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Over a quarter of humans are infected with parasitic nema-
todes (roundworms) or platyhelminths (flatworms)1. 
Although rarely lethal, infections are typically chronic, 

leading to pain, malnutrition, physical disabilities, delayed devel-
opment, deformity, social stigma or a burden on family members 
caring for the afflicted. These diseases encompass many of the most 
neglected tropical diseases and attract little research investment. 
Parasitic nematodes and platyhelminths impede economic develop-
ment through human disability, and billions of dollars of lost pro-
duction in the livestock2 and crop3 industries.

Few drugs are available to treat worm infections. Repeated mass 
administration of monotherapies is increasing the risk of resistance 
to human anthelmintics4 and has driven widespread resistance in 
farm animals5. There are no vaccines for humans, and few for ani-
mals6. The commonly used nematicides of plant parasites are envi-
ronmentally toxic7, and need replacement.

The phylum Nematoda is part of the superphylum Ecdysozoa 
and has five major clades (I to V), four of which contain human-
infective parasites and are analyzed here (Fig. 1). The phylum 
Platyhelminthes is part of the superphylum Lophotrochozoa and 
the majority of parasite species are cestodes (tapeworms) and trem-
atodes (flukes). Comparing the genomes of parasites from these 
two phyla may reveal common strategies employed to subvert host 
defenses and drive disease processes.

We have combined 36 published genomes8–34 with new assem-
blies for 31 nematode and 14 platyhelminth species into a large 
genome comparison of parasitic and non-parasitic worms. We have 
used these data to identify gene families and processes associated 
with the major parasitic groups. To accelerate the search for new 
interventions, we have mined the dataset of more than 1.4 million 
genes to predict new drug targets and drugs.

Results
Genomic diversity in parasitic nematodes and platyhelminths. 
We have produced draft genomes for 45 nematode and platyhel-
minth species and predicted 0.8 million protein-coding genes, 
with 9,132–17,274 genes per species (5–95% percentile range; see 
Methods, Supplementary Tables 1–3, Supplementary Fig. 1 and 
Supplementary Notes 1.1 and 1.2). We combined these new data 
with 36 published worm genomes—comprising 31 parasitic8–30 and 
five free-living18,31–34 species—and 10 outgroups35–44 from other ani-
mal phyla, into a comparative genomics resource of 91 species (Fig. 1  

and Supplementary Tables 2 and 4). There was relatively little varia-
tion in gene set completeness (coefficient of variation, c.v. =​ 0.15) 
among the nematodes and platyhelminths, despite variation in 
assembly contiguity (c.v. =​ 8.5; Fig. 1b and Supplementary Table 2). 
Nevertheless, findings made using a subset of high-quality assem-
blies that were designated ‘tier 1’ (Methods and Supplementary 
Table 4) were corroborated against all species.

Genome size varied greatly within each phylum, from 42 to 
700 Mb in nematodes, and from 104 to 1,259 Mb in platyhelminths. 
In a small number of cases, size estimates may have been artifactu-
ally inflated by high heterozygosity causing alternative haplotypes 
to be represented within the assemblies (Supplementary Note 1.3 
and Supplementary Table 2a). A more important factor appeared  
to be repeat content that ranged widely, from 3.8 to 54.5% (5–95% 
percentile; Supplementary Table 5). A multiple regression model, 
built to rank the major factors driving genome size variation, iden-
tified long terminal repeat transposons, simple repeats, assembly 
quality, DNA transposable elements, total length of introns and low 
complexity sequence as being the most important (Supplementary 
Note 1.3, Methods and Supplementary Table 6). Genome size 
variation is thus largely due to non-coding elements, as expected45, 
including repetitive and non-repetitive DNA, suggesting it is either 
non-adaptive or responding to selection only at the level of overall 
genome size.

Gene family births and expansions. We inferred gene families from 
the predicted proteomes of the 91 species using Ensembl Compara46. 
Of the 1.6 million proteins, 1.4 million were placed into 108,351 
families (Supplementary Note 2.1 and Supplementary Data), for 
which phylogenetic trees were built and orthology and paral-
ogy inferred (Methods, Supplementary Fig. 2 and Supplementary  
Table 7). Species trees inferred from 202 single-copy gene families 
that were present in at least 25% of species (Fig. 1), or from pres-
ence/absence of gene families, largely agreed with the expected 
species and clade relationships, except for a couple of known con-
tentious issues (Supplementary Fig. 3, Supplementary Note 2.2  
and Methods).

The species in our dataset contained significant novelty in gene 
content. For example, ~28,000 parasitic nematode gene families 
contained members from two or more parasitic species but were 
absent from Caenorhabditis elegans and 47% of gene families lacked 
any functional annotation (Supplementary Note 2.1 and Methods). 
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Fig. 1 | Genome-wide phylogeny of 56 nematode, 25 platyhelminth species and 10 outgroup species. a, Maximum-likelihood phylogeny based on a 
partitioned analysis of a concatenated data matrix of 21,649 amino acid sites from 202 single-copy orthologous proteins present in at least 23 of the 
species. Values on marked nodes are bootstrap support values; all unmarked nodes were supported by 100 bootstrap replicates; nodes with solid marks 
were constrained in the analysis. Bar plots show genome sizes and total lengths of different genome features, and normalized gene count (Supplementary 
Note 1.2) for proteins with inferred functions based on sequence similarity (having an assigned protein name; Methods), or those without (named 
‘hypothetical protein’). Species for which we have sequenced genomes are marked with asterisks; 33 ‘tier 1’ genomes are in black. LTR, long terminal 
repeat; LINE, long interspersed nuclear element. b, Assembly statistics. Blue rows indicate the 33 ‘tier 1’ genomes. Asterisks indicate the species for which 
we have sequenced genomes.
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The latter families tended to be smaller than those with annotations 
(Supplementary Fig. 4) and, in many cases, correspond to families 
that are so highly diverged that ancestry cannot be traced, reflecting 
the huge breadth of unexplored parasite biology.

Gene families specific to particular parasite clades are likely to 
reflect important aspects of parasite biology and possible targets for 
new antiparasitic interventions. At key nodes in the phylogeny that 
are relevant to parasitism, we identified 5,881 families with appar-
ent clade-specificity (synapomorphies; Supplementary Note 2.3, 
Methods and Supplementary Table 8), although our ability to dis-
criminate truly parasite-specific clades was limited by the low num-
ber of free-living species. The apparent synapomorphies were either 
gene family births, or subfamilies that were so diverged from their 
homologues that they appeared as separate families. Functional 
annotation of these families was diverse (Fig. 2), but they were fre-
quently associated with sensory perception (such as G-protein cou-
pled receptors; GPCRs), parasite surfaces (platyhelminth tegument 
or nematode cuticle maintenance proteins) and protein degradation 
(proteases and protease inhibitors).

Among nematodes, clade IVa (which includes Strongyloides spp.; 
Fig. 1) showed the highest number of clade-specific families, includ-
ing a novel ferrochelatase-like family. Most nematodes lack func-
tional ferrochelatases for the last step of haem biosynthesis47, but 
harbor ferrochelatase-like genes of unknown function, to which the 
synapomorphic clade IVa family was similar (Supplementary Fig. 5 
and Methods). Exceptions are animal parasites in nematode clades 
III (for example ascarids and filaria) and IV that acquired a func-
tional ferrochelatase via horizontal gene transfer48,49. Within the par-
asitic platyhelminths, a clade-specific inositol-pentakisphosphate 
2-kinase (IP2K) was identified. In some species of Echinococcus 
tapeworms, IP2K produces inositol hexakisphosphate nanodeposits 
in the extracellular wall (the laminated layer) that protects larval 
metacestodes50. The deposits increase the surface area for adsorp-
tion of host proteins and may promote interactions with the host51.

Paralogous expansions of gene families, particularly those that 
are large or repeatedly involve related processes, can be evidence 
of adaptive evolution. We searched among our 10,986 highest-con-
fidence gene families (those containing ≥​10 genes from tier 1 spe-
cies) for those that had expanded in parasite clades. A combination 
of scoring metrics (Methods) reduced the list to 995 differentially 
distributed families with a bias in copy number in at least one para-
site clade. Twenty-five expansions have previously been observed, 
including 21 with possible roles in parasitism (Supplementary  
Fig. 6). A further 43 were placed into major functional classes that 
historically have been favored as drug targets (kinases, GPCRs, ion 
channels and proteases52; Supplementary Table 9a).

By manually inspecting the distribution of the remaining 927 
families across the full species tree, we identified 176 families with 
striking expansions (Supplementary Table 9a and Supplementary 
Note 2.4). Thirty two had no functional annotation; for exam-
ple, family 393312 was highly expanded in clade Va nematodes 
(Supplementary Fig. 7 and Supplementary Table 9a). Even when 
families could be functionally annotated to some extent (for exam-
ple, based on a protein domain), discerning their precise biologi-
cal role was a challenge. For example, a sulfotransferase family that 
was expanded in flukes compared with tapeworms includes the 
Schistosoma mansoni locus that is implicated in resistance to the 
drug oxamniquine53 but the endogenous substrate for this enzyme 
is unknown (Supplementary Fig. 7j).

Among the newly identified expansions, we focused on those 
with richer functional information, especially where they were 
related to similar biological processes. For instance, we identi-
fied several expansions of gene families involved in innate immu-
nity of the parasites, as well as their development. These included 
families implicated in protection against bacterial or fungal infec-
tions in nematode clade IVa (bus-4 GT31 galactosyltransferase54, 

irg-355) and clades Va/Vc (lysozyme56 and the dual oxidase bli-357) 
(Supplementary Fig. 8a–d). In nematode clade IIIb, a family was 
expanded that contains orthologs of the Parascaris coiled-coiled 
protein PUMA, involved in kinetochore biology58 (Fig. 2b). This 
expansion possibly relates to the evolution of chromatin diminution 
in this clade, which results in an increased number of chromosomes 
requiring correct segregation during metaphase59. In nematode 
clade IVa and in Bursaphelenchus, an expansion of a steroid kinase 
family (Supplementary Fig. 8e) is suggestive of novelty in steroid-
regulated processes in this group, such as the switch between free-
living or parasitic stages in Strongyloides60.

Infections with parasitic worms are typified by their chronicity 
and a plausible involvement in host–parasite interactions is a recur-
ring theme for many of the families. Taenia tapeworms and clade 
V strongylid nematodes (that is Va, Vb and Vc; Fig. 1) contained 
two expanded families with apyrase domains that may have a role 
in hydrolyzing ATP (a host danger signal) from damaged host tis-
sue61 (Fig. 2b and Supplementary Fig. 9a). Moreover, many of the 
strongylid members also contained amine oxidoreductase domains, 
possibly to reduce production of pro-inflammatory amines, such 
as histamine, from host tissues62. In platyhelminths, we observed 
expansions of tetraspanin families that are likely components of 
the host/pathogen interface. Described examples show tetraspan-
ins being part of extracellular vesicles released by helminths within 
hosts63; or binding the Fc domain of host antibodies64; or being 
highly immunogenic65 (Supplementary Fig. 9b,c). In strongylids, 
especially clade Vc, an expansion of the fatty acid and retinol-
binding (FAR) family, implicated in host–parasite interaction of 
plant- and animal-parasitic nematodes66,67 (Supplementary Fig. 9d),  
suggests a role in immune modulation. Repertoires of glycosyl 
transferases have expanded in nematode clades Vc and IV, and 
tapeworms (Supplementary Fig. 10a–c), and may be used to evade 
or divert host immunity by modifying parasite surface molecules 
directly exposed to the immune system68; alternatively, surface gly-
coproteins may interact with lectin receptors on innate immune 
cells in an inhibitory manner69. An expanded chondroitin hydrolase 
family in nematode clade Vc may possibly be used either for larval 
migration through host connective tissue or to digest host intes-
tinal walls (Supplementary Fig. 9e). Similarly, an expanded GH5 
glycosyl hydrolase family contained schistosome members with 
egg-enriched expression8,70 that may be used for traversing host tis-
sues such as bladder or intestinal walls (Supplementary Fig. 9f). In 
nematode clade I, we found an expansion of a family with the PAN/
Apple domain, which is implicated in attachment of some proto-
zoan parasites to host cells71, and possibly modulates host lectin-
based immune activation (Supplementary Fig. 9g).

The SCP/TAPS (sperm-coating protein/Tpx/antigen 5/patho-
genesis-related protein 1) genes have been associated with parasit-
ism through their abundance, secretion and evidence of their role 
in immunomodulation72 but are poorly understood. This diverse 
superfamily appeared as eight expanded Compara families. A more 
comprehensive phylogenetic analysis of the full repertoire of 3,167 
SCP/TAPS sequences (Supplementary Note 2.5, Supplementary 
Table 10 and Methods) revealed intra- and interspecific expansions 
and diversification over different evolutionary timescales (Fig. 3  
and Supplementary Figs. 11a,b and 12). In particular, the SCP/TAPS 
superfamily has expanded independently in nematode clade V (18–
381 copies in each species) and in clade IVa parasites (39–166 cop-
ies) (Fig. 3 and Supplementary Fig. 11c). Dracunculus medinensis 
(Guinea worm) was unusual in being the only member of clade III 
to display an expansion (66 copies), which may reflect modulation 
of the host immune response during the tissue migration phase of 
its large adult females.

Proteins historically targeted for drug development. Proteases, 
GPCRs, ion channels and kinases dominate the list of targets 
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for existing drugs for human diseases52, and are attractive leads 
for developing new ones. We therefore explored the diversity of 
these superfamilies across the nematodes and platyhelminths 
(Supplementary Fig. 13, Supplementary Note 3 and Methods).

Proteases and protease inhibitors perform diverse functions in 
parasites, including immunomodulation, host tissue penetration, 
modification of the host environment (for example, anticoagulation) 
and digestion of blood73. M12 astacins have particularly expanded 
in nematode clade IVa (five families), as previously reported18, but 
there are two additional expansions in clades Vc and Vb (Fig. 4, 
Supplementary Fig. 14 and Supplementary Table 11). Because many 
of these species invade through skin (IVa, Vc; Supplementary Table 
12) and migrate through the digestive system and lung (IVa, Vc, Vb; 
Supplementary Table 13), these expansions are consistent with evi-
dence that astacins are involved in skin penetration and migration 
through connective tissue74. The cathepsin B C1-cysteine proteases 
are particularly expanded in species that feed on blood (two expan-
sions in nematode clades Vc and Va30, with highest platyhelminth 
gene counts in schistosomatids and Fasciola12; Supplementary Fig. 
14). Indeed, they are involved in blood digestion in adult nema-
todes75 and platyhelminths76, but some likely have different roles 
such as larval development77 and host invasion78.

Different protease inhibitors may modulate activity of para-
site proteases or protect parasitic nematodes and platyhelminths 
from degradation by host proteases, facilitate feeding or manipu-
late the host response to the parasite79. The I2 (Kunitz-BPTI) tryp-
sin inhibitors are the most abundant protease inhibitors across  

parasitic nematodes and platyhelminths (Fig. 4). An expansion of 
the I17 family, which includes secretory leukocyte peptidase inhibi-
tor, was reported previously in Trichuris muris17 but the striking 
confinement of this expansion to most of the parasites of clade I 
is now apparent (Fig. 4). We also observed a notable family of  
α​-2-macroglobulin (I39) protease inhibitors that are present in all 
platyhelminths but expanded in tapeworms (Supplementary Fig. 
14). The tapeworm α​-2-macroglobulins may be involved in reduc-
ing blood clotting at attachment or feeding sites; alternatively, they 
may modulate the host immune response, since α​-2-macroglobu-
lins bind several cytokines and hormones80. Chymotrypsin/elastase 
inhibitors (family I8) were particularly expanded in clades Vc and 
IVa (consistent with upregulation of I8 genes in Strongyloides para-
sitic stages18) and to a lesser extent in clade IIIb (Fig. 4), consistent 
with evidence that they may protect Ascaris from host proteases81. 
We also identified protein domain combinations that were specific 
to either nematodes or platyhelminths (131 and 50 domain combi-
nations, respectively). Many of these involved protease and protease 
inhibitor domains. In nematodes, several combinations included 
Kunitz protease inhibitor domains, and in platyhelminths metallo-
protease families M18 and M28 were found in novel combinations 
(Supplementary Table 14, Supplementary Note 3.2 and Methods).

Of the 230 gene families annotated as GPCRs (Supplementary 
Figs. 13 and 15 and Supplementary Note 3.3), only 21 were con-
served across phyla. Chemosensory GPCRs, while abundant in 
nematodes, were not identified in platyhelminths, although they are 
identifiable in other Lophotrochozoa (such as Mollusca82), suggest-
ing that either the platyhelminths have lost this class or they are 
very divergent (Supplementary Table 15). GPCR families lacking 
sequence similarity with known receptors included the platyhel-
minth-specific rhodopsin-like orphan families (PROFs), which are 
likely to be class A receptors and peptide responsive, and several 
other fluke-specific non-PROF GPCR families. The massive radia-
tion of chemoreceptors in C. elegans was unmatched in any other 
nematode (87% versus ≤​48% of GPCRs). All parasitic nematodes 
possessed chemoreceptors, with the most in clade IVa, including 
several large families synapomorphic to this clade (Supplementary 
Fig. 15), perhaps related to their unusual life cycles that alternate 
between free-living and parasitic forms.

Independent expansion and functional divergence has differ-
entiated the nematode and platyhelminth pentameric ligand gated 
ion channels (Supplementary Fig. 16, Supplementary Table 16 and 
Supplementary Note 3.4). For example, glutamate signaling arose 
independently in platyhelminths and nematodes83, and in trema-
todes the normal role of acetylcholine has been reversed, from 
activating to inhibitory84. Our analysis suggested the platyhelminth 
acetylcholine-gated anion channels are most related to the Acr-
26/27 group of nematode nicotinic acetylcholine receptors that are 
the target of the anthelmintics morantel and pyrantel85, rather than 
to nematode acetylcholine-gated cation channels, targeted by nico-
tine and levamisole (Supplementary Fig. 17).

ABC transporters (Supplementary Table 17 and Supplementary 
Note 3.5) and kinases (Supplementary Note 3.6 and Supplementary 
Fig. 18) showed losses and independent expansion within nema-
todes and platyhelminths. The P-glycoprotein class of transporters, 
responsible for the transport of environmental toxins and linked 
with anthelmintic resistance, is expanded relative to vertebrates86, 
with increased numbers in nematodes (Supplementary Fig. 19).

Metabolic reconstructions of nematodes and platyhelminths. In 
the context of drug discovery, understanding the metabolic capa-
bilities of parasitic worms may reveal vulnerabilities that can be 
exploited in target-based screens for new compounds. For each 
of the 81 nematode and platyhelminth species, metabolism was 
reconstructed based on high confidence assignment of enzyme 
classes (Supplementary Table 18a). The nematodes had a greater 
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range of annotated enzymes per species than the platyhelminths 
(Supplementary Fig. 20a), in part reflecting the paucity of biochem-
ical studies in platyhelminths. Because variation in assembly quality 

or divergence from model organisms87 could bias enzyme predic-
tions, we identified losses of pathways and differences in pathway 
coverage across different clades (Supplementary Note 4, Methods, 
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Fig. 5 and Supplementary Fig. 21). Pathways related to almost all 
metabolic superpathways in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)88 showed significantly lower coverage for platy-
helminths (versus nematodes) and filaria (versus other nematodes) 
(Supplementary Fig. 20b).

In contrast to most animals, nematodes possess the glyoxyl-
ate cycle that enables conversion of lipids to carbohydrates, to be 
used for biosyntheses (for example, during early development) 
and to avert starvation89. The glyoxylate cycle appears to have 
been lost independently in the filaria and Trichinella species (Fig. 
5a; M00012), both of which are tissue-dwelling obligate parasites. 
The filaria and Trichinella have also independently lost alanine-
glyoxylate transaminase that converts glyoxylate to glycine (Fig. 
5b). Glycine can be converted by the glycine cleavage system (GCS) 
to 5,10-methylenetetrahydrofolate, a useful one-carbon pool for 
biosyntheses, and two key GCS proteins appear to have been lost 
independently from filaria and tapeworms, suggesting their GCS 
is non-functional (Supplementary Table 19e). In addition, filaria 
have lost the ability to produce and use ketone bodies, a tempo-
rary store of acetyl coenzyme A (CoA) under starvation conditions 
(Supplementary Table 19b). The filaria lost these features after they 
diverged from D. medinensis, an outgroup to the filaria in clade IIIc 
that has a major difference in its life cycle, namely, a free-living lar-
val stage (Supplementary Table 12).

The absence of multiple initial steps of pyrimidine synthesis was 
observed in some nematodes, including all filaria (as previously 
reported23) and tapeworms, suggesting they obtain pyrimidines 
from Wolbachia endosymbionts or from their hosts, respectively 
(Supplementary Table 19f). Similarly, all platyhelminths and some 
nematodes (especially clade IVa and filaria IIIc) appear to lack key 
enzymes for purine synthesis (Supplementary Table 19g) and rely on 
salvage instead. However, despite the widespread belief that nema-
todes cannot synthesize purines90,91, complete or near-complete 
purine synthesis pathways were found in most members of clades I, 
IIIb and V. Nematodes are known to be unable to synthesize haem47 
but the pathway was found in platyhelminths, including S. mansoni 
(despite conflicting biochemical data47) (Supplementary Table 19h 
and Supplementary Table 20i).

Genes from the β​-oxidation pathway, used to break down lipids 
as an energy source, were not detected in schistosomes and some 
cyclophyllidean tapeworms (Hymenolepis, Echinococcus; Fig. 5a, 
M00087; Supplementary Table 19a). These species live in glucose-
rich environments and may have evolved to use glucose and glyco-
gen as principal energy sources. However, biochemical data suggest 
they do perform β​-oxidation92, so they may have highly diverged 
but functional β​-oxidation genes.

The lactate dehydrogenase (LDH) pathway is a major source of 
ATP in anaerobic but glucose-rich environments. Platyhelminths 
have high numbers of LDH genes, as do blood-feeding Ancylostoma 
hookworms (Supplementary Fig. 22g). Nematode clades Vc (includ-
ing Ancylostoma) and IIIb have expansions of α​-glucosidases that 
may break down starch and disaccharides in host food to glu-
cose (Supplementary Fig. 22a). Many nematodes and flatworms 
use malate dismutation as an alternative pathway for anaerobic 
ATP production93. The importance of the pathway for clade IIIb 
nematodes was reflected in expanded families encoding two key 
pathway enzymes PEPCK and methylmalonyl CoA epimerase, 
and the intracellular trafficking chaperone for cobalamin (vita-
min B-12), a cofactor for the pathway (Supplementary Fig. 22c–e 
and Supplementary Table 9a). A second cobalamin-related family 
(CobQ/CbiP) is clade IIIb-specific and appears to have been gained 
by horizontal gene transfer from bacteria (Supplementary Fig. 23a, 
Supplementary Note 2.6 and Methods). A glutamate dehydroge-
nase family expanded in clade IIIb (Supplementary Fig. 22h) is 
consistent with a GABA (γ​-aminobutyric acid) shunt that helps 
maintain redox balance during malate dismutation. In clade Va, an 
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expansion in the propionate breakdown pathway94 (Supplementary 
Fig. 22f), suggested degradation of propionate, originating from 
malate dismutation or fermentation in the host’s stomach95. Clade 
I nematodes have an acetate/succinate transporter that appeared 
to have been gained from bacteria (Supplementary Note 2.6 and 
Methods), and may participate in acetate/succinate uptake or efflux 
(Supplementary Fig. 23b).

Identifying new anthelmintic drug targets and drugs. As an 
alternative to a purely target-based approach that would require 
extensive compound screening, we explored drug repurposing 
possibilities. We developed a pipeline to identify the most prom-
ising targets from parasitic nematodes and platyhelminths. These 
sequences were used in searches of the ChEMBL database that 
contains curated activity data on defined targets in other species 
and their associated drugs and compounds (Supplementary Note 
5 and Methods). Our pipeline identified compounds that are pre-
dicted to interact with the top 15% of highest-scoring worm tar-
gets (n =​ 289). These targets included 17 out of 19 known or likely 
targets for World Health Organization-listed anthelmintics that are 
represented in ChEMBL (Supplementary Table 21b). When com-
pounds within a single chemical class were collapsed to one rep-
resentative, this potential screening set contained 5,046 drug-like 
compounds, including 817 drugs with phase III or IV approval and 
4,229 medicinal chemistry compounds (Supplementary Table 21d). 
We used a self-organizing map to cluster these compounds based on 
their molecular fingerprints (Fig. 6). This classification showed that 
the screening set was significantly more structurally diverse than 
existing anthelmintic compounds (Supplementary Fig. 24).

The 289 targets were further reduced to 40 high-priority targets, 
based on predicted selectivity, avoidance of side-effects (clade-
specific chokepoints or lack of human homologues) and putative 
vulnerabilities, such as those suggested by gene family expansions 
in parasite lineages, or belonging to pathways containing known or 
likely anthelmintic targets (Supplementary Fig. 25). These 40 tar-
gets were associated with 720 drug-like compounds comprising 181 
phase III/IV drugs and 539 medicinal chemistry compounds. There 
is independent evidence that some of these have anthelmintic activ-
ity. For example, we identified several compounds that potentially 
target glycogen phosphorylase, which is in the same pathway as a 
likely anthelmintic target (glycogen phosphorylase phosphatase, 
likely target of niridazole; Supplementary Fig. 25). These com-
pounds included the phase III drug alvocidib (flavopiridol), which 
has anthelmintic activity against C. elegans96. Another example is the 
target cathepsin B, expanded in nematode clade Va (Supplementary 
Table 9a), for which we identified several compounds including the 
phase III drug odanacatib, which has been shown to have anthel-
mintic activity against hookworms97. Existing drugs such as these 
are attractive candidates for repurposing and fast-track therapy 
development, while the medicinal chemistry compounds provide a 
starting point for broader anthelmintic screening.

Discussion
The evolution of parasitism in nematodes and platyhelminths 
occurred independently, starting from different ancestral gene 
sets and physiologies. Despite this, common selective pressures of 
adaptation to host gut, blood or tissue environments, the need to 
avoid hosts’ immune systems, and the acquisition of complex life 
cycles to effect transmission, may have driven adaptations in com-
mon biological pathways. While previous comparative analyses of 
parasitic worms have been limited to a small number of species 
within narrow clades, we have surveyed parasitic worms spanning 
two phyla, with a focus on those infecting humans and livestock. A 
large body of draft genome data (both published and unpublished) 
was utilized but, by focusing on lineage-specific trends rather than 
individual species-specific differences, our analysis was deliberately 

conservative. In particular, we have focused on large gene family 
expansions, supported by the best-quality data and for which func-
tional information was available. Sequencing of further free-living 
species, better functional characterization, and identification of 
remote orthologs (particularly for platyhelminths87), will undoubt-
edly refine the resolution of parasite-specific differences, but our 
gene family analyses have already revealed expansions and synapo-
morphies in functional classes of likely importance to parasitism, 
such as feeding and interaction with hosts. We have used a drug 
repurposing approach to predict potential new anthelmintic drug 
targets and drugs/drug-like compounds that we urge the commu-
nity to explore. Further new potential drug targets, worthy of high-
throughput compound screening, may be exposed by the losses of 
key metabolic pathways and horizontally acquired genes that we 
find in particular parasite groups. This is an unprecedented dataset 
of parasitic worm genomes that provides a new type of pan-spe-
cies reference and a much needed stimulus to the study of parasitic 
worm biology.

URLs. SMALT, http://www.sanger.ac.uk/science/tools/smalt-0; 
RepeatModeler, http://www.repeatmasker.org/RepeatModeler.
html; TransposonPSI, http://transposonpsi.sourceforge.net; 
RepeatMasker, http://www.repeatmasker.org; code for calculating 
gene family metrics, http://tinyurl.com/comparaFamiliesAnalysis-
py; WormBase ParaSite, https://parasite.wormbase.org/.
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Methods
Sample collection and preparation. Sources of material and sequencing 
approaches are summarized in Supplementary Table 1.

Wellcome Sanger Institute (WSI) data production. The genomes of 36 species 
(Supplementary Tables 1 and 2) were sequenced at WSI. The C. elegans N2 was also 
resequenced at WSI.

WSI sequencing and assembly. PCR-free 400–550 bp paired-end Illumina libraries 
were prepared from <​0.1 ng to 5 µ​g genomic DNA, as described for Strongyloides 
stercoralis18. Where there was insufficient DNA, adapter-ligated material was 
subjected to ~8 PCR cycles.

We used 1–10 μ​g gDNA or whole genome amplification DNA to generate 3 kb 
mate-pair libraries, as described for S. stercoralis18. If there was insufficient gDNA, 
whole genome amplification was performed using GenomiPhi v2. Each library was 
run on ≥​1 Illumina HiSeq 2000 lane.

Short insert paired-end reads were corrected and assembled with SGA 
v0.9.798 (Supplementary Fig. 26a). This assembly was used to calculate the k-mer 
distribution for all odd k of 41–81, using GenomeTools v.1.3.799. The k-mer length 
for which the maximum number of unique k-mers was present was used as the 
k-mer setting in a second assembly, using Velvet v1.2.03100 with SGA-corrected 
reads. For species with 3 kb mate-pair data, the Velvet assembly was scaffolded 
using SSPACE101. Contigs were extended, and gaps closed and shortened, using 
Gapfiller102 and IMAGE103. Short fragment reads were remapped to the assembly 
using SMALT (see URLs), and unaligned reads assembled using Velvet100 and this 
merged with the main assembly. The assembly was re-scaffolded using SSPACE101, 
and consensus base quality improved with iCORN104. REAPR105 was used to break 
incorrectly assembled scaffolds/contigs. We carried out manual improvement for 
Wuchereria bancrofti and D. medinensis using Gap5106 and Illumina read-pairs.

WSI assembly quality control. Contamination screening. Assemblies were screened 
for contamination using BLAST107 against vertebrate and invertebrate sequences (see 
ref. 108). For Anisakis simplex, the assembly contained minor laboratory contamination 
with S. mansoni, which we removed using BLASTN against S. mansoni.

Assembly completeness. CEGMA v2.4109 was used to assess completeness. 
Consistent sets of CEGMA genes were missing from some phylogenetic groups 
(Supplementary Table 2); these were discounted from the completeness calculation 
for those species (‘CEGMA’ in Supplementary Table 2).

Effect of repeats. We re-mapped the short-insert library’s reads to the 
appropriate assembly using SMALT (see URLs; indexing -k13 -s4 and mapping 
-y 0.9 -x -r 1). For each scaffold of ≥​8 kb, median (meds) and mean (ms) per-base 
read-depth were calculated using BEDTools110, and genome-wide depth (medg) 
calculated as the median meds (ref. 17). For a ls bp scaffold, the extra sequence that 
would be gained by ‘uncollapsing’ repeats was estimated as es =​ (ms −​ medg) ×​ ls/
medg (Supplementary Table 5).

WSI gene prediction. Our pipeline111 had four steps (Supplementary Fig. 27a). First, 
repeats were masked. Second, preliminary gene predictions, to use as input for 
MAKER v2.2.28112 were generated using Augustus 2.5.5113, SNAP 2013-02-16114, 
GeneMark-ES 2.3a115, genBlastG116 and RATT117. Third, species-specific ESTs and 
complementary DNAs from INSDC118, and proteins from related species, were 
aligned to the genome using BLAST107. Last, EST/protein alignments and gene 
models were used by MAKER to produce a gene set.

McDonnell Genome Institute (MGI) data production. The genomes of six 
species were sequenced at MGI (Supplementary Tables 1 and 2).

MGI sequencing, assembly and quality control. Genome sequencing was carried out 
on Illumina and 454 instruments (see ref. 119). The workflow for each assembly is in 
Supplementary Table 1.

Three kilobase, 8 kb and fragment 454 reads (or Illumina reads) were subject to 
adapter removal, quality trimming and length filtering (Supplementary Fig. 26b). 
Cleaned 454 reads were assembled using Newbler120 before being scaffolded with 
an in-house tool CIGA, which links contigs based on cDNA evidence. Cleaned 
Illumina reads were assembled using AllPaths-LG121. The assembly was scaffolded 
further using an in-house tool Pygap, using Illumina short paired-end sequences; 
and L_RNA_scaffolder122, using 454 cDNA data.

An assisted assembly approach was used for Trichinella nativa, whereby 
‘cleaned’ Illumina 3 kb paired-end sequence data were mapped against the  
T. spiralis genome using bwa123 (Supplementary Fig. 26b), and the T. nativa residues 
were substituted at aligned positions (see ref. 119).

Adaptor sequences and contaminants were identified by comparison to a 
database of vectors and contaminants, using Megablast124.

MGI transcriptome sequencing and gene prediction. Transcriptome libraries 
(Supplementary Table 22) were generated with the Illumina TS stranded protocol, 
and reads assembled using Trinity125 (see ref. 119).

Genes were predicted using MAKER112, based on input gene models from 
SNAP114, FGENESH (Softberry), Augustus113, and aligned messenger RNA, EST, 

transcriptome and protein data from the same or related species (Supplementary 
Fig. 27b; see ref. 119).

Blaxter Nematode and Neglected Genomics (BaNG) data production. The 
genomes of three species were sequenced by BaNG (Supplementary Tables 1 and 2).

Sequencing was performed on Illumina HiSeq 2000 and HiSeq 2500 
instruments, using 100 or 125 base, paired-end protocols. Paired-end libraries were 
generated using the Illumina TruSeq protocol.

Sequence data were filtered of contaminating host reads using blobtools126. 
Cleaned reads were normalized with the khmer software127 using a k-mer of 41, 
and then assembled with ABySS (v1.3.3)128, with a minimum of three pairs needed 
to connect contigs during scaffolding (n =​ 3) (Supplementary Fig. 26c). Assemblies 
were assessed using blobtools and CEGMA109.

Augustus113 was used to predict gene models, trained using annotations from 
MAKER112. As hints for MAKER, we used Litomosoides sigmodontis 454 RNA 
sequencing data assembled with MIRA129 and Newbler120, and Onchocerca ochengi 
Illumina RNA sequencing data130 assembled using Trinity131 (Supplementary Fig. 27c).

Defining high-quality ‘tier 1’ species. A subset of nematode and platyhelminth 
genomes, termed ‘tier 1’, was selected that had better-quality assemblies and  
spanned the major clades (Supplementary Table 4). To choose these, species were 
selected that (1) had contiguous assemblies (usually N50/scaffold-count >​5), and 
complete proteomes (usually CEGMA partial >​85%), or (2) that helped to ensure 
~50% of the genera in each species group (‘Analysis group’ in Supplementary Table 4) 
were represented.

Analysis of repeat content and genome size. For each species, repeat libraries 
were built using RepeatModeler (see URLs), TransposonPSI (see URLs) and 
LTRharvest132, and the three libraries merged (see ref. 133). The merged library was 
used to mask repeats in a species’ genome using RepeatMasker (see URLs; –s).

The initial standard regression model and stepwise model fitting used ‘lm’ and 
‘step’ in R v3.2.2. The Bayesian mixed-effect model used MCMCglmm134 (v2.24). 
To create a mixed-effect model, the species tree (see Methods) was transformed 
into an ultrametric tree using PATHd8135, with a small constant added to short 
branches to ensure no zero-length branches were reconstructed; and outgroup 
species were removed.

Compara database. An in-house Ensembl Compara46 database was constructed 
containing the 81 platyhelminths and nematodes, and 10 additional outgroups 
(Supplementary Table 2). All parasitic nematode/platyhelminth species with gene 
sets available at the time (April 2014) were included.

The species tree used to construct the initial version of our database 
used an edited version of the National Center for Biotechnology Information 
(NCBI) taxonomy136 with several controversial speciation nodes represented as 
multifurcations. For our final database, the input species tree was derived by 
building a tree based on the previous database version, based on one-to-one 
orthologs present in ≥​20 species. To do this, proteins in each ortholog group were 
aligned using MAFFT v6.857137; alignments trimmed using GBlocks v0.91b138, 
concatenated and used to build a maximum likelihood tree using a partitioned 
analysis in RAxML v7.8.6139, using the minimum Akaike’s information criterion 
(minAIC) model for each ortholog group.

The database was queried to identify gene families, orthologs and paralogs.

Species tree and tree based on gene family presence. We identified 202 gene 
families present in ≥​25% of the 91 species (81 helminths and 10 outgroups) in 
our Compara database (Methods) and always single-copy. For each family, amino 
acid sequences were aligned using MAFFT v7.205137 (-auto). Each alignment 
was trimmed using GBlocks v0.91b138 (-b4 =​ 4 -b3 =​ 4 -b5 =​ h), and its likelihood 
calculated on a maximum-parsimony guide tree for all relatively simple (single-
matrix) amino acid substitution models in RAxML v8.0.24139, and the minAIC 
model identified. Alignments were concatenated and a maximum-likelihood tree 
built, under a partitioned model in which sites from a gene were assigned the 
minAIC model for that gene, with a discrete gamma distribution of rates across 
sites. Relationships within outgroup lineages were constrained to match the 
standard view of metazoan relationships (for example, Dunn et al.140). The final tree 
was the highest likelihood one from five search replicates with different random 
number seeds. One hundred bootstrap resampling replicates were performed, each 
based on a single rapid search.

We also constructed a maximum-likelihood phylogeny based on gene family 
presence/absence for families not shared by all 81 nematode/platyhelminth species, 
using RAxML v8.2.8139, with a two-state model and the Lewis method to correct for 
absence of constant-state observations.

Functional annotation. InterProScan141 v5.0.7 was used to identify conserved 
domains from all predicted proteins. A name was assigned to each predicted 
protein based on curated information in UniProt142 for orthologs identified from 
our Compara database (Methods), or based on InterPro143 domains (see ref. 144).  
Gene ontology (GO) terms were assigned by transferring GO terms from 
orthologs144, and using InterProScan.
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Signal peptides and transmembrane domains were predicted using 
Phobius145 v1.01 and SecretomeP146 v1.0. A protein predicted by Phobius to 
have a transmembrane domain was categorized as ‘membrane-bound’, and 
non-membrane-bound proteins as ‘classically secreted’ if Phobius predicted a 
signal peptide within 70 amino acids of their start. Remaining proteins in which 
SecretomeP predicted a signal peptide were classified as ‘non-classically secreted’ 
(Supplementary Table 7).

Pairwise combinations of Pfam domains were identified in proteins of the 
81 nematodes and platyhelminths. After excluding those present in complete 
genomes of other phyla in UniProt (June 2016), we classified a combination as 
‘nematode-specific’ (or ‘flatworm-specific’) if it was present in >​30% of nematodes 
(platyhelminths) and no platyhelminths (nematodes) (Supplementary Table 14).

Synapomorphic gene families. Families in our Compara database (Methods) were 
analyzed using KinFin v0.8.3147, by providing InterPro IDs (Methods) and a species 
tree that had clades III, IV and V as a polytomy (Fig. 2). Synapomorphic families 
were identified at 25 nodes of interest (Supplementary Table 8), by using Dollo 
parsimony and requiring a family must contain genes from ≥​1 descendant species 
from each child node of the node of interest, and must not contain other species. 
Families were filtered to retain those that (1) contained ≥​90% of descendant 
species of the node of interest, and (2) in which >​90% of species contained ≥​1 gene 
with a particular InterPro domain.

Candidate lateral gene transfers. Ferrochelatase families in our Compara 
database (Methods) were extracted by screening for a Ferrochelatase (IPR001015) 
domain. Additional ferrochelatases were retrieved from NCBI for 17 bacterial taxa 
(Supplementary Table 8c). Sequences were aligned using MAFFT v7.267 (E-INS-i 
algorithm)137 and the alignment trimmed using trimAl v1.4148. Phylogenetic 
analysis was carried out using RAxML139 under the PROTGAMMAGTR model, 
and 20 alternative runs on distinct starting trees. Non-parametric bootstrap 
analysis was carried out for 100 replicates.

For cobyric acid synthase and acetate/succinate transporter, the top BLAST 
hits from GenBank, and representative sequences from other taxonomic groups, 
were aligned with MAFFT v7.205137 (-auto), and alignments trimmed with trimal 
v1.4148. Phylogenetic analyses were performed using RAxML v8.2.8139 under the 
model that minimized the AIC (LG4X for cobyric acid synthase, LG4M for acetate 
transporter), based on 5 random-addition-sequence replicates, and 100 non-
parametric bootstrap replicates.

Gene family expansions. We used three metrics to identify families in our 
Compara database (Methods) that varied greatly in gene count across species (see 
ref. 149). To control for fragmented assemblies, we used summed protein length per 
species (in a family) as a proxy for gene count in these metrics:

1. Coefficient of variation:

. . = ∕c v s x

where s is the standard deviation in summed protein length per species, and x  its 
mean.

2. Maximum Z-score:
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where T is the set of non-overlapping species groups (‘Analysis group’ in 
Supplementary Table 4), c a group in T, index i refers to a particular species, ̄ ∈xi i c,  
the mean of the summed protein length (per species) in c, and ∉si i c,  the standard 
deviation in summed protein length per species in species outside c.

3. Maximum enrichment coefficient:











̄
̄

= ∈ ∈

∉
E c T

x
x

max i i c

i i c
max

,

,

To increase reliability, these metrics were calculated by only considering tier 
1 species (those with high-quality assemblies; Methods). Our code for calculating 
metrics is available (see URLs).

SCP/TAPS. SCP/TAPS genes were identified as having Pfam PF00188, or being 
in a SCP/TAPS family in our Compara database (Methods). Those between 146 aa 
(shortest C. elegans SCP/TAPS) and 1,000 aa were included in the phylogenetic 
analysis (Supplementary Table 10). Clusters were detected among sequences from 
a species group (‘analysis group’ in Supplementary Table 4) using USEARCH150 
(UCLUST, aa identity cut-off =​ 0.70), and a consensus sequence generated for each 
cluster. The consensus sequences were aligned using MAFFT137 (v7.271, –localpair –
maxiterate 2 –retree 1 –bl 45); the alignment trimmed with trimAl148 (-gt 0.006); and 
a maximum likelihood tree built using FastTreeMP151 (v2.1.7 SSE3, -wag -gamma).

Proteins historically targeted for drug development. Each nematode/
platyhelminth proteome was searched against candidate proteases using MEROPS 

batch-BLAST152 (E <​ 0.001), and PfamScan153 was used to identify additional 
homologues in some species (Supplementary Table 11).

Putative GPCRs, identified from the literature and GO:0004930 annotations in 
WormBase154, were used to identify families in our Compara database (Methods). 
For each family, HHSuite155 was used to search Uniprot, SCOPUS, Pfam, and PDB; 
200 families hitting ≥​2 databases were deemed actual GPCR families (see ref. 156). 
Additional families were identified from synapomorphies (Methods) and curation, 
giving 230 GPCR families (Supplementary Table 15).

To build a phylogenetic tree of ion channels, known genes from C. elegans157, 
Brugia malayi158, Haemonchus contortus159, Oesophagostomum dentatum159 
and S. mansoni84 were gathered, and their homologues in Compara families in 
WormBase ParaSite160. Genes with <​3 or >​8 transmembrane domains (predicted 
by HMMTOP161) were discarded. Genes were aligned with MAFFT137, and the 
alignment trimmed with trimAl148. The phylogeny was inferred with MrBayes3.2162. 
Posterior probabilities were calculated from eight reversible jump Markov chain 
Monte Carlo chains over 20,000,000 generations.

Kinase models were taken from Kinomer163, and thresholds optimized to detect 
known C. elegans kinases (see ref. 164). The final thresholds were used to filter 
HMMER search results (against Kinomer) for nematode and platyhelminth species 
(Supplementary Table 23).

C. elegans ABC transporter and cys-loop receptor subunit genes were collated 
from WormBase154, to which we added H. contortus acr-26 and acr-27 (absent from 
C. elegans85). Homologs in nematodes and platyhelminths were identified using 
BLASTP (Supplementary Tables 16 and 17).

GO and InterPro/Pfam annotation enrichment. Counts of proteins annotated 
with each GO term (or InterPro/Pfam domain) per species were normalized by 
dividing by the total GO annotations in a particular species. To test for enrichment 
of a particular GO term in a species group (‘analysis group’ in Supplementary  
Table 4), we used a Mann-Whitney U test to compare normalized counts in that 
species group, to those in all other species (Supplementary Table 24).

Metabolism. EC (Enzyme Commission number) predictions for nematodes and 
platyhelminths were derived by combining DETECT v2.0165, PRIAM166, KAAS167 
and BRENDA168 (see ref. 169, Supplementary Fig. 28 and Supplementary Table 18),  
and supplemented for the 33 tier 1 species (Methods) by pathway hole-filling 
using Pathway Tools170 (v18.5). Comparisons of all 81 species (Supplementary 
Fig. 20a and Supplementary Table 20) did not include ECs from hole-filling. 
Lower confidence ECs were inferred using families from our Compara database 
(Methods). Auxotrophies were predicted using Pathway Tools and BioCyc171. To 
predict carbohydrate-active enzymes, HMMER3 was used to search dbCAN172 
(Supplementary Table 25).

Pathway coverage was the fraction of ECs in a reference pathway that were 
annotated in a species (see ref. 173). We included pathways for which KEGG had 
a reference pathway for a nematode/platyhelminth (Supplementary Table 18e). 
Presence of KEGG modules was predicted using modDFS174, and species clustered 
based on module presence using Ward-linkage, based on Jaccard similarity index175.

Chokepoint enzymes were predicted following Taylor et al.176, using 
subnetworks of KEGG networks formed by just the enzymes (ECs) we had 
annotated in each particular species.

Potential anthelmintic drug targets and drugs. Potential drug targets. Nematode 
and platyhelminth proteins from tier 1 species (with high-quality assemblies; 
Methods) were searched against single-protein targets from ChEMBL v21177 using 
BLASTP (E ≤​ 1 ×​ 10−10). After collapsing by gene family, 1,925 worm genes remained.

To assign a ‘target score’ to each worm gene, the main factors considered were 
similarity to known drug targets; lack of human homologues; and whether  
C. elegans/Drosophila melanogaster homologues had lethal phenotypes (see ref. 178).

Potential new anthelmintic drugs. ChEMBL v21177 was used to identify 827,889 
compounds with activities against ChEMBL targets to which worm proteins had 
BLAST matches. To calculate ‘compound scores’, we prioritized compounds in 
high clinical development phases, oral/topical administration, crystal structures, 
properties consistent with oral drugs and lacking toxicity (see ref. 178).

Our top 15% (249) of highest-scoring worm targets had 292,499 compounds. 
These were filtered by selecting compounds that (1) co-appeared in a PDBe179 
(Protein Data Bank in Europe) structure with the ChEMBL target; or (2) had 
median pChEMBL >​ 5; leaving 131,452 ‘top drug candidates’.

A ‘diverse screening set’. The 131,452 candidates were placed into 27,944 chemical 
classes, based on ECFP4 fingerprints (see ref. 178). They were filtered by (1) 
discarding medicinal chemistry compounds that did not co-appear in a PDBe 
structure with the ChEMBL target, or have median pCHEMBL >​ 7; (2) checking 
availability for purchase in ZINC 15180; and (3) for each worm target, taking the 
highest-scoring compound from each class; this gave 5,046 compounds.

Self-organizing map. We constructed a self-organizing map of our diverse screening 
set plus known anthelmintic compounds (Supplementary Table 21a; see ref. 178), 
using Kohonen v3.02181 in R v3.3.0, using a 20 ×​ 20 cell hexagonal, non-toroidal 
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grid. The self-organizing map was trained for 4,000 steps, where training optimized 
Tanimoto distances between ECFP4 fingerprints.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data have been deposited in the European Nucleotide Archive (ENA). 
Assemblies and annotation are available at WormBase and WormBase-ParaSite 
(https://parasite.wormbase.org/). All have been submitted to GenBank under the 
BioProject IDs listed in Supplementary Table 1.
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