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Abstract. Following previous work of the second author, we establish more properties
of groups of circle homeomorphisms which admit invariant laminations. In this paper,
we focus on a certain type of such groups, so-called pseudo-fibered groups, and show
that many 3-manifold groups are examples of pseudo-fibered groups. We then prove that
torsion-free pseudo-fibered groups satisfy a Tits alternative. We conclude by proving that
a purely hyperbolic pseudo-fibered group acts on the 2-sphere as a convergence group.
This leads to an interesting question if there are examples of pseudo-fibered groups other
than 3-manifold groups.

1 Introduction

Thurston [25] showed that, if M is an atoroidal 3-manifold admitting a taut folia-
tion, then �1.M/ acts faithfully on S1 with a pair of dense invariant laminations.
The result was generalized by Calegari–Dunfield [6], and one can find a complete
treatment in [5]. Motivated by these results, the second author studied groups act-
ing faithfully on S1 with prescribed types and numbers of invariant laminations,
in the process giving a new characterization of Fuchsian groups [1]. In the same
paper, he asked if there exists a way of characterizing fibered 3-manifold groups
in a similar way.

For a 3-manifold M which fibers over the circle, one can construct a natural
action of �1.M/ on the circle with two invariant laminations, and this motivates
the following definition. We call a subgroup G of HomeoC.S1/ pseudo-fibered
if its action on S1 admits two invariant, very full, loose laminations with distinct
endpoints. As we said, this includes a large class of examples coming from 3-
manifolds which fiber over the circle, and the purpose of this paper is to show that
pseudo-fibered groups in general have many nice properties.

We emphasize that, in this paper, all group actions on S1 are considered up to
conjugacy not semi-conjugacy (compare [20]). This is because it is not clear if the

The second author was partially supported by the ERC Grant No. 10160104 and Samsung Science &
Technology Foundation grant No. SSTF-BA1702-01.



360 J. Alonso, H. Baik and E. Samperton

notion of pseudo-fibering is invariant under semi-conjugacy. See Section 2 for the
precise definitions and relevant discussions.

In Section 4, we establish our first main result, a Tits alternative for torsion-free
pseudo-fibered groups.

Theorem A. Let G be a torsion-free pseudo-fibered group. Each subgroup of G
either contains a non-abelian free subgroup or is virtually abelian.

This is proved in Section 4.2 by studying how two elements of a (torsion-free)
pseudo-fibered group interact with each other dynamically. In particular, we show
a kind of dynamical alternative for elements of a pseudo-fibered group.

Theorem B. Let G be a torsion-free pseudo-fibered group, and, for f 2 G, let
Perf denote the set of all periodic points of f on S1. Then, for any g; h 2 G, Perg

and Perh are either equal or disjoint.

Theorem A will follow from Theorem B by applying the ping-pong lemma,
and Hölder’s theorem that a group acting faithfully and freely on R is necessarily
abelian.

In Section 5, we study pseudo-fibered groups with more structure, inspired by
(quasi-)Fuchsian groups. This part should be considered as part of Fenley’s pro-
gram which generalizes the work of Cannon–Thurston [8] considerably from the
viewpoint of pseudo-Anosov flows (see [12]).

Our main result of Section 5 connects the pseudo-fibered group action on S1

with a convergence group action on S2. Note that a similar idea has been carried
out in Fenley’s program (see [12, 14], and also compare [13, 15]).

Theorem C. Let G be a pseudo-fibered group which is purely hyperbolic. Then G
acts on S2 as a convergence group.

For the definition of “purely hyperbolic”, see Section 2. We expect that Theo-
rem C can be strengthened. Indeed, when G is a purely hyperbolic pseudo-fibered
group, the second author has previously conjectured that G is a Fuchsian group,
hence acts on S1 as a convergence group [1]. Recall that the work of many authors
(e.g., [9,16,26]) shows that a group acts on S1 as a convergence group if and only
if it is topologically conjugate to a Fuchsian group.

Theorem A, Theorem B and Theorem C show that pseudo-fibered groups have
properties similar to those of fibered 3-manifold groups. On the other hand, we
provide a source of examples of pseudo-fibered groups which are quite differ-
ent from fibered 3-manifold groups in Section 3. More precisely, in Theorem 3.1,
we show that the free product of any two finite cyclic groups is a pseudo-fibered
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group. In the context of 3-manifolds, this implies that the fundamental group of
the connected sum of any two lens spaces is also pseudo-fibered (Corollary 3.4).

Given the results above and the result of [1], we propose the following:

Conjecture 1.1 (Promotion of pseudo-fibering). Let G be a finitely-generated tor-
sion-free pseudo-fibered group which does not split as a non-trivial free product.
Then there are three possibilities.

(1) G is elementary, i.e., virtually abelian.

(2) G is topologically conjugate to a Möbius group action (as usual, we consider
PSL2.R/ a subgroup of HomeoC.S1/).

(3) G is abstractly isomorphic to a closed hyperbolic 3-manifold group.

A similar conjecture was made in [1], and the difference is discussed in Sec-
tion 3. Here G is said to be elementary if it is virtually abelian. This definition
makes sense due to Theorem A, which asserts that every non-elementary pseudo-
fibered group contains a non-abelian free subgroup.

2 Preliminaries

We briefly review and motivate several definitions regarding laminations on the
circle. Two pairs .a; b/ and .c; d/ of distinct points of the circle S1 are said to
be linked if each connected component of S1 n ¹a; bº contains precisely one of
c; d . They are called unlinked if they are not linked. Let M denote the set of all
unordered pairs of two distinct points of S1, i.e.,

M D .S1
� S1

��/=.x; y/ � .y; x/;

where � is the diagonal ¹.x; x/ W x 2 S1º. A lamination of S1 is a closed subset
of M whose elements are pairwise unlinked. Given a lamination ƒ, an element
.a; b/ of ƒ is called a leaf, and the points a; b are called the endpoints of the leaf
.a; b/ (or just endpoints of ƒ if there is no possible confusion). Two laminations
have distinct endpoints if their sets of endpoints are disjoint. A lamination ƒ is
called dense if the set of endpoints of ƒ is a dense subset of S1.

Any subgroup G of HomeoC.S1/ has an induced action on M. We say that
a lamination ƒ is G-invariant if the G-action on M preserves ƒ set-wise. A dis-
crete subgroup G of HomeoC.S1/ is called laminar if it admits a dense G-invari-
ant lamination.

Let D denote the closed unit disk in C, where the interior is equipped with the
Poincaré metric, i.e., D D H2 [ @1H2 . A lamination ƒ0 of D is a set of chords
with disjoint interiors such that there exists a laminationƒ in S1 D @D, where the
chords in ƒ0 can be obtained by connecting the endpoints of the leaves of ƒ.
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As noted in [5, Construction 2.4], the set of laminations on S1 and the set of
geodesic laminations of H2 are in one-to-one correspondence up to isotopy rel-
ative to S1 D @1H2. Hence we freely switch our viewpoint between these two
without further mentioning. A gap of a lamination ƒ is the closure of a connected
component of H2 nƒ in H2 [ @1H.

We recall some key properties of laminations from [1] (also compare [4]) .

Definition 2.1. A lamination ƒ is said to be

� totally disconnected if no open subset of the disk is foliated by ƒ,
� very full if each gap is a finite-sided ideal polygon in the disk,
� loose if no two leaves share an endpoint unless they are edges of the same (nec-

essarily unique) gap.

For every element f of HomeoC.S1/, let Fixf � S
1 denote the set of all fixed

points of f . Let Perf denote the set of all periodic points of f , where a point
p of S1 is periodic for f if the orbit of p under f is finite. Thus Fixf � Perf .
A fixed point p of the homeomorphism f is attracting if there exists an interval
I 3 p containing no other fixed points such that f .I / ¨ I . Similarly, a fixed point
q is repelling if there exists an interval J 3 q containing no other fixed points such
that f .J / © J .

We first give names to particular types of homeomorphisms of S1 in the follow-
ing definition as in [1]. For the first four types of homeomorphisms, compare [19],
where Möbius-like elliptic, Möbius-like parabolic, Möbius-like hyperbolic and
Möbius-like homeomorphisms are defined.

Definition 2.2. An element f of HomeoC.S1/ is said to be

� elliptic if f has no fixed points,
� parabolic if f has a unique fixed point,
� hyperbolic if f has two fixed points, one attracting and one repelling,
� Möbius-like if f is conjugate in HomeoC.S1/ to an element of PSL2.R/,
� pseudo-Anosov-like or p-A-like if f is not hyperbolic and some positive power
f n has a positive, even number of fixed points alternating between attracting
and repelling,

� properly pseudo-Anosov-like or properly p-A-like if f is pseudo-Anosov-like
and non-elliptic.

Thus f is p-A-like if and only if a positive power of f is properly p-A-like. For
a p-A-like homeomorphism f 2 HomeoC.S1/, the set of boundary leaves of the
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convex hull of the attracting fixed points of a properly p-A-like power f n is called
the attracting polygon of f . Similarly, f has a repelling polygon.

Definition 2.3. Let ƒ be a lamination. A leaf l 2 ƒ is said to be visible from
a point p 2 S1 if one can connect l to p by a geodesic of H2 (i.e., there exists
a geodesic ray from a point on l to p) which does not intersect any leaf ofƒ in H2.

Observe that, if p is an endpoint of a gap in a very full, loose lamination, the
set of leaves visible from p is precisely the set of edges of the gap.

Now we outline some examples of laminar groups mentioned in the introduc-
tion. Let S be a closed hyperbolic surface, and let � be a pseudo-Anosov homeo-
morphism of S . Let M be the mapping torus S � Œ0; 1�=.x; 1/ � .�.x/; 0/. Then
one can construct a faithful action of �1.M/ on S1 in the following way. Note
�1.M/ is isomorphic to �1.S/ Ì Z. The deck transformation action of �1.S/

on H2 extends continuously to a faithful action on @H2. Let e�WH2 ! H2 be a lift
of � to the universal cover of S . Since S has finite area, e� is a quasi-isometry,
hence extends to a homeomorphism on @H2. Considering this homeomorphism
on @H2 as a generator of Z, this defines an action

�W�1.M/ D �1.S/ Ì Z! HomeoC.@H2/ D HomeoC.S1/:

Then �.�1.M// is laminar since it fixes both the stable and unstable laminations
of �. In fact, � is faithful.

Definition 2.4. A finitely generated laminar group G is said to be fibered if G is
topologically conjugate to �.�1.M// where � and M are as in the previous para-
graph, and the conjugacy takes the G-invariant lamination to one of the invariant
laminations of the monodromy of M .

Definition 2.5. A finitely generated laminar group G is said to be pseudo-fibered
if it preserves a pair of very full loose invariant laminations ƒ1; ƒ2 with distinct
endpoints, and each non-trivial element of G has at most countably many fixed
points in S1. We also say .G;ƒ1; ƒ2/ is a pseudo-fibered triple.

Pseudo-fibered groups were first studied in [1]; although they had not yet been
given a name.

Theorem 2.6 ([1, Section 8]). Let .G;ƒ1; ƒ2/ be a pseudo-fibered triple. Let
g 2 G. Then

(1) g is either Möbius-like or pseudo-Anosov-like,

(2) if g is p-A-like, then, for some i; j D 1; 2 with i ¤ j , ƒi contains the attract-
ing polygon of g and ƒj contains the repelling polygon of g.



364 J. Alonso, H. Baik and E. Samperton

Furthermore, [1] shows that, if G is torsion-free, then all Möbius-like elements
are hyperbolic elements.

The following proposition justifies the term “pseudo-fibered”.

Proposition 2.7. A fibered group G is pseudo-fibered.

Proof. We only need to worry about the cardinality of the set of fixed points of
each element. But this is not a problem due to [10, Theorem 5.5] which asserts
that, for a given pseudo-Anosov surface homeomorphism h, any lift of a strictly
positive power of h has finitely many fixed points on @1H2, alternating between
attracting and repelling.

In fact, the proof of [10, Theorem 5.5, pp. 85–87] shows Theorem 2.6 in the case
of fibered groups. Any lift of a strictly positive power of h falls into one of the three
cases. Case 1 and Case 2 correspond to properly pseudo-Anosov-like elements,
and Case 3 corresponds to hyperbolic elements in the sense of Definition 2.2. In
Case 1, the attracting repelling polygons of the p-A-like element have three or
more sides, and, in Case 2, those polygons are degenerate, i.e., there are exactly
two attracting fixed points and two repelling fixed points.

We remark that the “pseudo” in “pseudo-fibered group” intentionally carries
two different connotations. The first, as in Theorem 2.6, indicates that some el-
ements are pseudo-Anosov-like. The second, as in Conjecture 1.1, indicates that
pseudo-fibered groups are (conjecturally) not far from fibered groups.

In Section 5, we study a special class of pseudo-fibered groups.

Definition 2.8. Let G be a pseudo-fibered group. Then G is called purely hyper-
bolic if it has no pseudo-Anosov-like elements.

Theorem C says that a purely hyperbolic pseudo-fibered group acts on the
sphere as a convergence group. In general, a group G acting on a compactum X

is called a discrete convergence group if the following holds: for any infinite se-
quence of distinct elements .gi / of G, there exists a subsequence .gij / of .gi / and
two points a; b 2 X not necessarily distinct such that gij converges to the con-
stant map with value a uniformly on every compact subset of X n ¹bº, and g�1

ij
converges to the constant map with value b uniformly on every compact subset of
X n ¹aº. Since we only deal with discrete convergence groups in this paper, we
will omit the word discrete and simply call it a convergence group.

As mentioned before, when X is S1, being a convergence group is equiva-
lent to being (conjugate to) a Fuchsian group. This result is known as the conver-
gence group theorem [9,16,26], and the same statement for indiscrete convergence
groups was proved in [18].
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Remark 2.9. There is a well-known equivalent definition of a convergence group
action. A groupG acting onX is called a convergence group if the diagonal action
of G on X �X �X n� is properly discontinuous, where � is the set of triples
of points of X which are not all distinct. See, for instance, [27]. If the diagonal
action on the set of distinct triples is also cocompact, then G is called a uniform
convergence group.

Remark 2.10. When X is S1, it is easy to see that the uniform convergence in
the definition of a convergence group can be replaced by the pointwise conver-
gence. However, it is important not to conflate the notions of “uniform convergence
group” and “uniform convergence”.

Remark 2.11. When X is S2, the analogue of the convergence group theorem
is not true, i.e., not every discrete convergence group action on S2 comes from
a Kleinian group. For instance, one can just start with a Fuchsian representation
of a surface group into PSL2.C/ and quotient the lower hemisphere to a single
point. On the other hand, it is a famous open problem whether or not all uniform
convergence group actions on S2 come from Kleinian groups.

Finally, the idea of a rainbow, first described in [1], will be useful throughout
this paper.

Definition 2.12. A laminationƒ is said to have a rainbow at a point p 2 S1 if there
is a sequence of leaves .li / D ..ai ; bi // of ƒ such that .ai / and .bi / converge to
p from opposite sides. Such a sequence .li / is called a rainbow at p in ƒ.

A rainbow is a particularly nice way of approximating a point p 2 S1 by leaves
of a lamination. Clearly, endpoints of leaves do not admit rainbows. On the other
hand, an observation we shall use later is that, for a very full lamination ƒ, these
approximations exist for every point that is not an endpoint of a leaf.

Lemma 2.13 (Rainbow lemma [1, Theorem 5.3]). Let ƒ be a very full lamination
of S1. Every point p 2 S1 is either an endpoint of a leaf ofƒ, or there is a rainbow
in ƒ at p. These two possibilities are mutually exclusive.

2.1 Semi-conjugacy destroys pseudo-fiberedness

We remark in this subsection that semi-conjugacy appears to be irrelevant to the
study of pseudo-fibered groups. This is to be expected in the context of our pro-
motion of the pseudo-fibering conjecture since semi-conjugacy does not preserve
convergence actions. In particular, our Theorem A should be seen as distinct from
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Margulis’s Tits alternative for minimal subgroups of HomeoC.S1/, a point we
explain now.

A continuous surjective map f WS1 ! S1 is said to be monotone if the pre-
image of each point is connected. For a group G, two actions

� and �WG ! HomeoC.S1/

are said to be semi-conjugate (or � is semi-conjugate to �) if there exists a mono-
tone map f such that f ı � D � ı f . For many aspects of the theory of groups of
circle homeomorphisms, it is enough to consider the actions up to semi-conjugacy.

A classical theorem of Poincaré says that every subgroup of HomeoC.S1/

either has a finite orbit or is semi-conjugate to a minimal action (meaning ev-
ery orbit is dense). Furthermore, a theorem of Margulis says that subgroups of
HomeoC.S1/ that act minimally either contain F2 as a subgroup or are abelian
[21]. (For more details regarding both of these results, as well as a general intro-
duction to group actions on S1, see [17].)

What we have shown is that, for a pseudo-fibered group, even if either there
exists a finite orbit or the action is non-minimal, the Tits alternative always holds.
Hence the scope of Theorem A is distinct from the Tits alternative of Margulis.

However, it is still an interesting question to ask if the pseudo-fibered groups
can be studied up to semi-conjugacy. We observe that semi-conjugacy may de-
stroy a pseudo-fibered triple since the laminations do not behave well under semi-
conjugacy. More precisely, we show the following:

Proposition 2.14. Let f WS1 ! S1 be a monotone map which is not a homeo-
morphism, and let .ƒ1; ƒ2/ be a pair of laminations. At most one of the pairs,
.ƒ1; ƒ2/ and .f .ƒ1/; f .ƒ2//, can be a pair of very full loose laminations with
disjoint endpoint sets.

Proof. Since f is not injective, there is a point p 2 S1 such that I ´ f �1.p/

has non-empty interior. Let Op be an endpoint of I . Recall that the rainbow lemma
says that, for each p 2 S1 and a very full lamination ƒ, either p is an endpoint of
a leaf or there is a rainbow at p in ƒ.

Suppose .ƒ1; ƒ2/ is a pair of very full loose laminations with disjoint endpoint
sets. In particular, there must be a rainbow at Op in ƒi for at least one of the i D 1
or 2. But the image of a rainbow at Op under f is an infinite set of leaves of f .ƒi /

which share a common endpoint. Hence f .ƒi / cannot be loose.
For the other direction, suppose .f .ƒ1/; f .ƒ2// is a pair of very full loose

laminations with disjoint endpoint sets. From the above argument, we know that
there is no rainbow at Op in ƒi for each i . But this means Op is an endpoint of some
leaf in both ƒ1 and ƒ2; hence they cannot have disjoint endpoint sets.
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Figure 1. The seed graph �0.

There are examples of pseudo-fibered triples whose actions are not minimal.
Indeed, it is easy to construct examples of pseudo-fibered groups with finite orbits,
and, in the next section, we construct examples of pseudo-fibered groups whose
actions are neither minimal nor have finite orbits. It would be interesting to more
thoroughly unravel the relationship between (non-)minimal actions, finite orbits
and Conjecture 1.1. From this perspective, it is natural to ask the following:

Question 2.15. Is a pseudo-fibering semi-conjugacy invariant? Namely, for two
semi-conjugate actions �1; �2 of a group G on S1, if �1 is pseudo-fibered with
two laminations ƒ1; ƒ2, is �2 also pseudo-fibered with respect to a different pair
of laminations �1; �2?

Note that, even if the above question has an affirmative answer, .ƒ1; ƒ2/ and
.�1; �2/ may not be related in any obvious way as we saw in Proposition 2.14.

3 Free products, torsion and promotion of pseudo-fibering

Theorems A and C can be seen also as partial evidence for Conjecture 1.1. In [1],
a conjecture similar to Conjecture 1.1 was made without free indecomposability
assumption. The following theorem shows why Conjecture 1.1 was amended.

Theorem 3.1. Let G;H be any finite cyclic groups. Then G �H embeds into
HomeoC.S1/ as a pseudo-fibered group.

Proof. This construction is adapted from a construction in [2] that yields a faithful
action of any free product of subgroups of HomeoC.S1/ on a new circle, which
blows down onto each of the original circles. We content ourselves with a brief re-
view of the ideas of [2] and a description of how to additionally construct invariant
laminations.

To construct an action of G �H on S1, begin by forming two pointed copies
of S1 called S1

G and S1
H , with marked points both denoted 1. Let G act on S1

G as
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Figure 2. The limiting circle S1 D �1 laminated by ƒ0, which is represented by
the dashed red lines.

a finite rotation subgroup and H act on S1
H as a finite rotation subgroup. The G-

orbit of the point marked 1 in S1
G is now a copy of G, and the H -orbit of 1 in S1

H

is a copy of H . Mark all of these points accordingly, wedge S1
G and S1

H together
at the points marked by 1, blow up all of the marked points, and consistently label
one of the endpoints of the blow-up intervals. The resulting “seed”, called �0,
is in Figure 1, where we have G D ha j a4 D 1i and H D hb j b3 D 1i. Now
generate an infinite graph � 01 on which G �H acts faithfully. As in Figure 2,
write � 01 D ƒ0 [ �1, where ƒ0 is the orbit of the blown-up intervals in �0,
and �1 is everything else. The order completion �1 is S1, and ƒ0 is a discrete
lamination on this circle. This proves the following lemma:

Lemma 3.2. Let G;H be any finite cyclic groups. Then there exists an injective
homomorphism �WG �H ! HomeoC.S1/ such that �.G �H/ admits a discrete
invariant lamination.

Now one can easily add more leaves to ƒ0 to construct a G �H -invariant very
full and loose lamination ƒ1. For example, in the left circle of the seed �0, first
take a polygon which has one vertex in each connected component of the comple-
ment of the dotted segments and is invariant under the action of G. Then, in the
region between this polygon and an element of ƒ0 in �0, add infinitely many tri-
angles to make the lamination very full and loose in that region. Now fill the other
such regions so that lamination becomes G-invariant. One can do the same thing
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Figure 3. The very full and loose lamination ƒ1 � ƒ0. We have removed the mark-
ings to avoid clutter.

for the right circle to get anH -invariant very full loose lamination and then extend
it as a G �H -invariant lamination ƒ1 which contains ƒ0 as a sublamination. The
final result is in Figure 3. Obviously, ƒ1 is very full and loose away from ƒ0. It is
loose at ƒ0 because the leaves of ƒ0 are not contained in gaps – they are instead
limits of gaps.

We need to construct another G �H -invariant very full loose lamination ƒ2

so that ƒ1 and ƒ2 have distinct endpoints. To build ƒ2, we first replace each
leaf of ƒ0 with endpoints by four leaves forming, say, a rectangle such that each
endpoint of the original dotted segment lies between two adjacent vertices of the
rectangle. In the two regions between the rectangle and the endpoints of the orig-
inal leaf in ƒ0, put infinitely many triangles to make the lamination very full and
loose. These choices can obviously be made so that the endpoints of the new leaves
are disjoint from ƒ1, and, by working in one region at a time, we can do the con-
structionG �H -invariantly, resulting in Figure 4. In the regions where all the rect-
angles are visible, we do the exactly same thing as when constructing �1 from �0:
take a big invariant polygon, and fill out all the complementary regions. The result
is shown in Figure 5.

Finally, to show that .�.G �H/;ƒ1; ƒ2/ is a pseudo-fibered triple, we need to
show that every element of G �H D �.G �H/ has countably many fixed points
in its action on S1. There are two ways to prove this, either using Bass–Serre the-
ory or the existence of even more G �H -invariant laminations under this action.
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Figure 4. Replacing ƒ0 with rectangles and triangles.
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Figure 5. The very full and loose lamination ƒ2.

For the latter approach, we quote the following result.

Theorem 3.3 ([1]). Every subgroup of HomeoC.S1/ admitting three very full in-
variant laminations with distinct endpoint sets is Möbius-like, meaning every ele-
ment is (individually) Möbius-like.

Since both G andH are finite, there is a large freedom to construct laminations
inductively as before. Indeed, we can slightly perturb the construction ofƒ2 to get
a third very full and loose invariant laminationƒ3 with endpoints distinct fromƒ1

and ƒ2. Theorem 3.3 then implies that every element of G �H is Möbius-like,
hence has finitely many fixed points.

Alternatively, to show that every element ofG �H acts on S1 with at most two
fixed points, we can use Bass–Serre theory. Clearly, torsion elements of G �H
act freely on S1. Non-torsion elements must have their fixed points in the subset
S1 n �1, which can be identified with the ends of the Bass–Serre tree for G �H .
Standard results now imply that such elements have two fixed points in S1.

Theorem 3.1 has an immediate corollary in the context of 3-manifold groups.
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Corollary 3.4. LetM be a connected sum of two lens spaces. Then �1.M/ admits
a pseudo-fibered group action on S1.

4 The Tits alternative for pseudo-fibered groups

Throughout this section,G will denote a torsion-free pseudo-fibered group, except
where explicitly indicated elsewhere. This will allow us to apply Theorem 2.6,
which we may do sometimes without mentioning.

4.1 Proof of Theorem B

To prove that pseudo-fibered groups satisfy the Tits alternative, we first prove The-
orem B, which, we recall, says that two elements of a pseudo-fibered group have
either equal or disjoint sets of periodic points. This can be done, for instance, by
analyzing how each element of the group acts on the quotient of the circle obtained
by collapsing leaves of an invariant lamination. One can show that such a quotient
is a dendrite as in [24], and this point of view has its own advantages. But, for our
purpose, it is simpler to analyze the group action on the circle directly.

We will need a number of lemmas. The first follows immediately from the def-
initions, so we leave its proof to the reader.

Lemma 4.1. Suppose there are two dense laminations with distinct endpoints.
Then each of the laminations is totally disconnected.

Recall that, by definition, a lamination ƒ is a type of closed subset of

.S1
� S1

��/=.x; y/ � .y; x/:

Thus it makes sense to talk about the neighborhood in ƒ of a leaf, isolated leaves,
etc.

Lemma 4.2. Each leaf of a totally disconnected very full lamination is either
a boundary leaf of a gap or is the limit of an infinite sequence of gaps.

Proof. This is a direct consequence of the definition of a very full lamination.
Indeed, if a neighborhood of a leaf meets no gaps, it must be foliated, contradicting
that the lamination is totally disconnected.

Lemma 4.3. Let ƒ be a totally disconnected very full lamination. Then ƒ is loose
if and only if the following conditions are satisfied:

(i) For each p 2 S1, at most finitely many leaves of ƒ have p as an endpoint.

(ii) There are no isolated leaves.
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Proof. Supposeƒ is loose. Then each p 2 S1 is an endpoint of at most two leaves
(maybe none) of ƒ. Hence condition (1) follows immediately.

For condition (2), suppose there exists a leaf L which is isolated. Let J1 and J2

be the connected components of the complements of the endpoints ofL in S1. The
fact that L is isolated means there exists an open arc I1 containing one endpoint
of L, and another open arc I2 containing the other endpoint of L, such that, for
each i D 1; 2, there exists no leaf connecting I1 \ Ji to I2 \ Ji . For i D 1; 2,
define ƒi to be the set of leaves of ƒ with endpoints in Ji that are visible from
both endpoints of L. Both ƒi are nonempty since ƒ is dense. For each i D 1; 2,
ƒi [ ¹Lº is the set of boundary leaves of a gap Pi ofƒ. This contradicts looseness
of ƒ since both P1 and P2 are gaps sharing some of their vertices.

Now, for the converse, assume ƒ satisfies conditions (1) and (2). Suppose p
is a common endpoint of two gaps. Let L1; L2 be the innermost leaves ending
at p. (It is possible L1 D L2, but this does not change what follows.) Then L1 is
either isolated (absurd by condition (2)), or is approximated by infinitely many
leaves. Since these leaves cannot cross L2, they must end at p, contradicting
condition (1).

Lemma 4.4. Let G be a pseudo-fibered group, and letƒ be a very full loose G-in-
variant lamination. If g is a hyperbolic element, then the fixed points of g in S1

are not an endpoint of any leaf of ƒ.

Proof. Let p; q be the fixed points of g. Suppose p is an endpoint of a leaf l .
If the other endpoint of l is not q, then the set ¹gın.l/ W n 2 Zº gives an infinite

set of leaves, each of which has p as an endpoint, contradicting Lemma 4.3. Hence
we may assume the other endpoint of l is q.

Let I be a connected component of S1 n ¹p; qº. Define ƒI to be the set of
leaves whose endpoints are in I and visible from both p and q. Assume ƒI is
nonempty. Since ¹Lº [ƒI bound a gap, say P ,ƒI must be finite. But this means
there must be a leaf in ƒI which connects p to a point in I , which we already
saw impossible. Now assume ƒI is empty. This means there exists a family of
infinitely many leaves contained in I which accumulate to l . But, since g acts as
a translation on I , this is impossible (if l 0 is a leaf close enough to l , then l 0 and
gl 0 must be linked).

Theorem 4.5 (Solodov [23]). If G is a subgroup of HomeoC.R/ such that each
non-trivial element has at most one fixed point, and there is no global fixed point,
then ŒG;G� � ¹Idº consists of fixed-point-free elements.

Proof. See Step 4 in the proof of [23, Theorem 2.2.36].
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Lemma 4.6. Let .G;ƒ1; ƒ2/ be a pseudo-fibered triple. Suppose g 2 G is prop-
erly pseudo-Anosov-like. If h 2 G shares a fixed point p with g, then Fixh D Fixg .
In particular, h is also a properly p-A-like element.

Proof. First we show that h cannot be hyperbolic. Since p is a fixed point of g,
then, by Theorem 2.6, one of ƒ1 or ƒ2 contains a gap which has p as a vertex.
But then Lemma 4.4 says that p cannot be a fixed point of a hyperbolic element.
Therefore, by Theorem 2.6, h must be pseudo-Anosov-like.

Without loss of generality, we may assume that p is an attracting fixed point of
both g; h, and ƒ1 contains the attracting polygon Pg of g. Let q be a vertex of
Pg which is connected to p by a boundary leaf l of Pg . If q is not a fixed point
of h, then ¹hın.l/ W n 2 Zº is an infinite set of leaves which share p as a common
endpoint. This is impossible by Lemma 4.3 since ƒ1 is loose. This inductively
shows that all vertices (i.e., all attracting fixed points of g) are fixed by h. Theo-
rem 2.6 says there is no leaf connecting an attracting fixed point to a repelling
fixed point for a given p-A-like element. Hence all attracting fixed points of el-
ements of g are attracting fixed points of h. Applying the same argument to the
attracting polygon of h, one concludes that Pg is in fact the attracting polygon of h
as well.

We showed the attracting polygon of g and the attracting polygon of hmust co-
incide if p is attracting. How about the repelling polygons? Note Theorem 2.6 (2)
implies both the repelling polygon of g and the repelling polygon of h are con-
tained in ƒ2.

Case 1. Suppose g (hence also h) has at least three attracting fixed points. Since
both g and h have a unique repelling fixed point between two adjacent vertices of
Pg , the only way for the repelling polygons to be unlinked is that they coincide.
Therefore, Fixg D Fixh.

Case 2. Now suppose g has only two attracting fixed points. We know that
each connected component of S1 n Fixg has exactly one repelling fixed point of g
and exactly one repelling fixed point of h. Let I be a connected component of
S1 n Fixg , rg the repelling fixed point of g on I , rh the repelling fixed point of h
on I . Let H be the subgroup of G generated by g; h. First note that every ele-
ment of H fixes the endpoints of I . From the previous arguments, we know that
each element of H is p-A-like and has exactly two attracting fixed points and two
repelling fixed points. This implies that each element of H has exactly one fixed
point in I . Now we apply Theorem 4.5 by identifying I with R. If rg ¤ rh, then
H has no global fixed point in I , and the theorem says that H is abelian. But if
g and h commute, then rg and rh coincide, a contradiction. Therefore, rg and rh
must coincide from the beginning, and Fixg D Fixh again.
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The following generalizes Lemma 4.6 for p-A-like elements that could be ellip-
tic. We use Perf to denote the set of all periodic points of a homeomorphism f .

Lemma 4.7. Let g be a p-A-like element in a pseudo-fibered group G. If h 2 G
shares a periodic point p with g, then Perh D Perg , and h is also p-A-like.

Proof. Take powers gn and hm such that gn is properly p-A-like and p is fixed
for hm. Note that every periodic point of a properly p-A-like element is fixed.
So Fixgn D Pergn D Perg . Applying Lemma 4.6, we get Fixgn D Fixhm and that
hm is properly p-A-like. So h is p-A-like, and we also have Perh D Fixhm , which
agrees with Fixgm D Perg .

The previous lemma establishes “half” of the dynamical alternative. The other
half follows from the next lemma.

Lemma 4.8. Let G be a pseudo-fibered group. Suppose g; h are hyperbolic el-
ements of G which share a fixed point p. Then every element of the subgroup
generated by g; h has the same fixed points as g.

Proof. Since p is fixed by g; h; g�1; h�1, any element of the subgroup H of G
generated by g; h fixes p. But Lemma 4.6 says no p-A-like element shares a fixed
point of a hyperbolic element. Hence all elements of such a subgroup must be
hyperbolic.

Now we apply Theorem 4.5 to H by identifying S1 n ¹pº with R. Just as in
Case 2 of the proof of Lemma 4.6, we conclude thatH has a (unique) global fixed
point in S1 n ¹pº.

Combining Lemmas 4.7 and 4.8 with Theorem 2.6, we immediately conclude
Theorem B.

4.2 Proof of Theorem A

We now combine Theorem B with two known results to prove Theorem A. The
first result is a very well-known tool in geometric group theory (for instance, see
[11, Ch. II.B]).

Theorem 4.9 (Ping-pong lemma). Let G be a group acting on a set X . Let g1; g2

be elements ofG. Suppose there exist disjoint nonempty subsetsXC1 ; X
�
1 ; X

C
2 ; X

�
2

of X such that gi .X �X
�
i / � X

C
i ; g

�1
i .X �XCi / � X

�
i for each i D 1; 2. Then

the subgroup generated by g1; g2 is free.

A proof of the second result we need can be found in many places, e.g., [17,23].
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Theorem 4.10 (Hölder). Let K be a subgroup of HomeoC.R/ which acts freely
on R. Then K is abelian.

Now the ping-pong lemma implies the first case of the Tits alternative.

Lemma 4.11. LetG be a pseudo-fibered group and g1; g2 2 G. If Perg1
and Perg2

are disjoint, then there are powers of g1 and g2 that generate a non-abelian free
subgroup of G.

Proof. We can replace g1 and g2 by some powers that satisfy Pergi
D Fixgi

. (If gi

is hyperbolic, or properly p-A-like, no power needs to be taken. If gi is elliptic
p-A-like, take a power that is properly p-A-like). TakeXCi to be a neighborhood of
the attracting fixed points of gi andX�i to be a neighborhood of the repelling fixed
points of gi (for i D 1; 2). Since Fixg1

and Fixg2
are disjoint by hypothesis, we can

take XCi ; X
�
i (for i D 1; 2) to be all disjoint. Now let hi be a high enough power

of gi so that hi .S
1 �X�i / � X

C
i and h�1

i .X �XCi / � X
�
i for i D 1; 2. This is

possible because of the dynamics of hyperbolic and properly p-A-like elements.
By the ping-pong lemma, h1 and h2 generate a free subgroup.

Hölder’s theorem implies the alternative case.

Lemma 4.12. Let G be a pseudo-fibered group, g 2 G and P D Perg . Consider
the subgroup H D ¹h 2 G W hP D P º of G that leaves P invariant. Then

(1) H D ¹h 2 G W Perh D P º,

(2) H is virtually abelian.

Proof. Let h 2 H . Since hP D P and P D Perg is finite, then P � Perh. Then,
by Theorem B, we get Perh D Perg D P . This proves the first assertion, the other
inclusion being trivial.

For the second assertion, let K E H consist of elements that stabilize Perg

pointwise. That is, K D ¹h 2 H j Fixh D Pergº. Note

ŒH W K� �
jPerg j

2
;

so, in particular, to show H is virtually abelian, it suffices to show K is abelian.
Assertion (1) impliesK acts freely on each component of S1 n Perg , each of which
is an interval. So, by Hölder’s theorem, K is abelian.

Theorem A now follows from Theorem B since, if H is a subgroup of G, then
either there exist two elements of H with distinct periodic point sets or H has
a global set of periodic points. In the first case, apply Lemma 4.11; in the second
case, apply Lemma 4.12.
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4.3 Remarks on the proofs of Theorems A and B

Conjecturally, non-elementary pseudo-fibered groups are word-hyperbolic. For
word-hyperbolic groups, a stronger version of the Tits alternative holds: an infi-
nite subgroup of a word-hyperbolic group either contains a free group of rank 2 or
is virtually cyclic. To obtain this stronger Tits alternative, one needs to strengthen
Lemma 4.12. Let H be a subgroup as in Lemma 4.12, and assume it is actually
abelian. Then Ghys [17] provides anH -invariant measure on each connected com-
ponent of S1 � PerH . The problem is that this measure may not have full support.
Even when the action of G on S1 is minimal, it is still not clear if it can be shown
that we have an invariant measure of full support on the complement of PerH . The
stronger Tits alternative would easily follow from there.

More directly, it is easy to verify that this stronger Tits alternative is equiva-
lent to showing that the subgroup K in the proof of Lemma 4.12 is isomorphic
to Z. A stronger version of Hölder’s theorem says that, for any abelian subgroup
of HomeoC.R/, there is a blow-down of R such that the induced action of the sub-
group is faithful and by translations. Thus showingK is Z is equivalent to showing
that this translation action is not minimal.

Finally, we remark that, if we knew that pseudo-Anosov-like elements really
were pseudo-Anosov, the stronger Tits alternative would follow from the fact
that two pseudo-Anosovs commute if and only if they are powers of some other
pseudo-Anosov. This can be seen by considering the action of the mapping class
group on Thurston’s compactification of Teichmüller space: Two pseudo-Anosovs
must fix the same axis if they commute. The mapping class group acts discretely
on Teichmüller space; hence the subgroup generated by the two pseudo-Anosovs
must act discretely on the axis in Teichmüller space. Each pseudo-Anosov acts
by translations on this axis, so we conclude that the subgroup the two generate is
isomorphic to Z.

5 Purely hyperbolic pseudo-fibered groups and convergence
group actions on S 2

We now restrict our attention to the special class of purely hyperbolic pseudo-
fibered groups. In [1], it was conjectured that such groups are always Fuchsian or,
equivalently, convergence subgroups of HomeoC.S1/. While this conjecture re-
mains open, Theorem C shows that, as expected, purely hyperbolic pseudo-fibered
groups act on the 2-sphere as convergence groups. We remark that a similar idea
of relating group action on S1 with a geometric origin to convergence group ac-
tion on S2 has been carried out in the context of pseudo-Anosov flows in Fenley’s
program [12, Section 4].
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To prove Theorem C, we begin by reviewing the construction of [1], which
is responsible for the existence of an S2 on which a pseudo-fibered group can
act, and inspired by results of Cannon and Thurston [8]. Moore’s theorem [22]
implies that, for any pseudo-fibered triple .G;ƒ1; ƒ2/, there exists a quotient map
� WS1 ! S2, constructed by first identifying two disks laminated by ƒ1 and ƒ2

(respectively) along their common boundary S1 and then collapsing all the gaps
of the ƒi to points. Since each lamination is G-invariant, this induces a G-action
on S2 such that � is G-equivariant. We call this map � the Cannon–Thurston
map for the pseudo-fibered triple .G;ƒ1; ƒ2/. For details, one can also consult [8,
Section 14]. A basic observation about this construction is the following lemma.

Lemma 5.1. Let .G;ƒ1; ƒ2/ be a pseudo-fibered triple. Suppose there exists a se-
quence .xi / of points in S2.D �.S1// which converges to x, and a sequence .gi /

of elements of G such that gi .xi / converges to x0 in S2. Then, passing to subse-
quences if necessary, there exists a sequence .xi / of points in S1 converging to x
such that gi .xi / converges to x0 in S1, where xi D �.xi / and x0 D �.x0/.

Proof. This is straightforward because S1 is compact, and � is continuous, sur-
jective and G-equivariant.

We now state a few dynamical lemmas, after which we will prove Theorem C.

Lemma 5.2. Let G be a group acting on S1 such that there exists a G-invariant
lamination with a rainbow at p 2 S1. Suppose there exists a sequence .gi / of
elements of G such that, for any neighborhood U of p, gi .U / intersects U non-
trivially for all large i . Then p is an accumulation point of some fixed points of the
elements in the sequence .gi /.

Proof. See the proof of [1, Proposition 7.5].

Lemma 5.3. Let .G;ƒ1; ƒ2/ be a pseudo-fibered triple. Suppose .xi / is a se-
quence of points in S1 which converges to x, and there exists a sequence .gi / of
elements of G such that gi .xi / converges to x0. Then either x is an accumulation
points of fixed points of the sequence .g�1

iC1 ı gi / or x0 is an accumulation point
of fixed points of the sequence .giC1 ı g

�1
i /. Moreover, if xi D x for all i , then x0

must be an accumulation point of fixed points of (any subsequence of) the sequence
.giC1 ı g

�1
i /.

Proof. This is a straightforward consequence of Lemma 5.2. See, for instance, the
proof of [1, Proposition 7.6].

Proof of Theorem C. Suppose the negation of the conclusion. Then there exists an
infinite sequence of distinct elements .gi / of G which does not have the conver-
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gence property, i.e., the set ¹giº does not act properly discontinuously on the set
of triples of distinct points of S2. More precisely, this means that, after passing to
a subsequence of .gi /, there exist three convergent sequences in S2,

xi ! x; yi ! y; zi ! z; xi ¤ yi ¤ zi ¤ xi ; x ¤ y ¤ z ¤ x;

and three elements x0; y0; z0 2 S2 such that

gi .xi /! x0; gi .yi /! y0; gi .zi /! z0; x0 ¤ y0 ¤ z0 ¤ x0:

We conclude that there exist sequences and points in S1 such that

xi ! x; yi ! y; zi ! z; xi ¤ yi ¤ zi ¤ xi ; x ¤ y ¤ z ¤ x

and three elements x0; y0; z0 2 S1 such that

gi .xi /! x0; gi .yi /! y0; gi .zi /! z0; x0 ¤ y0 ¤ z0 ¤ x0;

where, in our notation, p is some fixed point in the preimage of p under � for any
p 2 S2, in accordance with Lemma 5.1. In words, we can lift sequences exhibiting
the failure of G to act as a convergence group on S2 to sequences exhibiting the
failure of G to act as a convergence group on S1.

Sinceƒ1 andƒ2 do not share any endpoints, for each p 2 ¹x; y; zº, there exists
a rainbow at p in at least one of the ƒi . In particular, for each p 2 ¹x; y; zº, there
exists a leaf Lp which separates p from the other two points in ¹x; y; zº n ¹pº
(which lamination Lp belongs to is not important, and Lx; Ly ; Lz are not nec-
essarily leaves of the same lamination). Passing to a subsequence, we may as-
sume that each of the sequences of pairs of points described by the endpoints of
the leaves .gi .Lx//, .gi .Ly//, .gi .Lz//, .g�1

i .Lx//, .g�1
i .Ly//, .g�1

i .Lz// con-
verges to a pair of points, which are possibly not distinct.

By Lemma 5.3, either at least two of x, y and z are accumulation points of fixed
points of the sequence .g�1

iC1 ı gi / or at least two of x0, y0 and z0 are accumulation
points of fixed points of the sequence .giC1 ı g

�1
i /. Without loss of generality,

we assume that x0 and y0 are accumulation points of fixed points of the sequence
.giC1 ı g

�1
i /, possibly after exchanging the roles of gi and g�1

i . Furthermore,
since each element of G has exactly two fixed points, there exists a subsequence
.gijC1 ı g

�1
ij
/ of the sequence .giC1 ı g

�1
i / such that x0 and y0 are the only accu-

mulation points of the fixed points of the gijC1 ı g
�1
ij

. By the second statement of
Lemma 5.3, if p 2 S1 is such that gi .p/ converges to p0, then p0 must be either x0

or y0. In particular, considering the sequence .gi .Lz//, which converges to some
pair of possibly non-distinct points ¹e1; e2º, what we have shown implies each ei

is either x0 or y0.
If e1 ¤ e2, since laminations are required to be closed, the limit of the sequence

of leaves .gi .Lz//) must be a leaf connecting x0 to y0 in the laminationƒi contain-
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ing Lz . But, since x0 D �.x0/ and y0 D �.y0/ are assumed to be distinct, by the
definition of the Cannon–Thurston map � , their preimages cannot be connected
by a leaf. This contradiction implies e1 D e2.

Let us assume that e1 D e2 D x
0. We will show that x0 is not distinct from both

y0 and z0. In the case e1 D e2 D y
0, the same argument would lead us to contradict

that y0 is not distinct from both x0 and z0.
Let Iy be the closure of the connected component of S1 � Lz which contains y,

and define Iz similarly for z. Take a nested sequence of closed neighborhoods .Ui /

of x0 such thatUi ! x0 as i !1. Passing to a subsequence, one may assume that
the endpoints of gi .Lz/ are contained in Ui .

For each i , there are two possibilities: either gi .Iz/ � Ui or gi .Iy/ � Ui . Sup-
pose the former happens for infinitely many i . Since .zi / converges to z, then, for
all large enough i , zi is in Iz . Hence gi .zi / 2 Ui for infinitely many i , so some
subsequence of gi .zi / converges to x0. But this is impossible since z0 is assumed to
be distinct from x0, and gi .zi / converges to z0. If instead gi .Iy/ � Ui for infinitely
many i , then we similarly contradict the assumption that y0 ¤ x0.

We remark that this proof almost goes through to show that a purely hyperbolic
pseudo-fibered group G acts as a convergence group on the circle S1 D ��1.S2/.
The only gap to consider is the case where e1 ¤ e2.

We conclude the paper with some questions which naturally arise from the re-
sults of this paper.

Question 5.4. For fibered groups, how do hyperbolic elements and p-A-like ele-
ments interact? What can be said about the group structure of a pseudo-fibered
group in terms of the dynamical feature of the elements of the group?

Question 5.5. For a fibered group action on S1, without using hyperbolic geom-
etry, can we abstractly show that the induced action on S2 as in this section is
a uniform convergence group?

Answering (or rather understanding) above questions appropriately, one might
hope to get a characterization of fibered hyperbolic 3-manifold groups via its ac-
tion on S1 with invariant laminations. For instance, assuming Cannon’s conjecture
[7], an affirmative answer to Question 5.5 together with a result of Bowditch [3]
would imply that such a group is always a closed hyperbolic 3-manifold group.
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