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Abstract: The monitoring of surface-water quality followed by water-quality modeling and analysis
are essential for generating effective strategies in surface-water-resource management. However,
worldwide, particularly in developing countries, water-quality studies are limited due to the lack of
a complete and reliable dataset of surface-water-quality variables. In this context, several statistical
and machine-learning models were assessed for imputing water-quality data at six monitoring
stations located in the Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. The
challenge of this study is represented by the high percentage of missing data (between 50% and
70%) and the high temporal and spatial variability that characterizes the water-quality variables. The
competing algorithms implement univariate and multivariate imputation methods (inverse distance
weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB),
Hubber Regressor (HR), Support Vector Regressor (SVR) and K-nearest neighbors Regressor (KNNR)).
According to the results, more than 76% of the imputation outcomes are considered “satisfactory”
(NSE > 0.45). The imputation performance shows better results at the monitoring stations located
inside the reservoir than those positioned along the mainstream. IDW was the model with the best
imputation results, followed by RFR, HR and SVR. The approach proposed in this study is expected to
aid water-resource researchers and managers in augmenting water-quality datasets and overcoming
the missing data issue to increase the number of future studies related to the water-quality matter.

Keywords: data scarcity; water quality; missing data; univariate imputation; multivariate imputation;
machine learning; hydroinformatics

1. Introduction

Monitoring, modeling and management represent the three foundations for building
an effective pollution-control strategy [1]. They strictly depend on each other: there
is no management without modeling and no modeling without exhaustive monitoring.
Therefore, any problem related to data collection is then reflected in the performance of the
modeling and management phases. Consequently, it is crucial first to acknowledge what
improvement would result if all the available data could be well exploited [2].

The issue of missing data frequently occurs in environmental fields due to sensor
failures, weak or inexistent strategy for coordinating monitoring campaigns, a change in
the measurement site, in data collectors or to the equipment over time, budget issues [3,4].
Such water-quality data problem is particularly significant in developing countries where
monitoring stations and monitoring frequency is scarce, and the percentage of missing data
is exceptionally high [5].
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It is possible to deal with missing data in two different ways: deletion or imputation [6].
Deletion consists of removing the observations or the features characterized by missing
values, while imputation involves reconstructing missing data. Deletion is typically the
default method adopted since it is rapid and straightforward [7]. However, in several fields,
there are many examples in which such a technique presented some restrictions. It reduces
the dataset size and may lead to biased results and a loss of critical information, mainly
when a high percentage of missing values characterizes the dataset. Among the most
straightforward imputation techniques, there are mean imputation and linear interpolation
(which rely only on the available time-series data to perform the imputation), arithmetic,
and weighted averaging. However, these techniques have shown poor performance when
the dataset is characterized by a significant length of the missing sequence [5].

Another common approach used to fill in missing data, which is part of the univariate
imputation methods, is to use information from the neighboring monitoring stations.
The inverse distance weight (IDW) is a technique that has been successfully adopted for
environmental datasets, particularly for meteorological variables [8–11].

In the last decade, progressively more advanced techniques have been adopted to
reconstruct environmental time series [12,13]. Among them, machine-learning techniques
that can handle multivariate inputs are the most widely used. Aguilera et al. [5] adopted
three different methods (spatio-temporal kriging, multiple imputations by chained equa-
tions through predictive mean matching and random forest) to reconstruct daily precipi-
tation time series characterized by extreme missingness (>90%). They found that spatio-
temporal kriging simulates rainfall distribution under missing chronological patterns more
reliably than the other two techniques. Sattari et al. [14] provided an in-depth comparison
of ten different statistical and machine-learning models to impute monthly precipitation
data. Computational results showed that arithmetic averaging, multiple linear regressors
and non-linear iterative partial least squares perform best among the classical statistical
methods. The multiple imputation technique performed best when rainfall data from more
than one dependent station were considered. In addition, Barrios et al. [10] compared the
performance of five models for filling monthly precipitation records, finding that artificial
neural network, multiple linear regression and IDW showed the best performance.

Most of the imputation works presented in the scientific literature refer to mete-
orological variables and, sometimes, to hydrologic variables like streamflow [15]. To
our knowledge, there are few works related to the imputation of water-quality data.
Tabari and Talaee [16] employed artificial neural networks to successfully recover miss-
ing values of 13 water-quality parameters at five monitoring stations in the South of Iran.
Srebotnjak et al. [17] adopted hot-deck imputation to improve a country-level water quality
index, calculated by considering dissolved oxygen, electrical conductivity, pH, total phos-
phorus and total nitrogen. Ratolojanahary et al. [7] assessed for the first time the problem
of high omission rate (even higher than 80%) in a water-quality dataset by adopting four
machine-learning models (random forest, boosted regression trees, k-nearest neighbors
and support vector regression). However, there is no comprehensive evaluation of different
types of imputation models in the context of water-quality data characterized by a high
percentage of incompleteness.

Since the beginning of systematic water-quality monitoring in 2004, Uruguay has been
suffering the problem of data scarcity, which causes significant limitations in developing
and implementing reliable and accurate water-quality models. The shortage of these
models unavoidably produces the lack of management tools to design effective policies to
mitigate pollution impacts on receiving water bodies.

Based on these considerations, this study aims at augmenting the current water-
quality dataset of one of the most important Uruguayan watersheds, Santa Lucía Chico. In
particular, we assess the performance of several univariate and multivariate imputation
models (statistical and machine learning) to impute missing bi-monthly water-quality
data and duplicating the size of the data refining the time series to a monthly frequency.
Water-quality variables, in this study, include water temperature, electrical conductivity,
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pH, dissolved oxygen, total nitrogen, nitrite, nitrate and turbidity. This work presents two
significant challenges: the high missingness percentage (between 50% and 70%) and the
high temporal and spatial distribution of the variables under study.

At the national level, this study is expected to pave the path to future studies related to
the water quality in Santa Lucía Chico (e.g., implementing reliable water-quality modeling
tools, simulation and prediction of water-quality variables, scenario analysis). Globally, this
methodology is expected to help water-resource researchers and managers in augmenting
their water-quality datasets and overcoming the problem of missing data.

2. Materials and Methods
2.1. Methodology Description

The flowchart reported in Figure 1 describes the methodology adopted to accomplish
the main goals of this study.
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Five steps can be identified:

1. Pre-processing data: The dataset was pre-processed before any analysis to deal with
the different units, orders of magnitude, not unified variable names and different
sampling frequencies.

2. Data profiling: The dataset was analyzed with the aim of studying the distribution
of the variables, their missing data and data quality (the dataset is described in
Section 2.2, and the results of this step are reported in Section 3.1).

3. Variable correlations: Correlations among variables were considered to help the multi-
variate imputation techniques (Section 2.5).

4. Imputation: The selected imputation models were assessed, and their loss functions
were computed (the imputation techniques and the imputation performance evalua-
tion are described in Sections 2.3 and 2.4, respectively).

5. Best model selection: For each variable at each monitoring site, the model with the
highest performance was selected as “the best model” (Section 3.2).

2.2. Dataset Description

Uruguay has a humid subtropical climate (Cfa, according to the Köppen climate
classification) with a mean temperature in the warmest month equal to 22 ◦C or higher [18].
The study area is characterized by total annual precipitation that varies between 1000 mm
and 1500 mm and a temperature that can vary between 3 ◦C and 30 ◦C [19]. The region has
a landscape of smooth hills with an average slope equal to 2.68%.

The water-quality dataset used in this study includes the following physical and
chemical variables: water temperature (Tw) [◦C], electrical conductivity (EC) [µS/cm],
pH, dissolved oxygen (DO) [mg/L], total nitrogen (TN) [mg/L], nitrite (NO2

−) [mg/L],
nitrate (NO3

−) [mg/L] and turbidity (Turb) [NTU]. It was recorded by the Uruguayan
National Environment Board (DINAMA) and is freely downloadable from the National
Environmental Observatory (OAN) [20]. Data were collected from 2014 to 2020, with
a bi-monthly frequency, at six monitoring stations located along the Santa Lucía Chico
river, Uruguay. This is a mixed lotic and lentic system with wide national importance
since its waters flow into the Paso Severino reservoir, the primary national drinking water
source [19,21–23]. The first three upstream monitoring stations (SLC01, SLC02 and PS01)
are located before the reservoir; the other three stations (PS03, PS04 and PS02) are located
in the lake (Figure 2).



Sustainability 2021, 13, 6318 4 of 17

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 18 
 

the reservoir; the other three stations (PS03, PS04 and PS02) are located in the lake (Figure 

2). 

The percentage of missing values detected for each variable at all monitoring stations 

is reported in Table 1. 

 

Figure 2. Santa Lucía Chico river (Uruguay) and location of the six water-quality monitoring sta-

tions. 

Table 1. Percentage of missing data for the variables under study at the six monitoring stations 

(period 2014–2020). 

Variable 
% Missing Data 

SLC01 SLC02 PS01 PS03 PS04 PS02 

Physical 

Tw 51.5 51.5 64.7 57.6 57.6 59.1 

EC 51.5 51.5 64.7 57.6 57.6 57.6 

pH 52.9 52.9 66.2 59.1 59.1 59.1 

DO 51.5 51.5 64.7 57.6 57.6 57.6 

Turb 52.9 52.9 66.2 60.6 60.6 59.1 

Chemical 

TN 52.9 52.9 66.2 60.6 60.6 59.1 

NO2− 51.5 51.5 64.7 59.1 59.1 57.6 

NO3− 51.5 51.5 64.7 59.1 59.1 57.6 

Some hydro-meteorological variables that may influence the water-quality variables 

under study were also considered to support the multivariate techniques. In particular, 

air temperature (Ta) (minimum, average, maximum) [°C], solar radiation (SR) [cal/cm2/d] 

and heliophany (Hel) (sunshine hours) [h] were used for Tw imputation. These data were 

collected daily by the National Institution of Agricultural Research (INIA) and have no 

missing values. Ta along with daily evapotranspiration (ET) data, also calculated from 

INIA (time series characterized by 0.1% of missing data), were considered for the imputa-

tion of Turb. Streamflow (Q) [m3/s] was considered for the imputation of TN, NO2−, NO3− 

and Turb. This time series was measured three times a day by the Uruguay National Water 

Board (DINAGUA) and is characterized by a neglectable percentage of missing data 

(5.6%).  

Furthermore, precipitation records (P) from the Uruguayan Institute of Meteorology 

(INUMET) were considered for Turb imputation. The time series observed at the ten se-

lected monitoring stations have a percentage of missing data that varies between 0.0% and 

Figure 2. Santa Lucía Chico river (Uruguay) and location of the six water-quality monitoring stations.

The percentage of missing values detected for each variable at all monitoring stations
is reported in Table 1.

Table 1. Percentage of missing data for the variables under study at the six monitoring stations
(period 2014–2020).

Variable
% Missing Data

SLC01 SLC02 PS01 PS03 PS04 PS02

Physical

Tw 51.5 51.5 64.7 57.6 57.6 59.1
EC 51.5 51.5 64.7 57.6 57.6 57.6
pH 52.9 52.9 66.2 59.1 59.1 59.1
DO 51.5 51.5 64.7 57.6 57.6 57.6
Turb 52.9 52.9 66.2 60.6 60.6 59.1

Chemical
TN 52.9 52.9 66.2 60.6 60.6 59.1

NO2
− 51.5 51.5 64.7 59.1 59.1 57.6

NO3
− 51.5 51.5 64.7 59.1 59.1 57.6

Some hydro-meteorological variables that may influence the water-quality variables
under study were also considered to support the multivariate techniques. In particular, air
temperature (Ta) (minimum, average, maximum) [◦C], solar radiation (SR) [cal/cm2/d]
and heliophany (Hel) (sunshine hours) [h] were used for Tw imputation. These data were
collected daily by the National Institution of Agricultural Research (INIA) and have no
missing values. Ta along with daily evapotranspiration (ET) data, also calculated from INIA
(time series characterized by 0.1% of missing data), were considered for the imputation
of Turb. Streamflow (Q) [m3/s] was considered for the imputation of TN, NO2

−, NO3
−

and Turb. This time series was measured three times a day by the Uruguay National Water
Board (DINAGUA) and is characterized by a neglectable percentage of missing data (5.6%).

Furthermore, precipitation records (P) from the Uruguayan Institute of Meteorology
(INUMET) were considered for Turb imputation. The time series observed at the ten
selected monitoring stations have a percentage of missing data that varies between 0.0%
and 8.6% in the considered time window (2014–2020). The location of the INIA, DINAGUA
and INUMET monitoring stations is represented in Figure 3.
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2.3. Imputation Techniques

Since the best model for imputing any kind of variable does not exist [24], we evalu-
ated several statistical and machine-learning algorithms (single and multiple imputation)
to accomplish the objective of this study. The selected models are Inverse distance weight-
ing (IDW), Random Forest regressor (RFR), Ridge regressor (RR), Bayesian ridge (BR),
AdaBoost (AB), Huber regressor (HR), Support vector regressor (SVR), TheilSen regressor
(TSR) and k-nearest neighbors regressor (KNNR). All of them have proved to be suitable for
non-linear environmental variables, and some of them for cases characterized by a high per-
centage of missing data. Furthermore, they are already programmed and freely available
in Phyton. Unless a software library is explicitly mentioned, scikit-learn was adopted to
implement the algorithms [25]. We now briefly describe each of the imputation methods.

Inverse Distance Weighting (IDW): It is a deterministic univariate interpolation method.
Missing samples at the target station (s) are computed from the observed values at neighbor-
ing stations. The weighting is assigned to the data using a weighting power that controls
how the weighting factors decrease as the distance from station s increases [26]. This model
was run in R, by using gstat library (function: gstat.idw).

Random Forest Regressor (RFR): It is a supervised learning algorithm that uses an ensem-
ble learning method for regression. Such a method is a technique that combines predictions
from multiple Decision Tree algorithms to improve the overall prediction and control
overfitting. The decision trees run in parallel with no interaction among them and the mean
of all the predictions is returned [27] (function: sklearn.ensemble.RandomForestRegressor).

Ridge Regressor (RR): It is a technique for analyzing multiple regressions of highly
correlated data. It trains a regression model that aims to minimize the least-squares
function with an additional regularization term given by the sum of the values’ squares
(L2 norm) [28] (function: sklearn.linear_model.Ridge).

Bayesian Ridge (BR): It is an estimator that assumes and predicts the target by calculat-
ing its probability distribution during training. This method can cope with data sparsity
more effectively than other methods. [29] (function: sklearn.linear_model.BayesianRidge).

AdaBoost (AB): It is an estimator that starts fitting a decision tree regressor on the
original dataset and then fits additional copies of the regressor on the same slightly modified
dataset. Depending on the correctness of the last prediction, samples that are difficult
to predict become more relevant as the training continues. The mean of all the models’
predictions is returned [30] (function: sklearn.ensemble.AdaBoostRegressor).

Huber Regressor (HR): It is an algorithm that trains a linear model which optimizes
the mean squared error (L2 error) for samples whose error is lower than a given threshold
(d) and the mean absolute error (L1 error) for samples whose error is greater than d. In
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this way, the optimized function is not heavily influenced by outliers while not completely
ignoring their effect [31] (function: sklearn.linear_model.HuberRegressor).

Support Vector Regressor (SVR): It is an estimator that focuses on minimizing the
coefficients. More specifically, it considers the l2-norm of the coefficient vector, not the
squared error. The error term is handled instead in the constraints, where the absolute
error is set to less than or equal to a specified margin (maximum error). The latter can be
adjusted to obtain the desired accuracy of the model. [32] (function: sklearn.svm.SVR).

TheilSen Regressor (TSR): It is a regressor that makes its estimation by calculating the
slopes and intercepts of a subpopulation of all possible combinations of some subsample
points. The final slope and intercept are then defined as the spatial median of these
slopes and intercepts. It is robust against outliers compared to other linear regressors [33]
(function: sklearn.linear_model.TheilSenRegressor).

K-Nearest Neighbors Regressor (KNNR): It is a regressor that calculates the distance (us-
ing all variables) from the target point to the others and makes a prediction by interpolating
the nearest neighbors in the dataset [34] (function: sklearn.neighbors.KNeighborsRegressor).

2.4. Imputation Performance Evaluation

To compare the accuracy of the implemented techniques in reconstructing missing
water-quality data, Kling-Gupta efficiency (KGE), percent bias (PBIAS) and the Nash-
Sutcliffe efficiency (NSE) were used. The latter was employed as the objective function
since it is the most restrictive [35], while KGE and PBIAS were both used for validation.
Equations (1)–(3) present these metrics, where xi

o is the ith observed value, xi
c is the ith

computed (or imputed) value, xo is the mean of observed values and n is the testing-
dataset size. Being (µc,σc) and (µo,σo) the first two statistical moments (mean and standard
deviation) of xc and xo, respectively, r is the linear correlation between observations and
imputations, α is a measure of the flow variability error (α = σc/σo), β is a bias term
(β = µc/µo).

NSE = 1 − ∑n
i=1
(
xo

i − xc
i
)2

∑n
i=1
(
xo

i − xo
)2 (1)

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2 (2)

PBIAS = 100 × ∑n
i=1
(
xo

i − xc
i
)

∑n
i=1
(

xo
i
) (3)

NSE varies between −∞ and 1. If NSE is 1, the imputed values match the records
perfectly. If NSE is 0, the imputed values are as good as the observation mean. If NSE is
negative, the observation mean is a better predictor than imputed values. Therefore, higher
NSE values are desirable since they indicate a more accurate imputation model [36,37].

Unlike NSE, there are not well-defined KGE thresholds that define a “good” model.
For this reason, the current literature tends to interpret KGE values similarly to NSE:
negative values indicate “bad” model performance, while positive values indicate “good”
model performance [38–40]. However, a recent study by Knoben et al. [41] found that all
model results with −0.41 < KGE < 1 could be considered good performance.

The optimal value of PBIAS is 0, with lower values indicating accurate model impu-
tation. Positive values denote an underestimation bias of the model, and negative values
indicate an overestimation bias of the model [42].

Table 2 summarizes the performance evaluation criteria for NSE, KGE and PBIAS,
used in this work, defined according to the standard review [36,41,42].
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Table 2. Evaluation metrics and associated performance ratings.

Performance Rating Physical Water Quality Variables Chemical Water Quality Variables

NSE
Very good NSE > 0.80 NSE > 0.65
Good 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.65
Satisfactory 0.45 < NSE ≤ 0.70 0.35 < NSE ≤ 0.50
Unsatisfactory NSE ≤ 0.45 NSE ≤ 0.35
PBIAS
Very good |PBIAS| < 10 |PBIAS| < 15
Good 10 ≤ |PBIAS| < 15 15 ≤ |PBIAS| < 20
Satisfactory 15 ≤ |PBIAS| < 20 20 ≤ |PBIAS| < 30
Unsatisfactory |PBIAS| ≥ 20 |PBIAS| ≥ 30
KGE
Satisfactory/Good KGE ≥ −0.41 KGE ≥ −0.41
Unsatisfactory KGE < −0.41 KGE < −0.41

2.5. Helper Variables for the Imputation Process

Considering the correlations among water-quality variables, multivariate techniques
exploited them for completing the missing values with the other existing water-quality
observations. Spearman correlation was employed to evaluate possible correlations among
water-quality variables, as it is a non-linear technique able to avoid overshadowing critical
variable relationships. The aid variables considered in this study are framed in black in
Figure 4. In particular, Tw and Turb influence EC in surface waters. An increase in Tw
causes an increase in the mobility of the ions present in the water. An increase in Tw may
also produce an increment in the number of ions due to molecule dissociation. As the EC
depends on these factors, an increase in Tw leads to an increase in EC [43,44]. Furthermore,
EC represents the ability of a liquid to conduct an electric charge; this ability depends on
dissolved ion concentration, which is usually measured as total dissolved solids (TDS) [45].
Considering that TDS are highly correlated with Turb, we can assume that EC is also
affected by Turb.

Furthermore, DO was considered dependent on Tw: the higher Tw, the lower DO. This
is justified by the fact that cold water can hold more DO than warm water. In the cold
season, when Tw is low, the DO concentration is high. In the warm season, when Tw is
high, the DO concentration is often lower [19].

The variables Turb and Tw are also highly correlated. In general, Turb is known as a
proxy of the amount of suspended solids in water. Such suspended particles in water bodies
absorb heat from solar radiation more efficiently than water. The heat is then transferred
from the particles to water molecules, increasing the surrounding water temperature [46].

Other correlations considered were the ones between TN-Turb, TN–NO2
− and TN-

NO3
− (even though the last two were not highlighted in the correlation matrix). This is

justified by the fact that TN represents the sum of dissolved and particle-bound nitrogen.
Moreover, as we have already mentioned in Section 2.1, we also considered hydro-

meteorological variables aid for the imputation process since they may influence the
water-quality variables under study. Particularly, Tw is deemed to be mainly affected
by Ta, Hel and SR. Turb, TN, NO2

− and NO3
− are influenced by Q. Considering that

NO2
− and NO3

− are part of the dissolved inorganic nitrogen (DIN), their correlation
with streamflow is clear: the higher the Q, the lower the ions concentration, due to the
dilution process [19]. Being TN the sum of dissolved and particle-bound nitrogen, we
aided the imputation process of the latter by including Turb data. It is often assumed that
these constituents positively affect river discharge, considering the importance of overland
runoff in transporting sediments [47]. For this reason, we are considering Q as a supporting
variable for Turb imputation.

In their study carried out in Santa Lucía Chico watershed, Gorgoglione et al. [19]
found a seasonality of Turb values with higher values during the cold season. This was
justified by the fact that in this season, frequent extreme precipitation events occur and,
along with higher soil humidity due to low temperature, this causes a higher runoff and,
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therefore, a more significant amount of detached and washed-off sediments. For this reason,
Turb imputation is also aided by ET, P and Ta data (apart from Q as previously explained).
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A summary of the supporting variables taken into account for the imputation process
is represented in Table 3.

Table 3. Helper variables considered in the imputation process.

Variable to Impute Helper Variable

Water temperature (Tw)

Air temperature (Ta)
Solar radiation (SR)
Heliophany (Hel)
Turbidity (Turb)

Electrical Conductivity (EC) Water temperature (Tw)
Turbidity (Turb)

Dissolved oxygen (DO) Water temperature (Tw)

Nitrite (NO2
−) Streamflow (Q)

Nitrate (NO3
−) Streamflow (Q)

Turbidity (Turb)

Streamflow (Q)
Precipitation (P)
Air temperature (Ta)
Evapotranspiration (ET)

Total Nitrogen (TN)

Nitrite (NO2
−)

Nitrate (NO3
−)

Turbidity (Turb)
Streamflow (Q)
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3. Results and Discussion
3.1. Dataset Profiling

The dataset considered for this study is formed by 48 time series (8 water-quality
variables × 6 monitoring stations). Therefore, from now on, we will call “variable,”
“feature,” or “attribute,” a particular time series that refers to a water-quality variable
recorded at one monitoring station (e.g., Tw observed at SLC01 monitoring station will be
Tw[SLC01]). The data profiling process was programmed and run in Python 3.8, using the
pandas_profiling library [48].

With the aim of showing the high temporal and spatial variability of the water-quality
variables under study, we reported the box-plot representation at the six monitoring
stations through the analyzed period (2014–2020) (Figure 5). From all the pollutant plots
presented, it is interesting to identify two different groups of behavior: the three monitoring
sites situated in the reservoir show different patterns compared to those that characterize
the stations located upstream of the reservoir. Furthermore, Tw and DO are the only
pollutants showing a strong intra- and inter-annual seasonality, while we cannot identify a
clear pattern for the other contaminants under study. It is essential to highlight the high
nutrient contribution of PS01 (TN, NO2

−, NO3
−), where the biggest city of the watershed

is located (Florida, that with a population of over 33,000, is home to almost half of the
inhabitants of the region). It is known that urbanized areas are sources of nitrogen due to
atmospheric deposition, lawn fertilizer application, wastewater effluent and leaky sewage
infrastructure [49]. Turb shows a minor temporal pattern through the years, with the
highest values registered in the monitoring stations located upstream of the reservoir
(SLC01, SLC02 and PS01).

To better understand and justify the high spatio-temporal variability of the attributes
under study, we analyzed the seasonality of the hydro-meteorological parameters used
as helper variables in the imputation process (ET, Hel, Ta, SR, P and Q) (Figure 6). As
mentioned in Section 2.1., precipitation-time series observed at ten monitoring stations
were adopted for this study. For the sake of clarity, in Figure 6, we are only presenting the
P boxplots related to Florida station since it is the barycentric one of the watershed.

In these plots, the “winter” period includes the fall and winter seasons (April–May–
June–July–August–September), and the “summer” time window considers the spring and
summer seasons (October–November–December–January–February–March). As expected,
the meteorological variables ET, Hel, Ta and SR show a strong seasonal pattern, with lower
values in winter and higher values in summer. This behavior is not explicit for P and Q.
They do not present an evident seasonality, but it is possible to state that in winter, extreme
rainfall events and, therefore, major runoff events occur more frequently than in summer.
This is justified by the fact that in the cold season, the higher soil humidity due to low
temperature causes a higher runoff.

The strong seasonality of ET, Hel, Ta and SR justifies the strong intra- and inter-annual
seasonality of Tw and DO since the former parameters are used as helper variables of the
latter ones. The minor temporal pattern showed by Turb is explained by the fact that it
depends on ET and Ta, characterized by a strong seasonality, and Q and P, which only
present extreme events in winter, without showing a solid temporal pattern.
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3.2. Imputation Results

To evaluate the performance of the different imputation models adopted and to choose
the best one for each feature, k-fold cross-validation with k = 10 was used in this study. If a
time series was characterized by less than 100 records, we adopted a repeated k-fold cross-
validation, always with k = 10. This method repeats the k-fold cross-validation process
multiple times and reports the mean performance across all folds and all repeats [50].
The dataset was min-max normalized before any analysis to deal with the different units
and orders of magnitude. The winning (best) models were the ones with the optimal
hyper-parameters, i.e., those with the highest NSE (objective function). As a result, the best
model with the highest accuracy was selected for each feature and validated by calculating
KGE and PBIAS. The outcomes of this methodology are represented by augmented time
series for all the water-quality variables, characterized by one-month frequency (i.e., the
frequency was doubled up). The methodology adopted in this study was implemented
using Python programming language on a desktop computer (Ubuntu Operating System,
16 GB of RAM and Intel i3 Processor).

In Table 4, we report, for each variable, the winning model with the corresponding
values of the goodness-of-fit indicators calculated and the corresponding rating based on
Table 3.
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Table 4. Best imputation models and corresponding goodness-of-fit indicator values per variable.

Variable Station Model NSE NSE Rating PBIAS PBIAS Rating KGE KGE Rating

Tw

SLC01 Random Forest Regressor 0.95 Very good 0.09 Very good 0.91 Good
SLC02 IDW 0.97 Very good −2.54 Very good 0.95 Good
PS01 IDW 0.95 Very good −3.77 Very good 0.94 Good
PS03 IDW 0.98 Very good −0.21 Very good 0.96 Good
PS04 IDW 0.98 Very good 1.49 Very good 0.96 Good
PS02 IDW 0.97 Very good 0.89 Very good 0.93 Good

EC

SLC01 SVR 0.67 Satisfactory −0.12 Very good 0.76 Good
SLC02 SVR 0.71 Good 0.43 Very good 0.67 Good
PS01 Ridge 0.67 Satisfactory −1.70 Very good 0.77 Good
PS03 Ridge 0.85 Very good 1.35 Very good 0.86 Good
PS04 IDW 0.94 Very good 4.71 Very good 0.87 Good
PS02 IDW 0.89 Very good −3.89 Very good 0.88 Good

pH

SLC01 Bayesian Ridge 0.39 Unsatisfactory −0.63 Very good 0.54 Good
SLC02 Random Forest Regressor 0.75 Good 0.95 Very good 0.80 Good
PS01 Random Forest Regressor 0.25 Unsatisfactory 0.44 Very good 0.40 Good
PS03 Bayesian Ridge 0.66 Satisfactory −0.31 Very good 0.78 Good
PS04 IDW 0.68 Satisfactory −1.10 Very good 0.79 Good
PS02 Huber Regressor 0.65 Satisfactory −3.29 Very good 0.77 Good

DO

SLC01 Bayesian Ridge 0.81 Very good −2.79 Very good 0.83 Good
SLC02 Random Forest Regressor 0.73 Good −1.80 Very good 0.73 Good
PS01 AdaBoost 0.27 Unsatisfactory −1.65 Very good 0.48 Good
PS03 Ridge 0.80 Good −0.15 Very good 0.86 Good
PS04 Huber Regressor 0.89 Very good −0.28 Very good 0.89 Good
PS02 IDW 0.69 Satisfactory −0.24 Very good 0.79 Good

TN

SLC01 IDW 0.19 Unsatisfactory 2.72 Very good 0.49 Good
SLC02 Ridge 0.65 Good 1.90 Very good 0.72 Good
PS01 Random Forest Regressor −0.35 Unsatisfactory −0.91 Very good −0.10 Good
PS03 IDW 0.63 Good −7.79 Very good 0.75 Good
PS04 Random Forest Regressor 0.77 Very good −1.38 Very good 0.71 Good
PS02 IDW 0.70 Very good −15.22 Good 0.71 Good

NO2
−

SLC01 Huber Regressor 0.59 Good −0.83 Very good 0.62 Good
SLC02 Random Forest Regressor 0.36 Satisfactory −10.79 Very good 0.54 Good
PS01 KNN −0.31 Unsatisfactory 25.94 Satisfactory 0.02 Good
PS03 TheilSen Regressor 0.74 Very good 1.09 Very good 0.72 Good
PS04 KNN 0.92 Very good 3.35 Very good 0.86 Good
PS02 Huber Regressor 0.75 Very good −4.53 Very good 0.78 Good

NO3
−

SLC01 TheilSen Regressor 0.21 Unsatisfactory 13.68 Very good 0.33 Good
SLC02 Huber Regressor 0.42 Satisfactory −4.95 Very good 0.58 Good
PS01 Random Forest Regressor 0.10 Unsatisfactory 5.14 Very good 0.36 Good
PS03 IDW 0.69 Very good −0.80 Very good 0.80 Good
PS04 Huber Regressor 0.80 Very good −1.08 Very good 0.84 Good
PS02 SVR 0.61 Good −1.57 Very good 0.75 Good

Turb

SLC01 SVR −0.10 Unsatisfactory −1.93 Very good 0.03 Good
SLC02 SVR 0.56 Satisfactory −5.74 Very good 0.67 Good
PS01 IDW −0.18 Unsatisfactory −45.97 Unsatisfactory 0.35 Good
PS03 IDW 0.66 Satisfactory −12.30 Good 0.71 Good
PS04 IDW 0.85 Very good 3.94 Very good 0.88 Good
PS02 IDW 0.88 Very good −3.27 Very good 0.87 Good

Considering the NSE rating, the imputation performance is overall adequate. Tw at the
six monitoring stations was the best-imputed variable, showing “very good” performance.
The strong daily and annual seasonality that characterizes this variable makes its simulation
and, therefore, its imputation less difficult. The correlation that exists between Tw and EC
(an increase in Tw leads to an increase in EC) [43,44] is reflected in the “good” performance
of this variable at the six monitoring sites (“satisfactory” at SLC01 and PS01; “good” at
SLC02; “very good” at PS03, PS04 and PS02). The imputation process for the other water-
quality variables shows different results. It is noteworthy that the performance is always
notable at the three monitoring stations located in the reservoir of Paso Severino (PS03,
PS04 and PS02); while the imputation can sometimes be “unsatisfactory” at the stations
located upstream, along Santa Lucía Chico river (SLC01, SLC02 and PS01). This outcome
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can be attributed to the different hydrologic-response times considering the location of the
measurement sites. The time base of the hydrographs observed at Florida hydrometric
station (Figure 3) is overall equal to 6 days and it generally does not vary with the change of
the flow magnitude. Ríos [51] found that, on average, the renewal time of the Paso Severino
reservoir ranges between 2 to 8 weeks. He also observed that during storm events, the
renewal time could be a few days long, while it can last several months during dry periods.
SLC01 and SLC02 are located several kilometers upstream of the reservoir, where the water
body has a fluvial behavior associated with a lotic ecosystem. While PS02, PS03 and PS04
are located within the reservoir, where the water body is lacustrine, associated with a lentic
ecosystem. The validation of the imputation process was outstanding, showing overall
“very good” results in terms of the PBIAS and KGE ratings.

A box-plot representation of the model performance (NSE, PBIAS and KGE) is repre-
sented in Figure 7. More than 76% of the imputed data is characterized by NSE > 0.45 (it is
at least “satisfactory”), and more than 92% of the imputed data has a positive NSE, meaning
that for almost all the imputations, our methodology is better than the mean function used
as an imputer. The validation results were notable. Considering PBIAS ratings, more than
96% of the imputed data can be considered at least “satisfactory” and more than 88% “very
good.” In terms of KGE ratings, all the imputations are considered “good.”
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IDW outperformed the other models in most cases (17 times), followed by RFR
(8 times), HR (6 times), SVR (5 times) and RR (4 times). A possible explanation is that IDW
is the only model that, in addition to considering temporal information, includes spatial
information by looking at neighboring stations to support the imputation process. The
other implemented machine-learning models won almost the same number of times (same
order of magnitude).

3.3. Further Discussion

Effective water-resource management requires the analysis of a large number of water-
quality information over space and time. However, in many parts of the world, particularly
in developing countries, the monitoring of water-quality variables is usually characterized
by few monitoring stations over the territory, where observations are recorded with a low
frequency and are characterized by an important percentage of missing data. Therefore, in
this study, we evaluated the performance of several statistical and machine-learning tech-
niques (univariate and multivariate) in imputing a water-quality dataset characterized by
eight water quality variables measured at six monitoring stations. Particularly, we aimed to
augment the water-quality dataset, from bi-monthly to monthly frequency. The percentage
of missing values ranges between 50% and 70% (high missingness percentage), and the
water-quality variables are characterized by a high temporal and spatial distribution. The



Sustainability 2021, 13, 6318 14 of 17

study area considered was one of the most critical Uruguayan watersheds, Santa Lucía
Chico, since it provides water to more than 60% of the national population. This was an
interesting study area to analyze since it is a mixed lotic and lentic system and the six
monitoring stations are located along the mainstream (SLC01, SLC02 and PS01) and in the
reservoir (PS03, PS04 and PS02). In this way, it was appealing to assess the performance of
several models in these two different surface-water bodies.

There are few related works on the imputation of water-quality data, and they are
relatively recent. In 2012, Srebotnjak et al. [17] showed that hot-deck imputation can im-
prove geographical coverage of a country-level water quality index, calculated considering
dissolved oxygen, electrical conductivity, pH, total phosphorus and total nitrogen. This
water-quality index is a composite indicator to track water quality over time and space,
easily interpretable since it varies from 0 to 100. Still, it does not allow a detailed analysis
of each water-quality variable used to calculate it. Therefore, this type of index does not
allow us to answer scientific questions such as which compounds are significant indicators
for specific land use categories or the spatio-temporal behavior of a particular problematic
compound in a particular area of study. To overcome these limitations, we decided to
directly impute each water-quality variable and not a global index, which allows us to use
the imputed data for more advanced analyses.

In 2015, Tabari and Talaee [16] obtained acceptable results (RMSE ranges between
0.016 and 4475) in imputing a large dataset of water-quality information (13 variables)
measured, with a monthly frequency, at five monitoring sites along the Maroon River
(Southwest of Iran). It should be noted that this study has already adopted the concept
of helper variables to improve the imputation process based on the correlations among
water-quality variables. The correlation between EC and Turb that we used in our analysis
is confirmed in this study. In Tabari and Talaee [16], the results were insufficient for EC,
Turb and total dissolved solids (TDS) at all monitoring stations, showing RMSE values
between 100 and higher than 4000. They employed only two artificial neural networks
as imputation models: multilayer perceptron and radial bias function. In our study, we
improved such results using more imputation techniques and founding that SVR model
shows better performance for EC and Turb.

In 2019, Ratolojanahary et al. [7] tackled for the very first time the problem of high
rate missingness (higher than 80%) in a water-quality dataset of a drinking water well
employing four machine learning models (RF, KNNR, SVR and boosted regression trees,
similar to our AB). Their outcomes showed that SVR provides the best performance (notably
in terms of average prediction error). However, this study does not introduce the temporal
dimension into the imputation process, and, therefore, temporal variability of water-quality
parameters is not considered a challenge. Spatial variability is also not addressed, as the
authors analyzed water well. These aspects are included in our study. Furthermore, we
confirm that the performance of SVR is better than AB and KNNR in the imputation of
water quality data.

It is also important to note that our work pioneered the use of IDW for water-quality
data imputation, and this method performed the best among all the methods analyzed.
Some recent works proposed using IDW to interpolate water quality in scenarios where
spatial variability may be negligible, as in the case of lakes [52] or where temporal variability
is low, as in the case of groundwater [53].

Some of the correlations found in our work were also reported in previous studies in
the same study area [19,21,23,54]: a robust correlation among nitrogen compounds, in its
dissolved and particle-bound form; a strong inverse correlation between by Tw and DO.

4. Conclusions

In this study, we tackled the challenge of data imputation in a multivariate water-
quality dataset characterized by a high percentage of missing data (between 50% and 70%).
In particular, the variables Tw, EC, pH, DO, TN, NO2

−, NO3
− and Turb of six monitoring

stations located along the Santa Lucía Chico river (Uruguay) were considered for this
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study. Adopting a multi-model approach was crucial since the best model for imputing
any water-quality variable does not exist. The statistical and machine-learning models
implemented were IDW, RFR, RR, BR, AB, HR, SVR and KNNR.

The imputation outcomes were overall adequate. More than 76% of the imputed
data can be considered “satisfactory” (NSE > 0.45). This was validated by calculating
PBIAS (>96% of the imputed data is “satisfactory”) and KGE (all the imputations are
considered “good”). It is interesting to notice that the performance is always remarkable
at the three monitoring stations located in the Paso Severino reservoir, while they may
be “unsatisfactory” at some monitoring stations located along the Santa Lucía Chico river
(upstream the reservoir). Among the implemented models, IDW was chosen as the best
model 17 times since it is the only model that considers the temporal and spatial variability
that characterizes the variables under study.

This study paves the path to future water-quality research in the watershed under
study (e.g., implementation of reliable modeling tools, water-quality prediction and sce-
nario analysis). Hopefully, the results obtained in this work will help water managers and
researchers worldwide make the most of existing water-quality data to improve modeling
and generate effective pollution-control strategies.

Our current results are promising, but we believe that it is possible to improve the
present methodology by integrating physical knowledge that considers the spatial infor-
mation of the available water-quality data. Our future work intends to transform the
current approach, based on machine learning, into a hybrid method where the data-driven
techniques incorporate physical aspects during their training.

Author Contributions: Conceptualization, A.G. and A.C.; methodology, R.R. and M.P.; software,
R.R. and M.P.; formal analysis, R.R., M.P., A.C. and A.G.; data curation, R.R., M.P. and L.E.; writing—
original draft preparation, A.G.; writing—review and editing, A.C., L.E., C.C., R.R., M.P. and M.F.;
supervision, A.G., A.C., L.E., C.C. and M.F.; project administration, A.G.; funding acquisition, A.G.
and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by ANII, grant number FSDA_1_2018_1_153967.

Data Availability Statement: The original water-quality dataset was freely downloaded from
https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/ accessed on 2 June 2021. The
imputed water-quality dataset can be found in https://doi.org/10.5281/zenodo.4731169 accessed on
2 June 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Whitehead, P.; Dolk, M.; Peters, R.; Leckie, H. Water Quality Modelling, Monitoring, and Management. In Water Science, Policy,

and Management; Dadson, S.J., Garrick, D.E., Penning-Rowsell, E.C., Hall, J.W., Hope, R., Hughes, J., Eds.; John Wiley & Sons Ltd.:
Hoboken, NJ, USA, 2019.

2. Gorgoglione, A.; Castro, A.; Chreties, C.; Etcheverry, L. Overcoming Data Scarcity in Earth Science. Data 2020, 5, 5. [CrossRef]
3. Teegavarapu, R.S.V.; Aly, A.; Pathak, C.S.; Ahlquist, J.; Fuelberg, H.; Hood, J. Infilling missing precipitation records using variants

of spatial interpolation and data-driven methods: Use of optimal weighting parameters and nearest neighbour-based corrections.
Int. J. Climatol. 2018, 38, 776–793. [CrossRef]

4. Mital, U.; Dwivedi, D.; Brown, J.B.; Faybishenko, B.; Painter, S.L.; Steefel, C.I. Sequential imputation of missing spatio-temporal
precipitation data using random forests. Front. Water 2020, 2, 20. [CrossRef]

5. Aguilera, H.; Guardiola-Albert, C.; Serrano-Hidalgo, C. Estimating extremely large amounts of missing precipitation data. J.
Hydroinformatics 2020, 22, 578–592. [CrossRef]

6. Buhi, E. Out of sight, not out of mind: Strategies for handling missing data. Am. J. Health Behav. 2008, 32, 83–92. [CrossRef]
7. Ratolojanahary, R.; Ngouna, R.H.; Medjaher, K.; Junca-Bourié, J.; Dauriac, F.; Sebilo, M. Model selection to improve multiple

imputation for handling high rate missingness in a water quality dataset. Expert Syst. Appl. 2019, 131, 299–307. [CrossRef]
8. Lo Presti, R.; Barca, E.; Passarella, G. A methodology for treating missing data applied to daily rainfall data in the Candelaro

River Basin (Italy). Environ. Monit. Assess. 2010, 160, 1–22. [CrossRef] [PubMed]
9. Chen, F.W.; Liu, C.W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of

Taiwan. Paddy Water Environ. 2012, 10, 209–222. [CrossRef]

https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/
https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/
https://doi.org/10.5281/zenodo.4731169
http://doi.org/10.3390/data5010005
http://doi.org/10.1002/joc.5209
http://doi.org/10.3389/frwa.2020.00020
http://doi.org/10.2166/hydro.2020.127
http://doi.org/10.5993/AJHB.32.1.8
http://doi.org/10.1016/j.eswa.2019.04.049
http://doi.org/10.1007/s10661-008-0653-3
http://www.ncbi.nlm.nih.gov/pubmed/19096911
http://doi.org/10.1007/s10333-012-0319-1


Sustainability 2021, 13, 6318 16 of 17

10. Barrios, A.; Trincado, G.; Garreaud, R. Alternative approaches for estimating missing climate data: Application to monthly
precipitation records in South-Central Chile. For. Ecosyst. 2018, 5, 28. [CrossRef]

11. Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater
arsenic concentrations in Texas. Environ. Res. 2014, 130, 59–69. [CrossRef] [PubMed]

12. Aissia, M.-A.B.; Chebana, F.; Ouarda, T. Multivariate missing data in hydrology–Review and applications. Adv. Water Resour.
2017, 110, 299–309. [CrossRef]

13. Chivers, B.D.; Wallbank, J.; Cole, S.C.; Sebek, O.; Stanley, S.; Fry, M.; Leontidis, G. Imputation of missing sub-hourly precipitation
data in a large sensor network: A machine learning approach. J. Hydrol. 2020, 588, 125126. [CrossRef]

14. Sattari, M.-T.; Rezazadeh-Joudi, A.; Kusiak, A. Assessment of different methods for estimation of missing data in precipitation
studies. Hydrol. Res. 2017, 48, 1032–1044. [CrossRef]

15. Oriani, F.; Borghi, A.; Straubhaar, J.; Mariethoz, G.; Renard, P. Missing data simulation inside flow rate time series using
multiple-point statistics. Environ. Model. Softw. 2016, 86, 264–276. [CrossRef]

16. Tabari, H.; Talaee, P.H. Recontrsuction of river water quality missing data using artificial neural networks. Water Qual. Res. J. Can.
2015, 50, 4. [CrossRef]

17. Srebotnjak, T.; Carr, G.; de Sherbinin, A.; Rickwood, C. A global Water Quality Index and hot-deck imputation of missing data.
Ecol. Indic. 2012, 17, 108–119. [CrossRef]

18. Hastings, F.; Fuentes, I.; Perez-Bidegain, M.; Navas, R.; Gorgoglione, A. Land-Cover Mapping of Agricultural Areas Using
Machine Learning in Google Earth Engine. In Computational Science and Its Applications—ICCSA 2020. ICCSA 2020. Lecture
Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C.,
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