients of determination (R2) obtained in classical models in Yeast and
best results from Grinberg et al. (2019).

A description of the hyperparameters obtained with the randomized grid search
is shown in Apendix G.

4.4.5 Summary
• Model performance showed high variance with respect to train/test splits.

• Hyperparameter tuning alone enabled surpassing the state of the art in Jer-
sey, Yeast and Wheat dataset. Holstein proved to be more challenging.

• Additive encoding outperformed OHE in all datasets, RF and GBM were
the least affected.
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Noise robustness experiments

5.1 Motivation
Although sequencing techniques are rapidly improving, phenotype prediction prob-
lems are affected by a great deal of noise (Grinberg et al., 2018). To evaluate the
impact this might be having in our models, we propose a noise contamination
experiment.

The experiment consists in purposefully contaminating the data with different
types of noise and subsequently evaluating the performance of methods described
in 4. The three noise sources considered were phenotypic noise, missing markers
and missing samples, which are some of the most common problems when dealing
with genomic data. Through these tests we aim to measure each of the model’s
robustness towards different types of noise in the data.

5.2 Experiments description
Phenotypic noise refers to the noise present in the measured phenotypic trait and
has two main components: environmental conditions and the measuring process
itself. As previously mentioned, the phenotypic value of an individual depends not
only on its genotype but also on the environment that surrounds it (i.e. weather,
water availability and soil conditions for crops). In addition, the measuring process
introduces an additional noise source which is not always negligible. To evaluate
the impact of such noise in our datasets, we randomly selected 10, 20, 30, 50, 60,
70, 80 and 90 percent of samples of the phenotype data and contaminated them by
adding or subtracting (with equal probability) two times the standard deviation
of the whole dataset.

The second type of noise considered (missing markers) consists of randomly
selecting a portion of the genotype’s markers and deleting them (same markers
for all individuals). Sequencing techniques are as potent as ever, enabling ever
growing sampling rates. Although denser sampling may seem beneficial at first
glance, linkage disequilibrium can make many markers redundant. Moreover, the
increase in the input’s dimensionality should be matched with more sequenced
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individuals, which is not always the case. On the other hand, the markers used
for prediction could be insufficient to achieve an accurate representation of the
genome. This experiment aims to evaluate the extent to which denser sampling is
beneficial to the model’s performance. The proportion of deleted markers ranged
from 10 to 99 percent.

Finally, the missing samples evaluation consists of randomly selecting and
deleting a portion of samples (which means they are not used for training nor
testing). This study evaluates the extent to which the amount of samples col-
lected limits performance. Furthermore, it may give us a glimpse into how much
predictions could improve if more individuals were sequenced. In this case, the
deletion ratio ranged from 10 to 80 percent.

5.3 Methodology
The methodology for a single experiment is summarized in Algorithm 1. An ex-
periment is comprised of a model, a dataset, an environment or trait, a noise type
and a fixed seed.

Algorithm 1: Noise robustness experiment

Result: Test Pearson correlation for each contamination ratio
Initialize result buffer
for ratio in ratios do

Contaminate genotype/phenotype matrix
Split into train, validation, and test splits
Tune model hyperparameters using train and validation splits
Re-train best hyperparameters in train and validation splits
Predict on test split and calculate Pearson correlation
Store metric in result buffer

end

We select up to three different environments or traits per dataset. Each dataset
is split into 5 different random splits with 60%, 20%, and 20% train, validation,
and test samples respectively. We begin by calculating the base (i.e. 0% mark-
ers/samples contaminated) performance for each split. We then proceed to run
Algorithm 1 on these same splits, which produces the Pearson correlation for each
contamination ratio. These values are then normalized to represent the relative
performance w.r.t. the uncontaminated case. Lastly, we average the relative per-
formance over all splits and environments/traits.

The experiment is slightly different for the missing samples experiment. In this
case, the contamination and split order is reversed, and the samples are dropped
only from the train/validation set. Otherwise, the test set would change and get
progressively smaller with each contamination ratio.

All random effects (dataset splitting and contamination) are seeded to ensure
a fair comparison between the different models.
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These experiments were not performed on the Jersey bulls dataset due to the
dimensionality of the signal, which made running several contamination ratios
per split computationally prohibitive for most models. Similarly, Random Forest
experiments on the Holstein dataset could not be conducted due to computational
restrictions.

5.4 Results
Figures 5.1, 5.3 and 5.2 show the results obtained for the missing markers exper-
iment on the yeast, wheat and Holstein datasets. The thicker line represents the
mean relative performance drop across all splits and environments/traits, while
the lighter fill represents the standard deviation.

Overall, the three datasets exhibit a similar behaviour: performance does not
significantly drop until a high amount of markers are removed. Once this value
is surpassed, performance rapidly declines. The amount of markers that can be
removed before the model’s performance starts decreasing varies among datasets.
In yeast, the threshold is approximately 80 percent of the total markers, with
RF losing performance sooner (at around 60 percent). Wheat is the most affected
dataset, with Ridge and RF showing a monotonic reduction in performance. GBM
and SVR are more robust towards marker elimination in this dataset, showing signs
of performance degradation at 50 and 60 percent respectively. Lastly, the Holstein
dataset shows similar results for its three models (GBM, Ridge and SVR), with
performance degrading from 50 percent onward.

The fact that large portions of the signal can be removed before performance
significantly drops can be attributed to high linkage disequilibrium between SNPs.
In other words, densely sequenced genomes exhibit highly correlated features, some
of which may be redundant for prediction purposes. This is consistent with the fact
that the Wheat dataset, which exhibits the lowest degree of linkage disequilibrium
(see Appendix B.2), was the most affected by marker deletion.

The results from the phenotypic noise and missing samples experiments can
be found in appendix F.
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Figure 5.1: Performance of different methods for the Yeast dataset under varying amounts of
dropped markers.
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Figure 5.2: Performance of different methods in the Wheat dataset under varying amounts of
dropped markers.

Figure 5.3: Performance of different methods in the Holstein dataset under varying amounts
of dropped markers.
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Chapter 6

Convolutional Neural Networks

6.1 Introduction
Deep Learning has unquestionably established itself as the leading paradigm to
deal with unstructured data. The recent rise of architectures such as Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative
Adversarial Networks (GANs), Graph Neural Networks (GNNs), and Transformers
resulted in an unprecedented breakthrough for different tasks in computer vision,
natural language processing, speech and reinforcement learning. Both gradient-
descent based optimization and hierarchical representation learning play a signifi-
cant role in the superior performance of these algorithms.

We naturally wonder if we can replicate these results in the context of genome-
wide phenotype prediction. Most agricultural phenotypes have a multifactorial
inheritance, with multiple and complex relationships across genes and between
genes and their environment (Abdollahi-Arpanahi et al., 2020). Consequently,
model free approaches such as the ones mentioned above might be better suited
to tackle these intrinsic challenges to genomic data.

We will begin exploring Deep Learning’s applicability by studying CNNs. A
CNN is a particular kind of network which exploits spatially correlated data. These
networks have proven to capture semantic information from unstructured data such
as images and audio (Hershey et al., 2016; Krizhevsky, Sutskever, & Hinton, 2012).
Although their generalization power is yet to be fully understood (C. Zhang, Ben-
gio, Hardt, Recht, & Vinyals, 2016), some factors contributing to their success have
been recognized. Firstly, by learning convolutional kernels via Stochastic Gradi-
ent Descent (SGD), CNNs enable automatic feature extraction1. Moreover, CNNs
inherit inductive biases from their convolutional backbone, such as translational
equivariance. The impact and adequacy of these inductive biases in the context of
genome-enabled phenotype prediction is discussed in Chapter 6.5.

Moreover, CNNs drastically reduce the number of parameters in compari-
son to fully-connected networks. Batch Normalization and Dropout techniques,
first introduced in CNNs, have alleviated the difficulties of training deep, over

1Automatic feature extraction is not restricted to CNNs.



Chapter 6. Convolutional Neural Networks

parametrized models. Lastly, the success of CNNs -and deep learning in general-
can not be decoupled from the creation of cheaper and faster hardware nor the
dramatic increase in volume of labelled image data.

In our case, the motivation behind using a CNN stems from the Linkage Dis-
equilibrium and Cross Marker Interaction phenomena (Abdollahi-Arpanahi et al.,
2020). As mentioned in Chapter 1.1, linkage disequilibrium causes markers to
be locally correlated, much like pixels in an image. Ideally, a CNN should exploit
these underlying local correlations better than a traditional multi-layer perceptron
model, while requiring a significantly lower number of parameters.

Still, deep learning techniques require high amounts of data compared to the
algorithms described in Chapter 4. To make matters worse, the amount of data
needed generally scales with the dimension of the input signal, which in our case is
considerably high. Therefore, deep learning approaches will only be tested in the
yeast and German Holstein datasets, which provide a suitable trade-off between
dimensionality and number of samples 3.1.

6.2 Building blocks
Although CNNs are defined by the presence of convolutional layers, other distinct
layers are often incorporated into their architectures. In this Section we provide
a brief overview of these layers, namely Convolutional, Pooling, Dropout, Batch
Normalization, and several point-wise non-linearities.

6.2.1 Fully Connected Layers
Fully Connected Layers (FCLs) are named that way because they connect every
input feature to every output feature. Mathematically, a FCL implements the
transform

xaffine = WTx + b

where x ∈ RN , W ∈ RN×M , b ∈ RM , and y ∈ RM . An example of this transfor-
mation for N = 6 and M = 4 is shown in Figure 6.1.

This affine transformation is often followed by a point-wise non-linearity func-
tion, such that y = σ(xaffine). By stacking multiple FCLs and non-linearities in
series, the network is able to learn complex, non-linear relationships between input
and output. Neural Networks with this architecture are often referred to as Fully
Connected Networks (FCNs) or Multi-layer perceptrons (MLPs). In this work, we
will use these two terms interchangeably.

In the context of CNNs, FCNs are often included after vectorizing (i.e. flat-
tening) the last Convolutional Layer’s feature maps, which enables learning of
non-linear interactions between the CNN’s output features. The last layer of the
FCN is responsible for the final prediction of the target variable, which in our case
is the individual’s phenotype(s).
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Figure 6.1: Example of a FCL. Wi and bi refer to the i-th row of the layer’s weight matrix and
the i-th component of the bias vector, respectively. The circles represent input, intermediate,
and output features.

6.2.2 Convolutional layers
Convolutional layers are the core components of any CNN architecture. They
consist of a set of learnable filters (i.e. a filter bank), such that each individual
filter is convolved with the input feature maps during the forward pass. The
discrete convolution operation between a one-dimensional2 signal x and a filter w
is defined as

(x~ w)[n] =

∞∑
m=−∞

x[m]w[n−m]

which is equivalent to sliding the filter across the input signal while computing
the dot product3 between its entries and input’s. Since the filter w is optimized
via SGD, the convolutional layer learns filters that detect specific types of spatial
patterns across the input signal. By stacking multiple filters, these layers are able
to detect many different types of patterns in the input. Thus, each filter introduces
an independent channel in the output feature map. This can be visualized in Figure
6.2.

Moreover, convolutional layers can be stacked in series, with each subsequent
layer convolving the output feature map of the last. This leads to richer fea-
ture maps, which can contain relevant semantic information for the downstream
prediction task.

2for two-dimensional convolutions, the filter slides across the height and width of the
input.

3in Deep Learning, a learnable bias term is usually added to the dot product.
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Figure 6.2: Example of the forward pass of a single two-dimensional convolutional filter (in
red). The filter slides across the width and height of the image, usually in a left-to-right,
top-to-bottom manner. Each filter produces exactly one output feature map (i.e. channel).

Besides, CNNs introduce other beneficial properties such as weight sharing.
When dealing with high-dimensional signals such as images or audio, a traditional
linear (fully connected) layer would introduce a considerably higher number of
parameters than a convolutional one. In addition, linear layers do not take the
signal’s spatial structure into account. Convolutional layers solve this two issues
via their sliding filters, which contain considerably less parameters (which are
shared across the input) and enforce local connectivity between subsequent layers.

Lastly, convolutional layers introduce translational equivariance, a useful in-
ductive bias in fields such as image and audio recognition. This bias stems from
the sliding dot product in the forward pass, which implies that if the input signal
is translated, the output feature map is translated by the same amount. More re-
cently, Group Equivariant Convolutional Layers have been proposed, which enforce
rotational and reflectional equivariance (Cohen & Welling, 2016).

Whether the inductive biases (translational equivariance, local connectivity)
listed above are suitable for the genome-wide phenotype prediction will be dis-
cussed in Section 6.5.

6.2.3 Pooling layers
Pooling layers implement a form of non-linear feature map downsampling. They
where introduced by LeCun et al. (1989) in the context of hand-written digit
recognition, in what is known as the first successful application of a CNN in a visual
recognition task. Pooling layers are commonly inserted in between convolutional
layers to reduce the feature maps’ spatial size (which is typically compensated by
an increase in the number of channels).

Pooling layers can be modelled as a sliding filter of stride s > 1, where s
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represents the downsampling factor. The filter slides across the input feature maps,
aggregating the activations inside its receptive field via an aggregating function.
This process is applied in a channel-wise manner, downsampling each channel
individually (i.e. the number of channels is unchanged). This process can be
visualized in Figure 6.3, where each color represents a different position of the
filter.

Figure 6.3: Example of a Max-pooling layer with stride 2 and kernel size 2 × 2. The output
feature map has 1/4th of the original input’s features.

The motivation behind pooling layers arises from both performance and compu-
tational reasons. The pooling operation introduces a certain degree of translational
invariance, which is beneficial in certain tasks such as classification. In addition,
the feature map downsampling reduces the amount of parameters in the network,
which reduces memory footprint and increases both training and inference speed,
and naturally combats overfitting.

The most popular form of pooling is max-pooling, in which the aggregating
function consists of taking the maximum activation inside the receptive field. How-
ever, other forms of pooling exist, such as average or `2-norm pooling.

It is worth noting that pooling layers are being often replaced by strided con-
volutions (convolutional layers whose stride is greater than one) (He, Zhang, Ren,
& Sun, 2015a; Xie, Girshick, Dollár, Tu, & He, 2017; Zagoruyko & Komodakis,
2016).

6.2.4 Dropout
Dropout layers consist of a regularization technique in which input activations
are dropped (i.e. set to zero) with probability p (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). The gradients w.r.t. dropped units are zero,
which implies that parameters associated with these units are not updated. This
amounts to sampling a different sub-network in each train iteration, with higher
values of p leading to smaller sub-networks and thus stronger regularization. This
network sub-sampling prevents units from co-adapting too strongly, which reduces
the model’s capacity and leads to more robust features which generalize better.

Although the combination of sub-networks might resemble an ensemble method,
this is not the case for Dropout neural networks, since parameters are still trained
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jointly across different training epochs. For a deeper discussion on dropout see
Mianjy, Arora, and Vidal (2018) and Gal and Ghahramani (2016).

The effects of activation dropping are visualized in Figure 6.4.

(a) Without dropout (b) With dropout

Figure 6.4: Example of a MLP with and without Dropout layers. The crossed units correspond
to dropped activations. Image extracted from (Srivastava et al., 2014).

6.2.5 Batch Normalization
Batch Normalization (BN) layers were originally proposed in (Ioffe & Szegedy,
2015) as a means to make deep networks faster and more stable to train by ad-
dressing the internal covariate shift phenomenon. During training, the network’s
parameters are updated iteratively, which means the distribution to the interme-
diate layer’s input changes with each epoch. The authors of the BN paper theorize
that this internal distribution shift makes it slower for the parameters to converge
to the local minima.

BN layers solve this issue by normalizing input features using the batch’s
statistics. Thus, if the input to the BN layer is x = (x0, x1, ..., xd−1), its out-
put x̂ = (x̂0, x̂1, ..., x̂d−1) is given by

x̂i =
xi − µBi√
σ2
Bi

+ ε

where

µB =
1

b

b−1∑
n=0

xn

σ2
B =

1

b

b−1∑
n=0

(xn − µB)2

with b being the size of the batch. The constant ε is small positive number added
for numerical stability purposes. In practice, a moving average of the batch’s
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statistics is used instead of considering the present batch’s statistics only. In
addition, feature-wise learnable shift and scale parameters are implemented to
preserve the model’s expressiveness, such that

yi = γix̂i + βi, βi, γi ∈ R

Another benefit of BN layers is that calculating statistics over the batch intro-
duces a noise component on the gradients, which acts as an additional source of
regularization.

Although BN layers have been widely adopted by the Deep Learning commu-
nity, their exact working mechanism is still matter of debate. (Santurkar, Tsipras,
Ilyas, & Madry, 2019) show that the distributional stability of intermediate inputs
has little impact on BN’s effectiveness. Instead, they propose that BN smoothens
the loss landscape, resulting in a more stable and predictable behavior for the
gradients.

6.2.6 Non-linearities
Pointwise non-linear activation functions are applied to each layer’s output feature
map and in between FCLs, increasing model capacity and allowing the network to
learn complex non-linear relationships. The choice of such functions has a great
impact on the optimization landscape, training speed, and model performance.
We outline some of the most popular ones below, which were used in the proposed
architectures, and are shown in Figure 6.5.

Tanh
The hyperbolic tangent tanh : R→ [−1, 1] is defined as:

tanh(x) =
ex − e−x

ex + e−x
.

It has the desirable property of having a zero centered output (Glorot & Bengio,
2010a), and can be interpreted as a re-scaled and centered version of the Sigmoid
function:

tanh(x) = 2σ(2x)− 1,

where σ(x) = 1
1+e−x is the Sigmoid function.

One problem that arises is that if the input to the Tanh layer has large values (in
absolute terms), its gradients are near zero. In other words, the output saturates
and training may slow down or even stop altogether. Weight initialization should
thus avoid saturation in order to allow faster training, especially in very Deep
Networks (Glorot & Bengio, 2010a).

ReLU
First proposed by Fukushima (1969) and more recently popularized by Krizhevsky
et al. (2012), the ReLU activation function relu : R→ R+ is defined as

ReLU(x) = max(0, x)
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Apart from being computationally cheaper, due to its linear, non-saturating re-
gion, ReLUs have been found to accelerate convergence when compared to the
Tanh, especially in very Deep Networks (Krizhevsky et al., 2012). The saturat-
ing negative region causes sparser activations, which can lead to better solutions
(Glorot, Bordes, & Bengio, 2011; Nair & Hinton, 2010). However, it can also make
training difficult, particularly without a proper initialization (He, Zhang, Ren, &
Sun, 2015b; Lu, Shin, Su, & Karniadakis, 2019).

Leaky ReLU
This activation function introduces a small slope (Maas, Hannun, & Ng, 2013) in
the negative region of the ReLU activation, so as to prevent ‘dead’ neurons, that
is Neurons that don’t fire. Moreover, the slope improves the gradient flow across
the network when compared to the standard ReLU, since dead neurons now have
non-zero gradients. This effect is particularly useful in very Deep Networks, so as
to counter the vanishing gradients problem (Xu, Wang, Chen, & Li, 2015).

The Leaky ReLU is defined as

LeakyReLU(x) = max(αx, x) , 0 < α < 1,

where α is a hyperparameter usually set to 0.01. In Parametric ReLU neurons
(He et al., 2015b) α is learnt jointly with the model. Leaky ReLUs have also been
found to outperform ReLUs in some tasks (Xu et al., 2015).

Figure 6.5: Non-Linear activation functions. Leaky ReLU has α = 0.1.

6.3 One dimensional
6.3.1 Related work
Although recent genomic prediction works have incorporated deep learning models,
deep learning remains rather unexplored in this context. Moreover, their ’shallow’
counterparts remain unbeaten in both performance and interpretability. W. Ma
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et al. (2018) implement a dual-branch CNN to predict five different phenotypes
in a soybean dataset. They achieve consistent but marginal gains in performance
(0.01 Pearson correlation improvement) compared to regularized linear regressions.
Similarly, Liu et al. (2019) utilize a CNN to predict eight phenotypes in a wheat
dataset. The results show an improvement of 0.005 in Pearson correlation with
relation to the rrBLUP (Endelman, 2011) and GBLUP (Clark & van der Werf,
2013) methods. In a more recent work (Abdollahi-Arpanahi et al., 2020), compared
the performance of multi-layer perceptrons (MLPs) and CNNs versus ensemble and
parametric methods in a Holstein bull dataset. Both deep learning approaches
achieved the lowest performance, with the CNN having a relative gain of 10% over
the MLP in terms of Pearson correlation.

6.3.2 Proposed architectures
AlexNet-like CNN

The network’s most basic architecture consists of two subsequent convolutional
blocks followed by two fully connected layers. Convolutional blocks are composed
of a one-dimensional convolutional layer with a leaky Rectified Linear Unit (ReLU)
activation, followed by a batch normalization and max-pooling layer. In addition,
a dropout layer was added after each convolutional block to combat overfitting.

This architecture is heavily inspired by the AlexNet CNN (Krizhevsky et al.,
2012), which established Deep Learning’s first major breakthroughs in the Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC). Moreover, AlexNet
marked the beginning of Deep Learning’s dominance over traditional computer
vision approaches. By adopting a similar architecture, we hope to replicate the
AlexNet phenomenon in the context of genome-wide phenotype prediction.

The main additions to the AlexNet-like architecture are the Dropout and BN
layers. Figure 6.6 shows a detailed diagram of the model, along with its hyperpa-
rameter settings.

Residual CNN

Inspired by the success of ResNet-like architectures in computer vision (He et
al., 2015a), we experimented with residual blocks in between the convolutional
and fully connected sections of the network. Residual connections were initially
proposed to counteract the vanishing gradient problem that arises in very deep
networks and to facilitate learning identity mappings He et al. (2015a).

Residual connections are called that way because they learn the residual as a
transformation of the input. Figure 6.7 illustrates the basic structure of a residual
block. From the image it follows that

R(x) = output− input

= F(x) + x− x

= F(x)

(6.1)
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Figure 6.6: AlexNet-like CNN architecture.

Thus, the residual block’s non-linear layers are learning the residual between
its input and the optimal output. During training, skip connections improve the
flow of gradients across the network. This helps combat vanishing gradients in
very deep networks, making earlier layers learn faster. In addition, if the optimal
mapping of a layer could be expressed as an identity, the solver can simply drive
the weights of the non-linear layers to zero.

(He et al., 2015a) argue that even though identity mappings are rarely opti-
mal, the reformulation still helps the network’s learning and generalization. If the
optimal transformation is closer to an identity mapping than to a zero mapping,
it should be easier for the network to learn the perturbations around the identity
than to learn the optimal transformation from scratch. To support this claim,
the authors run several experiments, showing that the residual functions in gen-
eral have small responses. These results suggest that the identity preconditioning
imposed by residual blocks eases the learning task.

In practice, the input and output of our residual blocks have different channels.
Thus, we also train a linear projection to map the input to the appropriate output
dimension4.

To the best of our knowledge, this is the first application of a Residual CNN
in this particular task. Still, similar architectures have been applied to other
omics5 problems. D. Wang et al. (2017) use a residual CNN architecture to predict
backbone torsion angles from amino acid sequences. Fang, Shang, and Xu (2019)
employ a residual CNN with an attention mechanism to predict phosphorylation
sites from protein fragments.

4The linear projection is then fed to a leaky ReLU activation, which is non-linear.
5Disciplines in biology whose names end in the suffix -omics, such as genomics, pro-

teomics, metabolomics
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(a) Residual block

(b) Residual block with linear projection

Figure 6.7: Residual blocks.
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To prevent over regularization due to the residual connection, the Dropout
layers in between convolutional layers were removed. Figure 6.8 shows the Residual
CNNs architecture, as well as its hyperparameter settings.

Figure 6.8: Residual CNN architecture.

6.3.3 Hyperparameters
Hyperparameters such as kernel size and number of filters have been studied ex-
haustively in fields such as computer vision. To the best of our knowledge, there’s
no previous research or heuristics on hyperparameter tuning in this task. The
kernel size in particular controls how many neighboring features are aggregated
by each filter. This parameter should reflect the degree of linkage disequilibrium
in the input genotype. However, this information is hard to measure accurately in
practice. To make matters worse, local correlations are not homogenoeous along
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the genome, as the length of haplotype blocks may vary. Although unsupervised
learning techniques such as clustering can give some insight into the genotype’s
structure (see Section B.3), results vary greatly between different techniques and
parameter settings. Consequently, the problem of choosing appropriate hyperpa-
rameters is tackled via exhaustive randomized searches.

The only design rules we adopted are: (i) if the feature map size is halved,
the number of filters is doubled to maintain the time complexity per layer; and
(ii) kernel sizes and fully-connected units are halved after consecutive each layer
(i.e. if the first convolutional block has a kernel size of 256, the second and third
blocks will have 128 and 64, respectively). The complete list of hyperparameters
searched along with their values can be found in Table 6.1.

Hyperparameter Search type Values
Number of CNN layers Choice {2, 3, 4}
Number of CNN filters (1st layer) Choice {8, 16, 24, 32}
CNN kernel size (1st layer) Choice {32, 64, 128, 256, 512}
Number of FC layers Choice {2, 3, 4}
Number of FC units (1st layer) Choice {128, 256, 512}

FC activation Choice

{tanh,
ReLU,
LeakyReLU,
ELU}

Dropout rate Uniform
min = 0.25
max = 0.50

Table 6.1: CNN hyperparameter search space

6.3.4 Multi-task learning
As mentioned previously, the low number of observations is one of the main limiting
factors in genomic prediction. In light of this issue, we propose to frame the
problem of complex phenotype prediction as a multi-task one (Ando & Zhang,
2005; Caruana, 1997; Evgeniou & Pontil, 2004).

Incorporating information from other environments naturally combats over-
fitting. Having different outputs for the same input (one for each environment
or trait) may force the model to extract features with more robustness towards
environmental or trait-specific noise. This robustness can lead to an increase in
performance for individual environments.

Different traits or environments tend to be weakly correlated. Thus, we experi-
ment with including all of them versus including a small group of highly correlated
ones. As shown in Chapter 3.1, the Holstein dataset exhibits only two correlated
traits (Milk Yield and Somatic Cell Score) with a Pearson correlation of 0.60. In
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the Yeast dataset, the chosen subset of environments consists of four sugar-related
environments which exhibit a medium to high pairwise correlation (0.48 to 0.80).

6.3.5 Methodology
We distinguish four different CNN architectures: the base AlexNet-like CNN and
the residual CNN, with their corresponding single and multi-trait variants. The
hyperparameters of the Residual CNN and the AlexNet-like CNN were determined
independently via a randomized grid search as described in the previous Section,
and are maintained across all different experiments.

Each architecture is evaluated with the base marker order (referred to as un-
shuffled) and the shuffled markers, for a total of eight distinct CNN models. In
addition, we compare the CNNs to a single-trait, 5-layer MLP described in Table
6.2. The MLP is completely agnostic to marker position, which means it cannot
exploit the genome’s local structure to the extent the CNN can. Thus, the CNNs
together with the MLP comprise nine different experiment types.

Each experiment type is ran on 20 different splits with 70% of the data reserved
for training, 10% reserved for validation, and the remaining 20% for test. The splits
are seeded so that all experiments run on the same 20 splits. All models are trained
with the Adam optimizer, with a base learning rate of 10−3 during 120 epochs.
The learning rate is reduced by a factor of 10 in epochs 30 and 60. In addition, an
early stopping callback is implemented to prevent overfitting. All weight matrices
were intitialized via the Glorot Uniform initializer (Glorot & Bengio, 2010b), while
biases were initialized to zero.

Maintaining the same splits and model configuration across experiments im-
plies that the only source of variation is the specific changes each of them introduce.
This allows us to extract more reliable conclusions about each variation’s impact
on the prediction task.

Layer Units Dropout BatchNorm after dropout Activation
0 1024 0.50 Yes ReLU
1 512 0.35 Yes ReLU
2 256 0.30 Yes ReLU
3 256 0.30 Yes ReLU
4 256 0.25 Yes ReLU

Table 6.2: MLP parameters.

6.3.6 Ablation studies
To evaluate if the CNN architecture is exploiting the genotype’s structure, we pro-
pose an ablation study in which we randomly shuffle the order of the markers. This
random shuffling completely breaks any local structure that the genotype might
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have. If the CNN’s inductive biases were working as expected, its performance on
this shuffled data should drop drastically.

In addition to the ablation study, we also train a 4-layer MLP with BN and
Dropout layers. This model is completely agnostic to marker position and as such
we expect it to achieve lower performance than its convolutional counterpart.

6.3.7 Model interpretation
Saliency Maps
Traditional models in genome-enabled prediction such as bayesian linear regres-
sions can be easily interpreted, since each weight in the model is associated to
one input feature. In these models, the relative importance of features can be
assessed by comparing weight magnitudes. Similarly, Decision Tree (DT) based
models provide several criteria to evaluate feature importance, such as the indi-
vidual performance gain of DTs which use a specific feature to split at least one
node. Another criteria for DT based models is the number of DTs that split a
node using a specific feature.

However, CNNs can have multi-layer architectures and can be highly over-
parametrized (see Section 7.7.10), which makes the mapping from input to output
more complex. This may enable the model to capture complex interactions be-
tween input features, which might come with the downside of leading to harder to
interpret models.

Certain tools that attempt to gain insights into the inner workings of these
black box models have been developed. Saliency maps are an example of such
tools. Specifically, saliency maps indicate the magnitude of the gradient of the
output with respect to each feature of an input sample:

s = ∇x(f(x))

where f is the model and x an input sample. Since a local first-order approximation
of the model is: f(x) ≈ x∇x(f(x)), saliency maps can be viewed as the weights of
a first order approximation of the model centered at point x.

Activation maps
Activation maps consist of representations of the activation functions at interme-
diate layers. Larger activation values (in absolute terms) have a stronger influence
on the network’s prediction. Thus, activation maps can help determine which
features or patterns have the biggest impact on prediction.

6.4 Two-Dimensional
6.4.1 Motivation
As described in Section 6.1, convolutional models exploit local structure in signals.
In the case of genomic sequences, this local structure may correspond to neighbor-
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ing SNPs in linkage disequilibrium. However, as can be seen in the hierarchical
clustering experiments B.2, related SNPs can also be found far away from each
other. Thus simply sliding a convolutional kernel through the genomic sequence
may prevent the model from capturing complex interactions between distant SNPs.

This suggests that it may be beneficial to find a representation of the genome
in which similar SNPs are close and dissimilar SNPs are further apart. Such
alternative representation of the genome could catalyze the extraction of structural
information via convolutions. In this sense, an image-like representation seems like
a coherent choice since it also enables the use of popular image processing tools
and two-dimensional6 CNNs.

In the following section, we describe the scheme used to transform genomic
sequences into image-like samples. We then use these image datasets to train
CNNs to predict Yeast growth and Holstein milk yield. Finally, we explore the
limitations of this approach and propose an alternative definition of similarity,
suitable for high dimensional vectors.

6.4.2 Genome to image
Sharma, Vans, Shigemizu, Boroevich, and Tsunoda (2019) propose a technique

called DeepInsight (DI) for transforming a set of numerical sequences into a set
of image-like matrices. To attest the generality and usefulness of the DI method,
Sharma et al. apply it to three real datasets of different nature:

• RNA-seq dataset. Samples in this dataset are gene expression vectors and
the task is to classify types of cancer. This dataset is part of the can-
cergenome project 7.

• Text dataset (Lang, 1995) containing newsgroup articles, where features are
created using word frequencies and the goal is to classify the type of docu-
ment.

• Speech dataset from the TIMIT corpus (Garofolo, 1993). The feature vectors
are mel-frequency cepstral coefficients, and the task is vowel classification.

Using these datasets, Sharma et al. train two-dimensional CNNs and find that,
after fine tuning hyperparameters, the DI pipeline outperforms current benchmarks
on the three classification tasks.

The DI pipeline can be split into two main steps. The first step consists of
building a binary image from the entire training set in an unsupervised manner.
This binary image distinguishes pixels that correspond to one or more features
(white pixels) from pixels that don’t (black pixels). For the reasons mentioned

6Two dimensional refers to the shape of the input being described by two numbers.
7https://cancergenome.nih.gov
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in the motivation section, this binary image -or mask- should capture the high-
dimensional structure of the dataset. For example, it could cluster similar features
while separating different ones. The second step is to assign a grey-scale value to
each white pixel in the image for each sample in the dataset. Consequently, the
transformed samples are versions of the same binary image but coloured according
to the values in the original sample. From a genomics point of view, we first
build an image-like representation of the whole population taking into account
the similarity between different SNPs and then particularize this representation to
each individual according to its genome.

Let X = {x1, x2, ..., xn} be the training set, where samples xi have dimension
p. In a genome-enabled prediction context p corresponds to the number of SNPs.
The columns of this dataset can be viewed as feature vectors {g1, g2, ..., gp}. In
order to create the matrix representation mentioned in the previous paragraph,
feature vectors are mapped into a 2-D space.

These embeddings are computed using one of two unsupervised dimensionality
reduction techniques: kPCA (kernel Principal Component Analysis) or t-SNE (t-
distributed Stochastic Neighbor Embedding). On one hand, kPCA is an extension
of PCA where the linear projection is performed in a reproducing kernel Hilbert
space (Schölkopf, Smola, & Müller, 1998). On the other hand, t-SNE learns a
low-dimensional mapping {ĝ1, ĝ2, ..., ĝp} that preserves the similarities between the
original feature vectors (Van der Maaten & Hinton, 2008). Specifically, similarities
in the high-dimensional space are computed as:

simji = pij =
pj|i + pi|j

2n

where

pj|i =


exp(−‖gi−gj‖2/2σ2

i )∑
k 6=i exp(−‖gi−gk‖2/2σ2

i )
if i 6= j

0 if i = j

σi being a learnable parameter. Likewise, similarities qij in the low-dimensional
space are measured using the Cauchy distribution:

qij =

(
1 + ‖ĝi − ĝj‖2

)−1

∑
k

∑
l 6=k

(
1 + ‖ĝk − ĝl‖2

)−1 , for i 6= j,

Then, the embeddings ĝi are learned, via gradient descent, to minimize the Kullback-
Leiber divergence between the distribution of similarities:

KL(P‖Q) =
∑
i 6=j

pij log
pij
qij

Each embedding ĝi is treated as the coordinates of the feature i on a Cartesian
plane, and the feature set {ĝ1, ĝ2, ..., ĝp} forms a point cloud in this plane. After
locating each feature in the plane, the smallest rectangle containing the point
cloud is found. Convex Hull algorithm is used to accomplish this task. Following
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a rotation to align the base of the bounding rectangle with the x axis, the Cartesian
planes is discretized. Several features can be mapped to the same pixel. In this
case, their values are averaged, which leads to greyscale images, as opposed to
binary masks. This pipeline is depicted in Figure 6.9.

Figure 6.9: Genome to Image pipeline from Sharma et al. (2019)

Applying this pipeline yields the results shown in figures 6.10 and 6.11.

(a) kPCA (b) t-SNE

Figure 6.10: 200×200 Image representation of a yeast genome using the DeepInsight pipeline.

The datasets obtained with the DI method were used to train 2D CNNs. Simi-
larly to the 1D CNNs described in Section 6.1, their architecture is vaguely inspired
by AlexNet. Hyperparameter tuning was tackled via randomized search. The re-
sulting architectures are described in diagrams 6.12 and 6.13.
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(a) kPCA (b) t-SNE

Figure 6.11: 200 × 200 Image representation of a holstein genome using the DeepInsight
pipeline.

Figure 6.12: 2D CNN architecture in Yeast.

6.4.3 Random mapping
In order to evaluate the extent to which t-SNE and k-PCA capture the high-
dimensional structure of the yeast and holstein genome, these mappings are com-
pared to a random mapping. Same as in the original pipeline, if various features
are mapped to the same pixel, the values of those SNPs are averaged. The com-
parison is done in terms of the predictive accuracy in the downstream regression
task. That is, a CNN with constant architecture is trained and fine-tuned with
the three image datasets: random, t-SNE and kPCA.

The random mapping of SNPs to pixels is done by sampling the X and Y
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Figure 6.13: 2D CNN architecture in Holstin

coordinates of each feature from a uniform distribution (i.e: X ∼ U [0, 199], Y ∼
U [0, 199]). As was done in the other mapping schemes, if two or more features are
mapped to the same pixel, their values are averaged.

Using this mapping scheme, the position of each feature in the plane is random,
and thus, irrelevant to the regression task. No spatial information is present in the
random image. We expect CNNs trained on t-SNE and kPCA to outperform the
CNN trained on random image representations of the genome.

6.4.4 Fermat Distance
Motivation

In dimensionality reduction, a notion of similarity between points in high-dimension
is needed. For instance, in t-SNE, euclidean distance between feature vectors was
used to construct two-dimensional embeddings of {g1, g2, ..., gp}. However, the
choice of a similarity measure is not simple. A well-studied phenomenon in ma-
chine learning is the so-called curse of dimensionality. Beyer, Goldstein, Ramakr-
ishnan, and Shaft (1999), illustrate this phenomenon by analyzing the effect of
dimensionality increase on the distances between data points. They argue that,
under a broad set of conditions, as dimensionality increases, distances between
every two points tend to be equal. Moreover, they maintain the view that for
large distances the distortion is more notorious than for small ones. Aggarwal,
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(a) Holstein (b) Yeast

Figure 6.14: 200× 200 Image representation of a Holstein and a Yeast genome using random
mapping

Hinneburg, and Keim (2001), emphasize this argument, suggesting that in high
dimensional spaces, Lk norms may not be qualitatively meaningful. Therefore,
dimensionality reduction algorithms, such as t-SNE, may benefit from using a
different, non-euclidean notion of similarity, more adequate for high dimensional
datasets.

Sapienza, Groisman, and Jonckheere (2018) propose a notion of similarity
called Weighted Geodesic distance following Fermat’s principle, or simply Fermat
distance, that aims to capture both the structure of the manifold on which the
data lies.

Definition

Let Xn be a sample of n independent vectors with common probability density f .
In our case the elements of Xn are genomic sequences of dimension p. LetM⊆ Rp
be a d dimensional manifold, with Xn ⊆M and d ≤ p.

The Fermat Distance between two points x1, x2 is defined as:

D(x1, x2) = inf
Γ

∫
Γ

1

fβ
d`

where β > 0 and the infimum is taken over all the paths Γ that connect x1 with
x2. As shown in the equation above, Fermat distance corresponds to a density-
weighted shortest path between two points. Paths where the density is high are
favoured in the minimization. As explained in (Sapienza et al., 2018) this is a
weighted geodesic distance where the path is weighted inversely to the density f .

In practice, f is unkwnown, and only the set of vectors Xn sampled from f
is observed. Thus, Sapienza et al. (2018) propose an estimator of the Fermat
distance.
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DXn(x1, x2) = min
(q1, . . . , qK) ∈ XKn
q1 = x1, qK = x2

K−1∑
i=1

` (qi+1, qi)
α

where α = d β + 1 8, 2 ≥ K ≥ n and `(·, ·) is a distance on M (for instance, the
Euclidean distance). Thus, in the Fermat distance estimator (or sample Fermat
distance), the minimization is done over the finite sequences of points in Xn that
go from x1 to x2. Note that when α = 1, the distance `(·, ·) is recovered, since
the sequence that yields the shortest sample Fermat Distance will be (x1, x2).
However, when α > 1, consecutive points with large `(·, ·) are discouraged, and
the sequence tends to follow regions with high density and only include points
that are close. In that sense, the Fermat sample distance follows more closely the
structrue of the manifold on which the data lies than the original `(·, ·) distance.
Sapienza et al. (2018) and Groisman, Jonckheere, and Sapienza (2018) show that
the sample Fermat Distance is indeed a distance (positive, symmetric and verifies
the triangular inequality) and provide conditions for the convergence of the sample
to the original Fermat Distance.

Fermat and t-SNE in the DI pipeline.
As explained in Section 6.4.2, the version of t-SNE used to create low-dimensional
embeddings employs the euclidean distance between points in high dimension. As
suggested by Sapienza et al. (2018), replacing the Euclidean distance by Fermat
distance, could be beneficial in clustering or dimensionality reduction tasks. We
trained 2D-CNNs on images built by applying de DeepInsight pipeline with t-SNE,
replacing Euclidean distance by Fermat distance. The results of this experiment
are presented in section 6.5.2.

Sapienza et al. (2018) propose using the Floyd-Walsh algorithm (Floyd, 1962)
to compute the sample Fermat distance in O(N3) operations. Nonetheless, in
applications where the number of points is high, this implementation was still
computationally expensive. Therefore, the authors also implement an algorithm
to compute an approximate sample Fermat distance 9. The complexity of this
algorithm is O(lkn log n), where l and k are typically much smaller than n. This
enabled the use of Fermat distance to construct the image-like embeddings of the
samples in the Yeast dataset.

6.5 Results and Discussion
In this Section we present the results of both the 1D and 2D CNNs for the two
chosen datasets (Yeast and Holstein), comparing the performances between differ-

8The choice of β depends on the application but Sapienza et al. (2018) give certain
guidelines on how to choose it.

9This implementation can be found in: https://github.com/facusapienza21/Fermat-
distance
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ent experiments. We also delve into the 1D CNN’s saliency maps and the most
relevant 1D CNN’s activation maps, proposing possible causes for their differences
in performance. We evaluate the suitability of CNN’s inductive biases and the DI
algorithm for this particular prediction task. Lastly, we conclude with a global
comparison between these Deep Learning methods and the classical alternatives
presented in Chapter 4.

6.5.1 1D CNNs
Yeast
For the Yeast dataset, we consider the Lactate, Lactose, Xylose and Sorbitol en-
vironments. As mentioned in Section 3.1.1, these are sugar-related environments
which encourage Yeast growth, and as such they enjoy mid to high pairwise cor-
relations.

Overall results As mentioned in Section 6.3.5, we distinguish four different CNN
architectures: the base AlexNet-like CNN and the residual CNN, with their cor-
responding single and multi-trait variants. In addition, we compare the highest-
performing CNN to a 5-layer MLP described in Table 6.2.

Figures 6.15 shows the test performance (in terms of Pearson’s correlation)
on four different Yeast environments. The results indicate that residual CNNs
outperform the AlexNet-like architectures on all four environments, with both
single and multi-trait variants achieving best and second-best performance. The
difference between multi and single-trait variants is small, specially for the residual
CNNs.

Regarding the comparison to the MLP architectures, the CNNs outperform
them in all environments except Lactate, and they do so by a considerable margin.
In Lactate, the gap between the best CNN (Residual single-trait) and the MLP
is practically nil. This could indicate that the CNNs inductive biases are relevant
for the traits’ prediction on most environments.

A global comparison between the performances of all models in the Yeast
dataset is shown in Table 6.3.
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Figure 6.15: 1D CNN and MLP results on four environments in the Yeast dataset.

Marker shuffling To verify if the CNNs inductive biases are responsible for their
superior performance w.r.t the MLPs, we conducted a series of marker shuffling
experiments. The results of these experiments are shown in Figure 6.16.

When shuffling markers, any kind of spatial structure in the input signal is
lost. Revisiting the analogy with computer vision, shuffling an image’s pixels
would make it unrecognisable, making any CNN’s performance suffer greatly. This
does not occur in the yeast genome-wide phenotype prediction task; instead, the
performance of the shuffled CNNs increases. This may suggest that the CNN is
not exploiting the local structure in the signal or that the model’s translational
equivariance is not appropriate for the task at hand.

We naturally wonder why this phenomenon occurs. To gain more insight into
this question, we explored the network’s saliency maps.

It is worth noting that all subsequent plots involving the shuffled CNNs are
showed after undoing the marker shuffling transformation. We will also make
extensive use of channel-wise sums to help visualize activation maps. This does
not mean that the residual CNNs perform a channel-wise sum - they flatten the
addition layer’s output instead. Still, if optimal, channel-wise sums can be easily
performed by the network after the flatten operation.
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Figure 6.16: Comparison between regular and shuffled 1D CNNs in the Yeast dataset.

Lactate Lactose Xylose Sorbitol
Multi 0.63 0.67 0.60 0.35
Multi Residual 0.71 0.73 0.66 0.42
Multi Shuffle 0.69 0.71 0.66 0.44
Multi Shuffle Residual 0.72 0.74 0.68 0.46
Single 0.64 0.68 0.59 0.32
Single Residual 0.71 0.73 0.67 0.43
Single Shuffle 0.71 0.72 0.67 0.43

CNN

Single Shuffle Residual 0.73 0.74 0.67 0.43
Multi 0.71 0.72 0.66 0.42

MLP
Single 0.70 0.72 0.64 0.39

Table 6.3: Mean CNNs and MLPs performance on the yeast dataset. The bold numbers
indicate the best performing model for each environment.

Saliency maps As explained in Section 6.3.7, saliency maps indicate the magni-
tude of the gradient of the output with respect to each feature of an input sample:

s = ∇x(f(x))

where f is the model and x an input sample.
Figure 6.17 shows the saliency maps for different models trained on the yeast

dataset (marker weights for Ridge). We can observe that the impact of each marker
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Figure 6.17: Different models’ mean (averaged over all test samples) saliency maps in the
yeast dataset. The first plot corresponds to the weights of a Ridge regression. The corrected
shuffled plots are the gradients of the shuffled CNN after undoing the random marker shuffling
transform.

to the final prediction is extremely similar across models. Specifically, the region
around SNP 10, 000 appears to be the most relevant region in all models. The
deep learning models exhibit maps which closely resemble a regularized linear re-
gression. Moreover, the unshuffled and shuffled CNNs end up learning the same
marker importances. The main difference between these two models is that the
unshuffled CNN’s saliency map is noisier. When comparing the AlexNet-like ar-
chitecture to the residual one, the former exhibits a noisier saliency map in both
the regular and shuffled variants. In addition, unlike the residual architecture in
which shuffling the markers smoothes the input’s gradients, we observe the op-
posite effect. The similarity between the saliency maps and the weights of the
Ridge regression suggests that the CNN’s inductive biases do not affect feature
importance significantly.

Activation maps Figures 6.18 and 6.19 show the channel-wise output of the resid-
ual and non-residual branches of the CNN (just before the addition layer), for the
regular and shuffled variants. Similarly, Figures 6.20 and 6.21 show the residual
and non-residual branches’ channel-wise sum. The biggest difference between the
regular and shuffled CNNs relies on the non-residual branch. This is further con-
firmed by Figure 6.22, which shows that both networks’ residual representations
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come extremely close to perfect identity mappings.

In the unshuffled case, the non-residual branch acts as a “edge detector” , in
the sense that its largest activations correspond to abrupt changes in the input
signal. Unsurprisingly, its shuffled counterpart is unable to distinguish these spatial
patterns, something that is reflected on its noisy activation maps.

Figure 6.18: Superimposed residual and non-residual branches’ output for the unshuffled variant
(one sample only, not to be confused with the previous mean across all individuals). Recall
that each channel corresponds to the output feature map of a single convolutional filter.

Figure 6.19: Superimposed residual and non-residual branches’ output for the shuffled variant.

Lastly, we analyse the addition layer’s output, which combines the residual and
non-residual branches and is fed to the MLP. Figures 6.24 and 6.23 showcase the
addition layer’s channel-wise sum. It can be observed that this channel-wise sum is
a slightly distorted version of the original signal. In other words, the convolutional
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Figure 6.20: Residual and non-residual branches’ channel-wise output sum for the unshuffled
variant.

Figure 6.21: Residual and non-residual branches’ channel-wise output sum for the shuffled
variant.

layers learned a mapping that resembles an identity. This suggests that the model
may have learned to ignore the convolutional layers, to base its predictions on the
final fully connected layers.

The shuffled CNN can recover a closer representation to the original input
signal than its unshuffled counterpart (due to the peaks in the amplitude jumps).
Moreover, this representation is enhanced with finer, higher frequency information,
which come from the non-residual branch (as seen in Figure 6.21). This is not the
case for the unshuffled CNN, in which the constant (non-peak) regions of the learnt
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Figure 6.22: Comparison between the CNN’s residual representations. Both channel-wise sums
come extremely close to the original input signal, differing in a slight offset and an inversion
in the case of the shuffled variant.

representation are virtually identical copies of the input signal.
Shuffling the marker order may allow the CNN to aggregate markers from

different regions of the genome. Furthermore, the unshuffled CNN aggregates large
chunks of constant input signal (due to this particular dataset’s characteristics).
We hypothesize that this leads to a poor representation of the input genotype,
which is largely governed by the peaks that arise from amplitude jumps. This kind
of edge-detecting features could be useful in certain tasks, but the empirical results
indicate they are not useful in the context of yeast genome-wide complex genotype
prediction. Instead, the results favour a representation which is more sensitive
towards each individual marker’s contribution, i.e. the shuffled CNN’s. In other
words, the position in which a certain pattern occurs affects its outcome, which
directly contradicts the translational equivariance of CNNs. This observation is
consistent with our knowledge of the inner-workings of the DNA.

This phenomenon may also explains why residual CNNs consistently outper-
form AlexNet-like architectures. The former can learn representation which resem-
bles the input genotype more easily than the latter. In fact, learning perturbations
around identity mappings were one of the main motivations for the introduction
of residual layers in (He et al., 2015a).
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Figure 6.23: Unshuffled CNN final activation map.

Figure 6.24: Shuffled CNN final activation map. The transformation on the bottom plot
consists of an inversion, an offset correction (+1.25) and a moving average (10 sample window
length).
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Holstein
We consider all three traits in the Holstein dataset, namely Somatic Cell Score
(SCS), Milk Fat Percentage (MFP), and Milk Yield (MY). The only correlated
traits in this datasets are MY and MFP, as shown in Section 3.1.4.

Overall results Figures 6.25 shows the different CNN’s and the MLP’s results for
the three different Holstein environments. The mean results can be found in Table
6.4.

Figure 6.25: 1D CNN and MLP results in all three traits from the Holstein dataset.

The results were extremely similar to the yeast dataset for the SCS and MFP
traits. Namely, the residual CNNs consistently outperformed the AlexNet-like ar-
chitectures, with little difference between multi and single-trait approaches. How-
ever, in this dataset, the best CNN architectures (single-trait residual) for these
two traits performed slightly worse than the MLP.

The MY trait exhibits a different behaviour. Although the best performing
CNN is still the residual one, the AlexNet-like architecture achieved second place,
with both networks belonging to the single-trait variants. In addition, the perfor-
mance margin between the best CNN and the rest of the models is considerably
larger than in other traits.

It is worth noting that MFP and MY have the highest pairwise correlation.
However, SCS and MFP results presented in this section were similar, whereas
MY showed a different behaviour. This was most prominent for the MLP vs CNN
comparison, and also for multi-trait models, where MY showed a large performance
drop.
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Marker shuffling The large performance gap between the CNN and MLP in MY
suggests that the CNN’s inductive biases may be beneficial in this trait. The
marker shuffling ablation study was conducted to test this hypothesis.

Figure 6.26 shows the results of the marker shuffling experiments for each
Holstein trait. In addition, the comparison between all models’ mean performance
is showed in Table 6.4. Similarly to the Yeast experiments, marker shuffling does
not impact MFP’s and SCS’s predictions significantly. Moreover, some models
benefit from marker shuffling, a phenomenon we already observed in the yeast
dataset.

The most interesting result comes from the MY trait, in which marker shuffling
consistently hinders performance on all four models, and it does so by a significant
margin. The consistent, large gap between unshuffled and shuffled CNNs is a strong
indicator that the CNN’s inductive biases are adequate for this trait. Namely, in
this trait, detecting patterns in the genome regardless of their absolute position
may be relevant.

Figure 6.26: 1D CNN marker shuffling results in the Holstein dataset.
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SCS MY MFP
Multi 0.74 0.77 0.67
Multi Residual 0.75 0.78 0.70
Multi Shuffle 0.72 0.71 0.67
Multi Shuffle Residual 0.75 0.76 0.71
Single 0.73 0.79 0.68
Single Residual 0.75 0.81 0.71
Single Shuffle 0.73 0.73 0.68

CNN

Single Shuffle Residual 0.75 0.78 0.71
Multi 0.76 0.77 0.72

MLP
Single 0.76 0.77 0.71

Table 6.4: Mean CNNs and MLPs performance on the Holstein dataset.

Saliency maps The MY trait’s results motivate us to conduct the same saliency
and activation map analysis as in the Yeast section. This analysis will be done on
single-trait CNNs, which achieved superior performance in this particular trait.

Figure 6.27 shows a Ridge regression’s learned marker weights alongside the
MLP’s and CNN’s input’s gradients. As in the Yeast dataset, most gradients
exhibit a consistent, well defined pattern, which closely resembles the linear re-
gression’s weights. For this trait’s prediction, the most relevant region is located
around marker 25,000, with a smaller peak around marker 11,000.

Figure 6.27: Ridge’s regression marker weights and mean saliency maps for the MY trait.
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The only model which escapes this pattern is the shuffled AlexNet-like CNN,
which exhibits several gradient peaks along the entire input. In contrast, the
shuffled residual CNN’s does not manifest these irregular saliency maps. Since this
network performed worse than the Residual single-trait CNN, we can assume that
this irregular gradients do not correspond with better performance. Moreover, the
shuffled Residual CNN’s performance is considerably higher than its AlexNet-like
counterpart.

The shuffled Residual CNN’s gradients are slightly noisier than its unshuffled
counterparts’, something that also occurred in yeast’s shuffled residual CNN.

Activation maps It is worth noting that Holstein’s activation maps are consider-
ably harder to interpret than Yeast’s. This is due to the former’s irregular input
signal when compared to latter’s square-wave-like shape. Still, by examining their
relative magnitude and perturbations w.r.t. the input, the activation maps shed
some light on the relevance of the CNN’s Residual connection.

Figures 6.28 and 6.29 show the residual and non-residual branches’ activation
maps channel-wise sum. The magnitude of activations is comparable for both
branches, which implies the model is taking advantage of the Residual block. The
fact that Residual CNNs outperformed both the MLP and the shuffled CNNs in
this trait suggests that the bias introduced by the identity branch is useful for the
prediction of this particular trait.

Figure 6.28: MY’s residual and non-residual branches’ channel-wise output sum for the un-
shuffled variant.

Figure 6.30 shows the CNN’s channel-wise sum after the addition layer, su-
perimposed with the original input signal. In contrast to Yeasts’ final activations,
Holstein’s show slight qualitative similarities with the original input. This is con-
sistent with the fact that the CNN trained on shuffled samples did not outperform
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Figure 6.29: MY’s residual and non-residual branches’ channel-wise output sum for the shuffled
variant.

the unshuffled version, something which did happen in the Yeast dataset. More-
over, the input’s negative markers are set to almost zero. This is likely due to the
LeakyReLU non-linearity, however the channel-wise sum does not necessarily need
to meet this criteria.

Figure 6.30: MY’s comparison between the CNN’s final representations.
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6.5.2 2D CNNs
Results shown in the following section represent the mean predictive correlation
(r) in 6 data splits (train-validation-test).

Yeast

Figure 6.31: Performance comparison of 2D CNNs after the DI pipeline with two different
mappings in Yeast.

As shown in Figure 6.31, in all environments, the difference between k-PCA
and t-SNE mappings is not significant. As mentioned in Section 6.4.3, the goal of
the random mapping experiments is to evaluate the extent to which t-SNE and
k-PCA capture the high-dimensional structure of the data. Figure 6.32 shows
that random mappings are not detrimental in terms of predictive accuracy. On
the contrary, in Yeast, the 2D CNN trained on images built by randomly mapping
SNPs to the plane outperformed models that use t-SNE and k-PCA. This suggests
that, in the case of the yeast genome, the increase in performance with respect to
the 1-D CNNs 10 is not due to the DeepInsight pipeline.

As shown in Figure 6.32, using Fermat distance to build two-dimensional fea-
ture embeddings was beneficial, surpassing random mapping and the literature in
three out of four environments. This indicates that, in terms of predictive accu-
racy in the downstream phenotype regression task, Fermat Distance may be a more
effective measure of similarity than Euclidean distance for high dimensional geno-
types. Whether this result can be extrapolated to other dimensionality reduction
techniques, models and traits is subject of further work.

Nevertheless, the CNNs trained on the images generated using the DI pipeline
did not outperform some baseline models 6.5.3.

10The comparison is shown in Table 6.5.3.
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Figure 6.32: Performance comparison of 2D CNNs after the DI pipeline with four different
mappings, including Random and Fermat in Yeast.

Holstein

Figure 6.33: Performance comparison of 2D CNNs after the DI pipeline with three different
mappings in Holstein.

In Holstein, CNNs trained on images built with t-SNE consistently outperfom
their counterparts built by applying the DI pipeline with random and k-PCA
mappings. The 2D-CNNs do not outperfrom the bayesian mixed linear model
presented in (Yin et al., 2020). However, KAML outperforms the 2D-CNNs by
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less than 4% in all traits. Furthermore, the 2D-CNN outperforms all baseline
models in Milk Fat Percentage. This may suggest that the local structure of the
image-like representation built using DI and t-SNE is exploited by the CNN via
convolutions.

In contrast to the Yeast experiments, t-SNE consistently outperforms k-PCA
in Holstein. It can be pointed out that, albeit locally, t-SNE might better preserve
euclidean distances (by preserving probabilities). However, whether euclidean dis-
tances in the high dimensional input space are informative - and useful for the
task at hand - is unclear, due to the curse of dimensionality and the fact that the
variables are discrete. In addition, when using t-SNE non-zero pixels were more
spread within the image (see Figure 6.11), which may be caused by the asymmetry
of the KL divergence loss (Van der Maaten & Hinton, 2008). Further research is
needed to evaluate whether these aspects favour CNNs trained on those feature
maps.

As shown in Figure 6.33, the variance in predictive correlation is higher (al-
most double) in MFP than in SCS and MY. This may be linked to the genetic
architecture of the traits. Milk Fat Percentage has one or several major genes with
large effect and many loci with small efect, while SCS and MY only have several
loci with small or moderate effect (Yin et al., 2020).

On DeepInsight
The results outlined in the previous paragraph indicate that the DeepInsight
method worked better in the Holstein dataset than in the Yeast dataset. This
may be due to the genetic architectures of these traits.

(a) Yeast (b) Holstein

Figure 6.34: Hierarchical clustering results.

Figure 6.34 shows the result of the hierarchical clustering experiment in the
Yeast and Holstein datasets. As explained in Section B.1, clusters represent groups
of similar SNPs. Since similarity is defined in terms of correlation, SNPs from a
cluster tend to be in linkage disequilibrium. Figure 6.34 shows that, in Yeast,
clusters are formed by contiguous SNPS, while in Holstein, SNPs from a same
cluster can be further away in the genome. One of the main reasons to apply the
Deep Insight method was to create genome representations where similar SNPs
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are close. This would enable the aggregation of local information via convolutions.
The result of the hierarchical clustering experiment indicates that, in Yeast, an
image-like representation has no advantage over the genomic sequence due to the
absence of non-local correlations. This suggests that there is more to gain from
applying the Deep Insight pipeline and a 2D-CNN in the Holstein dataset than
in the Yeast dataset. This observation is consistent with the results of random
mapping experiments.

The Deep Insight method has recently gained attention due to the fact that it
was used by the winner of the Mechanisms of Action (MoA) Kaggle competition
11. Neither in this competition, or in the original paper (Sharma et al., 2019),
random mappings were used as a baseline to assess the feature to pixels mappings’
downstream performance. As with genomic prediction experiments, the perfor-
mance of random mappings against the proposed techniques varied depending on
the dataset.

For ringnorm-delve, one of the synthetic datasets used in the original paper,
we ran the architecture and hyperparameter search described by the authors and
obtained a similar accuracy to TSNE mappings, as shown in table 6.5. Table 6.6
shows that the search resulted in smaller receptive fields and larger L2 regulariza-
tion penalties for random mappings.

Accuracy
Random 0.98
TSNE 0.99

Decision Tree 0.90
Ada-Boost 0.93

Random Forest 0.94

Table 6.5: Ringnorm delve Accuracy for Deep Insight using TSNE and random mappings.
Baseline methods from (Sharma et al., 2019) are included for comparison.

Receptive Field Num Filters L2 regularization
Random 2×9 4 3.1 ×10−7

TSNE 6×4 4 1.4 ×10−7

Table 6.6: CNN hyperparameters obtained for different random and TSNE mappings.

In the case of the MoA competition, training the same Efficient-Net B3 (Tan
& Le, 2019) architecture (with the same hyperparameters) using random mappings
resulted in an increase in average log loss (the competition’s chosen performance
metric) from 0.0178 to 0.0191, which was significant for this problem. That is,
TSNE did outperform random mappings for this dataset, although this may also
be due to hyperparameter settings and the architecture used.

11https://www.kaggle.com/c/lish-moa/
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All in all, we find that in the light of these results the assessment of the
DeepInsight technique requires further work, and in that sense comparing against
random mappings is a useful first step.

Summary
• 2D CNNs surpassed baseline models for Holstein in Milk Fat percentage,

but fell behind on other phenotypes and most Yeast environments.

• In the Yeast dataset, random mappings performed comparably to k-PCA
and t-SNE, but Fermat distance outperforms them.

• In Holstein, t-SNE consistently outperformed k-PCA and random mappings.

6.5.3 Global comparison in Yeast and Holstein
As shown in Table 6.8, in the Yeast dataset, GBM outperforms both 1D and 2D
CNNs in three out of four environments. In the Sorbitol environment, the 2D
CNN trained using the DeepInsight pipeline slightly outperforms the baseline. As
described in section 6.5.1, the fact that baseline models outperform CNNs may be
due to the inadequacy of the CNN’s inductive biases for this particular problem
and trait.

In Holstein, 1D CNNs outperform all other models in two out of three traits.
However, in MFP, KAML surpasses CNNs and baselines by a significant margin.
This may be due to the fact that MFP exhibits the simplest biological architecture
(see Yin et al. (2020)). Bayesian models with strong priors may be more effec-
tive in traits with simple biological architectures. In contrast, over-parametrised
Neural Netowrks seem to be better suited for traits with more complex biological
architectures.

As already stated, the results in Yeast and Holstein point that no model is
consistently better in all datasets and traits.

Best Baseline (GBM) Best 1D CNN Best 2D CNN
Lactate 0.78 0.73 0.75
Lactose 0.77 0.74 0.57
Xylose 0.75 0.68 0.70
Sorbitol 0.65 0.46 0.66

Table 6.7: Mean Pearson Correlation Coefficient for the best Baseline, 1D CNN and 2D CNN
model in the Yeast dataset. Results from Grinberg et al. (2019) are not included because
Pearson Correlation is not reported.
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Best Baseline (SVR) Best 1D CNN Best 2D CNN KAML
MFP 0.78 0.71 0.81 0.86
MY 0.79 0.81 0.78 0.79
SCS 0.74 0.75 0.70 0.74

Table 6.8: Mean Pearson Correlation Coefficient for the best Baseline, 1D CNN and 2D CNN
models in the Yeast dataset. Results of the KAML model from (Yin et al., 2020) are included
for comparison.
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Chapter 7

Graphical methods

7.1 Introduction
When dealing with finite size populations, and without random mating, the iid
assumptions of classical genetics regarding SNPs and individuals certainly will not
hold. In the case of SNPs, correlations between markers will exist, a phenomenon
that, as we already mentioned, is called linkage disequilibrium. Structure may
also be found at a population level, due to kinship. Whether gains arising from
exploiting population structure are desirable, or considered overfitting, depends on
the ultimate goal of the analysis (Wray et al., 2013). It may be argued that for some
agricultural applications testing samples are unlikely to deviate significantly from
the training distribution since selection results in a highly structured population.
Therefore, associations between both variables and samples are relevant in this
context, and could be leveraged when making phenotype predictions.

Graphs are a common way to model and represent those relationships, and have
thus been used extensively in genetics (Sinoquet, 2014). In particular, graphical
models have been developed in the context of GWAS (Mourad, Sinoquet, & Leray,
2011) and genomic prediction (Morota et al., 2013).

On the other hand, the advent of Graph Neural Network architectures has
enabled Deep Learning on non-Euclidean data (Wu et al., 2020a), establishing
state-of-the-art results in many Graph Signal Processing tasks. They therefore
present a promising research direction in the context of genome enabled prediction
of complex traits which, to the best of our knowledge, has not been explored yet.

7.2 Basic definitions
Although great introductions in graphical models can be consulted (Kolaczyk &
Csárdi, 2020), on this section we lay out (only) some necessary basic notions.

A graph or network G := (V, E) is defined as a set of nodes or vertices V which
are connected by a set of edges E . Edges are represented as a pair of vertices
{u, v} u, v ∈ V, and an edge {u, v} is said to be incident with the vertices u and
v. If edges are symmetric, that is {u, v} ∈ E iff {v, u} ∈ E , the graph is said to be
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undirected. An example of such a graph is shown in Figure 7.1.

Figure 7.1: Example of an undirected graph. Nodes are represented by circles, which are
labeled from zero to four. Edges between nodes are represented by lines. That is, a line is
drawn between two nodes if there is an edge between them. Example from Zachary (1977).

Both vertices and edges can be labeled arbitrarily assigning integers 1, . . . , |V|,
and 1, . . . , |E| respectively. Graphs differing only on relabelings of its vertices and
edges, are isomorphic.

A subgraph S is a graph made up of a subset of the original nodes and edges
of the graph:

S = (V ′, E ′) is a subgraph of G = (V, E) iff V ′ ⊆ V and E ′ ⊆ E .

An induced subgraph is a subgraph made up by a subset of the nodes and all the
edges corresponding to those nodes:

S = (V ′, E ′) is a subgraph of G = (V, E) iff V ′ ⊆ c and E ′ = {{u, v} ∈ E ∀ u, v ∈ V}

A subgraph of the graph represented in 7.1 is shown on Figure 7.2.
The adjacent nodes of node u are the set of nodes that share an edge with u.

N1(u) := {v : (u, v) ∈ E}.

In an abuse of notation, the word neighbourhood or one-hop neighbourhood is
sometimes used to describe the adjacent nodes and also the subgraph induced by
those nodes.

A path P is a sequence of nodes P = u0, . . . , uk, such that consecutive nodes
are connected: (ui, u(i+1)) ∈ E . The path is said to have length |P | − 1.

The k hop neighbourhood of node u is defined as the set of nodes for which a
path with length k to u exists:

N1(u) := {v : (u, v) ∈ E/∃Pk (̄u, ..., v)with length k.
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Figure 7.2: Example of the subgraph induced by nodes V ′ = 0, 1, 2, 4 from the graph repre-
sented on Figure 7.1.

Figure 7.3: k-hop Neighbourhoods example. On the left, the graph with the target node
coloured in red is shown. On the right, nodes belonging to the k − hop neighbourhoods are
coloured differently. Circles are also drawn to illustrate neighbourhoods. Figure by Gaudelet
et al. (2020).
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An undirected graph is connected if there is a path between any pair of nodes
u, v ∈ V.

Feature Vectors can be added to both nodes and edges. The terms node fea-
tures, signals supported on graphs, or graph signals are all used to refer to mappings
x : V → Rn, where n is the dimension of the feature space. Figure 7.4 is Edge

Figure 7.4: Example of a graph supported signal. Each node (circles) represents a Holstein
animal, and the signal is a real valued phenotype (color). Edges (lines) represent correlations
between genotypes.

features are mappings e : E → Rm. It is common to associate a scalar value with
each edge, which is referred to as edge weight.

For a weighted graph to be undirected, these weights have to be symmetrical:

wij = wji for all (i, j) ∈ E

The adjacency matrix A ∈ R|V|×|V|, is a common representation of the graph,
which is defined as:

Aij :=

{
wij , if (i, j) ∈ E
0, otherwise

,

where wij is the weight assigned to the corresponding edge. Unweighted graphs
can be seen as a special case of weighted graphs where wij = 1∀ (i, j) ∈ E . If the
graph is undirected, its adjacency matrix will be symmetric.

A node’s degree dv is defined the sum of incident edge weights with node v:

di =
∑
j

Ai,j .
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Figure 7.5: Examples of graphs and their adjacency matrices.

In the case of unweighted graphs, it is the number of adjacent nodes.
The degrees from all nodes of the graph are represented by the degree matrix

D ∈ R|V|×|V|:
Dij :=

{
di, if i = j
0, otherwise

The normalized adjacency matrix is defined as:

Aij :=

{ wij√
didj

if (i, j) ∈ E

0, otherwise
,

which can be expressed in matrix form as:

A := D−1/2AD−1/2

Another useful matrix is the graph Laplacian, L ∈ R|V|×|V|:

L = D−A

It can give a sense of smoothness of graph signals, which is commonly introduced
by stating its connection with the Dirichlet Energy of a graph signal:

E(x) = xTLx =
∑
{i,j}∈E

wij (xi − xj)2 ,

where x is a signal supported on a graph with Laplacian L, and E(x) its Dirichlet
Energy. The spectral analysis of the Laplacian matrix gives several insights about
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a graph’s structure and properties, as described by Chung and Graham (1997).
Laplacian matrices can be normalized in the same way as adjacency matrices,
defining the normalized Laplacian L :

L := D−1/2LD−1/2

Normalized operators are thus closely related:

L = D−1/2(D−A)D−1/2 = I−A

Both the Laplacian and the Adjacency matrix are Graph Shift Operators
(GSOs), which are matrices S ∈ R|V|×|V| such that:

Sij := 0, if {i, j} /∈ E and i 6= j

7.3 Graph Topology Inference
There are several ways to build a graph representation from SNP marker data.
Individuals can be treated as nodes, and thus genotypes are treated as node fea-
tures. Alternatively, SNPs may be treated as nodes, and thus each genotype
represents a graph signal. Although several graphical models treating SNPs as
nodes exist (Rosa, Felipe, & Peñagaricano, 2016), complex trait prediction litera-
ture regarding networks with individuals as nodes is scarce.

Kinship matrices can be used to construct population graphs, and biological
information such as functional annotations, expression data and genetic distances
can be used to build the SNPs-as-nodes graph (Kim et al., 2019; Lee & Lee,
2018; O’brien, Costin, & Miles, 2012; Thieffry, Huerta, Pérez-Rueda, & Collado-
Vides, 1998; Tsalenko et al., 2006; L. Zhang & Kim, 2014). However, when this
information is not available a graph representation may still be constructed from
SNP marker data only, as an association network i.e., one where nodes with a
sufficient level of ‘association’ between node attributes are connected. Several
measures of association can be employed, the most common being correlations
and partial correlations.

In fact, the Genomic Relationship Matrix used in GBLUP (VanRaden, 2008)
can be interpreted as the adjacency of an association network between individuals.
Similarly, if an SNPs-as-nodes graph is constructed using the covariance matrix as
a GSO, finding its spectral decomposition - which is called Graph Fourier Trans-
form in the context of Graph signal Processing (introduced in Section 7.5.1) - is
equivalent to performing PCA (Segarra, Huang, & Ribeiro, 2019).

It may also be noted that graph structures estimated from pairwise associations
or distances are independent from node labeling. Another advantage is that, when
performing inference, new nodes can be added without further information. This
is crucial on population graphs, since test individuals are not part of the training
graph. It could also be useful when treating SNPs as nodes, enabling the use of
markers coming from different genotyping arrays.

Although treating SNPs as nodes and inferring network structure is biologi-
cally relevant since it may help uncover trait architecture and model complex gene
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interactions, it was left for further work. When treating SNPs as nodes, the num-
ber of samples - that is, the number of individuals in the dataset - is significantly
smaller than the number of parameters that need to be estimated (p2 � n, where
n is the number of individuals and p the number of SNPs). Some common regular-
isation techniques to overcome the ill-posedness of this problem are presented on
Appendix D, but it remains challenging. Henceforth we will focus on the simpler
approach, treating individuals as nodes.

Lastly, recent works in Graph Neural Networks have proposed network struc-
ture estimators that can be learned jointly with the task at hand (Kazi, Cosmo,
Navab, & Bronstein, 2020; Y. Wang et al., 2019). This enables the use of Graph-
ML methods on supervised tasks without prior knowledge about graph topology.

7.3.1 Association Networks

Measure of association or similarity.

The vast majority of association network literature focuses on continuous (and,
more often than not, normally distributed) variables, while SNPs are intrinsically
categorical. For haploid organisms, bi-allelic polimorphisms constitute binary vari-
ables and consequently some techniques may still be valid - namely phi coefficients
are equivalent to pearson correlation coefficients derived for continuous variables.
This is not the case for organisms with higher ploidy levels, where an appropiate
contingency analysis should be carried out in order to infer association. However,
treating the count of rare alleles at a given site as a continuous variable is a com-
mon practice on classical quantitative genetics, which is rooted on the extensive
use of additive (linear) models.

When constructing association networks, partial correlations are often pre-
ferred, from the stance that edges should represent direct associations or direct
effects between vertices. That is, when considering two variables the effect of the
remaining variables should be adjusted. Under gaussianity assumptions, partial
correlations are proportional to the inverse of the covariance matrix (?), known
as the precision matrix. This is widely used in the context of Gaussian Graphical
Models and several methods for estimating the precision matrix exist.

Conditional Independence Tests have been derived for non-gaussian variables (Belda,
Vergara, Safont, & Salazar, 2019; Ramsey, 2014). Most are based on the idea of
mapping the data to an appropriate reproducing kernel Hilbert space and measur-
ing association on that space, i.e. they are kernel methods. These are clearly more
suitable for genomic data, and although they were not employed in the current
work, deriving graphs from these tests is a promising research direction.

In these thesis we have employed Pearson’s Correlation coefficient, defined in
Equation 2.5, as a measure of similarity between individuals. Exploring other
association measures, as the ones mentioned above, is left for further work.
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Sparsification

Inducing sparsity is also a crucial part of network estimation. The aim is to reduce
spurious correlations that appear as a result of multiple testing, induce structure
and stability on network estimators, and keep down costs in terms of memory and
computation for subsequent processing algorithms, since the number of nodes can
be large.

Figure 7.6 shows subgraphs consisting of 50 individuals chosen randomly from
the Holstein dataset, obtained using different sparsification methods. In Appendix
E the graph topology obtained using different sparsification methods and levels of
sparsity is analysed. This analysis is centered on Holstein dataset, and the graphs
which were then used to train and evaluate predictive models.

The two sparsification methods used are outlined below.

Thresholding This simple heuristic consists in directly setting to zero elements
of the GSO matrix that fall bellow a certain threshold to attain a desired sparsity
level. It has been shown that under certain conditions it is equivalent to Graphical
Lasso (Fattahi & Sojoudi, 2019).

k-NN It consists of keeping only the top k Nearest Neighbours for each node, i.e.
keeping the k larger correlations. This can be done either row-wise or column-wise.
Note that the resulting GSO will not be symmetric, and therefore the resulting
graph will be directed. We have chosen to set k neighbours as incident edges, and
as a result the obtained graphs will have a fixed in-degree.

7.3.2 Random Graphs
In order to assess the effect of graph topology on predictive accuracy, we compared
the performance of graphical models trained on association networks with models
trained on random graphs. For this purpose, two types of random graphs were
explored.

Erdös–Rényi model

In the Erdös–Rényi random graph model, graphs are built by randomly connecting
nodes. Precisely, the edge weights are modeled by independent Bernoulli random
variables:

eij =

{
1 with probability p
0 with probability 1-p

∀i, j ∈ V i 6= j

Since these Bernoulli variables are independent, the distribution of degrees in
the graph corresponds to a binomial distribution. The parameter p was chosen so
that the expected mean degree of the graph equals 40 (which was the mean degree
obtained using kNN and thresholding).
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Figure 7.6: Graphs constructed using 50 individuals from the Holstein dataset. Pearson cor-
relation and two different sparsification methods were used: thresholding at 0.55 (up) and
40-Nearest Neighbours (down). The size of nodes is proportional to their in-degree.
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7.4 Problem formulation
7.4.1 Node Regression (Population Networks)
We will solve the risk minimization problem already stated in 2.1, restricting the
function class C to graphical models:

ŷ = φ(X,G), φ ∈ C

where X ∈ Rn×p is a matrix containing p-dimensional genotypes of n individuals,
ŷ ∈ Rn×m are the m-dimensional predicted phenotypes of those individuals, and
G = (V, E) is a graph as defined on 7.2 with |V| = n nodes. A one-to-one mapping
from nodes to individuals will exist, that is, each individual’s genotype can be seen
as node features in Rp.

We only impose that φ depends on a graph, which is not given. Therefore, the
choice of the graph G is also part of the learning problem. This is not true in many
graph regression problems, where network structure is inherent, for instance if it
has some physical meaning.

The problem with choosing an arbitrary graph is that models would not gen-
eralize when making predictions on unseen nodes which are not on the graph. It
is therefore convenient to also find a function g that allows graph topology to be
inferred from the data, that is g(X) = G. Suitable functions have been explored
in 7.3.

In order to train, validate and evaluate models, random splits of the dataset
will be used. At test time, training individuals may be involved (depending on
the particular g chosen) in the inference of graph topology and phenotypes for
test individuals. This is not a problem, even though re-computing the topology of
the whole graph may be costly. However, it is important from a methodological
perspective that test data is not used to construct the training graph, since we
would incur in data contamination.

In our approach, predictions will only depend on the feature vectors of indi-
viduals and not their target outputs. Nonetheless, using phenotypes from other
nodes on the graph would also be valid as long as no test phenotypes are used to
predict other test phenotypes.

7.5 Graph Neural Networks
7.5.1 Introduction
In this section we explain the core components of Graph Neural Networks (GNNs).

Graph diffusions

Consider a graph G with N nodes and its adjacency matrix A ∈ RN×N . Let
x ∈ RN be a signal supported on graph G, such that each xi is associated to a
single node in the graph. The dot product between the adjacency matrix A and
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the graph signal x yields a diffused version of the signal. The diffusion corresponds
to the weighted sum of the features of 1-hop neighbor nodes, where the weights
correspond to edge weights. The following is an example of this process in an
unweighted graph

A =



0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

 x =



0
1
2
3
4
5

 Ax =



6
2
1
9
8
7



Figure 7.7: Example of the effects of a 1-hop graph diffusion on node 3.

The fourth row of Ax corresponds to the sum of node features connected
to node 3. Note node 3’s own feature is not included in the sum. In order to
incorporate the central node in this aggregation process, self-loops are inserted
into G. This corresponds to taking the adjacency matrix Ã = A + I.

The result of the 1-hop diffusion is yet another graph signal x(1), in which

the value of each node (feature) x
(1)
i has been combined with that of its 1-hop

neighbouring nodes. Thus, we say that multiplying a graph signal by a GSO
diffuses the signal across the graph.

This process can be repeated with the signal x(1), yielding the signal x(2) =

Ax(1). Node x
(2)
i combines information from node x

(1)
i ’s 1-hop neighbours (and

itself), which in turn combine information from xi’s 2-hop neighbors. This proce-
dure can be extended k times, yielding the signal x(k) = Akx, in which each node

x
(k)
i is a combination of node xi and its k-hop neighbours.

Graph Convolutional Filter
Graph Convolutional Filters (GCF) are a tool for the linear processing of graph
signals. Given a GSO S ∈ RN×N and a set of coefficients hk ∈ R, a GCF H(S) is
a polynomial on S such that

H(S) =
K−1∑
k=0

hkS
k

which corresponds to a weighted sum of different powers of the adjacency matrix,
with K being the order of the filter. Thus, the filter is represented by a matrix
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whose dimensions are the same as the GSO S. The convolution between the graph
filter H(S) and the graph signal x is defined as

h ?s x = H(S)x =

K−1∑
k=0

hkS
kx

The sum of powers of the GSO implies that GCFs aggregate information from
local neighborhoods in the graph. The extent of the neighborhood is determined
by the filter order K.

Multiple-Input-Multiple-Output (MIMO) graph filters enable the processing
of multiple feature -or matrix- graph signals. In MIMO graph filters, scalars hk
are replaced by coefficient matrices Hk, which act as a collection of filter banks.
A convolution between a MIMO graph filter H and a matrix graph signal X is
described by the following equation:

H ?s X =

K−1∑
k=0

Sk X Hk

On a side note, the usual 1-D time convolutions can be recovered as a particular
case of graph convolution, with a particular directed graph as illustrated on Figure
7.8.

Figure 7.8: Time sequences as a directed graph.

Consider the case of a n = 3 (4-dimensional input signal). The adjacency
matrix of the time series (defined as a graph) on Figure 7.8 is

S =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Thus

S0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , S1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , S2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


and considering the graph filter h = [h0, h1, h2]T, we have that

H(S) =

2∑
k=0

hkS
k =


h0 h1 h2 0
0 h0 h1 h2

0 0 h0 h1

0 0 0 h0
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Consequently

yGCF = H(S)x =


h0x0 + h1x1 + h2x2

h0x1 + h1x2 + h2x3

h0x2 + h1x3

h0x3


Now consider a 1D convolutional filter w ∈ R3 : w = [w0, w1, w2]T, and the same
signal x (as a time series) with an asymmetrical right zero-padding of width 2

xpad = [x0, x1, x2, x3, 0, 0]

The convolution between the filter and the signal xpad is

yCONV = xpad ~ w =


w0x0 + w1x1 + w2x2

w0x1 + w1x2 + w2x3

w0x2 + w1x3

w0x3


Thus, by setting hk = wk, ∀k ∈ {0, 1, 2} we can recover the usual one-dimensional
convolution. This simple 4-dimensional example can be easily generalized to se-
quences of arbitrary size.

GCFs in the frequency domain
GCFs can also be studied in the frequency domain (Ribeiro, 2020a). Consider a
graph G with N nodes, described by its GSO S. Let V = [v0,v1, . . . ,vN−1] and
Λ = diag ([λ0; . . . ;λN ]) be the eigenvector and eigenvalue matrix of S respectively,
such that λ0 ≤ λ1 ≤ · · · ≤ λN−1. The matrix S can be expressed as

S = VΛVH

The RHS of the above equation is often referred to as the eigendecomposition of
the matrix. For undirected graphs, the GSO is symmetric, that is S = SH , which
implies λn ∈ R, ∀n.

Using the eigendecomposition of S, we define the Graph Fourier Transform
(GFT) of graph signal x as

x̃ = VHx

which corresponds to a projection of signal x to the eigenspace of the GSO S.
Using this definition, we can define the GFT of a GCF. Recall the definition

of a filtered graph signal

y =
K−1∑
k=0

hkS
kx

Substituting S by its eigendecomposition

y =

K−1∑
k=0

hkVΛkVHx
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And multiplying each side of the equation by VH, we have

ỹ = VHy

= VH
K−1∑
k=0

hkVΛlVHx

= VHV
K−1∑
k=0

hkΛ
kVHx

=

K−1∑
k=0

hkΛ
kx̃

Since the matrix Λ is diagonal, the GFT of y can be written as

ỹi =

K−1∑
k=0

hkλ
k
i x̃i

Thus, the frequency response of a GCF with coefficients h = {hk}K−1
k=0 is given by

H(λ) =
K−1∑
k=0

hkλ
k

where the λ variable is analogous to the frequency f in the regular Fourier trans-
form. An important result of this analysis is that the GFT of the filter is completely
independent of the GSO. However, the GSO determines the eigenvalues in which
the filter’s GFT is instantiated. Consequently, GCFs can be easily transferred
between different graphs, which will instantiate its frequency response in different
eigenvalues. This can be visualized in Figure 7.9.

Figure 7.9: Example of a GCF’s frequency response (black). The same filter is applied to
two different graphs with different GSOs. As a result, each graph instantiates the frequency
response in different sets of eigenvalues (denoted by the red and blue colors), defined by their
respective GSOs. Image extracted from (Ribeiro, 2020a).
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Graph Convolutional Neural Networks
As shown in Figure 7.10, Graph Perceptrons are non-linear maps consisting of a
graph convolutional filter and a point-wise non linearity:

Φ(x,S, h) = σ

(
K−1∑
k=0

hkS
kx

)

where σ(·) denotes a non-linear function such as ReLU, x denotes a graph signal
supported on a graph described by the graph shift operator S and hk denote the
convolutional filter coefficients.

Figure 7.10: Diagram of a Graph Perceptron from (Ribeiro, 2020b)

In Graph Percepetrons, the trainable parameters are the filter coefficients hk.
Similarly, in MIMO Graph Perceptrons, the trainable parameters are the entries
of the weight matrices of a MIMO graph filter:

Φ(X,S,H) = σ

(
K−1∑
k=0

SkXHk

)

where σ(·) denotes a non-linear function, X denotes a graph matrix signal sup-
ported on a graph described by the graph shift operator S and Hk denotes the
weight matrices of the MIMO graph filter.

Graph Perceptrons are the building blocks of Graph Convolutional Networks,
which achieve better generalization than graph filters (see Ribeiro (2020b)). Graph
Convolutional Neural Networks are built by stacking Graph Perceptrons (see Fig-
ure 7.11). The trainable parameters of the 3-layer GNN shown in Figure 7.11
are weight matrices H1, H2 and H3. The layer-wise propagation rule for MIMO
GCNs is the following:

X`+1 = σ

(
K−1∑
k=0

Sk X` H`k

)
One of the most popular implementations of Graph Convolutional Layers was

introduced in Kipf and Welling (2016). This implementation corresponds to a first-
order MIMO Graph Percepetron using a normalized adjacency with self-loops as
the GSO and H`0 = 0. Its layer-wise propagation rule is the following:

X`+1 = σ
(
AX`H`

)
where A = D−

1
2 (A + I)D−

1
2 .
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Figure 7.11: Diagram of a 3-layer MIMO Graph Neural Network from (Ribeiro, 2020b)

As explained by Gama, Isufi, Leus, and Ribeiro (2020), this implementation
constrains the representation space of the GCNN and might be better suited for
problems with small datasets.

7.5.2 Message passing Layers
As a result of the growing interest in Graph Neural Networks, several Architec-
tures have been proposed (Wu et al., 2020b). Message Passing Neural Networks
(MPNN) are popular high level framework, introduced by Gilmer, Schoenholz,
Riley, Vinyals, and Dahl (2017), which encompasses many of these architectures.
The basic building blocks of a MPNN are presented below.

MESSAGE: A “message” passing function that mediates the information ex-
change between a pair of nodes over an edge. In the case of a first order MIMO
GCN, the message passing function is graph diffusion and a linear projection. That
is, the message passing function between node i and j, with node signals xi, xj
∈ Rp is:

message (xi,xj ,Sj,i) = Sj,ixjH1,

where H1 ∈ Rp×m is the weight matrix of the MIMO graph filter with output
dimension m, and Sj,i the edge weight between node j and i given by the GSO S.

AGGREGATE: An aggregation function that combines the collection of “mes-
sages” received by a node from its 1-hop Neighbours into a single, fixed-length
representation. These are usually permutation invariant functions.
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In the first order GCN case it is simply the sum over all Neighbours:

aggregate ({msgji : j ∈ N (i)}) =
∑
j

msgji,

where msgji are messages from node j to node i:

msgji = message (xi,xj ,Sj,i) .

UPDATE: An update function that produces node-level features given the pre-
vious features and the aggregated messages. This function usually includes a
non-linear activation. In the GCN example it is the sum of aggregated messages
and the node signal linear projection, followed by the pointwise non-linearity σ:

update(aggi) = σ(aggi + H0xi),

where H0 ∈ Rp×m is the weight matrix of the MIMO graph filter with output
dimension m, and aggi are node i aggregated messages:

aggi = aggregate ({msgji : j ∈ N (i)}) ,

Then node i output at layer l are calculated as:

msglji = message
(
xli,x

l
j ,Sj,i

)
xl+1
i = update

(
aggregate

(
{msglji : j ∈ N (i)}

)).
Using the functions defined for the first order GCN, its nodewise Equation is:

x`i = σ

H`
0x

`
i +

∑
j∈N (i)

Sj,iH
`
1x

`
j

 (7.1)

The way in which this aggregation of local information is done (i.e: the choice
of message, aggregate and update) is what distinguishes several types of GNNs.

Graph Attention
Introduced by Veličković et al. (2017), Graph Attention (GAT) uses attention
scores when aggregating neighbourhood information.

The message function can be defined as:

message
(
x`i ,x

`
j

)
= H`x`j

where x`j ∈ Rp are node j’s features at layer l, and H` ∈ Rp×q is a linear projection
with output dimension q.

Then the aggregation function is a weighted sum, which gives weights α`ij for
each neighbour:

aggregate
(
{msg`ji : j ∈ N (i)}

)
=
∑

j∈N (i)

α`ijmsg`ji,

101



Chapter 7. Graphical methods

where the coefficients α`ij are computed as the softmax of attention scores e`ij :

α`ij = softmax
(
e`ij

)
=

exp
(
e`ij

)
∑

k∈N (i) exp
(
e`ik
)

The function used to calculate e`ij from node features x`j ,x
`
i is known as the atten-

tion mechanism, and several approaches exist (Weng, 2018). In Graph Attention
(GAT) (Veličković et al., 2017) node feature embeddings z`i , z

`
j ∈ Rq are concate-

nated and fed to a single layer feedforward network:

eij = FCN
(
z`i‖z`j

)
,

where FCN is a single layer perceptron with LeakyReLU activation, and ‖ denotes
concatenation.

Node feature embeddings z`i are also calculated using the linear projection H`:

z`i = H`xi.

Note that this attention mechanism differs significantly from dot product at-
tention which has been popularised in the Natural Language Processing domain
by Vaswani et al. (2017).

The update function is a pointwise non linear function σ.

Edge Convolution

Graph edge convolutions, dubbed EdgeConv (Y. Wang et al., 2019), were originally
proposed as a means to classify and segment point clouds. One of the main features
that differentiates EdgeConv from other GNN approaches is that it dynamically re-
computes the graph after each layer. As the nodes progress through the network,
their embeddings mutate. Thus, proximity in the input feature space does not
necessarily correspond with proximity in the intermediate layer’s feature space.
Updating the graph to reflect these changes in the feature space leads to non-
local diffusion of information throughout the entire graph. In EdgeConv, the node
features are aggregated after node embeddings have been calculated - and the
pointwise non-linearity has been applied. This permutes the order of the non-
linear activation and aggregation against the previously described layers. That
is, the aggregation function’s output is the layers output. More specifically, the
message function can be defined as:

msgji = ReLU(HT
φ · xi + HT

θ · (xj − xi))

where Hθ ⊆ Rp×M , and the parameter M is the number of channels of the node
embedding function, i.e. the dimension of the layer’s output embedding.

The max function is used as the channel-wise aggregator.

aggi = maxj:j∈N (i) msgji

102



7.5. Graph Neural Networks

The update function in this case would be the identity:

update(aggi) = aggi

As mentioned earlier, after all new node embeddings are computed, the EdgeConv
algorithm recalculates the graph on the new feature space. To do so, the graph
samples the k-nearest neighbors of each node (using the same distance metric) and
assigns them as the new neighbors, with k being a hyperparameter. This means
that the network learns how to construct the graph instead of sticking to the
original input graph’s structure. As with other approaches, we utilize Pearson’s
correlation as the distance metric between nodes for the initial graph and L − 2
dstance for intermediate graphs.

Readout Layer

In many architectures, a final layer called readout layer is added. The way in
which the readout layer processes the graph signals depends on the downstream
task. In node regression, the readout layer takes the node features of the last
message passing layer and outputs predictions.

A common suitable choice for the readout layer in node regression, the output
at node i can be computed as a simple affine transformation:

outputi

(
x`
′
i

)
= WTx`

′
i + b,

where x`
′
i ∈ Rp′ are node features at the last layer `′. W ∈ Rp′×1 and b ∈ R are

the weight and bias matrices, respectively, which can be trained jointly with the
model.

In the context of genome-enabled prediction, initial node features correspond to
genomes and the outputs of the readout layer are the predicted phenotypes. This
can be easily extended to higher dimensional outputs, as in the case of multi-trait
prediction.

Using 1D-CNNs

In all the graph neural network layers presented above, there is a step that consists
of extracting embeddings from input node features. In the three of them, a linear
projection is used for this purpose. Convolutional Neural Networks are a promising
alternative for processing genomic data, as already stated in Chapter 6.

To see if performance gains could be achieved combining CNNs and GNNs, we
used the residual CNN architecture described in Section 6.3.2.

Our objective was to use the CNN to calculate all node embeddings, before the
neighbourhood aggregation step. However, since the CNN already had a consider-
able computational footprint, training a model that used the CNN to calculate the
embeddings of every node in the neighbourhood was prohibitive in terms of mem-
ory and computational cost, even with moderate node degrees and batch sizes. To
overcome this limitation we restricted the CNN to the target node’s embedding,
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and kept linear operators for neighbourhood operations. Both the CNN and the
linear operators are trained jointly with the rest of the model.

Nonetheless, using shallower CNN models to extract features from neighbour-
ing nodes also seems a promising research direction.

The following modifications to the above mentioned layers were introduced.
First, we modified the GCN layer described in 7.3 to use a CNN in order to
extract feature embeddings:

x`+1
i = σ

CNN(x`i) +
∑

j∈N (i)

Sj,iH
`
1x

`
j

 (7.2)

As an alternative, we also concatenated the output embeddings of the GCN
and the CNN blocks:

x`+1
i = σ

CNN(x`i) ||
∑

j∈N (i)

Sj,iH
`
1x

`
j

 (7.3)

where || represents concatenating output vectors.
A high level overview of the architecture is shown in Figure 7.12.
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Figure 7.12: Mixed model, takes as inputs an individual as well as its neighbourhood in a
population graph. The GNN block consists of a single GCN, Edge-Conv or GAT layer. The
residual CNN constitutes the other block.
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Experiments

All of the experiments and models described in this Section will be tested solely
with the Holstein cattle dataset, which was chosen because it has the largest num-
ber of samples and markers. We also restricted the analysis to single trait pre-
diction, and decided to focus on milk yield, which is a trait with a fair degree of
complexity. How this analysis and results generalize to other traits and datasets re-
quires further examination. We used 8 train-test data splits, and report results for
all splits for each model and experiment, along with mean or median performance
metrics.

Training procedure

The memory requirements for using the whole graph at each gradient descent step
would be prohibitive. Besides, large batch training can lead to sharper minima
which generalize poorly (Keskar et al., 2016).

Mini-batches are constructed by randomly sampling a number of target nodes
and their k-hop neighbourhoods as shown in Algorithm 2.

Algorithm 2: Graph Node regression mini-batch SGD.

for epoch in 1, . . . , nepochs do
for batch in 1, . . . , nbatches do

Sample m nodes without replacement
for node in 1, . . . ,m do

Sample k-hop neighbourhood
Compute prediction for the target node
Compute gradients

end
Gradient descent step

end

end

Note that the number of nodes required at each training step would depend
not only on batch size but also on the size of the node’s k-hop neighborhoods. As
a result, memory and computation costs would not be constant for every batch if
the size of neighbourhoods varies from node to node, and may become prohibitive
for nodes with large degree.

A common technique used to overcome this difficulty is to sample fixed size
neighbourhoods for each node at each training step, which also has the added
benefit of inducing regularisation (Hamilton, Ying, & Leskovec, 2017) - it can be
seen as a form of dropout. However, full neighbourhoods may still be used when
making predictions. Figure 7.13 shows an example of a sampled subgraph which
would correspond to a training mini-batch of size 2, i.e. with two target nodes.
For each target node, 5 neighbours were sampled from its 1-hop neighbourhood.
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Figure 7.13: A 1-hop neighbourhood training mini-batch with 2 target nodes and 5 neighbours
sampled for each target node. This mini-batch belongs to an association network constructed
using the Holstein dataset, using pearson correlation between genotypes and thresholding at
0.55. Nodes are coloured according to the (scaled) Milk Yield value of the individual

7.6 Methodology
.

Each experiment type is ran on 8 different splits with 70% of the data reserved
for training, 10% reserved for validation, and the remaining 20% for testing. The
splits are seeded so that all experiments run on the same 8 splits. Models are
trained with SGD with Nesterov Momentum, or the Adam optimizer when stated.
The base learning rate for SGD with Nesterov momentum was 2.5−2 and 2.5−3 for
Adam. A Reduce On Plateau callback was used to halve whenever training error
stopped declining for five consecutive epochs. Models were trained for a maximum
of 50 epochs with an early stopping callback, with a tolerance of 10 epochs to
prevent overfitting. All weight matrices were intitialized via the Glorot Uniform
initializer (Glorot & Bengio, 2010b), while biases were initialized to zero.

We conducted several experiments to evaluate different aspects about the
graphical models and the underlying graphs:

• GNN Layers: first order GCN, EdgeConv, and Attention in Section . We
explore one and two layer architectures. All models included batch normal-
ization before the non-linear activation and dropout at the input.

• Approaches towards constructing the initial graph: different sparsification
methods (kNN, thresholding), and different sparsification levels (i.e. thresh-
olds and number of neighbors), in Section 7.7.2.

• Transferring GNNs trained on one graph to another, we also include random
GSOs and a FCN as baselines, in Section 7.7.3.

• As in discussed in Section ?? we present saliency maps (7.7.4), activation
histograms (7.7.5) and weight histograms (7.7.6), in order to further analyse
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trained models.

• We compare MSE and Pearson correlation as Loss functions, as well as SAM
and Adam as Optimizers, in Section 7.7.8.

• GNN and CNN embeddings aggregation: we explore Sum and Concatenation
in Section 7.7.7.

• A Comparison against other models in Section 7.7.9.

• An evaluation on model size and performance in Section 7.7.10.

7.7 Results and Discussion
7.7.1 Architectures.
Graph Convolution, Edge convolution and Attention layers, as already described,
were used to construct single and two layer models. In the two layer model, the
second layer’s inputs are the lower dimensional features or embeddings extracted
by the first layer. This aims to aggregate relevant information, which may be
more challenging in the high dimensional input space. Furthermore, repeated
aggregation or diffusion can also enable the propagation of information to and
from nodes further away. However, having more layers results in higher model
capacity, which could also hinder generalisation.

Figure 7.14: Single and two layer architectures’ predictive performance trained minimising
MSE with SAM.

As shown in 7.14, adding a second layer does not improve predictive correlation
and even reduces it in the case of edge and graph convolutional networks. Although
graph topology defines the neighbourhood of each node, on the attention layer
the weights of each neighbouring node are calculated using node features. This
could explain the fact that it outperforms models that rely on predefined weights
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to propagate information. Therefore, assessing how models are affected by shift
operator is necessary.

7.7.2 Graph Topology.
Since graph topology is inferred from the data, it varies significantly depending
on the method and hyperparameters used, namely the threshold and number of
neighbours. Therefore, we evaluated the Graph Convolutional model’s perfor-
mance when training it on different Graphs. As Figure 7.15 shows, the variation
in predictive performance observed was limited. Notably, the two best performing
graphs (kNN with k = 40 and thresholding with treshold = 0.55) have the same
mean degree. Even though, as shown in previous chapters, their graph topology is
substantially different, the performance on the downstream task was similar. This
raises further questions about the role the graph plays within the trained model.

Figure 7.15: Graph Convolutional Network trained using different different Graph Shift Oper-
ators: k-Nearest Neighbours with k = 20, 40, 60 and thresholding with values 0.53, 0.55, 0.60.
The GNN is a single layer Graph Convolutional Network. Models are trained optimising r using
SAM.

7.7.3 Transferability
All three architectures explored use different ways to agreggate neighbourhood
information. In order to evaluate how graph topology affected the models, we
employed kNN and thresholded correlation networks, as well as a random (Edrös-
Rényi) adjacency matrix. All were set to have the same mean degree but, as
already discussed, have significantly different topologies. The aim was to evaluate
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how models trained on one graph performed when changing the underlying graph,
i.e. the model’s transferabilty.

As shown in Figure 7.16 model performance was not significantly affected by
changing the underlying Graph Shift Operator. Furthermore, training a single
layer FCN exactly like the one used to calculate target node embeddings in all
three architectures performed comparably.

Figure 7.16: Performance metrics for different Graph Neural Network single Layer architectures,
trained using a kNN graph and evaluated on kNN, thresholded correlation and Edrös-Rényi
(random) GSOs. The same node predictor, which does not use any neighbourhood information
(FCN) performs favourably.

This result may suggest that the trained GNN models are exploiting node
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feature only. Therefore, further analysis is required to assess how neighbourhoods
affect predictions.

7.7.4 Saliency Maps
Figure 7.17 shows that the gradients of the GCN with respect to the target node are
10 times larger than the gradients with respect to the aggregated neighbourhood.
This suggests that the target node has a bigger impact on the model’s output than
the neighbouring nodes, which is consistent with the transferability experiments.

The saliency map in Figure 7.17 (b) indicates that there are two regions in
the Holstein genome which impact the model’s output significantly. These regions
are located in the proximity of SNPs 11000 and 26000, which is consistent with
the saliency maps of the 1DCNN analysis??. The connection between the saliency
maps obtained and the genetic architecture of this trait is discussed in Section
7.7.7.

(a) Aggregated Neighbourhood (b) Target nodes

Figure 7.17: Gradient magnitude with respect to the input signal at the aggregated neigh-
bourhood and the target node. The mean of the gradients computed for all test samples
corresponds to the solid line and its standard deviation to the shaded area.

7.7.5 Activation histograms
To further assess how neighbourhoods affect predictions, the distribution of acti-
vations from neighbouring and target nodes were computed. Consistently small
neighbourhood activations would explain their lack of impact on the model’s out-
put. However, Figure 7.18 shows that the distributions of activations for the
neighbouring and target nodes are similar. Both are gaussian-like distributions
centered around 0.05.
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(a) Neighbouring Nodes (b) Target Nodes

Figure 7.18: Histogram of target and neighbouring node activations for the test set.

7.7.6 Weights

Since the distribution of activations in the GNN layer does not shed light on the
lack of impact of the neighbouring nodes, the weights of the linear predictor that
follows the GNN layer were analyzed. Figure 7.19 indicates that the weights of
the linear predictor associated to neighborhood embeddings are not significantly
smaller than those associated to the target node embedding. Thus, the reason for
the lack of impact of neighborhood embeddings on the output remains unclear.

Figure 7.19: Weights of the linear predictor, neighbourhood embeddings correspond to the
first 256 weights and target node embedding to the remaining 256.
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7.7.7 GNN and CNN joint model.

Embedding aggregation

We proposed to combine CNN and GNN models, and train them jointly with
the linear predictor. Two ways of aggregating the output of the GNN and CNN
were tested. One is simply summing their outputs, and the other is concatenating
those embeddings. This is then used as input to a linear predictor that outputs
phenotypes. As shown on Figure 7.20, summing embeddings performed slightly
better in terms of median predictive correlation and had a smaller interquartile
range. When concatenating embeddings, the input dimenson of the linear predictor
is doubled, and the decline in performance may stem from an increase in model
capacity. That being said, both models perform comparably, and extending these
analysis to other traits models and architectures calls for further research.

Figure 7.20: Graph Convolutional Network and GNN/CNN joint model, trained either summing
or concatenating neighbourhood and node embeddings.

GNN architecture

All models showed an increase in predictive correlation when adding the CNN.
However, as shown in Figure 7.22, only the GCN model outperformed slightly
training solely the CNN. That is, when training both models jointly performs
worse than when training the non graph model alone, in most cases. Whether
training both models separately and then combining them as an ensemble has the
same effect calls for further research. GNN architectures showed different gains
in performance. Interestingly, the most complex and best performing GNN model
(attention) showed little improvement when adding the CNN. In contrast a simpler
(first order) GCN model showed a greater increase in performance.
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Figure 7.21: CNN only and CNN+GNN models trained using different GNN architectures.
Results from (Yin et al., 2020) are included for comparison. kNN graph, and r as loss function
were used.

Graph Topology

We assessed predictive performance when using different Graph Shift Operators
to train and evaluate the the best GCN+CNN performing model. As Figure 7.22
shows, the choice of GSO does not have a significant impact on model performance.
Therefore, evaluating the impact that neighbouring and target nodes have on final
predictions is once again necessary.

Figure 7.22: CNN+GNN models trained using different different Graph Shift Operators: k-
Nearest Neighbours with k = 40 and thresholding with values 0.53, 0.55 and 0.60. The GNN
is a single layer Graph Convolutional Network. Models are trained optimising r using SAM.

It is worth mentioning that results do vary to some extent depending on the
GSO suggesting that neighbourhoods do play a role - albeit subtle. In that sense,
thresholding correlation using a value of 0.55 proved to be the best GSO in terms
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of predictive correlation.

Saliency Maps.

(a) MFP (b) MY

(c) SCS

Figure 7.23: Mean gradient magnitude of the GNN with respect to the neighbourhood for
calculated for test samples and all three Holstein traits.

Figure 7.23 shows the mean magnitude of the gradients of the output of the
GNN with respect to the neighbours of an input sample. The fact that these
gradients are nearly zero in all traits suggests that the model learns to ignore the
neighbourhood of each node. This may explain why the predictive accuracy of the
CNN and the CNN+GNN models are extremely similar.

Figures 7.24 (a,b,c) show similar saliency maps for all three models (CNN, GNN
and Ridge). As already seen in Section 7.7.4, Figure 7.24 suggests that the three
models largely base their predictions on two main sections of the Holstein genome:
one around SNP 11000 and one around SNP 26000. The relative importance of
these two sections varies between models, but in all of them, the region around
SNP 26000 has the biggest impact on the model’s output. The fact that contiguous
SNPs tend to have a similar impact on the model’s output is not surprising, since
proximity is an indicator of correlation due to linkage disequilibrium, as shown in
Figure B.2.
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Milk Fat Percentage

(a) CNN (b) Ridge

(c) GNN

Figure 7.24: Gradients of the GNN+CNN, CNN and Ridge regression with respect to the input
sample for Milk Fat Percentage.

Interestingly, the saliency maps in Milk Yield and Milk Fat Percentage are
very similar. However, in MY the difference between the impactful regions (sec-
tion around SNP 11000 and around SNP 26000) and the rest of the genome is
more pronounced than in MFP. Moreover, there are subtle differences between
the saliency maps of each model. As shown in Figure 7.25 (c) a section around
SNP 33000 has a noticeable impact on the GNN’s output. This is not the case for
the CNN and Ridge. Similarly, in Ridge, a region around SNP 17000 has a high
saliency map value. Both the CNN and the GNN attribute little importance to
that region of the genome.

In contrast to the saliency maps of MFP and MY, Figure 7.26 indicates that,
for all models, many SNPs have an impact on the model’s output, and that these
impactful1 SNPs are spread out all along genome.

A key takeaway of this experiment is that, in all traits, the saliency maps of
the three models (GNN, CNN and Ridge) are very similar. As mentioned earlier,

1Throughout this section we have deliberately avoided the term QTL, since its link
with feature importance, LD, and genetic architecture requires a deeper discussion.
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Milk Yield

(a) CNN (b) Ridge

(c) GNN

Figure 7.25: Gradients of the GNN, CNN and Ridge regression with respect to the input sample
for Milk Yield.

saliency maps indicate the magnitude of the gradient of the output with respect
to each feature of an input sample:

s = ∇x(f(x)).

Since a local first-order approximation of the model is: f(x) ≈ x × ∇x(f(x)),
saliency maps can be viewed as the weights of a first order approximation of the
model centered at point x. Therefore, the similarity between the saliency maps of
the three models suggests that the first-order approximations of the three models
are similar.

Secondly, the saliency maps obtained for MFP and SCS are consistent with
the trait genetic architectures. Milk Fat Percentage has one or several major genes
with large effect and many loci with small effect (Z. Zhang et al., 2015), and SCS
has several loci with small or moderate effects. Both of these genetic architectures
are reflected in the saliency maps computed. However, the genetic architecture of
MY consists of a few moderate effect loci and many small effect loci. This is not
evidenced in the saliency maps of Figure 7.25, where few input features have a
very large effect.
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Somatic Cell Score

(a) CNN (b) Ridge

(c) GNN

Figure 7.26: Gradients of the GNN, CNN and Ridge regression with respect to the input sample
for Somatic Cell Score.

Finally, the saliency maps from MFP and MY are similar, but both very differ-
ent from the SCS saliency maps. Similarly, MFP and MY phenotypes are highly
correlated, while being uncorrelated with SCS, as shown in Figure 7.27. Similarity
between the genetic architectures of the MY and MFP traits could explain both
observations.

(a) MY-MFP (b) MY-SCS (c) SCS-MFP

Figure 7.27: Holstein phenotypes cloud points and correlation.
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7.7.8 Optimization
• Optimizing r and then fitting a linear predictor, led to higher r, lower MSE

and more stable training.

• Sharpness Aware Minimization showed a small improvement in performance
for some models.

Loss function

In the context of genome-enabled prediction, the Pearson correlation coefficient is
extensively used as a metric to compare models but not as a loss function in the
ERM problem. A downside of using Negative Pearson Correlation (−r) as a loss
function is its invariance to affine transformations, which may result in inaccurate
predictions. As explained in Section 2.3, a model could maximize r by learning
to predict a linear transformation of the targets: ŷ = a × y + b, leading to a
high MSE. Nonetheless, after the optimization, it would be possible to estimate
the parameters a and b of this linear transformation. If the linear dependence
between the observed and predicted phenotypes is high, undoing the estimated
affine transformation should yield accurate phenotype predictions. To the best
of our knowledge, this is the first approach to phenotype prediction that uses
Negative Pearson Correlation as a loss function.

As expected, maximizing r led to higher predictive correlations than minimiz-
ing MSE (see Figure 7.28 (a)). However, when maximizing r, the MSEs obtained
are extremely high, as shown in Figure 7.28 (b). High correlation coefficients and
high MSEs suggest that the model predicts a linear transformation of the target
values. We used the Least Squares method to estimate the parameters of such
linear transformation:

â =

∑N
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)∑N
i=1 (yi − ȳ)2

b̂ = ¯̂y − âȳ

where y1, y2, ..., yN are the target phenotypes and ŷ1, ŷ2, ..., ŷN the predicted
phenotypes. After undoing the estimated linear transformation, the predicted

phenotypes obtained are: y∗i = ŷi−b̂
â .

Surprisingly, undoing this linear transformation yields predictions with lower
MSEs than the model that uses MSE as a loss function (see Figure 7.28 (c)).
We also applied this scheme to the model that uses MSE as a loss function.
Reasonably, the linear dependence in this case was much weaker and the decrease
in MSE was not significant.

The results presented above indicate that framing the genome-enabled predic-
tion ERM problem as a Negative Correlation minimization problem can lead to
higher correlations and lower mean squared errors. The cloud points before and
after undoing the linear transformation in the CNN+GNN model are shown in
Figure 7.29.
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(a) (b)

(c)

Figure 7.28: Pearson correlation, Mean Squared Error, and Mean Squared Error after undoing
the estimated linear transformation, in the test set, with respect to the loss function optimized,
for each of the following experiments: 1 - CNN+GNN optimized with SAM using thresholded
GSO, 2 - CNN+GNN optimized with Adam using thresholded GSO, 3 - CNN+GNN optimized
with SAM using kNN GSO

An increase in r may lead to a better ranking of the individuals. This is
especially relevant in selective breeding, since selecting the top X% of individuals
is common practice. In this case, predicting exact phenotypes or breeding values
is not crucial, but getting an accurate ranking of the individuals is. In order to
evaluate the extent to which an increase in r leads to a more accurate ranking,
two popular metrics that assess similarity of orderings were used: Kendall’s τ and
Spearman’s ρ.

One one hand, Kendall’s τ is defined in terms of concordant and discordant
pairs. A pair of observations (ŷi, yi), (ŷj , yj) is considered concordant if ŷi− ŷj and
yi− yj have the same sign. In that case, concordance implies a correct ordering of
samples i and j. A pair is discordant if it is not concordant.

τ =
( number of concordant pairs )− ( number of discordant pairs )(

N
2

)

τ =
2

N(N − 1)

∑
i<j

sign (ŷi − ŷj) sign (yi − yj)
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Figure 7.29: Predicted versus observed phenotypes with r (bottom) and MSE (top) as loss
functions and the corrected -after undoing linear transform- predictions’ MSE optimization.

On the other hand, Spearman’s ρ is defined as the Pearson correlation coeffi-
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cient of the rank vectors rŷ and ry.
2

ρs =
cov (rŷ, ry)

σrŷσry

As shown in Figure 7.30, models that minimize the Negative Pearson Corre-
lation are consistently better than models that minimize MSE in terms of both
ranking metrics (Kendall’s τ and Spearman’s ρ).

Figure 7.30: Loss function and ranking metrics, for each of the following experiments: 1
- CNN+GNN optimized with SAM using thresholded GSO, 2 - CNN+GNN optimized with
Adam using thresholded GSO, 3 - CNN+GCN optimized with SAM using kNN GSO, 4 - CNN
optimized with SAM

To further explore model performance with respect to rankings, a 2d histogram
of predicted and ground truth rankings for one split of the CNN+GCN model is
shown in Figure 7.31. Qualitatively, ranking improves slightly when optimizing r.
In addition, rankings are most accurate at both ends, regardless of the metric op-
timised. Whether this observation generalises to other traits, datasets and models
may be subject of further research. Accurately predicting which individuals have
extreme values of a trait may be of practical value, and thus assessing prediction
rankings may provide useful insights.

While useful for evaluating model performance, estimating and inverting the
affine transformation using test data is not suitable in a real prediction setting and
may lead to optimistic biases on reported metrics. However, the linear transforma-
tion can also be estimated using train data, and then applied to model predictions
on inference. As Figure 7.32 illustrates, the performance of such approach in terms
of MSE is similar to fitting the linear transformation using the test data.

This is important since simply fitting a linear predictor on top of models trained
optimising r leads to both lower MSEs and higher predictive correlations (as well
as the ordering metrics mentioned above).

2The ith entry of a rank vector ry holds the rank of the value in the ith entry of the
vector y.
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Figure 7.31: Ranking matrix of the sorted test target values when minimizing MSE and r.

Figure 7.32: Loss function and Mean squared Error, when applying a linear regression fitted
using train predictions. Once again, minimising r leads to lower MSE.

Optimizer

As shown in Figure 7.33 (a), when using a kNN GSO, the model optimized with
SAM slightly outperforms its counterpart optimized with Adam regardless of the
loss function used. When using a thresholded GSO, the average performance of
Adam and SAM is similar in both loss functions. However, the models optimized
with SAM and −r as a loss function exhibit a slightly smaller interquartile range.

Figure 7.34 shows the evolution of the loss function and the validation r for the
GNN+CNN model when being optimized for r and MSE. The top plot shows that
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(a) kNN GSO (b) Thresholded GSO

Figure 7.33: Performance metrics with different loss functions and optimizers for the
CNN+GCN model. (a) corresponds to the model trained using a kNN graph and (b) to
the model trained using a thresholded GSO graph.

the loss curve is smoother when using −r 3 rather than MSE as a loss function.
This may be due to the fact that the loss is bounded, which may help prevent
exploding gradients (Philipp, Song, & Carbonell, 2017), make training more stable
and accelerate convergence. It could also be pointed out that correlation is more
robust to outliers which could have larger loss values when using MSE.

Another important aspect about Figure 7.34 is that for both MSE and r, and
especially regarding the latter, near zero training loss is attained. However, this
does not hinder in validation or test performance, that is the model achieves good
generalisation. This is known as the interpolation regime and although the gener-
alisation power of over-parametrised models in this regime is not fully understood
yet (S. Ma, Bassily, & Belkin, 2018), it is an active area of research.

3The loss plot shows 1− r in order to facilitate the comparison.
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Figure 7.34: Loss curves for different loss functions.

7.7.9 Comparison against other methods
On Table 7.1 and Figure 7.35 the results of all models trained for Milk Yield
prediction are included. For this particular dataset and trait, CNNs and CNN-
GCN joint models show the best performance, when compared with other models
proposed in the current work and the best results from literature (?). GNNs fail
to outperform CNNs and literature, and CNN-GNN joint models fall below CNN
performance for all but the GCN architecture, as already discussed.

7.7.10 Model Size
The number of model parameters is related to the model complexity. However,
the relation between model size and generalisation has been recently challenged by
deep learning and the emergence of double descent phenomena (Nakkiran et al.,
2019). As illustrated in Figure 7.36, in some circumstances as model size increases

Model PearsonCorrelationCNN+GCN 0.83CNN 0.82CNN+Edge 0.81CNN+Attention 0.81GBM 0.79KAML 0.79GAT 0.79CNN-2D 0.78MLP 0.78GCN 0.78EdgeConv 0.78SVM 0.73Ridge 0.72RF 0.63

Table 7.1: Mean test Pearson correlation (r) for all models for the Milk Yield trait. Best results
from literature - KAML (Yin et al., 2020) - are also included for comparison.
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Figure 7.35: Mean test Pearson correlation (r) for all models for the Milk Yield trait.

beyond the classical U-shaped curve generalisation error falls again. This occurs
at near zero training error, with highly overparametrised models.

Figure 7.36: Double descent curve from (Nakkiran et al., 2019)

Furthermore, in the context of modern over-parametrized neural networks, it
has been observed that, in some cases, pruning techniques can reduce the number
of parameters by over 90 % without compromising predictive accuracy. Motivated
by this observation, Frankl and Carbin (Frankle & Carbin, 2018) propose the
lottery ticket hypothesis, which states the existence of subnetworks (called winning
tickets) that can achieve comparable performance when trained in isolation. In
this sense, the generalization power of over-parametrized neural networks may
stem from the fact that the effective complexity of the model is small compared
to the presumed complexity of the original neural network.

As shown in our best performing model for Holstein Milk Yield prediction had
over two hundred million parameters, and was trained using only a few thousand
samples. Whether the gains in performance outweigh the increase in model size and
thus its training and inference computational cost, would depend on the specific
use case or application. In that sense, the considerable increase in model size has
only led to a small increase in performance, and increasing efficiency in this sense
calls for further research.

Most “Deep Learning” models found in genome enabled complex trait predic-
tion literature (Abdollahi-Arpanahi et al., 2020; Liu et al., 2019; W. Ma, Qiu, Song,
Cheng, & Ma, 2017; W. Ma et al., 2018) actually have few layers and significantly
fewer parameters than those presented in the current work.
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Figure 7.37: Selected models’ test predictive correlation and number of parameters.

7.8 Summary
• All GNN architectures perform comparably to baseline models.

• Graph topology and neighbourhood information end up having little effect
on predictions, even using random graphs.

• Training a joint GCN+CNN model results in a slight improve in perfor-
mance, which surpasses the state of the art.
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Chapter 8

Conclusions and further work

As newcomers to the field of genome-enabled prediction, and genomics altogether,
we find it interesting that a fully data driven approach could surpass state of
the art results in most datasets. That is, by means of extensive hyperparameter
tuning and nothing but Machine Learning classical methods we could obtain re-
sults that surpassed those found in literature. In that sense, tree ensemble and
kernel methods performed favourably on most datasets but, unsurprisingly, no
model achieved best performance consistently among all datasets and traits. It is
also worth noting that these models outperformed bayesian linear regressions with
carefully handcrafted and complex priors of marker association which draw upon
domain knowledge.

Marker elimination ablation studies supported the well known fact that al-
though genotypes are high-dimensional, numerous SNPs can be removed without
affecting predictive power. This is due to the high correlation between SNPs owing
to high linkage disequilibrium, because even if SNPs which have a large effect on
the trait are removed, SNPs highly correlated with the removed ones may still
be present. Although robustness to marker elimination thus depends on the ge-
netic architecture of the trait and the structure of the population (through LD),
rather surprisingly a similar behaviour was observed accross models and datasets.
This result further motivates the study of dimensionality reduction techniques and
representation learning in genomic prediction.

Another observation is that One-Hot-Encoding reduced model performance
only slightly in most cases. This is of practical importance since OHE is one of the
most popular ways of encoding categorical data for neural networks, and although
the dimensionality of the input space increases, this did not hinder predictive
ability significantly. The fact that performance did not improve either can be
interpreted as a failure to capture non-linear or higher order effects, the curse
of dimensionality, or the loss of one-to-one correspondence beween markers and
variables. The extended use of additive encoding biases predictive models torwards
additivity. This may be beneficial for many traits, but exploring other ways to
encode SNP marker data which may favour more complex genetic architectures
calls for further research.

In the light of the high dimensionality of input signals, and the fact that targets
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are noisy since predictive power is limited by the trait’s heritability, the data
available on the datasets used is not abundant. Furthermore the architecture of all
the traits studied had a strong linear component, as evidenced by the performance
of linear models. One of the main focuses of this work was to explore the feasibility
of employing modern deep learning architectures in this context. In this regard, it
was possible to train highly over-parametrized architectures and still obtain good
generalisation. For some datasets and traits, these models outperformed all others.
However, this did not hold for all the models, traits and datasets studied. Besides,
whether the gains in performance outweigh the increase in model size and thus
its training and inference computational cost, and lack of interpretability, calls for
further discussion.

In order to try to exploit local structure in the genome arising from linkage
disequilibrium and cross-marker interaction phenomena, we explored the appli-
cability of convolutional neural networks. Using residual connections improved
performance across different traits and datasets. The fact that in some cases mod-
els maintained or even improved their performance when shuffling marker positions
prior to training suggests that CNNs’ inductive biases may not be appropriate for
some traits. However, CNNs did perform well on other traits, most notably in Hol-
stein cattle Milk Yield prediction. This suggests that detecting patterns in genomic
sequence regardless of their position may be benefitial in some contexts. Evalu-
ating which trait architectures’ characteristics may favour convolutional models is
subject of further research.

Alternatively, we explored constructing 2d feature maps from input signals
using dimensionality reduction techniques, and then training CNNs on these 2-
dimensional feature maps. This could potentially enable models to expoit non-local
correlations and structure in the genome. However, in the Yeast dataset, using
random mappings to construct those feature maps from input signals performed
comparably to the most commonly used dimensionality reduction techniques. This
was interpreted once again as the inadequacy of these models to discover and
exploit signal structure, and in the case of the yeast dataset the absence of non local
correlations. Although the use of Fermat distance increased predictive accuracy,
presumably by diminishing the effects of the curse of dimensionality, the models
obtained did not outperform the baselines.

In order to try to exploit population structure, we also formulated complex
trait prediction as a node regression problem on a population graph. An asso-
ciation network between individuals was constructed using correlations between
individuals. Graph neural networks trained on these graphs achieved state of the
art results in Holstein Milk yield prediction. However, as observed in saliency
maps and transfer experiments, to what extent the model exploit neighbourhood
information and population structure, and how graph topology affects predictions
still remains unclear. Training a GNN and CNN joint model achieved the best
predictive correlation for this trait. To the best of our knowledge, this is the first
Geometric Deep Learning approach to complex trait prediction. How these results
generalize to other datasets and traits demands further research.

Pearson correlation is commonly used to evaluate model performance. We
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found that optimising it directly, instead of minimising mean squared errors, leads
to better model performance. Although this loss does not penalise learning an
affine transformation of actual phenotypes, we showed that this affine transfor-
mation could be estimated from train data, and led to models with both lower
MSE and higher predictive correlations. As far as we are concerned this approach
was yet unexplored, and therefore studying how this extends to other models and
datasets requires further work. In addition, in the light of these results, proposing
and evaluating alternative loss functions in the context of complex trait prediction
is a promising research direction.
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Appendix A

Pipeline

According to recent polls (Figure8, 2018; Kaggle, 2019) data scientists and machine
learning practitioners do not spend most of their time mining data or adjusting
and refining algorithms. Instead, most declare that acquiring, preprocessing, and
managing data are the most time consuming tasks. As a result, building a solid
data processing pipeline is a key step in any data science project. This is a par-
ticularly complex project in that sense, owing to several factors.

To begin with, various datasets were employed. Although standarised formats
for genomic data exist (Purcell et al., 2007), none has gained widespread adoption
in the agronomic prediction community. Thus, automating data format conversion
and preprocessing was particularly important in this context.

Since benchmarking a number of models for each dataset and doing extensive
hyperparameter searches is highly demanding on computing power terms, running
locally on desktop machines was not feasible. Programming for highly parallelized,
distributed and concurrent hardware platforms can be challenging.

Integrating a variety of existing models and tools also makes software depen-
dency management complex, especially in hosted runtimes. Lastly, this thesis is
part of an ongoing project that involves many colaborators. Therefore, logging
and organising experiments needs to be done in a systematic manner. This is also
important for reproducibility.

The following section describes the most important features of the pipeline
implemented to deal with these issues (see diagram A.1).

A.1 Containers
Linux kernel containers (LXC) and similar frameworks have become a popular and
lightweight alternative to virtual machines for virtualisation (Bernstein, 2014).

Dependency management and cross-platform portability is solved by packag-
ing all dependencies along with the aplication. In contrast to VMs and other
hypervisor-based solutions, where virtualization occurs at the hardware level, in
containers virtualisation takes place at the operating system level (Merkel, 2014).

Containers have gained popularity among the scientific community seeking to
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foster computational reproducibility (Boettiger, 2015).

Several Docker images developed for this project can be found on Docker-
hub1. They were created to meet different dependencies, hardware resources and
use cases. For instance, there are images with and without GPU support.

A.2 ClusterUy
With the recent increase of genomic data availability and volume, exploiting high
performance computing tools (Zheng et al., 2012), dedicated hardware accelera-
tors and parallel architectures (Cebamanos, Gray, Stewart, & Tenesa, 2014), is
becoming increasingly necessary in the field.

A collaborative scientific HPC infrastructure in Uruguay called Cluster-UY
(Nesmachnow & Iturriaga, 2019) was used. SLURM (Yoo, Jette, & Grondona,
2003) is used as a workload manager, and singularity (Kurtzer, Sochat, & Bauer,
2017) containers, which are docker compatible, are supported.

Bash scripts for automating runs and batching jobs for most common tasks
were implemented, including data preparation, training and testing models.

A.3 Parameter configuration and logging
There are various user defined parameters all along the data processing pipeline
ranging from data format, encoding and imputation, to grids for hyperparameter
searches. In order to save, load and easily modify settings for a given experiment
JSON files were used.

A.4 Logging and visualising experiments online
Unlike traditional software, machine learning systems are built around experimen-
tation (Zaharia et al., 2018). They are highly dependent on multiple inputs such as
dataset versions, model hyperparameters and preprocessing code. Consequently,
significant efforts have been devoted to adress experiment tracking and repro-
ducibility issues, and several tools exist (Biewald, 2020; Dunn, 2016; Hermann &
Del Balso, 2017; Zaharia et al., 2018).

Comet-ml 2 has been chosen for this project. It is an online experiment logging
platform which features multiple data input formats, system metrics and outputs,
live user defined Plotly3 charts, hypeparameter and architecture search tools, along
with integrated storage solutions and hosting. Comet provides a Python API for
interacting with the server, and a higher level abstraction was implemented in
order to facilitate incorporating logging to experiments.

1https://hub.docker.com/repository/docker/ihounie/dnai/
2https://www.comet.ml/
3https://plotly.com/
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Visualizing model outputs can help to identify systematic errors, population
structure, model biases, and even software bugs. Besides from logging predictions
and errors we also plot errors using PCA to represent individuals in a 2-dimensional
space, and error histograms to contrast model error distributions and assumptions,
as well as assessing predictions.

We also implemented comet custom pannels using Plotly javascript API in
order to plot aggregate results live.

A.5 Machine learning libraries
Sklearn (Pedregosa et al., 2011) provides implementations of many standard ma-
chine learning algorithms, preprocessing, hyperparameter search and evaluation
tools. A GPU accelerated implementation of Support Vector Regression (Wen,
Shi, Li, He, & Chen, 2018) was also used. Optuna4, in particular its Bayesian
hyperparameter tuning framework was also used.

A.6 Deep learning libraries
The availability of specialised hardware and open source libraries in this field
have fueled its rapid growth (while probably hampering other research directions
(Hooker, 2020)). The two most popular deep learning libraries were used: Ten-
sorflow5 and Pytorch6. As for the latter, we used the lightning7 wrapper for all
models and the PyTorch Geometric8 library for Graph Neural Networks.

A.7 Integrating R
Domain specific software libraries have been developed by genetic prediction re-
searchers including BGLR (Pérez & de Los Campos, 2014), rrBLUP (Endel-
man, 2011), synbreed (Vazquez, Bates, Rosa, Gianola, & Weigel, 2010), somer
(Covarrubias-Pazaran, 2016), QGG (Rohde, Fourie Sørensen, & Sørensen, 2020)
and nadiv (Wolak, 2012), among others.

Most of them are implemented on R (R Core Team, 2020). In order to leverage
this implementations while keeping the python-sklearn pipeline, scikit-learn esti-
mators were implemented following the sklearn API and design (Buitinck et al.,
2013). R2py9 was used to run R embedded in Python processes.

This allowed to incorporate bayesian models and use scikit-learn hyperparam-
eter search and evaluation tools, along with other models.

4https://optuna.org/
5https://www.tensorflow.org/
6https://pytorch.org/
7https://www.pytorchlightning.ai/
8https://github.com/rusty1s/pytorchgeometric
9https://rpy2.github.io/
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Figure A.1: Diagram of the machine learning pipeline implemented.
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Appendix B

Marker clustering

B.1 Introduction
Before addressing the supervised task at hand, we propose an exploratory analysis
of the datasets. The main objective is to gain a better understanding of their
structure and characteristics. To do so, we will use a hierarchical clustering algo-
rithm to cluster markers according to their similarity. We use an agglomerative
approach (i.e. bottom-up). Each observation begins in its own cluster; in each
iteration, the two most similar clusters are merged to form a new cluster. This
iterative process results in a hierarchy of clusters, in which the cluster at the top
(i.e. the root of the tree) contains all observations.

B.2 Metrics and methodology.
We use Pearson’s correlation as the distance metric between markers, also called
linkage criteria. More specifically, given an input genotype matrix X of N individ-
uals with p markers each, we treat each marker as a variable with N observations.
Thus, the correlation coefficient is calculated over these N-dimensional observation
vectors.

Several methods exist to compute the similarity between clusters. In our case,
we chose the UPGMA (or average) method. Given two clusters u and v, their
similarity is given by the following expression:

d(u, v) =

|u|−1∑
i=0

|v|−1∑
j=0

d(u[i], v[j])

|u| × |v|
(B.1)

where |.| represents the cardinality operator and d is the distance metric.
Once the cluster hierarchy is formed, flat clusters can be extracted from it.

As with linkage criteria, several criteria to extract these clusters exist. We chose
SciPy’s maxclust criterion, which consists of finding a threshold t so that the
cophenetic distance between two observations in the same flat cluster is no more
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than t while keeping a set number of clusters. The cophenetic distance between two
observations is the height of the dendogram where the two branches that contain
the two observations merge into a single branch. We experimented with different
numbers of maximum clusters for each dataset to account for their varying amount
of markers, with larger-dimensional datasets having more flat clusters.

B.3 Results
The graphs in Figure B.1 show the results of the clustering algorithms. For each
dataset, we plot each marker’s (in the order in which they appear in the genotype
matrix) assigned cluster. As evidenced by the plots, the datasets have varying
degrees of linkage disequilibrium. On the y axis, the clusters are sorted so that
more local clusters are on top (i.e. have a higher cluster id).

The yeast dataset is the most locally clustered, with all clusters being confined
to their own local neighborhood. The Holstein and Jersey markers exhibit weaker
spatial correlation, but local clusters can still be distinguished. One the other
hand, the wheat dataset does not show significant local clusters. We theorize
wheat’s lack of spatially correlated markers is due to its already low amount of
markers. This could mean that wheat’s sampling is more sparse and thus the
distance between markers is larger than the distance in the other datasets.

(a) Yeast (b) Holstein

(c) Jersey (d) Wheat

Figure B.1: Clustering results.
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Machine Learning Models

C.1 Support Vector Regression
Support vector machines (SVMs) were originally proposed by Vapnik and Cher-
vonenkis in 1963 (Chervonenkis, 2013). Back then, SVMs consisted of linear clas-
sifiers that maximized the width of the gap between linearly separable classes. Al-
though there exist infinite hyperplanes that separate two linearly separable classes,
the maximum-margin hyperplane is unique. Intuitively, the maximum-margin hy-
perplane is the most robust towards noise and thus it achieves better generaliza-
tion. Consequently, SVMs can be thought of as linear classifiers with automatic
regularization.

The problem formulation is different in the context of regression. In this case,
a hyperplane is optimal if its predictions deviate from the ground truth by a value
no greater than a user-specified constant. Mathematically, given a set of input
observations (x0, ...,xN−1),xn ∈ RP and target vectors (y0, ..., yN−1), yn ∈ R, the
support vector regressor (SVR) fits a hyperplane

h(x) = wTx + b

where w ∈ RP and b ∈ R, subject to the constraint

|yn −wTxn + b| ≤ ε, ∀n (C.1)

In addition, a regularization penalty is imposed to the weights

wTw ≤ C (C.2)

Constraint C.1 implies that an optimal hyperplane may not exist. To solve
this issue, the slack variables ξ+

n and ξ−n are introduced, such that

yn − (wTxn + b) ≤ ε+ ξ+
n

(wTxn + b)− yn ≤ ε+ ξ−n

The purpose of these variables is to loosen up the the constraint imposed by
C.1 by allowing a violation of the ε margin. The only condition on the slack
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variables is ξ+
n ≥ 0, ξ−n ≥ 0. However, we want the margin’s violation to be as

small as possible. Thus, the optimization problem can be written as minimizing

F (ξ, ξ∗) =
N−1∑
n=0

ξ+
n +

N−1∑
n=0

ξ−n (C.3)

subject to
yn − (wTxn + b) ≤ ε+ ξ+

n , ∀n
(wTxn + b)− yn ≤ ε+ ξ−n , ∀n
ξ+
n ≥ 0, ∀n

ξ−n ≥ 0, ∀n

(C.4)

and the regularization constraint C.2. This convex optimization problem can
be reduced to a quadratic optimization problem by instead minimizing

Φ(w, ξ, ξ∗) =
1

2
wTw + C ′

(
N−1∑
n=0

ξ+
n +

N−1∑
n=0

ξ−n

)
(C.5)

subject to constraints C.4 (Vapnik, 1995). In this case, the parameter C ′ controls
the importance assigned to margin violations (larger C ′ values impose a larger
penalty). The objective function denoted by C.5 together with the inequality
constraints in C.4 are known as the primal optimization problem. The Karush-
Kühn-Tucker (KKT) Theorem states that a solution u∗ to the primal is optimal
if and only if the solution (u∗,α∗) is a solution to the dual problem

max
α≥0

min
u
L(u,α)

where α denotes the vector of Lagrange multipliers (one for each constraint). For
this optimization problem, the Lagrangian is

L(w, b, ξ, ξ
′
, α, β, γ+, γ−) =

1

2
wTw + C ′

(
N−1∑
n=0

ξ+
n + ξ−n

)

+
N−1∑
n=0

αn[yn − (wTxn + b)− ε− ξ+
n ]

+
N−1∑
n=0

βn[(wTxn + b)− yn − ε− ξ−n ]

+
N−1∑
n=0

−γ+
n ξ

+
n +

N−1∑
n=0

−γ−n ξ−n

Moreover, the third condition of the KKT Theorem states that

∇uL(u,α) |u=u∗,α=α∗ = 0

which implies
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∂L
∂w

= w +
N−1∑
n=0

(βn − αn)xn = 0 =⇒ w =
N−1∑
n=0

(αn − βn)xn (C.6)

∂L
∂b

=
N−1∑
n=0

βn − αn = 0 =⇒
N−1∑
n=0

βn =
N−1∑
n=0

αn (C.7)

∂L
∂ξ+

n
= C ′ − αn − γ+

n = 0 =⇒ γ+
n = C ′ − αn (C.8)

∂L
∂ξ−n

= C ′ − βn − γ−n = 0 =⇒ γ−n = C ′ − βn (C.9)

Replacing w, γ+
n and γ−n in the Lagrangian simplifies the dual problem to

L(α, β) = −ε
N−1∑
n=0

(βn + αn) +

N−1∑
n=0

yn(αn − βn)

− 1

2

N−1∑
n=0

N−1∑
m=0

(αn − βn)(αm − βm)xT
nxm

(C.10)

Since maximizing L(α, β) is equivalent to minimizing −L(α, β), the optimiza-
tion problem can be re-written as

min
α∈RN

− L(α, β)

subject to
N−1∑
n=0

βn =
N−1∑
n=0

αn

0 ≤ αn ≤ C ′

0 ≤ βn ≤ C ′

where the two last conditions arise from γ+
n ≥ 0, γ−n ≥ 0. This is yet an-

other quadratic convex optimization problem, but it is computationally simpler.
Quadratic convex problems can be easily solved via quadratic programming, for
which several libraries exist.

In addition, the second condition of the KKT theorem (complementary slack-
ness) states the optimal solution must satisfy

α∗n(ε+ ξ+∗
n − yn + w∗Txn + b∗) = 0 (C.11)

β∗n(ε+ ξ−∗n − yn + w∗Txn + b∗) = 0 (C.12)

γ+∗
n ξ+∗

n = 0 (C.13)

γ−∗n ξ−∗n = 0 (C.14)

If a∗n > 0, then from equation C.11 ε+ ξ+∗
n − yn + w∗Txn + b∗ = 0 and hence

w∗Txn + b∗ − yn = ε+ ξ+∗
n (C.15)
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If γ+∗
n > 0, then from equations C.8 and C.13

α∗n < C ′ (C.16)

ξ+∗
n = 0 (C.17)

which combined with equation C.15 implies that if 0 < α∗n < C ′

w∗Txn + b∗ − yn = ε (C.18)

In other words, vectors xn whose Lagrange multipliers satisfy 0 < α∗n < C ′

lie on the boundary of the ε-margin. Since they ”support” the ε-margin, they
are called margin support vectors. On the other hand, if α∗n = C ′ then γ+∗

n = 0
which implies that ξ+∗

n > 0. These vectors violate the ε-margin and are called
non-margin support vectors. Lastly, vectors with α∗n = 0 lie within the ε-margin.

The analysis above is identical for β∗n and γ−∗n . Consequently, follows from
equations C.6 and C.18 it follows that the optimal hyperplane is completely de-
termined by the margin and non-margin support vectors. Hence the name of this
algorithm, the support vector regressor.

The SVR is a powerful algorithm, but it can only produce linear hypotheses
(hyperplanes). To address this issue, the inputs can be transformed into a higher
dimensional space via a non-linear transform Φ(xn) : RP −→ RD. The SVR can
fit the optimal hyperplane in the higher dimensional space, producing a non-linear
hypothesis in the original space. Naturally, this dimensional lifting increases the
expressive power of the model considerably.

Throughout the SVR fitting procedure, the only step that depends on the in-
put’s dimension is calculating the inner product xT

nxm in the Lagrangian (equation
C.10). After the transform, this product becomes Φ(xn)TΦ(xm), which might be-
come computationally expensive for a high enough D. Fortunately, this problem
can be bypassed by the kernel trick.

In this context, a kernel is a continuous symmetric positive semidefinite func-
tion K : X × X −→ R. The mathematical basis for the kernel trick is Mercer’s
Theorem, which states that all continuous symmetric functions can be expressed
as an inner product

K(xn,xm) = Φ(xn)TΦ(xm)

for some Φ if and only if K is positive semidefinite. Thus, if Φ(xn)TΦ(xm) is a
valid inner product in V, there exists a kernel function K which can calculate this
inner product in another vector space X .

In this case, the V space corresponds to the higher dimensional feature space
RD. The gist of the kernel trick is that for certain Φ transforms, the kernel function
can be efficiently computed in the original RP space. For example, consider the
second order polynomial transform

Φ(x) = (1, x0, x1, ..., xp−1, x0x0, x1x1, ..., xp−1xp−1)

where D = 1 + P + P 2. The computation of Φ(x) takes O(D) time, and thus

Φ(xn)TΦ(xm) = 1 +

p−1∑
i=0

xnixmi +

p−1∑
i=0

p−1∑
j=0

xnixnjxmixmj
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also takes O(D) time to compute. However, reorganizing the double summation
we have that

p−1∑
i=0

p−1∑
j=0

xnixnjxmixmj =

(
p−1∑
i=0

xnixmi

)
×

p−1∑
j=0

xnjxmj

 = (xT
nxm)2

Therefore, the inner product in RD can be calculated as

Kpoly(xn,xm) = 1 + xT
nxm + (xT

nxm)2

which takes O(P ) to compute. The derivation of the second order polynomial
kernel can be extended to the general Q-degree polynomial kernel

Kpoly(xn,xm) = (ζ + γxT
nxm)Q

where ζ > 0, γ > 0 and Q ∈ N. Thus, the inner product in equation C.10 can be
efficiently computed in the input feature space even after the high dimensional,
non-linear polynomial transform. This makes the kernel trick an extremely pow-
erful tool which enables the SVR to learn complex hypotheses, while preserving
its automatic regularization properties.

Another popular kernel is the Gaussian radial basis function (RBF), which has
the form

KRBF(xn,xm) = exp
(
−θ‖xi − xj‖22

)
with θ > 0. What makes this kernel special is that it allows a projection into
an infinite-dimensional feature space. This property is derived from the following
analysis:

KRBF(xn,xm) = exp
(
−γ‖xn − xm‖2

)
= exp

(
−γ(xn − xm)T(xn − xm)

)
= exp

(
−γ
[
xT
n (xn − xm)− xT

m(xn − xm)
])

= exp
(
−γ
[
xT
nxn − xT

nxm − xT
mxn + xT

mxm

])
= exp

(
−γ
[
xT
nxn + xT

mxm − 2xT
nxm

])
= exp

(
−γ‖xn‖2

)
exp

(
−γ‖xm‖2

)
exp(2γxT

nxm)

For convenience, define the A constant such that

A = exp
(
−γ‖xn‖2

)
exp

(
−γ‖xm‖2

)
then

KRBF(xn,xm) = A exp(2γxT
nxm)

∗
= A

∞∑
r=0

(
2γxT

nxm

)r
r!

= A

∞∑
r=0

(2γ)r
(
xT
nxm

)r
r!

= A

∞∑
r=0

(2γ)r

r!
×Kpoly(r)(x

T
nxm)
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where ∗ comes from the Taylor expansion of the exponential function. This result
indicates the RBF kernel can be viewed as an infinite sum of polynomial kernels
with increasing dimensions. The r! denominator implies that higher-dimensional
kernels contribute less to the solution than lower-dimensional ones. However, the
attenuation of higher-dimensional kernels can be controlled with the γ parameter,
with higher γ leading to more complex hypotheses.

C.2 Decision Tree Ensembles
.

Model ensembles consist of combining different models (weak learners) in order
to obtain a better performance than any of the individual models’. Thus, ensem-
bling can be thought of as a way of compensating for sub-optimal models with
extra computation. Although the ensemble model represents a single function, it
does not necessarily belong to the same function class as the models from which its
built. For example, a simple ensemble model could be a weighted average between
the predictions of a regularized linear regressor and a support vector regressor.

In tree-based ensembling, the weak learners consist of decision trees (DTs).
DTs are a non-parametric supervised learning algorithm which predicts the target
variable by learning simple decision rules from the training data.

In the context of regression, given a set of input features (x0, ...,xN−1),xn ∈
RP and target vectors (y0, ...,yN−1),yn ∈ RD, a DT recursively partitions the
feature space such that samples belonging to the same partition have similar tar-
gets. Each of these partitions is represented by a node Qm in the tree, containing
a subset of Nm training samples. In the case of binary trees, a split θ = (xp, t) is
defined by a feature xp and a threshold t (for numerical features) or a subset of
categories A (for categorical features). Thus, a node Qm is partitioned into nodes

Qleftm (θ) and Qrightm (θ) by split θ such that{
Qleftm (θ) = {(xm,ym) : xmp ≤ t, (xm,ym) ∈ Qm}
Qrightm (θ) = Qm\Qleftm (θ)

for numerical features and{
Qleftm (θ) = {(xm,ym) : xmp ∈ A, (xm,ym) ∈ Qm}
Qrightm (θ) = Qm\Qleftm (θ)

for categorical features. The algorithm follows a greedy behavior, which means
each node is split according to its best possible split. The quality of a split is
measured using a loss function H(Q)

G(Qm, θ) =
N left
m

Nm
H(Qleftm (θ)) +

N right
m

Nm
H(Qrightm (θ))

where G represents the splits’ impurity. Thus, the best possible split at node Qm
is

θ∗ = argminθG(Qm, θ)
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The process is then repeated for the new nodes Qleftm and Qrightm until the stop-
ping criteria are met. The algorithm begins from the root node, which contains all
of the training samples. Without any restriction, the DT could grow until all nodes
have constant target values. However, these deep trees suffer from severe overfit-
ting, so additional stopping criteria (defined by the user) are also implemented.
These criteria include maximum tree depth, minimum number of samples per node,
and minimum impurity decrease between parent and child nodes. In the context
of genomic prediction, shallower decision trees perform more favorably on most
datasets (Azodi et al., 2019; Goldstein et al., 2010).

For prediction, the tree assigns input vectors to one of the terminal nodes
(also called leaf nodes) according to the learned splits θ. The predicted value for
an input belonging to node QM is the node’s mean vector, although the median
can also be used

ŷM =
1

NM

∑
y∈QM

y

Several loss functions can be used for regression tasks, such as the mean abso-
lute or squared error. When the mean squared error is optimized, the loss function
takes the form of

H(Qm) =
1

Nm

∑
y∈Qm

(y − ym)2

which is equivalent to minimizing the node’s variance.
In practice, individual DTs are heavily dependent on the dataset they are

trained on. A small change in the training data can result in considerably different
splits and thus predictions. Ensembling naturally addresses this issue by combining
several DTs into a single model, improving its generalizability and robustness.

Ensemble methods generally fall into one of two categories: averaging methods
and boosting methods. Averaging methods build each weak learner independently
and then average their predictions. Thus, the ensembled model’s variance is signif-
icantly lower than any of the weak learner’s. On the other hand, boosting methods
build the weak learners sequentially instead of independently. Each consecutive
learner improves upon the last, which can be thought of as minimizing the ensem-
ble model’s bias. To do this, gradient boosting methods begin from a constant
function F0 such that

F0(x) = argminγ

N−1∑
i=0

L(yi, γ)

where L is the loss function to be optimized (which needs to be differentiable).
In the case of regression with mean squared error loss, F0 = y. Each gradient
boosting iteration adds a new model to the previous ensemble

Fm(x) = Fm−1(x) + hm(x) = y =⇒ hm(x) = y − Fm−1(x)

From the previous expression, it follows that

h∗m = argminhm

N−1∑
i=0

L(yi, Fm−1 + hm(xi))
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Appendix C. Machine Learning Models

In practice, finding the best possible function at each iteration is computation-
ally infeasible. However, finding an approximation of this function is good enough,
since any errors will be corrected by the next ensemble (and so on). Using the
first-order Taylor expansion of L(yi, Fm−1(xi) + hm(xi)) at F (xi) = Fm−1(xi), we
have

L(yi, Fm−1(xi) + hm(xi)) ≈ L(yi, Fm−1(xi)) + hm(xi)

[
∂L(yi, F (xi))

∂F (xi)

]
F=Fm−1

Thus, the optimal hm is

h∗m = argminhm

N−1∑
i=0

hm(xi)

[
∂L(yi, F (xi))

∂F (xi)

]
F=Fm−1

The term
[
∂L(yi,F (xi))

∂F (xi)

]
F=Fm−1

is the derivative of the loss w.r.t. the pre-

dicted value, evaluated at the previous ensemble model’s prediction (also known
as pseudo-residuals). Since the loss is differentiable, this term is easy to compute
in closed form. Consequently, the optimal solution h∗m is proportional to the neg-
ative gradient of the loss. This implies that GBMs can be thought of as iterative
gradient descent algorithms which optimize the loss over the function space.

In our case, we explored two DT based ensemble methods: Gradient Boosting
Machines (GBMs, also called TreeBoost models) (Friedman, 2001) and Random
Forests (RFs) (Breiman, 2001). As their name indicates, the former belong to the
boosting category, while the latter belong to the averaging methods category.

GBMs are gradient boosting algorithms in which the weak learners are DTs.
On the other hand, RFs inject randomness into the algorithm by constructing
several DTs which fit different subsets of the whole training dataset. Moreover,
the best split at each iteration is determined in a random subset of features. These
two sources of randomness imply that DTs have reasonably independent errors,
which cancel out during the averaging process. Thus, the variance of the RF is
greatly reduced, at the cost of a slight increase in bias.
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Appendix D

SNP graph representation

Throughout this work we focused mainly on individuals as nodes. Topology in-
ference using SNPs as nodes is more challenging since n << p. This appendix
introduces some techniques and important considerations in this scenario, as pre-
sented by Kolaczyk and Csárdi (2020).

D.1 Partial Correlations
When constructing association networks, partial correlations are often preferred,
from the stance that edges should represent direct associations or direct effects
between vertices. That is, when considering two variables the effect of the re-
maining variables should be adjusted. It may be noted that in the context of
Gaussian Graphical Models this is equivalent to Markovian or conditionally inde-
pendent Network estimation. Under gaussianity assumptions, partial correlations
are proportional to the inverse of the covariance matrix, known as the precision
matrix. However, in the case were n < p the covariance matrix is rank deficient
and thus not invertible. Several precision matrix estimation methods exist, which
overcome this limitation by applying regularization techniques - or equivalently
shrinkage.

D.2 Covariance Estimation
In the case where n << p, applying regularisation may lead to lower MSEs by
achieving a better bias-variance tradeoff, a more stable eigenvector estimation,
and enforce non-singularity.

Shrinkage estimators consist of a convex combination between the sample co-
variance and a shrinkage target, which is usually a scaled identity matrix - but can
be replaced by other structured estimators.

Σshrunk = (1− α)Σ̂ + αS

Where S is the shrinkage target and α is the shrinkage constant.
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The identity matrix is usually scaled by the average eigenvalue, i.e. S = Tr Σ̂
p I,

thus shrinking eigenvalues towards their mean.
Several methods for finding an appropriate α exist, including Leidot-Wolf and

Oracle Approximate Shrinking. The latter assumes data is normally distributed.

D.3 Association inference and Multiple testing
The task of inferring edges representing a statistically significant correlation be-
tween variables can be posed as a hypothesis test where the null hypothesis is that
the variables are uncorrelated:

H0 : corr (Xi, Xj) = 0 versus H1 : corr (Xi, Xj) 6= 0,

Choosing a test statistic and an appropiate null distribution the set of non-zero
correlations can be inferred.

Since this must be done for every variable, the problem of multiple testing
arises: with high probability true null hypotheses will be rejected. Several tech-
niques exist to limit this effect, including permutation methods, familywise error
rate (FWER) methods (notably the Bonferroni correction), and False Discovery
Rate adjustments.

D.4 False Discovery rate adjustment
The False Discovery Rate is defined as the expected rate of type I errors (false
rejections):

FDR = E
(
Rfalse

R
| R > 0

)
P(R > 0)

where R is the number of rejections and Rfalse is the number of false rejections.
The Benjamini/Hochberg FDR correction consists of ordering p values and

rejecting those which satisfy
p(i) ≤ (i/m)γ,

where m is the number of tests, in order to guarantee that (with high probability)
FDR ≤ γ.
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Appendix E

Graph Topology Descriptive Analysis

We analyse the topology of the association graphs constructed using Pearson’s
correlation coefficient and either k-NN or thresholding, as described on Chapter
The method used to construct the graph, as well as the choice of parameters,
namely k and threshold has a significant impact on the resulting graphs. A de-
scriptive network analysis was then carried out to compare the GSOs produced by
the different methodologies mentioned above. The analysis is based on Kolaczyk
and Csárdi (2020), where all of the following metrics are described (on Chapter
4). Graph tool (Peixoto, 2014) library was used to compute them, refer to their
documentation for further implementation details.

E.1 Connectivity
E.1.1 Components
If an induced subgraph (as defined on Section 7.2) is connected it is called a
connected component. The number of connected components for different networks
is shown in Figure E.1. As it can be seen, the knn graphs constructed have
one connected component, whereas using thresholding small isolated components
appear at higher sparsity levels.



Appendix E. Graph Topology Descriptive Analysis

Figure E.1: Component size and number of components in a graph with 5024 nodes, con-
structed using Pearson correlations and different thresholding levels and number of neighbours.
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E.1. Connectivity

E.1.2 Isolated Nodes
To further illustrate how connectivity varies with thresholding levels, we include
a plot of the number of isolated nodes, i.e. with no neighbours at all, for different
thresholding levels. To what extent having isolated nodes is detrimental to the

Figure E.2: Number of isolated nodes for a graph with 5024 nodes, constructed using Pearson
correlations and different thresholding levels.

task at hand, and whether it reflects the presence of individuals with no close
relatives on the dataset, requires further examination.
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E.2 Node Centrality
E.2.1 Degree
As defined in the previous section, the degree is the number of incident edges of
a node. As E.3 shows, degree histograms present significant variations depending
on the thresholding levels. Degree distributions are significantly different from a

Figure E.3: Node degree histogram and mean degree for a graph with 5024 nodes, constructed
using Pearson correlations and different thresholding levels.

knn graph where the same degree is imposed to all nodes. Notably, thresholding
produces a large number of nodes with few neighbours and some with large degree.

For instance, using a threshold of 0.55 while there are only five nodes with
degree greater than 300, 1378 nodes have degrees under 25. This may be related
to population structure.
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E.2. Node Centrality

E.2.2 Betweenness
Betweenness centrality is also related to the cost of taking a node out, by capturing
the extent to which a node is in the shortest paths of all other nodes. The most
commonly used measure, as defined by Freeman (1977) is:

cB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst

where σst is the number of shortest paths between s and t, and σst(v) is the number
of those paths that pass through v. As with other centrality measures, this is an
important property of the graphs since not all individuals from the population
will be available when training. That is, some nodes will be actually taken out.
Therefore, understanding to what extent removing them can affect the spreading
of information is especially relevant.

Figure E.4: Betweenness node histogram for a graph with 5024 nodes, constructed using
Pearson correlations and different thresholding levels and number of neighbours.

As expected, on sparser graphs there are more nodes with higher betwenness.
Nonetheless, the distribution of this metric shows an unexpected degree of similar-
ity between knn and thresholding. Understanding why this happens and to what
extent it affects predictions requires further analysis.
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E.2.3 Closenness
Intuitively, it represents the cost of spreading information to all other nodes:

ci =
1∑

j dist(i, j)

where dist(i, j) is the geodesic distance or shortest path (computed using Dijkstra’s
algorithm) from node i to j, and path length is defined as:

l(i, j) =
k∑
l=1

1

wql−1ql

,

where q = i, . . . , j is a sequence of nodes connecting node i and node j. Although
in some graphs edge weights may directly represent distances, we take their in-
verse 1

wql−1ql
since our weights represent similarities. This is related to the Fermat

distance between samples introduced in earlier sections (6.4.4). It should be noted
that there may be more than one path with minimum length.

In case there is no path between the two nodes, in the graph-tools library
implementation closeness is taken to be zero. As we have seen, isolated nodes
are more common in thresholded graphs with higher sparsity. Therefore, direct
comparisons between knn and thresholding graphs and different sparsity levels are
hindered. As shown in Figure E.5, as a result of the aforementioned phenomenon,
nodes with high closeness values appear when thresholding with 0.6. Interest-
ingly, some graphs with similar mean degrees (see 60-nn and 0.53 thresholding)
ended up having similar mean closeness. It may be pointed out that when calcu-
lating degree we did not take into account weights (just connectivity). For large
thresholding levels the impact of nodes with few or no neighbours is clearly vis-
ible. Overall, Knn graphs showed heavier tails or skewness, which may reflect
that nonzero weights in knn graphs present more variation than their thresholded
counterparts (although differences in topology could have had the opposite effect
on path length). Although this particular metric certainly has its limitations, mea-
sures which generalize the notion of closeness to isolated graphs exist (Dangalchev,
2006; Rochat, 2009), which may be more adequate for analyzing sparser graphs.
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E.2. Node Centrality

Figure E.5: Closeness node histogram for a graph with 5024 nodes, constructed using Pearson
correlations and different thresholding levels and number of neighbours.
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E.3 Cohesion
E.3.1 Local Clustering Coefficient
A complete graph is a graph where every pair of nodes is joined by an edge, and
a clique is a complete subgraph. The local clustering coefficient ci, as defined in
equation E.1, can be used to measure how far typical neighbourhoods are from
being a clique (their ‘cliqueishness‘ according to Watts and Strogatz (1998)). It
measures the fraction of edges present in the neighbourhood of a node to the
number of edges that would be present if said neighbourhood was a clique.

ci =
|{ejk}|

di (di − 1)
: vj , vk ∈ N (i), ejk ∈ E , (E.1)

where di is the degree of vertex i.
The coefficient is undefined for isolated nodes, and was set to zero in those

cases. As in the case of closenss, this may hinder direct comparisons. Figure E.6
shows that for low sparsity levels local clustering coefficients tend to be higher on
knn graphs. Conversely, for higher sparsity levels, and without taking into account
isolated nodes, clustering coefficients seem to be higher in thresholded graphs.

Figure E.6: Local clustering coefficient node histogram, in a graph with 5024 nodes, con-
structed using Pearson correlations and different thresholding levels and number of neighbours.
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E.4. Graph Spectral Analysis

E.4 Graph Spectral Analysis
The spectral decomposition of graph shift operators can give useful insights about
graph structure. Some of the properties already mentioned could have been ana-
lyzed through the Laplacian’s spectral decomposition. For instance, the number of
connected components is equal to the dimension of the nullspace of the Laplacian
(or equivalently the algebraic multiplicity of eigenvalue 0).

The choice of the operator will obviously have an impact on the analysis.
Some state that Laplacian eigenvalues are more intuitive and “important” (Mo-
har, Alavi, Chartrand, & Oellermann, 1991). On the other hand, adjacency spec-
trum has also been thoroughly studied, often motivated by its connection with
random walks on graphs (Chung & Graham, 1997). Since several results linking
eigenvalues to interesting graph properties exist for both operators, both could be
employed. Regarding differences between normalised and unnormalised operators,
in the case of the Laplacian and Adjacency an affine transformation with bounded
errors which depend on the minimum and maximum degree of the graph can be
found (Lutzeyer & Walden, 2017). We will analyze both the normalized and un-
normalised adjacency and laplacian matrices and some common properties in the
spectral domain.

E.5 Visualizing Graph Spectrum
We are dealing with Hermitian operators since the graph is undirected. therefore,
all eigenvalues are real, which simplifies the analysis.

E.6 Algebraic connectivity
The notion of graph connectivity is usually defined as the minimum number of
nodes or edges that would need to be removed to disconnect the graph into two
or more components. The Fiedler value is the second smallest eigenvalue of a
graph and many results linking it with graph connectivity exist (Brandes, 2005).
Perhaps the simplest one is that a graph is connectted iif the fiedler value is not
zero. Furthermore, several properties of the graph such as the mean distance,
diameter (largest distance) and many others presented on (Brandes, 2005). As
shown on Table E.1.

E.7 Spectral Radius Ratio for node degree.
It is a measure node degree variation (Meghanathan, 2014), defined as:

srratio =
λp
davg

,
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Figure E.7: Eigenvalues and algebraic multiplicity for the adjacency operator.

Figure E.8: Eigenvalues and algebraic multiplicity for the normalized adjacency operator.
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E.7. Spectral Radius Ratio for node degree.

Figure E.9: Eigenvalues and algebraic multiplicity for the Laplacian operator.

Figure E.10: Eigenvalues and algebraic multiplicity for the normalized Laplacian operator.
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Fiedler λp davg srratio

Thresholding

0.50 1.2E-13 1897.5 442.5 4.29
0.53 1.5E-15 1160.9 111.2 10.44
0.55 1.0E-15 885.7 63.4 13.97
0.60 3.9E-31 413.9 21.2 19.51

knn

100 14 577.4 100 5.77
60 6.3 435.1 60 7.25
40 2.9 338.0 40 8.45
20 8.5E-01 216.1 20 10.81

Table E.1: Fiedler eigenvalue, spectral radius, mean degree and their ratio.

where λp is the largest eigenvalue, called principal eigenvalue or spectral radius,
and davg the average degree. It can be shown that:

1 ≤ dmin ≤ davg ≤ λp ≤ dmax,

where dmin and dmax are the minimum and maximum eigenvalues respectively.
The farther is the value from 1, the larger the variation in node degree.

As shown on Table E.1, knn graphs have a higher algebraic connectivity than
thresholded graphs.

E.8 Further Analysis.
An exhaustive descriptive analysis would surely include other measures such as
local density or assortativity and mixing coefficients. In addition, other techniques
such as graph partitioning (in particular hierarchichal clustering), studying edge
and node cut or flow properties, or performing density estimation, could help to
give a more accurate description of the graphs obtained.

Despite the fact this exploratory analysis can lead to useful insights, the main
objective is not to evaluate graph topology inference per se. In that sense, graph
topologies should ultimately be evaluated with respect to their performance on the
prediction task, together with predictive models supported on those graphs.
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Appendix F

Other noise experiments

F.1 Phenotypic Noise.
As when dropping markers (see Section F.2 exhibits high variance between runs.
Due to a low number of samples and high dimensionality, model performance may
be greatly affected by train-test splits, and by which sample gets contaminated
(both chosen randomly).

As it can be seen, the behaviour is similar between Yeast and Holstein dataset.
In both, predictive correlation falls in an approximately linear manner as the num-
ber of contaminated samples increases. The fact that Wheat exhibits a “noisier”
behaviour may owe to the fact that there are significantly fewer samples in that
dataset. On the Holstein dataset model performance has less variance. This could
be linked to the fact that it has the highest number of samples.

It is worth noting that -mostly- models do not present significant differences
in their behaviours.

Figure F.1: Performance of different methods in the yeast dataset under varying amounts of
contaminated phenotypes.
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Figure F.2: Performance of different methods in the wheat dataset under varying amounts of
contaminated phenotypes.

Figure F.3: Performance of different methods in the Holstein dataset under varying amounts
of contaminated phenotypes.

F.2 Number of samples.
When dropping samples the Yeast dataset starts with the slower decline in per-
formance, and falls rapidly for extreme values. This may owe to the high Linkage
Disequilibrium present. That is, since samples are highly correlated, removing
some does not have a large impact. This holds until the most correlated samples
have been removed.

On other datasets, which have lower LD, perrformance falls at a more constant
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F.2. Number of samples.

rate although not entirely linearly. Once again, the Wheat dataset has the “noisier”
results.

Model-wise, there are no significant differences. It seems that the results of
these experiments seem to be driven not so much by model choice, but by the
dataset and its nature. The links between these differences in performance and the
trait, populations or relevant dataset characteristics require further examination.

Figure F.4: Performance of different methods in the yeast dataset under varying amounts of
dropped samples.

The decrease in predictive accuracy is significantly steeper when reducing the
number of samples or adding phenotypic noise than in the case of marker elimina-
tion (see Section ). Although the evidence is limited, this could point torwards a
higher payoff for increasing the number of samples, or increasing the accuracy in
phenotype measurements, than for increasing SNP marker density.
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Figure F.5: Performance of different methods in the wheat dataset under varying amounts of
dropped samples.

Figure F.6: Performance of different methods in the Holstein dataset under varying amounts
of dropped samples.
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Appendix G

Baseline Models Hyperparameters

.
The following tables show the hyperparameters obtained by carrying out a

randomized search and cross-validation for different datasets, encodings and traits.
This process was repeated for 10 train-test splits. For numerical parameters the
mean and standard deviation across those 10 splits is included, and for categorical
parameters the most frequent value is shown.

Although results vary across datasets, traits and environments some overall
trends could be observed. Interestingly ridge penalty was higher for Additive
encoding than for OHE, and largeIn this section we informally compare the pa-
rameters obtained to default ones on sklearn (Pedregosa et al., 2011). for both.
The number of estimators and minimum number of samples per leaf in Random
Forests and Gradient Boosting was also high (> 1000 and > 20, respectively). All
these parameters have a regularising effect, and thus this result can be linked to
the fact that targets are noisy, inputs high dimensional, and data scarce. However,
in the case of SVR, C was not outstandingly large. In the case of SV R, radial
basis functions showed the best performance on most -but not all - datasets and
traits.
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Appendix G. Baseline Models Hyperparameters
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González-Recio, O., Jiménez-Montero, J., & Alenda, R. (2013). The gradient
boosting algorithm and random boosting for genome-assisted evalua-
tion in large data sets. Journal of dairy science, 96 (1), 614–624.
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