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Abstract: Deep learning models have improved cutting-edge technologies in many research areas,
but their black-box structure makes it difficult to understand their inner workings and the rationale
behind their predictions. This may lead to unintended effects, such as being susceptible to adversarial
attacks or the reinforcement of biases. There is still a lack of research in the audio domain, despite the
increasing interest in developing deep learning models that provide explanations of their decisions.
To reduce this gap, we propose a novel interpretable deep learning model for automatic sound
classification, which explains its predictions based on the similarity of the input to a set of learned
prototypes in a latent space. We leverage domain knowledge by designing a frequency-dependent
similarity measure and by considering different time-frequency resolutions in the feature space. The
proposed model achieves results that are comparable to that of the state-of-the-art methods in three
different sound classification tasks involving speech, music, and environmental audio. In addition,
we present two automatic methods to prune the proposed model that exploit its interpretability. Our
system is open source and it is accompanied by a web application for the manual editing of the
model, which allows for a human-in-the-loop debugging approach.

Keywords: interpretability; explainability; deep learning; sound classification; prototypes

1. Introduction

The popularization of deep learning has led to significant advances in a wide range
of scientific fields and practical problems [1,2], most notably in computer vision [3] and
natural language processing [4], but also in the audio domain, improving the state of the art
of several tasks, such as speech recognition [5] and music recommendation [6]. Despite the
recent progress, it is often hard to provide insights into the decision-making process of deep
neural networks (DNNs). Their deep recursive structure and non-linear transformations
allow for DNNs to learn useful representations of the data, but, at the same time, make it
difficult to trace which aspects of the input drive their decisions. This black-box nature of
DNNs may lead to unintended effects, such as reinforcing inequality and bias [7–9], and
makes it difficult to extract the knowledge that is captured by the model about the problem
in a way that humans can understand [10]. Particularly, in applications that impact human
lives—such as in healthcare—the lack of transparency and accountability can have serious
consequences [11]. It can be argued that the difficulty to understand these models is not
problematic in many successful applications of DNNs [12,13]. However, prediction with
high probability does not guarantee the model to always behave as expected. For instance,
it has been shown that DNNs can be fooled with certain ease in classification tasks by
adversarial attacks [14]—see [15,16] for examples in speech.

The integration of such algorithms into our daily lives requires wide social accep-
tance, but the unforeseen malfunctioning and side-effects mentioned above undermine
trustworthiness. Such concerns emerge in the new artificial intelligence (AI) regulations,
like the legal notion of a right to explanation in the European Union’s general data protection
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regulation (GDPR) [17]. In consonance with this, there is a recent surge of research on
machine learning models that provide explanations of their decisions in some level of
detail, a field that is commonly known as interpretable machine learning [10,18]. Models that
can be interpreted can be better debugged and audited, either to devise defense methods,
foresee malfunctions, discover edge cases, or detect biases [10,19].

Several terms, such as interpretability, explainability, intelligibility, comprehensibility,
and transparency, are used in this field to broadly refer to the capability of understanding
how the model works, i.e., the process that led to its output [20]. Naturally, this does
not mean a low-level mechanistic understanding of the inner workings of the model,
but a rationale behind its predictions in a way that the user can interpret [18]. The lack
of agreement on the terms is misleading, and it mainly arises from their lack of precise
meanings when applied to algorithms [13]. A problematic aspect of interpretability is that
it is a domain-specific notion and, therefore, there is no single definition of what attributes
render models interpretable [11]. Yet, interpretability is often materialized in practice
into a set of application-specific constraints on the model, dictated by domain knowledge,
such as causality, monotonicity, or sparsity. In this paper, we propose an intrinsic type
of interpretability, based on examples/prototypes, similarly to [21–25]. Our interpretable
model should be able to produce explanations in terms of sound prototypes.

Another key issue is that interpretability can be accomplished at different degrees,
from a fully transparent to a mildly constrained model [11,18].

In light of the above, it is not surprising that there are a lot of different approaches
for explaining DNNs [10,12,18,26]. Most of them focus on explaining how the data are
processed or represented by the network, namely a post-hoc explanation, as it pertains to
an existing opaque model. Another approach is to create architectures that are designed to
produce explanations or to facilitate the interpretation of the network behavior, namely
explanation-producing or inherently/intrinsically interpretable models.

The challenge in intrinsically interpretable machine learning is to create models that
fit the data accurately while uncovering the types of patterns that the user would find
interpretable. But there is a widespread belief that interpretability and accuracy stand in
conflict, assuming that the most accurate models must be inherently complex and, hence,
uninterpretable [18]. However, some evidence suggests that such a trade-off does not
necessarily hold, since, for instance, certain forms of interpretability have been integrated
into deep neural networks for computer vision without losing accuracy [21,24]. In fact,
the ability to interpret the model can reveal the weaknesses of the data or the processing,
which can lead to performance improvements if properly addressed.

With respect to post-hoc interpretability, the fundamental challenges in explaining
large neural networks are the high number of parameters and the stacked non-linear
operations involved. This can be tackled by training a proxy linear model that imitates the
input-output behavior of the original opaque model, but it is easier to interpret (a white
box). One of the classical methods of this kind is the local interpretable model-agnostic
explanations (LIME) [27], which learns a linear model as a local approximation of the
black-box model in the neighbouring space of an input data point. Other proxy models
attempt to replicate the behavior across the entire dataset, while using decision trees or
rule extraction techniques [18]. However, a proxy model is a linear approximation of a
non-linear model and it may be an inaccurate representation in some parts of the input
space. Thus, the proxy-models are often not reliable [11].

Another type of post-hoc explanation focuses on the representation of the data inside
the network. These methods try to explain the role of the layers [28], individual units [19],
or other useful representations [29]. Besides, there are visualization methods that highlight
the characteristics of the input that strongly influence the output [12]. Among the most
common ones are the saliency maps, which identify input features that cause a maximum
response or portions where changes would most affect the output [30]. They can be useful
to reverse-engineer importance values or sensitivities of inputs, but do not disclose how this
relevant information is being used, so that they can produce unreliable explanations [31].
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For already trained models, post-hoc explanations may be the only option. How-
ever, a model that is inherently interpretable provides explanations that are faithful to
what the model actually computes [11]. Several different approaches may be taken for
designing interpretable or explanation-producing neural networks [18]. For instance,
DNNs can be trained to explicitly learn disentangled latent representations [32] or to cre-
ate generative explanations. Besides, attention mechanisms that proved very effective in
natural language processing and computer vision provide a distribution over input units
indicating their relative importance, which can be considered as a form of explanation.
However, more research is needed to assess whether attention mechanisms can provide
reliable explanations [33].

Recent approaches for designing interpretable neural network architectures based
on explanations through prototypes and concepts, which have been mainly applied to
the classification of images, are of particular relevance to our work [21–25]. Prototype
classification is a classical form of case-based reasoning. It stands as an appropriate
approach for interpretability that is grounded on how domain experts explain the reasoning
processes behind complicated classification tasks in the visual domain. The architecture
proposed in [21] appends a special prototype layer to the network. Those prototypes are
learned during training and the predictions of the network are based on the similarity of the
input to them, being computed as a distance in the latent space. Thus, the explanations that
are given by the network are the prototypes and corresponding distances. Subsequently,
in [23], this is extended to use hierarchically organized prototypes to classify objects in a
predefined taxonomy, and in [24], to learn parts of the training images as prototypes of
each class. Finally, the approaches in [22,25] can be regarded as generalizations beyond
similarities to prototypes into more general interpretable concepts.

Contributions and Description of This Work

In this work, we present a novel explanation-producing neural network for sound
classification, with the aim of contributing to the development of interpretable models in
the audio domain.

Automatic sound classification technologies are becoming widely applied into mon-
itoring systems, smart safety devices, voice assistants, and in different real-world envi-
ronments, such as industrial, domestic, urban, and natural [34–36]. Consequently, there
are various application scenarios in which a human would need to make actionable de-
cisions based on an automatic sound classification system—like surveillance or machine
fault monitoring. In such scenarios, humans would benefit from accessing explanations
regarding the outputs of the sound classification system. Traditional sound classification
systems are based on acoustic features, such as mel-frequency cepstral coefficients (MFCCs),
and shallow classifiers, such as Gaussian mixture models (GMMs) [37,38] and decision
trees [39]. These are comparatively easier to interpret than classifiers that are based on deep
neural networks. However, deep-learning techniques have brought new state-of-the-art
results to several sound classification tasks [40–42], thus new research addressing the issue
of making these classifiers more interpretable is needed.

In addition, self-explaining networks can be more easily inspected, which has the
previously noted advantages.

The proposed network architecture is based on the interpretable model for image
classification introduced in [21]. The input in our case is a time-frequency representation of
the audio signal. The network learns a latent space—by means of an autoencoder—and a
small set of prototypes in this latent space. The ability to learn a latent space is the most
powerful trait of DNNs and it proved to be a key factor for achieving high performance
in the different sound classification tasks addressed. The predictions of the network are
based on the similarity of the input to the prototypes in the latent space. We leverage audio
domain knowledge to design a frequency-dependent similarity measure and consider
different time-frequency resolutions in the feature space, both of which contribute to better
discrimination of the sound classes. By applying the decoder function of the autoencoder, a
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prototype can be mapped from the latent space to the time-frequency input representation
and then to an audio signal. The model is constrained to produce good quality audio
from the time-frequency representation. This allows for the aural inspection of the learned
prototypes and their comparison to the audio input. It is this approach that renders the
explainability of the proposed model: the explanation is the set of prototypes—mapped to
the audio domain—and the similarity of the input to them.

The conducted experiments show competitive results when compared to that of the
state-of-the-art methods in automatic sound classification for three different application
scenarios involving speech, music, and environmental audio. Moreover, the ability to
inspect the network allows for evaluating its performance beyond the typical accuracy
measure. For this reason, some experiments are devised to explore the advantages of the
interpretability property of the model. To do so, we propose two automatic methods for
network refinement that allow reducing some redundancies, and suggest how the model
could be debugged using a human-in-the-loop strategy.

The implemented model and the software needed for reproducing the experiments
are available to the community under an open source license from: https://github.com/
pzinemanas/APNet.

Our main contributions can be summarized, as follows.

1. We propose a novel interpretable deep neural network for automatic sound
classification—based on an existing image classification model [21]—that provides
explanations of its decisions in the form of a similarity measure between the input
and a set of learned prototypes in a latent space.

2. We exploit audio domain knowledge to improve the discrimination of the sound
classes by designing a frequency-dependent similarity measure and by considering
different time-frequency resolutions in the feature space.

3. We rigorously evaluate the proposed model in the context of three different appli-
cation scenarios involving speech, music, and environmental audio, showing that it
achieves comparable results to those of state-of-the-art opaque algorithms.

4. We show that interpretable architectures, such as the one proposed, allow for the
inspection, debugging, and refinement of the model. To do that, we present two
methods for reducing the number of parameters at no loss in performance, and
suggest a human-in-the-loop strategy for model debugging.

The rest of this document is organized, as follows. Section 2 reviews previous work
in relation to our proposed approach, which is presented in Section 3. Section 4 details
the datasets and baseline methods that are used in the experiments reported in Section 5.
Section 6 finalizes the paper with the main conclusions and ideas for future work.

2. Relation with Previous Work

In this section, we review previous research in explainable deep neural models for
audio in relation to our work. Although the research in explainable machine learning is
quickly expanding, the existing work that focuses on the audio domain is quite limited.
Most of this research follows a post-hoc approach for explaining black-box models, and
only a few works deal with intrinsically interpretable network architectures.

Regarding visualization methods for explainability, saliency maps were applied in [43]
to a convolutional-recurrent network trained for polyphonic sound event detection. The
authors show that convolutional filters recognize specific patterns in the input and that
the complexity of these patterns increases in the upper layers. A gradient-based approach
was proposed in [44] for visualizing heat maps in raw waveform convolutional neural
networks. It is also possible to propagate the model’s prediction backward while using
rules about relevance [45] or deep Taylor decomposition [46]. These two methods have
been applied to audio classification problems in [47,48], respectively. In contrast to the
visualization methods, our explanations come in form of examples, which are easier to
interpret by end-users of the model that may have no machine learning knowledge.

https://github.com/pzinemanas/APNet 
https://github.com/pzinemanas/APNet 
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With regards to post-hoc methods that create proxy models, a variation of the LIME
algorithm for audio content analysis—called SLIME—was proposed in [49,50]. It can gen-
erate explanations in the form of temporal, frequency, and time-frequency segmentation,
and it was applied to singing voice detection. In contrast, our model is designed to be in-
terpretable and we do not generate explanations for black-box models. The time-frequency
representations used as input for these models cannot be interpreted as simple images. We
argue that example-based explanations are a better fit for these audio representation than
local pixels areas that do not always define sound objects.

The model internals, weights, neurons, and layers may also be explained. In the audio
domain such an approach using transfer learning was applied to study the capability of the
layers of a pre-trained network to extract meaningful information for music classification
and regression [51]. The role of each layer in an end-to-end speech recognition systems
has been studied in [52]. The main idea is to synthesize speech signals from the hidden
representations of each layer. The results show that specific characteristics of the speaker
are gradually discarded in each layer, along with the ambient noise. Similar to these
approaches, our network architecture is designed to generate prototypes by reconstructing
representations that were learned in a latent space.

In terms of interpretable network architectures, several parts of the network may be
designed to target particular tasks, such as feature computation or signal decomposition.
For example, it has been shown that the first layers of end-to-end convolutional neural
networks that learn representations from raw audio data extract features that are similar
to the spectrogram or energies in mel-frequency bands [53–55]. Additionally, some works
have addressed the design of the first layers of these networks to tailor the feature extraction
stage using parametric filters [56–58] or trainable hand-crafted kernels [59,60]. Attention
mechanisms have been used to bring interpretability to neural networks in speech and
music emotion recognition [61,62] and in music auto-tagging [63]. Recently, a visualization
tool was proposed in [64] for understanding the attention mechanisms in self-supervised
audio transformers.

Regarding intrinsic interpretable network architectures, learning a disentangled la-
tent space has been applied to learn interpretable latent factors that are related to pitch
and timbre [65]—in the context of musical instrument recognition—and related to chord
and texture [66]—in the context of generative models of polyphonic music. In addition,
mid-level features [67] and source separation [68] have been used to improve the model in-
terpretability for the problem of music emotion recognition. In [69], invertible networks [70]
have been applied for interpretable automatic polyphonic transcription. Similar to [71],
we use domain knowledge to design several parts of the network to learn interpretable
representations for speech and audio signals.

Neural network pruning has been shown to reduce the training time and network
complexity [72]. To that extent, we refine the proposed model by eliminating redundant
prototypes and channels. Thus, we show that our system is able to achieve similar accuracy
with a reduced number of parameters.

3. Proposed Model

The proposed model—called Audio Prototype Network (APNet)—has two main
components: an autoencoder and a classifier. The input to the model is a time-frequency
representation of the audio signal. The purpose of the autoencoder is to represent the input
into a latent space of useful features that are learned during training. The encoded input is
then used by the classifier to make a prediction.

The diagram shown in Figure 1 represents the network architecture of APNet. The
classifier consists of: a prototype layer, a weighted sum layer, and a fully-connected layer.
The prediction of the classifier is based on the similarity—computed in the latent space—
between the encoded input and a set of prototypes, which are learned during training
to be representatives of each class. The weighted sum layer controls the contribution
of each frequency bin—in the latent space to—the similarity measure. Finally the fully



Electronics 2021, 10, 850 6 of 23

connected layer takes the weighted similarity measure as input and produces the output
prediction. The decoder function of the autoencoder is used to map the prototypes from
the latent space to the time-frequency input representation—and then to the audio domain
using signal processing. In the following, the main network components are thoroughly
described.

Figure 1. Diagram of the proposed model. Continuous arrows represent layers or sub-networks and
they have the name below or to the left of them. Dashed line arrows represent unit connections.

3.1. Input Representation

The log-scale mel-spectrogram is used as the time-frequency representation of the
audio input. This representation is widely used in sound classification, as well as other
audio-related problems.

We define the ith input as X i P RT ˆF where T and F are the number of time hops
and the frequency bins, respectively. Hence, let tpX i, Y iqu

N
i“1 be the training set, where

Y i P RK are the one-hot encoded labels, and N and K are the number of instances and
classes, respectively.

3.2. Autoencoder

The encoder function f p¨q is used to extract meaningful features from the input.
Therefore, the encoder transforms the input into its representation in the latent space,

Zi “ f pX iq, (1)

where Zi is three-dimensional tensor of shape pT, F, Cq, T and F are the time and frequency
dimensions after the encoding operations, and C is the number of channels used in the
encoder’s last layer. On the other hand, the decoder function, gp¨q, is devised to reconstruct
the input from the latent space,

rX i “ gpZiq P RT ˆF . (2)

The autoencoder that is proposed in [21] is devised for image processing. We designed
the autoencoder of our model to deal with a time-frequency representation as input. In
particular, the encoder is suitable for audio feature extraction, and the decoder provides
good audio quality in the reconstruction.
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Figure 2 shows a diagram of the proposed autoencoder. It has three convolutional
layers in the encoder and three transpose convolutional layers in the decoder. Besides,
we apply max-pooling layers after the first two convolutional layers in order to capture
features at different time-frequency resolutions. Note that max-pooling is a non-invertible
operation and, thus, there is not an upsampling operation that is suitable for the decoder
stage. To overcome this problem, we use the solution that was proposed by Badrinarayanan
et al. [73]. This implies saving the indexes used in the max-pooling operations in the form
of masks and then using them in the decoder. This mask is set to 1 at the position that
maximizes the max-pooling and to 0 otherwise. In the decoder, the mask is applied to
the result of a linear upsampling. The next transpose convolutional layer learns how to
upsample the masked input.

Figure 2. Diagram of the proposed autoencoder. Filled arrows represent convolutional (both normal
and transpose) layers. The unfilled arrows point out max-pooling (in the encoder) or upsampling (in
the decoder) layers. Dashed line arrows illustrate connections.

A leaky ReLu is the activation after each convolutional layer [74], except for the last
one, which is an hyperbolic tangent in order to limit the reconstruction to the range r´1, 1s.

Note that we use padding for all convolutional layers, so that the output has the
same shape as the input. Besides, max-pooling operations use a 2 ˆ 2 window and,
therefore, the shape of the encoder’s last layer (i.e., the dimension of the latent space) is
pT, F, Cq “ pT {4,F{4, Cq.

For the decoding process to have enough audio quality, it is necessary to optimize the
autoencoder by minimizing its reconstruction error. To accomplish this, we use a L2 mean
square loss function over its inputs and outputs, as

lr “
1
N

N
ÿ

i“1

∥∥∥X i ´ rX i

∥∥∥2

2
. (3)

3.3. Prototype Layer

The prototype layer stores a set of M prototypes that we want to be representatives of
each class: tPju

M
j“1. These prototypes are learned in the latent space and, thus, the shape of

Pj is also pT, F, Cq.
In order to learn the prototypes, we used the same loss function as in the original

model [21]. First, we calculate D P RNˆM, whose values are the squared L2 distance from
each data instance to each prototype in the latent space:

Dij “
∥∥Zi ´ Pj

∥∥2
2, (4)

and then we calculate the following cost function:

lp “
1
N

N
ÿ

i“1

min
j
tDiju `

1
M

M
ÿ

j“1

min
i
tDiju. (5)
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The minimization of this loss function would require that each learned prototype is
similar to at least one of the training examples in the latent space; and, vice versa, every
training example to be similar to one prototype [21]. Therefore, training examples will
cluster around prototypes in the latent space. Besides, if we choose the decoder to be a
continuous function, we should expect that two close instances in the latent space to be
decoded as similar instances in the input space, as noted in [21]. Consequently, we should
expect the prototypes to have meaningful decodings in the input space.

The output of this layer is a similarity measure that is based on the distance from each
encoded data instance Zi to each prototype Pj, as described in the next section.

3.4. Similarity Measure and Weighted Sum Layer

Unlike images, the dimensions of the time-frequency representation have different
meanings and they should be treated differently [75]. For this reason, we propose a
frequency-dependent similarity that assigns a different weight to each frequency bin in the
latent space. This allows for the comparison of inputs and prototypes to be based on those
frequency bins that are more relevant, for instance, where the energy is concentrated.

The similarity measure computation has two steps: (1) the calculation of a frequency-
dependent similarity and (2) the integration of the frequency dimension by means of a
learnable weighted sum.

The frequency dependent similarity is calculated as a squared L2 distance, followed
by a Gaussian function. Therefore, the output of the prototype layer, S, is obtained by:

Sijr f s “ exp

˜

´

T
ÿ

t“1

C
ÿ

c“1

`

Zirt, f , cs ´ Pjrt, f , cs
˘2
¸

. (6)

Note that S is a three-dimensional tensor whose shape is pN, M, Fq, and that we
use both sub-indexes and brackets to denote tensor dimensions. Sub-indexes denote the
i-th data instance and the j-th prototype; and, brackets denotes the time, frequency, and
channels dimensions.

Subsequently, the frequency dimension is integrated, to obtain the matrix pS P RNˆM,
while using the following weighted sum:

pSij “

F
ÿ

f “1

Hjr f sSijr f s (7)

where H “ tHjr f su P RMˆF is a trainable kernel. Note that this is similar to a dot product
with a vector of length F for each prototype. We initialize H with all values equal to
1{F (equal weight, mean operation), but we let the network learn the best way to weight
each frequency bin for each prototype. The kernel is particularly useful to discriminate
between overlapping sound classes by focusing on the most relevant frequency bins for
each prototype.

3.5. Fully-Connected Layer

The fully-connected layer is devised to learn the decisions to transform the similarity
measure pS into the predictions. Given that the network is intended for a classification task,
we use softmax as the activation of this layer. Therefore, the predictions are calculated as:

rY “ softmaxppS ¨Wq, (8)

where W P RMˆK is the kernel of the layer and rY “ trYiku P RNˆK. Note that we do not
use bias in order to obtain more interpretable kernel weights. We expect that for a given
output class, the network gives more weight to the prototypes related to this class. For
instance, in a problem with K classes and one prototype per class (M “ K), we expect to
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learn a fully-connected layer with a kernel close to the identity matrix, W “ IK [21]. The
loss function to train this layer is a categorical cross-entropy,

lc “ ´
1
N

N
ÿ

i“1

K
ÿ

k“1

Yik log rYik. (9)

Finally, note that, since the prototypes can be converted from the latent space to the
time-frequency input representation by applying the decoder function, gpPjq P RT ˆF is
the mel-spectrogram representation of the j-th prototype. Hence, we can illustrate the
prediction process while using the mel-spectrograms of data instances and prototypes,
even though this is actually performed in the latent space. Figure 3 shows an example
of this illustration in the context of a classification task with three classes and using one
prototype per class (M “ K “ 3).

Figure 3. Illustration of how the model makes its predictions. This is an example with three classes:
siren, air conditioner, and car horn. The input Xi is compared to three prototypes (one per each class) to
get the frequency-dependent similarity Sijr f s. This similarity is integrated in the frequency dimension
using the weighted sum layer to obtain pSij. The final step in the reasoning process is to calculate the
prediction (rY ik) by projecting the similarity using a fully-connected layer. Note that gray scale in the
fully-connected arrows denote the strength of the connection.

4. Materials and Methods

In this section, we describe the sound classification tasks addressed, the publicly available
datasets, the evaluation methodology, and the baselines that were used for performance
comparison.

4.1. Sound Classification Tasks

We aim to study the performance of APNet when considering sounds of different
nature, such as speech, music, and environmental sounds. To do that, we address three dif-
ferent audio classification tasks: urban sound classification, musical instrument recognition,
and keyword spotting in speech.

The basic premise of sound classification is that sounds that are produced by the
same source of physical process can be grouped into a category. In this work, we refer to
sound classification as the task of assigning a sound category to an audio segment, from a
previously defined set of options. We differentiate this from sound detection, which also
involves locating the sound event within the audio in terms of onset and offset time instant;
and, from audio tagging, in which multiple labels can be assigned to an audio segment
indicating the presence of instances from several sound classes [37].
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Simple application scenarios have a single sound event per audio segment. This is
the case of the keyword spotting task in speech addressed in this work, in which each
audio segment has only one short word. Subsequently, a more complex scenario is the
presence of a sequence of non-overlapping sound events of the same kind, such as the stem
of a single instrument in a multi-track music recording session. The musical instrument
recognition task is an example of this kind, despite the fact that some of the instruments
(e.g., piano, violin) can simultaneously produce several sounds. The environmental sound
scenarios are one of the most complex settings because they typically involve multiple
temporally overlapping sound events of different types, and the sounds present often have
considerable diversity. This is the kind of problem that is addressed in the urban sound
classification task.

Further information regarding the tasks is provided in the following description of
the datasets.

4.2. Datasets
4.2.1. UrbanSound8k

For the urban sound classification task we use the UrbanSound8K dataset [76]. It has
more than 8000 audio slices that are extracted from audio recordings from Freesound [77].
Each audio slice is tagged with one of the following ten labels: air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street music.
The length of the audio slices is variable, with a maximum value of 4 s. The audio format is
the same as the one originally uploaded to Freesound.

We use the 10-fold cross-validation scheme that was provided by the dataset comply-
ing with the following methodology: (1) select a test fold (e.g., fold 1); (2) select a validation
set as the next fold (e.g., fold 2); (3) train the model on the rest of the folds (e.g., folds 3 to
10) using the validation set for model selection; and, (4) evaluate the model on the test set.
Finally, repeat for the ten folds and average the results.

4.2.2. Medley-Solos-DB

For the music instrument recognition task, we use the Medley-solos-DB dataset [78].
It contains single-instrument samples of nine instruments: clarinet, distorted electric guitar,
female singer, flute, piano, tenor saxophone, trumpet, and violin. Audio clips are three-second
length, sampled at 44,100 Hz.

It has a training set extracted from the MedleyDB dataset [79] and a test set from the
solosDB dataset [80]. The training set also includes a split for model validation.

4.2.3. Google Speech Commands

For the keyword spotting task in speech we use the Google Speech Commands V2
dataset [81]. It consists of more than 100.000 audio files of one-second length, sampled at
16,000 Hz, each one containing a single short word. Although the dataset is devised for the
detection of a small set of commands (e.g., up, down, left, right) and to distinguish them
from other short words, we use the complete set of 35 words: backward, bed, bird, cat, dog,
down, eight, five, follow, forward, four, go, happy, house, learn, left, marvin, nine, no, off, on, one,
right, seven, sheila, six, stop, three, tree, two, up, visual, wow, yes, and zero. The audio files are
organized in three folds for model training, validation, and testing.

4.3. Baselines

We compare the performance of APNet to that of three different state-of-the-art opaque
models: a convolutional neural network designed for environmental sound recognition
in urban environments (SB-CNN) [41]; a convolutional recurrent neural network with
an attention mechanism devised for speech classification (Att-CRNN) [42]; and, a pre-
trained embedding extractor model based on self-supervised learning of audio-visual data
(Openl3) [40].
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The SB-CNN model is a neural network that is composed by three convolutional
layers followed by two dense layers. The Att-CRNN model consists of two horizontal
convolutional layers, two bidirectional Long Short-Time Memory (LSTM) recurrent layers,
an attention mechanism to integrate temporal dimension, and three dense layers.

Openl3 is a pre-trained embedding extractor model that is based on the self-supervised
learning of audio-visual data. The parameters used to calculate the input representation
are fixed, and different flavours of the model are available based on the embedding space
dimension, the number of mel bands, and the type of data used for training (music or
environmental). We use an embedding space of 512 and 256 mel bands for the three datasets.
For the urban sound classification task, we select the model trained on environmental data,
and the model trained on music for the other two tasks. We use Openl3 as a feature extractor
and train a Multi Layer Perceptron (MLP) for each classification task. This network has two
hidden layers of 512 and 128 units, respectively, with ReLu activation and dropout with
rate 0.5. The dimension of the last layer corresponds to the number of classes in each case.

The three baseline models and APNet use log-scaled mel-spectrograms representation
as input, but with different set of parameters. These parameters are also dataset dependent
and, therefore, we summarize all combinations in Table 1. For instance, in the case of APNet
trained on UrbanSound8K, we extract the time-frequency representation with F “ 128
bands from 0 to 11,025 Hz, while using a spectrogram calculated with a window length of
4096 and hop size of 1024. Each input corresponds to a 4-seconds slice of the audio signal;
hence, the number of time hops is T “ 84.

Table 1. Mel-spectrogram parameters for each model and dataset: sampling rate in kHz ( fs); window length (w) and hop
size in samples (h); number of mel-bands (m); and, audio slice length in seconds (l).

UrbanSound8K Medley-Solos-DB Google Speech Commands
f s m w, h l f s m w, h l f s m w, h l

APNet 22.05 128 4096, 1024 4.0 44.1 256 4096, 1024 3.0 16.0 80 1024, 256 1.0
SB-CNN 44.1 128 1024, 1024 3.0 44.1 256 1024, 1024 3.0 16.0 80 1024, 256 1.0

Att-CRNN 44.1 128 1024, 1024 3.0 44.1 256 1024, 1024 3.0 16.0 80 1024, 256 1.0
Openl3 48.0 256 512, 242 1.0 48.0 256 512, 242 1.0 48.0 256 512, 242 1.0

4.4. Training

We train APNet and the baseline models from scratch, without the use of pre-trained
weights, except for feature extraction in Openl3. For the three baselines, we optimize
a categorical cross-entropy loss over the predictions and the ground-truth, as shown in
Equation (9). While training APNet, we optimize the weighted sum of all function losses
defined previously, Equations (3), (5), and (9):

l “ αlc ` βlp ` γlr (10)

where the weights (α, β, and γ) are real-valued hyperparameters that adjust the ratios
between the terms. Other important hyperparameters are the number of channels used in
the convolutional layers C, the number of prototypes M, and the batch size B. See Table 2
for the values of the hyperparameters for each dataset. We train APNet and the baseline
models while using an Adam optimizer with a learning rate of 0.001 for 200 epochs. We
select the network weights that maximize the accuracy in the validation set.
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Table 2. APNet hyperparameters for each dataset: number of prototypes (M), number of channels in
convolutional layers (C); training hyperparameters (α, β, and γ); and, batch size (B).

M C (α, β, γ) B

UrbanSound8K 50 32 (10,5,5) 256
Medley-solos-DB 40 48 (10,5,5) 96

Google Speech Commands 105 48 (2,1,1) 128

5. Experiments and Results

First, we evaluate the performance accuracy of the proposed model in the three
classification tasks considered, and then compare it with that of the baseline models. All
of the experiments were conducted using the DCASE-models library [82]. This simplifies
the process of reproducing the experiments, as well as the development of the proposed
model. After training and validating all of the models, we evaluate them on the test sets
of each dataset. Table 3 shows the performance results and the number of parameters of
APNet and the three baselines for the three sound classification tasks. These results show
that APNet is a very competitive algorithm in all of the tasks, with accuracy values that are
comparable to that of the baseline models.

Table 3. Mean accuracy (%) and number of parameters (millions) for each model and dataset.

UrbanSound8K Medley-Solos-DB Google Speech Commands
Acc. (%) # Params. (M) Acc. (%) # Params. (M) Acc. (%) # Params. (M)

APNet 76.2 1.2 65.8 4.2 89.0 1.8
SB-CNN 72.2 0.86 64.7 1.8 92.1 0.17

Att-CRNN 61.1 0.23 52.0 0.29 93.2 0.20
Openl3 77.3 9.5 67.3 9.5 70.9 9.5

However, unlike the baseline models, APNet is designed to be an interpretable deep
neural network. This allows for us to carry out further analysis to provide insight into the
inner workings of the network. In particular, the following sections show how to inspect
the network (Section 5.1) and how to refine the network based on the insights provided by
the inspection (Section 5.2).

5.1. Network Inspection

In this section, we examine the functioning of the autoencoder (Section 5.1.1) and in-
spect the learned weights from the prototype (Section 5.1.2), fully-connected (Section 5.1.3),
and weighted sum (Section 5.1.4) layers.

5.1.1. Autoencoder

The autoencoder is devised to extract meaningful features (encoding process) from the
input and to transform back the prototypes from the latent space to the mel-spectrogram
representation (decoding process). We qualitatively assess the reconstruction of some data
instances in order to examine the functioning of the autoencoder. If this reconstruction is
not appropriate, then we can not guarantee that the learned prototypes can be transformed
back to the input space in a meaningful way. Figure 4 shows the reconstruction of five
random signals from one of the validation sets of the UrbanSound8K dataset. The visual
comparison of the original and reconstructed mel-spectrogram representations indicates
that the decoding process gives adequate results.
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Figure 4. Qualitative assessment of the autoencoder. Random instances from the validation set of
the UrbanSound8K dataset in the top row (X i) and their respective reconstructions in the bottom
row (rX i).

This is also confirmed by listening to the audio signal that is obtained from trans-
forming the time-frequency representation to the waveform domain. The mapping to
the audio domain is done by first converting the mel-spectrogram to an approximate
linear-frequency spectrogram, followed by the Griffin-Lim [83] method. This process is
implemented while using librosa [84]. The audio signals of the examples of Figure 4 are
available in https://pzinemanas.github.io/APNet/.

5.1.2. Prototypes

We take advantage of the decoder to obtain the reconstructed mel-spectrogram of the
prototypes, gpPjq. Note that, to do that, we need the masks of the max-pooling operations
from the encoder function f p¨q. However, these masks are not available since the prototypes
were not transformed by the encoder. However, we can use the masks produced by the
instances from the training data that minimize the distance to each prototype. Given that
the prototypes are learned to be similar to instances from the training data, we assume that
these masks are also suitable for the prototypes. Subsequently, we input these reconstructed
mel-spectrograms to the model and obtain the class prediction for each prototype, in order
to associate each prototype to a sound class.

Figure 5 shows one prototype of each class for the UrbanSound8K dataset. It can be no-
ticed that the mel-spectrograms exhibit the typical traits of the sound classes that they represent.

We also extract the audio signal from each prototype. By listening to the reconstructed
audio, one can confirm that the prototypes actually represent their corresponding sound
classes. The audio signals of some of these prototypes can be found in https://pzinemanas.
github.io/APNet/.

5.1.3. Fully-Connected Layer

The fully-connected layer transforms the similarity measure Ŝ into the network pre-
dictions. Recall that the weight matrix W of this layer is designed to be learnable. The
analysis of the learned weights of W contributes to the interpretability of the network. More
specifically, we are able to tell, from the value of the learned weights, which prototypes are
more representative of which class.

Figure 6 shows the transposed weight matrix, W T , obtained for the UrbanSound8K
dataset. The prototypes are sorted by the prediction that is given by the classifier. Note that
most of the prototypes are connected to the corresponding class, with only two exceptions
that are related to acoustic similarities. For instance, the last prototype of air conditioner is

https://pzinemanas.github.io/APNet/
https://pzinemanas.github.io/APNet/
https://pzinemanas.github.io/APNet/
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connected to engine idling. Besides, there is a strong connection between the first prototype
of dog bark and the output of children playing.

Figure 5. Reconstructed mel-spectrograms of selected prototypes, gpPjq.

Figure 6. Transposed weight matrix of last fully-connected layer, W T .

5.1.4. Weighted Sum Layer

The weighted sum layer allows for the network to learn the best way to weight
each frequency bin in the latent space for each prototype. It can be useful to focus on
the bins where the energy is concentrated or to better discriminate between overlapping
sound classes.

Figure 7 shows three examples of the learned weights from UrbanSound8K. For
instance, in the case of siren and engine idling prototypes, the weights are very correlated
to the energy envelope; the layer gives more importance to the low frequencies for engine
idling and middle frequencies for siren. However, in the case of jackhammer, this layer
gives greater significance to high frequencies, even though the low frequencies are energy
predominant. This can be explained as a way to distinguish this class from others with
high energy in low frequencies, such as engine idling or air conditioner.



Electronics 2021, 10, 850 15 of 23

Figure 7. Examples of the learned kernel, H, of the weighted sum layer from the similarity function.
Note that the weights for each prototype Hjr f s are upsampled to compare them in the input space.

To show the importance of the trainable weighted sum layer, we undertake the
following experiment. We select a data instance that is difficult to classify, because it has
a mix of sound sources (a siren, a women yelling, and an engine) and the only tagged
class (siren) is in the background. We extract the closest prototypes in two cases: (1)
using the learned weighted sum; and, (2) replacing the weighted sum layer with a fixed
mean operation (Hjr f s “ 1{F @j, f ). Figure 8 shows the mel-spectrogram of the data
instance (X i) to the left, while, to the right, the three closest prototypes using the mean
operation are depicted in the top row, and the three closest prototypes using the trainable
weighted sum are depicted in the bottom row. Note that the first two prototypes of the top
row correspond to children playing—because the predominant source present is a women
yelling—and only the third prototype corresponds to the correct class. On the other hand,
when the trainable weighted sum is used, the similarity measure is able to capture the
source from the background by given more weight to the frequency bins where its energy
is concentrated. Note that the first two prototype in the bottom row correspond to the
correct class.

Figure 8. Example on the importance of the weighted sum layer. To the left, the mel-spectrogram, X i,
of an audio slice that includes several sources: siren in the background along with a women yelling,
and an engine in the foreground. Using a mean operation instead of the weighted sum, the two
closest prototypes are from children playing (top row). However, applying the weighted sum, the two
closest prototypes are from the correct class, siren (bottom row).
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5.2. Network Refinement

The architecture of APNet allows designers to refine, debug, and improve the model.
In the following, we propose two automatic methods to refine the network by reducing
redundancy in the prototypes (Section 5.2.1) and the channels in the encoder’s last layer
(Section 5.2.2). Besides, we present a web application that is devised for the manual editing
of the model (Section 5.2.3).

5.2.1. Prototype Redundancy

APNet does not include a constraint on the diversity of the prototypes. As a result,
some of the prototypes can be very similar, producing some kind of redundancy. To
evaluate this, we calculate the distance matrix of the prototypes D P RMˆM, while using
the L2 squared distance:

Djl “
∥∥Pj ´ Pl

∥∥2
2. (11)

Figure 9 shows this distance matrix in the case of the Medley-solos-DB dataset. Note
that some of the prototypes of the same class are very similar. To reduce this redundancy
and, consequently, make the network smaller, we remove prototypes that are very close to
each other. Formally, we eliminate one prototype for each pair pj, lq that meet:

Djl ă mintDjlu `meantDjlu{2 @j, l P r1, . . . , Ms : j ‰ l (12)

Figure 9. Distance matrix of prototypes of the Medley-solos-DB dataset sorted by predicted classes.
The labels are clarinet (CL), distorted electric guitar (DEG), female singer (FM), flute (FL), piano (PI),
trumpet (TR), and violin (VI).

Note that eliminating these prototypes also implies removing the rows of W associated
with them. For instance, if Pj is deleted, then row j from W should also be removed.

After eliminating the redundant prototypes, we train the networks for 20 more epochs
using the same parameters from Section 5. After this network pruning process, we improve
the classification results from 65.8% to 68.2%; and, reduce the number of parameters.
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5.2.2. Channel Redundancy

The number of channels of convolutional layers within the autoencoder are usually
selected by a grid search method or relying on values used by previous research. A
high number of channels can produce network overfitting or add noisy information
in the feature space. We take advantage of the prototype architecture to see whether
some channels are redundant. Because the output of the last convolutional layer of
the encoder yields the latent space, we can use the prototypes to analyze the channel’s
dimension. Therefore, if there is redundant or noisy information in the prototypes, this
can be related to the filters in the last layer of the encoder.

To study this, we undertake the following experiment in the instrument recognition
task. We calculate the accumulated distance matrix, C P RCˆC, of the prototypes as a
function of the channel dimension:

Ckq “
ÿ

i,j,t, f

`

Pirt, f , ks ´ Pjrt, f , qs
˘2. (13)

Subsequently, we find the eight minimum values of C outside the diagonal and we
delete one channel from each pair pk, qq. We delete all of the weights related to these
channels and, as a result, we reduce the number of filters of the last layer from 48 to 40. We
re-train the network for 20 more epochs, because the decoder part has to be trained again.

Table 4 shows the results that were obtained for the Medley-solos-DB dataset after
both prototype and channel refinement processes, when compared to Openl3 as the most
competitive baseline. After the two refinements the accuracy increases by 3.3%, while
the number of parameters is reduced by 2.6 M. Besides, this result improves the Openl3
performance by 1.8%.

Table 4. The accuracy and number of parameters for APNet before and after the refinement processes
for the Medley-solos-DB dataset. Openl3 is included as the most competitive baseline.

Network Accuracy p%q Approx. # Parameters

APNet 65.8 4.2 M
APNet (R. prototypes) 68.2 1.8 M
APNet (R. channels) 69.1 1.5 M

Openl3 67.3 9.4 M

5.2.3. Manual Editing

In the previous sections, we described two automatic methods to refine APNet
that lead to better performance and smaller networks. However, when working with
networks designed for interpretability like APNet, it is also possible to visualize the
models and allow the users to refine them manually. To that end, we designed a web
application that allows for the users to interact with the model, refine it, and re-train it
to obtain an updated model. Figure 10 shows a screenshot of the web application. The
user can navigate in a two-dimensional (2D) representation of the prototypes and the
training data. It is also possible to see the mel-spectrograms of prototypes and the data
instances and to play the audio signals. The user can remove selected prototypes and
convert instances to prototypes. Once the prototypes are changed, the model can be
re-trained and evaluated.

Using this tool, manual debugging of the model is also possible. Furthermore,
different training schemes, such as human-in-the-loop strategies, are possible. For
instance, the user can periodically check the training and change the model after a few
numbers of epochs. It is also a good starting point to design interfaces for explaining the
inner workings of deep neural networks to end-users.
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Figure 10. Screenshot of the web application designed for the manual editing of APNet. In this tab the user can navigate
through the training set and the prototypes in a two-dimensional (2D) space, listen to the audio files and explore the
mel-spectrograms. It is also possible to delete prototypes and convert data instances into prototypes. Other tabs include
functions for training and evaluating the edited model.

6. Conclusions

In this work, we present a novel interpretable deep neural network for sound
classification—based on an existing model devised for image classification [21]—which
provides explanations of it decisions in terms of a set of learned prototypes in a latent space
and the similarity of the input to them.

We leverage domain knowledge to tailor our model to audio-related problems. In
particular, we propose a similarity measure that is based on a trainable weighted sum of
a frequency-dependent distance in a latent space. Our experiments show that including
the trainable weighted sum effectively improves the model, in particular when classifying
input data containing mixed sound sources.

The proposed model achieves accuracy results that are comparable to that of state-
of-the-art baseline systems in three different sound classification tasks: urban sound
classification, musical instrument recognition, and keyword spotting in speech.

In addition, the ability to inspect the network allows for evaluating its performance
beyond the typical accuracy measure and provide useful insights into the inner workings of
the model. We argue that the interpretability of the model and its reliable explanations—in
the form of a set of prototypes and the similarity of the input to them—increase its trust-
worthiness. This is important for end-users relying on the network output for actionable
decisions, even in low-risk applications.
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The interpretable architecture of APNet allows designers to refine, debug, and improve
the model. In this regard, we propose two automatic methods for network refinement
that eliminate redundant prototypes and channels. We show that, after these refinement
processes, the model improves the results, even outperforming the most competitive
baseline in one of the tasks. Our results exemplify that interpretability may also help to
design better models. This contrasts with the widely extended assumption that there is an
unavoidable trade-off between interpretability and accuracy.

Future work includes adapting the proposed model to other sound recognition prob-
lems, such as sound event detection and audio-tagging. Along with this, we seek to incor-
porate audio-domain knowledge to the development of other intrinsically interpretable
neural network models based on prototypes [23,24] and concepts [22,25]. Besides, we want
to use the visualization tool for manual editing to study different ways of training the
network with a human-in-the-loop approach; and, to create tools for explaining the inner
functionality of the network to end-users.
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