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Abstract. This  article  presents  demand  response  techniques  for  the  participation  of
datacenters  in  smart  electricity  markets  under  the  smart  grid  paradigm.  The  proposed
approach includes a datacenter model based on empirical information to determine the power
consumption of CPU-intensive and memory-intensive tasks. A negotiation approach between
the datacenter and clients and a heuristic planning method for energy reduction optimization
are  proposed.  The  experimental  evaluation  is  performed  over  realistic  problem instances
modeling different types of clients. Results indicate that the proposed approach is effective to
provide appropriate demand response actions according to monetary incentives.
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1. Introduction
Smart grids are the current state-of-the-art technology for electricity networks. They
include operation and management features to improve the controlling of production
and distribution of energy [1]. 
Within the smart grid paradigm, a large consumer with flexible power utilization
can participate in the electricity market. This is one of the main ideas behind the
implementation  of  strategies  oriented  to  modern  smart  electric  networks,  where
consumers are associated to the roles of both active clients and market agents [1].
As an active client, a consumer can adapt his electricity demand to peak hours, e.g.,
by reducing power consumption in peak periods and contributing to flattening the
demand curve of the whole electrical system. As a market agent, a consumer can
participate in the electricity market and receive an income by providing different
services  (e.g.,  by establishing bilateral  agreements  with  an  electricity  generation
company or by participating in periodic auctions for smart grid management).
Within the smart grid paradigm, demand response planning strategies are needed to
manage energy consumption and be able to participate in the market, in different
roles. Specific techniques are needed to plan those activities that consume energy,
i.e.  by advancing or  deferring their  execution.  In  addition,  the impact  on global
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energy efficiency,  and the possible degradation of QoS offered to users must be
analyzed.  These  planning  techniques  are  essential  to  ensure  the  correct  use  of
energy resources and to guarantee the energy efficiency of large flexible consumers.
This  article  describes  a  proposal  for  demand response  strategies  on  datacenters,
allowing them to participate in the electric market and provide ancillary services.
Datacenter  can  adjust  power  consumption  to  help  the  electric  network  to  fulfill
specific goals: they are able to consume available surplus of energy by executing
complex tasks that demand large execution times, or they can defer activities (i.e.,
tasks execution) in periods where energy is more expensive and/or power generation
is  lower  than  normal.  Furthermore,  their  thermal/cooling  infrastructures  demand
significant energy consumption and provide a large inertia. Thus, they can be used
to interact with a smart electric grid.
In this line of work, the research reported in this article is based on a negotiation
using a pricing mechanism that guarantees that datacenter operators can extract load
shedding  from  tenants.  The  proposed  strategy  for  demand  response  allows
implementing  a  smart  management  of  the  electric  grid,  achieving  a  rational
utilization of  energy  sources,  and the correct  use of  information technologies  to
improve decision-making processes within modern smart grids. 

2. Datacenter Scheduling Problem 
Given  a  reduction  request  from  the  electric  market,  the  optimization  problem
consists in minimizing the total monetary incentive rewarded to tenants and the cost
of  using the on-site  generator  in order  to  meet  the reduction target.  The energy
reduction must be maintained for a time horizon T . The formulation is as follows:

● A set of discrete timesteps t  in [0 , T ].

● A target reduction βrequested by the electric market.

● A set of tenants (or clients), C={c1 , ... , c¿C∨¿}¿.

● A workload of tasks for each tenant c j, W j={w j
1 , ... ,w j

|W j|}.
● Let DF j

i=1 if task w j
i  is deferrable and DF j

i=0 if it is non-deferrable.
● Let DD j

i  be the due date of task w j
i .

● Let MP j
i  be the monetary penalty received by tenant c j if the due date of task

w j
i  is not met.

● Let RIbe the monetary incentive for each tenant for each energy unit reduced.

● A  workload  schedule  for  each  tenant  c j with  no  monetary  incentives  (i.e.

RI=0), WS j={ws1 , ... ,ws¿C∨¿}¿.

● Let  DP j
tbe the power requirement at each time  t  of each workload schedule

ws j. 

● Let FT j
i  be the finishing time of task w j

i  for schedule ws j.
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● Let VD j
i=0 if the FT j

i ≤DD j
i  for schedule ws j, otherwise VD j

i=1.
● Let  define  the  total  monetary  penalty  of  a  schedule  ws j for  a  tenant  c j as

Υ j= ∑
i=1...|W|

VD j
i ×P j

i
.

● Let the function γ j determine the new schedule ws j with a power requirement

DP j
t  for tenant c j given incentive RI , γ j(RI)=ws j.

● Let  define  the  energy  reduction  function  between  ws j with  respect  to  the

schedule ws j as  δ (ws j)=min{DP j
t−DP j

t , t∈ T }.
● Let GPt be the energy generated at each time tusing the on-site generator. 
● Let α  be the monetary cost per unit of energy of using the on-site generator.

The objective function defined by Eq. 3.1.

min z=∑
j=1

|C|

δ (γ j (RI ))×RI+∑
t=1

T

GPt×α (3.1a)

subject to

β≤ δ (γ j (RI ))+GP t
(3.1b)

z ≤∑
t=1

T

DP j
t ×α (3.1c)

● The objective (3.1a)  is  to minimize cost  for  the datacenter  operator  (i.e.,  the
money paid to tenants plus the cost of using the on-site generator) in order to
meet  the  reduction  target.  Constraint  (3.1b)  states  the  total  energy  reduction
must be at least β per timestep. Finally, constraint (3.1c) indicates that the total
monetary equation must be less than the cost of powering the whole datacenter
using the on-site generator alone.

3. Demand Response Approach

Datacenter  operation. The  grid  operator  offers  a  monetary  incentive  to  the
datacenter  administrator  for  reducing  a  certain  amount  of  energy  from  its
consumption during a certain time. To achieve the necessary reduction,  the next
market mechanism was implemented. 
In the proposed market mechanism, the operator can induce a reduction on client's
power consumption diminishing the need of brown energy, using a parameterized
supply function represented in Eq. 4.1, where r i is the power reduction for client i,
D is data  center's  power reduction target,  bi is the client  offer  for reducing the

power consumption by  r i and  p is  the market  clearing price determined by the
operator [2].
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r i (bi , p)=D−
bi

p
(4.1)

The market mechanism for reducing D  amount of energy is exercised in four steps
in an iterative approach:

(i) The datacenter broadcasts the supply function to the clients, r i (bi , p).
(ii) Each client i bids a reward bi for reducing power r i, to maximize its utility. 

(iii)  The  datacenter  determines  the  market  clearing  price  p and  the  energy  to
produce on-site y  (with generation cost α ) by minimizing the total cost. 

p (bi , y )=
∑
i

bi

(N−1)D+ y
(4.2)

y=argmin (D−y) p+αy, 0≤ y≤ D (4.3)

The first-order optimality condition for Eq. 4.3 gives the value for y:

    
y=√(∑i=1

N

bi)ND
α

−(N−1)D
(4.4)

(iv) If p and y  converge, latest bids are accepted and energy reduction is scheduled
by the clients, else the operator broadcast the new supply function with the updated
value for p. 

The strategy used by the datacenter solves the location problem based on a proximal
method [3]. A distributed solution is generated for each agent. In the algorithm, D
is the power reduction target, price is the market clearing price per Watt, N  is the
number  of  tenants  and  j is  the  tenant  id.  Function  client_evaluation(price,j)
corresponds  to  the  offer  evaluation  of  the  tenant  j,  considering  its  SLAs.  This
function  returns  the  energy  reduction  committed  by  the  tenant  (reduction[j]),
according  to  the  price,  bid[j]  is  the  offer  of  tenant  j for  reducing  the  power
consumption,  yk is  the  iteration  variable,  which  at  the  end  of  the  negotiation
corresponds to the power generated by the on-site generator. The cost of generate
one Watt using the generator is denoted  α . The parameter  ϵ  is a measure of the
compliance of the coupling restriction.

Algorithm 1 Datacenter market mechanism

INPUT: D (power reduction target), price0
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OUTPUT: price, on−site generation
 1: k←0                                               ¿iteration step
 2: pricek←price0
 3: while ϵ ≥ϵmin do

 4:      for j=1to N  do

 5:            reduction [ j ]←clientevaluation (pric ek , j)
 6:             bid [ j ]←(D−reduction [ j ])× pric ek

 7:      end for

 8:      yk←max(√(∑j

bi d). NDα −(N−1)D ,0)
 9:      pric ek←∑

j

bid [ j] /((N−1)D+ yk)

10:     ϵ←‖( y k+∑
j

reduction [ j ]−D)/D‖
11:      k←k+1
12:  end while
13: on−sitegeneration←y k

Client  offer  evaluation. To  evaluate  the  monetary  offer  of  the  datacenter
administrator and determine the amount of power to be reduced, clients simulate the
execution  of  their  workload,  applying  an  energy  optimization  strategy.  The
monetary offer of the datacenter administrator is accepted if the net income obtained
from  the  energy  reduction  minus  the  loss  the  client  must  pay  in  case  of  not
complying with the SLA with his users, is greater than zero. In any case, different
trade-offs  are obtained for  different  monetary offers  from the negotiation.  These
trade-offs can be considered in case the datacenter cannot meet the desired power
consumption reduction, to account for different compromises between the problem
objectives (energy reduction and cost).
The energy optimization strategy proposed in this article aims at maximizing the
profit of clients by reducing the active cores of the servers, thus lowering the energy
consumption according to the offer received from the datacenter administration. A
heuristic procedure is applied: Active Cores Reduction (ACR) whose main idea is to
select the best scheduling according to its profit,  considering all  combinations of
active cores. The details of the ACR heuristic are presented in Algorithm 2, where
price is the offer  per reduced Watt and  reduction are the watts that the client is
willing to reduce according to the offer. Function schedule simulates the execution
of the workload  considering  cores_number active  cores,  out  of  the  server_cores
total cores available in the client. In turn, function eval evaluates the profit and the
reduction of the solution scheduling sol.
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Algorithm 2 Energy optimization strategy

INPUT: price
OUTPUT: reduction
 1: profit←0
 2: reduction←0
 3: cores←server cores×servesnumbers
 4:  for coresnumbersin cores do

 5:     sol←schedule (coresnumber)
 6:     reductionax , profit ax← ( price , sol)|
 7:     if  profitax> profit  then

 8:         reduction←reductionax

 9:         profit← profitax
10:    end if
11:  end for

Client  scheduling  simulation. Clients  are  providers  of  HPC services  to  single
users. Batch tasks arrive to the system and they are queued until a server has the
capacity to execute it (i.e., it meets the task requirements, such as available cores,
memory, and estimated execution time). 
A simulation-driven approach is applied to determine the cost of implementing a
certain energy optimization strategy. An ad-hoc simulator is used, due to the limited
capabilities  of  existing  datacenter/cloud  simulators  to  provide  an  accurate
environment for implementing the main features of the proposed approach. 

The simulation period is divided into intervals of equal duration  ∫¿d ¿. At each
interval, the scheduler assigns the arrived tasks to the servers, taking into account
the current capacity of each server and the scheduling strategy criteria. The number
of intervals that a task is running on a server is calculated as ct /¿ t d+1, where ct  is
the  completion  time  of  a  task  (in  seconds)  and  ∫¿d ¿ is  the  duration  of  each
interval (in seconds). The completion time of a task is defined as its size in millions
of  instructions  per  second  (MIPS)  divided  by  the  assigned  core  speed  (also,  in
MIPS). 

Power  consumption  model. In  order  to  estimate  the  power  consumption  of  a
scheduling,  the novel  quadratic  power consumption model,  developed using real
experimental data, was used [4].
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4. Experimental Analysis
Specific instances were generated to evaluate and validate the proposed model for
datacenter participation in the electricity market. Preliminary results are reported for
instances  with  5  clients,  5  servers  and  1500  tasks  each.  Further  experimental
evaluation is reported in [2].  Regarding the computational infrastructure, servers
with 24 cores are considered, with Intel Xeon CPUs and a processing speed of 3000
MIPS.  Experiments  were  developed  in  Java  SE  1.8,  and  executed  on  National
Supercomputing Center, Uruguay [5].
Fig. 5 shows the result of the power reduction negotiation between the datacenter
administrator and the clients, for small instances. The offer (per Watt) to the clients
is on the independent axis. Blue squares are the evolution of the clients reduction
(CR) through the negotiation, red circles are the values of  yk, and green triangles
are the power generated on-site to cover the power reduction target (OG=D-CR).
For the small instances, the negotiation quickly reaches a power reduction of 600
W,  with  a  low  monetary  cost.  However,  larger  power  reductions  require  more
iterations and a greater monetary offer. This slowdown in reduction is because, at
this  point,  clients  cannot  reduce  their  power  consumption  without  a  significant
impact on user performance.
Table 2 reports a summary of the negotiation for small instances. Three negotiation
steps are considered: the first offer, an intermediate offer, and the last offer (that is,
when the negotiation algorithm ends according to the stopping criteria). Column k is
the negotiation step, price is the offer in step k, CR is the reduction obtained from
clients,  OG is the on-site generation,  ϵ  evaluates the compliance  of the coupling
restriction, and  cost is the monetary value that the datacenter administrator must
invest to achieve the target reduction (equation 5.1).

cost=CR× price+OG×α  (5.1)

Table 2. Negotiation summary

DPEM - small - 1.0

k price CR yk ϵ OG cost

1 0.012 582 0 70.90 1418 2842

20 0.227 701 0 64.95 1299 2757

41 1.840 794 1200 0.03 1206 3872

DPEM - small - 0.8

k price CR yk ϵ OG cost

1 0.012 582 0 70.90 1418 2842
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21 0.260 705 0 64.75 1295 2773

41 1.760 1206 802 0.04 794 3710

DPEM - small - 0.4

k price CR yk ϵ OG cost

1 0.012 665 0 66.75 1335 2677

21 0.244 728 0 63.60 1272 2721

42 1.576 1894 0 0.06 126 3205
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Fig. 5. Negotiation for small instances: red dots - yk ,  blue squares - CR, red triangles - on-

site generation. 

The comparison between instances with different tolerance values shows that when
clients are less flexible, the negotiation determines in the last step low values in CR
column and high values in OG  column. This behavior corresponds to the intuitive
idea that in datacenters where clients have less flexible SLAs, the on-site generation
is  the  main  option  to  achieve  the  target  reduction  established  by  the  electric
provider. Moreover, less flexible instances (i.e. small-1.0) imply large offers. 
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Results  confirm  that  the  proposed  negotiation  approach  is  able  to  properly  take
advantage of deferring execution tasks to fulfill  the requested power consumption
reduction.

5. Conclusions
This article studied a negotiation approach for the participation of datacenters and
supercomputing  facilities  in  smart  electricity  markets,  an  important  problem  in
modern smart grid systems.
A specific case of demand response strategy was studied for colocation datacenters
to  commit  power  reductions,  according  to  offers  proposed  to  clients.  A
decentralized approach was applied for negotiation, where clients do not need to
provide strategic  information to the datacenter  administrator.  Instead,  each client
negotiates  a  price  considering a  planning heuristic  and the features  of  the tasks
submitted for execution. A model based on empirical information was presented to
determine the power consumption of CPU-intensive and memory-intensive tasks,
using data from real datacenters. 
The negotiation algorithm and a heuristic  planning method for  energy reduction
optimization were  experimentally  validated over  nine realistic  problem instances
that model different problem dimensions and flexibility of the datacenter clients.
The obtained results  indicate  that  the  proposed  approach  is  effective  to  provide
proper demand  response  actions  according  to  monetary  incentives.  The  system
achieved  economic  benefits  for the  datacenter  operator and for  the  tenants  (by
providing rewards for reductions) and for the environment, by reducing diesel use.
Summarizing, clients quickly reached appropriate power reductions, thus limiting
the need of using on-site generation by the datacenter. Results confirmed that the
problem is inherently multiobjective. Both operation costs and QoS offered to users
must  be  considered  in  the  formulation,  and  trade-offs  between  total  cost  and
negotiation offers must be studied. The proposed approach is realistic and efficient,
to be implemented in nowadays datacenters and supercomputing facilities.
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