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‡ MAP5, Université Paris Descartes, France

Abstract

The classic approach to image matching consists in the detection, description and matching
of keypoints. This defines a zero-order approximation of the mapping between two images,
determined by corresponding point coordinates. But the patches around keypoints typically
contain more information, which may be exploited to obtain a first-order approximation of
the mapping, incorporating local affine maps between corresponding keypoints. In this work, we
propose a LOCal Affine Transform Estimator (LOCATE) method based on neural networks. We
show that LOCATE drastically improves the accuracy of local geometry estimation by tracking
inverse maps. A second contribution on guided matching and refinement is presented. The
novelty here consists in the use of LOCATE to propose new SIFT-keypoint correspondences
with precise locations, orientations and scales. Our experiments show that the precision gain
provided by LOCATE does play an important role in applications such as guided matching. The
third contribution of this paper consists in a modification to the RANSAC algorithm, that use
LOCATE to improve the homography estimation between a pair of images. These approaches
outperform RANSAC for different choices of image descriptors and image datasets, and permit to
increase the probability of success in identifying image pairs in challenging matching databases.
The source codes are available at: (Hidden to preserve anonymity in the reviewing process)

1 Introduction

A physical object with smooth or piecewise smooth boundary captured by real cameras at different
positions undergoes smooth apparent deformations. These regular deformations are locally well
approximated by affine transforms of the image plane; indeed, for any smooth deformation, its first
order Taylor approximation is an affine map. By focusing on local image regions, or patches, the
perspective changes of objects can therefore be modeled by affine image deformations.

This observation has motivated the development of comparison methods based on local descriptors
that are as affine invariant as possible. The problem of constructing affine invariant image descriptors
by using an affine Gaussian scale space, which is equivalent to simulating affine distortions followed by
the heat equation, has a long history starting with [12, 4, 14, 15]. The idea of affine shape adaptation
was used as a basis for the work on affine invariant interest points and affine invariant matching
in [15, 3, 18, 19, 42, 41, 40], including the Harris-Affine and Hessian-Affine region detectors [18,
19]. Finally, the detectors MSER (Maximally Stable Extremal Region) [17] and LLD (Level Line
Descriptor) [27, 28, 5] both rely on image level lines. Yet, the affine invariance of these descriptors
in images acquired with real cameras is limited by the fact that optical blur and affine transforms do
not commute, as shown in [26]. To overcome this limitation, the authors of [26] propose to optically
simulate affine transformations. This idea was also exploited in [29, 22, 35, 37] and more recently
by the SIFT-AID method [38], which combines SIFT keypoints with a CNN-based patch descriptor
trained to capture affine invariance. Another recent possibility to obtain affine invariance is by
learning affine-covariant region representations [23], where a patch is normalized before description.
The latter method together with the HardNet [21] descriptor was reported to be the state-of-the-art
in image matching under strong viewpoint changes for all detectors.

Image matching usually refers to estimating a global homographic transform between two images.
An established approach [10] consists in computing local image matches, which are then aggregated
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Figure 1: Some correspondences together with local affine maps estimated by the proposed LOCATE
network. Patches on the target are warped versions of their corresponding query patch.

Figure 2: Geometric interpretation of equation (1).

using the RANSAC (RANdom SAmple Consensus) algorithm [9] to estimated an homography. The
same procedure is also used for fundamental matrix estimation.

Recently, CNN-based image matching approaches have been proposed for directly estimating
global affine and homographic transformations [34, 6]. In [34], the pool4 layer of the VGG-16
network [39] was used for acquiring features from images and correlation maps fed to a regression
network that outputs the best affine transform that fits the query to the target image. In a direct
approach, the authors of [6] trained a network to estimate the homography relating the query to the
target image. Both [34, 6] were trained on synthetically generated images, but neither of them took
into account the blur caused by camera zoom-out or tilt.

The objective of this work is to improve image matching by refining two stages of its pipeline.
The improvement of homography estimation can be accomplished, on the one hand, by increasing the
number of keypoint correspondences as well as their accuracy, and on the other hand by improving
the RANSAC aggregation step. The contributions of this paper, detailed below, address all these
issues:

1. We propose a LOCal Affine Transform Estimator (LOCATE) based on a neural network which
estimates both the direct and inverse affine maps relating two patches, leading to a more
accurate local geometry estimation.

2. To increase the number of correspondences we use the local affine information provided by
LOCATE to guide the discovery of new candidates.

3. We introduce a reformulation of the consensus set (inliers) in RANSAC, incorporating the
richer information provided by LOCATE, leading to an increase in the probability of success.

A prevalent element in this work is the LOCATE method, which yields a first-order approximation
of the local geometry relating pairs of image patches, i.e, local affine maps or tangent planes, see
Figure 1. The network architecture of LOCATE is a variation from the one in [6] that provides a
two-way estimation, leading to an increase in the robustness relative to the former network. Another
difference with respect to [6] is the use of affine simulated patches to train the networks. This
simulation incorporates a realistic optical model, taking into account the blur caused by camera tilt
and zoom [26]. This procedure allows to easily generate an arbitrarily large training set.

The affine information was already been used [7, 8] to predict location and pose from affine
detectors like MSER [17], Harris-Affine[18] or Hessian-Affine [19]. We propose to complement the
SIFT detector with a guided matching [10] step that increases the number of correct matches by
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sampling new keypoints surrounding the initial ones. LOCATE’s accuracy in location, orientation
and scale (i.e. rotation and position in the Gaussian pyramid) results in a drastic increase in the
number of correspondences.

When estimating homographies from sets of correspondences with RANSAC, the use of first-order
approximations allows to increase the performance in homography estimation. This has already been
proposed in [32] by composing normalized affine maps provided by the Hessian Laplace detector. This
detector can be replaced with Affnet [23] since it has been shown to produce more accurate affine
maps. The LOCATE method can be used as well for the same purpose. In addition, we propose a
modification in the RANSAC consensus step. Instead of defining inliers only by location agreement,
we also consider the agreement in tilt, rotations and scale of the local affine maps. We will show how
these modifications improve homography estimation from a set of SIFT-like matches.

The rest of this paper is organized as follows. Section 2 summarizes a formal methodology for
simulating local viewpoint changes induced by real cameras, as required for training our network.
The LOCATE method is introduced in Section 3. Section 4 and Section 5 present the proposed
guided matching and our modified RANSAC step, respectively. The use of the proposed methods is
illustrated with experiments in Section 6. Finally, Section 7 present our concluding remarks.

2 Affine Maps and Homographies

As stated in [26, 36], a digital image u obtained by any camera at infinity is modeled as u = S1G1Au,
where S1 is the image sampling operator (on a unitary grid), A is an affine map, u is a continuous
image and Gδ denotes the convolution by a Gaussian kernel broad enough to ensure no aliasing by
δ-sampling. This model takes into account the blur incurred when tilting or zooming a view. Notice
that G1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) = u(Ax) for A ∈ A, where x is a 2D vector
and Ax denotes function evaluation, A (x). We define the set of invertible orientation preserving
affinities A+ = {L + v ∈ A| det(L) > 0} where L is a linear map and v a translation vector. We
call S the set of similarity transformations, which are any combination of translations, rotations and
zooms. Finally, we define the set A+

∗ = A+ \S, where we exclude pure similarities. As it was pointed
out in [26], every A ∈ A+

∗ is uniquely decomposed as

A = λR1(ψ)TtR2(φ), (1)

where R1, R2 are rotations and Tt =

[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π).

Furthermore, the above decomposition comes with a geometric interpretation (see Figure 2) where
the longitude φ and latitude θ = arccos 1

t characterize the camera’s viewpoint angles (or tilt), ψ
parameterizes the camera roll and λ corresponds to the camera zoom. The so called optical affine
maps involving a tilt t in the z-direction and zoom λ are formally simulated by:

u 7→ S1AGz√t2−1
G√λ2−1Iu, (2)

where I is the Shannon-Whittaker interpolator and the superscript z indicates that the operator
takes place only in the z-direction. We denote by

A := S1AGz√t2−1
G√λ2−1I . (3)

The operator A is not always invertible and therefore its application might incur a loss of infor-
mation. We refer to [38] for an example where no optical transformation A is found between two
views. With this in mind, we adopt the same data generation scheme proposed for training the affine
invariant descriptors in [38]. That is, given an image u and a pair of affine transformations A1 and
A2, we simulate affine views u1 = A1(u) and u2 = A2(u). Simulations involve maximal viewpoint
angles of 75◦ with respect to u. As for [38], the MS-COCO [13] dataset will provide instances of u
in training and validation. Patch pairs seeing the same scene from u1 and u2 are said to belong to
the same class and will be used to train the networks.

2.1 Local affine approximation of homographies

Let H = (hij)i,j=1,...,3 be the 3 × 3 matrix associated to the homography η (·). Let x be the

homogeneous coordinates vector associated to the image point x = (x1, x2) around which we want
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Figure 3: The proposed LOCATE network architecture. The last two layers are fully connected.

to determine the local affine map. We denote by y = (y1, y2) =
(

(Hx)1
(Hx)3

, (Hx)2
(Hx)3

)
= η (x) the image of

x by the homography η.
The first order Taylor approximation of η at x leads to

η (x+ z) = v + L (x+ z) + o (‖z‖) , (4)

where a brief computation shows that the vector v and the matrix L are determined through the
following system of equations:

L =

 h11−y1h31

h31x1+h32x2+h33

h12−y1h32

h31x1+h32x2+h33

h21−y2h31

h31x1+h32x2+h33

h22−y2h32

h31x1+h32x2+h33

 , (5)

v =

[
y1

y2

]
− Lx. (6)

This derivation allows us to compute the exact local affine approximation for a given homography.
This will be useful to assess the accuracy of the our method when using annotated datasets.

3 The Local Affine Transform Estimator

In this section we present the LOCal Affine Transform Estimator (LOCATE) network whose archi-
tecture is adopted from [6]. Unfortunately, the network as it is used in [6] often incurs in wrong
geometry estimates in the presence of strong blur or tilt, even when trained for this task. To address
this issue, LOCATE estimates the affine transform that maps query to target and vice versa. As
it will be shown in Section 6, the simultaneous estimation of both, the direct and inverse maps,
significantly improves the network performance.

The LOCATE architecture, shown in Figure 3, consists of 4 blocks of two convolutional layers
each followed by batch normalization and ReLU activations. The first block receives as input two
patches in the form of a two channel image. Between each block a max-pooling layer is introduced.
A 2D spatial dropout with a probability 0.5 is applied after the last convolutional layer. Finally, two
fully connected layers are in charge of the final regression steps. The last layer outputs a vector of
dimension 16, corresponding to the coordinates of eight points, the four transformed patch corners
in both directions. (We also tested a network trained to directly estimate the six parameters of the
local affine maps – translation plus the parameters in Equation 1 – but we observed that this choice
led to worse performances.)

As argued in [38], the affine approximation holds locally, which suggests the use of small patch
sizes; on the other hand, small patches entail less information, leading to insufficient geometry
anchors. As a compromise, we set the patch size to 60× 60, which provides a good balance between
locality and sufficient viewpoint information.

3.1 Training

The LOCATE network, as well as the network in [6], were trained with data generated as in [38],
more specifically with pairs of patches belonging to the same class and involving small differences in
translation, rotation and zoom, but possibly large tilts. The resulting network will produce an affine
approximation of the exact transformation relating the two observations. Both networks are trained
from scratch until reaching a plateau for the loss in training and validation. While training we also
simulate contrast changes on all input patches.
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Let A1, A2 denote two random affine maps and A1, A2 their respective optical simulations. We
assume A1 and A2 involve small perturbations in terms of similarity transformations. Let P1 and
P2 be two square 60× 60-patches simulated from a randomly chosen initial patch P by A1 and A2,
respectively. Let X = [x1, x2, x3, x4], where xi are the 2D coordinates of the four corners of a patch
following a fixed order. We also define 4- and 8-point ground truth parameterizations respectively
for the network [6] and the LOCATE network,

X4 := A1A
−1
2 (X) ,

X8 :=
[
A1A

−1
2 (X) , A2A

−1
1 (X)

]
,

(7)

where [·, ·] denotes the concatenation of both vectors. Let N k be one of the presented networks
with k-point parameterization. Then the loss is defined as sum of the Euclidean norm between
corresponding points:

k∑
i=1

‖N k (P1, P2)i −X
k
i ‖L2

, (8)

where the sub-index i denotes the i-th element of the vector.

3.2 From patches in the Gaussian pyramid to local affine maps

The training process described above allows the networks to be easily coupled with matching methods
based on the SIFT [16] detector. Indeed, a SIFT-like patch is simply the square crop at the origin of
some similarity transformation (translation, rotation and zoom) of the original image; additionally,
patches corresponding to matched keypoints should suffer small similarity deformations but possibly
strong tilts.

Consider two 60 × 60-patches, Pq and Pt, coming from the Gaussian pyramid of the query and
target images, respectively. Let cq and ct be their centers expressed in image coordinates. Let also
Aq be the affine map that converts from the query image domain to patch coordinates; likewise At
converts from target to patch coordinates. Note that the affinities Aq and At are pure similarities,
combining just the translation, rotation and zoom corresponding to the location, orientation and
scale associated to SIFT-like keypoints. Finally, in order to locally approximate the transformation
between query and target images (centered at cq and ct), we only need the affine map relating Pq
and Pt.

When fully trained, the presented networks are expected to predict the movements of patch
corners. Let (xqi ↔ xti)i=1,...,k be a set of correspondences produced by one of the networks N k,

where xqi and xti denote query and target patch-coordinates, respectively, and k-point determines
the point parameterization. Due to imprecisions in the prediction, these k correspondences are not
necessarily related by an affinity. Then, the affine map A is estimated from the correspondences
predicted by the network N k as the solution of the linear least squares problem

min
A

k∑
i=1

∥∥Axqi − xti∥∥2

L2
. (9)

Finally, the local affine map transforming the query into the target (in image coordinates) around
cq is

Aq→t = AtAA
−1
q . (10)

We call LOCATE the method returning Aq→t from the LOCATE network. Figure 4 visually shows
estimated affine maps by the network [6] (4 points) and LOCATE, and their respective incurred
geometric errors. Four random patch pairs from the validation dataset (synthetic data) start showing
the Achilles heel of network [6]: zoom and translation. This visualization already justifies the use of
the inverse information in the LOCATE method.

4 Refinement and Guided Matching

In this section, we present an iterative procedure that applies LOCATE to refine a set of existing
matches, and then retrieves new ones by propagating the estimated local geometry. Think of the
initial set of matches as correspondences resulting from a matching method, that includes both inliers
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Query patch Target patch Ground truth
Network in [6]

(4 points)
LOCATE

Figure 4: Four pairs of patches selected at random from the validation dataset and used as query
and target input patches (columns 1-2). The three last columns show the drift error depicted by
intense blue or intense green colors. Light blue means no error. Blue and green channels correspond
to the target patch and a warped version of the corresponding query patch (the red line delimits its
borders); The red channel is filled with zeros. 3rd column: groundtruth; 4th column: network in [6]
(4 points); 5th column: LOCATE network. Input patches are shown without contrast difference for
clear visualization.

and outliers. Each query and target keypoints have an associated location, orientation and scale (i.e.
rotation and position in the Gaussian pyramid). The precise affine approximations between query
and target obtained from LOCATE, allows to refine the matching by reducing the error in these
three similarity parameters.

Furthermore, using the full affine transformations associated to the refined matches, allows to
infer new match candidates by propagating the local geometry. The idea of propagating the local
geometry from a set of matches was already proposed in the literature [7, 8]. In these cases the
location and pose are derived from affine detectors like MSER [17], Harris-Affine[18] or Hessian-
Affine [19]. Despite the fact that SIFT keypoints are more robust to similarities (see [33]) than the
previously mentioned ones, no SIFT-like affine guided matching procedure was proposed yet. The
reason for this is that the first method allowing to infer affine maps between SIFT-like patches is
Affnet, which was very recently proposed. As we will see in Section 6, LOCATE reaches higher
accuracy than Affnet. Therefore, in this work we introduce guided matching based on the LOCATE
method.

The procedure is as follows. For each query keypoint from a refined match, four new The keypoints
are generated at the NE, NW, SE, SW corners of the query patch domain. These points are then
mapped into the target image domain with rotations and positions in the target Gaussian pyramid
inferred from the affine decomposition in Equation 1. These four pairs of points will represent new
tentative matches, and each tentative match is validated by computing a similarity score between
corresponding patches. For this task, we use the BigAID descriptor [38] and the cosine proximity to
measure the similarity.

This process can be iterated until some criteria is satisfied (e.g., a fixed number of iterations, the
number of matches is stable, etc). In this paper, we fix the number of iterations to 4. Each keypoint
information is refined only once. To avoid redundancy, new matches falling nearby existing matches
are removed (a threshold of 4 pixels was used). Therefore, any valid match proposal will cover new
areas connecting the query and target images.
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5 Robust Homography Estimation

The standard RANSAC algorithm computes the parameters fitting a mathematical model from ob-
served data in the presence of outliers. Numerous improvements have been proposed in the literature
for RANSAC, see [24, 25, 30, 31], but the core idea remains the same.

In the case of homography estimation, the classic RANSAC algorithm returns the homography ηj
computed in iteration j having the largest consensus of inliers among all iterations. The j-iteration
can be described in two steps:

1. (Fitting) Randomly select s matches (xi ↔ yi)i=1,...,s from the set of all matches (MT ) and
compute the homography ηj that yields the best fit.

2. (Consensus) Count the number of matches from MT that are within a distance threshold of κ
(i.e. counting inliers).

Notice that steps 1-2 only take into account point coordinates. From now on, we call this method
RANSAC. With eight degrees of freedom for a homography matrix and each match defining two
equations, this implies s = 4. The following subsections support the claim that incorporating the
local affine information can further improve the performance of the RANSAC algorithm.

5.1 Homography fitting from local affine maps

From Section 2.1 we know how to locally approximate a homography by an affine map. Conversely,
the problem of determining a homography from a set of affine maps at different locations was ad-
dressed in [2, 32]. Let x ↔ y be a match and L = (lij)i,j=1,2 the linear map in Equation 4. Then,
according to Equation 5, the unknown homography η must satisfy

E6×9 · ~h = ~0, (11)

where E6×9 is the matrix 
1 −y1 − l11x1 −l11x2 −l11

1 −l12x1 −y1 − l12x2 −l12
1 −y2 − l21x1 −l21x2 −l21

1 −l22x1 −y2 − l22x2 −l22
x1 x2 1 −y1x1 −y1x2 −y1

x1 x2 1 −y2x1 −y2x2 −y2

 , (12)

and ~h = [h11, h12, h13, h21, h22, h23, h31, h32, h33] is a vectorized version of the matrix H associated
to η. The first four rows of E6×9 are determined by Equation 5 and the last two are the classic
equations derived from rewriting η (x) = y in terms of Hx = y.

Clearly, two matches with their corresponding local affine maps can over-determine the homog-

raphy matrix. Indeed, putting everything together provides with 12 equations

[
E1

E2

]
12×9

· ~h = ~0,

where Ei denotes the matrix E appearing in Equation 11 for each match. To avoid the solution

~h = ~0 we look for a unitary vector ~h minimizing

∥∥∥∥[ E1

E2

]
· ~h
∥∥∥∥, see [10] for more details.

We call RANSAC2pts a RANSAC version in which the classic homography fitting of step 1 is
replaced by the homography fitting of this section together with the LOCATE estimator. Note that
RANSAC2pts only needs two samples at each iteration (s = 2).

5.2 Affine consensus for RANSAC homography

When matching two image patches, the transformation that relates them may not be consistent with
the global transformation of the scene. This can be due to the presence of symmetric objects or even
to failures in the matching process. For instance, suppose that two patches centered at the same
scene location but with incoherent rotations are identified by a matching method. The symmetry
issue is easy to address as usually we should have encountered as many keypoints as degrees of
symmetry around the center; so at least two rotations will correspond. However, aberrant matches
are not treated by the matching method nor by RANSAC. This problem can be circumvented by
imposing consistency between the local affine maps and the proposed RANSAC model.
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λ− λGT ψ − ψGT t− tGT φ− φGT x− xGT y − yGT

Figure 5: Affine error prediction in terms of the affine decomposition (Equation 1), for the proposed
LOCATE method, the network [6] (4 points), the Affnet method [23] and the identity map method.
The used dataset [38] contains 3352 patch pairs with corresponding groundtruth. The sub-index GT
means groundtruth, conversely, no sub-index stands for estimated parameters.

(a) Initial correct matches
from SIFT-AID.

(b) Homography consistent matches
after guiding with LOCATE.

Figure 6: Guided matching (cropped) for the adam pair, EVD [22].

To impose local geometry consistency, most existing works [43, 22] propose to measure the in-
curred error in mapping keypoints of a match x↔ y, e.g. ‖y −A(x)‖+ ‖x−A−1(y)‖. Unlike them
we propose to enforce geometry consistency directly on the transformations parameters given by
Equation 1. In other words, we use the affine information to redefine the consensus set of a model.

Inliers are now defined as follows. Let AE and AH be, respectively, the estimated affine map
by the LOCATE method and the testing affine map computed from the testing homography (using
Equation 5). Let also [λE , ψE , tE , φE ] and [λH , ψH , tH , φH ] be, respectively, the affine parameters of
AE and AH . We define the α-vector between AE and AH as:

α (AE , AH) =
[
max

(
λE

λH
, λH

λE

)
, ∠ (ψE , ψH) ,

max
(
tE
tH

tH
tE

)
, ∠ (φE , φH)

]
,

(13)

where ∠(·, ·) denotes the angular difference. To test consistency between AE and AH we add to the
classic threshold on the Euclidean distance, four more thresholds on the α-vector. A perfect match
would result in an α-vector equal to [1, 0, 1, 0]. If we assume independence on each dimension, the
resulting probability of a match passing all thresholds is the multiplication of individual probabilities.
With this in mind, we claim that rough thresholds are enough to obtain good performances and that
there is no need to optimize them. Thus, we propose to further refine inliers by accepting only those
matches also satisfying

α (AE , AH) <
[
2,
π

4
, 2,

π

8

]
, (14)

where the above logical operation is true if and only if it holds true for each dimension.
We call RANSACaffine the version of RANSAC2pts that includes the affine consensus presented

in this section.

6 Experiments

To the best of our knowledge, the most suitable and effective means of estimating affine maps
connecting two patches are: Affnet [23], the network [6], and now the LOCATE method. The
procedure described in Subsection 3.2 works for both networks: [6] and LOCATE. On the other
hand, Affnet was conceived to predict normalizing ellipse shapes for single patches based on a 3-
variable parametrization. The connection provided by two Affnet-normalizing affine maps for the
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SIFT-AID [38] EVD [22] OxAff Viewpoint [20]
M

a
t
c
h
in

g
m

e
t
h
o
d Guiding

affine map
S 5 inl. AvE R S 15 inl. AvE R S 10 inl. AvE R

S
IF

T
-A

ID

None 500 5 508 6.2 0.24 100 1 162 6.2 0.11 1000 10 1840 4.1 0.43
Identity 487 5 114 6.3 0.33 100 1 19 6.9 0.46 1000 10 1546 4.6 0.62

LOCATE 500 5 1438 5.2 0.44 200 2 862 3.8 0.49 1000 10 7198 2.7 0.71
4 points 500 5 1166 5.1 0.41 200 2 548 4.1 0.46 1000 10 6725 2.8 0.70
Affnet 487 5 328 7.0 0.31 103 2 142 6.7 0.50 1000 10 2223 5.4 0.57

S
IF

T
-A

ff
n
e
t

None 400 4 99 3.8 0.79 235 3 13 7.9 0.64 1000 10 1185 2.1 0.96
Identity 300 3 32 4.2 0.71 0 0 0 - - 895 9 1336 3.5 0.94

LOCATE 400 4 620 4.7 0.72 200 2 151 5.6 0.98 1000 10 6871 2.5 0.96
4 points 400 4 448 4.6 0.73 101 2 169 3.1 0.94 1000 10 6164 2.7 0.94
Affnet 400 4 78 5.8 0.69 100 1 28 5.6 0.86 1000 10 1724 4.8 0.88

Table 1: Guided matching and refinement performances on three viewpoint datasets with seed cor-
respondences from two affine invariant matching methods: SIFT-AID [38] and SIFT-Affnet[23]-
HardNet[21] (SIFT-Affnet). After refinement and guiding on each image pair, RANSAC-USAC [30]
is run 100 times to measure its probability of success in retrieving corresponding ground truth homo-

graphies. Legend: S - the number of successes (bounded by 100× number ); the number of correctly
matched image pairs; inl. - the average number of correct inliers; AvE - the average pixel error; R -

the ratio of inliers/total. The numbers of image pairs in a dataset are boxed.

query and target patches is richer than each normalizing transformation. Indeed, for different choices
ofA1 = T1R1 andA2 = T2R2 one would need the four parameters (zoom, camera rotation, tilt and tilt
direction) in Equation 1 in order to express A−1

2 A1. However, Affnet does not estimate translations.
We claim that the LOCATE method out-performs the other two state-of-the-art methods in terms
of precision.

Please note that the networks were trained exclusively with simulated patches, let us now try on
real patches. The passage from affine cameras to real cameras is a big gap to fill by both [6] and
LOCATE networks. We expect them to generalize the affine world to all sorts of geometry as long
as the Taylor approximation holds.

Does precision really matter? As a first evaluation of the precision in a realistic environment
we used the viewpoint dataset from SIFT-AID [38], consisting of five pairs of images with their
groundtruth homographies and 3352 true matches. Notice that Equations 5-6 allow us to compute
groundtruth local affine maps around each match. Figure 5 shows the accuracy of Affnet [23], the
4 points network [6] and LOCATE, represented by error density functions with respect to the affine
decomposition appearing in Equation 1. Ideally, we expect a Dirac delta function centered at 0 for a
perfect method. Please note the resemblance in the case of the LOCATE network. This experiment
illustrates the failure of the network [6] in predicting zoom and translation (as shown in Figure 4).
Note that LOCATE, with the only addition of tracking points movements associated to the inverse
affine map, obtains better result than [6]. As expected, both [6] and LOCATE perform better than
Affnet [23]. Indeed, Affnet analyzes one patch at a time, whereas [6] and LOCATE have access to
both patches simultaneously. However, in practice, using Affnet involves less computations.

Following experiment shows that the precision improvement of LOCATE indeed results in better
guided image matching performance. Table 1 shows that LOCATE has the overall best performance
of all methods. LOCATE usually boost the number of inliers as well as the ratio of inliers while
always being the lowest or close to lowest average pixel error. Remark that by construction, this
boost in inliers means that new areas are connected between the image pairs, see Figure 6 for an
example. Moreover, the probability of success of RANSAC USAC [30] is not diminished with respect
to the matching method itself, this is observed in the “None” rows of Table 1. We remark the
capacity of our guided matching method to expand true matches while keeping the number of false
matches low.

Can RANSACaffine improve homography estimation? In the previous paragraphs we
established the precision of the local affine maps provided by the LOCATE method. We now focus
on the evaluation of the three variants of RANSAC. In order to highlight the benefits of local geometry
in estimating homographies, we drop all the improvements in RANSAC USAC [30] and head back
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EF [44] EVD [22] OxAff [20] SymB [11]
M

a
t
c
h
in

g
m

e
t
h
o
d Homography

Estimator
S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

R
o
o
t
S
IF

T RANSAC 2403 26 51 3.2 0 0 0 - 3806 39 580 1.2 2693 31 102 2.8
RANSAC2pts 2633 28 46 3.7 0 0 0 - 3893 39 566 1.2 3219 34 84 3.3
RANSACaffine 2805 30 28 3.4 0 0 0 - 3899 39 404 1.1 3297 36 54 3.4

S
IF

T
-A

ID RANSAC 879 23 78 6.6 82 1 40 7.8 3600 39 1477 4.8 1014 19 450 6.8
RANSAC2pts 1829 27 84 6.1 99 1 72 6.3 3917 40 1459 4.5 1867 30 327 6.5
RANSACaffine 1996 30 39 5.8 166 5 37 8.2 3939 40 852 4.0 2341 38 138 6.6

S
IF

T
-A

ff
n
e
t

RANSAC 2475 25 47 3.7 200 2 16 8.0 4000 40 805 2.3 2999 31 108 3.5
RANSAC2pts 2707 28 43 3.6 300 3 10 7.6 4000 40 805 2.3 3268 34 99 3.4
RANSACaffine 2826 29 29 3.5 200 2 12 7.4 4000 40 562 2.2 3285 36 65 3.5

Table 2: Homography estimation performances for RANSAC, RANSAC2pts and RANSACaffine for
three matching methods: RootSIFT [1], SIFT-AID [38], and SIFT-Affnet[23]-HardNet[21] (SIFT-
Affnet). Each RANSAC ran for 1000 internal iterations. To measure probability of success, all
RANSACs were run 100 times on resulting matches from each pair of images. Legend: S - the

number of successes (bounded by 100× number ); the number of correctly matched image pairs; inl.

- the average number of correct inliers; AvE - the average pixel error. The numbers of image pairs
in a dataset are boxed.

to the base RANSAC. The following experiment was conducted on four well known datasets for
homography estimation. All datasets include groundtruth homographies that were used to verify
accuracy. First, local features were detected and matched, then each homography estimator method
(RANSAC, RANSAC2pts and RANSACaffine) was applied and we declared a success if at least 80%
of inliers (in consensus with the estimated homography) were in consensus with the groundtruth
homography. The two steps of RANSAC (fitting and consensus) are iterated a 1000 times for each of
the three variants. Therefore, the processing time spent in applying LOCATE could be compensated
later on by decreasing the number of internal iterations.

7 Conclusions

We proposed a CNN based method to locally estimate affine maps between images. Our experiments
show that the LOCATE method provides accurate first-order approximations of local geometry. This
information proved to be valuable for two applications: Guided matching of SIFT keypoints with
precise locations, orientations and scales; and homography estimation, for which we presented a
RANSAC version that systematically improved results in four well known datasets [44, 22, 20, 11].
Training LOCATE to handle occlusions as well as applications to stereo matching will be explored
in future work.
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