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Abstract

Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species
started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein
oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-
toxicity and cellular homeostasis disruption.
Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all
oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation.
In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in
response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on
redox modifications of proteins with their fate and role in redox signaling and human pathological conditions.
Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many
pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the
progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these
modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance.
Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for
integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions.
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I. Introduction

As early as the 1920s, biochemists started investigating
protein photo-oxidation (258, 283) in total blood or

plasma induced by light incidence (visible and ultraviolet
[UV]) in the presence of iron compounds. They were con-
cerned with the amount of oxygen consumed. Despite these
studies being in accordance with present knowledge, the link
between protein oxidation and O2 metabolism took much
longer to unravel.

Free radical biochemistry dates back to World War II when
the astonishment provoked by radiation-induced mutations
and poisoning stimulated the field. Indeed, researchers ded-
icated a tremendous amount of effort to understanding radi-
ation chemistry. Later, in 1954, Gerschman et al. suggested a
common mechanism to account for biological damage in-
duced by X-ray irradiation and hyperoxygenation (225).
Then, in 1962, Denham Harman hypothesized a role for
oxygen-derived free radicals in aging and cancer (257).
These two publications paved the way for future reactive
oxygen species (ROS) investigations.

In the first half of the 20th century, Otto Heinrich Warburg
and Leonor Michaelis proposed that O2 would produce one-
electron intermediates during respiration (24). Accordingly, in
1969, McCord and Fridovich discovered that a known protein,
erythrocuprein, was able to efficiently catalyze the dismutation
of the superoxide anion radical (O2

�-), a by-product of oxygen
metabolism (418). This protein later became known as su-
peroxide dismutase (SOD) and proved that oxygen radicals are
formed during cell metabolism, reinforcing the claims of the
pioneers Warburg, Michaelis, Gershman, and Harman.
Moreover, the SOD discovery refocused attention on proteins
as generators, consumers, and targets of oxyradicals, conse-
quently attracting protein biochemists who began to study and
investigate the relationship between proteins and ROS.

Earl Stadtman and his group were the ones who started
systematic studies on the chemical mechanisms of protein
oxidation. In fact, he dedicated at least 30 years of his 60-year
scientific life to that subject. Besides contributing to the
chemical mechanisms underlying the ROS-mediated oxida-
tion of protein amino acid side-chains, his group revealed
significant correlations between protein oxidation and path-
ological conditions, particularly in the aging process. His
contribution to the study of thiol-based peroxidase enzymes
was also remarkable (see below, Section III.A).

Another hallmark in the field of redox biology was the
discovery of the physiological enzymatic synthesis of the free
radical nitric oxide (NO�) (439). It was from this finding that

redox biochemistry acquired irreversible importance in bi-
ology. In addition, the cross-reaction between NO� and O2

�-

generating another nitrogen-based reactive species (ONOO-)
opened up a new topic of investigation, protein modification
by reactive nitrogen species (RNS), which has gained an
important status in biochemistry and cellular biology.

Due to their abundance and high reaction rate constants,
proteins are major targets for radicals and two-electron oxi-
dants in biological systems (265). Although oxidative dam-
age can occur throughout the whole protein molecule, certain
amino acid side-chains are more susceptible because of their
reduction potential and spatial localization (151, 265). Sulfur
(Cys and Met) and aromatic (Trp, Tyr, Phe, and His) amino
acids have the lowest reduction potentials and react fast with
oxidants.

The motivation for the present review was the amazing
number of publications on the subject. For example, a search
on the PubMed platform using the keyword protein oxidation
in the Title/Abstract returned more than 115,000 articles,
including 12,000 reviews, published in the last 40 years.
Considering only the last decade and specific oxidative
modifications (sulfur amino acids; carbonyl formation; ad-
ducts of lipid peroxidation products; protein crosslinking;
and glycation), an underestimated number of 28,000 articles
and 3500 reviews stood out. Therefore, the objective of the
present review is to integrate the most critical information
available on protein oxidation and highlight the role of these
modifications in human pathological conditions. We also
discuss the role of the redox protein thiol-based catalysis and
cellular signaling.

II. Oxidative Modification of Proteins Compromising
Their Structure, Function, and Fate

A. Protein oxidation to carbonyl groups

The first demonstration of the formation of a carbonyl
group in proteins was made by Garrison et al. utilizing ra-
diation (220, 221). However, systematic investigations fo-
cusing on oxidant-mediated protein oxidation were initiated
with studies on glutamine synthetase (GS), which converts
glutamine into a nitrogen source for nucleic acid and amino
acid biosynthesis. In the first study, Stadtman’s group (373)
demonstrated that GS, a metalloprotein, oxidizes when sub-
mitted to oxidative systems (rabbit liver microsomal fraction
incubated in the presence of ascorbate, Fe2+, and Mn2+), and
catalase and metal chelators inhibit this process. This work
also anticipated the susceptibility of oxidized proteins to

PROTEIN OXIDATION 3

D
ow

nl
oa

de
d 

by
 M

ar
y 

A
nn

 L
ie

be
rt

, I
nc

., 
pu

bl
is

he
rs

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
5/

26
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

FOR REVIEW ONLY  

NOT INTENDED FOR DISTRIBUTION 

OR REPRODUCTION 



proteolytic degradation. Later on, it was demonstrated that
GS oxidation was highly site-specific (one His and one Arg
residue, both close to the metal-binding site), which was in
contrast to the protein oxidation observed upon radiation
(130, 190). A further set of in vitro experiments led to un-
derstanding the metal-catalyzed oxidation (MCO) of pro-
teins, rendering carbonyl groups and other derivatives,
depending on the residue involved (608). As demonstrated by
Stadtman’s group, specific amino acids are prone to the for-
mation of carbonyl groups in proteins and, as later confirmed,
the final products are also specific (547). For example, Lys
residues are oxidized to aminoadipic semialdehydes, Arg and
Pro residues to glutamic semialdehydes, His to 2-pyrrolidine,
and Thr to 2-amino-3-ketobutyric acid (Fig. 1). The MCO
depends on a Fenton reaction that generates the hydroxyl
radical. The low concentrations of free Fe (II) and Cu (I) or
peroxides at physiological conditions suggest that the MCO
of protein amino acid residues is limited to those amino acids
with a high affinity for metals (Arg, Lys, and Pro). In
agreement, Desmylaer et al. (167) demonstrated that yeast

cells lacking the iron storage protein YFH1p presented higher
protein carbonylation levels, which could be reverted by
expressing human ferritin L expression. However, MCO is
not the only mechanism to trigger protein carbonyl forma-
tion. Radiation, as pointed above (221), protein peroxyl
radical as the intermediate species (151, 265) and derivatives
of reactive halogenous species (266), can also generate a
primary carbonyl moiety in proteins.

The literature frequently refers to protein carbonylation as
the products of Michael’s addition (Fig. 2), where proteins
are modified by 4-hydroxy-2-nonenal (HNE), an aldehyde
product of lipid peroxidation that preserves a carbonyl moi-
ety centered in the aldehyde. However, in the present review,
those products are not considered carbonyl derivatives. Pro-
tein modification by lipid peroxidation by-products is dis-
cussed in another section (Section II.B.2).

The detection of carbonyl proteins is the most common
method utilized by investigators for estimating oxidative
stress. Despite being widely utilized as a parameter of oxi-
dative stress, the functional and structural consequences of

FIG. 1. Representative mechanisms of the oxidation of amino acid residues to carbonyl derivatives. (A) Hydroxyl
radical (HO$) formation through either transition metal-mediated decomposition of H2O2 (Fenton reaction) or H2O radi-
olysis under high electromagnetic energy. (B–E) Oxidation of amino acid residues through hydrogen abstraction by HO$;
subsequent reactions are the molecular oxygen annihilation of the amino acid radical formed and propagation of the reaction
by hydrogen abstraction by the hydroperoxyl radical (not shown) and the final formation of hydroperoxide. The hydro-
peroxide decomposition yields the alcohol, whose further radical-mediated oxidation leads to the formation of carbonyl
derivatives. In reactions with Arg and Lys residues, the alcohol intermediate is converted into the carbonyl derivative
through the cleavage of guanidine and ammonia moieties, respectively. (F) As threonine bears a hydroxyl group, it is
converted directly to the carbonyl derivative bypassing the hydroperoxide formation.
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carbonyl formation are not completely clear. Questions such
as: ‘‘How many residues in a protein have to be carbonylated
to promote the functional and structural modifications re-
quired for functionally inactivating the protein?’’ or ‘‘What
are the determining factors for the degradation or aggregation
of carbonylated proteins?’’ still have not been answered.
Although the linking of protein carbonyl formation to path-
ological conditions or as a marker of aging has been proposed
(discussed below), very few reports support this idea in a way
that demonstrates that carbonylation by itself would under-
line the protein damage and fate.

The identification of protein carbonyl groups by derivati-
zation with dinitrophenylhydrazine followed by spectro-
photometric analysis or immunoblotting (374) is the most
utilized method for detecting protein carbonyls. More re-
cently, mass spectrometry (MS) has been utilized to identify
carbonylated proteins and carbonylated amino acid residues
in a given protein (21, 90, 131, 263). A few years ago, a
multicenter study demonstrated the importance of protein
carbonyl determination standardization (25).

1. Is protein carbonylation a regulatory mechanism?. At
first glance, it is unlikely that protein carbonylation has a
regulatory role since it has been considered an irreversible
modification. However, data in the literature indicate a re-
versible mechanism of protein carbonylation, as evidenced
by a decreased pool of carbonylated proteins, which cannot
be attributed to protein degradation or de novo protein syn-
thesis (579, 715). However, these data need to be confirmed
with further investigations.

2. Specificity/susceptibility. Whether there are proteins
more prone to carbonylation has been a matter of investiga-
tion. In several studies working with aged organisms, some
proteins, in different organs of the same organism and dif-
ferent organisms, were found repetitively carbonylated (90).
Among those proteins, 20% are involved in glucose metab-
olism, the tricarboxylic acid cycle, and the electron transport
chain. Also, heat shock proteins (HSPs) and elongation fac-
tors of protein synthesis were carbonylated during aging,
from bacteria to humans (90). Elegant studies from Ny-
ström’s group showed that increased mistranslation in Es-
cherichia coli achieved utilizing specific mutations and drugs
was paralleled by increased protein carbonylation (181).
Moreover, mutants harboring hyperaccurate ribosomes ex-
hibited drastically attenuated protein oxidation during growth
arrest (34). As interpreted by the authors, verified protein
carbonylation in aging cells might be a consequence of re-
duced transcriptional and translational fidelity independent of
increased oxidant formation.

The crosstalk between protein carbonylation and the me-
thionine sulfoxide reductase system has been proposed (448).
There are data showing that methionine sulfoxide formation
precedes carbonylation as organisms (yeast and mice) lacking
the methionine sulfoxide reductase A enzyme (MsrA) accu-
mulate carbonylated proteins. The hypothesis is that the
structural change in the protein carrying the methionine oxi-
dation increases the vulnerability of the protein to carbonyla-
tion. While this mechanism sounds attractive, no data
demonstrate that the increased occurrence of carbonyl proteins
(e.g., in aging and neurodegenerative diseases [NDs]) is asso-
ciated with decreased methionine sulfoxide repair in humans.

3. What could explain specificity?. Protein location in
specific subcellular compartments and their abundance
would be essential parameters to preview protein carbonyl-
ation specificity. Nevertheless, classical work by the Sohal
and Levine groups demonstrated that in the flying muscles of
an aged population of Drosophila melanogaster, aconitase
was the only carbonylated protein in the mitochondria (146).
On the contrary, abundant proteins such as cytochrome c
remained unchanged, as observed previously by Yan et al.
(727). So, what could explain specificity? Cabiscol’s group
(90) identified a total of 179 proteins from different organ-
isms that were increasingly carbonylated during aging and
grouped them according to either their physiological function
or location. They found that 9% and 2% of the total proteins
listed were cytoplasmic and mitochondrial, respectively.
Concerning their physiological function, 11% were HSPs,
11% were involved in amino acid and protein metabolism,
and more than 20% in energy production. Another important
group was the nucleotide-binding proteins because of the
high probability of metal binding to the nucleotide (90).

In an attempt to determine if there are protein sites more
prone to carbonylation, Temple et al. (635) showed that only
two Lys residues, among 59, were carbonylated in the human
serum albumin when the protein was challenged in vitro with
ascorbate/Fe3+. However, when challenged with hypo-
chlorous acid (HOCl), five Lys residues were modified.
These data suggested that carbonylation is selective to some
structural features and dependent on the oxidative species. In
agreement, Maisonneuve et al. (399) reported that protein
carbonylation should be a predictable process since Arg-Lys-
Pro-Tyr-rich sequences are the main carbonylatable sites.
Amazingly, the abundance of these sites is related to protein
function since a high percentage of proteins containing car-
bonylatable sites were found to be involved in translation,
ribosomal structure, energy production, and nucleotide
transport.

The increased application of MS analysis and proteomic
approaches for identifying oxidative modifications in pro-
teins is expected to reveal additional information on the
susceptibility and specificity of protein carbonylation.

4. Pathologies associated with protein carbonyla-
tion. Although the association of protein carbonylation with
degenerative processes was proposed based on its prevalence
during aging, very few reports are presented in the literature
regarding human aging (4, 228, 459). Increased protein car-
bonylation in aging might be a marker as its production de-
pends on the decreased antioxidant defense and decreased
proteolysis. There have been discussions about whether
protein carbonylation is the cause of senescence or merely an
aging diagnostic marker. These possibilities came from some
studies showing that protein carbonylation is (i) increased in
species with short life expectancies [e.g., crawler; (597)]; (ii)
increased in nonculturable cell populations of E. coli when
compared with culturable cells (168); and (iii) decreased in
the mitochondria of mice submitted to caloric restriction
(356).

In the present decade, there are many reviews relating
increased and/or specific protein carbonylation to a broad
spectrum of human pathologies, including diabetes and
obesity (270, 558), skeletal muscle dysfunction (38), ob-
structive pulmonary disease (765), cardiovascular diseases
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(641, 675), chronic kidney disease (658), NDs (239), and
hepatocellular carcinoma (228). The majority of the deter-
minations of protein carbonyl levels in those studies were
performed in the plasma using different carbonyl detection
techniques. Some of these studies established a correlation
between the pathology and the pool of carbonylated proteins.
For example, Bollineni et al. (65) examined the plasma of
lean and obese individuals with or without type 2 diabetes
(five individuals per group). They identified 18 carbonylated
proteins in the plasma of the diabetic group. Those proteins
were not resident plasma proteins but from other sources.
Although the study demonstrated that protein oxidation un-
derlies this pathological condition, the presence of the same
nonoxidized protein in the plasma had already been linked to
type 2 diabetes, obesity, and metabolic diseases. Therefore,
their oxidation would not be a marker for these conditions
unless it was a determinant for their occurrence in the plasma.
Zinellu et al. (765) reviewed studies centered on determining
plasma protein carbonyls in patients with chronic obstructive
pulmonary disease (COPD). They concluded that one study,
out of 16, found a positive correlation between increased
carbonyl proteins and COPD. Some of the studies found that
sometimes, but not always, plasma carbonyl proteins proceed
in parallel with disease progression. An extended review by
Tucker et al. (658) on chronic kidney diseases reports that

protein carbonyls increase with disease progression. Since
protein carbonyls increase in parallel with the severity of the
diseases, it is plausible that protein carbonyls could be used as
markers for tracking disease progression. In addition, the
levels of carbonyl proteins decrease after renal transplanta-
tion and l-carnitine supplementation. However, none of these
studies identified the proteins prone to carbonyl modification.

In summary, carbonylated proteins are present in patho-
logical processes, but no specific proteins are associated with
those conditions.

B. Carbonyl-driven protein modification: common
chemical mechanisms of protein glycation
and modification through by-products of lipid peroxidation

Reactive carbonyl species—aldehydes and ketones—
derived from the aerobic oxidation of lipids and oxidized and
nonoxidized carbohydrates in cells are reportedly capable of
conjugating with amino and thiol groups of proteins. The
starting point of the target chemical change is the generation
of adducts, bearing –C = N– (imine, Schiff base) groups or C–
S–C (thioether) bonds, by nucleophilic attack of amino or
thiol groups of proteins to carbonyl moieties originated from
either intact or oxidized carbohydrates and lipids. Further-
more, similar 1,2-additions of protein basic amino acids (Lys,

FIG. 2. Representative mechanisms of protein glycation. (A) Formation of pentosidine, Amadori and Maillard products
from open hexoses. (B) Michael-type adducts form from a,b-unsaturated compounds also originated from sugars. (C)
Mutarotation equilibrium is responsible for the formation of open hexoses. Color images are available online.
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Arg, His) to carbonyls give rise to stable products, including
the so-called Amadori and Maillard products derived from
a-hydroxyaldehydes, a-dicarbonyls, and aldoses, namely
advanced glycation end-products (AGEs) (591, 609, 610). In
addition, highly reactive methylglyoxal (a-oxopropanal),
originated as a by-product of glucose and fructose catabo-
lism, is a putative precursor of AGEs in diabetes, cardio-
vascular diseases, and neuropathies (414, 530).

Conversely, protein sulfhydryl groups are prone to 1,2-
addition to either aldehyde fragments, derived from free
radical-mediated oxidation of proteins, or to malondialdehyde
(MDA), a-hydroxy aldehydes, and a,b-unsaturated aldehydes
generated by lipid peroxidation yielding Michael-like adducts
(1,4-addition), collectively called advanced lipoxidation end-
products (ALEs) (490, 680) (Fig. 2).

Aldehydes are more reactive to nucleophilic addition than
the corresponding ketones. This increased activity is due to
the alkyl groups of ketones having higher steric hindrance in
the transition of sp2-carbonyl to sp-saturated carbon. More-
over, since sp2-carbonyls are more electronegative than sp-
alkyl groups, alkyl groups of ketones have a higher inductive
electron-donating effect than the hydrogens of aldehydes.
Short-chain alkanals, b-alkenals, a-oxoaldehydes and other
a-dicarbonyls, a-hydroxyketones, b-ketoacids and -esters,
b-diketones, and a-aminoketones whose MCOs generate

a-dicarbonyls are among the most reactive and better-studied
aldehydes and ketones and must be highlighted (Fig. 3).
These compounds undergo biochemically relevant nucleo-
philic addition with sulfhydryl and amino groups of proteins
and nucleobases.

To construct a ruler to predict the reactivity of in vivo
carbonyl metabolites with surface protein amino acids, that
is, their electrophilicity, rate constants of the nucleophilic
addition of peroxynitrite in phosphate buffer pH 7.2–7.4 at
room temperature obtained in vitro may provide exciting
and eventually helpful comparative parameters (411–413).
Table 1 lists the reaction kinetics of several sugar and fatty
acid oxidized carbonyl products with proteins and nucleo-
bases in ascending order. Accordingly, acetone (a ketone
body) is the poorest electrophile due to the inductive static
effects of two methyl groups and steric hindrance.

The increasing reactivity of the acetaldehyde (ethanal),
propanal, and isobutanal is listed here to corroborate the
higher electrophilicity of aldehydes compared with ketones
and also to attest to the increasing carbonyl deactivation
owing to their substituent bulkiness. Acrolein (ACR) is an
a,b-unsaturated aldehyde prone to Michael-type 1,4-additions
of nucleophiles; the ene conjugation with the carbonyl
group exacerbates its reactivity. Finally, the a-dicarbonyls
diacetyl (dimethylglyoxal, 2,3-butanedione), methylglyoxal,

FIG. 3. Biochemically relevant aldehydes and ketones have been shown to or are expected to form AGEs and ALEs.
AGEs, advanced glycation end-products; ALEs, advanced lipoxidation end-products.
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and glyoxal itself (ethanediol), for the arguments stated
above, are, respectively, one, two, and three orders of
magnitude higher than that of alkanals; the electron-
withdrawing effect of a vicinal carbonyl group in the
glyoxals increases the partial positive charge of the carbonyl
side, thus facilitating a nucleophilic attack of a protein or an
amino group of DNA.

As expected, buried amino acid residues would be much
less accessible to the attack by sugars or low-molecular-
weight electrophiles (Table 1). Accordingly, Gao and Wang
(216) found that the electrophile modified only four solvent-
accessed Arg residues out of six using methylglyoxal-challenged
hemoglobin. The authors suggested that methylglyoxal-
triggered site-specific modifications of hemoglobin could be
exploited as a biomarker for clinical applications.

1. Protein glycation. Protein glycation is intrinsically as-
sociated with high glucose levels in the blood and tissues. At
first glance, protein glycation is not necessarily associated with
oxidative mechanisms, although oxidatively modified sugars
retain similar reactivity to render Amadori end-products with
protein amino groups (Fig. 2). Nonenzymatic protein glycation
occurs when sugars condense with protein amino groups
forming a Schiff’s base, which rearranges to form an Amadori
product (Fig. 2). Amadori products further react with amino
groups of other protein molecules to generate Maillard prod-
ucts, also known as AGEs. Among the reported AGEs, pen-
tosidines that originate from Arg and Lys, hydroimidazolones
from Arg, and other biomarkers derived from Arg, Lys, and
Cys are of bioanalytical interest and can be quantitatively
measured (529). Pentosidines are fluorescent Lys-Arg inter-
molecular protein crosslinks and sequentially oxidized, thus
referred to as a glycoxidation process. They accumulate in
bone and connective tissues (573) and are used as urine and
blood biomarkers of age-related diseases such as osteoporosis
and diabetes (560, 575) (Fig. 2). AGEs were first described
in vivo as a modification of long-lived proteins, such as he-
moglobin, lysozyme, collagen, elastase, and alkaline phos-
phatase (486). Indeed, glycated hemoglobin is a suitable
marker for high glucose levels. AGEs are also formed from

exogenous sources, such as cigarette smoking (477) and food
(200).

The relationship between protein glycation and patholo-
gies associated with protein-based oxidative stress relies on
the fact that protein glycation is involved in protein aggre-
gation and delayed oxidized protein degradation since AGEs
may block the entry of the proteasomal core (486). AGEs are
recognized by a cell surface type I receptor belonging to the
immunoglobulin superfamily (471), which implies a set of
metabolic interferences, including interactions with oxida-
tive and nitrosoactive stress (486). Nevertheless, it is out of
the scope of the present review to cover the rich literature on
AGEs, as it is not a direct consequence of protein modifica-
tion through by-products of oxidative mechanisms. However,
their participation in oxidative stress should not be ruled out.
A search in the PubMed platform (April/2020) using Protein
glycation as the keyword returned 15,000 total publications
that included 2800 reviews. For more information, we advise
readers to search for specific literature on AGE-associated
pathologies.

2. Adducts formed with by-products of lipid perox-
idation. Intracellular intermediates of lipid peroxidation,
such as lipid hydroperoxides, can be formed either by enzy-
matic or nonenzymatic mechanisms (105, 230, 479). Lipid
hydroperoxides are formed by reactions involving lipox-
ygenases, cyclooxygenases, and cytochrome P450. They are
efficiently reduced to the corresponding alcohols by the an-
tioxidant enzymes, glutathione peroxidases (Gpxs), and
peroxiredoxins (Prxs). While certain types of lipid oxidation
products exert beneficial functions, acting as ligands and
modulators of cellular signaling processes, the overproduc-
tion of lipid hydroperoxides and/or their inefficient reduction
can promote deleterious effects by increasing the production
of reactive lipid by-products.

The uncontrolled production of lipid hydroperoxides is
associated with the induction of cell death (e.g., ferroptosis)
(202), inflammation, and several pathologies, such as car-
diovascular and NDs. Notably, lipid hydroperoxides can re-
act with metal ions or other one-electron oxidants to produce
peroxyl and/or alkoxyl radicals in a Fenton-like reaction
(739). These radical intermediates can further propagate lipid
peroxidation, yielding various secondary reactive lipid spe-
cies known as lipid electrophiles.

Esterbauers’s group characterized several short-chain al-
dehydes, including HNE, MDA, and ACR (186). Chemical
structures of major lipid electrophiles are shown in Figure 4.
Fatty acid-derived aldehydes can be grouped by size into
short-chain (<6C), medium-chain (6–12C), and long-chain
aldehydes (>14C, e.g., hexadecenal, cyclopentenone PGs,
and isoprostanes [IsoPs], levulinaldehydes). In addition, lipid
electrophiles can be categorized into truncated oxidized
phospholipids (oxPL) and sterol-derived aldehydes (b-
hydroxy-5-oxo-5,6-secocholestan-6-al, Seco-A and its aldol
product, Seco-B).

The short-chain and medium-chain aldehydes include sev-
eral alkanals and b-alkenals (a, b-unsaturated aldehydes) pro-
duced by polyunsaturated fatty acid (PUFA) lipid peroxidation.
Moreover, various long-chain aldehydes (IsoPs and iso-
levuglandin [IsoLG]) are produced by fatty acid cyclization
reactions (427, 565), as well as from ether glycerolipids
(plasmalogens) and sphingosine-1-phosphate, by enzymatic

Table 1. Bimolecular Rate Constants (k2)

of Peroxynitrite Nucleophilic Attack on Different

Carbonyl Metabolites in Phosphate Buffer
a

Compound pH t (�C) k2 (M-1$s-1) References

Acetone 7.4 RT 4 (728)
3-methylacetylacetone 7.0 25 166 (341)
Isobutanal 7.2 25 344 (341)
Propanal 7.0 25 530 (669)
Acetaldehyde 7.4 37 680 (466)
Acrolein 7.2 25 6 · 103 (236)
Diacetyl 7.2 RT 1.0–1.4 · 104 (411, 728)
Methylglyoxal 7.2 25 ‡1 · 105 (413)
Glyoxal >1 · 106 (412)

a100–125 mM.
For comparison: the k2 value for peroxynitrite addition to CO2 is

in the range 3–6 · 104 M-1$s-1 (162), which prevails over the
reaction with carbonyl additions, except for the highly reactive a-
oxoaldehydes under high intracellular CO2 cellular concentrations,
for example, plasma concentrations (162).

RT, room temperature.
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and nonenzymatic oxidation mechanisms (554). These lipid
electrophiles react with nucleophilic groups in biomolecules
such as proteins to produce lipoxidation adducts, which is re-
viewed in the next sections.

a. Aldehydic protein modification. Although the mod-
ification of proteins by aldehydes and its interference with
protein function have been reported since the 1940s (data-
base: PubMed; keywords: aldehydes AND proteins), evi-
dence that aldehydic products of lipid peroxidation could
affect protein function was first reported by studies with rat
liver microsomal fractions (45, 195). The first detected pro-
tein adduct with lipid peroxidation by-products was de-
scribed in liver microsomal proteins (46) and upon the
formation of low-density lipoprotein (LDL)-HNE adducts
(317). Since then, there have been thousands of reports in the
literature on this subject. In fact, there has been an almost 2.5-
fold increase in the number of publications in the present
decade, with many investigators currently dedicated to un-
raveling the meaning of protein adducts with aldehydic by-
products of lipid peroxidation in physiological and patho-
logical processes (224, 747).

(1) Protein-HNE adducts. HNE is probably the most
studied lipid by-product [highlighted in a special issue ded-
icated to HNE (519)]. It is highly reactive toward nucleo-
philic residues in proteins. As shown in Figures 2 and 5, the
mechanisms by which HNE modifies proteins are almost
exclusively centered on Michael addition to Lys, Cys, and
His protein residues. Besides the chemical possibility of
forming Schiff’s bases where the HNE aldehyde group reacts
with the e-amine group of protein Lys residues, it is estimated
that more than 99% of HNE-modified proteins result from
Michael addition. As mentioned above, since a carbonyl

group in the HNE tail is preserved in proteins modified by the
Michael addition, these products are usually classified as
carbonyl-proteins.

In recent years, proteomic approaches have been used to
uncover HNE-modified proteins (732, 755). Data reported
in these studies are based on cells incubated with HNE
(732) and extracted cellular proteins incubated with 4-HNE
(755). The primary importance of these studies was (i) to
identify the proteins that are potentially prone to HNE
modification, (ii) to specify the protein motif/sequences
that are more likely to be modified residues, (iii) to inves-
tigate the stability of the modified protein, and (iv) to dis-
cover the most common residues undergoing modification.
The main conclusions from these studies are that (i) 400 to
600 proteins were found modified by HNE, (ii) the modi-
fication was only through the Michael addition mechanism,
(iii) Cys and His residues were the most common modifi-
cation sites, and (iv) in one study, aspartic acid was found to
be enriched around both modified His and Cys residues
(755), while in another study, Lys was found in the vicinity
of Cys-modified residues (732).

Regarding the stability of the modified protein, when cells
incubated with HNE were allowed to recover for 4 h, 87% of
the quantifiable HNE adducts were reduced by twofold (732).
However, the study found that among four modified-Cys
residues in the FAM120A protein, one of them was still
modified after the 4-h recovery, suggesting an unknown in-
tracellular repair mechanism. Indeed, proteasomal inhibition
did not affect the turnover of the HNE-modified proteins. The
modified proteins found in those studies are localized in al-
most all intracellular compartments and the extracellular
exosome. Moreover, they are functionally related to RNA
processing, protein ubiquitination, and cell cycle, among
others. On the contrary, when six liver cell lines without any

FIG. 4. Structure of short-, medium-, and long-chain aldehydes, truncated oxidized phospholipids, and sterol
aldehydes. POVPC, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-phosphocholine.
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treatment were analyzed for the pool of HNE-modified pro-
teins, only a few proteins were found modified, 14 at Cys
residues, 14 at His, and 5 at Lys (755).

(2) Protein-HNE adducts as markers of pathophysiologi-
cal processes. Only 8% of the HNE produced inside cells
bind to proteins (586). The proteins potentially modified by
HNE found in human samples are mainly transcription factors
of pathways involved in the antioxidant response, inflamma-
tion, cell cycle, protein synthesis, and apoptosis (104, 224).
The concept of a biomarker as an indicator of diseases or their
progress cannot yet be assigned to HNE-modified proteins. For
this, many studies of epidemiological nature are necessary.

Nonetheless, there are many reports in the literature
pointing in that direction. One important observation is that
while protein-HNE adducts are relatively vulnerable to
degradation, they are more stable than HNE itself. Moreover,
proteins in the extracellular compartments are much less
exposed to proteases. Notably, in recent years, many reviews
highlighting protein-HNE adducts in human pathological
processes have been published. Table 2 summarizes human
diseases where protein-HNE adducts are reported either as a
possible biomarker or a contributing factor in the develop-
ment of the investigated pathological processes.

(3) Protein-HNE adducts and signaling. One crucial
question about oxidatively modified proteins is whether they
function as signaling or regulatory biomolecules. Herein, we
define a regulatory role as a process where the protein is
modified so that its function is changed to modulate or cope
with the process it is engaged in, discussed in Section IV. On
the contrary, a signaling process implies the participation of
the modified protein in promoting a cellular response to a
given stimulus (e.g., antioxidant response, gene transcription,
and others). In the case of protein-HNE adducts, the most
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Table 2. Human Pathological Conditions

Associated with Protein-HNE Adducts

Disease References

Aging Reviewed in Barrera et al. (39)
Alcoholic cirrhosis

and autoimmune
liver diseases

(449); reviewed in Barrera et al. (39)

Atherosclerosis (64, 219, 317, 350, 472)
Autoimmune

diseases
(246, 648); reviewed

in Barrera et al. (39)
and Kurien et al. (352)

AD (510, 542, 637)
Cardiovascular

disease
Reviewed in Afonso and Spickett (3)

Chronic
inflammatory
diseases

Reviewed in Barrera et al. (39)

Type 2 diabetes (650)
Gastrointestinal

diseases
(465)

Neurodegenerative
diseases

Reviewed in Barnham et al. (37),
Barrera et al. (39),
and Jomova et al. (312)

Obesity Reviewed in Cohen et al. (126)
Tumors Reviewed in Barrera et al. (39)

HNE, 4-hydroxy-2-nonenal; AD, Alzheimer’s disease.
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widely reported effect is the participation of these adducts in
cell signaling involving the activation of kinases and tran-
scription factors related to redox homeostasis (Nrf2, NF-jB,
AP-1, PPAR) (28, 389, 751).

One of the most explored mechanisms is the modulation of
the mitogen-activated protein kinase (MAPK) family, in-
cluding the well-known ERK, JNK, and p38-MAPK sub-
families. The mechanism by which members of the MAPK
signaling cascade are activated is not well known. Data show
that protective or pathological functions are dependent on
HNE concentrations used to promote cellular responses ei-
ther to cope with oxidative stress or to induce apoptosis.
Physiological HNE concentration is estimated to be in the
range of 0.28–0.68 lM in normal human plasma, while
concentrations up to *5 lM can be found in rat hepatocytes
(751). Most of the signaling effects have been observed in
studies using low physiological doses of HNE (<1 lM),
whereas high supraphysiological doses (>10–20 lM) have
been shown to induce processes such as autophagy, senes-
cence, and cell cycle arrest (28, 751).

Other signaling cascades affected by protein-HNE adducts
involve protein kinase C isoforms (PKCs), a family of serine/
threonine kinases phosphorylating various targets and play-
ing an essential role in cell proliferation, differentiation, and
tumorigenesis processes (28). The selectivity of HNE with
the various PKC isoforms (conventional: a, bI, bII, c; novel:
d, e, g, h; and atypical: f, k/s) depends on HNE levels, which
is indicative of differential effects based on the reactivity of
the isoforms for HNE (114). Conventional and novel PKCs
are lipid-sensitive (modulated by diacylglycerol levels) and
calcium-dependent isoforms. HNE can activate PKC indi-
rectly by inducing phospholipase C activation, which cleaves
phosphatidylinositol-4,5-bisphosphate to generate inositol
triphosphate and diacylglycerol. In contrast, HNE PKC in-
hibitory effects are thought to be mediated by direct adduc-
tion with the protein. However, the underlying mechanism of
HNE selectivity toward different PKC isoforms remains
unknown.

Among transcription factors directly or indirectly affected
by HNE are those related to genes of the antioxidant re-
sponse, protein folding, inflammation, and cell cycle (389).
At low HNE concentrations, protein-HNE adduct formation
modulates gene transcription, allowing cells to recover from
moderate oxidative stress. An example is the Keap1-HNE
adduct, which prevents the Nrf2-Keap1 complex from
forming, thereby allowing the translocation of Nrf2 to the
nucleus to induce the transcription of antioxidant and de-
toxification enzymes (heme oxygenase-1, Prx, thioredoxin
[Trx], Gpx, glutathione S-transferase [GST], etc.). The reg-
ulation of Nrf2 signaling involves multiple signaling mole-
cules, including Keap1, PKCs, and p21, among others.
Moreover, Keap1 is equipped with multiple cysteine-based
sensors that are modulated by various types of endogenous/
exogenous stressors, including H2O2 and electrophiles such
as HNE (625). Details on the sensing mechanisms of the
Nrf2-Keap1 system toward different electrophiles and oxi-
dants are still under investigation.

HNE is metabolized through enzymatic detoxification
systems, namely, Phase I and Phase II metabolic pathways.
As a result of both metabolic pathways, the percentage of
HNE found on proteins was reported to be around 5% of the
total HNE in rat liver and brain (26, 433, 751). HNE is en-

zymatically modified through glutathione (GSH) conjugation
as a substrate of GSTs (Phase II). Hence, GSTs function as
significant determinants of cellular levels of HNE and play a
role in the regulation of the HNE-protein adduct formation.
Another important class of enzymes in HNE detoxification is
the family of aldehyde dehydrogenases (ALDHs), which
converts HNE to 4-hydroxy-2-nonenoic acid. The ALDHs
have been implicated in a series of pathological conditions as
protective players against HNE toxicity (433). Experimental
approaches in animal models, by ALDH2 gene deletion or
ALDH2 drug activation, have confirmed and given clues
about the involvement of protein-HNE adducts in many pa-
thologies, such as neurodegeneration, heart diseases, ath-
erosclerosis and, nonalcoholic fatty liver diseases (433).
NADH-dependent alcohol dehydrogenase and NAD(P)H-
dependent aldo-keto reductase have also been shown to de-
toxify HNE by reducing it to 1,4-dihydroxy-2-nonene (751).

(4) MDA- and acrolein-protein adducts. MDA is gener-
ated as a by-product of nonenzymatic lipid peroxidation and a
side product that arises during thromboxane A2 biosynthesis
(28). MDA concentrations in human plasma have been found
in the range of 0.36 to *15 lM (599). MDA reactivity is
based on its electrophilic nature, thereby reacting with nu-
cleophiles such as the protein amine residues (Lys, Arg, His)
to generate Schiff’s base adducts (28). MDA reacts in vivo
with primary protein amines to form the N-(2-propenal) Lys
or Lys-Lys crosslinks (663). These adducts are also referred
to as advanced lipoxidation end-products (ALEs; Section
II.B; Fig. 2). MDA can also react with DNA and proteins, and
in some cases, mediate the formation of DNA-protein
crosslinks (682). The mouse apoB-100 fraction of oxidized
LDL was one of the first protein-MDA adducts detected
(488). These adducts are found in almost all the pathologies
associated with HNE-protein adduct formation (Table 1)
(28).

ACR is an unsaturated aldehyde and the strongest elec-
trophile of all reactive aldehydes and consequently present-
ing the highest reactivity with nucleophilic residues in
proteins (Cys, His, and Lys residues) (186). The FDP-Lys
adduct (3-formyl-3,4-dehydropiperidino-lysine) is a stable
adduct that was first detected in oxidized LDL (664). Studies
by Esterbauer showed that ACR reacts 110–150 times faster
with GSH than HNE (186). Conjugation to thiols can
occur spontaneously or be catalyzed by GST isoenzymes
(27). GSH conjugation and conversion to mercapturic
acid metabolites (2-carboxymethylmercapturic acid and 3-
hydroxypropylmercapturic acid, as a major urinary product)
in the liver and kidney are the main routes for ACR elimi-
nation through urine. ACR is produced: (i) as an end product
of lipoperoxidation, (ii) by myeloperoxidase (MPO) from
threonine at sites of inflammation, (iii) from protamine oxi-
dation, and also (iv) as a metabolite of the anticancer drug
cyclophosphamide (613). Human exposure to ACR not only
occurs through metabolism and endogenous lipid peroxida-
tion but also by the oral ingestion of food (e.g., cooking oil)
and water, as well as through respiratory (cigarette smoke,
automobile exhaust) and dermal routes (432).

Increased protein-ACR adduct concentrations have been
reported in many human pathological conditions, such as
cardiovascular diseases, diabetes, spinal cord injury, alco-
holic liver disease, photo-damaged skin, and others.
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Furthermore, protein-ACR adducts are suggested to play a
role in the development of many pathological conditions (83,
432). However, the causality and mechanisms by which ACR
adducts induce each pathological condition remain to be
determined. The pathological association of ACR with vari-
ous diseases has been based on detecting higher levels of
ACR adducts in sera of patients (83). At the experimental
level, ACR has shown to induce pro- or anti-inflammatory
effects, depending on the ACR dose and exposure duration
(83, 432). ACR (up to 30 lM) caused suppression of innate
macrophage responses, and this effect was causally corre-
lated to ACR adduction and inhibition of JNK2 and NF-jB
(286). Moreover, ACR treatment has shown to induce en-
doplasmic reticulum (ER) stress, impair protein biosynthesis
and gene transcription, modulate membrane permeability,
and increase apoptosis (432). As described in a myocardial
ischemic injury model, ACR forms adducts with the mito-
chondrial PKCe leading to mitochondrial dysfunction (691).
Besides, ACR high reactivity with thiol proteins impairs
critical antioxidant systems based on the protein thiol catal-
ysis by causing GSH depletion (432).

(5) Oxysterol protein adducts. Oxysterols are oxygen-
ated derivatives of steroids that are formed by enzymatic and
nonenzymatic pathways. The most abundant steroid in
mammalian cells is cholesterol, playing essential roles in
membrane structure and signaling. The enzymatic pathway is
responsible for cholesterol hydroxylation and its conversion
to bile acids and steroidal hormones (458). Since it is un-
saturated, cholesterol is oxidized nonenzymatically by free
radicals, singlet oxygen, and ozone. These reactions produce
oxysterol containing hydroperoxy, hydroxy, ketone, epoxide,
and aldehydic groups (171, 595, 764). Importantly, secosterol
aldehydes (SecoA and SecoB) are electrophilic oxysterols
produced in the reaction of cholesterol with ozone (704),
singlet oxygen (643, 667), and free radicals (764). Secosterol
aldehydes have been detected in biological samples, includ-
ing the human brain (66) and atherosclerotic tissues (703),
and have been implicated in the pathogenesis of cardiovas-
cular and NDs. Concentrations of secosterol aldehydes in
systemic circulation were found to be *30 nM under basal
conditions and *200 nM in patients with inflammatory ar-
tery disease (705).

Secosterol aldehydes can modify several proteins leading
to misfolding and aggregation. They have been shown to
accelerate the in vitro amyloidogenesis of b-amyloid pep-
tides (Ab 1–40 and 1–42), the a-synuclein fibrillation (66),
and SOD1 aggregation (143, 144). These modifications were
hypothesized to favor the formation of neurotoxic protein
aggregates linked to Alzheimer’s, Parkinson’s, and amyo-
trophic lateral sclerosis. Ab modification occurred by Schiff
base formation with basic amino acid residues, specifically
Lys 16 and 28, and the N-terminal group of Asp 1 (670).
Similar adduct formation has been observed with bovine
myelin basic protein (bMBP) (138). Conformational changes
and agglomeration of this protein have been attributed to the
covalent attachment of SecoB, leading to increased exposure
of the peptide domain V86-T98, which is related to the im-
munological reaction, and decreased exposure of the F42 and
F4 proteolytic regions, which lead to the cleavage of bMBP
(138). Secosterol aldehydes also form Schiff base adducts
with Lys residues located in loop VII (electrostatic loop) and

nearby the dimer interface in apoSOD1, enhancing its pro-
pensity to aggregate (143). Notably, apoSOD1 aggregation
was dramatically increased by the hydrophobic sterol alde-
hydes and not by less hydrophobic aldehydes, HNE or
4-hydroxy-2-hexenal (HHE), indicating that aldehyde hy-
drophobicity critically affects protein aggregation (144).

A study evaluating the reactivity of secosterol aldehydes in
human atherosclerotic tissue observed that this aldehyde in-
duces the formation of apolipoprotein C-II (apoC-II) amyloid
fibers in vitro (615). Notably, macrophages secrete apoC-II in
the atherosclerotic process, and its fibrillation is directly re-
lated to plaque formation in the disease (615). Of note, se-
costerol aldehydes also inhibited nitric oxide synthase
(NOS), which may contribute to the development of vascular
and NDs (355). The inhibition mechanism seems to be related
to the blockade of the enzyme binding site with its cofactor
calmodulin through the formation of Schiff bases with Lys
residues present in this region (355). Furthermore, the role of
secosterol aldehydes in cancer-related mechanisms was in-
vestigated by Nieva et al. (478). They have shown that se-
costerol aldehydes, HNE and HHE, form adducts with Lys
residues on wild-type p53 protein. However, similarly to the
apoSOD1 study (143, 144), only the hydrophobic secosterol
aldehydes induced p53 amyloidogenesis, while the more
polar aldehydes, HNE and HHE, were not able to induce
protein aggregation (478).

Overall, studies reviewed in this section highlight the po-
tential role of electrophilic oxysterols in protein modification.
Being highly hydrophobic, sterol aldehydes derived from
cholesterol dramatically affect the conformational stability of
the protein to which they are bound. Further in vivo studies
are required to clarify the importance of oxysterol-induced
protein modifications and their potential role in cancer, and
cardiovascular and NDs.

(6) Protein adducts with products of PUFA cycliza-
tion. Arachidonoyl-containing lipids are oxidized by free
radical-catalyzed peroxidation producing a series of prosta-
glandin F2-like compounds known as IsoP (447), which are
important modulators of inflammatory signaling (555). Al-
though some classes of IsoPs undergo Michael addition re-
actions with protein thiol groups, no protein-IsoP adducts
have been identified. Presently, the only evidence of protein-
IsoP adducts comes from the direct inhibition of IKK in a
cellular model, where the biosynthesis of PGD2 was induced,
which subsequently increased IsoP, a metabolite of PGD2
levels. As a result, NF-jB was activated, and the proin-
flammatory response ensued (557).

Levuglandin (LG) and IsoLG derivatives are acyclic c-
ketoaldehydes derivatives (levulinaldehydes) produced from
the spontaneous rearrangement of arachidonate endoperox-
ide intermediates, prostaglandin H2 and H2-IsoP, generated
through cyclooxygenase and free radical pathways, respec-
tively. Of note, the cyclooxygenase pathway produces two
levulinaldehyde stereoisomers, the LGE2 and LGD2, while
the free radical pathway generates several isoLG stereo and
regio-isomers (563, 565). The levulinaldehydes produced by
the free radical pathway are also referred to as ‘‘isoketals
(IsoK)’’ to distinguish them from the enzymatic products.
However, chemically they are the same group of compounds,
and the IsoLG nomenclature is used to designate both of
them. Of note, IsoLGs have never been isolated from
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biological sources, most likely because of their high reac-
tivity toward biomolecules (half-life of *2 min). Notably,
IsoLGs have been reported to react approximately two orders
of magnitude faster than HNE or MDA (76).

Immune assays have detected protein-IsoLG adducts in
human samples, such as plasma, brain, and meningeal vessels
(566). Protein–IsoLG adducts have also been detected by
liquid chromatography tandem mass spectrometry (LC-MS/
MS) (154, 737). Using this approach, IsoLF-Lys adducts in
CYP27A1, a sterol C27-hydroxylase, have been identified in
the human retina. Protein-IsoLG adducts have been impli-
cated in several pathological conditions, such as alcoholic
liver disease, Alzheimer’s disease (AD), age-related macular
degeneration, atherosclerosis, cardiac arrhythmias, cancer,
end-stage renal disease, glaucoma, multiple sclerosis, and
thrombosis (565). As discussed below, protein-IsoLG-
modified adducts are supposed to be important proteasomal
inhibitors (565). The so-called neuroketals are formed anal-
ogously to IsoLG through the oxidation of docosahexanoic
acid, a PUFA highly enriched in the brain (51).

IsoLGs have a common c-ketoaldehyde core linked to two
different hydrocarbon chains. The c-ketoaldehyde core reacts
with the e-amine group of protein Lys residues and amino
groups in nucleic acids and aminophospholipids (565). The
reaction mechanism proceeds through the formation of an
imine adduct (Schiff’s base), which irreversibly cyclizes to a
pyrrole adduct (76). In the presence of oxygen, the pyrrole
adduct is converted over time into highly stable lactam ad-
ducts, as well as hydroxylactam adducts (76). Alternatively,
the pyrrole adduct can also react with other nucleophiles such
as thiols or other pyrroles to produce protein/protein and
protein-DNA crosslinking (55). Two different structures for
the protein/protein crosslinks have been proposed, the bis-
aminal and the pyrrole/pyrrole crosslinks.

Membrane proteins are vulnerable targets for IsoLG
modification, leading to the formation of phospholipid
IsoLG-protein complexes, which can impair the function of
ion channels, enzymes, and receptors (75). Sirtuin, a deace-
tylase enzyme located very close to membrane lipids, is prone
to IsoLG modification, reducing its activity and increasing
the overall acetylated protein levels. The imbalance of pro-
tein deacetylation affects protein/protein interaction as
acetylation alters electrostatic interactions and hydrogen
bond networks (476), ultimately interfering with signal
transduction. The degradation of protein-IsoLG adducts by
the proteasome was compromised because adducted proteins
are not suitable substrates, and the tentative degradation re-
sults in proteasomal inhibition (155).

In conclusion, increased levels of protein-IsoLG adducts
are observed in many human diseases, such as atherosclero-
sis, myocardial infarction, hypertension, and AD (224).
However, whether IsoLG adducts contribute to the patho-
genesis of these diseases remains to be determined. Evidence
supporting a potential role for these adducts on the devel-
opment of pathological conditions comes from data where
cell treatment with exogenous IsoLG induces a variety of
relevant responses, including increased macrophage uptake
of LDL, activation of platelet aggregation, inhibition of so-
dium and potassium channels, and inhibition of the protea-
some (153). Notably, the presence of IsoLG adducts is
increased in patients with atherosclerosis (564). Moreover,
IsoLG-protein adducts were found to be elevated in HDL

derived from patients with hypercholesterolemia, shedding
light on the potential role of HDL-IsoLG adducts in cardio-
vascular disease (417).

(7) Methods for detecting aldehydic protein ad-
ducts. MDA was the first by-product of lipid peroxidation
to be measured in biological samples as a free aldehyde
(342). Aldehydic protein-adducts formed with MDA, HNE,
and ACR, and other aldehydes have been evaluated using
different techniques, including immune labeling/im-
munostaining (747) and mass spectrometric methods (MS).
Various polyclonal and monoclonal antibodies have been
raised against aldehyde-protein adducts and are now com-
mercially available (324, 326, 489, 649, 665, 685). These
antibodies have been successfully applied for the detection,
quantification, and tissue distribution of lipid aldehydes, such
as HNE, in oxidatively modified LDL particles, ischemic
heart, and neurodegenerative disorders [reviewed by (604)].

Despite the usefulness of immunoassays, this technique
does not yield information about the precise identity of the
modified proteins or structural details about adduction sites.
Thus, high-resolution tandem mass spectrometry (MS/MS)
analysis has emerged as the gold standard method for char-
acterizing protein posttranslational modifications (PTMs)
(10, 673). Proteomic methods commonly used to characterize
protein-aldehyde adducts can be divided into ‘‘gel-based’’
and ‘‘gel-free’’ approaches (397). In ‘‘gel-based’’ assays,
proteins are separated by one- or bidimensional gel electro-
phoresis before digestion by proteases, and in the ‘‘gel-free’’
approach, proteins are digested directly in solution. The
peptide mixture is then analyzed by MS and identified by
peptide mass fingerprinting (PMF) or by MS/MS. In PMF,
intact peptide masses are searched against a database con-
taining in silico digested proteins. In MS/MS analysis, pep-
tides are fragmented, and the collection of fragment ions is
used for peptide sequencing. The MS/MS proteomic analysis
is often coupled to nanoflow liquid chromatography (LC-MS/
MS), which greatly increases the coverage and precision
necessary for detection and identification of modified pro-
teins

Butterfield et al. have pioneered gel-based redox pro-
teomics to identify oxidatively modified proteins in NDs
(88). The gel-free LC-MS/MS strategy is the most commonly
used approach for identifying aldehyde-protein adducts (29).
The identification of adducted or oxidized proteins is based
on the analysis of peptide mass shifts that can be searched
manually or using automated computational tools (756).

Detection and identification of modified proteins can be
especially challenging in complex mixtures containing
thousands of proteins. The analytical complexity is increased
due to the great diversity of targets and the extremely low
concentrations of the lipid electrophiles (pmol-nmol/mg
protein) and their respective protein adducts (572). For this
reason, enrichment strategies have been used before MS
analysis (124, 678, 689, 732, 755). Such chemoproteomic
methods include aldehyde analogues bearing terminal azide
or alkyne functionalities, such as azido- or alkynyl-HNE,
subsequently captured by click reactions and enriched over
avidin-based matrices (302). Indeed, combinations of click
chemistry, streptavidin-based enrichment, and MS analysis
have been successfully applied to identify sets of target
proteins for alkynyl-HNE (678) and alkynyl-ONE (622) in
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cell lines. Similar strategies based on alkynyl-labeled sterols
(631, 709) have been used to characterize the oxysterol ad-
ductome. Using alkynyl-HNE and isotopically tagged (light
12C6- and 13C6-heavy labeled) photocleavable azido-biotin
reagents, Yang et al. identified and quantified *98 alkylation
sites (86 Cys and 12 His residues) in intact RKO cells (732).
Similarly, Zhang identified and quantified 2257 HNE-
modified peptides mapping 1121 proteins in six liver cell
lines using an aminooxy labeling strategy (755).

In conclusion, quantitative analysis of protein modifica-
tions induced by lipid electrophiles and/or other oxidizing
agents is still challenging. Some accurate and high-
throughput identification/quantitation methods based on MS
analysis (2) and the use of specific tags and isotopically la-
beled compounds is now available (124, 678, 689, 732, 755).
However, there are still limitations regarding the synthesis
and availability of these specific reagents, cellular or in vivo
delivery routes, the sensitivity of the assay, and other factors.
Indeed, further developments of highly specific, sensitive,
and quantitative protein PTM analysis methods might help
solve many outstanding questions regarding protein modifi-
cation mechanisms.

(8) Aldehydic modification of serum proteins. Several
serum proteins have been shown to form protein-aldehydic
adducts (747). This section describes the structural charac-
terization of blood protein modifications induced by aldehyde
by-products derived from lipid peroxidation and discusses
their potential use as biomarkers. Other oxidative modifica-
tions involving the direct reaction of proteins with hypoha-
lous species (HOCl), singlet oxygen, and RNS (ONOO-,
NO2

�) are not discussed here. However, they can be found in
other excellent reviews (152, 171, 196, 264, 505, 616).

Since the proposal of the oxidation hypothesis of athero-
genesis, numerous studies provided ample evidence sup-
porting the involvement of oxidized LDL in atherosclerosis
(234, 470, 612, 616). Biochemical mechanisms involved in
LDL oxidation have been proposed. However, the in vivo
mechanisms and exact composition of oxidized LDL parti-
cles responsible for atherosclerosis initiation and progression
remain unclear (612). Oxidants responsible for LDL oxida-
tion have been the subject of extensive studies and debate.
Various in vitro and in vivo experiments have implicated
MPO and MPO-derived oxidants (HOCl), lipoxygenase,
NADPH oxidases, NOS, metal ions, and heme proteins in the
mechanism of atherogenic oxidized LDL particle generation
(97, 269, 401, 636). Common features observed under these
oxidative insults include the induction of lipid peroxidation,
antioxidant depletion, and the modification of apoB-100, the
main protein present in LDL particles (375).

Early studies by Esterbauer and collaborators showed that
HNE and MDA were the primary aldehydes formed during
LDL oxidation (186, 317). Antibodies raised against HNE or
MDA-modified LDL recognized oxidized forms of LDL and
epitopes in atherosclerotic lesions (250, 317, 666). Moreover,
MS analyses have provided important qualitative and quan-
titative details on sites of modifications induced by electro-
philic compounds derived from fatty acid, phospholipid, and
cholesterol oxidation on apoproteins (3). Lys and His were
the primary residues modified by the aldehydes during
copper-catalyzed LDL apoB-100 oxidation (64, 584, 666).
Quantitative analysis of hydrolyzed aldehyde-amino acid

adducts in an oxidized LDL sample by an adductomic
method developed by Uchida’s group demonstrated the
presence of 6 mol/mol of HNE-His Michael adducts and
6 mol/mol of Ne-(8-carboxyoctanoyl)-Lys adducts (584). The
latter is suggested to be formed by the reaction of 9-
oxononanoylphosphatidylcholine (also called PONPC) with
Lys residues of LDL apoB-100 (584).

Apart from modifications induced by short-chain alde-
hydes, studies point toward the relevance of lipoprotein(a)
[Lp(a)] modifications induced by oxPL in cardiovascular
diseases (61, 672). Owing to genetic, epidemiological, and
clinical studies indicating an association between elevated
Lp(a) and the risk of developing cardiovascular disease, at-
tention has been recently focused on this lipoprotein particle
(62). Lp(a) is a lipoprotein very similar to LDL in terms of
lipid composition, which contains an apo(a) glycoprotein
covalently linked to apoB-100 via a single disulfide bond.
Immunohistochemical analysis using EO6, a monoclonal
antibody that specifically recognizes oxPL-modified pro-
teins, demonstrated an accumulation of oxidized Lp(a) in
human atherosclerotic lesions (297) and plasma of patients
with cardiovascular diseases (657). MS analysis of the Lp(a)
fraction isolated from patients indicated the presence of dif-
ferent oxPL species (672). OxPLs are covalently linked to
apo(a), specifically through Lys residues located at a Kringle
domain called KIV10 (367). Remarkably, studies over the
past 15 years conducted mostly by the Tsimikas’ group (317,
365, 628, 655, 670) have provided consistent experimental
evidence demonstrating the importance of oxPL as a proin-
flammatory risk factor associated with the epidemiology of
cardiovascular disease and for Lp(a) as a major carrier of
oxidized lipids in the plasma. Moreover, epidemiological and
clinical data indicate that elevated plasma concentrations
Lp(a) in arterial lesions are probably a causal risk factor for
the development of cardiovascular diseases (61). The
mechanism by which Lp(a) induces pathological events is not
fully known.

Oxidized lipids and lipoproteins can exert protective or
adverse effects depending on the type of reactive lipid
species formed, location, tissue, cell type, and protein-
adducts formed (426). Aldehydic-protein adducts, protein
crowding, and hypoxic/anoxic environments may modulate
immune responses (352, 431). Covalent adducts formed by
lipid aldehydes (e.g., oxidized truncated phospholipid- and
MDA-adducts with protein) on the surface of oxidized li-
poproteins can act as epitopes, known as oxidation-specific
epitopes (OSEs) (57). These epitopes constitute damage-
associated molecular patterns that are recognized by pat-
tern recognition receptors (e.g., scavenger receptors and
toll-like receptors), enabling the immune system to mediate
their clearance (57). The requirement of OSEs for oxidized
LDL or apoptotic cell clearance was demonstrated by ex-
periments showing that monoclonal antibodies that bound
to the OSEs inhibited binding and degradation of oxidized
LDL by up to 91% (284). Thus, OSEs present in oxidized
LDL or apoptotic cells, either as free oxidized lipid or as
lipid-protein adducts, act as essential ligands required for
their uptake and phagocytosis. Importantly, under patho-
logical conditions, the clearance capacity of available
phagocytes is overwhelmed, and the accumulated OSEs in
damaged cells or lipoproteins trigger a condition of chronic
inflammation (57).
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In addition to LDL modifications, studies have also reported
oxidative modifications of high-density lipoproteins (HDL).
Notably, it has been shown that HDL is a primary carrier of
circulating plasma lipid hydroperoxides (74). Apolipoprotein
A-I (apoA-I) is the major protein of HDL, comprising *75%
of the protein content, modified by the lipid-derived alde-
hydes—ACR and MDA (580, 581, 651). Aldehyde-induced
alterations in HDL components have been proposed to produce
dysfunctional HDL particles that lack cardioprotective prop-
erties. ACR and MDA adduction to apoA1, one of the sig-
nificant HDL apoproteins, has been shown to potently alter its
capacity to remove cholesterol from macrophages by impair-
ing two critical steps in the ABAC1 pathway (580, 581). MS
analysis revealed that both aldehydes primarily modified Lys
residues. More recently, apoA1 was reported to be extensively
oxidatively modified within the human aorta (173). In partic-
ular, apoA1 served as a selective target for oxidative modifi-
cations by MPO-generated chlorinating and nitrating oxidants
within the artery wall (49, 581, 758). Quantitative analysis in
human atheroma showed that *20% of apoA1 within the
lesion is oxidized specifically at Trp72, forming mono-
hydroxylated Trp product (2-OH-Trp). (290). Remarkably,
oxidized apoA1 was shown to be dysfunctional and highly
enriched in atherosclerotic lesions (290). Moreover, Trp oxi-
dation in apoA1 significantly inhibits the ABCA1-dependent
cholesterol efflux acceptor activity (290, 746).

Furthermore, albumin, a highly abundant serum protein
(5–55 mg/mL, *0.6 mM), reacts with many electrophilic
metabolites (559). Albumin-HNE is increased in patients with
type 2 diabetes and alcoholic cirrhotic patients (449, 650). Sites
of Albumin-HNE adduction have been characterized ex vivo by
reacting albumin with HNE and then submitting the modified
protein to protease digestion and peptide sequencing by MS
(11, 93, 626). Some discrepant results are reported with regard
to the preferred sites of modifications. These differences are
attributed to the fact that commercially available albumins
often contain mixed disulfides at Cys34 and present consider-
able variability in terms of fatty acids and other ligands that can
alter its conformation and reactivity with electrophiles (559).
Serum albumin modifications, especially at Cys34 (pKa 6.55),
are hypothesized to serve as a potential biomarker for moni-
toring human exposure to exogenous and endogenous elec-
trophiles (461, 559) as well as a biomarker of oxidative stress
(379). Improved immunoassays combined with MS-based
analytical approaches have been used to monitor in vivo
albumin-aldehyde adduction (93, 538). Analytical strategies
include an untargeted LC-MS/MS adductomic pipeline for the
global characterization of albumin Cys34 oxidation and con-
jugation to electrophiles (241). Interestingly, a study conducted
with urate electrophiles showed an increase in albumin-urate
adducts in the plasma and synovial fluid from individuals with
gout and rheumatoid arthritis (660).

Together with albumin, hemoglobin-aldehyde adducts
represent promising blood biomarkers. Serum proteins are
herein emphasized because, based on our understanding,
investigating the presence of oxidatively modified proteins in
the serum might be a promising approach to establish bio-
markers for pathophysiological conditions and the progress
of pathologies based on epidemiological studies (see dis-
cussion below). Hemoglobin-aldehyde adducts have been
studied using several electrophiles (96), including acetalde-
hyde (614), 4-oxo-2-nonenal (740), and 2-octenal (741).

Regarding the fate of protein-aldehydic adducts, they are
easy substrates for proteasomal degradation (244). The pro-
teasome is also a notable intracellular target of modification
by aldehydes (e.g., HNE), resulting in its inhibition (203). It
has been shown that mildly crosslinked HNE-modified pro-
teins are preferentially degraded by the proteasome, espe-
cially by the 20S proteasome (20SPT). However, extensively
modified proteins can contribute to the accumulation of
modified proteins, such as in AD, in which HNE-
modification of b-amyloid peptide generates a progressively
more selective and efficient inhibition of the human 20SPT
chymotrypsin-like activity (585). Proteasome activity inhi-
bition by Ab1–40 was increased from *2% (without HNE)
to 25% with 5 lM HNE and *40% with 10 lM HNE (585).
This inhibition was correlated with the increased crosslinking
and formation of amyloid-beta oligomers induced by HNE
(585). Interestingly, molecular analysis has shown that
oligomeric forms of proteins involved in NDs (Ab, a-
synuclein, and mutant huntingtin) adopt a three-dimensional
(3D) conformation that inhibits the 20SPT through allosteric
impairment of the substrate gate in the 20S core particle,
thereby blocking protein degradation (638). In addition to
proteasomal degradation, accumulating evidence suggests
that lysosome (410) and autophagy (277) may play essential
roles in HNE-protein adduct degradation.

C. Amino acid covalent crosslinking

Protein crosslinks refer to the formation of covalent bonds
between two amino acid side chains within a single protein
subunit (intramolecular) or between two subunits of the same
protein or different proteins (intermolecular). The covalent
bond between two amino acid residues (or between two
amino acids) can be catalyzed by enzymes or occur through
spontaneous chemical reactions. The formation of crosslinks
does not always occur through oxidative processes, but when
it does, the oxidation may occur by two- or one-electron
mechanisms (252). For instance, both of these oxidative
mechanisms may produce the disulfide bond (-S-S-) from
Cys residues, resulting in different biological responses. The
disulfide crosslink is the most investigated protein/protein
crosslink and has structural (115) and signaling functions (see
Section III). In these cases, specific enzymes catalyze
crosslink formation, such as protein disulfide isomerases
(PDIs) (357, 708) and Prxs (474, 550). Other specific en-
zymes mediate the reduction of the disulfide bond back to the
original Cys residues. Hence, disulfides are biologically re-
versible crosslinks. An abundance of oxidative protein
modifications may occur under pathophysiological condi-
tions, making disulfide crosslinks inaccessible to biological
reductants, contributing to protein aggregation (210, 603).
Conversely, the reduction of the disulfide bond in some
proteins may also lead to misfolding and aggregation (733).

In addition to the disulfide crosslink, many other post-
translational protein modifications known in biological
systems are protein/protein crosslinks. Most of them are
irreversible because, up to now, there are no described en-
zymes capable of reversing the crosslink to the unmodified
protein residue form. A number of these posttranslational
crosslinks form through oxidation reactions or from oxi-
dized biotargets and may be functional, but can also be
dysfunctional.
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Among the functional, we cite the crosslinks produced by
the action of lysyl oxidase (LOX) and peroxidasin enzymes,
which are essential for the formation and maintenance of the
3D structure of extracellular proteins (409). Peroxidasin uses
H2O2 and halide ions to form hypohalous acids, preferentially
hypobromous acid (HOBr), which promotes intermediate
sulfimine (S = N) crosslinking between the sulfur of an Met
residue with the nitrogen of an Lys/hydroxyLys residue (54).
LOX and similar enzymes catalyze the oxidative deamida-
tion of Lys or hydroxyLys to produce reactive aldehydes (30,
545), which form crosslinks by spontaneous reaction with
other LOX-derived aldehydes (aldol condensation) or with
other Lys/hydroxyLys residues (Schiff base formation)
(Section II.B). Another example is the dityrosine (Tyr-Tyr)
crosslink produced by peroxidase-catalyzed oxidation of Tyr
residues. These crosslinks have crucial roles in providing
stability and elasticity to many structural proteins of inver-
tebrates. For example, these crosslinks are highly abundant in
the fertilization envelope of sea urchin eggs (273), the ad-
hesive glues of mollusks (687), the cuticles of insects (570),
and the oocyst walls of parasites (396, 607).

Protein/protein crosslinks generated from reactive car-
bonyl metabolites or reactions with reducing sugars and their
metabolites are likely dysfunctional. In these cases, if the
carbonyl reagent only possesses this reactive center toward a
protein amino acid residue, a reagent-protein adduct is
formed. However, if the reagent possesses another reactive
center, it may react with another protein residue, producing
intramolecular or intermolecular protein/protein crosslinks
(Sections II.A and II.B). Similarly, reactive carbonyl me-
tabolites derived from the oxidation of Tyr (quinones) (30,
187) and Trp (kynurenine and N¢-formylkynurenine) (182,
725) residues generate crosslinks that are likely dysfunctional
in mammals (645, 662). However, Tyr-derived quinone
products are abundant in structural proteins of invertebrates
(30, 85).

There are other enzymatic and nonenzymatic protein/
protein crosslinks produced by nonoxidative reactions.
Transglutaminase enzymes catalyze the formation of the
Gln-(C = O)NH-Lys crosslink (isopeptide bond), which is
crucial in the blood coagulation cascade (517), but apparently
also relevant for protein aggregation in NDs (690, 706) and
cataract (385). Other crosslinks produced by nonoxidative
mechanisms, such as Lys-Asp (694) and thioether crosslinks
(695), are also present in lenses with cataracts.

The discovery that inter- or intramolecular crosslinked
proteins are poor substrates for the proteasome, leading to the
inhibition of proteasomal activity and contributing to protein
aggregation (245), increased the interest in these posttrans-
lational protein modifications. Protein aggregation is a hall-
mark of age-related diseases, such as NDs, atherosclerosis,
and cataract, the occurrence of which is augmented with the
increasingly aged human population (543). Despite the in-
creasing interest in protein/protein crosslinks, their detection
and analysis remain challenging tasks, as recently reviewed
(252) and briefly summarized below.

1. Detection and analysis of oxidative protein/protein
crosslinks. For many years, the predominant detection
methods, such as sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and light scattering, only revealed gross
protein modifications such as dimerization and/or oligomer-

ization. Later, more specific methods involving antibodies or
total protein hydrolysis followed by gas chromatography
coupled to MS or LC-MS were developed. Both of these
methodologies and antibody development require knowledge
of the amino acid residues involved in the crosslink and the
nature of the covalent bond. In this context, the long-known
Tyr-Tyr crosslink that possesses strong fluorescence (232)
became, after the disulfide, the most detected oxidative
crosslink in biological samples. However, the proteins in
these samples that contain Tyr-Tyr crosslinks and the specific
residues that participate in the linkage remain mostly un-
characterized (17, 452).

The scenario started to change with the development of
strategies to analyze enzymatic protein hydrolysates by LC-
MS/MS strategies. These methodologies not only confirmed
the formation of Tyr-Tyr crosslinks in proteins submitted to
different oxidants or light in the presence of photosensitizers
but also enabled the identification of the Tyr residues in-
volved in the linkage. They also enabled the characterization
of novel specific crosslinks in oxidized proteins, such as Trp-
Trp (419, 503, 582), Trp-Tyr (209, 370), as well as Tyr-Lys
and His-Lys (409). Although Trp-Tyr crosslinks were char-
acterized before in the active sites of enzymes with peroxi-
dase activity, these characterizations were dependent on
X-ray crystallography (52, 724). Concerning the mechanisms
for the formation of these novel crosslinks, the production of
Tyr-Lys and His-Lys crosslinks by oxidation reactions re-
mains under investigation (409). Conversely, there is a con-
sensus in the literature that the formation of Trp-Trp and Trp-
Tyr crosslinks occurs through radical-mediated mechanisms,
as is the case with Tyr-Tyr crosslinks. The one-electron ox-
idation of Trp and/or Tyr residues leads to the corresponding
protein-derived radicals (protein-Trp�/protein-Tyr�), which
rapidly (k* 5 · 108 M-1$s-1) recombine with itself or with
the other to produce the crosslink (Trp-Trp, Tyr-Tyr or Trp-
Tyr) (252, 502, 503). The yields of these products are likely to
be low under most physiological conditions since high yields
of protein-Trp� and -Tyr� radicals are required to favor their
recombination reactions. In addition, these radicals react
relatively slowly with O2 (k* 105 M-1$s-1) (189, 292) and
rapidly with O2

�- (k* 109 M-1$s-1) (99, 145, 435), which
are biologically ubiquitous. Still, protein crowding and
hypoxic/anoxic environments may favor the formation of
protein crosslinks by radical recombination (502).

Up to this point, most of the performed LC-MS/MS studies
to investigate posttranslational crosslink modifications were
limited to purified proteins oxidized in vitro. However, recent
improvements, such as performing enzymatic hydrolysis of
oxidized proteins in water labeled with 18O, optimization of
MS/MS fragmentation methods, and the use of software
packages to search for crosslinks opened up new avenues to
study crosslinks present in oxidized proteins from biological
samples (409). As a proof of concept, these authors used the
developed strategies to analyze a protein extract from the
gram-positive lactic acid bacterium Lactococcus lactis ex-
posed to peroxyl radicals generated from the decomposition
of 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH).
They were able to characterize 24 Tyr-Tyr, 4 Tyr-Trp, and 3
Trp-Trp specific crosslinks in specific proteins of the extracts
(409). More recently, we reported the presence of Trp-Trp
and Trp-Tyr crosslinks in crystallin proteins of human lenses
with advanced nuclear cataract (502) (Fig. 6A). Therefore,
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we can anticipate that as instrumentation, software, and the
understanding of oxidant chemistry advance, it will be pos-
sible to characterize crosslinks in biological samples more
frequently and to discover novel protein crosslinks (252).

2. Roles in pathophysiology. As stated above, the char-
acterization of many oxidative crosslinks is recent, and there
is a lack of data on their occurrence in biological samples.
The exception is the Tyr-Tyr crosslink identified from the
oxidized amino acid and protein-Tyr residues after total
protein hydrolysis (enzymatic or chemical) (232). Therefore,
the detection and quantification of Tyr-Tyr in biological
samples are a useful biomarker of oxidative imbalance.
Furthermore, increased Tyr-Tyr levels suggest risk for some
diseases when accumulated in specific tissues (176, 232).

Indeed, several pathologies present increased Tyr-Tyr
levels. For example, elevated levels have been reported in the
plasma of patients with hyperlipidemia, chronic renal failure,
and uremia undergoing hemodialysis (323, 378, 721), myo-
cardium tissue after acute infarction, lenses of patients with
cataracts, and urine of diabetic patients. The levels of Tyr-Tyr
increase during aging (194, 207, 702) and acute inflammation
(53). During the inflammatory response, the activity of the
heme-containing enzyme MPO localized in phagosome
membranes of immune cells, mainly neutrophils, produces

large quantities of HOCl from hydrogen peroxide and chlo-
ride ions (20). HOCl promotes the formation of Tyr-Tyr (129,
273, 428), which can also be formed by peroxynitrite (391,
568) and by peroxidases/H2O2, including MPO in the ab-
sence of chloride (272). In some clinical conditions, MPO
plasma levels rise above those of the healthy population (33,
78, 285). Higher Tyr-Tyr levels in patients undergoing he-
modialysis correlated with increased MPO activity in re-
sponse to blood contact with dialysis membranes (337).

Several studies also indicate an association between NDs
and Tyr-Tyr crosslinks. The presence of these crosslinks in
the b-amyloid and the a-synuclein from postmortem brain
samples from AD and Parkinson’s disease (PD) patients,
respectively, suggests that Tyr-Tyr crosslinks may have an
important role in the assembly of the b-amyloid fibrils in the
neuropil and of a-synuclein assemblies in the Lewy bodies.
The amyloid fibrils are key characteristics of the aggregates
in these NDs (12, 13). The high concentrations of copper and
iron ions found in amyloid plaques and substantia nigra are
likely catalysts for in situ formation of protein-Tyr�, which
are Tyr-Tyr crosslink precursors (86, 110, 170, 551, 567)
(Fig. 6B). Copper ions greatly enhance Tyr-Tyr levels present
in the b-amyloid (12, 13). Similarly, Tyr-Tyr crosslinks form
in vitro via metal ion-catalyzed oxidation. In addition, Tyr-
Tyr crosslinks are biomarkers of oxidative stress in the

FIG. 6. Protein crosslink. (A) Schematic representation of the pathways for the formation of Trp-Tyr, Trp-Trp, and Tyr-
Tyr crosslinks in crystallin proteins of cataractous lenses. PS and PS* abbreviations stand for endogenous photosensitizers
in the ground state and excited form, respectively. The crystalline structure shown corresponds to that of the human b-
crystallin B2 chain (PDB 1YTQ). The figure shown was modified from Paviani et al. (502). (B) Schematic representation of
a hypothetical pathway for the role of metal ions in Tyr-Tyr crosslink formation and protein aggregation in the brains of AD
or PD patients. Tyr-Tyr crosslinks are present in Ab-amyloid and a-synuclein aggregates in the postmortem brains of
patients with AD and PD, respectively. In addition, the levels of free metal ions (Fe2+ and Cu2+) and oxidants increase in the
central nervous system with aging, facilitating protein oxidation, crosslink formation, and protein aggregation (see Section
II.C). Ab or a-syn abbreviations stand for Ab-amyloid and a-synuclein, respectively; reaction intermediates are omitted for
clarity. AD, Alzheimer’s disease; PD, Parkinson’s disease; Tyr, tyrosine. Color images are available online.
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1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse
model of PD (12, 508, 509). Of relevance, the levels of free
metal ions and oxidants increase in the central nervous sys-
tem with aging, facilitating protein oxidation, crosslink for-
mation, and protein aggregation. Interestingly, possible or
novel therapeutic approaches for AD (23, 325) and PD (169)
rely on metal ion-targeting drugs. Indeed, of the 800 com-
pounds used, tested, or proposed for PD treatment between
2014 and 2019, 250 present metal ion-chelating properties
(646). Figure 6B summarizes the above information, dis-
playing a hypothetical pathway for the role of metal ions in
Tyr-Tyr crosslink formation and protein aggregation in the
brains of AD or PD patients.

In conclusion, the characterization of many protein
crosslinks formed by oxidative mechanisms occurred only
recently, and many others remain uncharacterized (252).
Advances in the strategies to detect and quantify protein
crosslinks in biological samples are required, particularly in
protein aggregates, which are possibly relevant to age-related
diseases. With these and other advances, detailed investiga-
tions into the role of protein crosslinks in the pathogenic
mechanism of diseases will be feasible.

D. Protein nitro- and nitroso-derivatives

The PTM nitration (Fig. 7A) and nitrosation (Fig. 7B, also
called S-nitrosation) are often confused even though the as-
sociated chemical modifications are different (addition of a
nitro, -NO2 group vs. addition of a nitroso, -NO group), and
occur on different amino acid residues (nitration of tyrosines
vs. nitrosation of cysteines). However, both protein modifi-
cations are mediated by NO�-derived oxidants, with biolog-
ical tyrosine nitration occurring via an NO2

�-dependent
radical process and cysteine nitrosation occurring via an
NO�-dependent process.

In vivo, neither protein tyrosine nitration nor protein cys-
teine nitrosation occurs through enzyme-catalyzed processes.
While denitrosation (removal of the –NO group from a
modified cysteine) is enzyme-accelerated, no enzymatic de-
nitrase activity (removal of the –NO2 group from a modified
tyrosine) has been unambiguously identified or characterized
yet. Biological tyrosine nitration is often associated with
protein dysfunction, considered a marker of unbalanced
cellular redox status, and correlated with a pathological
condition. On the contrary, cysteine nitrosation is a reversible
process, usually involved in cellular regulatory mechanisms
and associated with oxidative physiopathological conditions
(discussed below, section Examples of nitrated or nitrosated
proteins). In a proteomic analysis, not many but specific
proteins were found nitrated. On the contrary, numerous
proteins were found to be S-nitrosated under physiological
and pathological conditions. In this sense, the precise role of
each S-nitroso protein, as well as each nitrotyrosine protein,
requires further investigation.

1. Tyrosine nitration. The PTM of tyrosine by nitration
consists of the addition of a nitro (-NO2) group to the aro-
matic ring of a Tyr residue to form 3-nitrotyrosine (3-NT).

a. Biological mechanism. The biological formation of
3-NT is a radical mechanism that first involves the formation
of a tyrosyl radical, which is followed by the addition of

nitrogen dioxide (NO2
�). NO2

� radicals derived from per-
oxynitrite (OH� and NO2

�) as well as the radicals derived
from peroxynitrite reaction with CO2 (carbonate radical
CO3

�- and NO2
�) can perform this reaction (532). Initially, 3-

NT was considered a footprint of peroxynitrite formation
in vivo, but peroxynitrite is not the only source of biological
nitration since NO2

� can also do the job. For example, nitrite
as a second substrate for heme peroxidases (MPO, H2O2, and
NO2

-) or autoxidation of NO� (533).
The yield of biological Tyr nitration is low, and it is a

selective process since only a few Tyr residues are capable of
being nitrated (1, 196). Even though a specific consensus
sequence for Tyr nitration has not been identified, Tyr resi-
dues in the proximity of negatively charged residues (Glu,
Asp) and loop regions containing turn-inducing residues
(Pro, Gly) are more prone to nitration (296, 600). Also, Tyr
residues in transmembrane domains (750) or metalloproteins
(602) seem to be preferentially nitrated, which could be as-
sociated with the biological nitrating agent responsible for
this PTM, that is, the acceleration of NO� autoxidation in
membranes and hydrophobic protein domains to produce
�NO2 (434, 436), or the metal-induced catalysis of
peroxynitrite-mediated nitration (602). An in-silico method
to identify potential Tyr nitration sites was developed using a
training data set of nitrated proteins selected from the data-
base dbPTM SysPTM2.0, using previously identified ni-
trotyrosine and non-nitrotyrosine sites (260).

b. Biological consequences. When a Tyr is modified to
3-NT, the 274 nm absorbance maximum shifts to 360 nm at
acidic pH (e360 = 2790 M-1 cm-1) or 440 nm at alkaline pH
(e440 = 4400 M-1 cm-1). The incorporation of the nitro group
at position 3 lowers the pKa of the adjacent phenol group
(pKa tyrosine *10.3 and pKa 3-NT *7.5 depending on the
protein environment); thus, Tyr nitration provokes a change
in the global pI of the modified protein.

It is plausible that protein Tyr nitration can induce changes
in the protein structure that could affect protein function. In
the case of proteins with a critical Tyr, nitration of that res-
idue leads to protein dysfunction. For example, the nitration
of Tyr385 in prostaglandin synthase PGH results in enzyme
inactivation (237). The nitration of manganese superoxide
dismutase (MnSOD) Tyr34, an amino acid located in the
channel where the superoxide substrate binds, also leads to
inactivation (726). However, there are reports of activation or
increased activity following nitration. In the case of a-
synuclein monomers, nitration promotes aggregation, and
nitrated synuclein was found in Lewy bodies of PD patients
(278, 762).

Similarly, the nitration of fibrinogen seeds the fibrin ag-
gregation and activates clot formation (671). Moreover, ni-
tration of Prx2 diminishes its inactivation by hyperoxidation,
resulting in an effective increase of peroxidase activity (537).
Interestingly, there is also evidence showing a gain of func-
tion after nitration, as with cytochrome c, which gains a new
peroxidase activity that leads to a nonfunctional apoptosome
(101, 218). This gain of function is biologically relevant
considering the low yields of this PTM in vivo; thus, the
appearance of a new activity, although only in a few mole-
cules, could transform a nearby substrate and have a cellular
impact or affect ligand binding in signaling transduction
(196).
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The phosphorylation of Tyr can also be affected by nitra-
tion, which can have a significant impact on signaling path-
ways (1, 442). The presence of a bulky nitro group adjacent to
the phenol can block its phosphorylation; thus, nitration of a
protein participating in a signaling pathway could disrupt the
phosphorylation/dephosphorylation cascade. On the con-
trary, the more anionic nitro-Tyr could mimic phospho-Tyr
and promote the downstream signaling process. In addition,
nitration of kinases or phosphatases can alter the efficiency of
phosphorylation/dephosphorylation cascades (343).

Another biological consequence of protein Tyr nitration is
the generation of antibodies against nitrated proteins; a well-
documented example is the increase in the titer of anti-
nitrotyrosine antibodies in the synovial fluid or serum of
patients with autoimmune diseases (331) as well as in the
circulation of patients with coronary artery disease (CAD)
(640).

A basal level of protein Tyr nitration is detected under
physiological conditions. However, these levels increase
under conditions of inflammation and oxidative stress when
the production of NO-derived oxidants is stimulated. Despite
not being an enzyme-catalyzed process, biological nitration
has specificity, and selected proteins are nitrated on specific
Tyr residues (1, 533). The nitration of specific proteins in
pathological conditions such as cardiovascular or NDs has
been reported (1, 533). In general, the nitration of Tyr leads to
protein dysfunction that could be involved in the progression
of the disease (usually not the only nor even the main factor),
but the molecular mechanisms still need to be clarified.

c. Denitration. There is ample evidence that once the
protein is modified by nitration, it is promptly degraded by
the proteasome (1, 243). Although some evidence of in vivo
denitration processes has been provided (594), an enzyme
with denitrase activity has not been isolated yet.

d. Detection of nitrotyrosine (free and protein-bound
nitrotyrosine). Specific antibodies against 3-NT have been
developed to detect this PTM in tissues and quantitate its
presence in biological fluids via enzyme-linked immuno-
sorbent assay (640). Previously, different HPLC detection
methods (from absorbance to electrochemical) were used for
detecting this PTM, but now, the most reliable method is LC-
MS/MS (40, 437, 738).

e. Proteomics. As mentioned before, the amount of
nitrated proteins found in vivo is low and specific proteins
are the preferential targets of nitration. The ‘‘Tyr-
nitroproteome’’ revealed less than a hundred nitrated pro-
teins, even under pathological conditions associated with
oxidative stress (1, 196, 243).

(1) Examples of nitrated proteins

(a) Manganese superoxide dismutase. A remarkable example
of a loss of enzyme activity exclusively due to nitration of a
specific Tyr residue is the mitochondrial MnSOD. The ex-
posure of MnSOD to peroxynitrite resulted in nitration of its
Tyr34, in an Mn-catalyzed process, and enzyme inactivation,
with no other residue being oxidatively modified (394, 541,
726). This condition was associated with organ transplant
rejection (394, 395).

(b) Apolipoprotein A-I. apoA-I, the major protein compo-
nent of HDL, is a selective target for MPO-catalyzed nitration
(758). Of the seven Tyr residues in apoA-I, Tyr192, and
Tyr166, the MPO-preferred sites were found to be nitrated in
human atherosclerotic tissues (172, 759). The extent of apoA-
I nitration correlates with the functional impairment of re-
verse cholesterol transport (758, 759). An important conse-
quence of protein nitration in cardiovascular disease is the
induction of humoral responses documented by the increased
circulating immunoglobulins that recognize 3-NT in CAD
patients and LA–apoA-I-/- mice as a model for atheroscle-
rosis (495, 639, 640).

(c) Fibrinogen. Increased levels of nitrated fibrinogen were
found in the plasma from patients with clinically documented
CAD (494, 671). MS identified Tyr292 and Tyr422, at the
C-term of the b-chain of fibrinogen, as the main sites of
nitration in vivo (494).

(d) a-Synuclein. Synucleinopathies, including PD, AD, and
dementia with Lewy bodies, are characterized by the pres-
ence of amyloid inclusions in neurons, which are rich in the
aggregated a-synuclein protein. Nitrated synuclein was found
in Lewy bodies, and nitration of a-synuclein monomers
promoted aggregation, oligomerization, and fibrillation (109,
278, 601).

2. Cysteine nitrosation. The PTM of cysteine by ni-
trosation (also called S-nitrosation) consists of the covalent
addition of a nitrosonium (-NO+) to the sulfur atom of a
deprotonated Cys residue (P-CysS-), forming an
S-nitrosothiol (P-S-NO).

a. Biological mechanisms (nitrosation vs. nitrosyla-
tion). There is ample evidence of protein S-nitrosation
in vivo, and it is undoubtedly linked to the formation of NO�

under physiological or pathological conditions. Nevertheless,
the biological mechanism of S-nitrosothiol formation is still
under debate. The term ‘‘nitrosation’’ or ‘‘nitrosylation’’
depends on the mechanism of formation of the nitrosothiol,
and in most cases, this is not always certain. It is clear that
there is no direct reaction of NO�with the thiol or thiolate, but
an oxidation step is necessary. Thus, to react with radical
NO� either the thiol is oxidized to a thiyl radical, or the
thiolate reacts with higher nitrogen oxides, NO2

� or N2O3,
products of NO� autoxidation (Equations 1–3) (79):

RS� þNO2
� ! RS� þNO2

� [1]

RS� þNO� ! RSNO [2]

RS� þN2O3 ! RSNOþNO2 [3]

The autoxidation of NO�, even though it is accelerated in
hydrophobic environments such as membranes or even pro-
teins (436, 437), is too slow to explain the biological for-
mation of nitrosothiols. The intermediacy of nitrosyl/iron
complexes, dinitrosyl/iron complexes, and cytochrome c
(bound to GSH) has been proposed (67, 79, 700), but further
studies are needed to elucidate the molecular mechanisms of
S-nitrosothiol biological formation. It is important to note

20 DEMASI ET AL.

D
ow

nl
oa

de
d 

by
 M

ar
y 

A
nn

 L
ie

be
rt

, I
nc

., 
pu

bl
is

he
rs

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
5/

26
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

FOR REVIEW ONLY  

NOT INTENDED FOR DISTRIBUTION 

OR REPRODUCTION 



that S-nitrosothiols can react with other thiols to form a
new S-nitrosothiol, a mechanism known as transnitrosation
(279). Considering the high intracellular concentration of
GSH, once S-nitrosoglutathione (GSNO) is formed, it can
nitrosate other thiols. For example, the transnitrosation from
GSNO to cysteine to yield S-nitrosocysteine occurs with
k = 140 M-1$s-1 (279).

Modeling S-nitrosation on proteins has not predicted any
consensus site to underline a preferred Cys residue to be
modified; however, the proximity of the reactants is neces-
sary for transnitrosation reactions, that is, subcellular prox-
imity to NOS, and/or availability of S-nitrosothiols such as
GSNO (384). Also, solvent-exposed Cys residues favor the
reaction of the thiolate (408). Recently, an in-silico method
was published to predict potential S-nitrosation sites called
PreSNO (261).

b. Denitrosation. Cys nitrosation is a reversible PTM,
and so far, two enzymes that accelerate denitrosation in vivo
have been identified: Trx and GSNO reductase. Interestingly,
Trx can catalyze both transnitrosation and denitrosation
(577). An alcohol dehydrogenase class III was found to ef-
ficiently catalyze the reduction of GSNO and has, therefore,
been called GSNO reductase (308). Considering the high
intracellular concentrations of GSH that can transnitrosate
protein S-nitrosothiols and form GSNO, it is considered an
efficient biological denitrosation system. The GSNO
reductase-knockout mice presented markedly increased lev-
els of S-nitroso proteins and increased mortality in endotoxic
shock that was attenuated by inducible nitric oxide synthase
(iNOS) inhibitors. In contrast, these mice were protected
from experimental myocardial infarction due, at least in part,
to S-nitrosation-mediated stabilization of hypoxia-inducible
factor HIF-1a (380).

More recently, a denitrosylase activity was ascribed to
sulfiredoxin (Srx), acting on nitrosated-Prx2 in dopaminergic
neurons (Prx) (623). It is worth mentioning that nitrosated
Prx2 was found in the Lewy bodies of PD patients (188). Srx
was initially described as an ATP-dependent specific reduc-
tant of sulfinylated peroxidatic cysteine of 2-Cys Prx such as
Prx2 (314). Later, other Cys-sulfinylated substrates were
identified (731), and the denitrosylase activity of the
S-nitrosylated peroxidatic cysteine of Prx, also at the expense
of ATP (188).

The catalytic decomposition of nitrosated proteins makes a
clear difference between the two PTMs, Tyr-nitration versus
Cys-nitrosation. Once formed, the PTM participating in a
signaling cascade needs to be rapidly eliminated to stop the
signal. Thus, an S-nitrosated protein is more likely to be
involved in signaling and regulatory events, and Y-nitrated
proteins probably accumulate under oxidative stress patho-
logical conditions.

c. Biological consequences. There is a change in the
UV spectrum of a nitrosated protein with a maximum ab-
sorbance of around 335 nm (GSNO e = 922 M-1 cm-1) (79).
The global pI could significantly change since the potential
negative charge of the thiolate is no longer there. A change in
pI could affect protein/protein interactions (it will largely
depend on the pKa of the Cys residue and its location within
the protein structure), subcellular protein localization, and
ubiquitylation-dependent protein degradation (276).

A protein with a critical Cys residue, once it is nitrosated,
will indeed display a diminished activity; however, it is a
reversible modification, and the activity can be recovered
after denitrosation. Like glutathionylation, reversible cyste-
ine nitrosation could be viewed as a protection mechanism to
avoid irreversible hyperoxidation of the Cys residue (140).

Cysteine residues can form bonds to coordinate the metal
center of proteins, as with Zn tetrathiolates, interactions that
usually play a structural role in the protein. Thus, nitrosation
of two or more of those Cys residues will probably result in
metal release and compromise protein stability (73).

S-nitrosation is involved in a wide range of physiological
pathways, including cellular metabolism, apoptosis, mem-
brane trafficking, protein phosphorylation, transcription
factor activation, and redox homeostasis (276). Dysregula-
tion of S-nitrosation is associated with a growing list of
pathophysiological conditions, including pulmonary hyper-
tension, asthma, myocardial ischemia, PD, and cancer,
among others (201).

Recently, the role of S-nitrosation as a ubiquitous, stable
PTM that directly regulates many proteins has been chal-
lenged (249, 713). These results indicate that S-nitrosation
predominantly serves as a transient intermediate in the for-
mation of a disulfide (intra- or intermolecular, or with GSH).

d. Detection of nitrosothiols. Methods to detect and
quantify nitrosothiols have been recently reviewed in Möller
et al. (437). Chemiluminescence, with nM sensitivity, is
considered the gold standard method for quantifying
S-nitrosothiols, and it is appropriate for most biological ap-
plications (174). In addition, the Saville method has a sensi-
tivity in the lM range and is based on Hg2+-mediated
decomposition of the S-nitrosothiol to nitrite that is then
measured spectrophotometrically by Griess (174). Antibodies
against S-nitrosocysteine have also been raised (174). The
introduction of the ‘‘biotin switch’’ in 2001 (303) allowed the
modified Cys within a protein to be mapped, consequently
displacing these previous techniques and contributing to the
development of the S-nitrosoproteome. Nevertheless, the
original method was repeatedly criticized, and several modi-
fications were introduced (692). Other approaches to identify
S-nitrosated proteins and the site of the modification include
the use of different affinity tags: organomercurials (534), de-
rivatized phosphines (752), and isotopic labeling mixed with
biotin switch and LC-MS/MS (763).

e. Proteomics. According to the dbSNO (http://
140.138.144.145/~dbSNO/index.php), in 2014, more than
2200 proteins were found to be S-nitrosated, of which 720
were reported in humans (578). S-nitrosation is detected
under normal physiological conditions and in different
pathological conditions, including different types of cancer,
diabetes, hypertension, and neurodegenerative, pulmonary,
and cardiovascular diseases (201, 363).

(1) Examples of nitrosated proteins

(a) Thioredoxin. S-nitrosation of Cys73 of Trx has been
associated with apoptosis regulation, particularly via trans-
nitrosation of caspase 3 (429, 621). Trx has been shown to
regulate the amount of S-nitrosothiols in cells (251). On the
one hand, Trx behaves as a transnitrosylating agent, thus
generating proteins modified by S-nitrosation. On the other
hand, Trx has been described as a denitrosylating agent, thus
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accelerating the disappearance of the S-nitroso modification
on proteins. The Trx denitrosylase and the transnitrosylase
activity has been shown to depend on the active site cysteine
residues Cys32 and Cys35 for the reduction of the targeted
protein thiol (47, 327).

(b) Guanylyl cyclase 1. The production of NO� in the en-
dothelium (by endothelial nitric oxide synthase [eNOS])
stimulates the catalytic activity of the NO-sensitive guanylyl
cyclase guanylyl cyclase (GC1) favoring vasorelaxation and
inhibition of platelet aggregation. This activation is via the
reaction of NO� with the Fe-heme of the enzyme (295).
However, NO� can also perform signaling through the cGMP-
independent pathway by the S-nitrosation of Cys residues. In
particular, the S-nitrosation of GC1 correlates with the de-
sensitization of this enzyme to NO�, decreasing NO-dependent
cGMP production. In addition, Trx could be responsible for
denitrosating GC1 to regain its sensitivity to NO� (287).

(c) Glyceraldehyde 3-phosphate dehydrogenase. Glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH), in addition
to its well-known glycolytic function, GAPDH participates in
nuclear events. S-nitrosation of GAPDH Cys150 inhibits its
glycolytic function and promotes its translocation to the nu-
cleus (457). S-nitrosation of GAPDH triggers binding to
Siah1 (an E3 ubiquitin ligase), nuclear translocation, and
apoptosis (256). In this sense, S-nitrosation of GAPDH was
proposed as a molecular mechanism of cytotoxicity, and it is
considered responsible for the PTM of nuclear proteins via
transnitrosylation.

(d) Peroxiredoxin 2. Prx2, a ubiquitous Cys-dependent
peroxidase present at relatively high concentration in cells
(10–250 lM in erythrocytes), is inactivated by S-nitrosation
of both the catalytic and resolving cysteine residues (Cys51
and Cys172, respectively), sensitizing dopaminergic neurons
to H2O2-dependent cell death (188). Increased nitrosative
stress, and Prx2 S-nitrosation, might contribute to the loss of
dopaminergic neurons in PD (188).

In a recent report, Visiedo et al. (679) detected higher
levels of S-nitrosated Prx1 and other antioxidant enzymes in
the placentas of women with gestational diabetes mellitus, a
condition in which inflammation of the placenta is increased
during pregnancy, as well as elevated iNOS expression.

E. Other protein oxidative modifications

Heme peroxidases, such as MPO, eosinophil peroxidase,
and lactoperoxidase, generate hypohalous acids with variable
reactivity and oxidizing capacity (265). All of them can
modify proteins. The mammalian immune system, upon ac-
tivation, triggers a response against invasive species by MPO,
generating the most reactive and powerful hypohalous spe-
cies, HOCl, from hydrogen peroxide and physiological
chloride (339). Despite HOCl playing a prominent role in
immune defense, it is also responsible for the oxidative
modification of proteins in host cells, a process that is sig-
nificant in inflammatory diseases and also reported to occur
during aging (100, 136). Major protein targets for HOCl are
His, Arg, Lys a-amino group, the sulfur-amino acids Cys and
Met, and the aromatic amino acids Trp and Tyr (265). The
modification of these amino acids by HOCl has been exten-
sively studied and reviewed (266). The detection of proteins

modified by HOCl was recently described in detail through
MS analysis (481). These modifications are relevant during
the innate immune response in inflammatory and cardiovas-
cular diseases. The interested readers should consult the
above-cited references.

Another important protein oxidative modification is the
formation of protein hydroperoxides (POOHs) (151). POOHs
are formed from the reaction of carbon-centered protein
radicals at a high O2 concentration generating peroxyl radi-
cals (POO�). The peroxyl radicals generate POOH by
hydrogen-atom abstraction through reaction with other
H-bond species (about 70% of the initial protein-peroxyl
radical). Mechanisms of formation, methods for detection,
and stability and reactivity of POOHs, including studies with
free amino acids and peptides, are well documented and
competently reviewed (151). Still, POOHs’ relevance in
human pathophysiological conditions remains based on a few
direct pieces of evidence. POOHs are short-lived species, and
their direct detection in intact tissues remains challenging
despite substantial evidence showing that alcohols and pri-
mary carbonyls are major products of POOHs. Notably, in-
creased levels of protein alcohols were detected in human
samples of atherosclerotic lesions (206) and cataractous and
aged lenses (207). POOHs are also intermediates of protein
oxidation by HO� generating carbonyl derivatives (Fig. 1).

Many oxidative products of specific amino acid side chains
are not addressed in the present review. A recent and com-
petent review refers to all of them (265). Noteworthy, the
oxidation of free and aromatic protein amino acids (Phe, Tyr,
and Trp) is particularly relevant because they play essential
roles in the central nervous system as precursors in the syn-
thesis of neurotransmitters, in the immune system, and in
therapeutic proteins such as monoclonal antibodies (571).
However, it is beyond the scope of the present review to
explore such specificities.

Also poorly discussed in the present review are the prod-
ucts of the oxidation of amino acid side chains by singlet
oxygen (1O2). Since the usual 1O2 sources (e.g., UV light)
differ from those of intracellular oxidants, human skin and
eyes are special targets of 1O2-mediated processes. The
amino acids Cys, His, Met, Tyr, and Trp are the more sen-
sitive to oxidation by 1O2. Detection of the formed products
inside cells and organisms remains a challenge, particularly
due to the instability and complex nature of products formed
by reactions involving both 1O2 (Type II-mechanism) and
radical intermediates generated by Type I-mechanism in
photosensitized reactions (499). The complexity is further
increased by the secondary reactions that are propagated after
light exposure (151). A comprehensive review of the reac-
tions of 1O2 with proteins and other cellular components was
published recently (171). More details on the photoinduced
protein oxidation products can be found in other reviews
(209, 499). A comprehensive review of the reactions of 1O2

with proteins and other cellular components was published
recently (171).

III. Role of Protein Sulfur-Amino Acids in Redox
Processes and Their Oxidative Modifications

The emergence of life on the earth is linked to the high
presence of H2S and NO� in the atmosphere and iron-rich
(Fe2+) oceans that existed around 3.8 billion years ago (133).
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Sulfide is alledged to have primacy in the origin of life. In
combination with transition metals, one- and two-electron
reactions would have formed various catalytic species to
synthesize organic compounds, including the sulfur-
containing amino acids (Met and Cys).

Due to the presence of thiol (R-SH) groups in its side chain,
Cys is the most redox-active residue in most proteins. Excep-
tions are proteins that contain selenium Cys (25 proteins in
human proteome), as this residue is more reactive than sulfur
Cys (262, 450). The sulfur atom is large and polarizable, and as
a consequence, a thiol group is electron-rich and nucleophilic.
The free amino acid Cys presents low reactivity for redox re-
actions, but in specific protein environments, Cys residues can
gain redox activity (408, 711). The thiol reactivity can be en-
hanced by stabilizing its deprotonated form, called the thiolate
anion (RS-). In some proteins, the pKa value of the Cys residues
can be as low as 3.5 (177), whereas the pKa for the free Cys
residue is around 8.0. The structural stabilization of the transi-
tion state in the active site of enzymes is a significant factor in
enhancing enzymatic activity (254). More about the chemistry
and reactivity of thiol groups is beyond the scope of this review,
and there are other reviews on this matter (522, 539).

Methionine residues have an essential role in protein
protection against oxidative modifications as well as in ag-
gregation. As shown in the following sections, the oxidative
modification of sulfur-containing amino acids has either a
critical catalytic or regulatory protein function, different from
the oxidative modifications discussed above.

A. Thiol-centered redox mechanisms in catalysis
and signaling

1. Thiol/disulfide switches. Initially, we describe some
thiol/disulfide switches (Fig. 8) in proteins as mechanisms
underlying catalysis and signaling. The two-electron oxida-
tion of thiols in proteins to disulfides is a common theme in
biology initially associated with structural roles as permanent
crosslinks that stabilize the protein structure (115). These
structural disulfides adopt the most favorable conformations
when the dihedral angle is 90�C, and the distance between the
two sulfur atoms is 2.05 Å (6, 475, 550a).

Nonetheless, disulfides are also recognized to play func-
tional roles through redox processes (115, 267). In this situ-
ation, disulfide bonds are continuously formed and disrupted.
Therefore, a highly stable disulfide is not suitable, and this
covalent bond then assumes less stable structural conforma-
tions that are more easily reduced back to dithiols. Indeed,
these disulfides are strained in stereochemically disfavored
conformations that present intrinsic torsional energy (267).
These ‘‘functional’’ disulfides are sometimes referred to as
‘‘forbidden’’ (267).

A specific type of functional disulfide is the allosteric one.
To understand this concept, we need to consider that an al-
losteric effector is a compound that changes the activity of a
protein by binding in a region that is distant from the active
site (440). Allostery is possible due to dynamics in the protein
structure. Therefore, an allosteric disulfide represents a co-
valent bond that, once formed, triggers a conformational
change that affects protein activity (115).

These dithiol/disulfide pairs may also function as redox
switches during the catalysis of enzymes, such as ribonu-
cleotide reductase, a protein involved in the synthesis of
deoxyribonucleotides, the DNA building blocks. The dithiol
of ribonucleotide reductase can reduce ribonucleotides into
deoxyribonucleotides by a complex sequence of electron
transfer reactions that result in the formation of a disulfide
(185).

2-Cys Prxs are other Cys-based enzymes in this dithiol/
disulfide category that play central roles in hydrogen perox-
ide metabolism. In this case, a highly reactive thiol present in
the so-called peroxidatic Cys (CP) reacts with H2O2 giving
rise to sulfenic acid (R-Cys –SOH) intermediates that then
undergo condensation with a resolving Cys (CR) to form a
disulfide (Fig. 9).

The regeneration of the reduced forms of ribonucleotide
reductase and 2-Cys Prx involves an SN2 nucleophilic dis-
placement reaction, called the thiol/disulfide exchange re-
action. Uncatalyzed thiol/disulfide exchanges proceed at
slow rates, but some oxidoreductases, such as Trx, glutar-
edoxin (Grx), and PDI, can accelerate these reactions by six
to seven orders of magnitude (475). Since thiol/disulfide
oxidoreductases display specificity to their substrates, they
are involved in the redox regulation of signaling pathways
(475).

Indeed, some transcription factors are redox-regulated by
dithiol/disulfide switches that involve the participation of Trx
or Grx enzymes. For instance, OxyR is a bacterial tran-
scription factor that, upon oxidation of critical Cys residues
by H2O2, forms a disulfide bond (Fig. 9A, arrow I), resulting
in the induction of gene expression (760). Following the
oxidative insult, Grx reduces the disulfide bond back to the
dithiol state (760); consequently, the transcription of target
genes ceases.

OhrR is another redox-regulated protein, but, in contrast to
OxyR, it is a repressor rather than an activator of transcription
(208). In the reduced state, OhrR binds to the promoters of
target genes, inhibiting their expression. Upon oxidation of
critical Cys residues by organic hydroperoxides, OhrR un-
dergoes structural movements that provoke its release from
the DNA, exposing the promoters of the target gene to the
transcriptional machinery. Similar to OxyR, the oxidation of
OhrR results in the formation of a disulfide that, in this case,
is reduced explicitly by Trx instead of Grx (590).

FIG. 8. Thiol switches. In this scheme, we describe how
three thiol switches are related. The RSH/RSOH switch is
the simplest one. The RSH/RSSR requires the formation of
sulfenic acids (RSOH) as intermediates and two thiol/
disulfide exchange reactions to return to the initial form
(RSH). The RSH/RSO2H also required the sulfenic acids
(RSOH) as intermediates. The reduction of sulfinic acids
back to the thiol form requires Srx in an ATP-dependent
manner. Srx, sulfiredoxin.
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Thiol/disulfide switches are also involved as a posttran-
scriptional mechanism that controls intracellular iron levels.
Iron is required for several processes, such as DNA synthesis,
respiration, and heme biosynthesis (123). However, high
levels of iron may promote undesirable oxidation of vital
cellular components (123). Therefore, the levels of this metal
in cells are strictly regulated. Iron regulatory proteins 1 and 2
(IRP1 and IRP2) are the key iron sensors in mammalian cells
that activate posttranscriptionally the synthesis of proteins
involved in iron metabolism. IRP1 and IRP2 are cytosolic
proteins that bind RNA stem-loops known as iron-responsive
elements located in untranslated regions of mRNAs. IRP2 is
the predominant RNA-binding protein in vivo (358), and
unlike IRP1, IRP2 protein does not coordinate a [4Fe-4S]
cluster and does not display aconitase activity (242). Under
iron-replete conditions, IRP2 is degraded by a process in-
volving polyubiquitylation and proteasomal degradation that
requires a 73-amino acid sequence that is not present in IRP1
(298, 299). NO+ donors and exogenous heme increase IRP2
degradation in a process that depends on Cys residues present
in the 73-amino acid segment (71). Notably, the redox state of
two other Cys residues (Cys512 and Cys516) can regulate the
mRNA-binding activity of IRP2 through a thiol/disulfide
switch (767).

2. Thiol/sulfenic acid switches. Besides disulfides, redox
regulation of thiol groups in proteins can also proceed through
other intermediates such as nitrosothiols (Section II.D). We
now focus our attention on sulfenic acid (R-Cys-SOH) deriv-
atives that are the direct product of the two-electron oxidation
of thiols (Fig. 9). The reaction between sulfenic acids and
thiols gives rise to disulfides. Therefore, oxidants such as H2O2

generate disulfides in proteins with the intermediacy of sul-
fenic acids. In some cases, however, the sulfenic acids are
protected from thiols by the protein environment.

Sulfenic acids are unstable compounds that can react not
only with other thiols but also with other nucleophiles. The
half-lives of sulfenic acids can also be limited by oxidation to

sulfinic (-SO2H) and sulfonic (-SO3H) acids or self-
condensation to yield thiosulfinates (9). In addition, sulfenic
acids can also reversibly react with backbone amides, gen-
erating sulfenamides (248). However, sulfenic acids can gain
stability in specific environments, where steric hindrance
effects due to bulky substituents can protect them from or-
ganic compounds (108) or protein microenvironments (745).
In these proteins, thiol/sulfenic acid switches can function in
catalytic or signaling processes.

Therefore, as sulfenic acids are present as a dynamic
and transient oxidation product of thiols, these species are
generally analyzed by dimedone (5,5-dimethyl-1,3-
cyclohexanedione)-based labeling reagents that trap these
intermediates before they undergo other reactions (14, 473).
The reaction of dimedone with sulfenic acid is slightly se-
lective but very slow (340, 583). As an alternative, strained
alkynes and alkenes have been developed (523) that selec-
tively trap sulfenic acids with rates more than 100 times faster
than reaction with dimedone (524). In the same line, ben-
zothiazine (205)- and trans-cycloocten-5-ol (574)-based
probes were described. Noteworhty, electrostatic or steric
effects can likely modulate the rate of any probe reactivity
toward a protein sulfenic acid (583). Perhaps the description
of a thiol/sulfenic acid switch in GAPDH was the first with
functional implications. Notably, the conversion of the
glyceraldehyde phosphate dehydrogenase activity into acyl-
phosphatase activity of GAPDH was paralleled with the
formation of a sulfenic acid on a critical Cys residue (Cys
149) (742).

Several other studies also described thiol/sulfenic acid
switches in catalysis and redox signaling. Nevertheless, the
development of chemoselective probes has allowed for the
investigation of sulfenic acids in cellular contexts. For in-
stance, when H2O2 oxidizes Cys-797 of epidermal growth
factor receptor (EGFR) in human epidermoid carcinoma A41
cells, the kinase activity of this protein is enhanced (501).
These processes are consistent with the mechanism described
in Figure 9A, arrow I.

FIG. 9. Mechanisms of H2O2 signaling by thiol switches. Signaling protein here refers to a protein, such as a phos-
phatase or transcription factor. (A) Signaling at low levels of H2O2. (I) Direct oxidation of a signaling protein (e.g., OxyR);
(II) oxidation mediated by Prx (e.g., Yap1; STAT3); (III) Prx oxidizes Trx, consequently less reducing power is available to
maintain the signaling protein in the reduced state (e.g., Ask-1). (B) At high levels of H2O2 or in the presence of CO2,
hyperoxidation of Prx is facilitated. In this case, direct oxidation of the target protein is feasible (e.g., PTP-1B) and increases
the pool of reduced Trx. Ask-1, apoptosis signaling kinase 1; Prx, peroxiredoxin; Trx, thioredoxin.
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Although the formation of sulfenic acids by the oxidation
of thiols is well studied, the reverse process (reduction of
sulfenic acids to thiols) is still poorly characterized. Indeed,
the identity of the reducing agent is controversial. As re-
viewed by Kettenhofen and Wood (328), trivalent arsenicals
are considered specific reductants for sulfenic acids, but they
are not physiological compounds (328). In biological sys-
tems, Trx and GSH are considered general reductants of
sulfenic acids (132). In both cases, two sulfhydryl groups are
required for the reduction of one sulfenic acid in a two-step
process. In the first step, a mixed disulfide between the pro-
tein and the thiol is generated. When GSH is the thiol in-
volved, the protein is glutathionylated. These reactions are
generally fast, attaining values in the 105 M-1$s-1 range for
nonprotein molecules (462).

On the contrary, the corresponding rate constant for sul-
fenic acid in human albumins is in the 3–100 M-1$s-1 range
(659). In the second step, a second sulfhydryl moiety is re-
quired to resolve the mixed disulfide. In the case of GSH, an
oxidoreductase such as Grx is generally required to catalyze
the reaction.

However, the identity of sulfenic acid reductants varies
from protein to protein. Furthermore, these reductions of
sulfenic acids in proteins display a high degree of specificity.
For instance, mammalian Prdx6 (1-Cys Prx enzyme) is not
reducible by GSH or Trx enzymes (199), although Trx and
GSH are considered general reductants for sulfenic acids
(132). Regeneration of the reduced form of Prdx6 can be
achieved by its heterodimerization with pGST, which can
then be reduced by GSH (199). In contrast, the homodimer of
1-Cys Prx1 from yeast (ScPrx1) can be reduced by Trx (504).
Therefore, structural aspects such as protein/protein interac-
tions should probably be considered when contemplating the
specificity of the protein sulfenic acid reductions.

Ascorbate is another compound relevant to the reduction
of protein sulfenic acids in biological systems but not fre-
quently considered. Indeed, ascorbate is a known reductant
for low-molecular-weight sulfenic acids (142). The direct
reduction of protein sulfenic acids by ascorbate was first
described in GAPDH (742) and later in 1-Cys Prx enzymes
and papain (441, 526, 546, 766). Our results indicated that, in
most cases, the rate constants for the reactions of diverse
protein sulfenic acids lie in the 0.4–2.2 · 103 M-1$s-1 range,
indicating that ascorbate is a broad-spectrum reductant (18).
Possibly the relevance of ascorbate for the reduction of sul-
fenic acids might be higher in compartments, where the
concentration of this reducing agent is elevated. Notably, the
overall reduction of protein sulfenic acids by ascorbate was
understood as an underlying mechanism in the noncanonical
scurvy phenotype of triple mutant mice, lacking systems to
reoxidize PDI (766).

3. Thiol-sulfinic/sulfonic acid switches. In some cases of
higher oxidative insult, protein sulfenic acids can be hyper-
oxidized to sulfinic (R-Cys-SO2H) (Fig. 9) or sulfonic (R-
Cys-SO3H) acids that were initially considered irreversible
processes and, as a consequence, would provoke the inacti-
vation of redox-active proteins harboring this PTM. In this
way, the hyperoxidation of proteins would be toxic to cells
due to the loss of function of the corresponding proteins. The
finding that motifs that facilitate the hyperoxidation of 2-Cys
Prx were positively selected for throughout evolution was

surprising, indicating a physiological role for this PTM (720).
This observation led to the coining of the so-called flood gate
hypothesis (Fig. 9B), in which the inactivation of 2-Cys Prx
would increase local H2O2 concentrations, allowing proteins
that react slowly with this oxidant to be oxidized (720). Later
on, other motifs that facilitate the hyperoxidation of 2-Cys
Prx were identified (63, 627). Notably, not only hyperox-
idation but also phosphorylation of Prdx1 provides another
means to inactivate 2-Cys Prx, and this PTM was also pro-
posed to have a role in increasing local H2O2 concentrations
(719). Furthermore, acetylation of mammalian 2-Cys Prx
(Prx1 and Prx2) increases their resistance to hyperoxidation
(497). Hence, the thiol/sulfinic acid switch (Fig. 9) appears to
fine-tune protein control.

Besides the local accumulation of H2O2, another mecha-
nism was proposed to explain the positive selection of hy-
peroxidation motifs throughout evolution and involves the
inactivation of 2-Cys Prx to preserve pools of reduced Trx
(Fig. 9B) for other vital cellular processes (446). According
to this model, the disulfide form of 2-Cys Prx actively con-
sumes reduced Trx to turn over the peroxidatic cycle, thus
reducing the availability of this oxidoreductase to reduce
critical enzymes, such as ribonucleotide reductase and me-
thionine sulfoxide reductase (156). When hyperoxidized,
2-Cys Prx enzymes do not react with Trx, increasing the
reduced pool of this enzyme in cells and keeping the reducing
equivalents required to sustain the DNA synthesis and repair
oxidative lesions, among other essential processes.

A breakthrough in the field occurred with the discovery
that sulfinic acids in 2-Cys Prx could be reduced back to
sulfhydryl forms (717, 718) and the identification of an ATP-
dependent system called Srx (58). At that moment, it became
clear that the thiol/sulfinic acid pair is a reversible switch
(Fig. 9), a convenient feature for a regulatory process. Ac-
cordingly, the thiol/sulfinic acid pair is involved in convert-
ing 2-Cys Prx enzymes from peroxidases into chaperones
(holdase) upon hyperoxidation to sulfinic acids (305). Fur-
thermore, hyperoxidized 2-Cys Prx can recruit chaperones to
misfolded proteins in aggregates (255). Other lines of evi-
dence indicate the biological relevance of Srx and sulfinic
acids in 2-Cys Prx. For instance, the regulation of adrenal
steroidogenesis involves the reduction of sulfinic acids in
mitochondrial Prdx by Srx in a circadian pattern (332, 333).

Initially, 2-Cys Prxs were the only known substrates of
Srx, an enzyme that reduces sulfinic acid. However, pro-
teomic studies using an electrophilic diazene probe revealed
that 55 other proteins have the potential to be also turned over
by Srx (8). The reduction of sulfinic acids in protein tyrosine
phosphatase (PTP), nonreceptor type 12 (PTPN12/PTP-
PEST), and DJ-1 was confirmed by an enzymatic assay using
recombinant Srx (8). Despite the notable progress, several
aspects of the thiol/sulfinic acid switch likely remain to be
elucidated.

Therefore, distinct thiol switches can mediate redox sig-
naling (Fig. 9). Regarding H2O2 signaling, many mechanisms
are possible (474), some of which were already mentioned
above. The simplest of them is the direct oxidation of sig-
naling proteins by H2O2 (Fig. 9A, arrow I). Perhaps the best
example of such a pathway is the activation of the bacterial
transcription factor OxyR. OxyR possesses two distinct
globular domains, the DNA binding domain (N-terminal)
and the regulatory domain (C-terminal domain). A highly
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reactive Cys in the regulatory domain (Cys-199 in OxyR
from E. coli) is rapidly oxidized (*105 M-1$s-1) to a sulfenic
acid intermediate, which then forms an intramolecular dis-
ulfide bond with another Cys residue of the same domain
(Cys-208 residue in OxyR from E. coli) (22, 310, 359). The
formation of disulfide bonds in each of the four subunits of
the OxyR tetramer triggers substantial structural changes in
this transcription factor, resulting in the induction of the
expression of its target genes (116, 310, 359). After oxidative
stress subsides, OxyR is deactivated upon the reduction of the
intramolecular disulfide bond by the Grx system for OxyR
from E. coli (760) or the Trx system for OxyR from Pseu-
domonas aeruginosa (699).

The formation of sulfenic acids in the EGFR (501) and Src
kinase (274) are two other examples consistent with the direct
oxidation of protein thiols by H2O2. This proposal is because
it is difficult to propose an alternative mechanism for the
protein sulfenic acid formation other than the direct oxidation
of thiols by H2O2.

However, most thiols react only slowly with H2O2 (10–50
M-1$s-1) (711). In contrast, the peroxidatic Cys (Cp) of Prxs
can react with H2O2 1 to 10 million times faster (482, 498, 512,
642, 654). Although most of the protein thiols react slowly
with H2O2, some of them are detected in oxidized forms in
biological systems (710). One model that proposed to account
for this apparent contradiction between biology and chemistry
was the so-called relay mechanism (Fig. 9, arrow II), in which
a sensor protein (Prx or Gpx) mediates the oxidation of slow
reacting thiols by H2O2. These sensor proteins can react very
rapidly with H2O2 and, through physical protein/protein in-
teractions, transmit the signal as oxidizing equivalents to a
slow-reacting thiol that can be a signaling protein, such as a
transcription factor or a phosphatase.

The first experimental support for this model came from
studies on the mechanism by which Yap1 is activated. Yap1
is the transcription factor that mediates the responses of the
yeast Saccharomyces cerevisiae to H2O2 (235, 301). The
finding that Gpx (also called Orp1) mediates the oxidation of
Yap1 by H2O2 through thiol/disulfide exchange reactions
provided the first experimental evidence for this redox relay
mechanism (158).

There are also examples of the redox relay mechanism in
mammalian cells. For instance, Prx1 from mammalian cells
can physically interact in a redox-dependent pattern with
various signaling proteins (94, 307, 661). Interestingly, Prx2-
mediated activation of the transcription factor, STAT, displays
features similar to the Gpx/Orp1–Yap1 pathway in yeast (596).
In all cases, a fast-reacting thiol (Gpx/Orp1 or Prx2) senses
H2O2 and then relays the oxidizing equivalents through
physical interactions and thiol/disulfide exchange reactions to
the transcription factors (Yap1 or STAT). Genetic approaches
using deletion or depletion of cytosolic Prxs broadly inhibited
protein thiol oxidation by H2O2, which contrasts with what
was predicted by a model that assumes direct oxidation of
proteins by H2O2 (617). Furthermore, a proteomic approach
identified several partners of 2-Cys Prx (617).

The relay mechanism can be even more complicated, with
the intermediacy of Trx and Prx (Fig. 9A, arrow III), which we
have previously named the Prx-Trx model (474). Accordingly,
several signaling proteins are redox-regulated by Trx enzymes,
as reviewed (50). For example, only reduced Trx1 binds ap-
optosis signaling kinase 1 (Ask-1) and, as a consequence, in-

hibits its enzymatic activity (561). NF-jB is another signaling
protein regulated by Trx1, as the binding of this transcription
factor to its target DNA sequence requires the reduction of a
single Cys residue (268, 416). In this sense, 2-Cys Prxs can
participate in redox signaling not only by regulating H2O2

levels but also by modulating the redox status of Trx (474).

4. Relationships between H2O2 signaling and tyrosine
phosphorylation. H2O2 signaling is closely associated with
phosphorylation-dependent pathways, especially those re-
lated to Tyr residues (549). Indeed, the catalytic Cys of PTP
enzymes directly involved in removing a phosphate group of
its substrate also undergoes reversible oxidation/inactivation
by H2O2. This dephosphorylation catalyzed by PTPs is a kind
of nucleophilic displacement reaction that proceeds via an
essential catalytic Cys residue conserved within the PTP
signature motif, Cys(X)5Arg (163, 164, 492). The sulfhydryl
group of the catalytic Cys displays an acidic pKa (within the
4.0–6.0 range), indicating that a major fraction of the sulf-
hydryl group is present as thiolate (RS-) ion at neutral pH,
which is a better nucleophile than the corresponding thiol
(RSH). This low pKa of the catalytic cysteine is necessary for
its dephosphorylation activity; but, at the same time, renders
PTPs more susceptible to oxidative inactivation, which ap-
pears to be a reversible and regulatory process (485, 644).

As mentioned above, the primary product of the two-
electron oxidation of the nucleophilic cysteine of PTPs is
sulfenic acid (RSOH). The outcome of sulfenic acids in PTPs
varies depending on the enzyme (393). Nevertheless, most of
the oxidative intermediates generated in PTPs are reversible,
a convenient feature for a regulatory process. For instance, in
the cases of Cdc25 (23–25, 82, 193, 598) and phosphatase
and tensin homologue (PTEN) (371), an intramolecular dis-
ulfide bond linking the catalytic Cys residue to a proximal
Cys (named backdoor Cys) is generated, which can also be an
intermolecular disulfide bond in other phosphatases (HePTP)
(393). Furthermore, a stable sulfenic acid species is formed as
the oxidation-dependent inactive state of other PTPs (164,
309). Finally, cyclic and reversible sulfenilamide is gener-
ated in other PTPs, which is described next.

It is important to mention that the PTP superfamily can be
divided into ‘‘classical PTPs’’ (38 members) and ‘‘dual-
specificity phosphatases’’ (61 members). The classical PTPs
are further subdivided into receptor-like transmembrane
PTPs (rPTPs) and nontransmembrane PTPs (nPTPs or cyto-
solic PTPs) (485, 644). While all nPTPs comprise a single
catalytic domain linked to diverse regulatory or targeting
domains, most rPTPs have two PTP domains arranged in
tandem (485, 644).

The dual-specificity phosphatases can often also dephos-
phorylate phosphoserine/threonine residues, in addition to
phosphotyrosine. This group comprises the MAP kinase
phosphatases and the tumor suppressor PTEN that dephos-
phorylates lipids (phosphatidylinositol (3,4,5)-triphosphate
[PIP3]). As mentioned above, sulfenilamides, intra- and in-
termolecular disulfides, and sulfinic/sulfonic acids were all
detected as oxidized intermediates in PTPs belonging to these
distinct subfamilies using crystallography and MS, among
other techniques (485).

In the case of PTP1B, which is perhaps the best-studied
among all classical PTPs, oxidation is reversible due to the
rapid conversion of the sulfenic acid form of the catalytic Cys
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to a 5-atom-ring structure, a cyclic sulfenamide. In PTP1B,
the juxtaposition of His214 with Cys215 polarizes the amide
bond, promoting nucleophilic attack by the amide nitrogen of
Ser216 on the sulfur atom of the sulfenic acid in Cys215,
leading to the formation of a covalent bond between the
sulfur and nitrogen atoms of these neighbor residues. Of note,
the cyclic sulfenamide can be readily reduced back to the
thiolate form (443, 562). Possibly this sulfenamide might
have two roles: (i) prevent irreversible hyperoxidation of
catalytic Cys and (ii) facilitate the reduction of the sulfena-
mide to restore the active form of the PTPs (644).

Sulfenamides were also detected in the crystal structures of
the D2 domain of rPTPa, which is structurally very similar to
and with an identical chemical composition of sulfenamides
generated in PTP1B (730). It has been shown that rPTPs have
a tandem arrangement of two PTP domains, with the catalytic
residues in the membrane proximal domain (D1). In contrast,
the membrane distal domain (D2) predominantly functions as
a regulatory domain, displaying little to no catalytic activity
(511, 730). Intriguingly, although virtually devoid of phos-
phatase activity, most rPTP D2 domains share the conserved
catalytic Cys and Arg residues of the PTP signature motif,
suggesting a redox sensor role (730). As demonstrated by an
antibody-based assay for detecting oxidation-inactivated
PTPs, the second regulatory domain of rPTPa is more sus-
ceptible to oxidation (511).

Remarkably, using this antibody, it was possible to detect
platelet-derived growth factor (PDGF)-induced oxidation of
endogenous Src homology 2 domain-containing protein ty-
rosine phosphatase 2 (SHP-2; PTPN11), an nPTP (511),
which is a very physiological condition. SHP2 is a ubiquitous
multidomain nonreceptor phosphatase implicated in diseases
such as cancer, diabetes, and Noonan syndrome. Noonan
syndrome is one of the most common genetic disorders as-
sociated with congenital heart disease, and approximately
half of the patients with Noonan syndrome present mutations
in SHP2, such as N308D. Remarkably, SHP2N308D is more
prone to oxidation than wild-type SHP2, but an association of
this kinetic feature with Noonan syndrome is premature
(392).

Methods to detect oxidation of phosphatases in cells are a
challenge. Traditionally, most of the methods involved thiol
alkylation of the reduced form of PTPs (485). However, there
are some drawbacks, as many of these alkylating agents also
modify sulfenic acids (523). Therefore, assays based on di-
medone, which specifically alkylate and therefore trap Cys
sulfenic acids, were developed (473), as described above.
Another immunochemical approach to directly profile oxi-
dized PTPs involved the generation of an antibody that rec-
ognizes the conserved sequence of the PTP signature
(VHCDMDSAG) harboring the catalytic cysteine modified
with dimedone (CDMD) that chemoselectively reacts with Cys
sulfenic acids to form a stable thioether adduct (217).

Employing these and other methods, PTPs of all sub-
families were found to be oxidized in cells upon physiolog-
ical stimuli such as growth factor (EGF and PDGF), insulin,
and cell receptor (B cell and T cell) stimulation (362, 644). A
remarkable feature is the pronounced selectivity for the ox-
idation of each specific pathway by a different stimulus. For
instance, while exogenous H2O2 treatment of fibroblasts
caused oxidation of multiple PTPs, stimulation of the same
cells with PDGF selectively oxidizes SHP2 phosphatase

(421). In contrast, insulin stimulation preferentially oxidized
PTP1B and TC-PTP, two PTPs that are relevant for negative
regulation of insulin receptors (421).

Although the thiolates of catalytic Cys of PTPs display
acidic pKas, their reactivity toward H2O2 is low (kinact = 10–
20 M-1$s-1) (164). In contrast, Prx and Gpx react with H2O2 1
to 10 million times faster and are abundant protein thiols.
Furthermore, GSH is present in cells in millimolar concen-
trations. Therefore, it is reasonable to consider that on che-
mical grounds, Prxs, Gpxs, and GSH outcompete PTPs (710).
However, as mentioned above, PTPs are frequently found
oxidized in cellular systems, showing an apparent contra-
diction (710). The relay mechanism (described above) is
frequently considered to account for this apparent contra-
diction, but at least so far, no physical interaction between
Prx and PTPs has been described (617).

Although the Prx redox relay model has gained increased
appreciation as described above, the other mechanisms of
H2O2 signaling cannot be ruled out. Indeed, because the H2O2

reactivity can be increased two to three orders of magnitude
by the CO2/bicarbonate pair (656), the mediation of Prx or
Gpx enzymes may not be required in some circumstances.
Notably, bicarbonate concentrations in mammalian tissues
are generally very high (in the millimolar range), as CO2 is a
product of energetic metabolism (19). This stimulating effect
of the CO2/bicarbonate pair on H2O2 reactivity is likely re-
lated to the formation of peroxymonocarbonate (HCO4

-). In
equilibrated H2O2 and CO2/bicarbonate solutions and at
neutral pH, HCO4

- generation depends on the slow perhydra-
tion of CO2 (31). Indeed, at physiological conditions, the CO2/
bicarbonate pair can accelerate the oxidation of signaling
protein such as PTP1B (139, 761) and other slow reacting
thiols, such as bovine serum albumin (652) and AhpE (548).
Furthermore, the hyperoxidation of 2-Cys Prx can also be ac-
celerated by the CO2/bicarbonate pair (513, 656), allowing the
flood gate process to occur, preserving the reduced Trx pools.

The activity of Prx enzymes can be inhibited not only by
hyperoxidation but also by phosphorylation. For instance,
Prx isoforms can be phosphorylated at distinct residues, af-
fecting (increase or inhibit) their peroxidase activities (592).
Therefore, redox and phosphorylation pathways appear to be
a two-way road. Oxidation of critical Cys residues affects the
activity of kinases and phosphatases, whereas phosphoryla-
tion of each one of the six mammalian Prx changes their
ability to remove H2O2.

Of note, the pool of Prx1 located at the plasma membrane
can be phosphorylated at Tyr194 by Src kinase in response to
stimuli such as EGF and PDGF, leading to its inactivation
(719). Consequently, H2O2 locally rises, allowing the oxi-
dation of nearby less reactive thiols, such as the catalytic Cys
of PTPs. Therefore, in response to growth factor stimulation,
H2O2 generation by NADPH oxidases (NOX1) in lipid rafts
is necessary to simultaneously activate Src family kinases
and inactivate PTPs sustaining further phosphorylation and
inactivation of Prx1 (592). Therefore, NADPH oxidases,
Prx1, Src kinases, and PTPs take part in a retroalimentation
cycle in lipid rafts that operate in response to growth factor
stimulation (592). In contrast, Prx2 is inactivated preferen-
tially by hyperoxidation (719).

In summary, distinct thiol switches (RSH/RSSR; RSH/
RSOH; RSH/RS2OH) and various mechanisms of H2O2

signaling can co-occur in cells, possibly in a coordinated
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manner that can also interact with other pathways, such as
those dependent on tyrosine phosphorylation. Understanding
how these processes occur from a global perspective may
represent a challenge in the redox field that could be cir-
cumvented using systems biology (SB) approaches.

B. Protein S-glutathionylation

Protein S-glutathionylation is the process where a mixed
disulfide is formed between GSH and protein Cys residues
(Fig. 10). GSH is commonly referred to as a redox buffer
(e.g., protein S-glutathionylation; reaction with radical and
reactive species) although it also plays an essential role as a
reductant cofactor of oxidoreductases (e.g., Grxs) and Gpxs
and also as a cofactor of GSTs upon a nucleophilic reaction in
the detoxification of xenobiotics. A more proper definition of
the role that glutathione has in cell metabolism is yet to be
established. Protein S-glutathionylation is a reversible pro-
cess, thereby considered a protein redox cycle (754). Many
potential mechanisms have been proposed for protein
S-glutathionylation (212), but very few are considered to
occur in vivo (754). Indeed, the relatively easy task to dem-
onstrate intracellular protein S-glutathionylation was not
followed by attempts to uncover the underlying mechanism.
Nevertheless, investigations on protein S-glutathionylation
unraveled a powerful mechanism of protein modulation
through metabolic redox shifts. The importance of protein
S-glutathionylation in redox biology is attested by a search in
the PubMed platform that identified 95 reviews on the topic
in the last decade.

The most studied mechanisms of protein
S-glutathionylation claimed to take place inside cells are as
follows (summarized in Fig. 10):

(i) Oxidation of protein sulfhydryl group (P-SH) by the
oxidized form of glutathione (GSSG). Under normal
conditions, the GSH/GSSG ratio is very high, around
100:1, but depends on the intracellular compartment
and cell type (229). An exception is in the ER, where

the GSH/GSSG ratio is around 3:1 (288). For most
protein-sulfhydryl groups, the GSH/GSSG ratio
should decrease dramatically (around 1:1) to achieve
S-glutathionylation conditions. In this sense, such
strong oxidative stress conditions are unlikely to be
physiologically possible.

(ii) The deprotonated protein-sulfhydryl group (PS-) can
be oxidized by H2O2, organic peroxides, HOCl, or
peroxynitrite (H2O2, ROOH, HOCl, and ONOO-,
respectively), rendering the oxidized sulfhydryl
form, namely sulfenic acid (P-SOH). Protein-sulfenic
acids react with GSH rendering the protein-S-
glutathionylated adducts (Section III.A). This reac-
tion is considered an essential protective mechanism
against overoxidation, which would generate the ir-
reversible sulfinic (P-SO2H) and sulfonic (P-SO3H)
forms. However, the physiological condition neces-
sary for the reaction between GSH and P-SOH de-
pends on the intracellular peroxide levels that, in turn,
depend on overcoming the rich intracellular perox-
idasic activity. Although such a possibility is un-
likely, it cannot be discarded based on the Flood gate
hypothesis discussed above (Section III.A)

(iii) Protein (PS�) or GSH (GS�) thiyl radical formation
followed by reaction with GSH or PS-, respectively,
to form a radical glutathionyl intermediate (PSSG�).
The reaction with O2 to form the PSSG and the su-
peroxide anion was suggested to occur in vivo (212).

(iv) The modification of protein-sulfhydryl (PSH) by the
glutathione nitroso-derivative GSNO results in the
protein-Cys residue being transnitrosated to PSNO
and subsequently forming PSSG through the reaction
with excess GSH (233).

It is acceptable to state that protein S-glutathionylation
may occur enzymatically or by spontaneous chemical reac-
tions. Glutathione S-transferase p (GSTP) has been proposed
to catalyze protein S-glutathionylation (647). Strong

FIG. 10. Significant mechanisms of
protein S-glutathionylation. Route 1 de-
scribes the previous classical mechanism of
protein S-glutathionylation through a thiol/
disulfide exchange. As discussed above,
an increased GSSG pool, mediated by in-
tensified ROS formation, triggers protein
S-glutathionylation. Route 2 describes
mechanisms based on protein sulfenic acid
formation followed by reaction with
GSH. Route 3 describes mechanisms based
on protein- or glutathione-cysteinyl radi-
cals generating the protein P-SSG� radical
followed by reaction with O2, generating
the superoxide radical anion and the
S-glutathionylated protein. In route 4,
S-nitrosoprotein generated by
S-nitrosoglutathione is modified by the re-
duced form of GSH. GSSG, oxidized glu-
tathione; ROS, reactive oxygen species.
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evidence supporting the enzymatic process came from the
observation that cells lacking GSTP or GSTP-depleted pre-
sented attenuated S-glutathionylation of specific proteins. GSTP
is found in many cellular compartments (cytosol, nucleus, ER,
and mitochondria). The kinetic advantage of the enzymatic re-
action is based on the GSH pKa that is lowered from 9.2 to 6.5
by GSTP through proton abstraction by a Tyr residue of GSTP,
resulting in a thiolate anion (GS-) that is enzymatically trans-
ferred to the protein Cys residue. A well-documented and re-
markable example of enzymatic S-glutathionylation is the case
of Prx6 that is S-glutathionylated at the Cys in the active site
through heterodimerization with GSTP. Glutathione is trans-
ferred to the oxidized catalytic Cys residue (Prx6-SOH), gen-
erating the also inactive S-glutathionylated form of the enzyme
(Prx6-SSG) followed by the release of GSTP and subsequent
spontaneous reduction of Prx6 by GSH (402). This sequence of
events is an example of a complete redox cycle for restoring
enzymatic activity.

1. Reversal mechanism. The most studied enzymes that
carry out protein S-deglutathionylation are Grxs (213). As
already described, Srx can deglutathionylate specific Prxs at
specific Cys-SG sites (92, 496). GSTO1-1 was reported as a
deglutathionylating enzyme in epithelial breast cancer cells
with specificity toward actin (422). Amazingly, when the
same cells were exposed to S-nitrosoglutathione (GSNO),
GSTO1-1 was associated with the S-glutathionylation of
several proteins because, as mentioned above, some S-nitroso
proteins are labile to subsequent S-glutathionylation (233).
Importantly, a GSTO1-1 polymorphism has been associated
with several diseases (422). Evidence of enzymatic speci-
ficity for S-deglutathionylation comes from human Prx1, in
which three out of four Cys residues are found to be
S-glutathionylated. Two Cys residues are preferentially de-
glutathionylated by Srx and the last one by Grx (496). Despite
these examples, more direct evidence for the specificity of
enzymatic deglutathionylation is missing in the literature.

2. Methods to detect protein S-glutathionylation. Several
techniques are used to detect S-glutathionylated proteins. The
first methods described were based on radio- and immune-
labeling (227) and the utilization of biotinylated GSH (77).
The most promising approaches are based on trapping the
reduced protein Cys residues with alkylating agents, fol-
lowed by treatment with Grx or reducing agents (e.g., di-
thiothreitol [DTT]) to remove the –SSG moiety and
subsequent exposure of the free protein sulfhydryls to fluo-
rescent probes or biotinylated thiols for detection. MS tech-
niques allow the identification of the protein and the Cys-
containing sequences. These methodologies are also able to
map linear protein motifs prone to S-glutathionylation (729).
However, the few MS studies so far do not permit mapping
the motifs, if any, prone to S-glutathionylation.

3. S-glutathionylation as a modulatory mechanism of
protein function. The number of proteins found to be
S-glutathionylated is not considered significant when con-
sidering the total proteome of mammalian cells (240).
Among them, there are well-documented examples where the
S-glutathionylation is associated with the modulation of
protein function coupled to general intracellular or com-
partmental redox shifts. In these situations, protein

S-glutathionylation functions as a regulatory cell response
mechanism. As established elsewhere (424), some of the
criteria necessary to fulfill this condition would include (i)
specificity of S-glutathionylation toward the protein Cys
residue; (ii) occurrence of S-glutathionylation at high ratios
of GSH/GSSG; (iii) S-glutathionylation occurrence at phys-
iological conditions upon a stimulus, altering a functional or
physiological endpoint; (iv) existence of a rapid and efficient
mechanism for reversing the reaction thereby re-establishing
the initial physiological condition when the stimulus ceases.
Among the proteins that fulfill these criteria, examples in-
clude Prx, as mentioned above and the yeast catalytic unit of
the 20S catalytic unit of the proteasome where 2 out of 32 Cys
residues are S-glutathionylated in vivo, promoting the open-
ing of the 20S catalytic chamber and increasing the degra-
dation of oxidized proteins. This process was shown to be
in vitro reversed by Grx2 and Trx1 or Trx2 and dependent on
the intracellular redox status (160, 587, 588). In addition,
many other proteins play a regulatory role when
S-glutathionylated. Examples include several mitochondrial
proteins that adjust the energy metabolism (398), ER proteins
to cope with Ca2+ metabolism (754), and Fas or CD95,
members of the TNF family of death receptors in the am-
plification of cell death pathways (15).

4. Physiopathological processes associated with protein
S-glutathionylation. The S-glutathionylation of actin and
hemoglobin has been proposed to be biomarkers in patients
with Friedreich ataxia, diabetes, hyperlipidemia, and uremia
(480, 629). A GSTP polymorphism found in European an-
cestors (259) alters the substrate-binding site of the enzyme
and is considered a risk factor for a response to redox imbal-
ance in at least one example provided by the recycling of Prx6
[(403); see above, the role of GSTP in Prx6 recycling]. The
studies reported in cellular models (403) suggest that the GSTP
polymorphism implies that individuals will have potential
differences in the antioxidant response based on Prx6 activity,
impacting the protection of cell membranes against lipid per-
oxidation, as Prx6 acts toward lipid peroxides. As GSTP in-
teracts with several proteins, there are some speculative
interpretations about the consequences the GSTP polymor-
phism has on protein S-glutathionylation (240). Therefore,
more investigation is necessary to clarify that point. The
S-glutathionylation of specific substrates is believed to involve
the immune response and allergic inflammation (754). The
DNA binding of the S-glutathionylated tumor suppressor p53
has been found inhibited in human cancers, a fact that is ex-
pected to determine a relationship between redox control of
p53 in cancers and healthy tissues (674).

As pointed out, protein S-glutathionylation is promoted by
a redox buffer (GSH), interacting with an important redox-
sensitive protein residue (Cys). Moreover, as it is reversible,
it represents a recycling mechanism. Hence, protein
S-glutathionylation might be considered a prominent redox
mechanism of protein modulation and signal transduction.
However, impaired protein function is also caused by oxi-
dative stress due to ROS and RNS, as is the case with eNOS
activity (111, 404). In this example, there is a disruption in
the coupling of NADPH oxidase to eNOS, resulting in
decreased NO synthesis and superoxide generation, thus
suggesting an angiotensin II-induced impairment of
endothelium-dependent vasorelaxation (214).
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C. Protein persulfidation

Protein persulfidation (P-SSH), also called sulfhydration
or sulfuration, is a modification of protein Cys residues
formed by the reaction between H2S, in the HS- form, and
supposedly oxidized protein thiols (P-SSR or –SOH; Equa-
tions 4 and 5, respectively) and also by reaction of inorganic
persulfides (HSSnS-) and polysulfanes (HSSnSH) with the
protein-Cys thiolate form (P-S-) (198). Toward the end of the
1990s, H2S was recognized as a physiological mediator (231,
500). Cys and its derivatives are substrates for enzymatic H2S
formation by the enzymes cystathionine b-synthase (CBS),
cystathionine c-lyase (CSE), and b-mercaptopyruvate sul-
furtransferase. The secondary source of H2S is the gut mi-
crobiota. Persulfides and polysulfides are endogenously
generated and obtained from dietary intake (231). H2S con-
centration is estimated to be in the low nanomolar range in
most tissues (318). Therefore, the low steady-state concen-
tration of H2S would reflect a high rate of clearance and/or
consumption. Besides the direct signaling of H2S, another
model of its signal transduction would be via protein per-
sulfidation. Protein persulfidation has been shown to regulate
protein function and, consequently, diverse biological pro-
cesses. Regarding the nomenclature, the term persulfidation
is the most accurate one as sulfhydration implies a mecha-
nism based on ‘‘hydration,’’ which is not the case (198).

PSSRþHS� ! PSSHþRS� [4]

PSOHþHS� ! PSSHþOH� [5]

The most acceptable in vivo mechanism of protein persulfi-
dation is the reaction between H2S and P-SOH (Equation 5). As
mentioned above, protein-sulfenic acids readily react with thiols
(RSH), forming disulfides. In addition, sulfenic acids react with
H2S generating the persulfidated derivatives. This mechanism
was shown to occur via the sulfenic acid form of the human
albumin Cys4 residue rendering the Cys4-persulfidated protein
(137). In agreement, intracellular protein-persulfide levels are
increased upon treatment with H2O2, and these levels decrease
when H2S-generating enzymes (CBS and CSE) are inhibited.
Protein persulfidation resulting from the reaction between
H2S and protein-sulfenic acids was shown to overcome the
H2S reaction with protein disulfides (Equation 4) (198). As
protein sulfenic acids can be further oxidized, generating the
irreversible sulfinic and sulfonic acid (P-SO2H and P-SOH,
respectively) forms, similarly to protein S-glutathionylation,
persulfidation would protect protein-thiols against over-
oxidation since both mechanisms are reversible.

Crosstalk between NO� and H2S signaling pathways
through the formation of HSNO by the reaction of
S-nitrosothiols with H2S is expected to contribute to protein
modification (318). According to the mechanism proposed,
H2S reacts with protein-SNO regenerating the reduced protein
thiol (P-SH) with the concomitant production of HSNO. In
turn, HSNO, by reaction with H2S, results in the production of
HNO and the inorganic persulfide HSSH, which can react with
the protein thiolate group (P-S-) and generate the protein
persulfide derivative (P-SSH). Accordingly, evidence shows
that the same protein Cys residues can be modified by
S-nitrosation and S-persulfidation, generating opposite func-

tional effects (456). An example based on both mechanisms is
the regulation of GAPDH activity and, consequently, glycol-
ysis and gene transduction. GAPDH is S-nitrosylated or
S-persulfidated at residue Cys 150. While the S-nitrosation of
this residue inhibits GAPDH glycolytic function and promotes
its translocation to the nucleus, the S-persulfidation dramati-
cally increases GAPDH glycolytic activity (456). Another
well-documented example of functional protein modulation by
the exchange between S-persulfidation and S-nitrosation is the
case of NF-jB (576). The Cys 8 residue in subunit p65 of NF-
jB is the only Cys residue among the eight S-persulfidated,
increasing its DNA binding and the consequent antiapoptotic
effect. On the contrary, S-nitrosation of the same residue oc-
curs as it is depersulfidated, consequently reducing NF-jB
binding to DNA. These examples provide evidence for the
specificity of persulfidation toward specific Cys residues. Both
S-nitrosation and S-persulfidation processes are reversed by
the Trx system (318, 347). Persulfidation was also reported as a
regulatory mechanism linked to the ER stress response (347).
In this case, upon inhibition of the catalytic activity of the
phosphatase PTP1B through S-persulfidation of the Cys125
residue located in the active site of the enzyme, PERK phos-
phorylation is maintained and protein translation is suppressed
since PERK functions as an ER stress sensor.

Many of the pathways where H2S is involved are sup-
posedly mediated by protein S-persulfidation, for example,
inflammation and vasorelaxation (500). Therefore, a well-
documented example is the S-persulfidation of KATP and
IKCa channels resulting in vasorelaxation (457). Many other
notable examples of the modulation of pathways by protein-
persulfidation are found in the literature (198).

Protein persulfidation as a modulatory mechanism of pro-
tein function relies on its reversibility under physiological
conditions. There is convincing evidence for the role of the Trx
system in catalyzing depersulfidation (198). Trx was shown to
be 200-fold more efficient at reducing Cys-SSH in PTP1B than
DTT (347). Also, the treatment of cell lysates with a Trx re-
ductase inhibitor increased the total levels of protein persul-
fidated (698). The Grx system has been proposed; however,
only the in vitro reduction of bovine serum albumin-SSH has
been demonstrated (198). Further studies should unravel that
potential.

One significant limitation to detect proteins modified by
persulfidation is methodological. Recently, a quantitative
method termed low-pH quantitative thiol reactivity profiling
that improves similar ones was reported (206). By applying
this methodology, cell lysates treated with NaHS resulted in
identifying 994 proteins modified by persulfidation. Al-
though these data cannot be taken as an actual physiological
situation of persulfidation, they reveal potential protein-Cys
targets. Very few studies have generated data of persulfidated
proteins in the steadystate of cells. In most of them, persul-
fidated proteins represented 0.15% to 1.2% of the proteome
of cells and tissues examined (198).

Protein-persulfidation and S-glutathionylation are firmly
associated with functional protein modulation, thereby reg-
ulating intracellular redox shifts.

D. Oxidation of protein methionine residues

The oxidation of protein methionine residues generates the
sulfoxide moiety (MetO) that is enzymatically reduced back
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by the Trx-dependent methionine reductases (MsRs) (386).
MsRs are highly preserved throughout evolution from bacteria
to all kingdoms (386). As MsRs are Trx-dependent proteins,
NADPH provides the reducing power to the cycle.

First reports on Met oxidation were on the inhibition of GS
of Lacto arabinosus (686), followed by reports on Bacillus
subtilis sporulation inhibition due to Met oxidation (346).
Later, the reduction of MetO was described (60, 178), and an
enzyme with sulfoxide reductase activity was identified (80,
183). During the 1990s, Met residues were proposed to be an
antioxidant barrier on the protein surface to protect them
from widespread oxidation. The classical work from Stadt-
man’s and Levine’s groups showed that 8 out of 16 Met
residues of the enzyme GS, all surface exposed, could
function as oxidant scavengers (372). Hence, the proposed
mechanism of protein protection against widespread oxida-
tion by Met residues and the catalytic recycling provides
efficient antioxidant protection to the specific protein and its
environment. This early idea of Met residues functioning as
oxidant scavengers has been challenged by new data (72,
369). We also direct the reader to the discussion below re-
garding Met residue oxidation and loss of protein activity.

The oxidation of Met introduces a chiral center at the sulfur
atom generating two epimers, namely R-MetO and S-MetO.
The two MsRs (A and B) have specificity for the epimers:
MsrA for the S-MetO and MsRB for the R-MetO. Mammals
have three isomers of class B and one of class A. Studies re-
ported in the literature regarding the knockout and over-
expression of MsRA in many species have contributed
significantly to the hypothesis of protein Met residues as oxi-
dant scavengers. Knocking out MsRA in several species, in-
cluding yeast and bacteria, significantly increased their
susceptibility to oxidative stress, while overexpression con-
ferred resistance (377). A remarkable study showing the cau-
sality of the hypothesis on Met residues as oxidant scavengers
replaced 40% of the total Met residues with norleucine in E.
coli (390). Although the norleucine-substituted strain grew at
the same rates as the control cells, exposing the modified strain
to the oxidant HOCl resulted in 100% death. In contrast, the
same concentration of the oxidant did not affect the viability of
control cells. Another observation that corroborates the hy-
pothesis is the amazing ability of all eukaryotic cells to increase
Met content in their proteins upon an oxidative challenge (361).

As Manta and Gladyshev (406) stated, the reaction of
protein-Met residues with the majority of oxidants is gener-
ally too slow to be considered biologically relevant. Their
enzymatic generation by a specific class of monooxidase
enzymes is proposed (406). The enzymatic oxidation and
reduction of protein-Met residues could function as an es-
sential regulatory or signaling mechanism. Indeed, some re-
ports in the literature are consistent with the notion that MetO
is not linked to protein inactivation but a gain of function
(184) or interchangeable modulation (291).

Methionine oxidation and recycling provide important
mechanisms of on-off switches in cellular regulation. Such a
mechanism was demonstrated in the binding of lymphotoxin-a
to the tumor necrosis factor receptor 1, where a specific Met
residue of the ligand interacts with a specific Tyr residue of the
receptor. Met oxidation prevents the interaction, thus provid-
ing a regulatory mechanism of lymphotoxin signaling (376).

Another important source of evidence on the role of MetO/
Met recycling in the cellular protection against oxidative

stress in human pathological conditions is associated with
either mutations in genes encoding for MsRs or alterations in
activities and concentrations of MsRs. A human polymor-
phism in msrA is associated with increased cardiovascular
diseases (247). Decreased activity of MsRA was reported in
the brain of Alzheimer’s patients (211). Moreover, the high
toxicity of the Ab(1–42) peptide is attributed to the Met 5
residue, as its substitution abolishes toxicity (87). It is im-
portant to point out that a-synuclein, which plays a crucial
role in PD development, contains two Met residues that are
highly susceptible to oxidation. When a-synuclein was ex-
pressed in Drosophila overexpressing msrA, the locomotor
defects were suppressed (696). MsRA was consistently as-
sociated with the metastatic potential of hepatocellular car-
cinoma as msrA expression decreased in patients with
metastasis in comparison with tissues of patients without
metastasis (366). MsRA levels were also attenuated in cases
of advanced grades of breast cancer (157). Loss of MsRB
causes human deafness (5).

Despite much evidence on the indirect antioxidant defense
and recycling regulatory mechanisms, Met oxidation is as-
sociated with protein aggregation (Section IV.A) and loss of
protein function that represents a major consequence in most
proteins via conformational changes and unfolding (180).
Methionine sulfoxide can also be further irreversibly oxi-
dized to the sulfone form (MetO2), but at a significantly
lower extent (180). The importance of MetO2 in human
pathophysiological conditions remains unclear so far.

Regarding the loss of protein function upon Met oxidation,
calmodulin is a well-characterized target (56) together with
calmodulin-regulated enzymes such as calcineurin (Ca2+-
calmodulin-dependent kinase II) (180). Met oxidation also
has a vital role in regulating the immune system by inhibiting
the degradation of the transcription factor NF-jB. The oxi-
dation of Met45 of NF-jB inhibitor (IjB) implies on IjB
resistance to degradation, and consequently, the inhibition of
transcription mediated by NF-jB. However, this mechanism
is reversible through MsRs (320, 423). Nonetheless, protein
inhibition through Met oxidation should be considered in the
level of cellular signal transduction as in many cases, Met
oxidation and reduction play a dynamic role as a regulatory
mechanism in a variety of cellular cascades.

1. Detection of oxidized methionine residues in pro-
teins. The most applied methods to detect protein oxidized
Met residues are MS analysis that allows detection on a
proteomic-wide scale (226) and immune assay (693). Other
methods are based on MetO derivatization (180).

IV. Fate of Oxidized Proteins

The primary fate of nonrepairable oxidized proteins is
proteolysis or aggregation. Proteolysis would be the best
pathway for cellular homeostasis maintenance, whereas ag-
gregation is an important fate of oxidized proteins associated
with prevalent human pathologies. The sections below dis-
cuss both possibilities.

A. Protein aggregation

In general, oxidative modifications of amino acids alter
their charge or steric properties, destabilizing the protein
native conformation (334). Surface hydrophobicity is
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commonly increased (107), facilitating aggregation (453).
The mechanism of production and the chemical characteris-
tics of protein aggregates in vivo are not entirely elucidated.
However, it is known from in vitro studies that different
oxidative modifications of protein residues may participate in
the onset and perpetuation of protein aggregates. In the fol-
lowing paragraphs, the term aggregation refers to crosslinked
material as well as to noncovalent aggregates.

It is increasingly clear that most organisms bear a group of
proteins that aggregate under mild conditions that do not
disturb the other constituents of the proteome. Because of
that, some research groups refer to those aggregation-prone
proteins as metastable proteins (289, 483, 701). These pro-
teins were shown to be large and weakly hydrophobic, with a
flexible structure enriched in disordered regions (483).
Walker et al. (688) elegantly demonstrated that loose protein
folding increases the solvent accessibility to methionine side
chains, making them more susceptible to oxidation. Other
research groups demonstrated that misfolding predisposes
proteins to oxidative damage (181, 348). In support of this
idea, a strong inverse correlation between translational fide-
lity and protein carbonylation was described (348). This re-
lationship is particularly relevant during aging since it is
associated with a prooxidant cellular status (36). Indeed,
widespread protein aggregation was shown to occur during
aging in Caenorhabditis elegans (147), S. cerevisiae (514),
and Drosophila (161). However, unfortunately, none of these
studies assessed the oxidative modifications present in the
age-associated aggregates.

1. Mechanisms involved in protein aggregation induced
by protein oxidation. Tanase et al. (632) analyzed aggre-
gates from bone marrow and splenic cells from 3-, 12-, and
22-month-old mice. They found a significant association
between carbonylation of the proteome and the accumulation
of high-molecular-weight protein aggregates with age. More
than that, the authors found that over 90% of the carbonylated
proteome was aggregated, suggesting that protein carbonyl-
ation is intimately linked to age-induced protein aggregation
(632). Aggregates from aged mice had different carbonyl
modifications, especially aminoadipic acid and glutamic
semialdehyde, generated from the oxidation of lysine and
arginine, respectively. The aggregates were also enriched in
kynurenine and oxolactone, which are tryptophan oxidation
products, and pyrrolidone and pyrrolidinone, which are
generated from proline oxidation (632). The cellular turnover
of aggregates is slower than of nonaggregated proteins. Thus,
it would be interesting to know whether there is a causal
relationship between protein oxidation and aggregation or
whether increased oxidation is simply due to slower aggre-
gate turnover.

Experimental data clearly show that Met oxidation is in-
timately linked to human prion protein (PrP) aggregation
(540, 714, 744). As shown, sodium periodate-induced Met
oxidation increased the aggregation of recombinant human
prion protein (rhPrP) proportionally to the number of oxi-
dized Met residues (human PrP has nine of them) (714). In-
terestingly, when PrP Met was substituted by methoxinine (a
hydrophilic chemically stable Met) to mimic oxidized Met

FIG. 11. Fate of oxidized
proteins. [1] Oxidized pro-
teins present increased sur-
face hydrophobicity because
of the loss of tertiary and
secondary structures that
may determine their degra-
dation [2, 3], rescue by
chaperones [4], and possible
refolding [5] or aggregation
[6]. Aggregates may burden
the proteostasis system lead-
ing to further protein aggre-
gation, increasing their
molecular mass and further
modifications, including me-
tal binding. The accumulation
of aggregated proteins [7] is a
hallmark of many neuropath-
ological conditions and cata-
racts. Autophagy [8] is
another important fate of ag-
gregated proteins. Into the
mitochondrial matrix [9],
LON protease accomplishes
the role of degrading oxidized
mitochondrial proteins. Sec-
tion IV describes and dis-
cusses each of the processes
illustrated above. Color ima-
ges are available online.
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residues, a stronger aggregative behavior was observed. The
opposite behavior was obtained when norleucine (a hydro-
phobic and chemically stable analogue that mimics reduced
Met) was used (714), indicating that Met oxidation is the
main trigger of PrP aggregation. Similar results were ob-
tained in a yeast model of prion disease. Oxidative stress
conditions promoted by incubation with hydrogen peroxide,
menadione, or silencing of antioxidant enzymes increased the
amount of aggregation of the yeast PrP. The presence of
aggregates was accompanied by Met oxidation, and both
were significantly reduced by overexpression of Met sulf-
oxide reductase (179).

Met oxidation was also described in amyloid aggregates
composed of apoA-I (106, 716) or a-synuclein (282, 521).
In the latter case, Met oxidation was shown to enhance the
formation of soluble oligomers (757), arguably the main
toxic form of aggregate in PD (300). The oxidation of each
one of the four Met present in a-synuclein was shown to
increase the polarity of the protein, elevating the degree of
unfolding and preventing its organization into mature fi-
brils, locking aggregated a-synuclein in the soluble oligo-
meric form. Of note, the degree of fibrillation inhibition
(i.e., the assembly of a-synuclein into amyloid fibrils) was
found to be proportional to the number of oxidized Met
residues (282, 521). Interestingly, dopamine-quinone, a
product of dopamine oxidation, was shown to form adducts
with a-synuclein and was also suggested to inhibit fibril-
lation (757). Synuclein oligomerization was also shown
to be induced by peroxynitrite in the presence of CO2 or
MPO in the presence of H2O2 (601), which are possible
in vivo aggregation-inducing agents. Finally, the formation
of toxic oligomers was also found to occur after the cova-
lent modification of a-synuclein by 4-hydroxy-2-nonenal
(HNE) (527).

Oxidation of SOD1 Trp and His residues was shown to
occur and be involved in the aggregation of the wild-type
human enzyme. While Trp oxidation was the result of the
enzyme bicarbonate-dependent peroxidase activity (125,
749), His oxidation to 2-oxohistidine was obtained by MCO
(CuCl2 in the presence of ascorbic acid) (536). More recently,
Dantas et al. (143) reported that one of the products of cho-
lesterol oxidation, cholesterol 5,6-secosterol aldehyde B, was
able to covalently modify SOD1 Lys leading to significant
aggregation of the enzyme. Of note, secosterol aldehydes
were also shown to promote b-amyloid peptide (670) and a-
synuclein (66) aggregation.

Different states of Cys oxidation were described as be-
ing involved in protein aggregation. For instance, the
folding and stability of the FF domain of the yeast URN1, a
model protein, were significantly impacted upon irrevers-
ible oxidation of a free Cys residue to sulfonic acid. In-
deed, the oxidative modification of this single residue was
sufficient to induce the protein aggregation into amyloid
structures (407). The establishment of intermolecular ad-
ventitious disulfide bonds between two RRM2 domains of
the transactive response DNA-binding protein 43 (TDP-
43) was described as a determinant for dimerization, un-
folding, and aggregation of the TDP-43 protein in vitro
(127, 531). Interestingly, it was proposed that those ad-
ventitious bonds impair the ability of the RRM2 domain to
refold, thus facilitating misfolding and ensuing aggrega-
tion (531).

2. Cellular consequences of aggregate accumula-
tion. Highly oxidized and crosslinked proteins were shown
to be a significant part of the brownish age pigment lipo-
fuscin. However, the amino acids involved in such crosslinks
were not described (280, 487). The mechanisms through
which lipofuscin arises are still debated (445), but a failure in
the cellular proteostasis system certainly contributes to its
accrual (543). Importantly, lipofuscin was shown to incor-
porate different metals (up to 2%), which afford lipofuscin
the ability to produce ROS, further oxidizing proteins and
lipids and contributing to accumulation in cells (543). The
ability of lipofuscin to inhibit the proteasome (281) exacer-
bates the accumulation of oxidized proteins and leads to the
accumulation of other proteasome substrates such as the
proapoptotic protein Bax, consequently facilitating apoptosis
(525).

Protein aggregates may disrupt cell homeostasis by pro-
moting the loss of function of the aggregated proteins and/or
acquiring a toxic gain of function. The mechanisms through
which aggregates exert their toxic effects are far from being
completely understood. However, they seem to be dependent
on the supramolecular organization of the aggregate (81, 95),
the cellular environment, and the cell type. However, some
features have been reported in a number of situations in
which toxic aggregates are present, such as the failure of the
ubiquitin/proteasome system (UPS) (43, 48, 280). Although
the mechanisms through which protein aggregates inhibit the
UPS are still elusive (281, 381), part of the inhibition may be
due to the proteasome sequestration into aggregates, as ob-
served after brain ischemia (223). UPS inhibition is ade-
terminant for the toxic effects of aggregates. Indeed,
aggregate dissolution brought about by HSP 104 over-
expression in yeast increased the activity of the proteasome
without affecting its levels and normalized the degradation of
proteasome substrates in aged yeast cells. Importantly, pro-
tein disaggregation allowed an increase in the replicative life
span of yeast cells, indicating that the accumulation of ag-
gregates shortens the longevity of this organism (16).

Damage to membranes was also reported as part of the
toxicity mechanism of a-synuclein aggregates, although the
molecular details are still unclear (300). Importantly,
aggregation-prone proteins, which play essential roles in
cellular functions, were shown to be sequestered by amyloid-
like aggregates in HEK293T cells, which undoubtedly con-
tribute to tissue aging as described in C. elegans (289).

Most of the data gathered so far on protein aggregates used
in vitro systems. While valuable to uncover possible forma-
tion mechanisms and other crucial molecular details of ag-
gregates, in vitro data may not reflect in vivo situations as
aggregate accumulation in living organisms is the result of an
interplay between the proaggregative stimuli and the activity
of the proteostasis system; thus, it is essential to study protein
aggregates in vivo. Those studies will undoubtedly contribute
to the understanding of the relative contribution of aggregates
to pathologic states and organismal aging, a topic that is
actively being investigated.

Despite the vast array of evidence relating oxidation-
induced protein aggregation to pathological states, it is im-
portant to emphasize that oxidation-induced protein aggre-
gation may have protective or functional purposes. As an
example, elegant works by Benjamin Tu’s group showed that
the yeast ortholog of ataxin-2 (Pbp1) coordinates the target of
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rapamycin complex 1 (TORC1) signaling and autophagy in
response to mitochondrial activity (734). In conditions of in-
tense mitochondrial respiration, Pbp-1 protein organizes into
puncta composed of labile b-polymers. Upon addition of small
concentrations of hydrogen peroxide, specific Met residues
present on a low complexity domain of Pbp1 are oxidized,
leading to b-polymer disassembly and subsequent TORC1
activation and autophagy inhibition. The reduction of the ox-
idized Met residues reverses the process (322). Interestingly,
the organization of Pbp1 into labile b-polymers has a func-
tional purpose and depends on the redox state of Met residues
located at the low complexity domain, as shown by site-
directed mutagenesis (322). For more examples of functional
or protective roles of redox-dependent aggregation, the reader
is referred to the review by van Dam and Dansen (141).

3. Human pathologies associated with oxidized protein
aggregation. Age-associated cataract is a prototypical ex-
ample of a disease caused by high-molecular-weight protein
aggregates, which lead to lens opacity. Oxidative modification
of amino acid residues of crystallin proteins was reported to
play a significant role in cataract etiology (444). Indeed,
*90% of protein sulfhydryl groups are lost in lenses with
advanced cataracts (655). Moreover, oxidation of Trp 9 and
Met 1 are among the major PTMs detected in aggregated a-
crystallin, a protein present in all insoluble aggregates in lenses
(606). Finally, Trp-Trp and Trp-Tyr crosslinks were recently
characterized in human nuclear cataracts (Fig. 6A) (498).

The presence of protein aggregates in brain tissue is a
hallmark of many NDs, such as Alzheimer’s, Parkinson’s,
and Huntington’s, among others (see for instance Fig. 6B). In
the same way, high levels of oxidized biomolecules were
reported in postmortem brains of patients with NDs (113).
Considering the data obtained in vitro showing that oxidation
is a destabilizing factor for protein folding, it is likely that
protein oxidation contributes to the abnormal protein deposits
found in the brains of patients with NDs. However, the eti-
ology of NDs is still elusive, and no work to date has dem-
onstrated a direct relationship between the oxidation of
proteins and their abnormal deposit in the brain or the de-
velopment of disease in humans. More studies are required to
define the participation (if any) of oxidized proteins and their
aggregation in the setting of NDs.

B. Proteolysis

The direct repair of oxidized proteins is limited, as herein
described. During the 1980s, proteolysis was suggested as
part of the intracellular defense against oxidized proteins
(148). Initially, in vitro and in vivo evidence accumulated and
indicated that the proteasome was the main protease that
preferentially recognizes and degrades oxidatively modified
proteins (316). Over the last two decades, other proteolytic
systems were shown to remove oxidatively damaged proteins
and protein aggregates, mainly the mitochondrial LON pro-
tease and autophagy. These three protein quality control
(PQC) systems are discussed below.

1. Proteasome. The description of the polyubiquitina-
tion of proteins as a PTM that directs them to degradation in
the early 1980s was a significant achievement to the under-
standing of proteostasis (121, 122, 275). Afterward, the dis-

covery of the proteolytic complex responsible for the
recognition and degradation of polyubiquitinated proteins,
namely the 26S proteasome (26SPT), was reported (697).
The 26SPT is composed of a central cylindrical-shaped cat-
alytic unit called the 20SPT, coupled on one or both sides to
the most abundant regulatory unit, the so-called 19S unit
(316, 681). The 19S regulatory unit is responsible for rec-
ognizing polyubiquitinated proteins and their subsequent
deubiquitination, unfolding, and translocation to the catalytic
20S unit. The polyubiquitination machinery, together with
the 26S protease, is presently referred to as the UPS.

Initially, it was assumed that the 20SPT was permanently
coupled to the 19S regulatory unit, degrading exclusively
polyubiquitinated proteins. Some investigators challenged
this proposition about the degradation of oxidized proteins.
The 20SPT was mentioned as an independent particle called
the ‘‘multicatalytic proteinase complex’’ (707) that was as-
sociated with the degradation of oxidized and non-
ubiquitinated proteins (150, 187, 316). Throughout the last
decades, free 20SPT is increasingly accepted as an essential
player in the degradation of oxidized proteins through a
ubiquitin- and ATP-independent pathway. However, its role
in vivo is not fully appreciated (159). A debate is still in place
on whether oxidized proteins are polyubiquitinated or not
before degradation. Indeed, there is no described biochemical
feature that precludes oxidized proteins from being poly-
ubiquitinated. Therefore, the question is whether the prompt
degradation of oxidized protein substrates by the 20SPT
could bypass their polyubiquitination and subsequent deg-
radation by the 26SPT. In other words, there are no data to
consider which mechanism would prevail on kinetic grounds.
The mechanism proposed and explored in vitro for the rec-
ognition of oxidized proteins by the 20SPT relies on the
exposure of hydrophobic patches due to structural re-
arrangement upon oxidation (149). A recent study with yeast
cells exposed to oxidative stress revealed that 50% of highly
abundant oxidized proteins were polyubiquitinated (405).
However, this study does not discuss the fate of the remaining
50% of the oxidized proteins, suggesting that distinct
mechanisms of proteolytic degradation of oxidized proteins
can coexist.

Reported alterations of the UPS upon oxidative stress, such
as the uncoupling of the 20S catalytic unit from the 19S
regulatory unit, the increased expression of the regulatory
unit 11S, and decreased polyubiquitination, are interpreted as
adaptive responses that UPS uses to cope with oxidative
shifts (344) and highlight the role of the 20SPT catalytic unit
as the main player in the degradation of oxidized proteins.
Nonetheless, all the investigations in the field use oxidative
challenges to cells that do not necessarily resemble aging or
degenerative processes, in which protein oxidation proceeds
at a slow pace. It has been very challenging to design ex-
perimental conditions related to these human pathologies.
Indeed, a large amount of data are available, showing that
proteasomal activation is associated with extended life span
(117). On the other hand, proteasomal activity declines with
age and in age-related pathological conditions, with conse-
quent accumulation of oxidized proteins that correlate with a
decrease in the expression of antioxidant enzymes in aged
cells (271, 493, 520). The decline of proteasomal activity in
those conditions is widely reported. However, it is unclear
whether it is because of its decreased expression or increased
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PTMs, including oxidative damage. Major oxidative modi-
fications reported are modifications by HNE, the formation of
carbonyl moieties, and glycation of the 20SPT catalytic unit,
implying inhibition of protein degradation (35). The protea-
some likely has a high recycling rate that is decreased during
aging and in age-related pathologies. The most significant
alteration to compromise protein degradation under these
conditions would be the decreased proteasome expression
rather than inhibition through oxidative modifications.

In conclusion, regardless of the underlying mechanism, the
proteasome is a critical component of the quality control
systems involved in the degradation of oxidized and mis-
folded proteins.

2. Lon protease. Mitochondria are the primary intra-
cellular source of O2

�- and H2O2 (197, 455). As a conse-
quence, the mitochondrial proteome is continuously exposed
to oxidative damage. Oxidatively damaged mitochondrial
proteins represent a risk to the organelle and need to be re-
paired or degraded. In human mitochondria, the LONP pro-
tease (also known as LomP1 or simply LON) is considered
the main component of the mitochondrial PQC system. It
plays a central role in the degradation of oxidatively modified
proteins (683, 684).

LON is a highly conserved ATP-dependent protease lo-
calized in the mitochondrial matrix compartment. While
specific membrane-integrated proteases (namely, m-AAA
protease and i-AAA protease) cleave damaged mitochondrial
proteins of the inner membrane, the LON protease prefer-
entially degrades soluble proteins in the matrix (166). The
LON substrates include nonassembled polypeptides that arise
from incorrect folding during mitochondrial protein biogen-
esis and proteins damaged by oxidants (633). The yeast or-
tholog of the mammalian LON, Pim1, has been widely
studied as a model to uncover LON protease activities. Pim1
is a large homo-oligomeric protein complex composed of
seven 100 kDa subunits organized in a ring-shaped hepta-
meric structure (611). The proteolytic domain responsible for
the hydrolysis of peptide bonds is located inside the internal
proteolytic cavity or chamber, shielded from the aqueous
environment. Therefore, similar to other proteases such as the
proteasome complex, protein degradation by LON requires
prior unfolding and translocation of the client protein into the
proteolytic cavity. This task is performed by the ATPase
domain situated at the edges of the complex (516, 684).

Bender et al. (44) investigated the role of Pim1 in the
maintenance of mitochondrial proteostasis under oxidative
stress conditions. By using a proteomic approach, the authors
identified a set of mitochondrial proteins that are mainly
degraded by Pim1 in response to the exposure of isolated
mitochondria to three distinct oxidative conditions: H2O2,
menadione, and succinate combined with antimycin A (an
inhibitor of electron transfer from ubiquinone to complex
III). Although some proteins were found to be degraded only
under a single type of oxidative treatment, Fe-S cluster-
containing enzymes were the primary targets of degradation.
It was proposed that after the oxidative modification of their
Fe-S clusters, the corresponding polypeptides become de-
stabilized and thus more prone to degradation by Pim1 (44).
This observation is consistent with previous studies showing
that Fe-S clusters containing enzymes are major targets of
oxidative modifications (42, 68, 89, 400).

However, protein oxidative damage is not restricted to Fe-S-
containing enzymes. The mechanism proposed is based on the
generation of partially unfolded protein regions upon oxidation,
which are recognized by LON (41, 306, 400, 484). Hence, the
conformational state of a polypeptide chain serves as the primary
criterion for its selection as a protease substrate. This idea is
further supported by a study that revealed that Pim1 requires an
unstructured segment longer than 50–60 amino acids at the
N-terminal to initiate protein degradation (306). These unstruc-
tured segments can access the interior of the Pim1 proteolytic
chamber, allowing degradation to occur. In this scenario, tightly
folded substrates representing native enzymes remain mostly
resistant to proteolysis. As a result, the proteolysis reaction is
selective to unfolded or damaged polypeptide chains.

As mentioned above, LON plays a crucial role in the
control of mitochondrial proteostasis. This statement is
highlighted by the fact that homozygous Lomp1 knockout
mice exhibit embryonic lethality (528). It has been known for
a long time that LON activity declines in aged animal models,
which is accompanied by the accumulation of oxidatively
modified proteins in the mitochondria (70, 360). This decline
may contribute to the progress of various age-associated
diseases, such as NDs (69, 668).

3. Autophagy. Although autophagy is mainly studied as
a catabolic process involved in the degradation of intracel-
lular components during starvation conditions, it is now clear
that this process participates in many other pathways neces-
sary for cellular homeostasis (191, 349). In addition to a
nonselective process of self-consumption (nonselective au-
tophagy), it has been demonstrated that some cargoes can be
degraded with high selectivity in response to diverse condi-
tions (335). Numerous studies have reported the selective
autophagic degradation of damaged or superfluous organ-
elles, including mitochondria (321, 468, 469, 743), peroxi-
somes (165, 192, 653, 753), and ER (330, 430, 467).

Although the degradation of organelles is the best-
described type of selective autophagy to date, some evidence
indicates that intracellular protein aggregates can also be
selectively degraded in a process known as aggrephagy (59,
293, 387, 388, 491, 569). The selective incorporation of
protein aggregates into the autophagosome requires selective
autophagy receptors (SARs) that bind simultaneously to the
protein aggregate cargo and the core components of the au-
tophagic machinery. Examples of these proteins include the
p62/SQSTM1 (sequestosome 1), the next to BRCA1 gene 1
(NBR1), and optineurin (OPTN) (222, 311, 618).

The most studied ubiquitin-dependent SAR in the context
of aggrephagy is p62. For many years, p62 was considered a
common component of ubiquitin-positive protein aggregates,
such as Mallory and Lewy bodies, neurofibrillary tangles (b-
amyloid), and Huntingtin aggregates (335, 353, 354, 460,
748). Subsequently, it was demonstrated that the recruitment
and oligomerization of p62 into ubiquitinated aggregates are
required for efficient cargo degradation by the autophagic
machinery (59). The trafficking of ubiquitinated protein ag-
gregates into autophagosomes depends on specific motifs
present in the p62 structure. This protein simultaneously in-
teracts with the MAP1LC3/GABARAP (ATG8 in yeast cells)
family of proteins (a core component of autophagosome
membrane) and ubiquitin via the LC interacting region (LIR)
motif and ubiquitin-binding (UBA) domain, respectively
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(491). As a consequence of these interactions, the ubiquiti-
nated protein aggregates are selectively sequestered and de-
livered to the autophagosome.

In parallel to the description of p62, numerous other SARs
that recognize ubiquitinated cellular cargos and LC/GA-
BARAP (Atg8) were described, including the Cue5 from
yeast cells, which is required for clearance of aggregation-
prone proteins (388). The fact that these SARs recognize
ubiquitin molecules attached to cargos led researchers to
propose that ubiquitin is the primary signal that cells use for
discriminating which cargo is degraded by autophagy (329,
336, 345, 556). Considering that the UPS also uses ubiquitin
as a degradation signal for substrates, it was initially thought
that both pathways could degrade the same type of substrates.
However, it is now acknowledged that they exhibit a high
degree of specificity involving selective enzymatic reactions
and discriminatory receptors, ensuring delivery of the correct
substrate to either the proteasome or lysosome. Substrate size
plays an important role in pathway choice. Soluble mono-
meric proteins are mostly conducted to the UPS. In contrast,
larger protein complexes such as protein aggregates, which
are unable to enter into the narrow channel of the proteasome
and thus resistant to proteasomal degradation, are degraded
by the autophagic machinery (518). Moreover, the arrange-
ment of the ubiquitin chains attached to the cargo might play
an important role in substrate fate. While Lys 48-linked
ubiquitination preferentially targets substrates to proteasomal
degradation, Lys 6-linked chains serve as a recognition signal
for multiple autophagy receptors (175).

In addition to its function as an SAR, p62 can also escort
ubiquitinated substrates to the proteasome by acting as a
proteasomal shuttle factor via its Phox and Bem1p (PB1)
domain (556). The structural architecture of p62 determines
which pathway is used by p62-delivered substrates. While
p62 dimerization leads substrates to the proteasome, oligo-
merization of p62 into ubiquitinated cargos promotes sub-
strate channeling to autophagy (722). The underlying
mechanisms that control the switch of this receptor between
the dimeric and oligomeric states have been recently un-
raveled. Under a condition termed ubiquitin stress (a condi-
tion characterized by an accumulation of free ubiquitin, as
observed upon heat shock or prolonged proteasome inhibi-
tion), p62 is ubiquitinated, which disrupts the dimerization of
its UBA domain and facilitates its ability to recognize poly-
ubiquitinated cargoes for selective autophagy (506). This
model is also supported by a recent work showing that oxi-
dation of p62 redox-sensitive Cys residues in response to
oxidative stress induces the formation of disulfide-linked
conjugates, which facilitates p62 oligomerization with con-
sequent induction of the autophagy pathway (98). Im-
portantly, oxidized p62-dependent autophagy activation
seems to be essential for cell survival in the context of oxi-
dative stress associated with age-related diseases.

In conclusion, the data cited above suggest a functional
connection between UPS and autophagy pathways toward
ubiquitinated protein degradation. Autophagy would be a
compensatory mechanism when the proteasome is over-
whelmed or inhibited (175, 415, 518).

Disturbances in PQC pathways are clinical hallmarks of
aging and many age-related diseases, including NDs. There is
a decline in these pathways during aging with direct conse-
quences, including damaged protein accumulation. On the

contrary, accumulating evidence indicates that interventions
that stimulate the UPS and autophagy can prolong the
maintenance of a healthy proteome and consequently in-
crease longevity (368). Recent findings in the same direction
are discussed in Section V.B.2.

Figure 11 illustrates the fate of oxidized proteins, including
aggregation and proteolysis.

V. Conclusions

A. Oxidatively modified proteins as biomarkers
of pathological conditions

The concern in the literature on the existence of redox
biomarkers has occupied the attention of many investigators.
It is beyond the scope of the present review to cover redox
biomarkers. Our interest is toward the search for oxidized
proteins as markers of human pathological conditions.

As discussed throughout the present review, oxidized pro-
teins are frequently associated with several diseases. Some
clinical investigations focused on the levels of specific oxi-
dative protein modifications in a set of diseases, for example,
carbonyl protein levels and AGEs. However, none of those
works could conceptually establish any oxidized protein as a
biomarker of any of the pathologies investigated. In the present
review, we reproduce Frijhoff et al.’s definition of a bio-
marker, based on the World Health Organization, ‘‘as any
substance, structure, or process that can be measured in the
body or its products and influence or predict the incidence of
outcome or disease’’ (204). Consequently, a clinically useful
biomarker must be able to meet the criteria, such as (i) spec-
ificity for a particular disease (diagnostic), (ii) prognostic va-
lue, and (iii) correlate with disease activity. At the present
moment, hemoglobin glycation is the only biomarker utilized
in the clinic for diagnostic purposes and to follow the progress
of diabetes. However, hemoglobin glycation is mainly related
to increased levels of glucose instead of oxidative stress.

Table 3 summarizes the potential association of specific
proteins, when oxidized, with human pathologies. The cri-
teria to build up Table 3 were to select only those oxidatively
modified proteins found in human samples of pathological
conditions. However, the table does not contemplate all of
them (e.g., proteins only detected by immunoblotting). Re-
ports of HNE-adducts associated with human pathologies and
verified in human samples are reported in Table 1. Many of
the proteins shown in Table 3 were also investigated in ani-
mal and cellular models corroborating human findings and
in vitro, where other oxidative modifications were reported.
Nonetheless, one should consider that the identification of
protein oxidative modifications is dependent on methodo-
logical approaches. While some methodological tools facil-
itate their detection in human samples, for example,
immunological approaches, many other modifications veri-
fied in vitro cannot be reliably investigated in human sam-
ples. Mass spectrometric approaches have been developed to
allow a broader spectrum of modified amino acid side chains,
as shown in many sections above. As depicted in Table 3,
most of the proteins are related to neurodegenerative and
cardiovascular diseases, most probably because these pa-
thologies are widely investigated. The propensity of some
proteins to undergo widespread oxidation, generating several
oxidative modifications (e.g., albumin, ApoA and ApoB pro-
teins, b-amyloid, LDL, a-synuclein; SODs), is noteworthy. It
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is also interesting to point out that protein nitration and Tyr-
Tyr crosslinks are frequently identified. However, it is un-
clear if this is because they are investigated more often or
because their identification by immunological detection is
facilitated. The proteins shown in Table 3 might be consid-
ered potential markers of pathological conditions; however,
they are neither easily identified for diagnostic purposes nor
indicative of disease progression since quantitative and
stoichiometric data are still lacking.

B. Prevention of protein oxidation

It is well established that the accumulation of oxidized
proteins is harmful to the cells. Indeed, protein oxidation
triggers proteotoxicity, which might be the main etiologic
contribution to many pathological states. Following this train
of thought, prevention and repair (only in the case of sulfur-
amino acids) of protein oxidation and the elimination of
oxidized proteins would be the most effective defense against

Table 3. Oxidized Proteins Suggested As Potential Biomarkers and Players in Human Pathologies

Protein Oxidative modification Associated human pathology References

Albumin Acrolein-adduct Ischemia/reperfusion (712)
Cys34-cysteinylation Renal disease (544)
HNE-adduct Diabetes (650)
Met147 sulfoxide Diabetes (438)
Thiol oxidation (SO2H) AD (134)
Urate adduct Gout and rheumatoid arthritis (660)

b-amyloid Dityrosine crosslink AD Reviewed in Al-Hilaly et al. (13)
b-amyloid1–42

peptide
LGE2-lysine lactam adduct AD Reviewed in Salomon and Bi (565)

apoA-I Acrolein-adduct
MDA-adduct
Met148 sulfoxide
Nitration
Trp72-OH

Cardiovascular disease
Cardiovascular disease
Cardiovascular disease

Cardiovascular disease,
chronic kidney disease,
and diabetes

Cardiovascular disease

(580)
(581)
(736)
(32, 112, 507, 758)
(364)
(290)

apoB-100 HNE- adduct Cardiovascular disease Reviewed in Afonso and Spickett (3)
IsoLG-adduct Cardiovascular disease (564)
MDA-adduct Cardiovascular disease Reviewed in Afonso and Spickett (3)
Tyr-Tyr crosslink Atherosclerotic plaques (365)
Ox-PL-adduct Cardiovascular disease (319, 630)

BB-CK Carbonylation AD (7, 102)
CA-II Carbonylation AD (619)
Carbonic anhydrase Nitration AD (620)
Crystallins from

human lenses
Tyr-Tyr crosslink Nuclear cataract (207)
Oxidized Trp Nuclear cataract (253)
Trp-Trp and Trp-Tyr crosslink Nuclear cataract (502)

Enolase Nitration AD (88, 102, 103, 542)
Carbonylation AD (79, 88)

Fibrinogen Nitration Cardiovascular disease (494, 495, 671)
Hemoglobin Glycation Diabetes Reviewed in Ott et al. (486)
IgG Nitration Cardiovascular disease (640)
GDH Nitration AD (542)
Glutamine synthase Carbonylation AD (88, 102)
MM-CK Nitration Heart failure (425)
Parkin Nitrosation PD (119, 735)
Peroxiredoxin-2 Nitration AD (542)
Plasmin Nitration Lung cancer (515)
Pyruvate kinase HNE-adduct AD (542, 637)
SERCA Nitration Heart failure (382)
CYP27A1 IsoLGE2-CYP27A1 adduct Age-related macular

degeneration
Reviewed in Salomon and Bi (565)

SOD1 Disulfide crosslinks ALS (420)
MnSOD Nitration Chronic intermittent hypoxia (383, 451)

Vascular aging (376)
a-synuclein Nitration PD (278, 762)

Tyr-Tyr crosslink PD (12)
TIM Nitration AD (103, 542)
VDAC Nitration AD (620)

ALS, amyotrophic lateral sclerosis; apoA-I, apolipoprotein A-I; BB-CK, brain creatine kinase; CA-II, calcium channels II; CYP27A1,
stearoyl 27-hydroxylase; GDH. glutamate dehydrogenase; IsoLG, isolevuglandin; MDA, malondialdehyde; MM-CK, myofibrillar creatine
kinase; MnSOD, manganese superoxide dismutase; PD, Parkinson’s disease; SERCA, sarcoplasmic reticulum Ca2+-ATPase; SOD1,
superoxide dismutase-1; TIM, triosephosphate isomerase; VDAC, voltage-dependent anion channel.
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pathological processes. On the contrary, functional modula-
tion of some redox-active sulfur-centered proteins influences
catalysis, cell signaling, and metabolic regulation (Section
IV). Therefore, a better understanding of these mechanisms
may lead to means of controlling redox homeostasis, perhaps
using drugs that interfere with specific metabolic points of
redox homeostasis maintenance.

Another consideration is biological plasticity in the onset
of antioxidative response, where hormesis would play an
important role. Hormesis is a dose/response phenomenon
characterized by low-dose stimulation and high-dose inhi-
bition (91) of many biological processes. In redox metabo-
lism, hormesis is related to low doses of oxidants promoting
stimulatory effects of the antioxidative and repair responses
(91, 552). In contrast, high doses are related to macromole-
cule damage and consequent loss of cellular homeostasis. In
agreement with this concept, supplementation with antioxi-
dants was shown to preclude significant consequences of
oxidant production, such as those promoted by physical ex-
ercise (553). While hormesis can have undesirable effects, for
example, anticancer drugs, it has been considered useful in
pathologies related to the oxidative spectrum.

Below, some points on the prevention of protein oxidation
are explored.

1. Antioxidants. Prevention of macromolecule oxidation
relies on the maintenance of the redox homeostasis, whose
physiological regulation is not yet completely understood.
One of the most explored tools to counteract redox imbalance
is the utilization of antioxidants, particularly natural sources.
A search in the PubMed platform utilizing the term antioxi-
dant therapy returned more than 11,800 reviews among
84,000 publications in the last decade. By taking only pub-
lications based on Human Randomized Controlled Trials
presenting antioxidant therapy in the title in the last decade,
about 4500 results emerged. In these publications, a set of
nutritional proposals and specific compounds or natural
products were tested and proposed as therapies against sev-
eral pathologies. There is no consensus established by the
scientific community on the real benefits of such therapies.
The idea of the importance of healthier nutritional intake is
gaining more and more traction, including advisements by
worldwide public health services to the general and specific
populations (e.g., scholars) to increase the intake of natural
products (fruits and vegetables), even though the main goal is
the control of obesity, diabetes, hypertension, and others. It is
important to emphasize that such recommendations are not
yet based on systematic scrutiny on their benefits. It is out of
the scope of this review to explore the subject.

Noteworthy is the rereading of natural ‘‘antioxidants’’
based on the hormesis phenomenon. Instead of antioxidant
protection, many phytochemicals induce cellular stress re-
sponse (454). This is based on the fact that humans consume
many toxic phytochemicals from natural sources at very
small doses within the hormetic range. For many years it was
assumed that the free radical scavenging property of phyto-
chemicals would be responsible for their benefit as antioxi-
dants. However, many epidemiological studies have failed to
demonstrate the benefits of dietary supplementation. Instead,
much evidence suggests that hormesis underlies the health
benefits of phytochemicals (91). A general hypothesis is that
these phytochemicals would induce adaptive cellular stress

response pathways that induce the expression of genes en-
coding antioxidant enzymes, chaperones, detoxifying en-
zymes, and other protective proteins. Nevertheless, more
experimental data are needed for a better understanding of the
role natural products play in redox biology.

2. Elimination of oxidized proteins and aggregation pre-
vention. Besides the loss of function, one of the most crit-
ical outcomes of protein oxidation is the proteotoxic event of
aggregation, as discussed above (Section IV.A). Aggregation
takes place if oxidized proteins are not promptly eliminated.
Three intracellular systems accomplish the degradation of
oxidized proteins: proteasome based or not on the labeling by
polyubiquitin chains, autophagy, and the mitochondrial LON
protease. However, those systems are usually compromised
under the same pathological conditions; thus, the pool of
oxidized proteins increases. There is an emerging field of
investigation for proteasome activators as pharmacological
tools (128, 313, 676, 677), but no drug has been clinically
tested so far.

In the last years, a powerful technique has been developed
based on the induction of protein degradation by proteolysis-
targeting chimeras, namely PROTAC (84, 120, 464). The
methodology is based on the utilization of small bifunctional
molecules capable of interacting with the protein substrate
and ligases to induce the polyubiquitination of the protein
substrate, directing it for proteasomal degradation. Poly-
ubiquitination is a three-step process where the final one is
the PTM of the protein substrate by ubiquitin through E3
ligases that transfer ubiquitin to an Lys residue of the sub-
strate either directly or indirectly. The PROTAC-mediated
degradation is based on targeting the E3 ligase-specific
substrate by degraders that combine affinity for both substrate
and E3 ligase. This approach promotes the degradation of
selected proteins as E3 ligases are substrate specific. Now, it
has become an important tool in both experimental biology,
for the understanding of cell regulation and signaling, and in
drug discovery. Several PROTAC studies on the degradation
of aggregate-prone proteins have been conducted (118, 215,
294, 589). Moreover, the same technique has also been used
to direct proteins to the lysosome (628). This approach seems
robust in the way it targets proteins considered undruggable
so far and introduces a new perspective on pharmacological
interventions (120). In principle, this approach might be ex-
tended to the degradation of any protein. In the case of oxi-
dized proteins, as important as the identification of the
oxidative process these proteins undergo is identifying the
proteins prone to oxidation in all pathologies where they
accumulate. That might be a possibility to intensify their
degradation and establish either their pathological role or
avoid proteotoxicity.

Chaperone-like molecules might be an important tool for
avoiding the aggregation of oxidized proteins. Although
numerous proteins were described to have moonlighting
chaperone-like activity (315, 593, 624), some were described
to prevent protein aggregation in an oxidative scenario. One
example is the 19-amino acid sequence derived from a-
crystallin, which prevents the aggregation of UV-irradiated
or H2O2-treated c-crystallin proteins in vitro (351). The same
group of researchers modified the original 19-amino acid
sequence giving rise to a set of short peptides with varying
degrees of chaperone-like activity, some of which have
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improved activity compared with the original sequence
(535). Peptides derived from a-crystallin are taken up by
primary human fetal retinal pigment epithelium cells in
culture and were able to prevent apoptosis induced by H2O2

(605). In vivo assays also demonstrated that the peptides
prevented selenite-induced cataracts when administered in-
traperitoneally to rats (463), evidencing the therapeutic po-
tential of these molecules.

Another compound with interesting chaperone-like prop-
erties is polyphosphate. Polyphosphate is made up of a
thousand phosphate monomers linked through phos-
phoanhydride bonds. Numerous functions were reported for
polyphosphate in a wide range of organisms, including hu-
mans (723), and some authors argue that polyphosphate is a
primordial chaperone (238). Both in vitro and in E. coli ex-
posed to conditions that lead to oxidative protein unfolding,
polyphosphate was able to stabilize those proteins, signifi-
cantly decreasing the amount of protein aggregation (238).
Moreover, polyphosphate significantly accelerates the for-
mation of mature fibrils from amyloid proteins in vitro, ef-
fectively inhibiting amyloid cytotoxicity (135). While
polyphosphate has significant effects in vitro, its therapeutic
potential in vivo remains unexplored.

C. Emerging approaches to integrate current
knowledge on oxidative processes, protein oxidation,
and human pathologies

Systematic studies on protein oxidation started 40 years ago
(see Section I). Over the decades, the knowledge on the nature
of protein oxidation and the mechanisms involved has made
significant advances. Despite the presence of oxidized proteins
in many human pathologies, the literature poorly describes
either the participation of specific oxidized proteins in the time
course of each pathology or their role as etiological agents.
This observation is not surprising because the quantification of
oxidative PTMs under pathological conditions and in human
samples remains limited. Also limited is the knowledge of how
specific oxidative protein modifications affect protein structure
and function. In addition, it is likely that some protein modi-
fications, such as crosslinks, remain undiscovered.

After the birth of functional genomics in the 1990s and the
explosion in computing power, computational SB has be-
come a useful and reliable tool for modeling and connecting
components of biological pathways. Through quantitative
measures and data integration with mathematical models, SB
establishes networks of multiple components simultaneously
(634). Currently, the massive increase in data from omics,
together with the increased performance of bioinformatics,
culminated with the intensification of SB applications in cell
biology. In the case of redox biology, the goal of identifying
interactions among redox processes, oxidized biomolecules,
and pathological conditions depends on the integration of
redox metabolomic, lipidomic, and proteomic (oxidized lip-
ids and proteins, respectively) databases compiled with data
from tissues or cellular models of a specific condition, for
example, the redox omics (metabolome; oxidized lipids and
proteins) of the brain during aging. Despite considerable data
already available in the field for many models, the use of SB
in redox biology is limited. Another notable approach gaining
relevance in biology and medicine is artificial intelligence
(AI) (338). Here freely defined, AI is an algorithm-based

analysis of a set of data from different sources culminating
with conclusions on the subject under analysis otherwise
hardly achieved with conventional analytical approaches. Of
note, a powerful, successful application of AI has been in
medical diagnostics, including guidelines for treatment pro-
tocols. Indeed, AI is bringing new perspectives for investi-
gations in every scientific field.

In conclusion, to establish more reliable connections be-
tween redox biology (signaling, regulation, damage) and a
specific pathological condition at the functional and causal
level, future studies should deepen the basic knowledge,
emphasize quantification, create a network of information,
and use emerging approaches.
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A, Boada M, and Grancha S. Increased albumin oxidation
in cerebrospinal fluid and plasma from Alzheimer’s dis-
ease patients. J Alzheimers Dis 63: 1395–1404, 2018.

135. Cremers CM, Knoefler D, Gates S, Martin N, Dahl J-U,
Lempart J, Xie L, Chapman MR, Galvan V, Southworth
DR, and Jakob U. Polyphosphate: a conserved modifier of
amyloidogenic processes. Mol Cell 63: 768–780, 2016.

136. Cristani M, Speciale A, Saija A, Gangemi S, Minciullo
PL, and Cimino F. Circulating advanced oxidation protein
products as oxidative stress biomarkers and progression
mediators in pathological conditions related to inflam-
mation and immune dysregulation. Curr Med Chem23:
3862–3882, 2016.

137. Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferrer-
Sueta G, Filipovic MR, and Alvarez B. Reaction of hy-
drogen sulfide with disulfide and sulfenic acid to form the
strongly nucleophilic persulfide. J Biol Chem 290: 26866–
26880, 2015.

138. Cygan NK, Scheinost JC, Butters TD, and Wentworth P.
Adduction of cholesterol 5,6-secosterol aldehyde to
membrane-bound myelin basic protein exposes an im-
munodominant epitope. Biochemistry 50: 2092–2100,
2011.

139. Dagnell M, Cheng Q, Rizvi SHM, Pace PE, Boivin B,
Winterbourn CC, and Arnér ESJ. Bicarbonate is essential
for protein tyrosine phosphatase 1B (PTP1B) oxidation
and cellular signaling through EGF-triggered phosphory-
lation cascades. J Biol Chem294: 12330–12338, 2019.

140. Dalle–Donne I, Milzani A, Gagliano N, Colombo R,
Giustarini D, and Rossi R. Molecular mechanisms and
potential clinical significance of S-glutathionylation. An-
tioxid Redox Signal 10: 445–474, 2007.

141. van Dam L and Dansen TB. Cross-talk between redox
signalling and protein aggregation. Biochem Soc Trans 48:
379–397, 2020.

142. Dansette PM, Rosi J, Bertho G, and Mansuy D. Cyto-
chromes P450 catalyze both steps of the major pathway of
clopidogrel bioactivation, whereas paraoxonase catalyzes
the formation of a minor thiol metabolite isomer. Chem
Res Toxicol 25: 348–356, 2012.

143. Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos
TC, Tallman KA, Porter NA, Augusto O, and Miyamoto
S. Cholesterol secosterol aldehyde adduction and aggre-
gation of Cu,Zn-superoxide dismutase: potential implica-
tions in ALS. Redox Biol 19: 105–115, 2018.

144. Dantas LS, Viviani LG, Inague A, Piccirillo E, de Re-
zende L, Ronsein GE, Augusto O, Medeiros MHG, do
Amaral AT, and Miyamoto S. Lipid aldehyde hydropho-
bicity affects apo-SOD1 modification and aggregation.
Free Radic Biol Med 156: 157–167, 2020.

145. Das AB, Nauser T, Koppenol WH, Kettle AJ, Winter-
bourn CC, and Nagy P. Rapid reaction of superoxide with
insulin-tyrosyl radicals to generate a hydroperoxide with
subsequent glutathione addition. Free Radic Biol Med 70:
86–95, 2014.

146. Das N, Levine RL, Orr WC, and Sohal RS. Selectivity of
protein oxidative damage during aging in Drosophila
melanogaster. Biochem J 360: 209–216, 2001.

147. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlin-
game AL, and Kenyon C. Widespread protein aggregation
as an inherent part of aging in C. elegans. PLoS Biol 8:
e1000450, 2010.

148. Davies KJ. Intracellular proteolytic systems may function
as secondary antioxidant defenses: an hypothesis. J Free
Radic Biol Med 2: 155–173, 1986.

149. Davies KJ. Degradation of oxidized proteins by the 20S
proteasome. Biochimie 83: 301–310, 2001.

150. Davies KJ and Goldberg AL. Proteins damaged by oxygen
radicals are rapidly degraded in extracts of red blood cells.
J Biol Chem 262: 8227–8234, 1987.

151. Davies MJ. Protein oxidation and peroxidation. Biochem J
473: 805–825, 2016.

152. Davies MJ and Hawkins CL. The role of myeloperoxidase
in biomolecule modification, chronic inflammation, and
disease. Antioxid Redox Signal 32: 957–981, 2020.

153. Davies SS. Modulation of protein function by isoketals
and levuglandins. Subcell Biochem 49: 49–70, 2008.

154. Davies SS, Amarnath V, Brame CJ, Boutaud O, and Ro-
berts LJ. Measurement of chronic oxidative and inflam-
matory stress by quantification of isoketal/levuglandin
gamma-ketoaldehyde protein adducts using liquid chro-
matography tandem mass spectrometry. Nat Protoc 2:
2079–2091, 2007.

155. Davies SS, Amarnath V, Montine KS, Bernoud-Hubac N,
Boutaud O, Montine TJ, and Roberts LJ. Effects of re-
active gamma-ketoaldehydes formed by the isoprostane
pathway (isoketals) and cyclooxygenase pathway (le-
vuglandins) on proteasome function. FASEB J 16: 715–
717, 2002.

156. Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, and
Veal EA. Inactivation of a peroxiredoxin by hydrogen per-
oxide is critical for thioredoxin-mediated repair of oxidized
proteins and cell survival. Mol Cell 45: 398–408, 2012.

157. De Luca A, Sanna F, Sallese M, Ruggiero C, Grossi M,
Sacchetta P, Rossi C, De Laurenzi V, Di Ilio C, and Fa-
valoro B. Methionine sulfoxide reductase A down-
regulation in human breast cancer cells results in a more
aggressive phenotype. Proc Natl Acad Sci U S A 107:
18628–18633, 2010.

158. Delaunay A, Pflieger D, Barrault M-B, Vinh J, and Toledano
MB. A thiol peroxidase is an H2O2 receptor and redox-
transducer in gene activation. Cell 111: 471–481, 2002.

159. Demasi M and da Cunha FM. The physiological role of
the free 20S proteasome in protein degradation: a critical
review. Biochim Biophys Acta Gen Subj 1862: 2948–
2954, 2018.

160. Demasi M, Hand A, Ohara E, Oliveira CLP, Bicev RN,
Bertoncini CA, and Netto LES. 20S proteasome activity is
modified via S-glutathionylation based on intracellular

44 DEMASI ET AL.

D
ow

nl
oa

de
d 

by
 M

ar
y 

A
nn

 L
ie

be
rt

, I
nc

., 
pu

bl
is

he
rs

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
5/

26
/2

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

FOR REVIEW ONLY  

NOT INTENDED FOR DISTRIBUTION 

OR REPRODUCTION 



redox status of the yeast Saccharomyces cerevisiae: im-
plications for the degradation of oxidized proteins. Arch
Biochem Biophys 557: 65–71, 2014.

161. Demontis F and Perrimon N. FOXO/4E-BP signaling in
Drosophila muscles regulates organism-wide proteostasis
during aging. Cell 143: 813–825, 2010.

162. Denicola A, Freeman BA, Trujillo M, and Radi R. Per-
oxynitrite reaction with carbon dioxide/bicarbonate: ki-
netics and influence on peroxynitrite-mediated oxidations.
Arch Biochem Biophys 333: 49–58, 1996.

163. Denu JM, Lohse DL, Vijayalakshmi J, Saper MA, and
Dixon JE. Visualization of intermediate and transition-
state structures in protein-tyrosine phosphatase catalysis.
Proc Natl Acad Sci U S A 93: 2493–2498, 1996.

164. Denu JM and Tanner KG. Specific and reversible inacti-
vation of protein tyrosine phosphatases by hydrogen per-
oxide: evidence for a sulfenic acid intermediate and
implications for redox regulation. Biochemistry 37: 5633–
5642, 1998.

165. Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim
S, Lamark T, Jauregui M, Law K, Lippincott-Schwartz J,
Brech A, Johansen T, and Kim PK. NBR1 acts as an
autophagy receptor for peroxisomes. J Cell Sci 126: 939–
952, 2013.

166. Deshwal S, Fiedler KU, and Langer T. Mitochondrial
proteases: multifaceted regulators of mitochondrial plas-
ticity. Annu Rev Biochem 89: 501–528, 2020.

167. Desmyter L, Dewaele S, Reekmans R, Nystrom T, Con-
treras R, and Chen C. Expression of the human ferritin
light chain in a frataxin mutant yeast affects ageing and
cell death. Exp Gerontol 39: 707–715, 2004.
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485. Östman A, Frijhoff J, Sandin Å, and Böhmer F-D. Reg-
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AGEs¼ advanced glycation end-products

AI¼ artificial intelligence
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Abbreviations Used (Cont.)

MetO¼methionine sulfoxide
MM-CK¼myofibrillar creatine kinase
MnSOD¼manganese superoxide dismutase

MPO¼myeloperoxidase
MPTP¼ 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine
MS¼mass spectrometry

MS/MS¼ tandem mass spectrometry
MsrA¼methionine sulfoxide reductase

A enzyme
MsRs¼methionine reductases

ND¼ neurodegenerative diseases
NOS¼ nitric oxide synthase

nPTPs¼ nontransmembrane PTPs or cytosolic
PTPs

OSEs¼ oxidation-specific epitopes
oxPL¼ oxidized phospholipids
PB1¼ Phox and Bem1p
PD¼ Parkinson’s disease

PDGF¼ platelet-derived growth factor
PDI¼ protein disulfide isomerase

Pim1¼ yeast ortholog of the mammalian LON
(mitochondrial protease)

PIP3¼ phosphatidylinositol (3,4,5)-triphosphate
PKCs¼ protein kinase C isoforms
PMF¼ peptide mass fingerprinting

POO�¼ protein peroxyl radical
POOH¼ protein hydroperoxide

POVPC¼ 1-palmitoyl-2-(5-oxovaleroyl)-sn-
glycero-phosphocholine

PQC¼ protein quality control
PROTAC¼ proteolysis-targeting chimeras

PrP¼ prion protein
Prx¼ peroxiredoxin

PTEN¼ phosphatase and tensin homologue
PTM¼ posttranslational modification
PTP¼ protein tyrosine phosphatase

PUFA¼ polyunsaturated fatty acid
rhPrP¼ recombinant human prion protein
RNS¼ reactive nitrogen species
ROS¼ reactive oxygen species
rPTP¼ receptor-like transmembrane PTP

RSNO¼ nitrosothiol
RT¼ room temperature

SARs¼ selective autophagy receptors
SB¼ systems biology

SERCA¼ sarcoplasmic reticulum Ca2+-ATPase
SHP-2¼ Src homology 2 domain-containing

protein tyrosine phosphatase 2
SOD¼ superoxide dismutase

SOD1¼ superoxide dismutase-1
Srx¼ sulfiredoxin

TDP-43¼ transactive response DNA-binding
protein 43

TIM¼ triosephosphate isomerase
TORC1¼ target of rapamycin complex 1

Trx¼ thioredoxin
UBA¼ ubiquitin binding
UPS¼ ubiquitin/proteasome system
UV¼ ultraviolet

VDAC¼ voltage-dependent anion channel
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