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Abstract: This work assessed the quality of wind speed estimates in Uruguay. These estimates were
obtained using the Weather Research and Forecast Model Data Assimilation System (WRF-DA) to
assimilate wind speed measurements from 100 m above the ground at two wind farms. The quality
of the estimates was assessed with an anemometric station placed between the wind farms. The
wind speed estimates showed low systematic errors at heights of 87 and 36 m above the ground. At
both levels, the standard deviation of the total errors was approximately 25% of the mean observed
speed. These results suggested that the estimates obtained could be of sufficient quality to be useful
in various applications. The assimilation process proved to be effective, spreading the observational
gain obtained at the wind farms to lower elevations than those at which the assimilated measurements
were taken. The smooth topography of Uruguay might have contributed to the relatively good quality
of the obtained wind estimates, although the data of only two stations were assimilated, and the
resolution of the regional atmospheric simulations employed was relatively low.

Keywords: data assimilation; 3D-Var

1. Summary

This work evaluated the use of techniques for assimilation of data from field measurements into
initial conditions of atmospheric numerical simulations in order to obtain wind estimates in Uruguay,
at heights of 100 m above the ground and lower. The wind was estimated with hourly frequency in
a regular grid that covers the country. The field data to be assimilated was operatively measured in
wind farms installed in Uruguay, using anemometers placed 100 m above the ground. The data was
assimilated into initial conditions for the Weather Research and Forecast regional model (WRF) of the
National Center of Atmospheric Research (NCAR), [1] using the module for data assimilation included
in this model, the WRF-DA module [2].

The data assimilation process, also called analysis, is an essential component of numerical
atmospheric forecasts, and its main purpose is to generate initial conditions for the predictions. The
variables that compose an initial condition are called prognostic variables because the model uses
their values at a given instant to compute their values at a later time. To generate an initial condition
for a specific numerical model at a given time, a first approximation is generally used. This first
approximation, called “background condition”, usually consists of a prediction for the same instant,
obtained with the same model, from previous initial conditions. The data assimilation system must
combine the information from the background condition with the information from measurements
of atmospheric variables (or variables of systems related to it; for example, the ocean, the soil, or the
cryosphere). This combination of information is done in a way that optimizes the quality of the result in

Data 2019, 4, 142; doi:10.3390/data4040142 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
http://www.mdpi.com/2306-5729/4/4/142?type=check_update&version=1
http://dx.doi.org/10.3390/data4040142
http://www.mdpi.com/journal/data


Data 2019, 4, 142 2 of 16

statistical terms, either minimizing the expected value of the sum of its quadratic errors or maximizing
its likelihood. Note that the short-term predictions used as background values are, in turn, affected by
field measurements that were assimilated during previous times. This allows considering information
from regions or atmospheric levels in which few measurements are available since measurements,
done earlier in other regions or at other levels, can propagate their influence through atmospheric
dynamical processes into the zones that have relatively fewer observations.

Kalnay [3] described the main techniques for data assimilation that are currently used, such as
optimal interpolation, 3D-Var, Kalman filters, ensemble Kalman filters, and 4D-Var. The WRF-DA
system implements the 3D-Var [4] and 4D-Var techniques [5], and a technique that combines the
ensemble Kalman filter with 3D-Var [6,7]. Harlim [8] pointed that the referred techniques assume that
the errors from the background conditions and the field measurements are unbiased and normally
distributed, although numerical models inevitably have systematic errors. These assumptions can
provide reasonable estimates of the first-order statistics while being practical to implement. However,
these methodologies require caution for interpreting their higher-order statistical estimates, and an
important challenge in data assimilation is to use existing methods in the presence of model systematic
errors. The author proposed methodologies to mitigate the effects of model systematic errors on
the results of the assimilation process. Rao and Sandu [9] proposed an a-posteriori error estimation
methodology that quantifies the impact of model and data errors on the inference results of inverse
problems, including the 4D-Var assimilation process. The model and data errors considered include
both unbiased noise and systematic biases. The authors found that the proposed methodology could
be useful to reduce and quantify uncertainties in a real-time system with feedback. Besides, the error
estimates can be used to locate faulty sensors and to determine areas of maximum sensitivity, where
improvements in the stations network or an increase in model resolution may be required.

In addition to its direct use in the numerical prediction process, the results of data assimilation
can be considered “pseudo-observations” of atmospheric variables in regular grids. Note that these do
not consist purely of interpolations of field measurements in a regular grid since they also consider the
information from short-term predictions. The uses of the pseudo-observations obtained from a data
assimilation process can be very broad, but they require an evaluation of their quality by comparison
with field measurements not used in the assimilation process.

The current work used the rather conventional 3D-Var assimilation technique. In Section 2,
we described the data used, both from field measurements and from numerical predictions used as
background conditions, and we referred to the quality control method used for the field data from the
wind farms. In Section 3, we described the main aspects of the 3D-Var assimilation technique and its
implementation in this work using the WRF DA system. In Section 4, we described the main results,
and in Section 5, we presented the conclusions.

2. Data Description

The wind data used in the data assimilation process was obtained from two anemometers installed
in the “Rosendo Mendoza” (WF1) and “Valentines” (WF2) wind farms. The geographic locations of
these wind farms are shown in Figure 1. The anemometers were placed 100 m above the ground,
and they recorded mean velocities for successive periods of 15 min, which were transmitted to the
National Dispatch of Electric Charges of Uruguay, operated by the Electricity Market Administration
(Administración del Mercado Eléctrico; ADME) and the National Administration of Electric Power
Plants and Transmissions (Usinas y Trasmisiones del Estado; UTE), and Uruguayan National Public
Electricity Utility Organizations. In addition to the wind measurements, the mean electric power
generated in the same 15-min periods and the corresponding quantity of aerogenerators that were
effectively active were also transmitted by each wind farm. These additional data allowed for a quality
control analysis of the measurements, as described by Orteli and Cazes Boezio [10]. With the historical
information of wind velocity and electric power generated, the authors built an empirical wind-power
curve for each wind farm. In those cases in which not all the aerogenerators of the wind farm were
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active, the power generation that would correspond to a condition of full availability was estimated by
linear extrapolation. The authors considered that those combinations of wind and generated power
that depart from the empirical curve beyond certain thresholds were suspicious of being affected by
malfunctioning of the measurement or recording systems, or by occasional interference of the wake of
an aerogenerator with the anemometer. The data from WF1 and WF2 available for this study were
from the months from January to May and from November to December of 2017 (seven months).
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validation (Vst).

To evaluate the quality of the pseudo-observations obtained through the implemented data
assimilation process, an independent station was used (“validation station”, VSt), which is located at
Colonia Arias, Uruguay. The station location is also shown in Figure 1. The station measures wind
speed and direction at heights of 87 and 36 m above the ground and is part of a network of stations that
measures wind velocity and solar radiation that has been operated by UTE since 2009. This network is
described by Cornalino and Draper [11], and its measurements (that include wind velocities averaged
every 10 min) are made available online by UTE. In recent years, many of the anemometric stations
operated by UTE have become affected by wind farms. The VSt of Colonia Arias has been active since
2011, and during the period studied in this work, it was not affected by any wind farm. Figure 2
shows the wind speed at the WF1, WF2, and Vst sensors averaged for each local hour during the seven
months considered.

The assimilation process uses regional simulations computed with the WRF model from NCAR,
as shown by Cazes Boezio and Orteli [12]. The regional simulations take their initial and boundary
conditions from global predictions made by the Global Forecast System (GFS) of the National Ocean
and Atmosphere Administration (NOAA) of the Unites States. The horizontal grid of the regional
simulations has a resolution of 30 km in the zonal and meridional directions, as shown in Figure 3. The
vertical direction is discretized in 54 levels, 7 of which are within the first 100 m of height above the
ground. In Appendix A, we indicated the parameterizations of physical processes employed, and we
defined in detail the vertical discretization. The regional simulations have two purposes: first, they
generate the background conditions into which the data measured in WF1 and WF2 are assimilated;
and second, they allow for the estimation of the matrix of covariances of the errors of these background
conditions. In Section 3, the hours of initialization and the simulated periods used for each one of
these purposes were specified.
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3. Methods

Next, we described the main aspects of the 3D-Var assimilation technique, which was used in
this work and is available in the WRF-DA system. A complete description of this technique and
its implementation in the WRF-DA system can be found in the NCAR Technical Note 453 [13], in
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Barker et al. [4] and Barker et al. [2], while the corresponding operational details are given in the
WRF-DA User Guide [14].

The background condition information is displayed as a vector called xb, which contains the
values of all the different prognostic variables that compose the background condition in a certain
conventional order. This information is displayed for each variable and each point of the grid. The
field measurements that are to be assimilated, obtained at the same instant that corresponds to xb,
are displayed as a vector called y, also in a conventional order. The initial condition determined by
the assimilation system is expressed as a vector called xa, with a structure analogous to that of xb. xa

combines the information from the background condition xb and the field measurements contained
in y, as expressed in Section 1. The 3D-Var technique determines the vector xa as that of maximum
likelihood, conditioned to the information of the background condition and the field measurements,
and is the vector x that minimizes the following expression [3]:

J(x) =
1
2
(x− xb)

TB−1(x− xb) +
1
2
(y−H(x))TR−1(y−H(x)) (1)

that is, J(xa) must be minim. In this formula, B and R are the matrices of error covariances of the
background condition xb and the field measurements y, respectively. It is assumed that these errors
are normal variables and are unbiased. The B matrix is thus related to the accidental errors of xb, while
the model systematic errors or biases are assumed to be zero, as pointed out in [8]. Matrix B is defined
as follows:

B ≡ E
(
(xb − xt)·(xb − xt)

T
)

(2)

where E represents the expected value of the elements of the matrix (xb − xt)·(xb − xt)
T, and xt is the

vector of the true values of the variables contained in xb. Note the actual values of xt are unknown, so
it becomes necessary to define a technique to estimate the values of B from available information.

H(x) is an operator that yields results analogous to the variables y from the model prognostic
variables included in x. As an example, if an element of y represents the measurement of the meridional
wind at a certain geographical location and a certain height, H(x) interpolates the values of the
meridional wind field obtained from the numerical model at the geographical location and the height
of this measurement. The H operator is generally non-linear, but it is possible to linearize it with the
following approximation:

H(x) = H(xb + x− xb) ≈ H(x) +∇H(x− xb), (3)

where ∇H is the gradient of H(x). If the linearized expression for H(x) is used, J(x) assumes a
quadratic form.

It is assumed that the errors of the field measurements contained in vector y are statistically
independent of each other, so R is a diagonal matrix; its diagonal contains the variances of the errors of
each field measurement.

The matrix B is essential to this assimilation system. First, its non-diagonal terms contain the
covariances of xb errors at different grid points and also the covariances of errors of different variables.
These covariances are necessary to propagate the information related to any field measurement through
the horizontal and vertical directions and allow measurement of a specific variable to affect the analysis
of others. In addition to this, the matrices B−1 and R−1 together determine the relative importance of
the background conditions xb and the field measurements y to determine the analysis xa.

The WRF-DA system offers two methods to estimate B: the National Meteorological Center
method (NMC), described by Parrish and Derber [15], and a method based on ensembles of predictions
([1], Chapter 9). Due to the availability of computer resources, we used the NMC method, which is
relatively more economic. This method requires a database of pairs of xb; each pair has two short-term
predictions for the same hour obtained with different forecast horizons (for example, 12 and 24 h), and
consequently with different initial conditions. The pairs of predictions correspond to certain hours of
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the day (for example, 0:00 and 12:00 GMT), and cover a certain period (for example, one year). It is
assumed that the differences between the forecasts of each pair have statistical properties analogous to
those of the background condition errors, and in particular, to estimate B, the following approximation
can be used:

B = E
(
(xb − xt)

T
·(xb − xt)

)
≈ E
((

x12hs
b − x24hs

b

)T
·

(
x12hs

b − x24hs
b

))
(4)

where x12hs
b and x24hs

b are a generic pair of predictions with 12 and 24 h time horizons, respectively. The
validation of this technique to estimate B is empirical.

Note that, if n is the length of the xa, and xb vectors, the size of B is nxn. This implies a matrix
of very large dimensions that would cause important technical difficulties to operate with B or B−1,
and even to store them in the computer memory. The 3D-Var technique implemented in the WRF-DA
system solves this problem by factoring B as a product of certain matrices that have clear physical
interpretations, allowing certain assumptions about their structures to be made and making them
computationally tractable [2,4].

As a final remark in this subsection, we noted that both for the simulations of the background
conditions and the estimation of the B matrix, a specific configuration of the WRF model was used,
which here is the one described in Section 2.

WRF-DA Implementation for This Work

To apply the NMC method to estimate the matrix B, we used WRF-GFS simulations extended for
24 h and initialized at 0:00 GMT and 12:00 GMT during the entire year of 2016. The results obtained
for 12 and 24 h after the initial conditions were used to estimate the matrix B, as indicated in the
previous section. In order to gain insight into the spatial structure of the covariances contained in B,
Decombes et al., [16] and Rivi [17] proposed “pseudo-single observation tests”. Such tests consist of
choosing a particular variable of xb in a particular grid point and suppose a hypothetical observation
that increments in a fixed amount the background value of this variable at the selected grid point. The
data assimilation process is carried on considering this single pseudo observation and prescribing a
hypothetical value of the standard deviation of its error. Rivi [17] showed that the xa − xb difference
was proportional to the covariance between the errors of the background variable in question at the
chosen grid point and the errors of the rest of the background variables at all the grid points. The plots
of the xa − xb differences for selected variables illustrate how the B matrix spreads the information of
field measurements. In Appendix B, we summarized the fundamentals of the pseudo observation
tests, and we showed some selected results for the B matrix estimated here.

The background conditions xb were obtained from WRF-GFS simulations initiated at 0:00, 6:00,
12:00, and 18:00 GMT, during those months of 2017 for which information from the WF1 and WF2
stations was available. We used the hourly results of these simulations from 4 to 9 h since the
initialization of each simulation. In this way, four consecutive simulations could cover the 24 h of each
day. The selected forecast horizon was the earliest for which the GFS prediction results were available
in real-time, with some time left to carry out the processes described in this work. In this way, it is
possible to implement these processes in an operative mode. For each local hour in Uruguay, Table 1
shows which WRF-GFS initialization cycle was used, and which hour within its forecast horizon
corresponded to the background condition for that local hour.
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Table 1. Hours within the WRF simulations used to define the background conditions as a function of
the initialization cycle and local time in Uruguay. Each row corresponds to an initialization cycle, and
each column corresponds to a local hour in Uruguay. The hours used within each cycle are indicated,
considering the hours elapsed since its initialization.

Local UY Hour

Initialization
Cycle 0* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0:00 4 5 6 7 8 9
6:00 4 5 6 7 8 9

12:00 4 5 6 7 8 9
18:00 9* 4 5 6 7 8

*: Local time 0 uses the results at the ninth hour of the simulation started at 18:00 GMT on the previous day as a
background condition.

In the present study, the assimilation made for each hour was independent of the previous
assimilations; the corresponding background condition only incorporated information from the GFS
global simulation. This is called a “cold start”. Alternatively, the background conditions could also
have considered the field measurements made in previous hours. This alternative is called a warm
start. The warm start method was tested in the context of the present work and obtained results of
equivalent quality to those obtained with the cold start, so here we showed only the latter results. The
similarity of the results from both methods might be because the assimilated information was very
local; the assimilation of data in a wider region could influence the simulations in the area of interest
over more hours and thus increase the relevance of assimilation from previous hours. The verification
of this hypothesis requires a database of field measurements more complete than the one that was
available for this work.

Each field measurement is specified to the WRF-DA system in a file that contains the day and time
of the measurement, the geographic coordinates, and ground elevation of the corresponding station,
the height of the measurement sensor, and the records of wind speed and direction. This information
is used to generate the vector of field observations, y. Considering that the topography of the regional
model has some degree of smoothing, the elevation of the specified terrain is not the actual elevation,
but the elevation corresponding to the topography of the model interpolated to the station’s location
coordinates. The height specified for the sensors is the elevation of the station plus 100 m. The specified
module of wind speed is the average of the anemometer record for two consecutive 15-min periods
centered on the hour for which the assimilation will be performed.

The specified wind direction is deduced from the background condition, interpolating each
component of the wind vector to the geographical position and elevation of the anemometer. Although
vanes are available at the stations, it was found that using their records produces results that are not as
satisfactory as those obtained by deducing the wind direction from the background condition. This
suggests that the quality of data obtained from these weathervanes is relatively poor, while regional
short-term predictions are reasonably good with regard to this variable. It may be of interest to evaluate
the effect of the assimilation of atmospheric pressure measurements on the wind direction obtained in
the analysis, but no such observations were available to complete this analysis.

In addition, to estimate the R matrix, the WRF-DA system uses a file that specifies the standard
deviations of the errors of the different kinds of field observations (obserr.txt). In the present work,
we adjusted the errors specified in this file, proposing a value of 0.1 m/s for wind speed, which is
reasonable for the type of sensors installed in the stations considered here [18]. For wind direction,
we kept the default value proposed in the obserr.txt file, 5◦. We also pointed out that the WRF-DA
system uses two “namelist” files to prescribe parameters to be set for the B matrix estimation and the
computation of the resultant analysis (xa vector). In this work, we used the default values for these
parameters, which are indicated in the WRF-DA user guide [14].
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4. Results

To evaluate the quality of the obtained pseudo-observations, we interpolated each component of
the wind vector to the geographic location of VSt and the levels of 87 and 36 m above the ground, and
then we computed the wind speed at these levels. Figure 4a shows the systematic error or bias of the
two levels for each hour of the day. The bias is defined as the average of the wind estimate at a given
level and hour minus the corresponding observed value over all the studied days:

b ≡ sa − sobs (5)

where sa is the wind speed interpolated from the analysis to the location and level of each Vst sensor,
and sobs is the correspondent measured wind speed. The overline represents the average over all the
studied days. Figure 4b shows the relative bias, defined as the bias divided by the observed mean
wind speed at the corresponding hour:

brel ≡
sa − sobs

sobs
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Figure 4. (a) Bias and (b) relative bias of wind estimates, which are 87 m above ground (red solid line)
and 36 m above ground (blue dotted line), at VSt as a function of the local hour.

At 87 m, the bias was moderate, generally smaller than 0.5 m/s, while relative bias was generally
smaller than 5%. At 36 m, the bias and the relative bias were similarly moderate: the bias was generally
smaller than 0.5 m/s, while the relative bias during some hours was slightly larger than that found at
87 m. Note that 87 m above the ground was similar to the elevation of the assimilated observations,
while the 36-m elevation was significantly closer to the ground. The moderate systematic errors found
at both elevations indicated that the data assimilation technique effectively combined the information
from short-term WRF predictions and wind measurements. The wind measurements from the wind
farms lacked information about elevations relatively close to the ground, e.g., at 36 m, while the WRF
simulations did include this information since they considered several elevations within the first 100 m
above the ground but had errors of their own. The assimilation process corrected these errors at the
locations and elevations of the anemometers in the wind farms and also transmitted the effects of
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these gains to other regions and elevations. The information that allowed these gains to spread was
contained in the background error matrix B. To further illustrate this point, Figure 5 shows the bias of
the background conditions 36 m above the ground at VSt and the bias resulting from the assimilation
process (also included in Figure 4a). The background bias was larger for all hours. Since both biases
were means of errors, it was possible to compute the significance of their difference with a two-tailed
Student t-test [19]. It was found that these biases were different with a significance value lower than
0.05 for the local hours from 0:00 to 16:00, and from 21:00 to 23:00 (the hours with significant differences
are indicated with a green bar in Figure 5).Data 2019, 4, x FOR PEER REVIEW 9 of 16 
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Figure 5. The bias of two wind estimates 36 m above ground at VSt, as a function of the local hour. The
solid line indicates the wind estimates from the background conditions, and the dotted line indicates
the wind estimates from the assimilation process. The green bar indicates the hours for which the
difference between both biases was significant at the 5% level, computed as indicated in the text.

Next, we presented two statistical parameters related to accidental errors. Figure 6 shows the
Pearson correlation of estimated versus observed wind speeds at the VSt station. At 87 m above the
ground, there were correlations generally larger than 0.75 during the night hours, and generally larger
than 0.80 during the day. At 36 m, the values were slightly smaller at nighttime and very similar
during the day. Figure 7 shows the standard deviation of the error (estimated minus observed values)
divided by the mean observed wind speed at each hour (RSTD). RSTD was approximately 25% for
both elevations considered.
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Figure 8 shows scatter plots of estimated versus observed wind speeds at 7:00 and 12:00 and 87
and 36 m above the ground. These hours were chosen because they represent the periods of the day
with the relatively worst and best adjustments, as assessed in Figures 6 and 7. Samples of assimilated
values and the corresponding observed wind speed values, including those shown in Figure 8, made it
possible to estimate probability distributions of the errors, such as empirical percentiles, from which
confidence intervals for the wind speed estimates could be calculated.
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5. Summary and Conclusions

This work assessed the quality of wind speed estimates in Uruguay obtained with the WRF-DA
system, which was used to assimilate wind speed measurements 100 m above the ground at two wind
farms. The quality of the estimates was assessed with an anemometric station placed between the wind
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farms, that measured wind speed at 87 and 36 m above the ground. The information to be assimilated
from field measurements was minimal, not only because it included only two stations but also because
it lacked records of other atmospheric variables that are related to wind, such as atmospheric pressure.
It was interesting to assess the extent to which these minimum field measurements could generate
useful interpolations and evaluate the quality of the wind estimates at elevations both similar and
different to those of the assimilated records. The measurement station used to validate the wind speed
assessments was placed between those used for the assimilation process, so the conclusions of the
assessment are applicable only to regions between the two main stations.

Wind speed estimates showed a low systematic error at the verification station, generally below
0.5 m/s at both 87 and 36 m above the ground. A relative systematic error was generally less than 5%
of the average speed. This result indicated that the data assimilation technique effectively combined
information from field measurements and background conditions. The assimilated measurements
did not include information from elevations as low as 36 m. The background conditions did contain
information from these low elevations, but with systematic errors of their own. The assimilation
technique managed to propagate the gain from the observations at 100 m above the ground in the wind
farms to other regions and to lower elevations. The covariance matrix of the background condition
error was essential to the propagation of these observational gains.

As for the total error, the correlation values between observed and estimated wind speed and the
standard deviation of the total error of each estimate, generally about 1 m/s to 1.5 m/s, suggested that
the obtained estimates could be of sufficient quality to be useful in various applications. Some examples
of applications in which such estimates are valuable are the estimation of wind climatology within the
range of the considered height levels, retrospective simulations of transport processes and dispersion of
air pollutants, or real-time estimation of environmental conditions in which systems whose operation
can be affected by the wind are being used. In any case, the effective use of pseudo-observations in
a specific application requires the estimation of their confidence intervals, which are necessary both
to assess whether the accuracy of pseudo-observations is acceptable for the application in question
and to take into account the effects of the uncertainty of these data if they are used. The generation of
databases of pseudo-retrospective observations, such as the one presented in this work, allows for the
estimation of these confidence intervals.

For future studies, we are interested in quantifying the effects of including atmospheric pressure
observations on the quality of the results. We are also interested in evaluating the effect of expanding
the region in which observations are collected for the assimilation of data on the results of the hot
start option.

Finally, we pointed out that the topography of the studied region is not completely flat but
is relatively smooth. This can contribute to the quality of results obtained by assimilating a few
observations in numerical simulations with relatively low resolution. In the case of regions with
relatively complex topography, the numerical simulation may require finer spatial resolution to
properly take into account the effects of topography on the wind field. The proper quantity and
location of measurement stations should also be evaluated in each case.
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Appendix A

The setting of the WRF model used in this work is analogous to that of the work by Cazes Boezio
and Ortelli [12] which evaluates short-term forecasts of wind power generated in Uruguay. The
horizontal resolution was 30 km in the zonal and meridional direction. Figure 3 shows the grid points
used to compute air temperature, pressure, density, and vertical velocity. The grid points used to
compute the zonal and meridional velocities (not shown) were staggered one half of the horizontal
resolution in the zonal and the meridional directions, respectively, according to the Arakawa C-grid
arrange [1].

The model setting employed considered 54 layers in the vertical direction. The model vertical
coordinate is η [1], defined as

η =
pd − pT

pS − pT
(A1)

where pd is the hydrostatic component of dry air pressure at a particular atmosphere level, and pS and
pT are the analogous pressures at the Earth’s surface and the atmosphere conventional top, respectively.
In this work, the atmosphere top was set to 50 hPa. Table A1 gives the values of h at each layer interface.

Table A1. η values at the top of each layer of the vertical discretization.

Layer
Number

h Value at
Layer Top

Layer
Number

h Value at
Layer Top

Layer
Number

h Value at
Layer Top

1 0.9880 19 0.9240 37 0.7135

2 0.9969 20 0.9165 38 0.6911

3 0.9950 21 0.9088 29 0.6668

4 0.9935 22 0.9008 40 0.6406

5 0.9935 23 0.8925 41 0.6123

6 09910 24 0.8840 42 0.5806

7 0.9899 25 0.8752 43 0.5452

8 0.9861 26 0.8661 44 0.5060

9 0.9821 27 0.8567 45 0.4630

10 0.9777 28 0.8471 46 0.4161

11 0.9731 29 0.8371 47 0.3656

12 0.9682 30 0.8261 48 0.3119

13 0.9629 31 0.8141 49 0.2558

14 0.9573 32 0.8008 50 0.1982

15 0.9513 33 0.7863 51 0.1339

16 0.9450 34 0.7704 52 0.0804

17 0.9382 35 0.7531 53 0.0362

18 0.9312 36 0.7341 54 0.0000

The horizontal velocities and the air temperature were computed inside each layer, while
the vertical velocity was computed at the layer interfaces, according to the Lorenz vertical grid
arrangement [1].

The WRF model allowed us to choose several parameterizations of physical processes, especially
for atmospheric boundary layer processes, surface layer processes, short and long wave radiative
heat transfers, convective precipitation, clouds microphysics, and drag associated with gravity waves.
Table A2 shows the parameterizations chosen in the current work and indicates references for them.
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Table A2. Parameterization of physical processes used.

Physical Process Scheme Used

Short Wave Radiation Dudhia scheme [20]

Long Wave Radiation RRTM schene [21]

Surface Layer Revised MM5 surface layer scheme [22]

Atmospheric Boundary Layer Yonsei University scheme [23]

Microphysics Hong et al. scheme [24]

Cumulus Precipitation Simplified Arakawa Schubert scheme [25]

Gravity Wave Drag Kim Arakawa scheme [26]

Land Processes Noah land surface model [27]

Appendix B

Kalnay [3] showed the result of the optimization indicated in Equation (A1), that yields the 3D-Var
analysis xa and is equivalent to the result of the optimal interpolation procedure,

xa − xb = B(∇H)T
·[∇H·B·(∇H)T + R]

−1
·[y− (∇H)(xb)] (A2)

We chose a particular variable and a particular grid point that corresponds to the kth element of
xb or xa, according to the conventional order of these vectors. We defined the synthetic observation y
at the chosen grid point as the kth value of xb plus a conventional increment ∆,

y = xb(k) + ∆ (A3)

Since the ∇H operator produces analogous variables to those of the vector of observations y
from xb, and the analogous to the synthetic observation y in the background condition is xb(k), the
correspondent ∇H is a vector with all its terms equal to 0, except the kth element, which is equal to 1, so

H(xb) = xb(k), and y−H(xb) = ∆ (A4)

The matrix R of covariance of observation errors has a single element, which is the covariance of
the synthetic observation y. We chose a conventional value s2 for this covariance. Rizvi [17] showed
that with these choices, Equation (A2) yields

xa − xb =
Bk

bkk + σ2 (A5)

where Bk is the k column of B. Equation A5 indicates that the xa − xb difference is proportional to a
vector that gives all the covariances of the error of xb(k) with the errors of all the other variables of xb.
Note that the xa − xb difference is independent of the xb condition chosen. Plots of xa − xb fields for a
selected variable at a selected level of the numerical domain can help to understand the geographical
structure of the error covariances of that variable at that level.

Here, we chose to increase in 1 m/s the zonal (”test A”) and the meridional (“test B”) wind of a
particular xb condition at the grid point and level closest to the location of the Vst station and the level
of 87 m above ground. s was chosen as 1 m/s. Figure A1a shows the xa − xb field for zonal velocity
resulting from test A, at the same model level of the selected grid point (level 7 from the ground).
Figure A1b shows the xa − xb field for the meridional velocity at the same level, for “test B”. These
results indicated that WF1 and WF2 were located in regions, where the zonal and meridional winds
are well correlated with those of the Vst, and, therefore, wind estimates at this location benefit from
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observational gains obtained at WF1 and WF2. Besides, this type of analysis can be useful to define the
density of a station network intended to cover a specific area.

Figure A2 shows the vertical profile of the xa − xb zonal wind difference for test A, at the point of
the horizontal grid in which the increase of zonal wind speed was prescribed. This profile shows the
vertical structure of the covariances of zonal velocity background errors with the background error at
the level chosen for the test. It was found that these covariances increased with the elevation up to
500 m above the ground, and then decreased to values that were close to 0 in the upper atmosphere
(Figure A2a). Figure A2b shows a zoom of the profile shown in Figure A2a for the first 150 m above
the ground, in order to focus on the levels of interest to this work. Although covariances were lower at
lower elevations, their relatively large values indicated that observational gains obtained at elevations
about 100 m could propagate quite directly to lower levels. The analogous vertical profiles from test B
were found to be very similar to those from test A, and are not shown here.
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Figure A2. (a) Vertical profile of xa − xb zonal wind differences in test A at the horizontal grid point
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ordinate, elevation above ground; (b) zoom of Figure A2, a vertical profile at the first 150 m above the
ground. Dots indicate the model grid points, and the arrow, the grid point at which the perturbation
is prescribed.
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