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ABSTRACT    

Background: Cognitive dispersion, variation in performance across cognitive domains, is 

posited as a non-invasive and cost-effective marker of early neurodegeneration.  Little work 

has explored associations between cognitive dispersion and Alzheimer’s disease (AD) 

biomarkers in healthy older adults. Even less is known about the influence or interaction of 

biomarkers reflecting brain pathophysiology or other risk factors on cognitive dispersion 

scores. 

Objective: The main aim of this study was to examine whether higher cognitive dispersion was 

associated with cerebrospinal fluid (CSF) levels of amyloid  (Aβ42), total tau (t-tau), 

phosphorylated tau (p-tau) and amyloid positivity in a cohort of older adults at various severities 

of AD. A secondary aim was to explore which AD risk factors were associated with cognitive 

dispersion scores.  

Method: Linear and logistic regression analyses explored the associations between dispersion 

and CSF levels of Aβ42, t-tau and p-tau and amyloid positivity (Aβ42<1000pg/ml). Relationships 

between sociodemographics, APOE4 status, family history of dementia and levels of 

depression and dispersion were also assessed.  
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Results: Dispersion did not emerge as associated with any of the analytes nor amyloid 

positivity. Older (𝛽 = −0.007, 𝑆𝐸 = 0.002, p=0.001) and less educated (𝛽 = −0.009, 𝑆𝐸 =

0.003, p =0.009) individuals showed greater dispersion.   

Conclusion: Dispersion was not associated with AD pathology, but was associated with age and 

years of education, highlighting individual differences in cognitive ageing. The use of this 

metric as a screening tool for existing AD pathology is not supported by our analyses. Follow-

up work will determine if dispersion scores can predict changes in biomarker levels and/or 

positivity status longitudinally. 

KEYWORDS:  Alzheimer’s disease; ageing; cognition; amyloid; tau; risk factors  
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INTRODUCTION  

Alzheimer’s disease (AD) is now widely accepted to lie on a continuum, with an asymptomatic 

neurodegenerative antecedent progressing towards cognitive and functional impairment that 

ultimately culminates in the Alzheimer’s dementia syndrome. Individuals without overt 

cognitive impairment meeting criteria for preclinical AD (pAD) based on biomarker evidence 

of AD pathophysiology show subtle cognitive signs detectable on precise neuropsychological 

tests [1–3]. Recommendations for cognitive testing in pAD exist [4,5] and several new 

experimental measures have been proposed as sensitive and specific to the emergence of 

neuropathological change in regions vulnerable to AD [6–8]. Typically, cognitive impairment 

is determined by deterioration over time in an individual’s performance or alternatively by cut-

off scores comparing mean performance between groups or an individual’s performance against 

the mean. More recently, research attention has turned to the application of sensitive scoring 

schemes that rely on existing traditional measures but repurpose their performance metrics to 

incorporate variations in cognitive performance within an individual participant. The term 

cognitive dispersion refers to variations in performance for a given individual between 

cognitive domains, tasks or performance across cognitive tests, while cognitive intra-individual 
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variability describes variations in performance between trials within a single task at the same 

testing occasion or over time. Here, we will focus on cognitive dispersion. There are several 

approaches to quantify cognitive dispersion [9,10], but no consensus on the most appropriate 

method. The individual standardised deviation (iSD) metric [11], comprising the standard 

deviation in individual performance across a set of cognitive measures, is one of the most 

widely used [10]. For this metric, raw scores are z-transformed on the basis of the distribution 

of scores from a reference sample and the variability between scores is calculated across the 

number of domains, tasks or tests within the assessment.  

 

Studies of cognitive dispersion reveal significant differences between age groups, with children 

and older adults showing greater dispersion in cognitive performance cross-sectionally [12–

15]. Patterns of dispersion in cognitive function in childhood and later-life may reflect 

developmental and healthy ageing processes, respectively. However, in older adults, higher 

baseline dispersion scores have been shown to predict progression to mild cognitive impairment 

(MCI) and dementia [11,16–19], suggesting such performance dispersion may mark the 

emergence of a pathological process. In healthy ageing, increased cognitive dispersion may 

reflect the emergence of impaired attention and executive functions alongside otherwise 

preserved cognitive domains, in turn reflecting a breakdown in compensatory mechanisms [20] 

as a result of age-related changes in neurotransmitter efficiency [21], grey and white matter 

integrity or the disruption of the default node network [22]; mechanisms that become 

increasingly compromised when a disease process accelerates. It has also been shown, as with 

most mean or normative indices of cognitive performance, that educational attainment may 

influence cognitive dispersion in mid-older adults (~65 years old), but not in late-older adults 

(~80 years old), suggesting that the former age group may uniquely benefit from early life brain 

stimulation acquired through education [20]. Apart from age and education, there has been little 
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attempt to understand which other established AD risk factors (e.g. APOE4, gender, family 

history or depression) or interactions thereof might influence cognitive dispersion scores.  

Importantly, in some studies, cognitive dispersion indices have been shown to be associated 

with later cognitive impairment where mean performance methods or individual cognitive tasks 

have not [e.g. 11,15,23], underscoring their usefulness in prediction models of the risk of 

dementia or a means to identify and then target interventions towards higher risk individuals 

for secondary prevention of later stages of neurodegeneration. In fact, cognitive dispersion 

indices have been shown to predict MCI and dementia comparably to APOE4 carrier status 

and hippocampal atrophy [17] and independently of cerebrospinal fluid (CSF) analytes [16], 

further endorsing their use as a cost-effective and less invasive screening tool. 

The correlates of cognitive dispersion with structural brain regions have been less well studied, 

but higher dispersion scores have been associated with smaller corpus callosum volumes [24]; 

global and regional white matter degeneration  [21,22,25], faster entorhinal and hippocampal 

atrophy rates [26] as well as post-mortem neurofibrillary tangles in AD Dementia, MCI and 

healthy individuals.   

Preclinical AD is characterised by a CSF analyte profile of lower levels of amyloid-beta, 

reflecting higher amyloid load in the brain, and higher levels of tau pathologies [27]. Only two 

studies have directly explored relationships between inconsistencies in testing and CSF analyte 

values of AD biomarkers, both finding significant associations in the expected directions 

[28,29]. However, their dispersion scores were restricted to intra-individual variability in 

processing speeds between separate cognitive tasks. Given that in the asymptomatic stages of 

AD some cognitive domains, such as episodic memory and executive function,  may be more 

sensitive markers of emerging pathology at an earlier stage of disease than others [30], 
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increased dispersion across domains and/or tasks more sensitive to AD-specific regions at an 

early stage of disease might constitute a good marker of CSF identified cerebral pathology.  

In summary, there is growing interest surrounding cognitive dispersion as a non-invasive and 

less costly marker of early neurodegeneration before clinical symptoms are evident. 

Consequently, we believe that there is a need for further exploration of the associations between 

cognitive dispersion and the pathological hallmarks of AD in adults without dementia [16]. In 

response to this, our main aim was to examine the hypotheses that higher cognitive dispersion 

will be associated with a) lower amyloid β (Aβ42) levels;  b) higher total tau (t-tau); c) higher 

phosphorylated tau (p-tau) levels and d) amyloid positivity status in a cohort of older adults 

(>64 years) with variable risks for AD Dementia, using a battery of tasks comprising traditional 

and novel experimental measures recommended for pAD research [4–6].  In addition, we 

explored which AD risk factors were associated with cognitive dispersion scores in our cohort 

to better understand the possible influence of such factors upon this index in this age group.  

 

METHOD AND MATERIALS  

Participants 

Participants were recruited from the European Prevention of Alzheimer’s Dementia (EPAD) 

Longitudinal Cohort Study (LCS) [31]. EPAD is a multi-site pan-European project comprising 

individuals recruited from parent cohorts across affiliated delivery centres. Eligibility criteria 

include: aged 50 years or older; possession of at least seven years of formal education and 

availability of a study partner willing to provide corroborative information (for functional and 

behavioural measures). Potential participants are excluded at the screening stage if they were 

unable to consent to the research; had known genetic mutations associated with autosomal-

dominant AD, had significant and unstable physical or mental illness; had or had experienced 



9 
 

cancers within last five years (with the exception of localised prostate cancer and basal or 

squamous carcinoma). The EPAD project will provide a longitudinal observational research 

cohort in preclinical AD. The current study made use of the EPAD V500.0 data release, which 

provides baseline visit data from the first 500 participants across all research sites [32]. All 

participants provided informed consent and local ethical approval was obtained from ethics 

committees specific to each research site. All procedures were done in accordance with the 

ethical standards of the Helsinki Declaration. 

Cognitive testing and construction of cognitive dispersion index 

EPAD makes use of both traditional and exploratory measures that have been recommended 

for the assessment of cognitive change in pAD. The cognitive measures used for construction 

of our primary cognitive dispersion score included the Repeatable Battery of Assessment for 

Neuropsychological Status [33] subscale scores: Verbal Episodic Memory (List Learning & 

Story Memory); Visual Episodic Memory (Figure Recall); Visuospatial/Constructional (Figure 

Copy & Line Orientation); Language (Picture Naming); Attention/Executive Functioning 

(Semantic Fluency, Digit Span, Coding). In addition, we sought to explore if the inclusion of 

our experimental measures and/or the MMSE [34] in the dispersion composite influenced 

relationships with biomarkers and AD risk factors. These additional experimental measures 

included: the Flanker task [35] (set-shifting); the Four Mountains Task [6] (allocentric spatial 

processing); the Virtual Reality Supermarket Trolley [8] (egocentric spatial processing) and 

Favourites [35] (paired associate learning).  

Biomarker ascertainment. The biomarkers presently available in the EPAD database are 

cerebrospinal fluid (CSF) measures of Aβ42, t-tau and p-tau and APOE4 status. Participants 

volunteered for their initial lumbar puncture within three months of their baseline cognitive 

assessment. All samples are shipped from sites and stored centrally at the EPAD BioBank at 
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the University of Edinburgh before CSF samples, taken in Sarstedt tubes, are shipped to the 

Clinical Neurochemistry Lab, University of Gothenburg, Sweden for analysis using the Roche 

Diagnostics Elecsys Platform [36]. Results are then forwarded to the IQVIA Master Database 

and then transferred to the Aridhia Analytical Database. Amyloid positivity is defined in EPAD 

at a cut-off of Aβ42 <1000pg/ml following agreement from the EPAD consortium as an 

approach to best optimise sensitivity and specificity [31]. Blood was taken at screening and 

Taqman Genotyping was carried out in a single laboratory at the University of Edinburgh on 

QuantStudio12K Flex to establish APOE variants. APOE4 positivity was defined as 

possessing at least one APOE4 allele. 

Other information. Demographic information (age, years of education, gender) were self-

reported and taken at the baseline visit. Participants reported family history of dementia, which 

was defined as having at least one first-degree relative (sibling or parent) with dementia and, if 

they reported they had a first-degree relative with dementia, they were asked to report the age 

at diagnosis. Depression was measured using the Geriatric Depression Scale (GDS) [37].  

 

Statistical analyses.  

Descriptive statistics were produced using standard techniques. Individualised standard 

deviations were calculated to derive dispersion scores using RBANS index scores and the four 

experimental tasks.  The method [11] first requires the z-transformation of raw scores of each 

test using parameters from the distribution of the entire sample, and then, the application of the 

formula: 

                                                𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = √∑ (𝑇𝑖𝑘−𝑆𝑖)
2𝑘=𝐾

𝑘=1

𝐾−1
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where 𝑇𝑖𝑘 is the k-th test for participant i, K is the number of tests, and 𝑆𝑖 is participant i’s mean 

of the transformed scores.  

Initially, univariate regression analyses were used to evaluate the association of dispersion 

scores as a function of a core set of sociodemographic data (age, sex and education), family 

history of Alzheimer’s dementia, APOE4 genotype and depression scores. Then, multivariable 

linear regression models where all independent variables were included simultaneously were 

fitted to test for an association between dispersion scores and the set of variables described 

before.  Next, following the same steps, we tested the association of dispersion scores with CSF 

p-tau, t-tau and Aβ42 values fitting univariate and multivariable linear regression analyses to 

data from the three biomarkers adjusted for dispersion scores, sociodemographic data, family 

history of AD Dementia, APOE4 allele status and depression scores. Although the distribution 

of the biomarkers was right skewed and some deviations from the normality assumptions were 

present in the data, the large sample size ensured that model assumptions were asymptotically 

satisfied. Generalised linear models with a Gamma distribution and a log link were also fitted 

to the data and results remained unchanged. These analyses added confidence to the results 

presented here showing their robustness to departures from linear regression models’ standard 

distributional assumptions. 

 Logistic regression was also used to test whether dispersion scores predicted amyloid positivity 

after adjustment for sociodemographic variables, family history of AD Dementia and APOE4 

allele status and depression scores.  

All analyses were repeated in the subsample of individuals who reported that a first-degree 

relative had dementia. In this subgroup, we further adjusted the models for a variable that 

measured the time elapsed between the participant’s age and the age of diagnosis of the first-

degree relative who had dementia, as a proxy for preclinical AD [4]. If the participant’s mother 
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had dementia, we used the mother’s age at diagnosis in the calculations and the father’s age at 

diagnosis if not.  

Sensitivity analyses were conducted after two alternative derivations of dispersion scores. First, 

we derived dispersion scores using results from the RBANS subscales, the MMSE and the 4 

experimental tasks, maximising the use of all data on cognitive function in the study. Second, 

we derived a third version of dispersion scores only including the EPAD experimental tasks. 

All analyses were repeated using these newly derived versions of dispersion scores in the full 

sample and the subsample of individuals with family history of dementia. 

 

RESULTS   

See Table 1 for descriptive statistics of the sample. The total number of individuals who 

contributed data to the derivation of the dispersion scores was 439, after exclusion of data from 

61 individuals with missing values for either biomarker tests or cognitive tasks. These 

individuals did not differ from the individuals with complete data on the cognitive tests in terms 

of age (t-test, p =0.09), sex (t-test, p=0.62), education (t-test, p=0.76), family history (t test, 

p=0.65), APOE4 (t test, p=0.68) status or depression scores (t-test, p=0.32). Graphical display 

of the characteristics of the sample are depicted in Figure 1. Participants were split into separate 

categories according to sociodemographic and AD risk factors: age (51-64 years; 65-74 years; 

>75 years); gender (male/female); above or below the median years of education (+/- 14 years); 

APOE4 status (APOE4, not APOE4); Family history of AD Dementia (family risk, no family 

risk). We opted to categorise the age and education variables along similar cut-offs used by 

other groups [e.g. 15,38–40] for the purpose of comparability. As depicted, dispersion is higher 

for older individuals (Anova, p-value<0.001), those who have had fewer years in formal 
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education (t-test, p-value<0.001) but no differences were found between  carriers  and 

noncarriers of at least one APOE4 allele ( t-test, p-value=0.27). 

Genetic, depression and sociodemographic risk factors associated with dispersion scores: of all 

variables examined, age and education were the only variables that emerged as associated with 

dispersion scores. Older adults had higher dispersion scores (𝛽 = 0.007, 𝑆𝐸 = 0.002, p=0.001) 

and individuals with more education had less dispersion (𝛽 = −0.009, 𝑆𝐸 = 0.003, p =0.009). 

Results are shown in Table 2.  

Dispersion scores and AD biomarkers: dispersion scores did not emerge as associated with p-

tau, t-tau or Aβ42 in the univariate or multivariable linear regression analyses that tested for an 

association between dispersions scores and the three biomarkers (Table 3). Older adults were 

found to have higher values of p-tau (𝛽 = 0.52, 𝑆𝐸 = 0.07, p<0.001) and t-tau (𝛽 =

5.02, 𝑆𝐸 = 0.67, p<0.001). Similarly, APOE4 carriers were found to have higher values of p-

tau (𝛽 = 2.83, 𝑆𝐸 = 0.92, p =0.002) and t-tau (𝛽 = 24.86, 𝑆𝐸 = 8.77, p =0.005), as well as 

lower values of Aβ42 (𝛽 = −361.31, 𝑆𝐸 = 58.59, p<0.001). In these analyses, depression 

scores were found to be associated with Aβ42. Specifically, individuals who scored higher in 

the GDS scale had lower values of Aβ42 (𝛽 = −13.73, 𝑆𝐸 = 6.09, p=0.025).  

When dispersion scores were used in univariate and multivariable logistic regression to test 

their association with amyloid positivity (multivariable logistic regression results shown in 

Table 3), the association did not reach traditional significance levels (OR = 0.96, 

CI=[0.46,2.00], p=0.914 and OR = 0.63, CI=[0.28,1.44], p=0.280 for univariate and 

multivariable results respectively). Older age (OR= 1.06, 𝐶𝐼 = [1.03, 1.10], p<0.001), 

APOE4 (OR= 2.29, 𝐶𝐼 = [1.50,3.51], p<0.001) and depression (OR= 1.06, 𝐶𝐼 =

[1.01,1.11], p=0.011) increased the odds of amyloid positivity in fully adjusted logistic 

regression models. 
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The analyses of the subsample of participants who reported family history of dementia (n=195) 

did not alter our findings in relation to the null association of dispersion scores with p-tau, t-tau 

and Aβ42 or amyloid positivity (results not shown). 

Sensitivity analyses: Analyses of the extended formulation of dispersion scores that included 

RBANS index and the MMSE did not change results in a meaningful manner. Similarly, results 

remained robust when associations were tested using dispersion scores that only included 

experimental tasks (Flanker and Four Mountains Tasks, Virtual Reality Supermarket Trolley 

and Favourites). Results from these sensitivity analyses are presented in the Supplementary 

material, Tables S1-S3. 

 

DISCUSSION 

The current study investigated the association between dispersion in cognitive scores with 

sociodemographic factors, depression, APOE4 status and familial risk and the core AD CSF 

biomarkers p-tau, t-tau, Aβ42 and (derived) amyloid positivity in the EPAD V500.0 database, 

from the EPAD LCS study. The main aims of the current work were to assess cognitive 

dispersion as a sensitive indicator of AD pathology and also explore sociodemographic and 

other AD risk factors impact upon cognitive dispersion scores. In our analyses, we failed to find 

an association of dispersion scores with amyloid (Aβ42 or amyloid positivity), t-tau or p-tau. 

Yet, dispersion scores emerged as associated with increasing age and fewer years of formal 

education, in keeping with previous studies [14,20,41].  

Very few studies have examined predictors of dispersion scores or assessed dispersion as a 

marker for AD pathology. Our work takes some steps to address this. From a selection of 

established risk factors for AD, we found that cognitive dispersion increased with age - findings 

that resonate with comparisons between age-groups [14,15,39,41,42] - and decreased in 
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individuals with higher educational attainment, possibly reflecting more efficient compensatory 

strategies in response to neuronal senescence [20]. This latter suggestion could be explored 

further through exploring structural and functional neuroimaging changes and their association 

with cognitive dispersion to better understand the influence of cognitive or brain reserve on 

variability in older age.   

 

Most previous work has compared the predictive value of cognitive dispersion in relation to 

CSF analytes and other AD biomarkers for the conversion to later cognitive impairment [16,17]. 

Our aim departs from these studies, in that we were interested to explore whether cross-

sectional dispersion scores, ascertained at a baseline assessment, could predict current levels of 

CSF biomarkers and/or amyloid positivity in people without dementia since this would be 

informative for enrichment strategies within clinical trials of preclinical AD.  We did not find 

any support for cognitive dispersion as an indicator of current AD pathology, beyond 

established risk factors, such as age and APOE4 carrier status. This remained the case even 

when additional (experimental) cognitive measures were included in the calculation of the 

dispersion composite (see Supplementary material, Table S1).  In previous smaller samples of 

healthy older adults (n=291 [29]; n=29 [28]), cognitive dispersion scores, computed from 

reaction times within a task-switching test [29] and a cued-Stroop task [28] did show significant 

associations with A42 levels [28,29] and with ratios of tau/A42 [29] and p-tau/A42  [28,29] in 

the expected directions.  The lack of replication for these relationships in our larger study 

questions the robustness of these previously observed effects but might be explained by 

differences in sample characteristics, CSF sampling methods, dispersion measures and the 

cognitive tests used between studies. The dispersion metric adopted in these studies, coefficient 

of variation (CoV), constitutes a ratio of the intra-individual standard deviation and intra-

individual mean performance and is typically used for reaction time data. It differs from the 

iSD metric, in that it takes into account overall performance to mitigate the confounds of the 
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mean. However, the metric has been criticised for clouding underlying contributions towards 

any observed effects, as these might be explained by either increased variability or, in the cases 

of reaction time data, mean slowing [10]. We did not deem the CoV to be suitable for the 

purposes of our study because we were interested in variations in performance between 

cognitive domains and tasks from a neuropsychological battery purposefully selected in order 

to be sensitive to early AD changes; not trial-to-trial variability within a task loading on one 

cognitive domain. Importantly, we wanted to construct a dispersion composite that reflected 

standardised assessment practices in research and clinic settings which typically emphasise 

accuracy metrics over reaction time measures.  

Given the cross-sectional nature of our work, we cannot rule out that our baseline dispersion 

scores could be a valuable indicator for the development of or deterioration in future AD 

pathology at follow-up. Ante-mortem cognitive dispersion scores were positively associated 

with neurofibrillary tangles, but not diffuse or neuritic plaques, the defining AD lesions, at post-

mortem [43]. Moreover, in previous research, baseline dispersion indices were not associated 

with cross-sectional entorhinal cortex or hippocampal volumes but did predict reduction in 

entorhinal cortex volumes at a two-year follow-up of healthy older adults [26]. Together with 

our results, these findings suggest that the value of cognitive dispersion as an indicator of AD 

pathology may not be realised until longitudinal changes in disease hallmarks are evident.  

A major limitation of the current work is its cross-sectional design; although, we were 

specifically interested in assessing relationships between dispersion and current pathology in 

the context of baseline data in order to explore its potential usefulness as a screening or 

enrichment tool in ageing cohorts. Future longitudinal work with this cohort will explore 

dynamic relationships between dispersion measures and CSF analytes, as well as structural (and 

functional) neuroimaging changes in individuals with and without genetic and other AD risks, 

to better elucidate evolving associations between these variables over time and towards AD 
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Dementia. It is possible that change scores over time in both biomarkers and dispersion may be 

more sensitive than either change score alone in predicting dementia onset. Additionally, the 

quantification method and composition of our dispersion indices, as well as the number and 

nature of tests used, might also have influenced the results obtained. While no consensus has 

been reached on which measures or approach is preferable, future work could compare which 

combination of measures and quantification approaches are most sensitive to CSF and other 

biomarkers changes in AD.      

In conclusion, cognitive dispersion scores were positively and negatively associated with age 

and education years, respectively. Our investigation of sensitivity of results to the tasks and 

tests included in the derivation of the dispersion scores was a first step towards future research 

to gain a better understanding of the optimal selection of tests to maximise the use of dispersion 

scores as an early marker of poor brain health. Furthermore, additional research is also needed 

to identify which variables moderate cognitive dispersion, as this would further highlight the 

contribution of individual differences to successful cognitive aging. Our study failed to provide 

support for cognitive dispersion as an indicator of AD pathology obtained through CSF. This 

latter observation contrasts with previous findings from smaller cohorts and questions the 

usefulness of cognitive dispersion for the purposes of screening for existing CSF abnormalities 

in older adults. Nonetheless, follow-up work will determine if dispersion scores can predict 

changes in CSF levels and/or positivity status over time. If so, this could inform secondary 

prevention trial designs by providing an inexpensive adjunct screening tool to enrich ageing or 

readiness cohorts with individuals possessing emerging abnormal CSF profiles. 
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Table 1. Descriptive characteristics of analytical sample (N=439) 

 Mean (SD)  N (%) 

Age (years) 66.13 (6.65) Sex (Female / Male) 231 (52.62) / 

208 (47.38) 

Education (years) 14.03 (3.67) APOE4 (Y/N) 177 (40.32) / 

262 (59.68) 

  Family History  

(Y/ N) 

251 (57.18) / 

188 (42.82) 

    

RBANS subtasks Mean (SD)  Mean (SD) 

Coding 44.34 (10.63) List recall 5.96 (2.29) 

Digit Span 9.56 (2.27) List recognition 19.25 (1.09) 

Figure Copy 18.62 (1.86) Picture naming 9.79 (0.90) 

Figure Recall 14.27 (3.75) Semantic fluency 19.61 (5.33) 
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List learning 28.36 (4.67) Story memory 18.25 (3.17) 

Line orientation 

MMSE 

18.08 (2.22) 

28.68 (1.51) 

Story recall 8.92 (1.92) 

 

Experimental tasks 

Flanker 

Mean (SD) 

8.41 (0.69) 

CSF biomarkers 

p-tau 

Mean (SD) 

19.23 (9.80) 

Mountain 6.16 (4.73) t-tau 221.77 (93.64) 

Supermarket Trolley 9.05 (3.86) abeta 1333.3 (617.2) 

Favourite 6.24 (5.07) Amypos Yes: N (%) 154 (35.08 %) 

 

 

 

Table 2. Results from multivariable linear regression analyses of RBANS subscale dispersion 

scores and 4 experimental tasks adjusted for sociodemographic variables. 

 Dispersion scores derived using 

RBANS subscale scores, 

MMSE and experimental tasks 

Dispersion scores derived only 

using 

experimental tasks 

Variable Beta (SE) p-value Beta (SE) p-value 

Age 0.007 (0.002) 0.001 -0.002 (0.002) 0.291 

Sex 0.037 (0.024) 0.134 0.08 (0.03) 0.020 

Education -0.009 (0.003) 0.009 0.007 (0.005) 0.115 

APOE4 0.037 (0.025) 0.140 -0.02 (0.04) 0.614 

Family history 

Depression scores 

-0.021 (0.026) 

0.0006 (0.002) 

0.410 

0.815 

-0.02 (0.04) 

-0.001 (0.003) 

0.476 

0.708 

Dispersion = variability across RBANS indices and 4 experimental tasks  
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Table 3. Results from linear regression models fitted to p-tau, t-tau, Aβ42 and logistic regression 

analysis of amyloid positivity to study their association with cognitive dispersion scores derived 

using RBANS Subscale and 4 experimental task dispersion  

 p-tau t-tau Aβ42 Amyloid Positivity 

 

 

Beta 

(SE) 

p-value Beta 

(SE) 

p-value Beta 

(SE) 

p-value OR   

(95% CI) 

p-value 

Dispersion 1.14 

(1.69) 

0.500 9.15 

(16.14) 

0.571 9.90 

(110.5) 

0.950 0.63  

(0.28, 1.44) 

0.280 

Age 0.52 

(0.07) 

<0.001 5.02 

(0.67) 

<0.001 -6.17 

(4.51) 

0.183 1.06  

(1.03, 1.10) 

<0.001 

Female 

gender 

0.90 

(0.89) 

0.313 14.36 

(8.53) 

0.093 87.89 

(57.41) 

0.124 0.75  

(0.50, 1.14) 

0.178 
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Dispersion = variability across RBANS subscale indices and 4 experimental tasks 

 

 

 

Figure 1. Dispersion by sociodemographic and AD risk factors 

 

Education -0.04 

(0.12) 

0.726 -0.42 

(1.16) 

0.716 3.76 

(7.82) 

0.646 0.99  

(0.94, 1.05) 

0.745 

APOE4 2.83 

(0.92) 

0.002 24.86 

(8.77) 

0.005 -361.31 

(58.59) 

<0.001 2.29  

(1.50, 3.51) 

<0.001 

Family 

History 

0.67 

(0.94) 

0.476 1.90 

(9.00) 

0.833 -51.12 

(60.56) 

0.395 

 

1.16  

(0.75, 1.81) 

0.490 

 

Depression 

scores 

-0.11 

(0.09) 

0.217 -1.04 

(0.90) 

0.252 -13.73 

(6.09) 

0.025 1.06  

(1.01, 1.11) 

0.011 
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*Age: We split the sample in three groups according to age: from 51 to 64 years old (N= 186), from 65 to 74 years 

old (N=206) and 75 and olders (N=47). Education: We split the sample in two groups according to the median 

years of education: less educated are below the median (less than 14 years; N=200) and the others (14 years or 

more; N=239). 
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Table S1. Results from linear regression analyses of alternative formulations of dispersion 

scores adjusted for sociodemographic variables. 

 Dispersion scores derived using 

RBANS subscale scores, 

MMSE and experimental tasks 

Dispersion scores derived only 

using 

experimental tasks 

Variable Beta (SE) p-value Beta (SE) p-value 

Age 0.006 (0.002) 0.001 -0.002 (0.002) 0.291 

Sex 0.037 (0.024) 0.134 0.08 (0.03) 0.020 

Education -0.009 (0.003) 0.009 0.007 (0.005) 0.115 

APOE4 0.037 (0.025) 0.140 -0.02 (0.04) 0.614 

Family history 

Depression scores 

-0.021 (0.026) 

0.0006 (0.002) 

0.410 

0.815 

-0.02 (0.04) 

-0.001 (0.003) 

0.476 

0.708 

Dispersion = variability across RBANS indices, MMSE and 4 experimental tasks (Flanker and Four Mountains 

Tasks, Virtual Reality Supermarket Trolley and Favourites) 
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Table S2. Results from linear regression models fitted to p-tau, t-tau, Aβ42 and logistic 

regression analysis of amyloid positivity to study their association with dispersion scores 

derived using RBANS subscale scores, MMSE and experimental tasks. 

 

 p-tau t-tau Aβ42 Amyloid Positivity 

 

 

Beta 

(SE) 

p-value Beta 

(SE) 

p-value Beta 

(SE) 

p-value OR 

(CI) 

p-value 

Dispersion 1.05 

(1.72) 

0.541 7.98 

(16.43) 

0.627 -9.90 

(110.5) 

0.929 0.56  

(0.24, 1.29) 

0.173 

Age 0.52 

(0.07) 

<0.001 5.03 

(0.67) 

<0.001 -6.17 

(4.54) 

0.175 1.06  

(1.03, 1.10) 

<0.001 

Female 

gender 

0.90 

(0.89) 

0.314 14.38 

(8.53) 

0.093 87.89 

(57.41) 

0.127 0.76 

 (0.50, 1.15) 

0.188 

Education -0.04 

(0.12) 

0.724 -0.43 

(1.17) 

0.712 3.76 

(7.87) 

0.633 0.99 

(0.93, 1.05) 

0.708 

APOE4 2.84 

(0.92) 

0.002 24.99 

(8.77) 

0.004 -361.31 

(58.59) 

<0.001 2.30 

(1.50, 3.52) 

<0.001 

Family 

History 

 

Depression 

scores 

0.66 

(0.94) 

-0.11 

(0.09) 

0.481 

 

0.214 

1.83  

(9.00) 

-1.04 

(0.90) 

0.839 

 

0.249 

-51.12 

(60.54) 

-13.73 

(6.10) 

0.399 

 

0.025 

1.16 

(0.75, 1.81) 

1.06  

(1.01, 1.11) 

0.493 

 

0.010 

Dispersion = The Repeatable Battery of Assessment for Neuropsychological Status subscale scores, Working 

memory, Choice reaction time and set shifting, Visuospatial Navigation: Four Mountains Task and Virtual Reality 

Supermarket Trolley and MMSE 

Table S3. Results from linear regression models fitted to p-tau, t-tau, Aβ42 and logistic 

regression analysis of amyloid positivity to study their association with dispersion scores 
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derived only including the 4 experimental tasks (Flanker and Four Mountains Tasks, Virtual 

Reality Supermarket Trolley and Favourites) 

 

 p-tau t-tau Aβ42 Amyloid Positivity 

 

 

Beta 

(SE) 

p-value Beta 

(SE) 

p-value Beta 

(SE) 

p-value OR 

(CI) 

p-value 

Dispersion -0.25 

(1.92) 

0.828 -5.07 

(11.36) 

0.656 -33.35 

(76.40) 

0.663 0.84 

(0.48, 1.46) 

0.538 

Age 0.52 

(0.07) 

<0.001 5.07 

(0.67) 

<0.001 -6.21 

(4.49) 

0.167 1.06  

(1.02, 1.09) 

0.001 

Female gender 0.96 

(0.89) 

0.284 15.10 

(8.57) 

0.079 91.06 

(57.62) 

0.115 0.75  

(0.5, 1.14) 

0.182 

Education -0.05 

(0.12) 

0.678 -0.46 

(1.16) 

0.690 3.93 

(7.83) 

0.615 0.99  

(0.94, 1.05) 

0.892 

APOE4 2.88 

(0.91) 

0.002 25.20 

(8.69) 

0.004 -361.55 

(58.45) 

<0.001 2.22  

(1.46, 3.39) 

<0.001 

Family 

History 

 

Depression 

scores 

0.64 

(0.94) 

-0.11 

(0.09) 

0.501 

 

0.215 

1.52  

(9.00) 

-1.04 

(0.90) 

0.866 

 

0.248 

-52.24 

(60.51) 

-13.77 

(6.09) 

0.388 

 

0.024 

1.18  

(0.76, 1.83) 

1.06  

(1.01, 1.10) 

0.458 

 

0.011 

Dispersion = 4 experimental tasks (Flanker and Four Mountains Tasks, Virtual Reality Supermarket Trolley and 

Favourites) 

 


