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ABSTRACT

The term computational thinking (CT) has been used as an umbrella term
in order to describe the processes underlying the learning and application of
computer science concepts as strategies for problems solving. Despite a grow-
ing body of academic literature on the subject, an increasingly established
positioning within educational policies and the development of a grand vari-
ety of tools designed to enhance computational thinking abilities, the relations
between CT and other cognitive abilities in young children have been scarcely
explored. In order to contribute to bridging this gap, we compared a previ-
ously reported computational thinking assessment with a battery of cognitive
tests which included fluid intelligence, working memory, planning, sequenc-
ing, mental rotation, vocabulary and early math precursors such as numerical
transcoding and symbolic magnitude comparison. Mixed linear regressions
were implemented with CT as a dependent variable in order to explore the
associations between our variables. Results suggest temporal sequencing abil-
ity and symbolic magnitude comparison are significant predictors of CT in
preschoolers. Additionally, using a pre-test post-test experimental design with
an active control group, we tested the efficacy of an educational robotics inter-
vention with RoboTito, a robot designed for children which is programmable
through the disposition of tangible objects in its environment. An eleven ses-
sion intervention program using this robot was designed with the objective of
creating playful learning instances were children would practice abilities as-
sociated with computational thinking. Data related to children’s engagement
and participation throughout the intervention was gathered from filmed mate-
rial from each session. Results suggests children with high engagement levels
achieved better CT scores after the intervention.

Keywords:
computational thinking, early childhood, educational robotics, cognitive
development.

v



RESUMEN

El término pensamiento computacional (PC) ha sido utilizado para denom-
inar los procesos que subyacen al aprendizaje y la aplicación de conceptos de
las ciencias de la computación para la resolución de problemas. A pesar de
una creciente producción de literatura académica y la adopción del término
en el marco de políticas educativas tanto a nivel nacional como global, así
como la extensa producción de dispositivos tecnológicos y juegos destinados
a prover esta habilidad, las asociaciones entre lo que se define como PC y
otras habilidades cognitivas en niños pequeños ha sido escasamente explorada.
Con el objetivo de disminuír esta brecha en la literatura, comparamos el de-
sempeño de niños de 5 años de edad en un cuestionario de PC previamente
utilizado en la literatura y una batería de tests de habilidades cognitivas que
incluyó inteligencia fluída, memoria de trabajo, planificación, secuenciación,
rotación mental, vocabulario y precusores de habilidades matemáticas tales
como comparación de magnitudes simbólicas y transcodificación. Se utilizaron
regresiones lineales con efectos mixtos donde se estableció PC como variable
dependiente para explorar estas asociaciones. Los resultados sugieren que la
habilidad de secuenciación temporal y comparación de magnitudes simbóli-
cas son predictores significativos del desempeño en PC de los niños en edad
preescolar. Adicionalmente, utilizamos un diseño de investigación experimen-
tal con medidas pre-test y post-test y grupo control activo para evaluar la efi-
cacia de una intervención en robótica educativa con la herramienta RoboTito,
un robot diseñado para niños pequeños programable a través de la disposición
en el entorno de objetos tangibles. Se diseñó un programa de intervención de
11 sesiones en el cual los niños trabajaron con esta herramienta en formato
lúdico a través de resolución de problemas estructurados y semi-estructurados.
Se tomaron muestras de datos de los niveles de involucramiento y participación
de los niños en el grupo experimental a través de la observación estructurada
de material audiovisual de las sesiones. Estos resultados indican un aumento
del desempeño en el cuestionario de PC de los niños que participaron del grupo
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experimental con altos niveles de involucramiento.

Palabras claves:
pensamiento computacional, infancia, robotica educativa, desarrollo
cognitivo.
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Chapter 1

Introduction

Jeanette Wing’s 2006 work on computational thinking (Wing, 2006)has been
identified by several authors (Grover and Pea, 2013; Voogt et al., 2015; Zhong
et al., 2016) as a crucial article in sparking scholars’ interest in the construct of
computational thinking (CT) within the educational setting. Fundamentally,
Wing contributed to the conceptualization of CT as a universal skill therefore
broadening the scope of the CT construct into classrooms everywhere. Wing’s
original definition of CT as a skill that involves “solving problems, designing
systems, and understanding human behaviour, by drawing on the concepts
fundamental to computer science” (Wing, 2006) and later as the “thought
processes involved in formulating problems and their solutions so that the so-
lutions are represented in a form that can be effectively carried out by an
information-processing agent” (Cuny et al., 2010) have been highly effective
in promoting CT as a useful and attractive idea for education. CT has been
embraced in educational settings to describe the thought processes behind
computer science and programming, gaining space within state curricula in
several countries (Bocconi et al., 2016), the reasoning behind this being that
the inclusion of these ideas within school curricula might increase children’s
problem solving skills and foster their interest in the computer sciences and
STEM fields in general (Bocconi et al., 2016) Despite much interest, and even
though CT’s roots within early childhood education go back to the influential
work of Papert (1980) under constructivist paradigms, CT remains an evolv-
ing concept (Shute et al., 2017). In a systematic literature review analyzing
publication trends regarding the CT concept, Haseski et al. (2018) found a
spike in academic publications during the last two decades. However, their
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findings suggest that while overall publications increased, the concept is still
too broad in order to make significant contributions. Other authors have also
expressed concern regarding the need for clear, operationalized definitions for
research purposes (Grover and Pea, 2013; Zhong et al., 2016), referring to
the state of the field as a “definitional confusion”. The International Soci-
ety for Technology in Education (ISTE) and the Computer Science Teacher
Association (CSTA) proposed an operational definition which describes CT
as a problem solving process that spans characteristics such as formulating
problems algorithmically, logically organizing data, achieving representation
through abstraction, automatization, procuring time and resource efficiency,
and generalization. However, this definition specifically proposes that while
CT includes the characteristics mentioned above, it is not limited to this pro-
cess, therefore leaving the concept open-ended. (ISTE and CSTA, 2011).

Lowe and Brophy (2017) identified up to twenty five different constructs
while reviewing computational thinking definitions. The authors ultimately
reduce their findings to nine processes, including abstraction, decomposition,
pattern recognition and generalization, algorithms, data, parallels, iteration,
simulation and debugging, while other authors have aimed to simplify the con-
cept by reducing it to one or a few of its most important elements. Such is
the case of Aho (2012), who defines it as problem solving ability and using
algorithms to represent its solutions, or Grover and Pea (2013), who priori-
tizes the process of abstraction as foundational to CT. Brennan and Resnick
(2012) created a CT framework which is based around three main components:
computational concepts (such as sequencing, loops or conditionals), computa-
tional practices (such as debugging or problem solving) and computational
perspectives, which describe aspects such as cooperation and communication.
Assessment and evaluation has been pointed out as one of the biggest chal-
lenges for research (Román-González et al., 2017; Shute et al., 2017). Sondakh
(2018) reviewed studies on CT performed at university level and found that
60% of them did not implement any kind of evaluation of CT. Furthermore,
for those who did evaluate CT, the methods implemented were highly hetero-
geneous and tended to put emphasis on different CT-related abilities.
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Chapter 2

Theoretical background

2.1 Cognitive development in early childhood

Early childhood has been identified as a window of opportunity for both cog-
nitive and socioemotional development (Britto et al., 2017). Environmental
factors such as access to quality childcare and early childhood education dur-
ing the first 5 years of life have shown to have positive long-term impacts on
both an individual (Belsky, 2007; Vandell et al., 2010, 2016) and societal level
(Heckman and Masterov, 2007; Magnuson and Duncan, 2016; Richter et al.,
2017). During this stage in their development children experience an expo-
nential improvement in their executive function (EF) skills supported struc-
turally by the prefrontal cortex (Perone et al., 2018). EF refers to several
top-down neurocognitive processes needed for regulating thoughts, emotions
and goal-oriented behaviour (Blair, 2016; Diamond, 2013; Zelazo et al., 2016).
Inhibitory control, working memory and cognitive flexibility are the three basic
neurocognitive processes identified by Miyake et al. (2000) via factor analy-
sis of adult performance as executive functions. Inhibitory control refers to
the ability to effortfully control automatic responses and inhibit distracting
stimuli in order to direct our attention. Working memory is defined as our
capacity to maintain information “on-line” for the purpose of manipulation,
while cognitive flexibility refers to our ability to shift attention between tasks,
attributes or strategies (Miyake et al., 2000; Zelazo et al., 2016) and allows us
to adjust our responses in the face of change. These basic executive functions
(cognitive flexibility developing a bit later than the former two) have been pro-
posed by Diamond (2016) as the basis for other complex cognitive skills such
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as planning, problem solving and reasoning. Reasoning has been defined as
the process of drawing conclusions from premises, principles or evidence, us-
ing previous information to infer or deduct a new conclusion (Andrews, 2019).
Meanwhile, problem solving is a broad term referring to the steps that allow
moving from a given state to a desired outcome (Barbey and Barsalou, 2009).
While both concepts certainly overlap, problem solving can be considered the
practical goal-oriented counterpart to reasoning’s abstraction. Both problem
solving and reasoning have been equated with the concept of fluid intelligence
(Diamond, 2013) as was theorized by Cattell (1963). The concept of intel-
ligence has been a point of discussion in psychology throughout its history,
however most classical definitions point out to some sort of problem solving
capacity. Binet and Simon (1905) defined it as: “Judgment, otherwise called
"good sense", "practical sense", "initiative", the faculty of adapting one’s self
to circumstances” while Wechsler (1944) conceptualized it as “the aggregate
or global capacity of the individual to act purposefully, to think rationally,
and to deal effectively with his environment”. Piaget pointed out the adap-
tive nature of intelligence by arguing that “Intelligence is an adaptation. . . To
say that intelligence is a particular instance of biological adaptation is thus to
suppose that it is essentially an organization and that its function is to struc-
ture the universe just as the organism structures its immediate environment”
(Piaget, 1963). Problem solving literature is often characterized based on the
presented task (van de Vijver and Willemsen, 1993). Formal problem solving
deals with closed deterministic environments which are context independent,
while referring to informal problem solving has been equated to open proba-
bilistic problems that are context dependent, thus having a higher ecological
validity. Problem solving often requires planning, that is, the process of es-
tablishing a step-by-step guideline toward goal oriented action (Cohen et al.,
1995). The act of planning puts emphasis on the fact that our problem solving
methodology must not only be effective, but also resource-efficient and often
requires keeping and manipulating online information (aka working memory).

2.2 Computing and computational thinking

What is computing? Some identify the earliest use of the word “computer” dat-
ing back to the 1600’s (Oxford, 2007). The term originally referred to a person
that performed calculations, only sometimes with the aid of machines. During
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the nineteen hundreds, the meaning of the word computer shifted from the per-
son to the devices used to compute: the machines themselves. The human need
to simplify tedious calculating processes (computational processes) derived in
the invention of many machines used for specific computations. Mechanical
aids for computing are, of course, much older than the term itself: artifacts such
as the abacus have been used since antiquity (Ceruzzi et al., 2003). However,
it wasn’t until the nineteenth and twentieth century that we saw the expo-
nential development of computing technology. Charles Babbage’s “Analytical
Engine”, (considered the first general-purpose mechanical computer) certainly
is a long way from today’s electronic and digital computers, however their ini-
tial purpose of solving complex mathematical problems remains, as tasks such
as storing and retrieving data, processing text, manipulating images and so on
are accomplished through their translation to mathematical language. More
specifically, english mathematician George Boole’s theoretical contributions in
what we know now as Boolean algebra would find applications in the field of
electrical engineering through Claude Shannon’s thesis: “A symbolic analy-
sis and relay of switching circuits” (Shannon, 1938) in which he proved how
switching circuits worked as a physical manifestation of the TRUE and FALSE
variable values in Boolean logic (Nahin, 2017). But perhaps the most notable
and most well-known contributions are those of Alan Turing, whose Turing
Machine (Turing, 1936), an abstract device capable of simulating any given
algorithm’s logic in order to perform any kind of computation would create a
blueprint for modern computers. Turing’s ideas would prove essential to the
cognitive revolution during the 1950’s and 60’s, with Cognitive Science emerg-
ing as an interdisciplinary field of study that drew on ideas from psychology,
neuroscience, linguistics, philosophy, anthropology and computer science for
the study of the mind (Bermúdez, 2014). The notion that computer science’s
approaches would be useful for other disciplines increased as CS curriculums
became more prominent at the university level. Pfeiffer (1962) proposed the
idea that computers were aids to thinking and allowed users to think about
problems in a different way. Seymour Papert’s foundational work on LOGO
first introduced the idea that children might benefit from programming and
computer science (Papert, 1980). Papert had famously worked with develop-
mental psychologist Jean Piaget at the University of Geneva and extended his
constructivist theory to what he called constructionism, holding that learning
is increased by the child’s engagement in constructing an entity (Papert and
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Harel, 1991). Namely he called “computational thinking” the idea of comput-
ing as an intellectual tool for children that would grant them autonomy to
manipulate and extend their applied knowledge. Jeanette Wing’s 2006 work
on CT marked the beginning of a renewed interest in CT within educational
settings by stressing that CT could be a powerful problem-solving tool for
everyone, not just computer scientists (Wing, 2006). Wing’s article substan-
tially moved forward the idea of integrating computer science and specifically
computational thinking into the core curriculum. According to Wing: (CT)
“will be a fundamental skill used by everyone in the world by the middle of
the 21st century. By fundamental, I mean as fundamental as reading, writing
and arithmetic” (Wing, 2017).

2.3 Components of computational thinking

Computational thinking, as conceptualized by Wing (2017, 2006) is a domain-
general concept. Arguably, CT is an umbrella term for a variety of skills (Wein-
trop et al., 2014). Even though most authors agree on the links between CT
and problem solving (Lowe and Brophy, 2017), several processes have been in-
cluded under the term “computational thinking”. In order to understand what
this meant specifically within the context of early childhood education, we con-
ducted a systematic search of empirical studies which assessed CT in children
aged 3-6. We excluded editorials and reviews of literature. We opted to in-
clude conference proceedings papers given the amount of thematically relevant
publications within that category. The search was performed with the terms
“computational thinking”, “early childhood”(and synonyms) and “assessment”
(and synonyms) and restricting for the appropriate age range. Supplementary
information regarding this systematic search can be found in appendix 1. Sco-
pus, ScienceDirect and IEEE were the explored databases. Table 2.1 shows a
summary of the components present in the most cited CT definitions from the
reviewed publications.
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2.3.1 Abstraction

Abstraction has been identified as CT’s core element (Shute et al., 2017; Wing,
2008) and refers to the process of extracting general rules from specific cases,
by creating or identifying categories. Furthermore, it allows us to use differ-
ent representations to establish relations between said categories. Abstraction
in computer science is undeniably linked to mathematical abstraction, which
focuses on removing real world dependent elements in order to create general-
application algorithms. Coolidge et al. (2012) proposed that the human ability
to detect numerosity lies at the base of abstraction and overall symbolic think-
ing by arguing that number appreciation happens despite the stimuli’s charac-
teristics. Furthermore, this ability is present from early on (Ansari et al., 2005;
Cantlon et al., 2006), with evidence from infants as young as 3 days old sug-
gests they’re able to perceive abstract numbers (Feigenson et al., 2004; Izard
et al., 2009). Wing highlights abstraction as the essence of CT (Wing, 2008):
“In working with layers of abstraction, we necessarily keep in mind the rela-
tionship between each pair of layers, be it defined via an abstraction function,
a simulation relation, a transformation or a more general kind of mapping. We
use these mappings in showing the observable equivalence between an abstract
state machine and one of its possible refinements, in proving the correctness of
an implementation with respect to a specification and in compiling a program
written in a high-level language to more efficient machine code. And so the
nuts and bolts in computational thinking are defining abstractions, working
with multiple layers of abstraction and understanding the relationships among
the different layers. Abstractions are the ‘mental’ tools of computing”

2.3.2 Decomposition

A recent review by Rich and collaborators (2018) on the learning trajectories
of decomposition within CT shed light into the relevance of this component.
Decomposition was framed as the ability to break down complex systems into
simpler parts, and was identified by Selby Woolard (2013) as one of the terms
with the highest levels of consensus within CT literature. Sternberg (1998)
pointed out problem decomposition as one of the fundamental tools used to-
wards problem solving, stating that problem decomposition could result in
finding solution not only through simplification but also by allowing to ana-
lyze its parts thoroughly and systematically.
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2.3.3 Sequencing

Sequencing involves putting objects or actions into a logical order (Zelazo
et al., 1997). Piget (1969) found children below six years of age were unable
to complete a story sequencing task, however, this has been challenged by
literature showing evidence that children as young as two years old can un-
derstand short sequences of up to 3 elements (O’Connell and Gerard, 1985).
Moreover, kindergarteners were found to be able to construct sequences but
having a hard time discussing internal logic and cause-effects related to them
(Brown and French, 1976). Children have also been found to be better at
concrete sequencing for events they are familiar with, linking this ability to
episodic memory (McColgan and McCormack, 2008). There is evidence that
children’s ability to process numerical order is related to maths achievement
(Attout and Majerus, 2018; Attout et al., 2014; Lyons and Ansari, 2015; Lyons
et al., 2014; Sasanguie and Vos, 2018), suggesting that these skills may play
an important role in the development of numerical abilities. Kaufmann et al.
(2009) found that the processing of both numerical and non-numerical order
was supported by activation in the intraparietal sulcus (IPS) in FMRI stud-
ies, an area which has been consistently cited as being involved in numerical
magnitude processing (Ansari et al., 2006a,b; Holloway and Ansari, 2010). In
regards to non-numeric order-processing, previous research shows children are
introduced to sequences of temporal events before formal education. Thus,
it is argued that even very young children acquire mental representations of
repeated sequences of events over multiple time scales during the early years
(Fivush and Hamond, 1990). Friedman (1991; 2005) found that young chil-
dren can judge which daily event comes next in a sequence, judging backwards
from different reference points, which further supports the early acquisition
of image based representations of familiar daily events, suggesting that even
young children are able to spatially code the order of daily events in long-term
memory, allowing them to construct spatialized mental models of daily event
sequences (O’Connor, 2019).

2.3.4 Generalisation

Generalisation refers to the ability to transfer obtained solutions to similar
situations, allowing for broader applicability (at School Working Group et al.,
2012; Selby et al., 2014). The term generalisation is often grouped with ab-
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straction, as both processes deal with reducing complexity. However, An-
geli and Valanides (2020) emphasise the difference between both processes by
stating that “while abstraction reduces complexity by hiding irrelevant detail,
generalization reduces complexity by replacing multiple entities that perform
similar functions with a single construct" (Thalheim, 1999). Meanwhile, At-
matzidou and Demetriadis (2016) suggest that while abstraction refers to the
recognition of existing patterns, generalisation refers to the application process
of those abstractions in different situations.

2.3.5 Evaluation and systematic testing

Evaluation has been proposed as the final step of computational thinking (An-
derson, 2016). Evaluation and testing are necessary not only to ensure our
system is accomplishing the required goals, but also to assess its efficiency (i.e
reducing time or allow for a better use of the existing resources). This term
is often grouped with the similar term “debugging” which is more specific to
the context of programming and entails detecting and solving errors. Its ori-
gin notoriously dates to the 1940s in the use of electro-mechanical computers,
when actual bugs would often be a problem and interfere with the machine’s
internal mechanics. Nowadays, a bug is defined as a program error causing
inconsistencies between its behaviour and the programmer’s expectations (Xu
and Rajlich, 2004). Papert (1980) said about debugging that "The question to
ask about the program is not whether it is right or wrong, but if it is fixable".
Evaluation is the process of detecting said errors in order to create systems
which allow us to accomplish a desired outcome. Recent evidence using eye-
tracking technology points to the level of systematicity when debugging being
an indicator of individual performance while programming: Lin and collabo-
rators 2015 showed that low performance students tended to debug aimlessly
while high performance ones applied a logical structure to their debugging
behavior, suggesting planning might be an important factor mediating this
process. Moreover, debugging skills can be explicitly taught using flowcharts
and exercises with erroneous programs (McCauley et al., 2008). In a study
with elementary school children, (Wong and Jiang, 2018) showed debugging
skills could be improved after applying a CT curriculum based on Scratch
programming. Authors presented children with code which contained pre-set
errors in order to ensure sufficient practice of this skill. Rich et al. (2019)
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performed a systematic literature review on debugging skills learning studies
in which participants were children from kindergarten through 8th grade (5
to 14 years of age) in order to determine learning trajectories for these skills.
The authors extract five debugging strategies of incremental difficulty from the
literature: iterative refinement by trial and error, using intermediate results,
observing step-by-step execution, reproducing errors, and addressing compile
errors in order. Evidence from young children suggests kindergarteners are able
to implement the first of these strategies and often rely on trial and error to
work towards their solutions (Fessakis et al., 2013; Flannery and Bers, 2013).
However, the authors indicate these stages are not meant to be prescriptive,
as evidence suggests with proper scaffolding children are able to improve their
debugging strategies. Some authors have argued that the timing in teaching
interventions might play an important role in children’s learning. A recent
case study analysis of robot programming in a preschool classroom showed the
debugging process occurred both through teacher and children’s initiatives,
but teacher interventions should not occur too soon to provide enough time
for children to reach a solution (Heikkilä and Mannila, 2018).

2.4 Computational thinking in education

2.4.1 CT in educational policy

Throughout the last decade, initiatives all over the world have been made
in order to integrate CT in compulsory education. By 2021, computational
thinking will be incorporated into the mathematical module of the standard-
ized PISA assessment (Lorenceau et al., 2019). Two trends in rationales for
this change were identified in a review on educational policies in Europe made
by Bocconi et al. (2016): firstly, the addition of CT as a general problem-
solving skill which will be beneficial to individuals in their transit through a
world increasingly shaped by technology and media; secondly, the possibility
for economic growth which stems from motivating children and adolescents
into STEM or ICT related careers. In this study, England, Denmark, Finland,
France, Italy, Croatia, Poland, Portugal and Turkey were identified as coun-
tries which went through a curriculum renewal to incorporate CT. Meanwhile,
a recent study by So et al. (2020) focusing on CT curricula in the Asia-Pacific
region pointed out Korea, Taiwan, Hong Kong and China as countries intro-
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ducing curricular reforms towards the inclusion of computational thinking. In
Latin America, Argentina passed in 2018 resolution CFE N°343/18, which es-
tablished the prioritary thematic subjects for digital education, programming
and robotics (CFE, 2018). Programming, computational thinking, algorithmic
thinking and computer science were all included as fundamental competen-
cies. Furthermore, the Ministry of Science, Technology and Innovation and
the Sadosky Foundation carry out Program.ar, a program with the aim of sup-
porting computer science in schools through professional development courses
for teachers, science popularization, and the creation of pedagogical content
to support classroom practices (Dapozo et al., 2017). In Mexico, the office of
public education published in 2018 the framework for computational thinking
in compulsory education (Cardenas Peralta, 2018) with the aim of creating a
pedagogical guideline for teachers to introduce CT into classrooms. Similarly,
Chile’s Ministry of Education launched the national plan for digital languages
in alliance with private institutions in order to provide teachers and educators
with professional development opportunities in computational thinking and
programming (Uscanga et al., 2019). Uruguay’s computational thinking pro-
gram started in 2017 through Plan Ceibal in coordination with the national
administration of public education (ANEP) and as of 2019 has reached about
30.000 children attending 4th to 6th grade of primary school. In Ceibal’s CT
program, classroom teachers work collaboratively with remote teachers who
support the lessons. Currently, most of the remote teachers belong to the
Sadosky Foundation in Argentina. Additionally, Ceibal offers teachers from
lower grades (kindergarten through 3rd) CT material elaborated by their tech-
nical team, which they may later adapt into their class plan. In 2019, 1300
teachers signed up for these instances. Furthermore, 49 schools take part in
Ceilab, a program looking to introduce computational thinking through hands
on manipulation of technology, sometimes referred to as the maker movement.
(CEIBAL, 2019) In 2018, ANEP established an inter-institutional comission
on CT, in which representatives from both public and private organizations
currently working on CT for education come together to coordinate their ef-
forts. In 2019, this comission carried out a national survey in order to assess
the current state of CT practices in education in Uruguay (García, 2020).
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2.4.2 CT activities for early childhood

2.4.2.1 Programming

Evidence suggests programming is the most frequent practice to introduce
individuals to CT (Hsu et al., 2018). Several applications and graphical in-
terfaces have been created in order to scaffold young children’s learning of
programming. Most of the existing tools aimed at young children use block-
based programming, narratives and animations in order to help young children
learn basic programming principles. For example, Code.org is a website lead
by a non-profit organization with the aim of proving young learners (age 4 and
older) with programming courses. Evidence from 4th grade children (Kale-
lioğlu, 2015) suggests teaching programming with the platform motivated stu-
dents and fostered positive attitutes towards programming. Similarly, Kodable
is a platform and curriculum for children in kindergarten through 5th grade
and provides lesson plans aimed both for teachers and parents. Pila et al.
(2019) tested both Kodable and a similar app, namely Daisy the Dinosaur,
and found that 5 year old children could learn commands and improve their
in-game sequencing skills. Similar apps are Lightbot Jr., a programming app
with the aim to introduce children to sequencing, recursive loops, conditionals
and other principles of computer programming and CT through a gameified
environment; or Cargobot, a gameified puzzle-based app for elementary school
children. Perhaps the most notorious block-based programming tool has been
Scratch. In young learners, Scratch Jr. was designed for children aged 5 to 7
years old (Bers and Resnick, 2015; Flannery et al., 2013; Strawhacker et al.,
2015) and has been successful in building a large community of users (Bers,
2018). Evidence from studies on kindergarten teachers suggests Scratch Jr.
has positive effects on their self efficacy in programming as well as their under-
standing of computational constructs (Kalogiannakis and Papadakis, 2017).
In children, studies showed Scratch Jr. was a motivating tool that was succes-
ful in allowing them to learn basic programming (Papadakis et al., 2016) as
well as fostering perseverance and debugging skills (Sullivan and Bers, 2019).
In a comprehensive review, Ching et al. (2018) point out that most apps and
websites for early childhood function under the premise of sequencing move-
ment of a given character through code elements signaling directions (forward,
backward and turns) and most frequently address sequencing and looping.
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2.4.2.2 Unplugged activities

Some authors have argued that CT could be taught independently from tech-
nology use, thus proposing learning computational thinking through unplugged
activities. Mainly, Zapata-Ros (2019) argues that for young learners, begin-
ning their introduction to CT concepts through unplugged methods facilitates
children’s association of the new concepts to their previous experiences. With
these objectives in mind, the initiative CSUnplugged contains proposals for
computer science and computational thinking activities that do not require
technology use. These activities are targeted to children and adolescents rang-
ing from 5 to 14 years of age and were developed by the University of Canter-
bury and supported by Google and Microsoft. Parallel efforts have been made
in order to create CT boardgames capable of fostering these skills (Tsarava
et al., 2018). So far, few comparative studies have been made on the impact of
unplugged activities on children’s computational thinking in early childhood.
Recent studies performed in older children suggest not only is it possible to
teach children CT concepts through unplugged activities (Brackmann et al.,
2017) but that introducing unplugged activities before introducing technology
might results in gains on students’ motivation (del Olmo-Muñoz et al., 2020).

2.4.2.3 Robotics

Programmable robots have been proposed as a developmentally appropriate
tool to introduce young children to CT. As physical objects, robots could allow
preschool children to learn in a non-restrictive embodied way, supporting gross
motor development (Bers, 2020). Moreover, budding evidence shows promising
results as to their capabilities for promoting young children’s CT and cogni-
tive skills. Kazakoff et al. (2013) showed a 1 week robotics intervention could
improve kindergarten children’s sequencing scores, while Bers et al. (2019)
concluded that children as young as 3 years old could grasp CT concepts via
robotics. Studies with slightly older children (González and Muñoz-Repiso,
2018; Jung and Won, 2018; Papadakis et al., 2016) have reached similar con-
clusions. However, despite a wide variety of commercial and non-commercial
robots and kits being available (Sapounidis and Demetriadis, 2016; Yu and
Roque, 2019) only a handful of them have been used for research purposes in
an applied setting. BeeBot (Stoeckelmayr et al., 2011) has been used in educa-
tional robotics interventios by several researchers (Angeli and Valanides, 2020;
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Di Lieto et al., 2020; García-Valcárcel-Muñoz-Repiso and Caballero-González,
2019; González and Muñoz-Repiso, 2018), as well as LEGO (Bers et al., 2014;
Cho and Lee, 2017; Kazakoff et al., 2013; Sullivan and Bers, 2013) and KIBO
(Bers et al., 2019; Sullivan et al., 2017).

2.4.3 Assessment

In order to account for changes in a certain variable we need valid and reliable
assessment methods that are tailored to its target population’s developmental
characteristics. Several authors (Grover and Pea, 2013; Román-González et al.,
2017) have pointed out the lack of appropriate instruments for CT assessment,
with diversity in CT definitions and the variability in the assessed constructs
as one of its main challenges. Despite these, a number of attempts have been
made in the last decade to operationalize and measure CT. Since 2018, CT was
incorporated as an optional assessment module in the International Computer
and Information Literacy Study (ICILS), a standardized test conducted by
the International Association for the Evaluation of Educational Achievement
(IEA), which targets children aged thirteen (between 8th and 9th grade of
schooling). ICILS assesses CT through a digital platform which presents par-
ticipants with a set of problems which are solved through conceptualizing and
operationalizing solutions (Eickelmann, 2019; Fraillon et al., 2018). In a recent
systematic review of CT evaluations, Tang et al. (2020) identified two broad
categories in CT assessments: those which assessed direct cognitive manifes-
tations (first-order), thus using assessments that are independent from imple-
mentation, and those which did require CT integration to perform a specific
action (second-order), such as coding skills. Examples of first-order assess-
ments of CT include the Bebras Tasks items (Chiazzese et al., 2019; Dagienė
and Futschek, 2008; Lockwood and Mooney, 2018), the Computational Think-
ing Test (CTt) (González, 2015; Román-González et al., 2017) or Yune Tran’s
(2018) computational thinking assessment. Second-order assessments include
data mining assessments such as Dr. Scratch (Moreno-León et al., 2015) or
performance scores during robotics’ tasks (Bers et al., 2014). Additionally,
the authors further categorized the existing assessments into those tapping
cognitive or non-cognitive processes in order to include testing which exam-
ined individual’s perceptions on self efficacy or factors related to motivation
or enjoyment. Similarly, Román-González et al. (2019) also created a classifi-
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cation of CT assessment tools. We provide a summary of its most significant
categories below:

• Diagnostic: focus on cognitive skills, do not require previous knowledge
in order to be applied

• Summative: focus on learning processes and thus depend on previous
instruction

• Iterative: provide feedback on user’s skills in order to enhance perfor-
mance

• Data mining: automatically analyse code or user products in order to
extrapolate performance (for a comprehensive review of these tools, see
Alves et al. (2019))

• Self-perception: focus on socio-emotional components such as percep-
tion of sef efficacy, self-confidence and motivation

In their study, the authors performed correlation analyses on different types
of assessments, namely, the Computational Thinking Test (González, 2015), a
set of three Bebras Tasks (Chiazzese et al., 2019) and Dr. Scratch (Moreno-
León et al., 2015) in two different samples (n=179 and n=71, respectively)
of middle school students. Their results showed partial convergence of the
assessment through significant, positive and moderate correlations. Thus, they
argued for using multiple assessment in order to obtain a holistic measure of
individual’s CT based on Brennan and Resnick’s (2012) framework: concepts
(better assessed through diagnostic or summative tools), practices (iterative
and data-mining tools) and perspectives (self-perception tools). If we focus
especially on assessments used in early childhood interventions, new testing
challenges arise that stem from the nature of the target population we are
working with. Several authors working in the field of early childhood have
argued for the creation of developmentally appropriate assessment tools that
are capable of accurately and reliably evaluate CT in this age span (Relkin
and Bers, 2019; Zapata-Cáceres et al., 2020). Despite budding research in
this field, most of the evaluation performed in educational interventions for
computational thinking in early childhood shows a widespread use of ad-hoc
tools (Angeli and Valanides, 2020; Bers et al., 2019; González and Muñoz-
Repiso, 2018; Saxena et al., 2020), which hinder the possibility of comparison
across studies (Ioannou and Makridou, 2018).
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2.4.4 CT and cognitive development

During the 1980’s, there was a surge in research exploring the cognitive un-
derpinnings of programming abilities as well as transfer opportunities within
domains. In a study involving high school students (15-18 years old), Kur-
land et al. (1986) found positive correlations between programming skills and
reasoning and math abilities, while Pea et al. (1987) linked debugging to meta-
cognitive skills and executive functioning, which was supported by findings by
Clements and collaborators (1986; 1984) in regards to young children pro-
gramming with LOGO. Recently, a meta-analysis of 105 studies performed by
Scherer et al. (2019) found evidence for moderate overall transfer effect and
strong near transfer effects of programming skills to situations that require
creative thinking, mathematics ability and meta-cognitive skills. Studies by
Di Lieto et al. (2020) in kindergarteners found improvements on executive func-
tion, specifically working memory and inhibition, after an intensive educational
robotics intervention with a randomized control trial study design. However,
as mentioned in previous sections, recent literature has conceptualized CT as
a skill which surpasses programming and refers to a general problem-solving
ability (Grover and Pea, 2013; Shute et al., 2017; Voogt et al., 2015; Wing,
2006, 2008), and thus, particularly in the last decade researchers have focused
on this concept. Given its widespread use in educational settings, there is
a need to better comprehend this concept through exploring its associations
with cognitive, socio-emotional and context-related variables. In regards to
the former, CT has been previously linked with measures of general intelli-
gence (Ambrosio et al., 2014; Boom et al., 2018), reasoning ability (Boucinha
et al., 2019; Guggemos, 2020; Román-González et al., 2017; Tsarava et al.,
2019) including mental rotation (Vandenberg and Kuse, 1978) as well as math
skills (Guggemos, 2020; Román-González et al., 2017; Tsarava et al., 2019)
and executive functions (Gioia et al., 2015). Table 2.2 presents a summary
of the total number and age of the studies’ participants, assessment methods,
target variables and general findings in the empirical studies which have specif-
ically focused on exploring the existence of associations between CT and other
cognitive abilities.
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Table 2.2: Empirical studies presenting associations between CT and other cogni-
tive skills

Study N Target
age CT assessment Other cognitive

assessments Findings

Città et al.
(2019) 92 6-10

Ad-hoc pencil
and paper test
based on chess

problems

Mental rotation
test

(Vandenberg
and Kuse, 1978)

Moderate positive correlations
between mental rotation scores
and CT scores for younger chil-
dren aged 6-7 (0.33, p=0.035) and
marginal for older children aged
8-10 (0.27, p=0.058).

Tsarava
et al.
(2019)

31 7-10

CTt
(Román-

González et al.,
2017)

Arithmetic
(Haffner, 2005)
Visuospatial
reasoning
(Weiß, 2006)

Verbal reasoning
(Heller and

Perleth, 2000)

Moderate correlations with arith-
metic abilities, specifically multi-
plication (r= 0.42; p=0.02) and
problem completion (r= 0.40;
p=0.03).

Román-
González
et al.
(2017)

56 10-16

CTt
(Román-

González et al.,
2017)

Spatial, verbal,
reasoning and
numerical
factors

(TEA, 1997)
Problem solving

(Seisdedos,
2002)

Positive correlations between CT
and problem solving (r=0.67;
p<0.01), as well as the ver-
bal (r=0.27; p<0.01), spatial
(r=0.43; p<0.01) and reasoning
subscales (r=0.44; p<0.01) of the
PMA battery. Linear regres-
sion showed only spatial and rea-
soning subscales significantly pre-
dicted CT outcomes (Models’ adj.
R2=0.27).

Robertson
et al.
(2020)

25 11-12

Dr Scratch
(Moreno-León
et al., 2015) in
two ad-hoc

programming
tasks

Executive
functions
(Gioia et al.,

2015)

Lower BRIEF scores (better ex-
ecutive function) moderately cor-
relate with higher scores in both
creative programming (r=-0.6)
and debugging (r=-0.4)

Boucinha
et al.
(2019)

50 12-15

CTt
(Román-

González et al.,
2017)

Reasoning
(Lemos et al.,

2006)

Positive correlation between CT
and reasoning (r=0.69)

Guggemos
(2020) 202 17-18

CTt
(Román-

González et al.,
2017)

Reasoning
(Heydasch

et al., 2013)
Math skills

Language skills
(self-reported
last grades)

Both reasoning (β =0.30,
p<0.001) and math skills (β
=0.13, p<0.001) were signifi-
cant predictors of baseline CT,
while language skills resulted
non-significant

Ambrosio
et al.
(2014)

11 18-29

Final exam
results and final

grade in
programming

course

General
intelligence

(Pichot, 1949)
Spatial

reasoning
(Almeida et al.,

1997)
Aptitude test
(Hunter, 1983)

Larger effect sizes for CT correla-
tions with spatial reasoning and
general intelligence

Boom
et al.
(2018)

71 23
(mean) Bebras tasks

Fluid
intelligence
(Brown et al.,

1997)

Positive correlation between
TONI-3 scores and Bebras tasks’
scores (r=0.53; p<0.01)18



Examining results from table 2.2 leads to two relevant conclusions: firstly,
that empirical studies which specifically target the concept of CT from the
perspective of cognitive development are still scarce; and secondly, that so far
no study of this kind has been conducted in young children.

2.5 Research questions

Taking the former into account, the present study was undertaken with the
following research questions:

• RQ1: Which cognitive abilities are associated with CT assessment out-
comes in early childhood?

• RQ2: Could an educational robotics intervention affect children´s per-
formance on CT?
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Chapter 3

Methodology

3.1 Participants

102 Uruguayan children (male=52; overall mean age=68 months, standard
deviation=5.08) attending level 5 (kindergarten) at a public school in Mon-
tevideo were invited to participate in the study. Convenience sampling was
implemented. Sociocultural levels for our sample were characterized as Q5
(highest SES classification) by ANEP. Inclusion criteria consisted of children
aged 4-6 years with typical development. 1 child was excluded from our sam-
ple due to having a diagnosed developmental disorder. Parents were asked to
complete a brief questionnaire reporting their perceptions on technology and
their children’s use of technology at home. A total of 83 parents (male=22)
agreed to complete this questionnaire (84% of our sample).

3.2 Ethical considerations

All of the procedures involved followed the ethical principles for human research
established by Uruguayan national decree CM/515 and adhere to the United
Nations conventions for the rights of the child (Assembly, 1989). Collected
data is anonymous and confidential. Parents of children who were invited to
take part in the present study received a letter with information regarding the
study’s objectives and procedures, as well as data treatment and the required
steps taken to ensure confidentiality. Parents were fully able to rescind consent
to the present study if they chose to without having to provide explanations.
Oral assent from children was requested before each testing session.
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3.3 Research design

A correlational cross-sectional approach was used to answer RQ1. We assessed
children with a battery of cognitive development tasks which are described
in section 3.4.1 and adjusted a multiple linear regression model with CT as
a dependent variable. An experimental design was implemented to answer
RQ2. Children were randomly assigned to either our experimental condition
(participating in an educational robotics intervention using a robot that is
programmable through tangible objects) or control condition (participating in
activities that included the same robot but being remotely controlled, thus
excluding the programming requirements). Groups were matched in gender,
mean age and their pre-test scores in our fluid intelligence task.

Eligible
participants (N=102)

Informed consent,
inclusion criteria
(excluded N=1)

Baseline
assessment (pre-test)

Control
condition (N=50)

ER intervention
condition (N=51)

Final assessment
(post-test)

Video decoding,
task engage-

ment assessment

Figure 3.1: Research design
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3.4 Materials

3.4.1 Assessment instruments (pre and post-test)

• Computational thinking: The CT assessment implemented in this
study was adapted from Tran (2018) CT questionnaire for 7 year old
children. This questionnaire assesses 5 CT-related abilities, namely abil-
ity to create algorithms, loops, debugging, inferring from a conditional
statement and sequencing. Children’s answers for each task were dummy
coded for scoring (scoring range: 1-15). Scale reliability was acceptable
(Cronbach’s alpha: 0.72). Since CT is a theoretical umbrella term, we
performed multiple correspondence analysis in order to detect possible
underlying factors among our CT scale.

• Fluid intelligence:Raven’s coloured progressive matrices (Raven and
Court, 1986). This task asks children to identify the correct missing
pattern from the stimuli in a 6 option multiple choice format. The test
implements different kinds of problems which include pattern continua-
tion and element abstraction.

• Working memory: tablet-based Corsi Block Tapping Test (Corsi,
1972) Children are tasked with repeating an incremental sequence by
following the order it’s been initially presented. Higher working memory
spans correspond with children’s ability to maintain online information
for manipulation.

• Planning: tablet-based Tower of London task (Shallice, 1982). Two
sets of coloured disks configurations are presented to children. One is a
target setting, which they must try to emulate in their own setting by
moving the disks in the least amount of possible steps.

• Temporal sequencing: We assessed children’s ability to organize tem-
poral sequences by using Langdon and Coltheart (1999) subset of me-
chanical stimuli. Children are tasked with organizing four picture se-
quences which denote temporal events.

• Vocabulary: PPVT-III (Peabody Picture Vocabulary Test by Dunn
and Dunn (1997)) 36 item test which assesses children’s receptive vocab-
ulary by tasking them with matching a heard word with its corresponding
image. Difficulty is incremental throughout the task.

• Symbolic magnitude task: Moyer and Landauer (1967). This task
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requires children to select the highest of two arabic numbers presented
on screen. Children are instructed to make the selection as fast as pos-
sible. This task quantifies children’s mental representation of numerical
magnitudes. Previous studies show the symbolic distance effect dimin-
ishes throughout development and is related to later math achievement
(De Smedt et al., 2013; Holloway and Ansari, 2009).

• Numerical transcoding: This task evaluates children’s ability to iden-
tify and report a herd number-word onto arabic symbols (Deloche and
Seron, 1987).

• Mental rotation: (Quaiser-Pohl, 2003) During this test children are
presented with either mirrored and rotated (incorrect) or rotated (cor-
rect) versions of a target image and tasked with identifying the correct
option from three a three option setting.

3.4.2 Parent’s report of home use of technology

Parents reported on their use of technology at home through a Spanish
version of the Parental Perceptions of Technology Scale (Sanders et al.,
2016) which explores parents self-efficacy and negative beliefs regarding
technology use. Additionally, parents completed the Parent´s attitudes
towards computer use scale (Mikelic Preradovic et al., 2016) which asked
them to report on their perceived advantages of computer use for their
children as well as technology-based activities at home.

3.4.3 Observation-based assessment of performance
during the intervention

We assessed children’s performance during the intervention activities
through structured observation of 5 minutes per activity, which started
counting once the activities’ coordinator explained the task’s objec-
tive for the first time during the session. The following variables were
recorded:

• ON-task time: Defined as the total amount of seconds the child engages
in either manipulating the robot or the intervention materials, answering
the coordinator’s inquiries, or pointing or directing his or her attention
in a task-relevant way

23



• Relevant interventions: Defined as the total number of times the child
participates orally during the task in ways that are relevant to solving it
(whether his or her proposals lead to the correct solution or not)

• Switches: Defined as the total number of times the child switches be-
tween being ON-task to being OFF-task during the observation

• Task-objective fulfillment: Observers scored whether children could
comprehend and solve the proposed task in a scale ranging from 2=To-
tally, 1=Partially, or 0=Not at all.

A total of 4 trained observers who did not participate of the intervention or
previously knew the children collaborated in data extraction for each child of
the experimental group during three tasks. Their records for each variable were
averaged in order to reduce variability. Nonetheless, inter-observer reliability
was high, ranging from 83% to 100% after training was concluded.

3.4.4 RoboTito

RoboTito was the robot used for the educational robotics intervention imple-
mented. RoboTito was designed in the College of Engineering of the Univer-
sidad de la República, for the research project “Programming robots playing
with the environment” (Funding: ANII FSED_2_2017_1_138793). Its de-
sign process took into consideration the need for a robot platform which was
easily constructible, robust and user-centred (Gerosa et al., 2019). The robot
is equipped with two kinds of sensors: colour and distance. While working
with colour sensors, four possible colours (blue, red, green and yellow) were
associated with directions (forward, left, backwards and right). When sens-
ing a coloured card, the robot will move in the direction associated with that
particular colour indefinitely until it senses a different card. The colour code
associated with each direction is displayed using lights on its top LED ring so
that children can infer the direction of movement depending on the selected
coloured-card. While working with distance sensors the robot behaves in the
following manner: (a) looks for the object that is the furthest within a pre-
determined range (60 cm), (b) moves towards that object and (c) goes back
to condition (a). Graphic descriptions of its functioning in both sensor modes
can bee seen in Figure 3.2
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Figure 3.2: Robot behaviour according to active sensors: a. colour sensors mode
b. distance sensors mode. Adapted from Bakała et al. (2019); Tejera et al. (2019)

Additionally, RoboTito has an android application which allows for the
robot to be remotely controlled from a mobile device with WiFi connection.
This function was used for control-group activities.

3.4.5 ER activities

The intervention was held in a public school in Montevideo, Uruguay. A total
of four kindergarten classes (two during 2018 and two during 2019) partici-
pated in the study. Half of the children were allocated in the control group.
The intervention’s total duration was of 11 sessions lasting 25 minutes each.
Each session was coordinated with the participating school with an average
frequency of 1.5 sessions per week.

3.4.5.1 Experimental condition

Table 3.1 describes the content and progression for each activity in the experi-
mental condition. We implemented an active control group, meaning children
in this condition also participated in tasks which included the robot but did
not incur in programming. Control group activities asked children to control
the robot remotely using a tablet. In order to create a playful experience, the
activities were presented through a story in which RoboTito was an alien from
outer space looking to return to his home planet (our selected targets). This
narrative was presented for both conditions.
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Table 3.1: Intervention activities

N° of activity Brief description
Colour sensor

1 Introduction: children are familiarized with the robot and its parts.
We establish the general rules of the workshop and explore the
robot’s basic functionalities

2 Introduction of simple objectives: children are introduced to spatial
concepts such as backwards, forward, left and right. They program
short trajectories and learn how to move the robot in a square loop

3 Simple planning: children use previously learnt rules to create se-
quences towards a pre-determined objective

4 Predicting behaviours: children are asked to observe a pre-
established setting of the environment and explain the robot’s se-
quence given those conditions. They propose alternatives to modify
this trajectory

5 Sequencing and resource-efficiency: children are asked to generate
sequences towards a given objective using the least amount of color-
cards possible

6 Sequencing, resource-efficiency and distractor inhibition: we repeat
the previous task incorporating distracting objects in the setting,
which must be avoided

7 Debugging: Children are presented with an erroneous setting and
asked to correct it to achieve a given objective
Distance sensor

8 Exploratory activity of the distance sensors. Children are tasked
to try to move the robot using their hands, while paying attention
to what happens when we increase or decrease our distance

9 We try to infer the rules of functioning of the distance sensors and
create tests to try to establish them

10 Children are introduced to the rules of the distance sensors. They
are asked to imagine they are robots and perform the correct move-
ments according to the learnt rules

11 Prediction with two rules and debugging: children are tasked to
observe a given environment and predict the robot’s movement.
If the objective is not met, they are asked to create hypothesis
regarding what actually happened

3.4.5.2 Control condition

Control activities involved children in sensory-motor games with the robot
being remotely control trough a tablet device. Examples of control activities
include using the controls to follow a pre-determined line, Cat and Mouse in
which children were divided into teams (assigning one robot to each team) and
one assumed the "cat" role (chaser) and the other the "mouse" role (chased),
or Robotic bowling, in which light objects were piled up to create an obstacle
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which children took turns trying to tear down.

3.5 Data analysis

Statistical analysis was performed using R and R Studio software. (Team,
2019) For research question 1, Pearson correlations were performed in order
to explore bivariate correlations among our variables. Mixed linear models
(MLM) were implemented with CT as our dependent variable in order to
create a model which accounts for the effects of our cognitive predictors to
CT. Given the nature of the data collection process, it’s important to clarify
that no causal relation is assumed for the present analysis. We first fitted
an MLR model which included all of our measured variables as fixed effects
plus the random effect of classroom grouping. Model reduction was performed
using backward step-wise deletion by the Akaike Information Criteria (AIC).
ANOVA was used to test for significant differences between our initial and final
models, if testing proved non significant, the simpler model was selected per the
parsimony principle. For research question 2, mixed effects linear models were
used for analysis. We included principal and interaction effects of time (pre
and post test measures) and group (both experimental groups and control),
fluid intelligence scores were used as a control variable, while random effects
were composed of individuals nested within classrooms.
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Chapter 4

Results

4.1 Descriptive statistics

Descriptive statistics for our sample are shown in Table 4.1. Experimental and
control groups were matched in regards to age, gender and pre-test scores on
fluid intelligence. Figure 4.1 presents CT scores’ distribution for our entire
sample.

Table 4.1: Descriptive statistics.
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Figure 4.1: Density plot of CT assessment scores

4.2 Research question 1: Which cognitive

abilities are associated with CT outcomes?

4.2.1 Correlation results

In this section we present our results in regards to the exploration of asso-
ciations between the CT assessment implemented in the present study and
our battery of cognitive assessments. Results from bivariate Pearson correla-
tions between the explored variables and CT outcomes are summarised in 4.2.
We found moderate positive associations between children’s CT outcomes and
their sequencing ability, r(100) = 0.51, p < 0.001; number comparison accu-
racy, r(100) = 0.49, p<0.001; numerical transcoding, r(100) = 0.39, p < 0.001
and fluid intelligence r(100) = 0.36, p < 0.001. Weak positive associations
were also found with children’s vocabulary, r(100)= 0.23, p < 0.05; working
memory, r(100) = 0.21, p < 0.05; and planning abilities, r(100) = 0.22, p <
0.05. Associations between CT outcomes and children’s accuracy in our men-
tal rotation task and their age in months proved to be non significant. We
then performed partial correlations controlling for children’s fluid intelligence
scores. Our results show that findings regarding the association to sequencing
ability, working memory, vocabulary, number transcoding and comparison re-
main, while the association with planning doesn’t. No significant associations
were found between CT and children’s frequency in technology use, parental
technological self-efficacy or parental negative attitudes towards technology.
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Table 4.2: Pearson correlations between CT and cognitive assessments, simple and
controlled by fluid intelligence

Variable CT (Simple) CT (Controlled)
sequencing 0.51*** 0.57***
working memory 0.21* 0.44*
mental rotation 0.10 0.00
vocabulary 0.23* 0.64***
num. transcoding 0.39*** 0.51***
num. comparison 0.49*** 0.45*
planning 0.22* 0.33
age (months) 0.16 0.01

4.2.2 Mixed effects linear model

Data was fitted into a mixed effects linear regression with CT as our dependent
variable. First, we created Model 0 by including every assessed variable. Model
reduction was performed using backward stepwise deletion by the Akaike In-
formation Criteria (AIC). ANOVA results between our model 0 and our fi-
nal model proved not to be statistically significant (DF=10, Chisquare=8.25,
p=0.6), therefore, our simplified model was selected per the parsimony princi-
ple. 2 Our final model results are shown in Table 4.3. Model diagnostics can
be seen in figure 4.2.

Table 4.3: Final model results and visualization of associations between fixed
effects.

As shown in Table 4.3, our temporal sequencing and number comparison
tasks are significant predictors of CT. The standardized coefficients of the
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model are β(Sequencing)=0.40 and β(Num.com)=0.26. Conditional R2 for
our model was 0.37, meaning our resulting model was capable of explaining
37% of our CT test scores’ variance. Model assumptions of normality and
variance homogeneity were assessed with satisfactory results, (see figure 4.2).
Possible multicollinearity was assessed via the variance inflation factor (VIF)
obtaining scores below 1.2 for both independent variables, suggesting only low
intercorrelation.

Figure 4.2: A. Fixed-effects estimates. B. QQplot for model 1. C. Normality of
residuals (Shapiro-Wilke test W = 0.98, p= 0.13). D. Homoscedasticity: Levene
test F=2.11, p=0.14
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4.2.3 Association between CT and ER task fulfillment

Additionally, we analyzed the scores of children in the experimental condition
with video-recorded data and found a positive significant association between
children’s CT scores at pre-test and their ability to fulfill the required task
objectives while working with the robot, r(27) = 0.50, p<0.05. Further cor-
relation analysis for children’s objective fulfillment in ER tasks and cognitive
variables are shown in table 4.4, both simple and controlling for children’s fluid
intelligence.

Table 4.4: Pearson correlations between objective fulfillment in robotics tasks and
cognitive assessments, simple and controlled by fluid intelligence

Variable ER (Simple) ER (Controlled)
CT 0.50* 0.55***
sequencing 0.23 0.10
working memory 0.58*** 0.56***
mental rotation 0.30 0.23
vocabulary 0.50* 0.49*
num. transcoding 0.44* 0.34
num. comparison 0.48* 0.43*
planning 0.38 0.16
age (months) 0.36 0.40

4.3 Research question 2: Could an educa-

tional robotics intervention have an effect

on CT outcomes?

In this section we will summarise the results obtained after the implemen-
tation of our 12-session educational robotics intervention with RoboTito. In
subsection 4.3.1 we will present results stemming from the cognitive assess-
ments performed pre and post-intervention, conducted on our overall sample
(N=101).In section 4.3.2 we present results from observational assessments of
children’s task engagement during the intervention and analyse their effect on
CT outcomes
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4.3.1 Pre and post-test assessment outcomes

Table 4.5 presents pre-test and post-test results for our experimental and con-
trol groups. Mixed effects linear models were used in order to examine possible
effects of the intervention. We included the variable of interest as the depen-
dent variable and principal and interaction effects of time (pre and post test
measures) and group (control and experimental), fluid intelligence scores were
used as a control variable, while random effects were composed of individuals
nested within classrooms. No significant interactions were found between time
of testing and group.

Table 4.5: Summary of intervention results

Control group Experimental group Interaction effect

Variable: Mean (SD) Pre (N=50) Post (N=50) Pre (N=51) Post (N=50) P-value

Computational thinking 4.59 (2.87) 6.00 (2.87) 5.10 (3.17) 6.90 (3.22) 0.30

Sequencing 9.44 (5.97) 12.1 (6.63) 9.14 (6.09) 12.5 (5.73) 0.50

Mental rotation 0.40 (0.16) 0.42 (0.18) 0.39 (0.15) 0.43 (0.19) 0.18

Num. transcoding 0.40 (0.27) 0.48 (0.28) 0.38 (0.24) 0.43 (0.28) 0.56

Num. comparison 0.74 (0.18) 0.80 (0.17) 0.77 (0.18) 0.81 (0.15) 0.69

Planning 8.29 (3.61) 12.6 (3.27) 6.25 (4.29) 11.4 (3.74) 0.23

Working memory 3.10 (1.37) 3.76 (1.32) 2.97 (1.30) 3.80 (1.21) 0.38

Vocabulary 32.6 (6.40) 33.9 (5.24) 34.6 (8.16) 34.2 (6.86) 0.32

4.3.2 Task engagement outcomes

Task engagement outcomes for children in the experimental group were as-
sessed using the categories described in subsection 3.4.3. Delta (∆) CT scores
were calculated for each child by subtracting baseline scores to their post-test
outcomes. Figure 4.3 presents Spearman correlation results between ∆ CT
scores and children’s mean time spent ON -task, mean number of switches
between ON -task and OFF -task status, mean number of meaningful inter-
ventions and mean objective fulfillment scores. Positive and significant cor-
relations were found between children’s ∆ CT scores and their mean time
spent ON -task (rs(26) = .51, p < .05) and their mean number of relevant
interventions during task (rs(26)= .47, p < 0.05). A negative non-significant
association was found with the number of switches between the ON and OFF
task status (rs(26) = -.28, p = ns), while a positive non-significant association
was found with objective fulfillment (rs(26) = .38, p = ns).
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Figure 4.3: Spearman correlations between CT ∆ scores and observable engage-
ment variables. A. Mean on-task time as a function of CT ∆ score. B.Mean number
of switches during tasks as a function of CT ∆ score. C. Mean number of mean-
ingful interventions during task as a function of CT ∆ score. D. Observed ER task
objective fulfillment score as a function of CT ∆ score

In order to contrast whether our task engagement variables (specifically,
time spent ON task, participation, and switching) were factors capable of
modulating intervention effects, we divided children in our experimental group
into high and low engagement groups. Each variable was thus discretized
into two separate factor levels using the median. Fluid intelligence used as a
control variable in order to prevent a confounding effect. Figure 4.4 presents
pre-test and post-test CT outcomes as a function of grouping for task en-
gagement, participation and number of switches during task. ANOVA on our
mixed effects linear models showed significant group*measure interactions in
task engagement F(2)=4,25; p<0.05; post-hoc Tukey contrasts revealed non-
significant pre-test to post-test gains for the control (p=0.92) and low engage-
ment (p=0.99) groups, and significant for the high engagement group (p<0.01).
Participation, switching and objective fulfillment did no present statistically
significant effects. Post-hoc analysis are presented in Table 4.6
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Figure 4.4: CT scores for each group condition and time of assessment (pre-
test or post-test). A.Mean CT scores as a function of task engagement condition:
high engagement (n=14), low engagement(n=13) or control (n=24) groupsB.Mean
CT scores as a function of participation during task condition: high participation
(n=14), low participation(n=13) or control (n=24) groups C. Mean CT scores
as a function of number of switches between on/off status during task: infrequent
switching (n=13), frequent switching (n=14) and control (n=24) groups. D. Mean
CT scores as a function of objective fulfillment: low (n=11), high (n=16) and control
(n=24) groups
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Table 4.6: Results from engagement variables’ effect on CT. Within-group post-hoc
contrasts

Variable Pre:Post Contrast Estimate SE df t ratio p value

Time ON task

Control -0.66 0.67 55 -0.98 0.92

Low engagement 0.22 0.90 52 0.24 0.99

High engagement -3.17 0.86 50 -3.67 0.00**

Number of interventions

Control -0.75 0.70 54 -1.07 0.89

Low participation -0.60 0.93 50 -0.64 0.98

High participation -2.52 0.90 50 -2.78 0.07 ·

Number of ON/OFF switches

Control -0.74 0.72 54 -1.03 0.90

Frequent switchers -1.51 0.92 51 -1.64 0.57

Infrequent switchers -1.64 0.96 50 -1.70 0.53

Objective fulfillment

Control -0.72 0.70 47 -1.02 0.90

Low obj. fulfillment -0.53 1.02 50 -0.52 0.99

High obj. fulfillment -2.27 0.85 50 -2.67 0.09 ·
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Chapter 5

Discussion

5.1 Computational thinking’s association with

cognitive outcomes

The present study aimed to contribute to the current evidence on young chil-
dren’s computational thinking skills by providing empirical evidence of its
association with other cognitive abilities at an early age. Our results point
to sequencing and the ability to compare symbolic numerical magnitudes as
significant predictors of CT. A mixed effects linear model composed of these
variables was able to explain 37% of our dependent variable. Previous evidence
on mathematical cognition has consistently found a strong association be-
tween performance on symbolic magnitude comparison tasks and mathematics
achievement (Ashcraft and Moore, 2012; Butterworth, 2011; Fazio et al., 2014;
Siegler and Booth, 2004; Siegler and Pyke, 2013; Siegler et al., 2011), while
temporal sequencing skills relate to children’s ability to understand causal
events (Sanefuji and Haryu, 2018). Thus, our results align with the previ-
ous evidence presented by Tsarava et al. (2019) in slightly older children, and
Guggemos (2020) in high schoolers, but contrasts with the results found by
Román-González et al. (2017) in pre-teens, in which the numerical factor of
the Primary Mental Abilities (PMA) assessment was not significantly corre-
lated. Additionally, the lack of correlation between CT and mental rotation
ability found in the present study does not corroborate the findings of Città
et al. (2019). The heterogeneity between the existing evidence so far might be
related to a diversity in assessment approaches. In this study, CT skills were
assessed through a pencil and paper set of tasks and applied individually to
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each child. While most of the reported assessments covered similar theoreti-
cal constructs, such as creating algorithms, debugging, conditional statements,
sequencing and loops, it is possible that there are differences in the emphasis
and weight of each construct within the tests. Another possible explanation
for this heterogeneity is that the studies are conducted with participants at
varied stages in development, which could suggest that the underlying cogni-
tive abilities required for CT might change throughout children’s development.
Further scientific inquiry on this subject should continue this line of research
by not only replicating and corroborating these results but also expanding on
the explored variables. For example, the current study focused primarily on
children’s cognitive development, however certain definitions of CT such as
the one proposed by the Computer Science Teachers Association (ISTE and
CSTA, 2011) or the one by Brennan and Resnick (2012) propose CT is sup-
ported by computational perspectives or socio-emotional dispositions such as
self-regulation, persistence and cooperation. To our knowledge, there have
not been studies which explore the association between socio-emotional fac-
tors and CT skills in young children, while a few studies have been conducted
in teenagers (Román-González et al., 2018). Social aspects of acquiring CT
such as parental expectations or opinion on STEM subjects might also im-
pact children’s abilities. While the present study incorporated parent-report
questionnaires which assessed parent’s negative attitudes and self efficacy to-
wards technology, as well as children’s frequency of use of several devices, it
was limited in the fact that the questionnaires conducted were focused on par-
ents’ experiences and not their expectations for their children. We did not find
any significant associations between higher parental technological self-efficacy
and children’s CT, or between lower negative attitudes towards technology and
higher CT. It would be desirable for further studies to focus specifically on chil-
dren’s attitudes towards STEM, as well as parent’s STEM-related expectations
towards their children and whether they promote their children’s interest in
these subjects through at-home activities. Budding evidence from teen partic-
ipants suggests that environmental factors might play a key role in promoting
CT, for example, Guggemos (2020) found that participant’s parent’s socio-
economic and cultural status, teen’s computer use and past computer science
instruction were significant predictors of their CT. To our knowledge, this is the
first study focused on empirically exploring the associations between CT and
other abilities in early childhood, and thus contributes in the establishment of
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CT’s nomological network at this stage of development. Our resulting mixed ef-
fects linear model proved adequate and benefited from more explanatory power
in relation to similar models performed in previous studies (Román-González
et al., 2017, 2018). Recent evidence by Guggemos (2020) in high schoolers
suggests taking into account more context-related variables might improve the
existing results, as a model taking into account variables such as parents’ socio-
economic and cultural status and migration status showed these factors as sig-
nificant predictors in a model with adj. R2 of 0.70. However, it is important
to acknowledge our approximation is limited in the fact that it explores CT as
a general construct. Consequently, we adjusted our models using the overall
score on the CT assessment as the dependent variable, following similar proce-
dures to those conducted by Román-González et al. (2017). As was previously
introduced in section 2.3 most authors define CT by breaking it down into
multiple components. Nonetheless, while there is a wide variety of theoretical
proposals for defining CT, few studies have provided empirical evidence of these
taxonomies through factorial analyses. Overall, psychometric aspects of CT
assessments are severely underreported and should be thoroughly examined in
further studies. As a recent review by Haseski and Ilic (2019) reported, 23% of
the reviewed studies did not report on the tests’ factorial composition, while
up to 59% failed to report reliability. Besides reporting on the associations be-
tween children’s cognitive abilities and CT scores, this study presented results
from an educational robotics (ER) intervention in which over 100 kindergarten
children learnt playfully with RoboTito, a robot programmable through tangi-
ble elements. In the present study, we contrasted the results obtained with the
CT assessment by providing a similar analysis using children´s performance on
an educational robotics task (ER) as the dependent variable, as performance
on ER tasks have been previously used as a proxy to CT assessment in young
children (Angeli and Valanides, 2020; Bers et al., 2014; Saxena et al., 2020).
Our findings yielded interesting results: firstly, as expected, both outcomes
were significantly correlated. Additionally, both assessments were correlated
to similar cognitive abilities, namely working memory, vocabulary, and sym-
bolic magnitude comparison and transcoding. Since CT is often defined as a
general problem solving ability, we presented results of both simple and partial
correlations using fluid intelligence as a control variable in order to rule out
this variable as a confounding for CT. We observed most of the reported as-
sociations strengthened when controlling for fluid intelligence scores, with the
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exception of planning, which became non-significant and would thus suggest
the initial association was better explained by fluid intelligence. Interestingly,
while sequencing presented significant associations with the CT test, it was
not significantly associated with the ER tasks score. This result was unex-
pected, as previous evidence has linked ER training to gains in sequencing
ability (Kazakoff et al., 2013) in young children. A possible explanation for
this is that our sequencing test focused primarily on temporal sequencing.
While the CT assessment implemented requires both temporal and spatial se-
quencing skills, our robotics tasks might require primarily the use of spatial
sequences. While we were able to find a positive significant correlation between
CT and children’s ER performance, our ER assessment is limited in that it
stems from the intervention sessions. While this could be considered a more
ecological approach, it arguably lacks the controlled nature of an individually
applied pre-test and post-test assessment. Additionally, observational meth-
ods could be considered susceptible to observers’ intrinsic biases. We strived
to reduce these factors by averaging observations by different trained observers
and made sure inter-observer reliability was satisfactory. Overall, the present
study contributed to understanding the concept of CT by studying its associa-
tions between previously described cognitive variables in preschoolers. Results
suggest temporal sequencing and numerical skills are strongly associated with
CT, even when controlling for several variables. Additionally, we found a sig-
nificant correlation between children’s CT test scores and their performance
during ER tasks and showed both tasks were associated with similar cognitive
abilities.

5.2 Effects of an educational robotics inter-

vention on computational thinking

For our second research question, we were interested in finding out whether
a controlled ER intervention using a robot programmable through its envi-
ronment could have positive effects on young children’s skills. In order to
accomplish this, we used an experimental design with an active control group.
Additionally, we conducted structured observation on filmed material from the
ER sessions in order to account for context related variables, namely child en-
gagement, distractibility, participation and task objective fulfillment. The ER
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activities implemented in the present study were based on previous literature
regarding robotics interventions in early childhood (Bers et al., 2014; Ioannou
and Makridou, 2018; Kazakoff et al., 2013; Sullivan et al., 2017; Sullivan and
Bers, 2013), thus, the resulting intervention programme was based on mostly
goal-oriented problems which were solved through the robots’ spatial naviga-
tion and had a reduced number of possible solutions. Our results showed 5
year old children in the experimental condition who presented high engagement
in the activities significantly increased their overall CT skills, while children
with low engagement and children in the control condition did not. Thus, our
results suggest that motivational and attentional factors such as children’s en-
gagement could modulate the benefits of ER on children’s CT. However, the
confounding nature of attention and motivation in a natural educational set-
ting does not allow us to infer (through observation of filmed material) which of
these processes is causing this effect. Hence, children who are highly motivated
by ER will probably pay more attention to the tasks and tools, while children
with better executive functioning development (thus more attentive) might
have better cognitive resources to engage in the tasks. Further research should
be conducted in order to control these variables: for example, this could be
achieved by including questionnaires in order to account for children´s intrin-
sic motivation towards ER before the intervention. Generally, our results are
aligned with previous evidence on the possibility of improving CT through ER
at an early age and contributed to understanding how context-related factors
might impact controlled interventions. Nonetheless, one of the major differ-
ences between this study and previous work is that CT was assessed through
a questionnaire that was independent from the intervention tools. While most
previous studies opted to rely on ER performance as a proxy to CT (Bers
et al., 2019; González and Muñoz-Repiso, 2018; Roussou and Rangoussi, 2019;
Saxena et al., 2020; Sullivan et al., 2017), it was important to us to be able to
infer that any benefits would be indeed related to a cognitive skill rather than
resulting from training in a specific task. It is noteworthy that the use of these
methods is a strength of the present study, as much of the current evidence on
ER interventions is often limited by the lack of control groups and quantitative
assessments. In a recent review on empirical research on CT through robotics
in early childhood by Bakala et al. (2021) found that only 26% of the reviewed
studies reported the use of control groups and pre-test post-test designs. It is
important to mention that a few of the previous empirical studies in ER to
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promote CT did include assessments that were independent from the interven-
tion tools, such is the case of work by Nam et al. (2019), who used picture
sequencing and mathematical problem solving tasks as proxies to CT, as well
as Cho and Lee (2017) in which children were asked to self-report on their ef-
ficacy and interest in the subject. In the last year, diagnostic CT assessments
which could be independently applied to young children have been developed
and validated, thus, future studies should gradually incorporate these types of
assessments (Relkin and Bers, 2019; Zapata-Cáceres et al., 2020). As previ-
ously discussed in section 5.1, a limiting factor of our ER assessment was that
scores were extracted from structured observation of the natural ER learning
setting. This is somewhat restricting, as filmed material lacks the flexibility
of in-person assessment and the more controlled nature of individual evalua-
tion. For example, temperamental factors or personality traits at play during
group dynamics might have skewed the observer’s ability to determine chil-
dren’s skills. Arguably, children who are more extroverted might have had
more chances to showcase their skills than introverted children. Thus, further
studies should consider adding a brief individual ER assessment through a
structured task before and after the intervention in order to expand upon the
current findings. A possible structure of tasks for the purpose of CT assess-
ment through tangible materials has been proposed recently by Barnabé et al.
(2020). Despite its limitations, the examination of context-related variables
through structured observation of the experimental condition allowed us to
shed light into some of the factors that could enhance or prevent the success
of these types of interventions. Thus, our results highlight the importance of
maintaining children’s engagement and fostering their interest throughout the
process. Further studies should examine how individual factors such as chil-
dren’s interest in robotics, as well as previous exposure to similar activities,
could enhance their ability to succeed in these tasks. Furthermore, aspects such
as scaffolding techniques, group size, child:adult ratio and other variables that
could potentially impact proper engagement should be further examined in or-
der to identify the best practices for maximizing positive results. So far, most
of the existing data consists of case studies or small-scale research (Jung and
Won, 2018). For example, a case study by Janka (2008) indicated introducing
storytelling to their activities was an integral part of succeeding in promoting
meaningful learning instances using educational robots. Additionally, the au-
thors recommend small-groups with up to five children per teacher as the most
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adequate way to organize classrooms for effective learning. As to the amount
and types of scaffolding received during tasks, a review by Atmatzidou et al.
(2018) confirms that studies with strong levels of guidance generally obtain
better results, while their own experimental data from 11-16 year olds showed
groups which received more questions and prompts to help understand the
problems, design and evaluate solutions throughout the tasks were more suc-
cessful than those who were allowed to explore freely. Recent studies such as
those performed by Angeli and Valanides (2020); Wang et al. (2021); Zhong and
Si (2020) pose interesting questions and provide budding evidence on the way
different scaffolding techniques impact children and teenagers’ performance
during robotics’ tasks. All of the aforementioned variables are determinant to
the feasibility and scalability of the ER interventions proposed. Thus, further
evidence is required in order to identify best practices and extract guidelines
that are useful for teachers interested in introducing ER and CT as classroom
activities. Finally, the present study included a broad range of cognitive assess-
ments in its pre-test and post-test evaluations. Interestingly, our results were
specific to CT, as we did not find any significant impact of the intervention
on either of the other cognitive assessments implemented. This is somewhat
contradictory to previous evidence. For example, Kazakoff et al. (2013) found
positive effects of ER on children’s sequencing skills, as assessed through a
picture sequencing task (Baron-Cohen et al., 1986) that is similar in nature to
the one used in the present study. Recent evidence by Di Lieto et al. (2020)
found a positive impact of an ER intervention on children’s working memory
as assessed through the Matrix Path Test, a task in which the child is asked
to indicate in a matrix the final destination reached following a sequence of
progressively longer steps read aloud by the examiner, but did not find any
significant effects in working memory as assessed through Corsi Block Tapping
(Corsi, 1972), which was the task used in the current study. These results
could be interpreted as more cohesive to our own, as it could be argued that
our CT assessment contains items (specifically 1-6) in which tasks require sim-
ilar visuo-spatial working memory to maintain a sequence online to those of
the Matrix Path test.
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Chapter 6

Conclusion

Computational thinking is an emerging concept stemming from computer sci-
ence that has been embraced by educators and policy makers and promoted
by academia in order to transmit problem-solving strategies similar to those
used in these disciplines. As such, it is imperative we acquire a better under-
standing of what this term means and which specific skills are at play during
these kinds of tasks. The present study provided evidence on the association
between a previously established CT questionnaire and various cognitive abil-
ities in preschool aged children. Our results suggest computational thinking
in early childhood was largely explained by participants’ temporal sequenc-
ing skills and numerical abilities regarding their understanding of symbolic
magnitude, further establishing the existing notions from previous evidence
regarding CT’s associations with reasoning and early math skills. Addition-
ally, we tested the effects of an 11-session educational robotics’ intervention
using a robot programmable through tangible objects on children’s CT out-
comes. Using an experimental design with an active control group, we provided
budding evidence for the positive effects of this particular intervention in chil-
dren who were highly engaged throughout the activities. This finding could
have important implications for practice, as it contributes to existing evidence
on how motivational and attentional factors mediate effectiveness in targeted
interventions.
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Appendix 1

Systematic review of CT
definitions in early childhood
empirical studies

1.1 Methodology supplement

Systematic search was performed on Scopus, ScienceDirect and IEEE. Data
extraction was performed using a spreadsheet with publications’ relevant in-
formation. Table 1.1 details the selected search terms, while figure 2.3 presents
a flowchart of the search procedure.

Table 1.1: Search terms implemented

Search engine Search terms
IEEE "All Metadata":"computational thinking" AND ("All

Metadata":"preschool*" OR "All Metadata":"young
children" OR "All Metadata":"early childhood*" OR
"All Metadata":"kindergarten*")

ScienceDirect "computational thinking" AND ( ( preschool ) OR (
"young children" ) OR ( "early childhood" ) OR (
kindergarten )

Scopus TITLE ( "computational thinking" ) AND TITLE-ABS-
KEY ( "early childhood" OR "young children" OR
"preschool" OR "kindergarten" )
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1.1.1 Inclusion Criteria

• Peer-reviewed articles on computational thinking

• Empirical studies

• 3-6 year old participants

Figure 1.1: Selection of articles
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Appendix 2

Consent forms
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Figure 2.1: Study information
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Figure 2.2: Informed consent
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Appendix 3

Supplementary analyses

3.1 CT assessment

Table 3.1: CT test items by construct and difficulty

Item CT construct Correct proportion
A1 Algorithm/Sequence 0.57
A2 Algorithm/Sequence 0.39
A3 Algorithm/Sequence 0.39
A4 Algorithm/Sequence 0.48
A5 Algorithm/Sequence 0.40
A6 Algorithm/Sequence 0.31
L1 Loops 0.04
L2 Loops 0.24
P1 Patterns 0.29
D1 Debugging 0.42
D2 Debugging 0.45
D3 Debugging 0.16
S1 Algorithm/Sequence 0.25
C1 Conditionals 0.37
C2 Conditionals 0.44

3.2 Parent-report questionnaires
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Figure 3.1: Frequency of technology use overall

Figure 3.2: Frequency of technology use overall, by child’s gender
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Figure 3.3: Frequency of technology use by activity (% of answers)

Figure 3.4: Frequency of technology use by activity (% of answers) by child’s
gender
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Annex 1

CT assessment
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Figure 1.1: CT assessment (1)
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Figure 1.2: CT assessment (2)
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Figure 1.3: CT assessment (3)
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Annex 2

Parental reports on technology
use and perceptions
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Figure 2.1: Parent report questionnaire on technology use and perception (1)
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Figure 2.2: Parent report questionnaire on technology use and perception (2)
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Figure 2.3: Parent report questionnaire on technology use and perception (3)
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