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Abstract—Improving energy efficiency is a necessity in the
fight against climate change. Non Intrusive Load Monitoring
(NILM) systems give important information about the household
consumption that can be used by the electric utility or the end
users. In this work the implementation of an end-to-end NILM
system is presented, which comprises a custom high frequency
meter and neural-network based algorithms. The present article
presents a novel way to include high frequency information as
input of neural network models by means of multivariate time
series that include carefully selected features. Furthermore, it
provides a detailed assessment of the generalization error and
shows that this class of models generalize well to new instances
of seen-in-training appliances. An evaluation database formed
of measurements in two Uruguayan homes is collected and
discussion on general unsupervised approaches is provided.

Index Terms—NILM, ANN, energy disaggregation

I. INTRODUCTION

Climate change is a consequence of greenhouse gas emis-
sions and causes more extreme climate conditions that imply
severe negative effects. According to the Intergovernmental
Panel on Climate Change (IPCC), electricity and heat pro-
duction accounts for a quarter of total global emissions. To
limit temperature growth to 1.5 K ambitious efforts have to
be carried out, including improving energy efficiency. Energy
efficiency implies reducing the consumption for a given com-
fort or production level. Information availability is crucial to
improve in this line. Non intrusive load monitoring (NILM)
systems were introduced by Hart [2] and their objective is
to get valuable information of consumption in an electric
installation from measurements taken at only one point.

This work presents an end-to-end NILM system. This
implies building or getting a meter, and using some disaggre-
gation algorithm. The meter is usually connected to the main
electrical panel of a house. The meter’s goal is to measure,
directly or indirectly, the power consumption of the house. A
common solution is to use the electric utility’s smart meters,
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with the drawback of a low sample rate, 1.1 mHz in Uruguay.
Another direct solution is to buy some comercial meter. The
most common drawbacks are the low sample rate and lack of
flexibility in its use. These meters are often equipped with a
communication system that allows data transmission to other
points, via Ethernet, WiFi, or IoT oriented protocols as MQTT
or ZigBee. The maximum sample rate of comercial meters is
about 1 Hz [3], [9]. The other options are designing a custom
meter, as was done in this work, or purchasing a commercial
acquisition board. For more details see [10].

The other axis of the solution refers to dissagregation
methods. Classical algorithms are Combinatorial Optimization
and Factorial Hidden Markov Chains [4], and an important
reference for this work that introduces Artificial Neural Net-
works (ANNs) for the problem is [6]. In that work ANNs show
promise, as it is reported that their generalization capabilities
are good. In fact, performance seems to be better for unknown
appliances than for appliances seen in training. This work
replicates and amplifies that of Kelly, using the UK-DALE
dataset [5] and proposing modifications to the architectures
there defined. These modifications allow the introduction of
high frequency features and the adaptability of the dimension
of the autoencoder’s latent space according to the appliance.
An introduction to ANNs can be found at [7].

This work involves developments that are independent,
although related to each other. On the one hand, the custom
meter and the data collection system make up the low level
component of the project. On the other hand, the software
or signal processing part involves appliance identification
over the PLAID database [1], neural network models for
disaggregation and the theoretical high level discussion of
unsupervised approaches.

The contributions of this work are listed as follows:

• The collection of the first NILM oriented dataset in
Uruguay (Subsection II-C).

ar
X

iv
:2

00
4.

13
90

5v
1 

 [
ee

ss
.S

P]
  2

9 
A

pr
 2

02
0



• The study of high frequency features that yield a com-
petitive appliance identification performance when used
through a Random Forest classifier (Section IV).

• The validation of the usefulness of the algorithms pre-
sented in [6].

• The proposal and testing of a method for including high
frequency features as input of ANN models along with
the deeper autoencoder variant (Section V).

• The assesment of the generalization error of ANN based
methods for NILM (Section VI).

• A macro and general description of unsupervised and
scalable NILM methods (Section VII).

This paper is organized as follows. In Subsection II-A the
custom meter is introduced along with its characteristics. This
meter is integrated into the data collection system described
in Subsection II-B. In Section III the data preparation is
explained, including synthetic data and training, validation
and testing splits. Then, a detailed study on high frequency
features is described in Section IV, that is used to create the
multivariate time series to be used by the models. A total of
seven models are described in Section V, making emphasis
on the training (Subsection V-A) and the model selection
(Subsection V-B) procedures. Next, the evaluation scheme
and the results are presented in Section VI. Furthermore, a
discussion on the formulation of unsupervised approaches is
provided in Section VII.

II. DATA COLLECTION

A. Custom meter

The first step towards a NILM system is building a device
that can measure at a high enough frequency. The frequency
requirements vary. For instance, public databases range from 1
Hz to 44 kHz, the private company Sense [12] says its meter’s
sample rate is 1MHz, and there exists applications of NILM
using frequencies up to 100 MHz [8]. Some experiments
concerning the current clamp at use were carried out and
revealed that it does not filter signal components under 7kHz.
The spectral analysis of different appliances’ current signals
and the will to make comparison possible caused us to choose
as Analog Digital Converter (ADC) a configurable soundcard
named “audio injector” with a sample rate of up to 96kHz,
although the final sample rate was set to 14kHz due to
storage considerations. The meter was completed by printing
a custom signal adaptation circuit, as shown in Figure 1 and
using a Raspberry Pi 3B+ that provides the required software
flexibility and allows fast prototyping.

B. Labeled data collection

In order to properly test any NILM system in terms of its
disaggregation capabilities some labeled data set must be used.
A data collector system should coordinate the non intrusive
meter and some intrusive meters that measure individual
appliances. The system coordination was implemented on
the non intrusive meter, more specifically, on the Raspberry
Pi. The computer’s role was to save and compress the high
frequency measurements in .flac files while serving as a

Fig. 1. Circuit diagram used in the custom meter.

MQTT server to the intrusive meters. The intrusive meters
shown in Figure 2 were provided by the Uruguayan national
electricity utility (UTE) and report active power at a 1 minute
sample period. The system was programmed to start running
as soon it was energized, and it is able to send alerts if some
component is malfunctioning. The configuration files admit
flexibility in terms of sample rate (up to 96kHz), bit depth (32
bits), compression period (1 hour .flac) and allow to write
the data to external usb storage devices, save it in another
computer in the same LAN or send it trough the TCP/IP to
an external FTP server. A complete visual description of the
system is provided in Figure 3.

Fig. 2. Intrusive meter provided by UTE.

Fig. 3. Complete diagram for the data collection system.

C. Uruguayan data

Data were taken from two households in Montevideo,
Uruguay, with a nominal frequency of 50Hz and a nominal



voltage of 230Vrms. The total amount of recorded time sums
up to 3 months of data or 0.5TB. In the first house 7 intrusive
meters were installed in the fridge, electric water heater, mi-
crowave, washing machine (from now on just “washing”), air
conditioner and bedroom plugs, whereas in the second house
8 intrusive meters took the measurements from an electric
oven, an electric water heater, two air conditioners, a fridge, a
washing machine, a dishwasher and a kettle. These appliances
were the responsible for the majority of the households power
consumption. The next section presents the processing of these
data that serve as input for the neural network based models.

III. DATA

A. Inputs and outputs

The neural network algorithms to be presented in Section V
belong to the class of supervised machine learning algorithms.
This means that the algorithm is obtained or trained from a
set of values (X,Y) where X is a vector containing all input
examples and Y is a vector containing their corresponding
labels or target values. On the one hand, this work uses as
input x ∈ X a univariate power time series or a multivariate
time series that includes the former in one of its dimensions.
These time series have a 6 seconds period and their length
is given by the size of a window that varies according to the
appliance as shown in Table I.

TABLE I
WINDOW SIZE USED.

Window size (minutes)
Kettle 13
Fridge 60

Washing m. 180
Microwave 10
Dishwasher 150

On the other hand, an output y ∈ Y takes two possible
forms, corresponding to the two ANN architectures to be
presented in Section V. The first of them involves three values:
the beginning of the appliance activation, the end of the
appliance activation, and the mean power consumed between
these instants. An appliance’s activation is extracted by a
function that takes as parameters the minimum and maximum
switched on time of the appliance, the on-power threshold and
the border or padding for the window. The second possibility
for y is an univariate power time series of the appliance, which
has the same length and period as the input.

B. Data preparation

It should be noted that for Uruguayan data a first order
hold is used to upsample the 1 minute period measurements.
The Uruguayan data was used only for evaluation and not for
training. The training was based on the UK-DALE dataset,
whose detailed description is found on [5]. Succinctly, this
database is formed up by measurements of five houses, three of
which also include high frequency measurements. The set X is
built by activations extracted from this database together with
non activations in equal proportion. A non activation could

be any window that does not fully include the functioning
period of the appliance as defined by the activation-extracting
function.

The multivariate time series for both Uruguayan and UK-
DALE data had to be obtained. For the latter, web scrapping
was used to download the 7.6TB of data, from which the
multivariate series values were computed for each required
datetime. Comparison of power values extracted from the
high frequency time series against UK-DALE’s low frequency
power data was made in order to check the correctness of the
procedure. The code was reused on uruguayan data. The two
high frequency features computed, namely form factor and
phase shift of fundamental components of current and voltage,
were selected for inclusion on the inputs after the analysis
presented in the next section.

C. Synthetic data
Data augmentation was also effectuated by superposing

to an appliance activation other appliances activations with
some probability, defined as p = 0.4 of adding a “distractor”
appliance to the individual activation. The sum of these
individual power values then composes the aggregate series
to be used as input. For samples not containing activations
of the target appliances, only “distractor” activations where
included with probability p. It should be noted that synthetic
data for multivariate series can not be constructed, as there are
no individual measurements of the high frequency features.

D. Dataset division
The usual preparation of data in supervised learning algo-

rithms involves dividing the dataset into three sets: training
set, validation set, and testing or test set. We follow this use,
but there will be four test sets to be used. For each appliance,
measurements of one of the houses of the UK-DALE dataset
are set aside for the test set I. For the measurements in the
other houses the last two weeks of data are also set aside for
the test set II. The rest of the data is used to form the training
and validation sets as will be shortly explained. The last two
test sets correspond to the measurements taken from the two
Uruguayan households.

From the time series that form the training and validation
sets activations are extracted via the activation-extracting func-
tion. Also, non-activations are selected from the time period
between two activations. The resulting activations dataset is
approximately balanced, and it is split randomly into the
training set (80%) and the validation set (20%).

E. Preprocessing
It is a well known practice the standardization and normal-

ization of the signals to be used at training. The way we do that
is extracting the mean standard deviation of the input training
samples σinput and the maximum power output value maxtarget
of the training targets. The preprocessing implies, for each
input sample, independetly of which set it belongs to, its own
mean is substracted before dividing by σinput. For training, the
targets are divided by maxtarget, and for prediction, the output
is scaled for the same value.



TABLE II
PERFORMANCE OVER SUBSETS OF FEATURES.

Instances 1074 1793
Features / Classifier KNN RF KNN RF

Transient 61.70 88.68±0.17 59.35 87.06±0.06
Steady state 75.88 87.24±0.28 66.76 84.23±0.25

Steady state + Transient - 91.47±0.09 - 88.33±0.25
Steady state + VI 75.97 86.67±0.49 66.82 84.14±0.43

All features - 92.79 ± 0.13 - 89.08±0.38
VI corresponds to pixels of the VI image. The tolerance is the standard
deviation between the three runs.

IV. HIGH FREQUENCY FEATURES

In order to select the high frequency features to be included
in the form of a multivariate time series together with the
active power, a simpler problem was confronted. This sub-
problem is the identification of an appliance’s name from
its current and voltage signature. The PLAID database [1]
is made up of 1000+ measurements of isolated appliances
from 55 different households at a 30kHz sample rate. More
than 30 features were computed for each voltage and current
waveform: power values as defined in [13], VI trajectory
image, statistical moments, audio features, among others. As
each instance contains the switching-on of the appliance, the
transient was included in most of the instances.

Extracting this transient allowed to compute features over
both transient and regime states. The features’ importance
was evaluated via Random Forest (RF) classifier and Mutual
Information (MI) measure. Figure 4 shows the normalized
importance assigned to the transient features by the RF clas-
sifier and the MI measure. The criteria used to select the most
important features was based on the assumption that any fea-
ture that is useful for the aggregate problem should be useful
in this sub-problem too. The selected features comply with
arbitrarily defined requirements: the selected features should
be both transient and regime features (for instance, transient
duration is not considered as a candidate) and should belong
to the top 10 features for transient and regime states under the
importance criteria given by both the RF classifier and the MI
measure. The two features that satisfy the requirements above
are the form factor of the current and the phase shift between
the fundamental component of the current and voltage signals.

The value of the original set of considered features is
denoted by the high disaggregation performance obtained,
showed in Table II, where 1-Nearest-Neighbor was used
as a proxy classifier. It should be noted that the result that
corresponds to all the possible features is only surpassed by
the best result in [11] by a 0.5% difference in accuracy, being
superior to all other results found in the literature. This proves
that the set of all features is powerful when used to feed a RF
classifier.

V. MODELS

The trained models are the originally used in [6] although
some additional modifications were proposed. These models’
names are “autoencoder” and “rectangles” as named in the

Fig. 4. Transient features importance via random forest (top) and mutual
information (bottom).

previously cited work. The visual description is provided
in Figure 5 and the Tensorflow model is exposed in the
Section A. The proposed modifications correspond to:

• Changing the first convolutional layer so it is able to get
mutivariate time series as input.

• Making the autoencoder deeper and the code length
dependent on the input window size.

The seven models considered are presented in Table III. The
“baseline models” are the ones trained with the augmented
low frequency training set, i.e. the ones trained with synthetic
data.

TABLE III
USED MODELS.

Low freq Synthetic data High freq ”Big”
Rectangles Yes Yes Yes No

Autoencoder Yes Yes Yes Yes

Fig. 5. Diagram of the implemented ANN architectures. Rectangles network
(top) and Autoencoder (bottom). 3D blocks correspond to convolution or
upsampling layers.



A. Training

It is common knowledge that ANNs must be trained. Any
training procedure involves finding a set of weights that
achieves a low loss over the training set while at the same
time keeping the loss over the validation set controlled. We
found that the training delicate, as it is easy for the optimizers
to get stuck into local minima, being the most evident case
any set of parameters that yields always the same output. To
avoid local minima and get a good performance, multiple runs
were made for each model. To find a good set of parameters
for each model, two techniques were used. The first involved
a grid search in the space of optimizers. After discarding
Adadelta [15] and large learning rates, six points were tried.
These points arise from the combination of the learning rates
values of 0.002, 0.001, 0.0005 and the Adam and Adamax
optimizers [7]. The training procedure for one of the models
for the microwave is shown in Figure 6. The second technique
involves tracking the error over the validation set and saving
the model corresponding to the iteration with the lowest error.
The number of iterations for every model ran is 200. This
training procedure gives a total of 6 runs per model × the
7 models evaluated × 5 appliances = 210 runs. The 42000
iterations were computed on a NVIDIA TITAN Xp graphics
card.

TABLE IV
AUC OF BEST EXPERIMENTS FOR THE MICROWAVE.

Low Freq Synthetic Data High Freq “Big”
Rectangles 0.933 0.937 0.927 -

Autoencoder 0.936 0.944 0.949 0.932

Fig. 6. Losses evolution during training. Training loss (solid line). Validation
loss (dashed line). The loss function is the MSE.

B. Selection

The goal is to get the “best” model for each appliance,
i.e. to select for each appliance only one model of the 42. As
the loss function is the mean squared error between the output
series and the target series it is not expected for this regression
score to be unacceptably large for any model. After manually
analyzing the output we found that the Area Under the Curve

(AUC) value of the Receiving Operating Characteristic (ROC)
curve is strongly related to a visually good performing model.
This metric will be used in the next steps to select the best
models. For each of the 7 models per appliance the selected set
of parameters comes from choosing the weights that achieve
the largest AUC between the 6 sets of weights of the grid.

To calculate the ROC the problem has to be turned into a
classification one. To make this possible two criteria have to
be defined: (i) the definition of the ground truth label, using for
this the activation-extracting function described in Section III,
and (ii) the definition of the predicted class, that is done by
defining a threshold for the maximum on the predicted power
series. This first step gives tables similar to Table IV for each
appliance. From these tables the best of the seven models is
chosen by maximizing the AUC again. The results of which
the best model is for every appliance are shown in Table V.
Full results are included in the Appendix A.

TABLE V
SELECTED MODEL.

Selected model
Kettle High frequency autoencoder
Fridge High frequency rectangles

Washing m. High frequency rectangles
Microwave High frequency autoencoder

Dish washer Big autoencoder

VI. RESULTS

Once the models are chosen, there are many evaluations
to be made. These arise from the combination of two evalu-
ation procedures, “rolling window” and “activations”. These
procedures will be described in Subsection VI-B. Besides the
evaluation procedures there are the four test sets described
in Section III. Combining the different test sets with the
two evaluation procedures allows finding the answers to the
following questions:

1) How do the models work for what they were trained
for? - this corresponds to the evaluation over test set II
using the “activations” procedure.

2) How do the models generalize for unseen appliances? -
this corresponds to the evaluation over test set I using
the “activations” procedure.

3) How would the models behave in a real case scenario?
- this corresponds to the evaluation over test set I using
the “rolling window” procedure.

Models are further compared with the performance of the
best models found at [6] as a reference. These are the ones
that include synthetic data into the training set. Finally, when
answering the last question the value of the metrics to be
introduced in the next subsection is reported.

A. Metrics

To report the results a few common metrics were selected, in
line with [6]. The metrics for the regression problem quantify
how well the outputs approximate the targets, and are affected
when time shifts occur. The classification metrics are agnostic



to in-window time shifts, and only consider if the appliance
is detected as energized or not. The regression metrics to be
presented are the Mean Absolute Error (MAE) and Relative
Error In Total Energy (REITE):

REITE =
|Ê − E|

max (Ê, E)
(1)

MAE =
1

N

∑
t

|ŷt − yt| (2)

where N is the total number of power values considered. The
predictions can be Positive (P) or Negative (N) and result True
(T) if they are equal to the ground truth label or False (F)
otherwise. Traditional classification metrics are defined as:

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1 = 2 · precision · recall
precision + recall

(6)

B. Evaluation procedures

Two evaluation procedures are used in this work. The “ac-
tivations” procedure involves extracting activations and non-
activations from a test set, making estimates for each window
and comparing that with the ground truth. It is the simplest
evaluation procedure and it has two important features: (i)
the resulting windows are approximately balanced and (ii) the
method is the same as the one used over the validation set.

Alternatively, the “rolling window” procedure is as unbal-
anced as the real use of the appliances. Furthermore, it is
applied over the whole time series, resembling a real use case.
This procedure starts estimating the output for each one of
the inputs determined by a rolling window with stride= 1.
This is, estimate one output, shift the window 6 seconds,
estimate another output, and so on. At the end, for every
datetime, there are w = windowsize estimates, that are
averaged and multiplied by a factor of w

w−2a , where a is
the average activation length for the appliance calculated over
the training and validation sets, in order to account for the
fact that our ANNs only recognize complete activations. After
the estimation stage, the same time series is divided in non
overlapping windows over which the resulting estimates are
compared with the ground truth.

C. Results

Numerical results will be summarized in this sub-section.
First, it can be seen in Table VII that the best models
yields the best AUC for three of the five appliances for the
case depicted in question 1. This means that the models
perform very well when evaluated over new instances of
previously seen appliances and that the training and selection

procedures were correctly designed. Second, Table VII shows
that the performance of the best models declines more than
the performance of the reference models when testing over
unseen appliances. The conclusion is that the generalization
capability of the model to probability distributions other than
the one generating the training and validation data is limited.
Finally, Tables VI-C and VI-C summarizes the performance
obtained on the real case scenario over the unseen appliances
of the UK-DALE database. A MAE under 60W for almost
every appliance and good classification metrics for three of
five appliances are indicative of acceptable results. Note here
that the threshold used to get the classification scores was
defined for each appliance by maximizing the F1 score over
the validation set.

TABLE VI
AUCS SCORES VIA ACTIVATIONS METHODOLOGY.

Test set II Validation set

Kettle
Best model 0.999 0.984

Autoencoder 0.959 0.977
Rectangles 0.941 0.982

Fridge
Best model 0.941 0.901

Autoencoder 0.500 0.500
Rectangles 0.871 0.811

Washing m.
Best model 0.850 0.951

Autoencoder 0.884 0.875
Rectangles 0.812 0.900

Microwave
Best model 0.976 0.949

Autoencoder 0.932 0.944
Rectangles 0.976 0.937

Dishwasher
Best model 0.947 0.997

Autoencoder 0.986 0.989
Rectangles 0.954 0.981

Evaluation via “activations” methodology. Bold font indicates
the best score achieved by the three models. Underlines
indicate best score achieved between datasets for each model.

TABLE VII
AUC SCORES VIA ACTIVATIONS METHODOLOGY.

Test set II Test set I

Kettle
Best model 0.999 0.983

Autoencoder 0.959 0.993
Rectangles 0.941 0.994

Fridge
Best model 0.941 0.703

Autoencoder 0.500 0.500
Rectangles 0.871 0.887

Washing m.
Best model 0.850 0.795

Autoencoder 0.884 0.908
Rectangles 0.812 0.884

Microwave
Best model 0.976 0.879

Autoencoder 0.932 0.891
Rectangles 0.976 0.962

Dishwasher
Best model 0.947 0.962

Autoencoder 0.986 0.984
Rectangles 0.954 0.973

Evaluation via “activations” methodology. Bold font indicates
the best score achieved by the three models. Underlines
indicate best score achieved between datasets for each model.

The results obtained for the Uruguayan households are pre-
sented in Table X. For the household that only contains three
appliances the performance is bad. No model generalizes well



TABLE VIII
AUCS SCORES VIA ROLLING WINDOW METHODOLOGY.

Test set II Test set I
Kettle 1.000 0.998
Fridge 0.854 0.751

Washing m. 0.763 0.864
Microwave 0.973 0.956
Dishwasher 0.898 0.962

TABLE IX
RESULTS OVER TEST SET I OF THE BEST MODELS VIA ROLLING WINDOW

METHODOLOGY.

Acc. Prec. Recall F1 MAE REITE
Kettle 0.987 0.686 0.967 0.802 22.48 0.609
Fridge 0.585 0.545 0.959 0.695 42.04 0.305

Washing m.. 0.612 0.107 0.904 0.191 237.98 0.962
Microwave 0.835 0.019 0.964 0.038 58.48 0.173

Dish washer 0.961 0.679 0.743 0.710 45.00 0.639

to this household. For the other one, a better performance was
obtained. The models could be useful to get some information
for three of the five appliances, namely the ones in which F1

score is high. However, these models’ performance is far from
excellent and they do not seem suitable for standalone use.

We present visual examples of some of the experiments
under the “rolling window” evaluation scheme. The softness
of the curve is due to the averaging needed on the estimation
stage.

VII. ABOUT UNSUPERVISED APPROACHES

ANNs are being used widely in the supervised setting, and
they present a good performance when carefully trained with
data that resembles the real case scenario. But the best possible
performance of supervised methods is bounded by the char-
acteristics of the training datasets. These have to be extensive
and include many kind of appliances and their combinations in
order to make possible an adequate generalization capability.
Synthesizing data is a good approach to solve this issue.
Another approach, that we will present here as a theoretical
macro design, is to shift from the supervised approach to an
unsupervised learning approach. Notwithstanding, there are
other methods that involve learning and could be useful, such
as active learning approaches.

The unsupervised approach is presented in a generic way.
This takes into account the requirements of a NILM algorithm
and focuses on its scaling ability. Any learning algorithm
should have a loss function or error signal. The most intuitive
error definition for the unsupervised case is the reconstruction
error of the aggregate power time series. The minimization
of this error implies a good estimation of the aggregate
power signal. Furthermore, the estimation of the aggregate
power should be done from useful data, for instance from
the appliances’ power consumption estimates. The name we
assign to the block that creates an estimated aggregate signal
from useful information is “simulator”. What this framing is
implying is that minimizing the error between the aggregate
power signal and an estimation of it from some useful esti-

mates is forcing the useful estimates to be accurate. The last
block needed to complete this generic formulation is the black
box that computes the useful estimates, which represents the
disaggregation algorithm that adjusts its parameters according
to the error signal.

Every component of the proposed general algorithm is
presented in Figure 7 and is a subject of research. We consider
that most of the unsupervised approaches can be framed this
way, although the presented building blocks are not necessarily
simple nor independent.

Fig. 7. Diagram of the general unsupervised NILM algorithm.

VIII. CONCLUSIONS

To conclude, let us note that a NILM system can be built
and evaluated as was done in this work. The implemented
data collector system is robust, as it was capable of collect
measurements without intervention for three months.

The first conclusion refers to the high frequency features.
These were studied and using the MI measure and the RF
classifier two of them were selected: phase shift and form
factor. The proposed methodology to integrate high frequency
information in the algorithm, that involved obtaining a low
frequency multivariate time series of descriptors, was correctly
implemented. Furthermore, the model selection procedure
selected the models that included high frequency information
as the best model for almost all studied appliances. The good
performance obtained over the test set II, the one containing
known appliances, proves the value added by these high
frequency features.

Secondly, neural network based models can achieve very
good performance metrics for appliances that were seen during
training. This is the expected behavior of correctly trained
supervised approaches.

Notwithstanding, the generalization power to appliances
unseen during training is limited, although it can not be
ignored that the number of houses used for training is less than
5. The results are not as good over the test set I than over the
test set II. This performance decline is more notorious for test



TABLE X
RESULTS OVER URUGUAYAN HOUSEHOLDS VIA ROLLING WINDOW METHODOLOGY.

Household 1 Household 2
Appliance Accuracy Precision Recall F1 MAE (W) REITE Accuracy Precision Recall F1 MAE (W) REITE

Kettle - - - - - - 0.953 0.286 0.545 0.375 75 0.909
Fridge 0.759 0.781 0.959 0.861 143 0.507 0.918 0.990 0.926 0.957 96 0.071

Washing m. 0.071 0.057 1.000 0.107 793 0.995 0.323 0.300 1.000 0.462 691 0.971
Microwave 0.506 0.018 0.650 0.036 71 0.920 0.533 0.066 0.818 0.122 90 0.880

Dish washer - - - - - - 0.859 0.720 0.720 0.720 150 0.478

sets corresponding to the Uruguayan households. However, for
one of these households, the AUC values surpass 0.8, denoting
a respectable performance.

Moreover, the AUC was used as the main metric for model
selection, using the ROC as was recommended in [14]. Finally,
unsupervised approaches were decomposed in a few building
blocks, and we hope this helps conceptualize this kinds of
approaches in the future.
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APPENDIX

________________________________________________
Layer (type) Output Shape Param #
================================================
conv1d_2 (Conv1D) (None, 127, 8) 40
________________________________________________
flatten_1 (Flatten) (None, 1016) 0
________________________________________________
dense_3 (Dense) (None, 1016) 1033272
________________________________________________
dense_4 (Dense) (None, 128) 130176
________________________________________________
dense_5 (Dense) (None, 1016) 131064
________________________________________________
reshape_1 (Reshape) (None, 127, 8) 0
________________________________________________
zero_padding1d_1 (None, 130, 8) 0
________________________________________________
conv1d_3 (Conv1D) (None, 130, 1) 33
================================================
Total params: 1,294,585
Trainable params: 1,294,585
Non-trainable params: 0

Fig. 8. Autoencoder for kettle (window length 130).

________________________________________________
Layer (type) Output Shape Param #
================================================
conv1d_4 (Conv1D) (None, 127, 16) 80
________________________________________________
conv1d_5 (Conv1D) (None, 124, 16) 1040
________________________________________________
flatten_2 (Flatten) (None, 1984) 0
________________________________________________
dense_6 (Dense) (None, 4096) 8130560
________________________________________________
dense_7 (Dense) (None, 3072) 12585984
________________________________________________
dense_8 (Dense) (None, 2048) 6293504
________________________________________________
dense_9 (Dense) (None, 512) 1049088
________________________________________________
dense_10 (Dense) (None, 3) 1539
================================================
Total params: 28,061,795
Trainable params: 28,061,795
Non-trainable params: 0

Fig. 9. Rectangles network for kettle.

________________________________________________
Layer (type) Output Shape Param #
================================================
conv1d_2 (Conv1D) (None, 127, 16) 208
________________________________________________
conv1d_3 (Conv1D) (None, 124, 16) 1040
________________________________________________
flatten_1 (Flatten) (None, 1984) 0
________________________________________________
dense_3 (Dense) (None, 4096) 8130560
________________________________________________
dense_4 (Dense) (None, 3072) 12585984
________________________________________________
dense_5 (Dense) (None, 2048) 6293504
________________________________________________
dense_6 (Dense) (None, 512) 1049088
________________________________________________
dense_7 (Dense) (None, 3) 1539
================================================
Total params: 28,061,923
Trainable params: 28,061,923
Non-trainable params: 0

Fig. 10. High frequency rectangles network for kettle.

________________________________________________
Layer (type) Output Shape Param #
================================================
conv1d (Conv1D) (None, 127, 8) 104
________________________________________________
flatten (Flatten) (None, 1016) 0
________________________________________________
dense (Dense) (None, 1016) 1033272
________________________________________________
dense_1 (Dense) (None, 128) 130176
________________________________________________
dense_2 (Dense) (None, 1016) 131064
________________________________________________
reshape (Reshape) (None, 127, 8) 0
________________________________________________
zero_padding1d (None, 130, 8) 0
________________________________________________
conv1d_1 (Conv1D) (None, 130, 1) 33
================================================
Total params: 1,294,649
Trainable params: 1,294,649
Non-trainable params: 0

Fig. 11. High frequency autoencoder for kettle.



________________________________________________
Layer (type) Output Shape Param #
================================================
conv1d (Conv1D) (None, 127, 8) 40
________________________________________________
conv1d_1 (Conv1D) (None, 124, 8) 264
________________________________________________
flatten (Flatten) (None, 992) 0
________________________________________________
dense (Dense) (None, 1016) 1008888
________________________________________________
dense_1 (Dense) (None, 254) 258318
________________________________________________
dense_2 (Dense) (None, 13) 3315
________________________________________________
dense_3 (Dense) (None, 254) 3556
________________________________________________
dense_4 (Dense) (None, 1016) 259080
________________________________________________
reshape (Reshape) (None, 127, 8) 0
________________________________________________
zero_padding1d (None, 130, 8) 0
________________________________________________
conv1d_2 (Conv1D) (None, 130, 1) 33
================================================
Total params: 1,533,494
Trainable params: 1,533,494
Non-trainable params: 0

Fig. 12. “Big” autoencoder for kettle.
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