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RESUMEN 

 

Comprender las bases genéticas de variables asociadas al rendimiento en trigo 

mediante el mapeo asociativo, puede mejorar la productividad del mismo. Imputar la 

matriz genotípica del mapeo cuando no se tiene un panel de referencia, puede afectar 

la calidad de ésta y disminuir la performance del mapeo. Los objetivos de nuestro 

trabajo fueron: comparar la performance del mapeo al imputar la matriz genotípica 

cuando no hay un panel de referencia y existe una gran proporción de datos faltantes 

como en genotipado por secuenciación (GBS); y evaluar los factores genéticos 

asociados a variables relacionadas al rendimiento en trigo considerando la 

interacción genotipo por ambiente. Para el objetivo uno, evaluamos un panel de GBS 

de trigo y encontramos que la matriz utilizada para simular los efectos de los QTL 

(Quantitative Trait Loci) afectaba la performance del mapeo. Adicionalmente, 

evaluamos una matriz genotípica sin datos faltantes de cebada, generamos datos 

faltantes y detectamos que la performance del mapeo disminuía cuando se realizaba 

con matrices imputadas. Evaluando la imputación en datos fenotípicos reales, 

encontramos que había diferencias entre los métodos, concluyendo que no imputar es 

la mejor opción para realizar el mapeo. Para el objetivo dos, el mismo panel 

genotípico de trigo de GBS fue utilizado. Los datos fenotípicos se evaluaron en Santa 

Rosa-Chile y Cauquenes-Chile en 2011 y 2012, midiéndose dieciséis variables 

fenotípicas. Se realizó un análisis de mapeo: (1) multi-carácter para grupos de 

variables (componentes del rendimiento, variables asociadas a la hoja y variables 

morfológicas y fenológicas), (2) multi-ambiente para algunas de las variables 

medidas. El análisis de mapeo multi-carácter detectó QTL de igual efecto y dos 

interacciones QTL por variable, y el análisis de mapeo multi-ambiente detectó QTL 

de igual efecto. Estos resultados pueden contribuir a una mejor comprensión de las 

bases genéticas del rendimiento en trigo, aportando una primera base para incorporar 

nuevos QTL en los programas de mejoramiento involucrados.  

 

Palabras clave: Imputación; GBS; QTL; poder; falsos positivos    
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MULTI-TRAIT AND MULTI-ENVIRONMENT GWAS ANALYSIS 

FOR AGRONOMICAL AND PHYSIOLOGICAL TRAITS IN WHEAT 

 

SUMMARY 

 

Understanding the genetic basis of yield-related traits in wheat using Genome-Wide 

Association mapping (GWAS), allows improving wheat’s productivity. Imputing the 

genotypic marker scores when a reference panel is not available can affect the quality 

of it decreasing the performance of the GWAS analysis. The objectives of this study 

were: to compare the performance of GWAS analysis when the genotypic marker 

scores is imputed without a reference panel and there is a large proportion of missing 

data like in genotyping by sequencing (GBS); and to understand the genetic factors 

of yield-related traits including genotype by environment interaction. For objective 

one, we evaluated a wheat GBS panel and we found that the genotypic marker scores 

used to simulate the QTL (Quantitative Trait Loci) affected the performance of the 

GWAS analysis. Additionally, we evaluated a complete barley genotypic marker 

scores, we generated missing data and we detected that the GWAS performance 

decreased when we used the imputed marker scores. When imputing the genotypic 

markers scores using a real dataset, we found that there were differences between the 

methods, concluding that not imputing is the best choice for the GWAS analysis. For 

objective two, the same wheat GBS panel was used. The phenotypic data was 

obtained in Santa Rosa-Chile and Cauquenes-Chile in 2011 and 2012, and sixteen 

phenotypic traits were measured. Multi-trait GWAS analysis was performed for 

groups of traits (yield components, leaf related traits and morphology and phenology 

traits), and Multi-environment GWAS analysis for some of the traits measured. Main 

effect QTL and two QTL by traits interactions were detected for the multi-trait 

GWAS analysis, and main effect QTL were detected for the multi-environment 

GWAS analysis. These results can contribute to understand wheat yield’s genetic 

basis, providing a first base to incorporate QTL in the breeding programs involved. 

 

Keywords: Imputation; GBS; QTL; power; false positives 
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1.    INTRODUCCIÓN 

El trigo (Triticum aestivum L.) es el tercer cultivo más importante en términos 

de producción total mundial con 670 millones de ton producidas en 2012 

(FAOSTAT, 2014). A nivel nacional, es el principal cereal invernal con una 

producción que varió entre 343 mil ton en 1993 a 1.5 millones de ton en 2013, con 

un máximo en 2011 de 2 millones de ton (FAOSTAT, 2014). 

El trigo es una especie autógama (Martin 1990) y alohexaploide (AABBDD), 

producto de la hibridación de 2 especies: Triticum turgidum (el cual aporta los 

genomas A y B) y Aegilops tauschii (que aporta el genoma D) que presenta menor 

nivel de diversidad (Chao et al. 2010). Su fórmula genómica es 2n=6x=42, con un 

tamaño del genoma cinco veces superior al del genoma humano (16Gb) y un 25-30 

% de sus genes duplicados (Dubcovsky et al. 1996). Si bien el trigo fue uno de los 

primeros cultivos en domesticarse y sigue permaneciendo entre los más relevantes 

para la alimentación humana desde su disipación a nivel mundial (Dubcovsky and 

Dvorak 2007), la seguridad alimenticia podría verse comprometida por el aumento 

de la demanda alimenticia debido al crecimiento de la población (Mueller et al. 

2012) y por el cambio climático (Ewert et al. 2005). A pesar de que el mejoramiento 

genético vegetal ha conseguido incrementar el rendimiento en grano de trigo de 

forma exitosa (Fischer 2007), la tasa de incremento del mismo ha disminuido en las 

últimas décadas (Acreche et al. 2008, Reynolds et al. 2012, Bustos et al 2013). Por lo 

tanto, la mejora de la productividad del trigo es clave para responder al aumento de 

la demanda alimenticia y al cambio climático, pero disminuyendo el impacto en la 

huella ambiental (Mueller et al. 2012). Dado que la demanda mundial de trigo está 

creciendo a un ritmo más rápido que las ganancias genéticas obtenidas (Barnabás et 

al. 2008, García et al. 2013), nuevas estrategias de mejoramiento podrían 

implementarse (Fischer 2007), siendo la biología molecular y la fisiología del cultivo 

dos disciplinas candidatas para este objetivo (Slafer y Araus 2005).  

El rendimiento en grano (per se) es un objetivo desafiante porque es un 

carácter complejo determinado por varios genes (Slafer y Araus 2005, Alimi et al. 

2012), y compuesto por otros caracteres que son: granos por espiga, peso de grano y 

espigas por superficie (Kjaer y Jensen 1996). El rendimiento es  a su vez afectado 
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por la incidencia y severidad de diferentes enfermedades, especialmente por Puccinia 

graminis tritici, Puccinia tritici (Chen 2005, Singh et al. 2008) y Fusarium 

graminearum (Windels 2000, Jansen et al. 2005), que implican pérdidas importantes 

del mismo. Caracteres agronómicos como el rendimiento son en general sensibles a 

la interacción genotipo por ambiente, lo que significa que la superioridad de los 

genotipos es relativa al ambiente en el que se desarrollen (Hayes et al. 1993; Boer et 

al. 2007; Mathews et al. 2008; van Eeuwijk et al. 2010; Malosetti et al. 2013; Alimi 

et al. 2013). En resumen, el rendimiento, si bien es el objetivo del mejoramiento 

genético más importante, es un carácter complejo codificado por muchos genes con 

influencia ambiental y determinado por muchos factores. En consecuencia, la mejora 

del rendimiento mediante el análisis de la base genética de los caracteres 

agronómicos y fisiológicos relacionados al rendimiento en grano, podría 

proporcionar una mejor comprensión del comportamiento del mismo (Slafer y Araus 

2005, Fischer 2007), conduciendo a ganancias genéticas mayores. 

 

1.1. MAPEO ASOCIATIVO  

El mapeo asociativo (GWAS) se puede utilizar para analizar la base genética 

del rendimiento en grano y caracteres fisiológicos correlacionados, mediante la 

búsqueda en todo el genoma de asociaciones marcador-carácter que puedan deberse 

al desequilibrio de ligamiento (LD, Zhu et al. 2008). El LD es el grado de asociación 

no aleatoria entre alelos de distintos loci (Yu y Buckler 2006; Zhu et al. 2008), es 

decir la proporción de gametos que no segregan al azar. El objetivo del GWAS 

análisis radica en identificar marcadores de herencia simple próximos a factores que 

afectan características del tipo cuantitativas (Jannink et al. 2009). Su diferencia con 

el ligamiento físico consiste en que éste refiere a correlaciones físicas entre loci en 

un cromosoma, mientras que el LD refiere a correlaciones entre alelos en una 

población (Flint-Garcia et al. 2003). El análisis de GWAS tiene ciertas ventajas. En 

principio, estudia la herencia compartida de una colección de individuos sin 

requerimientos específicos de parentesco, donde se ha dado lugar a una gran 

recombinación (Yu y Buckler 2006), llevando a que no se deban diseñar 

cruzamientos específicos y que se pueda mapear en germoplasma que sea relevante 
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para programas de mejoramiento (Malosetti et al. 2007a). En segundo lugar, permite 

estudiar genotipos con varias generaciones de recombinación donde los principales 

mecanismos que provocan el LD son la mutación y deriva, mientras que la 

recombinación lo reduce (Jannink et al., 2009). En tercera instancia, permite tener 

mayor diversidad alélica y poseer fenotipado disponible de los programas de 

mejoramiento para la realización del análisis (Malosetti et al. 2007a). La principal 

limitante de este tipo de análisis radica en la necesidad de controlar por falsos 

positivos debidos a la estructura poblacional o relacionamiento familiar (Yu y 

Buckler 2006). Muchos modelos fueron propuestos para estudiar la asociación 

marcador-carácter (Gutiérrez et al. 2011). Modelos mixtos que controlan por la 

estructura poblacional han sido exitosamente utilizados para el análisis de GWAS 

(Yu et al. 2006, Malosetti et al. 2007a, Gutiérrez et al. 2011). Entre ellos, el de 

Malosetti et al. (2007a) es el más parsimonioso: y = Xβ + Pv + e, donde y: vector 

fenotipo, X: matriz de marcadores moleculares (genotipos), β: vector desconocido de 

efectos alélicos a estimar, P: matriz de componentes principales que corrige por 

estructura, v: vector de las predicciones de los efectos poligénicos aleatorios a 

estimar, e: error residual. Asimismo, podría incluirse en este modelo las 

correlaciones genéticas entre caracteres correlacionados, ya que permitiría  detectar 

QTL pleiotrópicos, a través de un GWAS multi-carácter (Malosetti et al. 2007b).  

Varios estudios han puesto en práctica el mapeo de QTL multi-carácter y/o 

multi-ambiente de una manera exitosa (Boer et al. 2007, Malosetti et al. 2007b, 

Alimi et al. 2013, Malosetti et al. 2013, El-Soda et al. 2014). El mapeo de QTL 

multi-carácter radica en modelar las correlaciones genéticas entre los caracteres, 

resultando en la posible detección de QTL pleiotrópicos o ligados mediante la 

incorporación de una matriz de varianza-covarianza entre los efectos genéticos 

aleatorios; ya que los efectos genéticos no serán independientes en caso que los QTL 

estén ligados o sean pleiotrópicos (Malosetti et al. 2007b). Un concepto similar se 

aplica al mapeo de QTL multi-ambiente, donde los efectos de los QTL entre 

ambientes pueden cambiar en dirección y magnitud (Malosetti et al. 2007b), 

dependiendo la respuesta genotípica del ambiente en que el genotipo se desarrolle 

(Malosetti et al. 2013). 
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1.2. TECNOLOGÍAS DE SECUENCIACIÓN CON TÉCNICAS DE NUEVA 

GENERACIÓN 

Para que el análisis de GWAS se realice de forma eficiente, los datos tanto 

fenotípicos como genotípicos deben ser de excelente calidad. Tradicionalmente, el 

desarrollo de marcadores moleculares del tipo microsatélites implicaba la dedicación 

de un gran tiempo y costo de desarrollo que fueron disminuidos por la creación de 

los chips de SNPs (Single Nucleotide Polymorphism), pero que presentan la 

particularidad de ser específicos a la población en la que fueron creados (Davey et al. 

2011). Las tecnologías de secuenciación con técnicas de nueva generación (NGS), 

superan esta limitante y permiten descubrir, secuenciar y genotipar miles de SNPs de 

todo el genoma en un solo paso (Davey et al. 2011). Se basan en enzimas de 

restricción, cuya diversidad (variaciones en longitud, en la sensibilidad a la 

metilación, entre otros) las convierten en una herramienta versátil (Davey et al. 

2011). Los tres pasos básicos para genotipar por NGS consisten en: digestión de 

múltiples muestras de ADN genómico con enzimas de restricción, selección o 

reducción de los fragmentos resultantes y secuenciación de los fragmentos 

seleccionados (Davey et al. 2011). Luego, la bioinformática permite obtener la 

matriz de SNPs a partir de los datos secuenciados (Elshire et al. 2011). Los SNPs 

obtenidos por NGS se utilizan en análisis como el de diversidad genética, GWAS y 

Selección Genómica (GS).  

Dentro de las técnicas de NGS, una de ellas consiste en el genotipado por 

secuenciación (GBS), que utiliza la metodología de secuenciación de baja cobertura 

para genotipado. Esta metodología implica secuenciar muchos marcadores a baja 

cobertura por individuo, sabiendo que diferentes conjuntos de marcadores se 

genotiparán por individuo (Davey et al. 2011). El GBS radica en digerir el ADN con 

enzimas de restricción, colocarle a los fragmentos resultantes adaptadores con 

códigos de barra (que identifican muestras) y adaptadores para PCR (Polymerase 

Chain Reaction), reunir todas las muestras, amplificar los fragmentos por PCR y 

secuenciar a los fragmentos que presentar ambos tipos de adaptadores y no son 

mayores a 1kb (Davey et al. 2011). Esta técnica se ha utilizado exitosamente para 
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genomas complejos como el del trigo (Poland et al. 2012a, Lado et al. 2013). Dicha 

utilidad se debe a la propiedad de la técnica de GBS de evitar las regiones repetitivas 

del genoma usando enzimas de restricción sensibles a la metilación, por lo que 

mejora la eficiencia de la secuenciación simplificando los problemas de alineación de 

genomas con varios niveles de complejidad (Elshire et al. 2011). 

 

1.3. MÉTODOS DE IMPUTACIÓN DE LA MATRIZ GENOTÍPICA 

Por ser GBS una técnica de secuenciación de baja cobertura para genotipado, 

una gran cantidad de datos faltantes se obtiene del uso de la misma (GBS ofrece 

miles de SNPs, pero la mayoría de ellos con una gran proporción de datos faltantes). 

Por ello se han utilizado diferentes métodos de imputación para la realización de 

análisis relacionados al mejoramiento molecular, donde las imputaciones de SNPs 

son requeridas para la GS y han sido utilizadas de forma exitosa (Poland et al. 2012b, 

Rutkoski et al. 2013, Lado et al. 2013). Un tipo de método de imputación se basa en 

un panel de referencia completamente genotipado y en el desequilibrio de ligamiento 

(LD) entre las líneas del panel de referencia y las de las muestras a evaluar. 

Brevemente, se sustenta principalmente en la copia de segmentos de haplotipos de un 

panel de referencia densamente genotipo, en individuos genotipados en un 

subconjunto de dicha referencia (Browing 2008, Jannink et al. 2009, Howie et al. 

2011). La precisión de este tipo de método depende de: el LD, de la frecuencia del 

alelo menor (MAF), de la mínima distancia al marcador molecular no imputado y del 

grado de diferenciación de las subpoblaciones (Pei et al. 2008, Iwata y Jannink 

2010).  

Otro tipo de  método de imputación se realiza cuando no se presenta dicho 

panel de referencia. Dentro del segundo tipo de imputación se encuentran los 

métodos: multivariado normal de maximización de la esperanza (MVN-EM, (Poland 

et al. 2012b), que considera la matriz de relacionamiento entre individuos e incorpora 

un método de maximización de la esperanza para calcular los estimadores de máxima 

verosimilitud de los parámetros desconocidos a estimar asumiendo que cada 

genotipo se distribuye normal multivariado;  y el de imputación por la media, que es 

el más simple y se basa en imputar por el alelo más común de la población para cada 
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marcador. Utilizar un método basado en dos pasos (primero imputar y luego mapear 

sin considerar el error de imputación), puede introducir error en el mapeo y resultar 

en menor poder de detección de QTL y mayor tasa de falsos positivos. 

 

1.4. PREGUNTAS DE INVESTIGACIÓN Y OBJETIVOS 

Las preguntas de investigación planteadas en esta tesis fueron: (1) imputar la 

matriz genotípica proveniente de GBS sin panel de referencia en un análisis de 

GWAS, afectará la performance del análisis de GWAS en términos de poder de 

detección de QTL y tasa de falsos positivos?; (2) permitirá el análisis de GWAS 

multi-carácter para caracteres asociados a rendimiento, identificar QTL pleiotrópicos 

o ligados, mejorando el poder de detección de QTL?; y (3) permitirá el análisis de 

GWAS multi-ambiente identificar QTL con efectos iguales o contrastantes para los 

ambientes? 

Los objetivos planteados en esta tesis fueron: (1) comparar la performance de 

la imputación de la matriz genotípica en el análisis de GWAS cuando no hay un 

panel de referencia y una gran proporción de datos faltantes se presenta como en 

GBS; (2) evaluar los factores genéticos asociados a variables agronómicas y 

fisiológicas en trigo considerando la interacción genotipo por ambiente. 
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2. ASCERTAINMENT BIAS WHEN EVALUATING IMPUTATION 

METHODS1 

 

2.1. ABSTRACT 

2.1.1. Background: Whole-genome genotyping techniques like Genotyping-by-

sequencing (GBS) are being used for genetic studies such as Genome-Wide 

Association (GWAS) and Genome-Wide Selection (GS). Since GBS generates large 

amount of missing data, different strategies for imputation have been developed, 

especially for situations where complete dataset is required like GS. Nevertheless, 

imputation error may lead to poor performance (i.e. smaller power or higher false 

positive rate) when complete data is not needed. The aim of this study was to 

compare the performance of GWAS analysis for major and minor Quantitative Trait 

Loci (QTL) using different imputation methods, when no reference panel is available 

and there is a large proportion of missing data like in GBS panels. 

2.1.2. Results: In this study we compared the power and false positive rate of QTL 

detection for imputed and not-imputed marker scores matrices in the following 

datasets: (1) a complete molecular marker barley panel array, and (2) a GBS wheat 

panel with an average of 50% missing data. We found that there is an ascertainment 

bias in method selection. Simulating over a complete matrix and creating missing 

data at random proved that imputation methods (i.e. mean imputed and Multivariate 

Normal Expectation Maximization, MVN-EM) have a poorer performance (i.e. 

smaller power or higher false positive rate). Additionally, we compared if simulating 

with the different marker scores matrices and performing GWAS with those matrices 

detected differences. We found that when QTL were simulated with imputed data, 

the imputation methods performed better but the not-imputed method performed 

better when simulating with the not-imputed data. Moreover, higher differences 

between imputation methods were detected for major QTL, and low detection of 

minor QTL was found. We also compared the different marker scores matrices for 

GWAS analysis in a real wheat phenotype data, and we found that differences were 

                                                
1 Artículo a publicar en: BMC Genomics 
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neglected between MVN-EM and not-imputed methods indicating that imputing did 

not improved the GWAS performance.     

2.1.3. Conclusions: Poorer performance was found in GWAS analysis when an 

imputed marker scores matrix was used, no reference panel is available and a there is 

large proportion of missing data (50%). 
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2.2. BACKGROUND 

Genetic markers are nowadays an essential part of plant and animal breeding 

programs. Next-generation sequencing (NGS) techniques allow discovering, 

sequencing and genotyping thousands of Single Nucleotide Polymorphism (SNPs) 

covering the whole genome in one step [1]. These SNPs are being used in analyses 

like genetic diversity analysis [2], GWAS [3] and GS [4]. Genotyping-by-sequencing 

(GBS) is one of the NGS techniques, developed originally for barley and maize, and 

extended to other complex genomes species like wheat [2–5]. GBS relies on 

methylation-sensitive restriction enzymes and is therefore highly efficient [6]. 

Nevertheless, GBS generates a large proportion of missing data when alleles are 

created due to the use of shorts reads [6]. Therefore, different strategies to impute 

missing data have been developed and used for genetic analyses [3]. Some 

imputation methods use reference panels and are based on Linkage Disequilibrium 

(LD), while other methods not require reference panels.  In the first group the most 

common methods are known as MACH [7], IMPUTE [8], fastPHASE [9], PLINK 

[10] and Beagle [11]. All use haplotypes segments from a reference panel densely 

genotyped to imputed missing markers [12–14]. Briefly, MACH uses a Markov 

Chain based algorithm to infer pairs of haplotypes for each individual’s genotypes 

[7]. IMPUTE consider the sequence of pairs of known haplotypes as hidden states 

and then models the sequence of hidden state based on a recombination map 

estimated from the reference data, and finally predicts unknown genotypes [8]. The 

fastPHASE algorithm is a haplotype clustering algorithm that samples missing 

genotypes based on allele frequencies estimated from reference haplotypes, and then 

an Expectation-Maximization (EM) algorithm is used to estimate parameter values to 

infer missing genotypes [9]. PLINK predicts missing data by the local haplotypic 

background and by the haplotype formed by the two or more flanking SNPs [10]. 

Finally, Beagle is a haplotype clustering based algorithm, which uses the localized 

haplotype cluster model to cluster haplotypes at each marker and then finds the most 

likely haplotype pairs based on the individual’s known genotypes [11]. Therefore, 

strong LD among markers and low minor allele frequency (MAF) is required for LD 

imputation methods [15]. Additionally, large genome coverage to decrease distances 
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among markers, and small population structure is also desirable to ensure imputation 

accuracy [16]. The second group of methods includes mean imputation, multivariate-

normal expectation-maximization (MV-EM) algorithm and random forest. In the 

mean imputation, the most common allele at a particular marker in the population is 

used to impute missing data. MVN-EM considers the realized additive relationship 

matrix between the lines and an EM approach assuming that marker genotypes 

follow a multivariate normal distribution designed for use with GBS. Random forest 

is an algorithm that uses multiple decision trees to determine a prediction value for 

each missing data point. For an overview see [4].  

 Several studies found that imputation can improve QTL power detection [17, 

18], but other studies found that large power is accompanied by larger false positives 

or by an increase in the multiple-testing penalty [14, 19]. Unless a ‘one-hit’ 

procedure is used (i.e. the uncertainty of genotypic probability distributions due to 

the imputation is incorporated in the GWAS analysis), large imputation error can be 

generated [20]. Other studies found that imputation should be carefully evaluated 

because quality control of the data is an important source of loss of power [21]. To 

carry on GWAS analysis, where one marker at a time is being tested, marker-trait 

associations can be estimated without marker imputation.  

The aim of this study was to compare the performance of imputation methods 

of the marker scores matrix for GWAS analysis, when there is no reference panel for 

the lines and markers evaluated, and there is a large proportion of missing data like 

in GBS panels. Specifically, our objectives were: (1) to evaluate the effect of 

imputation using a golden standard (i.e. simulation over a complete marker scores 

matrix), to determine whether ascertainment bias is responsible for imputation 

success; (2) to evaluate whether the outcome of the imputation performance is 

affected by the marker scores matrix used to simulate the QTL; and (3) to compare 

the effect of imputation in a real phenotype wheat panel using GBS data and four 

phenotypic traits.   
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2.3. RESULTS 

To evaluate the effect of imputation in GBS data when there is no reference 

panel, we pursued the following strategies. First, to evaluate the effect of imputation 

using a golden standard (i.e. complete marker scores matrix), we simulated QTL on 

top of the complete marker scores matrix to create vectors of phenotypic values with 

Ysim = NoNA. Then, we randomly generated the missing values, imputed with the 

different methods, pursued the GWAS analysis using the different matrices: GMat = 

NImp, when a not-imputed marker scores matrix was used, GMat = MVN-EM when 

an imputed with MVN-EM method [4] matrix was used, and GMat = Mean when an 

imputed by the mean marker scores matrix was used; and then we evaluated the 

performance. Additionally, for evaluating a possible ascertainment bias we used the 

golden standard matrix (Ysim = NoNA), randomly generated the missing values, 

imputed with the different methods and then simulated the QTL on top of the 

different marker scores matrices to create vectors of phenotypic values (Ysim = NImp, 

Ysim = MVN-EM, Ysim = Mean). We pursued the GWAS analysis and evaluated its 

performance with GMat = NImp, GMat = MVN-EM and GMat = Mean. Second, for 

evaluating GWAS performance based on simulated matrix, we simulated QTL on top 

of different genotypic marker scores to create vectors of phenotypic values (Ysim = 

NImp, Ysim = MVN-EM, Ysim = Mean). Then, we performed the GWAS analysis with 

those matrices as GMat (i.e. NImp, MVN-EM and Mean) and evaluated the GWAS 

performance. Finally, to evaluate imputation performance in a real phenotype 

dataset, we pursued GWAS analysis for wheat for four traits with high heritabilities.  

Details are explained in Methods section, and the general procedure is presented in 

Figure 1. 

We summarized the results into power (PO) and false positive rate (FPR). For 

further details, we present as additional material the results considering different 

thresholds.    
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Figure 1 General scheme of the procedures we followed for each component. A. 

Procedures for golden standard (A.1) and ascertainment bias (A.2); B. Procedure for 

GWAS performance based on simulated matrix; C. Procedure for comparison of the 
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effect of imputation in a real phenotype dataset. Each procedure details the 

germplasm, genotypic and phenotypic dataset used, as well as simulation approach to 

obtain each phenotype vector and GWAS analysis marker scores matrices used. 

Procedures that used wheat data are in green and procedures that used barley data are 

in purple. DH, Days to Heading; GBS, Genotype-by-sequencing; MVN-EM, 

Multivariate Normal Expectation-Maximization; NImp, Not-imputed marker scores 

matrix; NoNA, No missing data marker scores matrix; PH, Plant Height; QTL, 

Quantitative Trait Loci; SNPs, Single-Nucleotide Polymorphism; SPM, Spikes Per 

Square Meter; TKW, Thousands Kernel Weight. 

 

2.3.1. Ascertainment bias in imputation performance comparison 

To evaluate the effect of imputation methods in GWAS analysis when no 

reference panel is available and there is a large proportion of missing data, we used a 

golden standard (i.e. a complete dataset). We found that simulating QTL over a 

complete dataset (Ysim = NoNA), generating missing data, imputing with different 

methods, and then performing GWAS analysis (for general approach see Figure 

1A.1), resulted in highest PO with NImp method for major QTL (GMat = NImp) and 

MVN-EM and NImp methods for minor QTL (GMat = MVN-EM, GMat = NImp), and 

smallest FPR with the Mean method (GMat = Mean, Figure 2), for different number 

of QTL (i.e. q=25 and q=50, data not shown) and heritabilities (i.e. h2=0.2, h2=0.4, 

h2=0.6, h2=0.7, h2=0.9). Differences between PO were more evident for major QTL, 

but resulting in a small PO even for high heritability with a value of 0.3 (h2=0.9, 

Figure 2). The highest values of FPR found with GMat = MVN-EM were also low 

(0.015, Figure 2). The same pattern was found when using different threshold levels 

(i.e. Bonferroni corrected by the effective number of independent markers –Li&Ji-, 

Figure 2, Bonferroni Additional file 1, and α = 0.01, Additional file 2).  

Furthermore, to evaluate if there are differences between imputation methods 

when a complete marker scores matrix is not available for the GWAS analysis, we 

simulated data with the different matrices, we created missing data on the complete 

marker scores matrix before simulating the QTL and compared the imputation 

performance (for general approach see Figure 1A.2). Using a phenotypic vector from 
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QTL simulated on top of the imputed marker scores matrices (i.e. Ysim = MVN-EM or 

Ysim = Mean), resulted in highest PO with both (GMat = MVN-EM, GMat = Mean) 

and smallest FPR with the Mean and NImp methods (GMat = Mean, GMat = NImp, 

Figure 3). However, when using a phenotypic vector from QTL simulated on top of 

raw, not-imputed marker scores (Ysim = NImp) and evaluating imputation 

performance, resulted in highest PO with MVN-EM and NImp methods for major 

QTL and with the MVN-EM method for minor QTL, and smallest FPR with the 

Mean and NImp methods (GMat = Mean, GMat = NImp, Figure 3). This pattern was 

found for the different number of QTL (i.e. q=25 and q=50, data not shown) and 

different heritabilities (i.e. h2=0.2, h2=0.4, h2=0.6, h2=0.7, h2=0.9, Figure 3). 

Differences between PO were also more evident for major QTL (Figure 3) as in the 

barley golden standard. The highest values of FPR found with GMat = MVN-EM was 

more evidenced when simulating with NImp matrix, but it was also low (0.015, 

Figure 3). Additionally, the same pattern was found using the different threshold 

levels (i.e. Bonferroni corrected by the effective number of independent markers –

Li&Ji-, Figure 3, Bonferroni, Additional file 3, and � = 0.01, Additional file 4).  
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Figure 2 Power (PO) and false positives rate (FPR) for major and minor QTL with 

25 QTL, for the golden standard from barley with a Bonferroni threshold corrected 

by the effective number of independent markers. Each parameter was calculated for 

the combinations of: heritabilties (h2), a marker scores matrix to simulate the QTL 

(i.e. Ysim = NoNA), and marker scores matrices to perform the GWAS analysis (i.e. 

GMat = NImp, GMat = MVN-EM and GMat = Mean). 
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Figure 3 Power (PO) and false positives rate (FPR) with 25 QTL, for major and 

minor QTL for ascertainment bias in imputation performance comparison in barley, 

with a Bonferroni threshold corrected by the effective number of independent 

markers. Each parameter was calculated for the combinations of: heritabilties (h2), 

marker scores matrices to simulate the QTL (i.e. Ysim = NImp, Ysim = MVN-EM and 

Ysim = Mean), and marker scores matrices to perform the GWAS analysis (i.e. GMat 

= NImp, GMat = MVN-EM and GMat = Mean). 

 

2.3.2. GWAS performance based on simulated matrix 

To evaluate the effect of the imputation methods on a GWAS performance 

using GBS wheat panel with 50% missing data (for general approach see Figure 1B), 

we imputed the GBS panel with both methods, simulated with each maker scores 

matrix (Ysim = NImp, Ysim = MVN-EM and Ysim = Mean) and performed GWAS with 

each matrix (GMat = NImp, GMat = MVN-EM and GMat = Mean). We detected the 

same pattern as the previous section (Figure 4), for the different number of QTL (i.e. 

q=25 and q=50, data not shown) and heritabilities (i.e. h2=0.2, h2=0.4, h2=0.6, 

h2=0.7, h2=0.9, Figure 4). Differences between PO were more evident for major 

QTL, resulting in a PO for high heritability and major QTL of 0.75 (h2=0.9, Figure 
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6). The highest values of FPR were found with simulating with the Ysim = NImp and 

GMat = MVN-EM (Figure 4). Additionally, the same pattern was found using 

different threshold levels (i.e. Bonferroni corrected by the effective number of 

independent markers –Li&Ji-, Figure 4, Bonferroni, Additional file 5, and α = 0.01, 

Additional file 6). 

  

Figure 4 Power (PO) and false positives rate (FPR) with 25 QTL, for major and 

minor QTL to evaluate the GWAS performance based on simulated matrix with a 

Bonferroni threshold corrected by the effective number of independent markers. 

Each parameter was calculated for the combinations of: heritabilties (h2), marker 

scores matrices to simulate the QTL (i.e. Ysim = NImp, Ysim = MVN-EM and Ysim = 

Mean), and marker scores matrices to perform the GWAS analysis (i.e. GMat = 

NImp, GMat = MVN-EM and GMat = Mean). 

 

2.3.3. Comparison of the effect of imputation in a real dataset  

We compared the QTL obtained for GWAS analysis using real phenotype data 

from wheat, with not imputed matrix (GMat = NImp), imputed with MVN-EM 
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method [4] matrix (GMat = MVN-EM) and imputed by the mean matrix (GMat = 

Mean). We considered the Bonferroni corrected by the effective number of 

independent markers threshold for multiple testing correction (Figure 5, Figure 6). 

For the four traits, plant height (PH, cm), days to heading (DH, days), thousand 

kernel weight (TKW, g) and spikes per square meter (SPM, number), we found 

different QTL when using imputed or not-imputed matrices (Figure 5). In general, 

NImp and MVN-EM matrices performed similar, having some QTL being detected by 

both methods (Figure 5). However, each matrix found unique QTL (Figure 5). For 

TKW, of the five QTL detected by the NImp matrix, four were detected with the 

MVN-EM matrix and two with the Mean matrix. For DH, of the five QTL detected 

by the NImp matrix, two were detected with the MVN-EM matrix and one was 

detected with the Mean matrix. Considering PH, of the two QTL found by the NImp 

matrix, one was detected with the MVN-EM matrix and no coincident QTL were 

found between the NImp matrix and the Mean matrix. Finally, for SPM, of the four 

QTL detected by the NImp matrix, one was detected with the MVN-EM matrix and 

two were detected with the Mean matrix.  
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!Figure 5 Manhattan plots of the GWAS analysis for real phenotype wheat data. For 

each trait evaluated a manhattan plot of the GWAS analysis is presented for each of 

NImp (not imputed), Mean (mean imputed) and MVN-EM (Multivariate Normal 

Expectation Maximization method) matrix. The phenotype traits are: DH, days to 

heading; PH, Plant Height; SPM, Spikes Per Square Meter; TKW, Thousands Kernel 

Weight. QTL detected exclusively by the NImp matrix are in green, QTL detected 

exclusively by the MVN-EM matrix are in skyblue and QTL detected by both 

matrices are in red. 
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Figure 6 QQ plots of the p-values resulted form the GWAS analysis from real 

phenotype wheat data. For each trait measured and each marker scores matrix 

evaluated, a qq-plot of the p-values resulted form the GWAS analysis is presented. 

The marker scores matrices were: NImp (not imputed), Mean (mean imputed) and 

MVN-EM (Multivariate Normal Expectation Maximization method). The phenotype 

traits are: DH, days to heading; PH, Plant Height; SPM, Spikes Per Square Meter; 

TKW, Thousands Kernel Weight. 

 

2.4. DISCUSSION 

New whole-genome genotyping techniques are being developed and used for 

the diverse genetic analyses, like GWAS studies [3]. Although GBS is a powerful 

tool for genotyping hundreds of individuals with thousands of SNPs, it generates 

large amounts of missing data. Researchers have developed several strategies to 

impute missing data [8–11]. However, in GWAS analysis, imputation should be 

carefully evaluated because studies found that quality control of the data is an 

important source of loss of power [21], and we found an ascertainment bias in 

imputation evaluation.  
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2.4.1. Ascertainment bias in imputation performance comparison  

When we used the barley golden standard marker scores matrix, the not-

imputed marker scores matrix outperformed the imputation methods for all the 

combinations of the different parameters (Figure 2, Additional file 1, Additional file 

2). The highest values of FPR found with the MVN-EM matrix and lowest values of 

PO found with Mean matrix, for all thresholds, could be a consequence of an 

imputation error affecting the signal of the QTL.  

The fact that we found the same pattern when we artificially generated the 

missing data and when we used GBS data for all the combinations of parameters 

(Figure 4, Figure 6), gives the idea that there is an ascertainment bias. This 

ascertainment bias could be generated when there is no reference panel; the 

uncertainty of genotypic probability distributions due to the imputation is not 

incorporate in the GWAS analysis. Consequently, methods based on LD had found 

that if some restrictions are taking into account (i.e. strong LD among markers, low 

minor MAF, high genome coverage, and small population structure), the imputation 

accuracy is increased and hence the GWAS performance improved [16, 22].  

The low PO detected for the barley marker scores matrix could be due to low 

LD between markers in the same LD blocks, because when there are unlinked QTL 

controlling a trait, the power is moderate even with large populations and high 

heritabilities [23]. Nevertheless, we do not expect unlinked QTL within the LD 

blocks because the LD blocks were defined by a single linkage agglomerative 

procedure [24], and because the genome coverage of the markers was very high, 

having 50% of its SNPs, at a distance smaller than 0.625 cm (Table 1). Therefore, we 

believe that the small population (122 lines) we used for this dataset could be 

affecting the PO, as the PO is a function of the population size [25].  

The great differences found in PO and FPR between major and minor QTL, 

could be indicating that major QTL are the QTL mostly detected by any of the 

imputation methods. 
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Table&1.&SNPs&coverage&on&the&golden&standard&matrix&(i.e.&complete&SNP&

array),&indicating&for&each&chromosome&(Chr&=&chromosome),&the&number&of&

SNPs,&the&length&(in&cM),&the&largest&gap&without&markers&(cM),&the&median&

distance&between&pairs&of&adjacent&markers,&and&the&25%&and&75%&quantiles&

of&the&adjacent&marker&distances.&&

Chr&

SNPs&

number&

Length&

(cM)&

Largest&gap&

(cM)&

Median&

(cM)&

1& 125& 139.78& 10.74& 0.625&

2& 187& 150.27& 8.21& 0.58&

3& 178& 170.88& 6.59& 0.58&

4& 131& 121.65& 7.5& 0.6&

5& 201& 194.03& 8.05& 0.57&

6& 147& 129.38& 8.62& 0.47&

7& 127& 166.56& 10.53& 0.49&

 

 2.4.2. GWAS performance based on simulated matrix 

Differences were found when we simulated QTL on top of imputed marker 

scores and we evaluated the imputation performance (Figure 4). The performance of 

the GWAS analysis with the different methods (imputed or not-imputed matrices) 

changed. This is probably due to the imputation method use and the simulation. 

Other studies found that imputing with a reference panel improved precision [26], as 

we not had a reference panel, not-imputing was the best option for evaluating one 

marker at a time in GWAS analysis, specially for detecting major QTL as in the 

previous section.   
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2.4.3. Comparison of the effect of imputation in a real dataset 

The traits evaluated in this paper were selected for having high heritability 

values and being related or a component of grain yield. The high heritability values 

may have reduced the differences between the QTL found with the NImp and MVN-

EM matrices.  

We found QTL where previous QTL were reported. The QTL found for TKW 

(chromosome 1B, bin 224 and 242) with the NImp and MVN-EM marker scores, and 

SPM (chromosome 1B, bin 224) with the NImp marker scores, are partially 

coincident with a QTL reported for green leaf area [27], a QTL reported for Near 

Differential Vegetative Index [28] and a QTL reported for yield, anthesis and plant 

height [31]. A QTL found for TKW (chromosome 1D, bin 205) with the NImp 

marker scores is coincident with a QTL reported for grain yield and plant height [29]. 

The QTL found for TKW (chromosome 2D, bin 167) with the three GMat marker 

scores, DH (chromosome 2D, bin 172) with the NImp marker scores, and SPM 

(chromosome 2D, bin 167) with the NImp marker scores, are coincident with a QTL 

reported for kernel weight, Near Differential Vegetative Index and flag leaf [27]. A 

QTL found for DH (chromosome 3B, bin 282) with the three GMat marker scores, is 

coincident with a QTL reported for grain filling duration [27]. A QTL found for SPM 

(chromosome 4A, bin 179) with the NImp and MVN-EM marker scores is coincident 

with a QTL reported for anthesis and plant height [29]. The QTL found for DH 

(chromosome 4B, bin 106) with the NImp marker scores is coincident with a QTL 

reported for yield and plant height [29]. A QTL found for TKW (chromosome 5A, 

bin 148) with the NImp and MVN-EM marker scores is coincident with a QTL 

reported for yield, anthesis and plant height [29]. A QTL found for SPM 

(chromosome 5B, bin 173) with the NImp marker scores is coincident with a QTL 

reported for yield and plant height [29]. A QTL found for DH (chromosome 6B, bin 

116) with the NImp and MVN-EM marker scores, is coincident with a QTL for yield 

and plant height [29]. A QTL found for PH (chromosome 7A, bin 225) with the 

NImp and MVN-EM marker scores, is coincident with yield and anthesis [29]. These 

positions are based on bins and should be regarded as an approximation. These could 

be improved after the draft of the genome is available [30]. 
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As we found that QTL detected by the NImp marker scores matrix and the 

MVN-EM imputed marker scores matrix were similar, we believe that imputation 

should not be taking into account because no improvement is being detected. 

 

2.5. CONCLUSION 

Imputation can introduce an ascertainment bias to GWAS analysis. Comparing 

the GWAS performance by the power (PO) and false positive rate (FPR) with 

imputed or not-imputed marker scores matrices when we performed the simulations, 

poorer performance was found when an imputed marker scores matrix was used. 

Additionally, the PO and FPR changed in a clear way between major and minor 

QTL, showing that differences among imputation methods were more evident for 

major QTL and that the detection of minor QTL is negligible. Thus, although 

imputation can improve the performance of certain analysis like GS, when GWAS 

analysis is performed imputation by the mean or with the MVN-EM method is not 

encouraged. 

 

2.6. METHODS 

2.6.1. Dataset  

We used three datasets: (1) a complete SNPs barley panel array, and (2) a GBS 

wheat marker scores matrix with an average of 50% coverage and phenotypic data 

(for general approach see Figure 1).  

The complete barley SNP marker scores array dataset consisted in a panel of 

122 barley advanced inbred lines from a population of 360 described in [31]. Briefly, 

1,096 SNPs from the Barley Oligonucleotide Pool Assay-1 (BOPA 1) were selected 

[32, 33]. For further details of dataset see [31]. The 122 lines were selected to form 

two complete datasets, without missing information. 

The wheat GBS dataset was a panel of 384 advanced inbred lines from 

breeding programs: 186 genotypes from the National Wheat Breeding Program from 

Uruguay (INIA-Uruguay, Instituto Nacional de Investigación Agropecuaria), 55 

genotypes from the National Wheat Breeding Program from Chile (INIA-Chile), and 

143 genotypes from the International Breeding Center of Maize and Wheat 
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(CIMMYT, Centro Internacional de Mejoramiento de Maíz y Trigo). The CIMMYT 

genotypes share common ancestors with the INIA-Chile genotypes (see [34] for 

more details). 

DNA was extracted by the DNeasy Plant Maxi Kit (QIAGEN). Library 

construction was conducted in Kansas State University (Manhattan, Kansas) using a 

PstI-MspI GBS protocol [4]. The sequencing was performed on an Illumina Hi-

Sequation 2000 at the DNA core facility at the University of Missouri, Columbia, 

Missouri, and the McGill Univesity-Génome Quebec Innovation Centre (Montreal, 

Canada) for each set of libraries. SNPs (Single-Nucleotide Polymorphism) were 

obtained using the Tassel-GBS Pipeline [35]. The base quality and distribution of 

sequences was studied with the Galaxy (http://galaxy.psu.edu/) software. SNPs with 

less than 50 % coverage and with minor allele frequency (MAF) smaller than 10% 

were excluded. Sequences were blasted to the SyntheticxOpata map (synop) using 

the blastn function from NCBI-BLAST+ package using the number of descriptions 

and the number of threads set to one. Therefore, SNPS were placed into 

recombination bins, defined by each observed recombination across the population, 

where for all markers within a bin, the alleles received by a line should have 

originated from the same parent [5]. A final matrix set of 18,337 SNPs was obtained 

(Table 2), with a median distance between markers for all chromosomes of cero due 

to the use of a bin map. 

The phenotypic data was obtained from an evaluation in a Mediterranean 

environment in Santa Rosa-Chile in 2011 (36º 329’ S, 71º 559’ W; 217 m.a.s.l.). The 

field was irrigated with 50 mm m-2 at each of four moments: tillering, flag leaf 

emergence, heading date, and grain filling (see [34] for further details). The 

experimental design was an alpha-lattice with 20 replications and 20 incomplete 

blocks. The traits evaluated were: plant height (PH, cm) evaluated from the base of 

the plant to the flower insertion, days to heading (DH, days) was recorded when 50% 

of the culms showed emerged ears, thousands kernel weight (TKW, g), and spikes 

per square meter (SPM, number). We obtained the best linear unbiased predictors 

(BLUPs) using the following model for each trait: yijk = µ + αi + βj + δk(j) + εijk  

where yijk is the value for the phenotypic trait corresponding to the i-th genotype, j-th 
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replication, and k-th incomplete block, µ is the overall mean, αi is the random effect 

of the i-th genotype with αi ~ N(0, σ2
α), βj is the effect of the j-th replication, δk(j) is 

the random effect of the k-th incomplete block within the j-th replication with δk(j) ~ 

N(0, σ2
δ), εijk is the experimental error corresponding to the i-th genotype, j-th 

replication and k-th incomplete block with εijk ~ N(0, σ2
ε).Genotypic means were 

estimated with the function lmer (lme4 package) in R statistical software [36]. Broad 

sense heritabilities were estimated in R statistical software [36] using the above 

model (Table 3). 
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Table 2. SNPs coverage on the GBS genotypic matrix, indicating for each 

chromosome (Chr = chromosome), the number of SNPs, the length (in cM) and the 

largest gap without markers (cM).  

Chr SNPs number Length (cM) Largest gap (cM)  Median (cM) 

1A 821 266 33 0 

1 1282 294 22 0 

1D 255 242 25 0 

2A 900 242 22 0 

2B 1746 266 38 0 

2D 327 182 27 0 

3 929 329 28 0 

3B 1912 290 30 0 

3D 270 287 29 0 

4A 907 234 28 0 

4B 610 177 31 0 

4D 74 130 45 0 

5A 1023 232 26 0 

5B 1270 316 22 0 

5D 197 306 29 0 

6A 883 237 34 0 

6B 1302 232 25 0 

6D 243 276 28 0 

7A 1456 323 24 0 

7B 1660 263 40 0 

7D 270 337 45 0 
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Table 3. Broad sense heritability (h2) for the real wheat panel for all traits in Santa 

Rosa- Chile 2011. 

Trait Santa Rosa- Chile 2011 

Plant height (cm) 0.78 

Days to heading (days) 0.97 

Thousand kernel weight (g) 0.93 

Spikes per square meter (number) 0.76 

 

2.6.2. Imputation methods  

For the barley SNP array panel, we started with a genotype by marker scores 

matrix with 122 genotypes (rows) and 1,096 markers (columns) without missing 

values Markers were scored as the number of alleles {1, -1}. Then, we randomly 

generated missing values in order to have the same coverage as the GBS panel 

(50%). Finally, two methods were used to fill in those missing values, MVN-EM 

which considers the realized additive relationship matrix between the lines and an 

EM approach assuming that marker genotypes follow a multivariate normal 

distribution [4] and the Mean score per marker (i.e. the expected allele count at the 

particular marker). Imputation was conducted in R statistical software [36] with 

A.mat function (rrBLUP package). 

For the wheat GBS panel, we started with a genotype by marker scores matrix 

with 384 genotypes (rows) and 18,337 markers (columns) with 50% of missing 

values. Markers were scored as the number of alleles {NA, 1, -1}. We used the same 

methods as the previous sections to impute by MVN-EM and Mean..  

 

2.6.3. Simulation procedure  

To evaluate the effect of imputation using a golden standard with the barley 

SNP array, we created phenotypic vectors simulating QTL on top of the complete 

barley marker scores matrix (Ysim = NoNA). The phenotypic vectors were the sum of 

the effects of genotypic and residual terms, Ysim = g + e. The genotypic effect was 

calculated as the sum of the markers (selected as QTL) effects and markers effects 

were obtained from a Beta(2, 6) distribution. Markers selected as QTL were obtained 
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form the LD blocks defined from a single linkage agglomerative procedure [24] with 

euclidean distances between markers and a minimum of 1.5 cM to consider 

independent groups. QTL with major effect were defined as the above the 75%, and 

QTL with minor effect was defined as the below or equal the 75%. The residual term 

was obtained by sampling from N(0, �2
e), where �2

e = (1- h2)�2
g/ h2 and �2

g was 

the variance of the realized g. One vector for the combinations of number of QTL 

(i.e. q=25 and q=50), different heritabilities (i.e. h2=0.2, h2=0.4, h2=0.6, h2=0.7, 

h2=0.9), and for each one of 500 iterations was created. Then, we created missing 

data at random, imputed (i.e. GMat =NImp, GMat = MVN-EM and GMat = Mean) 

and pursued the GWAS analysis with each combination of genotypic matrix, 

evaluating PO and FPR (for general approach see Figure 1A.1). Additionally, for the 

ascertainment bias evaluation, we first created the missing data and then simulated 

the QTL on top of each matrix: Ysim = NImp for the not-imputed marker scores, Ysim 

= MVN-EM for the imputed with MVN-EM [4] marker scores, Ysim = Mean for the 

imputed by the mean marker scores. Finally, we performed the GWAS analysis with 

each genotypic marker scores (i.e. GMat =NImp, GMat = MVN-EM and GMat = 

Mean) and for each phenotypic vector (i.e. Ysim = NImp, Ysim = MVN-EM and Ysim = 

Mean, for general approach see figure 1A.2). We therefore compared the PO and 

FPR.  

For evaluating GWAS performance based on simulated matrix with the wheat 

GBS panel data, we created vectors of phenotypic values (i.e. Ysim = NImp, , Ysim = 

MVN-EM and Ysim = Mean). Each phenotypic vector was simulated for different 

number of QTL (i.e. q=25 and q=50) and different heritabilities (i.e. h2=0.2, h2=0.4, 

h2=0.6, h2=0.7, h2=0.9) as in the previous section. In order to avoid collinearity, LD 

blocks were defined as the bins in each chromosome and a marker chosen at random 

within each LD block was considered a QTL. One vector for each combination of the 

parameters and for each one of 500 iterations was created. We performed the 

simulations in R statistical software [36]. 
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2.6.4. GWAS analysis  

For the GWAS analysis, the mixed model described by [37] was used: y = Xβ 

+ Qv + Zu + e, where y is the phenotypic vector (n x 1) with n the total number of 

lines, X is a (n x m) SNPs matrix with m the number of SNPs coded as described 

before {NA, 1, -1}, β is a (m x 1) vector of allelic effects to be estimated, Q is a (n x 

q) incidence matrix with q origin’s groups, v is a (n x 1) populations fixed effect 

vector, Z is the genotypic incidence matrix, u is the vector of random background 

polygenic effects, u  ~ N(0, A��
g), where A is the realized additive relationship 

matrix obtained with the A.mat function from package rrBLUP in R statistical 

software [36] and e is the residual error, e  ~ N(0, ��
e). For each Ysim, we used the 

three genotypic marker scores to recover the QTL, GMat (i.e. NImp, MVN-EM and 

Mean). We performed the analysis for three different thresholds (threshold) to define 

markers as significant: (1) Bonferroni, (2) Bonferroni correction using the effective 

number of markers, Li&Ji method [38], and (3) liberal threshold of � = 0.01. GWAS 

analysis was accomplished with GWAS function from rrBLUP package in R 

statistical software [36]. We defined as true positives (TP) the number of bins with a 

QTL and at least one significant marker; false positives (FP) the number of bins with 

no QTL and at least one significant marker; true negatives (TN) the number of bins 

with no QTL and no significant markers, and false negatives (FN) the number of bins 

with QTL and no significant markers. We evaluated power (PO=TP/ (TP+FN)) and 

false positive rate (FPR=FP/ (FP+TN)) [39] for QTL detection. We evaluated 

performance for major and minor QTL detection.  
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2.8. ADDITIONAL MATERIAL 

2.8.1. Additional file 1: Power (PO) and false positives rate (FPR) for major and 

minor QTL with 25 QTL, for the golden standard form barley, with a Bonferroni 

threshold. Each parameter was calculated for the combinations of: heritabilties (h2), a 

marker scores matrix to simulate the QTL (i.e. Ysim = NoNA), and marker scores 

matrices to perform the GWAS analysis (i.e. GMat = NImp, GMat = MVN-EM and 

GMat = Mean). 
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2.8.2. Additional file 2: Power (PO) and false positives rate (FPR) for major and 

minor QTL with 25 QTL, for the golden standard from barley, with α = 0.01 

threshold. Each parameter was calculated for the combinations of: number of QTL 

(q), heritabilties (h2), a marker scores matrix to simulate the QTL (i.e. Ysim = NoNA), 

and marker scores matrices to perform the GWAS analysis (i.e. GMat = NImp, GMat 

= MVN-EM and GMat = Mean). 
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2.8.3. Additional file 3: Power (PO) and false positives rate (FPR) with 25 QTL, for 

major and minor QTL for ascertainment bias in imputation performance comparison 

in barley, with a Bonferroni threshold. Each parameter was calculated for the 

combinations of: heritabilties (h2), marker scores matrices to simulate the QTL (i.e. 

Ysim = NImp, Ysim = MVN-EM and Ysim = Mean), and marker scores matrices to 

perform the GWAS analysis (i.e. GMat = NImp, GMat = MVN-EM and GMat = 

Mean). 
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2.8.4. Additional file 4: Power (PO) and false positives rate (FPR) with 25 QTL, for 

major and minor QTL for ascertainment bias in imputation performance comparison 

in barley, with a � = 0.01 threshold. Each parameter was calculated for the 

combinations of: heritabilties (h2), marker scores matrices to simulate the QTL (i.e. 

Ysim = NImp, Ysim = MVN-EM and Ysim = Mean), and marker scores matrices to 

perform the GWAS analysis (i.e. GMat = NImp, GMat = MVN-EM and GMat = 

Mean). 
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2.8.5. Additional file 5: Power (PO) and false positives rate (FPR) with 25 QTL, for 

major and minor QTL to evaluate the GWAS performance based on simulated matrix 

with a Bonferroni threshold. Each parameter was calculated for the combinations of: 

heritabilties (h2), marker scores matrices to simulate the QTL (i.e. Ysim = NImp, Ysim 

= MVN-EM and Ysim = Mean), and marker scores matrices to perform the GWAS 

analysis (i.e. GMat = NImp, GMat = MVN-EM and GMat = Mean). 
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2.8.6. Additional file 6: Power (PO) and false positives rate (FPR) with 25 QTL, for 

major and minor QTL to evaluate the GWAS performance based on simulated matrix 

with a � = 0.01 threshold. Each parameter was calculated for the combinations of: 

heritabilties (h2), marker scores matrices to simulate the QTL (i.e. Ysim = NImp, Ysim 

= MVN-EM and Ysim = Mean), and marker scores matrices to perform the GWAS 

analysis (i.e. GMat = NImp, GMat = MVN-EM and GMat = Mean). 
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3. THE GENETIC BASIS FOR AGRONOMICAL AND PHYSIOLOGICAL 

TRAITS IN WHEAT UNCOVERED BY A MULTI-TRAIT MULTI-

ENVIRONMENT STUDY2 

 

3.1. ABSTRACT 

Wheat (Triticum aestivum L.) is the third most important cereal crop of the world in 

terms of production. Understanding the genetic basis of wheat yield-related traits 

considering genotype by environment interaction can improve wheat productivity. 

The goal of this study was to tackle the understanding of grain yield by its 

components and related-traits, integrating information in a multi-trait and multi-

environment Genome-Wide Association (GWAS) analysis. A set of 384 advanced 

genotypes of wheat from INIA-Uruguay, INIA-Chile and CIMMYT was evaluated in 

two Mediterranean environments in central Chile:  Cauquenes under rainfed 

conditions in 2011 and Santa Rosa under mild water stress and fully irrigated, in 

2011 and 2012. Sixteen physiological traits were evaluated and 28,217 markers were 

obtained. Heritabilities were medium to high for most traits. For the multi-trait 

GWAS approach, primarily main effect QTL (Quantitative Trait Loci) were found by 

studying correlated traits within subgroups (grain yield components, leaf related 

traits, and morphology and phenology traits), with the exception of two QTL by trait 

interactions (QTI) for morphology and phenology traits. Although within the 

subgroups not all traits were strong and positive correlated, main effect QTL found 

could indicate that the development of the crop is mostly affected by the same 

genetic basis for biology related traits. For the multi-environment GWAS approach, 

only main QTL were found, implying that QTL with positive effect for grain yield in 

one environment, could be introduced in the breeding program’s populations and 

improve the genotypes performance in the other environments evaluated. 

 

 

 

                                                
2 Artículo a publicar en: The Plant Genome 
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3.2. INTRODUCTION 

Wheat is the third most important crop in terms of total world production with 

670 million ton produced in 2012 (FAOSTAT, 2014). However, food security could 

be compromised by the increase in food demand due to population growth (Mueller 

et al., 2012) and climate change (Ewert et al., 2005). Plant breeding has successfully 

increased wheat grain yield (Fischer, 2007) but the rate of yield gain has decreased in 

the last decades (Acreche et al., 2008; Reynolds et al., 2012; Bustos et al., 2013). 

Therefore, improving wheat productivity is key for responding to the increase in food 

demand and climate change while decreasing agriculture´s global environmental 

footprint (Mueller et al., 2012). Although genetic gains are still obtained for wheat, 

global wheat demand is growing at a faster rate than genetic gains (Barnabás et al., 

2008; García et al., 2013). Therefore, new breeding strategies should be pursued 

(Fischer, 2007). 

Yield (per se) is a challenging breeding target because it is a complex trait 

determined by many genes (Slafer and Araus, 2005; Alimi et al., 2012), with kernel 

weight, grains per spike and spikes per meter square as yield components (Kjaer and 

Jensen, 1996). Yield is also affected by different biotic factors like incidence and 

severity of diseases, especially Puccinia graminis tritici, Puccinia tritici (rust, Chen, 

2005; Singh et al., 2008) and Fusarium graminearum (Windels, 2000). Agronomic 

traits like grain yield have strong genotype by environment interaction, GEI (Hayes 

et al., 1993; Boer et al., 2007; Mathews et al., 2008; van Eeuwijk et al., 2010; 

Malosetti et al., 2013; Alimi et al., 2013). Therefore, improving yield per se is a 

challenge (Alimi et al., 2012). Consequently, improving yield by studying the genetic 

basis of agronomic and physiological yield-related traits could provide a better 

understanding of the trait (Slafer and Araus, 2005; Fischer, 2007) leading to faster 

genetic gains. 

GWAS is useful to analyze the genetic basis of quantitative traits by searching 

whole genome marker-trait associations (Zhu et al., 2008). Specifically, a multi-trait 

QTL analysis allows the simultaneous study of genetically correlated traits (Boer et 

al. 2007; Malosetti et al. 2007b; van Eeuwijk et al. 2010; Alimi et al. 2013; Malosetti 

et al. 2013; El-Soda et al. 2014). These approaches allow the discovery of pleiotropic 
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and closely linked QTLs, and improve the power of QTL mapping (Alimi et al., 

2013). It has also helped in improving the selection of some primary traits with low 

heritabilities (Jiang and Zeng, 1995). Therefore, a multi-trait GWAS analysis is 

especially suited for complex correlated traits such as grain yield and its components. 

Hence, the combination of molecular biology and crop physiology disciplines with 

traditional plant breeding, could allow to push the yield grain forward (Slafer and 

Araus, 2005).  

The aim of this article was to use a multi-trait multi-environment GWAS 

analysis for agronomic and physiological yield-related traits in five environments. 

Specifically, we intended to: (1) tackle the understanding of a complex trait such as 

yield by its components and related-traits, and (2) integrate information of trait 

components in the GWAS analysis (multi-trait and multi-environment GWAS 

analysis). 

 

3.3. MATERIALS AND METHODS 

3.3.1. Germplasm and phenotypic data 

A set of 384 advanced inbred lines of wheat was used in this study. A total of 

186 genotypes from INIA-Uruguay, 55 genotypes from INIA-Chile and 143 

genotypes from CIMMYT were used. The CIMMYT genotypes share common 

ancestors with the INIA-Chile genotypes.  

Phenotypic evaluation of all lines was conducted in five Mediterranean 

environments in central Chile: Cauquenes (35º 589’ S; 72º 179’ W) under rainfed 

conditions in 2012; and a Santa Rosa (36º 329’ S, 71º 559’ W; 217 m.a.s.l.) under 

two levels of water supply (mild water stress and fully irrigated) in 2011 and 2012. 

The two levels of water supply for Santa Rosa-Chile were: one irrigation at tillering 

for the mild water stress trial and four irrigations (at tillering, flag leaf emergence, 

heading, and middle grain filling) of 50 mm each for the fully irrigated trials. Annual 

precipitation in Cauquenes was 580 and 600 mm in 2011 and 2012, respectively; and 

in Santa Rosa was 736 and 806 mm, in 2011 and 2012, respectively (Mora et al., 

2015).  
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The experimental design used in all trials was an alpha-lattice design with two 

replications and 20 incomplete blocks with 20 genotypes each. The plot size 

consisted of five rows of 2 m long and 0.2 m distance among rows, and the sowing 

rate was of 400 plants per square meter. The experiments were kept free of weeds 

and diseases (see Lado et al., 2013 for details of the environments). The traits 

evaluated were (Table 1): chlorophyll content (SP) using a SPAD 502 (Minolta 

Spectrum Technologics Inc., Plainfield, IL, USA) at different dates (first at anthesis, 

and then once a week while the plant still presented green leaves, between 80 and 

130 days after sowing), plant height (PH) from the base of the plant to the spike 

insertion (cm) between Zadoks 8.5 and Zadoks 9.1, days to heading (DH) was 

recorded when 50% of culms showed emerged ears (days), photosynthetically active 

radiation intercepted (PAR) measured around flowering time (Zadoks 5.9 – 6.0, %) 

using AccuPAR Ceptometer Model LP-80 (Decagon Devices, Inc., WA, USA), leaf 

area index (LAI) measured around flowering time (Zadoks 5.9 – 6.0) using 

AccuPAR Ceptometer Model LP-80 (Decagon Devices, Inc., WA, USA), specific 

leaf area (SLA, cm2 g-1) measured at flag leaf emergency as the relationship between 

leaf area and leaf dry weight, grain yield (YLD, g m-2), grains per spike (GS, 

number) determined from the kernels harvested and weighted for the 25 spikes 

randomly chosen from each experimental unit, thousands kernel weight (TKW, g) 

determined from 25 spikes randomly chosen from each experimental unit, spikes per 

square meter (SPM, number) between Zadoks 8.5 and Zadoks 9.1, plants per square 

meter (PLM, number) before tillering, test weight (TW, g), stem weight at anthesis 

(ASW, g) and at maturity (MSW, g), and stem length at anthesis (ASL, cm) and at 

maturity (MSL, cm).  
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Table 1: Trait measured in each of the five environments 

Trait Abbreviation Env. Evaluated 
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SPAD SP           
Height (cm) PH           
Days to heading (days) DH         

 Photosynthetically Active Radiation intercepted (%) PAR         
 Leaf area index LAI         
 Specific leaf area (cm2 g-1) SLA     

   Grain yield (g m-2) YLD           
Grains per spike (number) GS     

 
    

Thousands weight grain (g) TKW     
 

    
Spikes per square meter (number) SPM           
Plants per square meter (number) PLM     

   Test weight (g) TW     
 

    
Anthesis stem weight (g) ASW           
Maturity stem weight (g) MSW           
Anthesis stem length (cm) ASL           
Maturity stem length (cm) MSL           
Environment abbreviations are Santa Rosa mild water stress and fully irrigated in 

2011 (SR2011D and SR2011I respectively), Santa Rosa mild water stress and fully 

irrigated in 2012 (SR2012D and SR2012I respectively) and Cauquenes 2012 under 

rainfed conditions (C2102D). SP trait was measured in two or three different dates 

according to the environment (see details in Materials and Methods). 

 

3.3.2. Genotypic data 

DNA was extracted by the DNeasy Plant Maxi Kit (QIAGEN). Library 

construction was conducted in Kansas State University (Manhattan, Kansas) and 

Université Laval, Quebec, Canada using a PstI-MspI GBS protocol (Poland et al., 

2012b). The sequencing was performed on an Illumina Hi-Sequation 2000 at the 

DNA core facility at the University of Missouri, Columbia, Missouri, and the McGill 

Univesity-Génome Quebec Innovation Centre (Montreal, Canada) for each set of 

libraries. SNPs (Single-Nucleotide Polymorphism) were obtained using the Tassel-
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GBS Pipeline (Glaubitz et al., 2014). The base quality and distribution of sequences 

was studied with the Galaxy (http://galaxy.psu. edu/) software. SNPs with less than 

50 % coverage and with minor allele frequency (MAF) lower than 2.5% were 

excluded. Sequences were blasted to the SyntheticxOpata map (synop) (Poland et al., 

2012a) with the blastn function from NCBI-BLAST+ package using the number of 

descriptions (restricts the number of matching descriptions) and the number of 

threads (threads in the server) set to one and percent of identity at 95%. A final 

matrix set of 28,217 SNPs was obtained. 

 

3.3.3. Statistical analysis 

3.3.3.1. Descriptive statistics, genetic correlations and heritabilities for each 

environment 

We performed a two-step procedure for analyzing the data. First, we obtained 

the best linear unbiased estimators (BLUEs) for the genotypes. Second, with the 

adjusted means we performed the GWAS analysis. For obtaining the BLUEs, we 

used the following model for each trait in each environment: 

[1]                  yijk = µ + αi + βj + δk(j) + εijk  

where yijk is the value for the phenotypic trait corresponding to the i-th 

genotype, j-th replication, and k-th incomplete block, µ is the overall mean, αi is the 

effect of the i-th genotype, βj is the effect of the j-th replication, δk(j) is the random 

effect of the k-th incomplete block within the j-th replication with δk(j) ~ N(0, σ2
δ), εijk 

is the experimental error corresponding to the i-th genotype, j-th replication and k-th 

incomplete block with εijk ~ N(0, σ2
ε). Genotypic means were estimated with the 

function lmer (lme4 package) in R statistical software (R Development Core Team, 

2014). Broad sense heritabilities were estimated in R statistical software using model 

[1] but with genotypes as random effect (R Development Core Team, 2014). 

Genotypic correlations among environments were estimated with the Pearson 

coefficient correlation. Additionally, for a graphical representation of genotypes and 

traits a principal component analysis (PCA) for the phenotypic data using function 

prcomp from the stats package in R statistical software (R Development Core Team, 

2014) was conducted, where a biplot was performed to graphically display 
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correlations among traits. An angle smaller than 90° among traits vectors shows 

positive correlation. An angle of 90° among traits vectors shows no correlation. An 

angle between 90° and 180° among traits vectors shows negative correlation. 

 

3.3.3.2. Multi-trait GWAS analysis  

The multi-trait GWAS analysis was conducted following Malosetti et al. 

(2007a) for population control and Malosetti et al. (2007b) for modeling the 

correlations across traits. First, GWAS analysis at each marker at a time was 

performed including a PCA for the genotypic data as a covariate in order to control 

for population structure (Malosetti et al. 2007a) and considering QTL by trait 

interaction (QTI). Second, all significant trait-specific QTL were subsequently 

included in a multi-QTL model and evaluated for main and QTI effects by stepwise 

selection, dropping markers with non-significant QTI. This model was implemented 

in R (R Development Core Team, 2014). We scaled some traits in order to keep the 

range of the different traits within similar magnitudes to avoid having a single trait 

dominating the results just because of its units. The traits we scaled were: grain yield, 

leaf area index, plants per square meter, anthesis stem weight, maturity stem weight, 

anthesis stem length and maturity stem length. We split the phenotypic dataset based 

on categories of traits in three subgroups for the multi-trait GWAS analysis. The first 

subgroup consists on grain yield components: grain yield, grains per spike, thousands 

weight grain, test weight, plants per squared meter and spikes per squared meter. The 

second consists on leaf related traits: PAR, leaf area index, specific leaf area and 

SPAD. The third consists on morphology and phenology traits: anthesis stem weight, 

maturity stem weight, anthesis stem length, maturity stem length, plant height and 

days to heading. Briefly, multi-trait GWAS analyses within each subgroup used PCA 

as a random component and modeled the correlations among traits with the following 

model:  

[2]     y = Xβ + Zυ + e   

where y is the phenotypic vector with individuals times traits rows and one column 

[nt]1, X  is the fixed effects matrix, including the mean vector of each trait and SNP 

marker scores matrix for each trait with individuals times traits rows and a SNP 
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evaluated one at a time [nt,nt], β is the unknown vector of allelic effects to be 

estimated with traits rows and one column [nt]1, Z is the incidence matrix with 

individuals times traits rows and individuals times traits columns [nt,nt], υ is the 

vector of random background polygenic effects with individuals times traits rows and 

one column [nt]1,  υ ~ N(0, G0  G1), where G0 is PP’ being P the loadings of the 

first ten significant principal components of the genotypic PCA analysis to correct 

for genotypic structure as Malosetti et al. (2007a); G1 is the correlations between 

traits for modeling the correlations across traits as Malosetti et al. (2007b), and e is 

the residual error, e  ~ N(0, I�2
e). 

A False Discovery Rate (FDR) correction for multiple comparisons with a 

significance level of 0.05 was used (Benjamini and Hochberg 1995). The analysis 

was performed in R statistical software (R Development Core Team, 2014) with 

package lme4. 

 

3.3.3.3. Multi-environment GWAS analysis  

A multi-environment approach was used to understand water-stress by 

genotype interaction. Due to unbalanced data, only a subset of the traits were used 

for this study: YLD, GS, TKW, PH, TW and SPM. The multi-environment GWAS 

analysis was also conducted following Malosetti et al. (2007a; b) and evaluating first 

the QTL by environment interaction (QEI) and then including environment-specific 

QTL in a multi-QTL model for main and interaction effects similar to model [2] but 

with  a slight modification:  

[3]                       y = Xβ + Zυ + e  

where y is the phenotypic vector with individuals times environments rows and one 

column [ne]1, X is the fixed effects matrix with  the mean vector of each 

environment and SNP marker scores matrix for each environment with individuals 

times environments rows and a SNP evaluated one at a time [ne,ne], β is the 

unknown vector of allelic effects to be estimated with environments rows and one 

column [ne]1, Z is the incidence matrix with individuals times environments rows 

and individuals times environments columns [ne,ne], υ is the vector of random 

background polygenic effects with individuals times environments rows and one 
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column [ne]1,  υ ~ N(0, G0 G1), where G0 is PP’ being P the loadings of the first 

ten significant principal components of the genotypic PCA analysis to correct for 

genotypic structure as Malosetti et al. (2007a); G1 is the correlations between 

environments for modeling the correlations across environments as Malosetti et al. 

(2007b), and e is the residual error, e  ~ N(0, I σ2
e). 

A False Discovery Rate (FDR) correction for multiple comparisons with a 

significance level of 0.05 was used (Benjamini and Hochberg 1995). The analysis 

was performed in R statistical software (R Development Core Team, 2014) with 

package lme4. 

 

3.4. RESULTS 

3.4.1. Genetic correlations and heritabilities  

Broad sense heritabilities were relatively high for most traits and similar across 

environments (Table 2). However, SLA had low heritabilities in the two 

environments evaluated (under mild water-stress and fully irrigated at Santa Rosa in 

2011), MSW had low heritabilities under irrigated conditions and YLD had lower 

heritabilities in Cauquenes and Santa Rosa 2011.    

Correlations patterns evidenced in the biplots were more similar (with some 

exceptions) between trails of the same year (i.e. C2012D and SR2012I) and less 

similar between trails with the same irrigation treatments (i.e. SR2012I and SR2011I, 

Figure1, Figure 2, Supplementary Figure 1, Supplementary Figure 2, Supplementary 

Figure 3). Genotypes were not grouped by their origin showing admixture (Figure 1, 

Figure 2, Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 

3).  

In general, correlations between traits among Santa Rosa environments were 

larger than with Cauquenes environment (data not shown). 

We included in the biplots two extra traits calculated from the traits measured, 

in order to evaluate a better picture of the grain yield genetic basis: grains per square 

meter (GPM) as the product of spikes per square meter (SPM) and grains per spike 

(GS), and post-anthesis stem weight (PASW) as the difference between maturity 

stem weight (MSW) and anthesis stem weight (ASW).  
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Table 2: Broad sense heritability (H2) for all traits in each environment 

Trait SR2011D SR2011I SR2012D SR2012I C2012D 

SP1 0.78 0.66 0.66 0.71 0.71 

SP2 0.29 0.63 0.60 0.70 0.49 

SP3 - 0.18 0.49 0.54 - 

PH 0.75 0.78 0.88 0.77 0.46 

DH 0.96 0.97 0.91 0.93 - 

PAR 0.44 0.45 0.41 0.49 - 

LAI 0.30 0.41 0.66 0.63 - 

SLA 0.21 0.15 - - - 

YLD 0.36 0.47 0.66 0.63 0.40 

GS 0.82 0.84 - 0.75 0.48 

TKW 0.84 0.93 - 0.94 0.84 

SPM 0.82 0.76 0.66 0.79 0.53 

PLM 0.65 0.67 - - - 

TW 0.58 0.92 - 0.93 0.79 

ASW 0.38 0.30 0.77 0.78 0.65 

MSW 0.37 0.21 0.79 0.11 0.70 

ASL 0.56 0.76 0.66 0.78 0.47 

MSL 0.56 0.51 0.83 0.38 0.53 

Environment abbreviations are Santa Rosa mild water stress and fully irrigated in 

2011 (SR2011D and SR2011I respectively), Santa Rosa mild water stress and fully 

irrigated in 2012 (SR2012D and SR2012I respectively) and Cauquenes 2012 under 

rainfed conditions (C2102D). Traits abbreviations are shown in Table 1. 
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Figure 1. Biplot for the first two principal components for BLUEs for each trait in 

Cauquenes 2012 under rainfed conditions. Numbers indicate genotypes and its colors 

indicate the breeding program that each genotype belongs. Arrows indicate the traits 

and its colors indicate the group each trait belongs to: grain yield components 

(violet), leaf related traits (blue) and morphology and phenology traits (black). 
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Figure 2. Biplot for the first two principal components for BLUEs for each trait in 

Santa Rosa 2011 fully irrigated. Numbers indicate genotypes and its colors indicate 

the breeding program that each genotype belongs. Arrows indicate the traits and its 

colors indicate the group each trait belongs to: grain yield components (violet), leaf 

related traits (blue) and morphology and phenology traits (black). 

 

3.4.2. Multi-trait GWAS analysis 

A total of 25 QTL (understanding for the same QTL all marker-trait 

associations in the same position of the same chromosome for the same group of 

traits) were found for all environments in all traits in the GWAS multi-trait approach, 

most of them in chromosome 7D (Figure 3). For grain yield components, we also 

found QTL in chromosome 6D bin 24 and in chromosome 7A bin 174, under mild 

water-stress at Santa Rosa in 2012 and 2011, respectively. For leaf related traits, we 

also detected a QTL in chromosome 7B bin 166 in Santa Rosa 2011 fully irrigated. 

Finally, for morphological and phenological traits we detected a QTL in 

chromosome 1B bin 105 under full irrigation in Santa Rosa 2012, and two QTLs in 
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chromosome 7B in 147 and 187 bins under mild water-stress in Santa Rosa 2011. 

Most of the QTLs were main effect QTL, with the exception of two QTL for 

morphology and phenology traits under mild water-stress in Santa Rosa 2011 (Figure 

4).  Those QTL presented a positive effect for some traits and a negative effect for 

others. An example of one of those two QTL is the associated with the marker 

iniaGBS78612 in chromosome 7B bin 147, which had a positive effect for PH, 

ASW, ASL, MSW and MSL but a negative effect for DH. 

 

 

Figure 3. QTL detected in chromosome 7D and linkage disequilibrium (LD) between 

markers in that chromosome. QTL were detected for groups of traits in a multi-trait 

GWAS analysis: leaf related traits (LRT, pink), grain yield components (GYC, 

yellow), morphology and phenology traits (MPT, red); and for traits in a multi-

environment GWAS analysis: grain yield (YLD, green), test weight (TW, sky-blue) 

and plant height (PH, blue). 
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Figure 4. GWAS multi-trait profile plot for morphology and phenology traits (MPT) 

in Santa Rosa 2011 mild water-stress (SR2011D) and correlations between the traits 

for that environment. Columns are significant SNPs and rows are traits (see traits 

abbreviations in Materials and Methods). QTL effect: positive (blue), no (white) and 

negative (red), and correlation between traits: positive (green), no (white) and 

negative (violet). 

 

3.4.3. Multi-environment GWAS analysis 

QTL were detected only for some of the traits used for this study: YLD, GS, PH and 

TW. One QTL was found for PH, GS and for TW, and two QTL for YLD. Most 

QTL were found at chromosome 7D (Figure 3), except for GS that we detected a 

QTL in chromosome 6B bin 202. Only main effect QTL were found for each trait. 

Some QTL detected for these traits were in the same bin as the QTL detected with 
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the multi-trait approach. An example is the QTL detected for TW in chromosome 7D 

bin 296 that is in the same position of two QTL detected in LRT, one in Santa Rosa 

2011 mild water-stress and the other in Cauquenes 2012 under rainfed conditions  

(Figure 3). 

 

3.5. DISCUSSION 

3.5.1. Genetic correlations and heritabilities  

Considering grain yield components, several studies reported that the number 

of grains per unit of area is what mostly determines the yield performance in cereals 

like wheat and barley (Abeledo et al., 2003; Bustos et al., 2013; de San Celedonio et 

al., 2014). Nevertheless, we found a positive and higher correlation between GS and 

YLD than between GPM and YLD, thus number of grains per spike is determinant of 

the yield performance of the wheat panel evaluated in this work. Additionally, SPM 

was negative correlated with TKW in all environments, probably due to a 

compensation mechanism (Figure 1, Figure 2, Supplementary Figure 1, 

Supplementary Figure 2, Supplementary Figure 3). Therefore, we further analyzed 

the relationship between yield components (Figure 5), highlighting top 10% 

genotypes for YLD (38 genotypes). We found negative correlation between TKW 

and GPM for all environments (Figure 5). Then, analyzing if the compensation 

mechanisms were between TKW and GS or TKW and SPM, we detected that the 

negative correlation for all environments was between TKW and SPM, coincident 

with correlations between those traits presented in the biplots (Figure 1, Figure 2, 

Supplementary Figure 1, Supplementary Figure 2, Supplementary Figure 3). That 

competition could be the consequence of source limited conditions, leading to a less 

number of spikes per area (Bustos et al., 2013). Nevertheless, although the top 10% 

genotypes presented the compensation mechanism, they performed better in terms of 

grain yield because of larger TKW values or larger GMP values (Figure 5).  

Considering Cauquenes 2012 under rainfed conditions (Figure 1), we observed 

that SPAD, which is related to chlorophyll content (Bannari et al., 2007), was closely 

associated to TKW, and also to ASW and MSW. Higher TKW could be a 

consequence of a delay in the senescence because light interception by green leaf 
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area is the source of carbohydrates for grain filling, which are reduce due to leaf 

senescence (Moschen et al., 2014). The importance of TKW as a grain yield 

component in this environment could be a consequence of the low tillering survival 

(Figure 5).  

In fully irrigated conditions, PASW should be more similar to ASW than in 

rainfed conditions, because carbon assimilation is not affected by stress and therefore 

storage in stems is not reduced (Blum, 1998). Considering Santa Rosa 2011 fully 

irrigated (Figure 1), we found that SPAD was closely associated to ASW and MSW, 

but additionally to PASW, and thus we believed that the closest relationship between 

ASW and PASW is due to the not-stress growing conditions. 

An increase in LAI is expected to be followed by an increase in PAR, until the 

90% of the photosynthetically active radiation is reached and thus no improving in 

PAR is expected (Hipps, 1983). As we found positive and strong correlation between 

those traits in Santa Rosa 2011 fully irrigated (Figure 2), we believe that the 90% of 

the photosynthetically active radiation was not reached at the time the traits were 

measured (Zadoks 5.9 – 6.0).  

Higher correlations between leaf related traits and grain yield is expected in 

fully irrigated environments because no water stress is affecting the source, and 

therefore an increase in the light intercepted is followed by an increase in grain yield 

(Aparicio et al., 1999). We therefore found that YLD and TW were positive and 

strong correlated with PAR, LAI and SLA in Santa Rosa 2011 fully irrigated (Figure 

2). 

Breeding for shortened cycles in Mediterranean conditions has been proved to 

be a successful strategy (Araus et al., 2002). Therefore, the negative correlation 

between DH and YLD should be an index of higher yields in Mediterranean 

environments. We found for Santa Rosa 2011 fully irrigated a negative correlation 

between DH and YLD and low correlations for Santa Rosa mild water stress for 

2011 and 2012.  

Strong and positive correlations between ASL, MSL and PH could be 

explained by a not longer growth of the stem after anthesis in crops like wheat.  
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Studying the relationship between sink and source for the top 10% genotypes 

in each environment in order to evaluate if there were differences between the 

environments, we considered the ratio between GS and ASW for the environments 

where the traits were measured (Santa Rosa mild water stress and fully irrigated 

2011, Santa Rosa fully irrigated 2012 and Cauquenes 2012). Stem weight at anthesis 

(ASW, related to water soluble carbohydrate content) is a source for grain growth, 

because it is supported by remobilization of carbohydrate reserve from the stem and 

photosynthesis of leaves and spike (del Pozo et al., 2012). We found higher ratios for 

Santa Rosa 2011 and 2012 fully irrigated (31.4 and 32.3 respectively), and lower 

ratios for Santa Rosa 2011 mild water stress and Cauquenes 2012 (27.6 and 19.3 

respectively). Therefore, we analyzed separately GS and ASW for those 

environments and we found that Cauquenes 2012 was the environment with the 

lower median for GS but higher for ASW (data not shown). Consequently, these 

results could indicate that in water stress environments (Santa Rosa 2011 mild water 

stress and Cauquenes 2012), as tillering survival are affected (Figure 5), higher ASW 

is obtained. These results combined with the results found from del Pozo et al., 

(2012) in barley evaluated in the same environments, could indicated that higher 

ASW is found under water-stress conditions due to higher carbohydrates in the stem 

and lower mobilization of carbohydrates to the grains. 

We used two contrasting Mediterranean-type environments in this study 

(Cauquenes vs. Santa Rosa). In Cauquenes, plants face terminal drought stress, then 

early flowering (shortening life cycle) is an escape mechanism from dehydration (del 

Pozo et al., 2012). We found larger correlations between fully irrigated and mild 

water stress environments in Santa Rosa, and smaller correlations with Cauquenes 

for most of the traits (data not shown). The lowest correlations between Cauquenes 

and Santa Rosa environments could be the consequence of being different 

Mediterranean-type environments. Additionally, the differences between these 

locations were evidenced in Cauquenes, which presented less SPM, because drought 

conditions in Cauquenes reduced tillering survival and therefore SPM being the 

compensation mechanism between grain yield components more clear (Figure 5). 
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Figure 5. Relationship among gran yield (YLD) components: TKW (thousands 

kernel weight), grains per spike (GS), spikes per square meter (SPM), and grains per 

square meter (GPM) as the product between GS and SPM in each environment. The 

10% genotypes for YLD are highlighted in each environment. Environments are: 

Santa Rosa 2011 fully irrigated (SR2011I), Santa Rosa 2011 mild water stress 

(SR2011D), Santa Rosa 2012 fully irrigated (SR2012I) and Cauquenes 2012 under 

rainfed conditions (C2012D). 

 

3.5.2. Multi-trait GWAS analysis 

QTL for physiological traits that were pleiotropic or closely link or that showed 

interactions were detected (Figure 3). The strategy of multi-trait for GWAS analysis 
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allowed us to identify mostly main effect QTL for physiological, correlated traits. It 

was expected that positive and strong correlated traits had main effect QTL (Alimi et 

al. 2013). Although within the subgroups not all traits were strong and positive 

correlated, main effect QTL found could indicate that the development of the crop is 

mostly affected by the same genetics basis for biology related traits. The sum of all 

these QTL and some QTI, it is what finally produces wheat grain yield.     

 

3.5.3. Multi-environment GWAS analysis 

Only main effects QTL were detected for the traits evaluated among the 

environments (Figure 3). This suggests that although grain yield is a complex trait 

compounded by other traits and affected by different biotic and abiotic factors (Kjaer 

and Jensen, 1996; Singh et al., 2008; Mathews et al., 2008; van Eeuwijk et al., 2010; 

Alimi et al., 2012, 2013; Malosetti et al., 2013), no QEI were detected and therefore 

introducing those QTL in the breeding program’s populations and evaluating the 

lines in one environment should improve grain yield performance for the lines 

selected in all environments evaluated. Although we expected QTL by environment 

interaction in this analysis because of the different water conditions for the crop, the 

rainfall in spring occurred in Santa Rosa 2012, resulted in Santa Rosa 2012 mild 

water stress being similar to Santa Rosa 2012 fully irrigated, and thus those 

environments were not as contrasting as we expected for that year. 

 

3.5.4. Previous QTL reported 

Since most QTL in this analysis were found in chromosome 7D, we focused on 

finding previous QTL reported in this chromosome. Several studies found QTL for 

yield and yield-related traits on 7D. QTL for grain weight, spikes number, fertile 

spikelet number per spike, sterile spikelet number per spike were found in 7D 

associated with markers Xgdm67, Xgwm428 and Xwmc31 (Li et al., 2007). 

Additionally, QTL for grain weight was found between Xgwm295 and Xgwm1002 

in chromosome 7D (Röder et al., 2008). For biomass, single kernel weight and test 

weight QTL were found in chromosome 7D between positions 170 and 172.2 cM 

based in marker physical map (http://www.cerealdb.uk.net/, Edae et al., 2014). In 
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other study, QTL for grain width was detected in chromosome 7D associated with 

Xgwm295 and Xgwm437; for grain volume associated with Xgdm86c and 

Xgwm885 and grain vertical perimeter associated with Xgdm86c and Xgwm885 

(Tyagi et al., 2014).   

Additionally, we compared the QTL found in this analysis with the QTL found 

in Mora et al., (2015), that analyzed the same population evaluated in the same 

environments considering grain yield components and carbon isotope discrimination. 

The QTL found for morphology and phenology traits with QTL by trait interaction in 

chromosome 7B bin 126, was also detected by Mora et al., (2015) for kernels per 

spike for Santa Rosa 2011 and 2012 and for the same trait when they performed a 

multi-environment analysis considering all environments. The QTL found for grain 

yield components in chromosome 7A bin 174 was closely to a QTL detected by 

Mora et al., (2015) for thousand kernel weight. Finally, a QTL found for leaf related 

traits in chromosome 7D bin 0, was also detected by Mora et al., (2015) for thousand 

kernel weight. Although Mora et al., (2015) detected more QTL by environment 

interactions that we did, they did no modeled the correlation between environments, 

assuming a diagonal covariance matrix, and therefore more interactions were found. 

 

3.6. CONCLUSIONS 

In conclusion, primarily main effect QTL were found with a multi-trait GWAS 

analysis by studying correlated traits within subgroups (grain yield components, leaf 

related traits, and morphology and phenology traits). Those main effects QTL found 

could indicate that the development of the crop is mostly affected by the same 

genetics basis for biology related traits. The same compensation mechanisms 

between grain yield components were detected, where more SPM reduced the values 

of TKW, being more evident in Cauquenes 2012 dry-agricultural area. The multi-

environment approach allowed us to detect main effect QTL among the 

environments, implying that QTL with positive effect for grain yield in one 

environment, could be introduced in the breeding program’s populations and 

improve the genotypes performance for all environments evaluated. Further analysis 

on QTL regions should be perform for a better resolution of the QTL found and a 
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later introduction of these QTL in the breeding programs involved in order to 

improve grain yield in Mediterranean environments. 
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3.8. SUPPLEMENTARY FIGURES 

3.8.1. Supplementary Figure 1. Biplot for the first two principal components of the 

traits and lines for Santa Rosa 2011 mild water stress. Asterisks indicate genotypes 

and its colors indicate the breeding program that each genotype belongs to: coral for 

CIMMYT, blue for INIA-Chile and purple for INIA-Uruguay. Arrows indicate the 

traits and its colors indicate the group each trait belongs to: grain yield components 

(violet), leaf related traits (blue) and morphology and phenology traits (black). 
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3.8.2. Supplementary Figure 2. Biplot for the first two principal components of the 

traits and lines for and Santa Rosa 2012 mild water stress. Asterisks indicate 

genotypes and its colors indicate the breeding program that each genotype belongs 

to: coral for CIMMYT, blue for INIA-Chile and purple for INIA-Uruguay. Arrows 

indicate the traits and its colors indicate the group each trait belongs to: grain yield 

components (violet), leaf related traits (blue) and morphology and phenology traits 

(black). 
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3.8.3. Supplementary Figure 3. Biplot for the first two principal components of the 

traits and lines for Santa Rosa 2012 fully irrigated. Asterisks indicate genotypes and 

its colors indicate the breeding program that each genotype belongs to: coral for 

CIMMYT, blue for INIA-Chile and purple for INIA-Uruguay. Arrows indicate the 

traits and its colors indicate the group each trait belongs to: grain yield components 

(violet), leaf related traits (blue) and morphology and phenology traits (black).   
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4. DISCUSIÓN GENERAL Y CONCLUSIONES GLOBALES  

Al ser el trigo uno de los cultivos de mayor relevancia mundial (FAOSTAT, 

2014), varios investigadores y programas de mejoramiento están trabajando 

conjuntamente con el fin de aumentar su productividad y así poder sobrellevar la 

demanda poblacional de alimentos creciente (Mueller et al., 2012). Esta tesis se 

enmarca dentro del programa de mejoramiento de trigo en Uruguay, donde 

conjuntamente se trabajó con el Instituto Nacional de Investigación Agropecuaria 

(INIA), con el fin de contribuir al mejoramiento del rendimiento del trigo.  

Considerando el primer objetivo, al comparar la performance de la imputación 

de la matriz genotípica en el mapeo asociativo cuando no hay un panel de referencia 

y una gran proporción de datos faltantes se presenta como en GBS, detectamos que 

dicha imputación puede introducir un sesgo en el análisis de mapeo. Comparando el 

poder de detección de QTL y la tasa de falsos positivos utilizando matrices 

imputadas y sin imputar (50% de datos faltantes), la performance del análisis de 

mapeo disminuyó cuando fue realizado con una matriz imputada. Por lo tanto, 

cuando no  se presenta un panel de referencia y hay varios datos faltantes en la 

matriz genotípica, el mapeo asociativo debería realizarse sin la imputación de dicha 

matriz. 

Con respecto al objetivo dos, sobre evaluar los factores genéticos asociados a 

variables agronómicas y fisiológicas en trigo considerando la interacción genotipo 

por ambiente, detectamos principalmente QTL de efecto principal tanto para el 

análisis multi-carácter como para el multi-ambiente, y algunas interacciones QTL por 

carácter. Los QTL de efecto principal para el análisis multi-carácter, podrían indicar 

que el desarrollo del cultivo es principalmente afectado por la misma base genética 

para variables biológicas asociadas. En relación al análisis multi-ambiente, los QTL 

de efecto principal detectados podrían incorporarse en las líneas de los programas de 

mejoramiento evaluadas para uno de los ambientes analizados, implicando que si un 

QTL mejoró el rendimiento en grano para ese ambiente, también lo hará para dichas 

líneas en los otros ambientes evaluados en este estudio. Análisis más detallados en 

las regiones de los QTL detectados deberían ser realizados, para obtener una mejor 
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resolución de los QTL y así poder introducirlos para mejorar el rendimiento de trigo 

en regiones Mediterráneas.  
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